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ABSTRACT 

Wind storms cause significant damage and economic loss and are a major 

recurring threat in many countries.  Maximum sustained and peak gust weather station 

data from multiple historic wind storms occurring over more than three decades across 

Europe were analyzed to identify storm tracks, intensities, and areas of frequent high 

wind speeds.  Wind surfaces for maximum sustained and peak gust winds were 

estimated based on an anisotropic (directionally-dependent) kriging interpolation 

methodology.  Overall, wind speed magnitudes and high intensity locations were 

identified accurately for each storm.  Directional trends and wind swaths were also 

consistently located in appropriate locations based on known storm tracks.  Anisotropic 

kriging proved to be superior to isotropic (non-directional) kriging when modeling 

continental-scale wind storms because of the identification of strong directional 

correlations across space.  Results suggest that coastal areas and mountainous areas 

experience the highest wind intensities during wind storms.  These same areas also 

experience high variability over short distances and thus the highest error 

measurements associated with concurrent interpolated surfaces.  For this reason, 

various covariates were utilized in conjunction with the cokriging interpolation technique 

and improved the interpolated wind surfaces for five wind storms that impacted both the 

mountainous and topographically-varied Alps region and the coastal regions of Europe.  

Land cover alone reduced station-measured standard error most significantly in a 

majority of the models, while aspect and elevation (singularly and collectively) also 

reduced station standard error in most models as compared to the original kriging 

models.   



 

xvii 

Additional comparisons between different areal scales of kriging/cokriging models 

revealed that some surface wind variability is muted at the continental scale, but 

identifiable at the local scale.  However, major patterns and trends are more difficult to 

ascertain for local-scale surfaces when compared to continental-scale surfaces.  Large 

station error can be reduced through local kriging/cokriging, but additional research is 

needed to merge local-scale semivariograms with continental-scale models.  Results 

showed substantial improvements in wind speed surface estimates over previous 

estimates and have major implications for catastrophe modeling companies, insurance 

needs, and construction standards.  Implications of this research may be transferrable 

to other geographies and create an impetus for database and covariate improvement.  

 
Keywords: European wind storms, sustained winds, peak gust, anisotropic, kriging 

interpolation, semivariogram, cokriging, local-scale, continental-scale 

 

 
 



 

1 

CHAPTER 1. INTRODUCTION 

Destructive mid-latitude cyclones, specifically wind storms, in Europe occur 

predominantly during the late fall and winter months and are responsible for most of the 

natural hazard-related insured losses in the region (Pinto et al. 2010).  Much of the 

infrastructure-related destruction is attributable to extreme winds that often impact 

multiple countries (Leckebusch et al. 2007, Pinto et al. 2010).  In central Europe alone, 

56 percent of economic and 64 percent of insurance losses caused by natural hazards 

are due to these storms (Hofherr and Kunz 2010).  The Lothar storm (25-27 December 

1999) is considered one of the most expensive storms in European history for insurance 

companies (Wernli et al. 2002, Leckebusch et al. 2007).  Other similarly dangerous 

recent storms include Jeanette (26-28 October 2002), Kyrill (16-19 January 2007), 

Paula (24-26 January 2008), and Emma (29 February – 2 March 2008) (Heneka and 

Hofherr 2011).   

Improved modeling of wind storm-induced surface winds is critical to the 

advancement of wind engineering, while also propelling geospatial analytical techniques 

forward.  Catastrophe modeling and insurance companies currently use inaccurate wind 

speed surface maps for major wind storms.  These maps use simplistic interpolation 

techniques that poorly illustrate wind patterns and variability on the surface.  Inaccurate 

maps lead to incorrect predictions of high-low wind speed locations and potentially a 

misunderstanding of the manner in which wind storm-induced winds move across 

Europe.  Currently, upper-level winds are commonly used to estimate wind surfaces in 

wind storms (e.g., Della-Marta et al. 2009), but interpolations of wind speeds at higher 

levels in the atmosphere do not reflect the complexity of winds at the surface.  The use 

of modeled wind data based on upper-level geopotential height gradients is less 
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accurate than meteorological station readings as they are not based on observed 

surface wind measurements.  In addition, the length of the record is usually shorter than 

station data, preventing long-term studies.  Station data can depict fluctuations of wind 

at the local scale better than other data types, and are therefore most appropriate for 

this project.  We hypothesize that because aspect, elevation, and land cover affect 

surface-level wind speeds, it is important to consider their influence since human 

populations and the built environment are impacted the most by surface-level winds.   

1.1 European Wind Storms 

Similar to hurricanes in the United States, European wind storms are named, but 

the names sometimes differ from country to country.  Major storms normally follow the 

same nomenclature.  While similarities between wind storms and hurricanes exist, it is 

also important to understand a few major differences between each of the storms.  

Hurricane cyclogenesis occurs in tropical regions and hurricanes consequently have a 

warm, moist core and no attached frontal boundary, while wind storm cyclogenesis 

occurs in mid-latitude regions, resulting in a cold, drier core with an attached frontal 

system (Mass and Dotson 2010).  Additionally, the highest wind speeds of a hurricane 

occur predominantly in the right front quadrant (northeast quadrant), while the highest 

winds of a wind storm typically occur on the cold side of the attached front (e.g., for wind 

storms in Europe taking a west-east track, this area is to the south of the storm track's 

low pressure center) (Steenburgh and Mass 1996).    

Another difference between the meteorological setting of a mid-latitude wind storm 

and a tropical cyclone is in the upper-level flow configuration.  Tropical cyclones require 

little upper-level shearing (particularly west-to-east shear that would remove the 

developing cloud tops as the storm migrates westward.  By contrast, mid-latitude wind 
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storm development is enhanced by the overhead presence of strong west-to-east flow, 

particularly on the trough-to-ridge side of the Rossby wave, where uplift and upper-level 

divergence is favored (e.g., Newtonu and Palmén 1963).  Additionally, the pressure 

differences are more drastic between adjacent air masses with more dissimilar 

characteristics; these are the types that are associated with wind storms.  High winds 

can be enhanced by flow perpendicular to the storm movement along mountain valleys 

in advance of a storm to equalize the pressure differences (Steenburgh and Mass 

1996). 

1.2 Modeling Wind Fields Using Station Data 

Wind station data must be analyzed accurately and appropriately to determine 

wind speed-damage relationships associated with these storms.  Some limitations 

complicate use of station data to represent a wind field across a single storm.  Klawa 

and Ulbrich (2003) noted that a single station can represent a local climate that is very 

different from the regional climate, highlighting the uncertainty that microclimatology 

may present when examining macro-climatological patterns.  Hofherr and Kunz (2010) 

emphasized the importance of high spatial resolution of station data to estimate wind-

storm climatology accurately and to evaluate how local topographic features influence 

the wind field.  At the local scale, orographic influences, land use, friction, and boundary 

layer processes modify both the strength and direction of the synoptically-generated 

surface winds.  Gusts are highly dependent on the surface roughness, roughness 

length, and height above surface (Wieringa 1973, 1986, Oke 1987).  Roughness lengths 

can often be estimated around a station based on high resolution land cover data, but 

the dominant wind azimuth and seasonal variations in land cover must be accounted for 

if correction factors for roughness are calculated (Gatey 2011).  Wind speed correlation 
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between nearby stations is much higher in fall/winter (October through March; >80%) 

compared to spring/summer (as low as 45% in May) because of a decrease in foliage 

and other vegetation (Gatey 2011).  Because of these local factors, the wind climatology 

of a station may depart considerably from those expected from the macroscale 

climatology (Hofherr and Kunz 2010).   

Even though use of station data has some limitations, such data can be preferable 

to modeled estimates or radiosonde-based observations.  Hofherr and Kunz (2010) 

discussed how wind data from stations are most popularly used in studies that evaluate 

hazards – both peak gust and mean wind speed values – due to the high level of 

accuracy on a local scale.  Use of modeled wind data based upon upper-level air 

pressure is less accurate than meteorological station readings as they are not created 

using observed wind data (Hofherr and Kunz 2010).  Furthermore, the length of the 

record is usually not as long as station data, preventing any long-term studies.  Station 

data can provide a better idea of fluctuations of wind at the local scale than many other 

data types, and are highly appropriate for this study. 

Estimation of peak gust values is necessary when peak gust data are missing.  It 

is important to convert sustained wind speeds to a “probable maximum wind speed” 

over a shorter period because buildings and other structures are most affected by wind 

gusts of approximately 3 seconds in duration (Krayer and Marshall 1992).  This is 

usually done by applying a “gust factor,” which is the ratio of the mean value of maxima 

to the mean value of a given effect attributable to wind buffeting (Solari 1993).  Krayer 

and Marshall (1992) reviewed the Durst (1960) and Cook (1986) methods for calculating 

the gust factor and determined that the Durst method was more accurate in estimating 
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peak gust wind speeds from mean wind speeds in tropical cyclones.  Solari et al. (1993) 

reviewed various equations that have been used to calculate velocity of peak gusts, and 

found  that the ratio  produced by other studies range from 1.07 to 1.68.  These 

values vary largely based on the length of time used to calculate them.  For the 

proposed study, observed wind speeds will be converted and adjusted in accordance 

with the Durst method. 

1.3 Analysis of Peak Gust and Sustained Wind Speeds 

WMO standards for wind measurement use a disjunctly-sampled sustained wind 

speed (sampled 10 minutes prior to each hour) and a continuously-sampled gust speed.  

Because of the disjunct sampling, 50 minutes of sustained wind data are not collected 

each hour.  Only a handful of studies have addressed the difference in measurement 

when analyzing extreme wind speeds (e.g., Larsén and Mann 2009, Gatey 2011).  

Additionally, many stations either do not collect gust wind speeds, or these data were 

not reported for the storms identified.  For these reasons, it is likely that the WMO 

station data generally misrepresent the true sustained wind speeds at each location and 

must be adjusted based on which data are collected.  This dissertation has developed 

three different data cases and procedures for adjustment (Figure 1-1): Case I – only 

gust wind is measured, which is used to estimate a continuously sampled 10-minute 

sustained wind speed using the Durst method; Case II – only 10-minute, disjunctly 

sampled sustained wind is measured, which requires calculation of equivalent 

continuously sampled wind speed using the method developed by Larsen and Mann  

(2006) as well as application of the Durst method to compute gust wind speeds; and  



 

6 

Case III – both disjunctly sampled sustained wind and continuously sampled gust winds  

are measured. Case III essentially combines the methodologies of Cases I and II to 

identify the maximum sustained wind speed. 

 

Figure 1-1. Wind conversion methodology. 
 

 Implementation of the conversion from a disjunct to continuous sampling basis 

still revealed inconsistencies in the wind data that could not be explained using the gust 

factor.  A review of the Lothar storm data set found that the actual gust factors 

(U3/U3600) calculated from the observed data ranged from 0.89 to 10.17 for the 4258 

records (out of 214,499 total, 2%) that had both gust and sustained wind speed data 

available, with an average of 1.83 and a standard deviation of 0.76.  Based on the 

multiple studies discussed earlier in the paper, the expected value is in the range of 1.4.  
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This initial quality control evaluation indicated that the sustained wind speeds were 

much lower than expected based on the recorded peak gust wind speeds.  This 

necessitated that both the peak gust and sustained wind speed data be used to 

calculate the final wind speeds used in the interpolation.   

Using the algorithms in Figure 1-1, the Lothar dataset was again evaluated as a 

test case.  Results show that the methodology does not significantly overpredict the 

gust wind speed data (an average increase of 2%, standard deviation of 5%).  Further, 

the methodology accounted for the underreporting of sustained wind speeds because of 

the disjunct sampling period.  The final gust factors (U3/U3600) for the calculated 

dataset were reevaluated and were found to range from 1 to 1.4299, with an average of 

1.42 and a standard deviation of 0.03 for the 4258 records.  Although low gust factors 

(<1.4) were seen for approximately 5% of the data, this methodology created a dataset 

that was more consistent.  These results demonstrate that the implemented calculation 

methodology produces wind speeds that are more consistent with standard wind 

engineering metrics. 

Methods are mostly consistent with the methods utilized for wind speed data 

adjustments in the Hurricane Research Division (HRD) Real-time Hurricane Wind 

Analysis System (H*WIND) (Powell et al. 1998).  Three main adjustments are used for 

data conformity within the H*WIND system: common observation height, common 

averaging period, and common exposure (Powell et al. 1996).  Surface-level and flight-

level winds are used for H*WIND and a major component of H*WIND data adjustment is 

the conversion of flight-level winds to surface-level winds at the 10 m height (Powell et 

al. 1996).  In this dissertation, flight-level winds were not utilized, but surface-level 
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observations were at the 10 m height and WMO adjustments produced standard (open 

terrain) exposure.  Common sampling techniques and averaging periods were also 

identified.   

1.4 Research Objectives 

The objective of Study One is to quantify the accuracy of an anisotropic 

semivariogram-derived kriging interpolation methodology for predicting extreme winds 

for large areas of Europe.  Preliminary wind estimates suggested that coastal and 

mountainous regions often experienced the most extreme wind speeds.  Inland Europe, 

specifically the Black Forest and northern Alps, displayed very high wind speeds relative 

to the surrounding areas – indicative of a complex topography/wind interaction.  Coastal 

and mountainous weather stations experienced the most intra-storm wind speed 

variability and also reported some of the highest error measurements.   

Because of these high error measurements, the objective of Study Two is to 

reduce error measurements associated with the original kriging surfaces.  Study Two 

will examine multiple covariates through the cokriging technique to determine whether 

more accurate surface wind interpolations can be created.  Understanding of local wind 

variability in these environments will be improved if more accurate wind surface 

interpolations are created through the cokriging methodology.  Previous studies that 

identified cokriging as superior for estimating surface winds only utilized elevation as a 

singular covariate (e.g., Luo et al. 2008, Sliz-Szkliniarz and Vogt 2011); this study will 

also utilize aspect and land cover in addition to elevation.   

The objective of Study Three is to examine the differences between 

kriging/cokriging wind surfaces at two different scales: local (e.g., Austria) and 

continental/regional (e.g., entire storm).  This study will also determine the extent that 
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high wind or other factors (e.g., exposure) influence wind storm-induced damage and 

provide a means of validation for wind surface estimates.     

The specific research questions are as follows:  

 Study One  
 
1) Which interpolation method creates the most accurate and reasonable wind  

surface estimates over sections of Europe impacted by wind storms? 

2) Which regions consistently experienced the highest wind speeds associated 

with wind storms? 

 
Study Two 

1) To what extent does cokriging improve interpolated wind surfaces in the 

coastal and mountainous regions of Europe, compared to ordinary kriging 

methods? 

2) Which covariate(s) is/are most influential in improving wind surface 

interpolations in diverse terrain? 

 
Study Three 

1) Are local kriging/cokriging wind surface estimates more accurate than regional 

estimates? 

2) To what extent can tree damage be utilized as a proxy for validating 

interpolated wind surfaces? 
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CHAPTER 2. PEAK GUST AND MAXIMUM SUSTAINED WIND SPEED ESTIMATES 
FOR EUROPEAN STORMS 

2.1 Introduction 

 Wind storms generated by intense mid-latitude cyclones, occur across much of 

Europe, predominantly during winter, and are responsible for most of the natural 

hazard-related insured losses in the region (Pinto et al. 2010).  Wind storms account for 

most of the insured losses in Europe (64%) and on average are the cause of 

approximately $2.5 billion of damage per year (Pinto et al. 2010).  Much of the 

infrastructure-related destruction is attributable to extreme wind speeds that often 

impact multiple countries (Pinto et al. 2010).  Certain atmospheric patterns and modes 

such as those of the North Atlantic Oscillation (NAO) influence tracks and intensities of 

mid-latitude cyclones and often provide optimal conditions for cyclogenesis (Raible 

2007).  These patterns, along with other forcing mechanisms and climatic conditions, 

are in a constant state of flux with changes potentially attributable to anthropogenic-

induced climate change (Handorf and Dethloff 2009), which has led many to suggest 

that changes in climate are at least partly to blame for recent increases in catastrophes 

(Schiermeier 2006).     

Regardless of climatic changes, the impact from winter storms over the last 

several decades has been widespread across Europe and recent storms do not suggest 

a decrease in their frequency and intensity.  Reports suggest that storms occurring in 

early 1990 and late 1999 resulted in large economic and insurance losses (Leckebusch 

et al. 2007).  In central Europe alone, 56 percent of economic and 64 percent of 

insurance losses caused by natural hazards are attributed to these winter storms 

(Hofherr and Kunz 2010).  The Lothar storm (December 25-27, 1999) is considered one 
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of the most expensive storms in European history for insurance companies (Wernli et al. 

2002, Leckebusch et al. 2007).  Lothar was considerably stronger than other storms 

because of: (1) a stronger than normal upper-level jet, (2) rapid intensification of the 

storm, resulting in an intensive vortex, and (3) higher than normal Atlantic sea surface 

temperatures (Wernli et al. 2002).  Other similarly dangerous storms during this period 

included Kyrill (January 16-19, 2007) and Jeanette (October 26-28, 2002) (Heneka and 

Hofherr 2011).   

2.1.1 Simulation of wind surfaces through interpolation of station data 

There are many ways to simulate and interpolate wind surfaces.  Spatial 

interpolation can produce both global/local and deterministic/stochastic estimates of 

unknown variables across a surface.  These methods vary widely and it is important to 

understand the variable(s) in question to select the most appropriate interpolation 

method (Luo et al. 2008).  Deterministic methods do not use probability, meaning that 

all observed values are considered accurate (Luo et al. 2008).  These methods are very 

common and include polynomial regression (PR), triangular irregular network (TIN), 

nearest neighbor (NN), splines, and inverse distance weighting (IDW).   Stochastic 

methods, also known as geostatistical methods, use a probabilistic approach for data 

regularization and include artificial neural networks (ANNs), simulated annealing (SA), 

and various forms of kriging such as ordinary, universal, cokriging, multi-region, 

Bayesian, and neural network kriging (Lanza et al. 2001, Cellura et al. 2008, Zlatev et 

al. 2010). 

Within the deterministic family, PR uses a linear regression approach to interpolate 

values between known or observed variables.  PR is well-suited for fairly dense and 

compact areas, but it predicts poorly outside the range of the observed points (Akkala et 
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al. 2010).  The TIN approach creates triangles across a surface and the balance of 

mass between points is used to determine the unknown values.  TIN produces a linear 

and coarse output.  The NN approach assigns a value based on the value of the closest 

data point and is one of the simpler interpolation methods, but it is only considered 

accurate or suitable for a densely sampled surface (Akkala et al. 2010).  Splining is a 

curvature method that still uses the exact observed values; however, the influence of 

the values decreases over distance, thus producing a two-dimensional curve as 

opposed to the linear surface produced by many other deterministic methods (Wahba 

1981).  Splining is considered one of the better deterministic methods of interpolation, 

but the smooth curves ignore trends and can hide uncertainty when data points are 

irregularly spaced (Luo et al. 2008, Akkala et al. 2010).      

Stochastic interpolation methods are often more time-intensive and require a 

higher level of user input.  ANNs can be applied independently of kriging and are used 

to reduce the over/under estimation of values through use of a pivot station that “learns” 

the common correlation between stations.  This serves to decrease oversmoothing that 

other interpolators cause by over-estimating low values and under-estimating high 

values, but ANNs can over-learn or under-learn a pattern (Akkala et al. 2010).  For this 

reason, ANN's are best used in areas with high input variability over relatively short 

distances (Öztopal 2006).  SA uses a linear regression function similar to the PR 

deterministic method to produce an interpolated surface, but a probability function is 

also applied to determine the distance from a point at which the relationship becomes 

insignificant (Sterk and Stein 1997).  SA is best at capturing local variability, but the 

method is not well-suited to estimate large surface patterns (Sterk and Stein 1997). 
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Kriging interpolation methods are the most common stochastic techniques and 

they use probability and spatial correlation to create a surface that is weighted by 

observed values through a semi-variance function.  Distance and direction are both 

utilized for the semi-variance function so it can account for anisotropic spatial patterns 

and trends in wind behavior (Luo et al. 2008).  Since wind speeds often exhibit a 

direction in which they are increasing or decreasing across a surface, kriging methods 

are preferred over deterministic methods and other stochastic methods (Lanza et al. 

2001, Luo et al. 2008, Akkala et al. 2010, Zlatev et al. 2010).  However, 

microclimatological effects sometimes produce pockets or patches of high/low wind 

speed on a surface that can create confusion during kriging surface construction.  The 

anisotropic function selects the dominant surface trend, but this trend may not align with 

the actual direction of wind speeds relative to a storm track, making it necessary to 

verify that the anisotropic azimuth direction reflects the direction of storm movement. 

During surface construction, kriging creates an unbiased surface where a polynomial 

function has not been forced to fit, thus eliminating edge and circular effects common in 

other interpolation methods (Akkala et al. 2010).    

In a recent study by Luo et al. (2008), various forms of kriging performed better 

than other interpolation methods based on their root mean square prediction error 

(RMSPE).  Mean error (ME) and RMSPE accuracy metrics indicated that kriging 

produced an unbiased surface that was found to be ideal when modeling wind speed 

because values were not manipulated by a polynomial or linear fitting interpolation 

technique (Luo et al. 2008).  ME and RMSPE are commonly used evaluation metrics 

when determining the quality and reliability of interpolation techniques because they 
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provide a good means of comparing across various time periods and between various 

methods.  Kriging consistently outperformed deterministic methods such as IDW, which 

not only received poorer ME and RMSPE scores, but also produced a surface with an 

illogical “bullseye” effect centered on each weather station (Luo et al. 2008). 

When used for wind speeds, kriging is considered an approximate predictor 

because of the incorporation of a nugget effect – a variation that exists at shorter 

distances than the distance between sample points.  If the nugget size is greater than 

zero, then there is a nugget effect.  The nugget size is used during the kriging process 

to represent independent error and is calculated as the intersection of the data with the 

y-axis.  For example, the correlation between observed wind speed values is plotted on 

a 1x1 variable diagram as the first step in creating a semivariogram model.  The gap 

between the origin and where the semivariogram begins is referred to as the nugget 

size (Figure 2-1 represents a hypothetical example).  The plot illustrates the correlation 

that surrounding values have at varying distances.  Once the correlation diminishes to 

an insignificant amount, then the “sill” is reached, indicating that the values no longer 

have spatial dependence.  The distance between the nugget size and the sill is called 

the range, and all of these values are used concurrently to create the semivariogram for 

kriging.  Range, sill, and nugget size determine at what distance the interpolated wind 

speed surface levels off or changes.  For example, wind speed may be found to 

decrease rapidly over land when the wind direction is from the north, but wind speed 

may be found to decrease less rapidly over land when the wind direction is from the 

west.  This could be caused by a variety of land surface factors (often topography and 

surface roughness), but anisotropic semivariograms account for wind direction and 
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distance by examining the sill in each direction when making probabilistic surface 

estimates.   

 
Figure 2-1. Idealized portrayal of semivariogram properties. Nugget size represents 

where the data and the y-axis intersect.  Range is the distance from an 
observed value at which spatial dependence exists (between the nugget and 
sill).  Sill is the distance where spatial dependence ceases to exist, or where 
spatial autocorrelation ends. 

 

Ordinary and universal kriging are the two most common forms of kriging.  

Ordinary kriging assumes an unknown constant trend and utilizes the points within a 

specified search radius for semivariogram creation, while universal kriging assumes a 

general linear mean value trend across an entire study area (Cressie 1986, Cressie 

1990).  Cokriging uses an additional variable or variables sampled from the same 

location (e.g., elevation) to make an assisted estimation (Helterbrand and Cressie 

1994).  A spatial correlation is determined between the main variable and covariable(s) 

and the relationship is modeled.  Cokriging is ideal for interpolating wind surfaces when 

stations are well distributed across a proportionate surface in a study area (e.g., if 10 
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percent of a study area is mountainous, then 10 percent of the wind stations should be 

located in the mountainous region) (Luo et al. 2008).  However, knowledge-assisted 

forms of kriging such as cokriging are time-intensive and often require land 

segmentation and in situ verification, making cokriging an illogical choice for large 

datasets where this information is not available.  Bayesian forms of kriging are the most 

computationally intensive with Monte Carlo or Markov chain techniques used to 

minimize the impact of uncertainty on model parameters  (Lanza et al. 2001).  There is 

currently no precedent for using the Bayesian approach for wind surface interpolation.  

ANNs have also been coupled with various kriging methods, but similar problems that 

occur with ANNs used outside of the kriging framework also occur when coupled with 

kriging (Cellura et al. 2008).     

Table 2-1 provides examples of studies investigating the interpolation of wind 

speeds and other climatic data and highlights the methods that were recommended by 

each study.  The literature does not recommend that deterministic methods be used for 

wind surface interpolation and the overall trend suggests that kriging (in various forms) 

continues to be a very good method for interpolating wind surfaces, but other network- 

and knowledge-based adaptations or improvements to kriging are ongoing.  Many 

kriging adaptations are very promising, but a consensus has yet to be reached on a 

clear adaptation that will supersede current kriging methodologies.  Further, the majority 

of these advanced studies focused on local- to regional-scale wind surfaces within a 

single country rather than large-scale surfaces that would include multiple countries.  It 

is very difficult and time-intensive to apply advanced network- and knowledge-assisted 

kriging adaptations across multiple countries or to an entire continent without more  
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Table 2-1. Research studies that employed one of more spatial interpolation techniques 

to examine wind variables. 

Source 
Study 

Area(s) 
Event Type Methods Examined 

Methods 
Recommended 

(Bentamy et al. 
1996) 

Tropical 
Atlantic 
Ocean 

Avg. wind speed 
(multi-year) 

Kriging Kriging 

(Sterk and Stein 
1997) 

Sahelian 
zone (Niger) 

Wind-blown 
mass transport 
from 4 storms 
(1993) 

Linear Interpolation 
(Simulated Annealing), 
Ordinary Kriging 

Ordinary Kriging was 
best at predicting 
unsampled locations; 
Simulated Annealing 
was best for local 
variability 

(Phillips et al. 
1997) 

Southeast 
US 

Ozone exposure 
(multi-year; used 
wind direction) 

Inverse Distance Weighting, 
Inverse Distance Squared 
Weighting, Ordinary Kriging, 
Cokriging 

Cokriging and 
Ordinary Kriging 

(Venäläinen and 
Heikinheimo 
2002) 

Finland 

Daily wind 
speed, 
temperature, 
humidity, 
precipitation, 
radiation 

Kriging Kriging 

(Öztopal 2006) 
Marmara, 
Turkey 

Daily wind speed 
over time 
(potential wind 
energy) 

Artificial Neural Network 
Artificial Neural 
Network 

(Cellura et al. 
2008) 

Sicily, Italy 
Avg. wind speed 
at 50m for wind 
farm (multi-year) 

Neural Network, Radial 
Basis Functions, Neural 
Kriging, Ordinary/Universal 
Kriging, Inverse Distance 
Weighting 

Coupled Neural 
Network/Kriging 
Interpolators 

(Luo et al. 2008) 
England, 
Wales 

Avg. wind speed 
(Mar. 27, 2001) 

Trend Surface Analysis, 
Inverse Distance Weighting, 
Local Polynomial, Thin Plate 
Spline, Kriging, Cokriging 

Cokriging and 
Ordinary Kriging 

(Zlatev et al. 
2009) 

United 
Kingdom 

Avg. wind 
speed/direction 

Ordinary Kriging Ordinary Kriging 

(Zlatev et al. 
2010) 

United 
Kingdom 

Avg. wind speed 
(Mar. 27, 2001) 

Ordinary Kriging, Universal 
Kriging, Cokriging, Multi-
region Ordinary Kriging 

Multi-region 
Ordinary Kriging 
(Knowledge-assisted) 

(Akkala et al. 
2010) 

None 
(Review 
article) 

Multiple 
meteorological 
events (including 
wind storms) 

Nearest Neighbor, 
Triangular Irregular 
Network, Polynomial 
Regression, Polynomial 
Interpolation, Trend Surface 
Analysis, Inverse Distance 
Weighting, Splines, Kriging, 
Radial Basis Functions, 
Artificial Neural Networks 

Knowledge 
based/assisted 
techniques 
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detailed information about stations, microtopography, local environment, and other 

geographic features.  The widely-varying terrain of Europe presents a challenge to 

these advanced approaches.  As new data become available and as these new 

methods are explored and improved in the coming years, they may prove more useful 

for large-scale analyses and potentially be included in future software packages (e.g., 

ArcGIS). 

2.1.2 Study area & objectives 

This study seeks to develop historical wind speed maps for eighteen (18) wind 

storms that occurred between 1976 and 2010 over European countries.  Storms will be 

analyzed individually to determine their accuracy and general trends.  This study has 

two main objectives: 1) To identify an interpolation technique that accurately predicts 

wind speed surfaces over a large heterogeneous region, 2) To identify regions of 

Europe where high wind speeds have occurred during wind storms. 

2.2 Data and Methods 

2.2.1 Wind station data 

 Wind data were obtained from the World Meteorological Organization (WMO) 

observation stations sourced through a third party provider with support from Guy 

Carpenter & Company, LLC and ecityrisk (maps showing station locations available in 

Appendix).  The WMO Standard (World Meterological Organization 2008) for measuring 

sustained wind is an average of values obtained for the 10 minutes previous to the 

observation time.  The WMO Standard for measuring peak gust is a continuous average 

of values over a 3-second period.  Wind instruments according to WMO standards are 

to be located at a height of 10 m in open terrain, and wind data are adjusted for local 

topographic effects through the use of a correction factor.  For example, a station 
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located at the top of a hill would have a correction factor applied to the data to account 

for the changes in wind speed caused by the hill.  According to the WMO chapter of 

wind standards (World Meterological Organization 2008), the wind speed would be 

more representative of the region rather than the individual hill.  For the purpose of this 

study, all data and instruments were assumed to be in accordance with these WMO 

standards.  A preliminary quality control analysis of the data was conducted by plotting 

the sustained wind and peak gust values against the mean of each variable.  Outliers 

were examined closely to determine whether the values were reasonable for the given 

climatological conditions. 

Station wind data from 18 major storm events were analyzed over the period 

1976-2010 for Europe (Table 2-2).  Many more wind storms occurred over this period of 

record, but storm selection for this study was based on economic impacts, not 

necessarily the strength of the storm.  Each of the 18 storms caused major damage in 

one or more European countries, resulting in significant insured losses.  These storms 

occurred mainly during cool-season months (October through March).  MATLAB® was 

used to extract sustained wind and peak gust values from the original data files, which 

contained thousands of rows of observation data.  The maximum daily value was 

extracted at each station for sustained wind and peak gust and the station maxima were 

identified from the daily maxima.  A storm summary showing the statistics of data 

provided for sustained wind (Table 2-3) and peak gusts (Table 2-4) was produced for 

each storm.  The sustained wind data were consistent between the storms, with only 0.8 

percent of the data values missing and an overall mean sustained wind value of 15.0 

meters per second (m s-1).  Peak gust measurements were missing for 77.6 percent of 
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the hourly observations and the overall mean peak gust was 25.5 m s-1.  The Durst 

method was utilized to create gust factors based on known maximum sustained wind 

speeds at the same location (Durst 1960, Krayer and Marshall 1992).   

 
Table 2-2.  European windstorm names and number of stations reporting sustained 

winds and peak gusts, for European storms analyzed. 

Year Storm Countries Sustained 
Peak 
Gust 

Sustained 
& Peak Gust 

Total 

1976 Capella UK, Germany 231 56 56 231 

1987 87J France, UK 374 181 181 374 

1990 Daria 
UK, France, Belgium, Netherlands, 
Luxembourg, Germany 559 319 319 559 

1990 Herta 
Belgium, France, Germany, 
Netherlands, UK 516 276 276 516 

1990 Vivian 
Germany, UK, Switzerland, 
Belgium, France, Netherlands 585 337 337 585 

1990 Wiebke 
Switzerland, Belgium, France, 
Germany, Netherlands, UK 598 336 336 598 

1999 Anatol Denmark, Sweden, Germany 250 122 122 250 

1999 Lothar France, Switzerland, Germany 321 202 202 322 

1999 Martin France, Switzerland, Germany 324 195 195 325 

2002 Jeanette 

UK, Denmark, Sweden, Germany, 
Netherlands, France, Austria, 
Poland, Czech Republic, Belgium, 
Ireland 1014 406 406 1016 

2004 Dagmar UK, France, Germany 426 325 325 426 

2005 Erwin Germany, Norway, Sweden 433 125 125 433 

2007 Kyrill 
France, Netherlands, Germany, UK, 
Belgium, Austria, Ireland 637 418 418 637 

2008 Paula 
Poland, Germany, Austria, 
Denmark, Norway, Sweden 662 130 130 663 

2008 Emma 

Germany, Austria, Czech Republic, 
Belgium, Netherlands, Switzerland, 
Poland 495 216 216 496 

2009 Klaus France, Spain 214 185 185 214 

2009 Quinten France 147 138 138 147 

2010 Xynthia 

Belgium, Denmark, France, 
Germany, Poland, Portugal, Spain, 
Sweden, UK 896 557 557 896 
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Table 2-3.  Summary table of sustained wind speeds (m s-1) for each windstorm 

analyzed. 
Year Storm Mean Median Minimum Maximum Range Percent Missing 

1976 Capella 18.2 18.0 2.5 36.0 33.5 0.0% 

1987 87J 15.0 13.4 3.1 42.2 39.1 0.2% 

1990 Daria 17.7 17.0 3.1 40.1 37.0 0.6% 

1990 Herta 15.0 14.9 1.0 36.5 35.5 0.7% 

1990 Vivian 18.6 18.3 2.1 39.6 37.5 0.4% 

1990 Wiebke 17.2 17.0 2.1 39.6 37.5 0.4% 

1999 Anatol 12.9 11.8 0.5 41.1 40.6 3.5% 

1999 Lothar 16.4 15.9 0.0 40.1 40.1 1.4% 

1999 Martin 16.1 16.0 0.0 48.0 48.0 1.4% 

2002 Jeanette 13.9 13.4 0.0 42.0 42.0 0.5% 

2004 Dagmar 13.2 12.0 0.0 39.0 39.0 0.5% 

2005 Erwin 12.6 12.0 1.0 35.5 34.5 0.6% 

2007 Kyrill 15.8 16.4 1.0 36.8 35.8 0.7% 

2008 Paula 10.9 10.0 0.0 42.0 42.0 0.5% 

2008 Emma 13.9 14.0 0.0 47.0 47.0 0.1% 

2009 Klaus 15.3 14.9 4.6 40.1 35.5 0.9% 

2009 Quinten 15.5 15.4 5.1 29.8 24.7 1.1% 

2010 Xynthia 11.8 11.8 2.0 37.9 35.9 0.4% 

 Average 15.0 14.6 1.6 39.6 38.1 0.8% 

 

Table 2-4.  Summary table of peak gust wind speeds (m s-1) for each windstorm 
analyzed. 

Year Storm Mean Median Minimum Maximum Range Percent Missing 

1976 Capella 25.2 25.0 7.2 41.1 33.9 93.7% 

1987 87J 24.0 23.0 6.2 46.3 40.1 93.1% 

1990 Daria 29.8 30.9 7.2 47.9 40.7 76.6% 

1990 Herta 24.7 24.2 9.3 39.1 29.8 79.0% 

1990 Vivian 30.3 30.9 12.9 47.8 34.9 69.9% 

1990 Wiebke 27.7 27.8 9.3 47.8 38.5 72.5% 

1999 Anatol 27.1 25.9 12.9 51.0 38.1 73.4% 

1999 Lothar 26.1 24.5 9.3 72.0 62.7 80.0% 

1999 Martin 25.4 25.2 8.7 72.0 63.3 90.5% 

2002 Jeanette 26.0 27.0 0.0 52.0 52.0 79.3% 

2004 Dagmar 20.9 20.1 8.2 45.0 36.8 80.4% 

2005 Erwin 23.3 22.0 8.2 46.0 37.8 78.4% 

2007 Kyrill 26.2 27.0 0.0 56.0 56.0 69.3% 

2008 Paula 21.0 21.0 7.7 48.0 40.3 90.6% 

2008 Emma 27.1 26.8 10.3 62.0 51.7 67.1% 

2009 Klaus 26.5 25.2 11.3 53.0 41.7 63.0% 

2009 Quinten 25.5 26.3 15.4 41.2 25.8 57.3% 

2010 Xynthia 22.0 21.1 5.0 50.0 45.0 82.4% 

 Average 25.5 25.2 8.3 51.0 42.7 77.6% 
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2.2.2 Wind Surface Interpolation 

Ordinary kriging was chosen to interpolate wind station data based on its 

superiority over other techniques for representing wind speeds (Table 2-1).  Specifically, 

the spherical method of ordinary kriging was chosen to examine both peak gust and 

sustained maximum wind speeds for multiple European wind storms because it 

produces a smooth surface variation with a clear nugget size and range.  Anisotropic 

semivariograms were created during the interpolation procedure to account for 

directional dependence of wind speeds at varying distances.  Dominant directional 

trends were automatically detected for each storm and wind type.  This most often 

resulted in directional trends that logically corresponded to storm tracks, but 

occasionally dominant trends were difficult to determine and directionality was adjusted 

accordingly.  Additionally, a variable search radius was determined based on an 

optimized number of points through cross-validation using the Geostatistical Analysis 

tool in ArcGIS Version 9.3 (ESRI 2010).  A radius of 15 points was determined to 

adequately reflect spatial covariance, meaning that appropriate range and sill values 

could be determined by incorporating this number of points to estimate local surface 

trends similar to a moving window. For semivariogram surface creation, an eight sector 

elliptical search type with three neighbors per sector was specified to optimize surface 

variability. 

 The interpolation parameters were selected to obtain the highest accuracy based 

on the station data.  Multiple measures of accuracy and uncertainty including 

standardized mean error (ME), standardized root mean square error (RMSE), and 

minimum/maximum range were used to determine the validity of each kriging-derived 

surface, but these statistical measures only measure the accuracy as it is related to 
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observed and estimated variability of wind speed on the surface.  The standardized 

RMSE and ME as well as the minimum/maximum surface estimates were used to 

evaluate the interpolated surface and compare the accuracy for each storm.  Relatively 

lower values (close to zero) for ME and values closest to one for RMSE are preferred.  

ME values that are close to zero indicate an unbiased prediction centered on the 

measurement values.  Prediction standard errors were used to assess the uncertainty of 

the estimated surface; therefore standardized RMSE values estimated the variability of 

the predictions from the measurement values with values near one indicating lower 

variability between predicted and measured values.  A wider minimum/maximum range 

estimate infers more variability in wind speeds across the interpolated surface, while a 

narrower minimum/maximum range estimate infers more conformity in wind speeds 

across the interpolated surface.  Negative ME values infer that variability was 

underestimated, while positive ME values infer variability was overestimated.  RMSE 

values less than 1 infer that variability was overestimated, while RMSE values greater 

than 1 infer that variability was underestimated.  In addition to measuring the accuracy 

of the interpolated surfaces variability, storm tracks and other reports were used to 

validate the actual trends, locations, and magnitudes of estimated wind speeds. 

2.3 Results 

 Spherical kriging was performed for the maximum sustained wind speed and the 

peak gust wind speed for each of the 18 storms.  This resulted in two interpolations for 

each storm for a total of 36 interpolations.  RMSE values close to one and ME values 

close to zero indicated that each interpolated surface was reasonably accurate (Table 

2-5).  If ME values were very close to zero (< +/- 0.003), then ME indicated indiscernible 

variability or no meaningful variability.  Likewise, overestimation/underestimation of  
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Table 2-5. Accuracy metrics for each storm (m s-1) by wind type, including variability and 
error extent (mean error (ME) and root mean square error (RMSE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

variability was also indiscernible if RMSE was very close to one (within 0.02).  If the two 

metrics conflict (e.g., ME is negative indicating underestimation and RMSE is < 1.0 

Storm Name Wind Type Min Value Max Value ME RMSE 

Capella Max Sustained 10.65 23.00 -0.015 1.053 

 
Peak Gust 17.07 36.20 -0.008 1.050 

87J Max Sustained 7.89 23.27 0.009 0.945 

  Peak Gust 11.56 35.22 0.006 0.982 

Daria Max Sustained 7.85 29.35 0.002 1.087 

 
Peak Gust 11.61 43.34 0.002 1.101 

Herta Max Sustained 6.54 23.18 0.005 1.035 

  Peak Gust 9.45 34.98 -0.001 1.055 

Vivian Max Sustained 9.76 26.73 0.005 1.066 

 
Peak Gust 16.46 42.22 0.006 1.091 

Wiebke Max Sustained 10.67 25.15 -0.006 1.044 

  Peak Gust 16.53 40.01 -0.009 1.069 

Anatol Max Sustained 1.74 26.66 -0.007 0.860 

 
Peak Gust 2.57 39.60 -0.011 0.872 

Lothar Max Sustained 9.44 28.65 0.009 0.952 

  Peak Gust 14.69 45.01 0.009 0.979 

Martin Max Sustained 7.27 26.35 -0.003 0.998 

 
Peak Gust 11.15 40.31 -0.002 1.009 

Jeanette Max Sustained 4.20 23.58 0.001 1.021 

  Peak Gust 6.27 34.43 0.003 1.015 

Dagmar Max Sustained 9.39 20.72 0.002 0.989 

 
Peak Gust 14.07 30.01 0.004 0.943 

Erwin Max Sustained 2.08 25.53 0.002 1.014 

  Peak Gust 2.97 38.17 0.000 1.023 

Kyrill Max Sustained 5.09 23.29 0.008 1.125 

 
Peak Gust 7.37 35.54 0.000 1.110 

Paula Max Sustained 3.47 21.48 0.004 1.054 

  Peak Gust 4.98 37.05 0.009 0.919 

Emma Max Sustained 6.74 22.15 -0.012 0.925 

 
Peak Gust 10.09 29.83 0.004 0.951 

Klaus Max Sustained 10.56 24.58 -0.022 0.948 

  Peak Gust 15.58 36.96 -0.018 0.956 

Quinten Max Sustained 13.06 22.13 0.006 1.210 

 
Peak Gust 19.92 32.69 0.013 1.178 

Xynthia Max Sustained 4.23 21.08 0.000 1.043 

  Peak Gust 5.96 32.52 0.002 1.049 
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indicating overestimation), this indicates that some parts of the surface underestimate 

the variability and other parts of the surface overestimate the variability.  This often, but 

not always, represents a well-fit surface considering the dataset and smoothing 

parameters.  Additionally, standardized error was also examined at the station-level and 

the locations of those stations that had a high standardized error of +/- 2.0 were 

identified.  To quality-control the interpolation output with known storm tracks and 

magnitudes, additional reports of some wind storms were obtained.  Storm tracks were 

compared with general trends, locations of highest/lowest winds and maximum wind 

speed values seen in the interpolation (Aon Benfield , Guy Carpenter & Company Ltd 

2005, Risk Management Solutions 2006).  Data about maximum wind speed and storm 

damage were also evaluated for storms where data were available (EQE International , 

Fink et al. 2009). 

 Two interpolated surfaces were created for each storm and the corresponding 

maps represent both the highest maximum sustained wind speeds and the highest peak 

gust wind speeds for the duration of each storm.  The maximum sustained wind speed 

maps illustrate 10-minute continuously-sampled (adjusted from disjunctly-sampled) 

sustained wind in open terrain, while the peak gust wind speed maps illustrate 

continuously sampled 3-second gust in open terrain. 

2.3.1 Capella wind storm 

 A minimum/maximum range estimate (difference between highest and lowest 

predicted wind speeds on the modeled surface for the storm as a whole) of 12.35 m s-1 

was produced by the maximum sustained wind speed interpolation (Figure 2-2a).  A 

negative ME value of -0.015 and a RMSE value of 1.053 indicated that maximum 

sustained wind speed variability was slightly underestimated for the interpolated surface 
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when compared to observed maximum sustained wind speed variability.  A 

minimum/maximum range estimate of 19.13 m s-1 was produced by the peak gust wind 

speed interpolation (Figure 2-2b).  A negative ME value of -0.008 and a RMSE value of 

1.050 indicated that peak gust wind speed variability was, similar to the maximum 

sustained wind speed, slightly underestimated for the interpolated surface when 

compared to observed peak gust wind speed variability.  High wind speeds between 30-

36 m s-1 occurred through the central United Kingdom and northern Europe around 

coastal Germany and Denmark.  The spatial distribution of high wind speeds is 

consistent with the actual storm track for Capella which was north of these areas.  The 

highest wind gusts for Capella were reported along the eastern coast of the United 

Kingdom, which matches areas of high wind speed predicted by the interpolation.  The 

overall west-east trend in wind speeds was also correctly identified by the interpolation. 

2.3.2 87J wind storm 

 A minimum/maximum range estimate of 15.39 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-2c).  A positive ME value of 

0.009 and a RMSE value of 0.945 indicated that maximum sustained wind speed 

variability was slightly overestimated for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 23.66 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-2d).  A positive ME value of 0.006 and a RMSE value of 0.982 indicated that peak 

gust wind speed variability was, similar to the maximum sustained wind speed, slightly 

overestimated for the interpolated surface when compared to observed peak gust wind 

speed variability.  The 87J wind storm passed through the southern United Kingdom 

and proceeded into the North Sea.  The interpolation correctly identified the storm track 
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since it was to the north of the highest wind speeds.  Given the southwest to northeast 

trend in the storm track and wind speeds, the highest wind speeds (30-39 m s-1) 

occurred south of the track in the coastal areas surrounding the English Channel as 

expected.  

2.3.3 Daria wind storm 

 A minimum/maximum range estimate of 21.50 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-2e).  A ME value near zero 

(0.002) and a RMSE value of 1.087 indicated that maximum sustained wind speed 

variability was slightly underestimated for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 31.73 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-2f).  A ME value near zero (0.002) and a RMSE value of 1.101 indicated that peak 

gust wind speed variability was, similar to the maximum sustained wind speed, slightly 

underestimated for the interpolated surface when compared to observed peak gust wind 

speed variability.  The Daria wind storm tracked from the westsouthwest to the 

eastnortheast and the interpolated wind speeds exhibited a similar pattern with the 

highest wind speeds occurring in the appropriate location considering the track.  The 

highest wind speeds (36-45 m s-1) were seen in the southern United Kingdom, northern 

France, and coastal Netherlands, Belgium, and Germany.  Wind speeds also 

maintained or increased speed in the mountainous areas of southeast Germany and the 

Black Forest area of southwest Germany. 
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Figure 2-2. Maximum sustained and peak gust wind speed interpolations for the Capella 

(1976) (a, b), 87J (1987) (c, d), and Daria (1990) (e, f) wind storms.  
 

2.3.4 Herta wind storm 

 A minimum/maximum range estimate of 16.63 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-3a).  A positive ME value of 

0.005 and a RMSE value of 1.035 indicated that maximum sustained wind speed 
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variability was estimated accurately for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 25.53 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-3b).  A ME value near zero (-0.001) and a RMSE value of 1.055 indicated that peak 

gust wind speed variability was very slightly underestimated for the interpolated surface 

when compared to observed peak gust wind speed variability.  The storm track 

generally followed a west-east path through northern France and the interpolation is 

consistent with previous storm reports.  The highest wind speeds (30-36 m s-1) were 

found south of the storm in northwestern France. 

2.3.5 Vivian wind storm 

A minimum/maximum range estimate of 16.97 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-3c).  A positive ME value of 

0.005 and a RMSE value of 1.066 indicated that maximum sustained wind speed 

variability was slightly overestimated in some areas and slightly underestimated in other 

areas when compared to observed maximum sustained wind speed variability.  A 

minimum/maximum range estimate of 25.76 m s-1 was produced by the peak gust wind 

speed interpolation (Figure 2-3d).  A positive ME value of 0.006 and a RMSE value of 

1.091 indicated that peak gust wind speed variability was also slightly overestimated in 

some areas and slightly underestimated in other areas when compared to observed 

peak gust wind speed variability.  The regions of highest wind speed shown in the 

interpolation generally reflect the storm track for Vivian, which was to the north of the 

highest wind speeds along a general west-east path across the central United Kingdom 

and into the North Sea.  The highest wind speeds (36-42 m s-1) occurred around the 

English Channel and in northern coastal areas of the Netherlands and Germany as well 
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as the central United Kingdom.  The interpolation coverage would be improved with 

additional observations from Denmark, Sweden, and Norway.  The interpolated wind 

speed does show an increase in southern Germany near the Black Forest, Alps, and 

Swiss borders as other reports suggest.  

2.3.6 Wiebke wind storm 

 A minimum/maximum range estimate of 14.48 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-3e).  A negative ME value of -

0.006 and a RMSE value of 1.044 indicated that maximum sustained wind speed 

variability was slightly underestimated for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 23.48 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-3f).  A negative ME value of -0.009 and a RMSE value of 1.069 indicated that peak 

gust wind speed variability was, similar to the maximum sustained wind speed, slightly 

underestimated for the interpolated surface when compared to observed peak gust wind 

speed variability.  The highest wind speeds for the Wiebke wind storm were found to the 

immediate south of the reported track.  The winds were highest (30-39 m s-1) in the 

southwestern United Kingdom, northern France, and at the base of the Alps – 

consistent with high wind locations identified in previous reports. 

2.3.7 Anatol wind storm 

 A minimum/maximum range estimate of 24.92 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-4a).  A negative ME value of -

0.007 and a RMSE value of 0.860 indicated that maximum sustained wind speed 

variability for the interpolated surface was possibly underestimated in some locations 
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Figure 2-3. Maximum sustained and peak gust wind speed interpolations for the Herta 

(a, b), Vivian (c, d), and Wiebke (e, f) wind storms; all three storms occurred 
in 1990. 

 

and overestimated in others when compared to observed maximum sustained wind 

speed variability, leading to higher conflicting accuracy scores.  A minimum/maximum 

range estimate of 37.03 m s-1 was produced by the peak gust wind speed interpolation 
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(Figure 2-4b).  A negative ME value of -0.011 and a RMSE value of 0.872 indicated that 

peak gust wind speed variability was, similar to the maximum sustained wind speed, 

underestimated in some locations and overestimated in other locations when compared 

to observed peak gust wind speed variability.  High wind speeds occurred south of the 

storms' track across northern Europe and Denmark in areas that are consistent with 

where the storm track was actually located.  The interpolation correctly identified this 

area and the overall west-east trend in wind speeds associated with the Anatol wind 

storm.  Anatol produced some of the higher widespread wind speeds (~42 m s-1) among 

recent wind storms and this was confirmed by the interpolation. 

2.3.8 Lothar wind storm 

A minimum/maximum range estimate of 19.22 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-4c).  A positive ME value of 

0.009 and a RMSE value of 0.952 indicated that maximum sustained wind speed 

variability was slightly overestimated for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 30.32 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-4d).  A positive ME value of 0.009 and a RMSE value of 0.979 indicated that peak 

gust wind speed variability was, similar to the maximum sustained wind speed, slightly 

overestimated for the interpolated surface when compared to observed peak gust wind 

speed variability.  The Lothar wind storm followed a west-east track through northern 

France and into central Germany with the highest winds (33-42 m s-1) occurring south of 

this track in France and southern Germany.  Some reports of wind speeds 8-9 m s-1 

higher than those shown in the interpolation occurred in parts of France.  These local 

extremes were most likely not widespread and thus smoothed by the interpolation.  
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Similar to other reports, high wind speeds also occurred near the onset of mountainous 

regions in southeastern Germany bordering Switzerland and Austria. 

2.3.9 Martin wind storm 

A minimum/maximum range estimate of 19.08 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-4e).  A ME value near zero (-

0.003) and a RMSE value of 0.998 indicated that maximum sustained wind speed 

variability was estimated accurately for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 29.16 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-4f).  A ME value near zero (-0.002) and a RMSE value of 1.009 indicated that peak 

gust wind speed variability was, similar to the maximum sustained wind speed, 

estimated accurately for the interpolated surface when compared to observed peak gust 

wind speed variability.  The Martin wind storm followed closely behind Lothar by only 

one day.  The track of this storm was further south than Lothar and the interpolation 

confirmed this trend.  Consistent with other reports, the location of the highest wind 

speeds (33-42 m s-1) was in western France and the mountainous areas of southern 

Germany. 

2.3.10 Jeanette wind storm 

A minimum/maximum range estimate of 19.39 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-5a).  A ME value near zero 

(0.001) and a RMSE value of 1.021 indicated that maximum sustained wind speed 

variability was estimated accurately for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 
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Figure 2-4. Maximum sustained and peak gust wind speed interpolations for the Anatol 

(a, b), Lothar (c, d), and Martin (e, f) wind storms; all three storms occurred in 
1999. 

 

estimate of 28.17 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-5b).  A ME value near zero (0.003) and a RMSE value of 1.015 indicated that peak 

gust wind speed variability was, similar to the maximum sustained wind speed, 
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estimated accurately for the interpolated surface when compared to observed peak gust 

wind speed variability.  Areas of high wind speed (30-36 m s-1) occurred south of the 

storm track in parts of the central United Kingdom as well as coastal Germany, 

Netherlands, and Belgium.  Some parts of central and eastern Germany also received 

high winds in the 30-33 m s-1 range, similar to those found in other reports. 

2.3.11 Dagmar wind storm 

 A minimum/maximum range estimate of 11.33 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-5c).  A ME value near zero 

(0.002) and a RMSE value of 0.989 indicated that maximum sustained wind speed 

variability was estimated accurately for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 15.95 m s-1 was produced by the peak gust wind speed interpolation (Figure 

2-5d).  A ME value slightly higher than zero (0.004) and a RMSE value of 0.943 

indicated that peak gust wind speed variability was slightly overestimated for the 

interpolated surface when compared to observed peak gust wind speed variability.  

According to the interpolation, the highest wind speeds (18-20 m s-1) were in northern 

France and the southern United Kingdom around the English Channel.  The storm 

followed a west-east path across the southern United Kingdom and into northern 

Europe. 

2.3.12 Erwin wind storm 

 A minimum/maximum range estimate of 23.45 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-5e).  A ME value near zero 

(0.002) and a RMSE value of 1.014 indicated that maximum sustained wind speed  
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Figure 2-5. Maximum sustained and peak gust wind speed interpolations for the 
Jeanette (2002) (a, b), Dagmar (2004) (c, d), and Erwin (2005) (e, f) wind 
storms. 

 

variability was estimated accurately for the interpolated surface when compared to 

observed maximum sustained wind speed variability.  A minimum/maximum range 

estimate of 35.19 m s-1 was produced by the peak gust wind speed interpolation (Figure 
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2-5f).  A ME value near zero (~0.000) and a RMSE value of 1.023 indicated that peak 

gust wind speed variability was, similar to the maximum sustained wind speed, 

estimated accurately for the interpolated surface when compared to observed peak gust 

wind speed variability.  The highest wind speeds (33-39 m s-1) were observed in coastal 

areas of Norway, Sweden, and Germany – consistent with other reports.  High wind 

speeds shifted from being on the western coast of Norway to the southeastern coast of 

Sweden all within a 24-hour period because of the Erwin storm track.  This shift 

indicates why the interpolations show high wind speeds in both locations even though 

they are seemingly disconnected since no data were available from Denmark. 

2.3.13 Kyrill wind storm 

A minimum/maximum range estimate of 18.21 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-6a).  A positive ME value of 

0.008 and a RMSE value of 1.125 indicated that maximum sustained wind speed 

variability was slightly overestimated in some areas and slightly underestimated in other 

areas when compared to observed maximum sustained wind speed variability.  A 

minimum/maximum range estimate of 28.17 m s-1 was produced by the peak gust wind 

speed interpolation (Figure 2-6b).  A ME value near zero (~0.000) and a RMSE value of 

1.110 indicated that peak gust wind speed variability was slightly underestimated in 

some areas when compared to observed peak gust wind speed variability.  The 

southern and central United Kingdom as well as central Germany received the highest 

widespread winds (30-36 m s-1) associated with the Kyrill wind storm.  High winds 

occurred south of the storm's west-east path.  
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2.3.14 Paula wind storm 

A minimum/maximum range estimate of 18.01 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-6c).  A ME value slightly higher 

than zero (0.004) and a RMSE value of 1.054 indicated that maximum sustained wind 

speed variability was slightly overestimated in some areas and slightly underestimated 

in other areas when compared to observed maximum sustained wind speed variability.  

A minimum/maximum range estimate of 32.07 m s-1 was produced by the peak gust 

wind speed interpolation (Figure 2-6d).  A positive ME value of 0.009 and a RMSE value 

of 0.919 indicated that peak gust wind speed variability was slightly overestimated for 

the interpolated surface when compared to observed peak gust wind speed variability.  

The highest wind speeds (27-36 m s-1) for the Paula wind storm occurred in coastal 

Norway and Denmark, with a noticeable increase in wind speeds also occurring in the 

area between mainland Denmark and mainland Sweden.  All iterations of the 

interpolation slightly underestimated expected high wind speeds along the Alps, 

possibly because of offsetting high and low wind speed observations in the area, but the 

interpolations were otherwise consistent with other reports. 

2.3.15 Emma wind storm 

A minimum/maximum range estimate of 15.41 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-6e).  A negative ME value of -

0.012 and a RMSE value of 0.925 indicated that maximum sustained wind speed 

variability was slightly underestimated in some areas and slightly overestimated in other 

areas when compared to observed maximum sustained wind speed variability.  A 

minimum/maximum range estimate of 19.74 m s-1 was produced by the peak gust wind 

speed interpolation (Figure 2-6f).  A slightly positive ME value of 0.004 and a RMSE 
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Figure 2-6. Maximum sustained and peak gust wind speed interpolations for the Kyrill 
(2007) (a, b), Paula (2008) (c, d), and Emma (2008) (e, f) wind storms. 

 

value of 0.951 indicated that peak gust wind speed variability was slightly overestimated 

for some areas and underestimated for other areas of the interpolated surface when 

compared to observed peak gust wind speed variability.  The wind estimates (27-30 m 
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s-1) seen in the interpolation were reasonable compared to other reports and the 

location of high winds in the Netherlands and northern Germany were consistent with 

the storm’s track.  Pockets of high wind were also noticeable in southern Germany and 

the Czech Republic.  

2.3.16 Klaus wind storm 

 A minimum/maximum range estimate of 14.02 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-7a).  A negative ME value of -

0.022 and a RMSE value of 0.948 indicated that maximum sustained wind speed 

variability was underestimated in some areas and overestimated in other areas when 

compared to observed maximum sustained wind speed variability.  A 

minimum/maximum range estimate of 21.38 m s-1 was produced by the peak gust wind 

speed interpolation (Figure 2-7b).  A negative ME value of -0.018 and a RMSE value of 

0.956 indicated that peak gust wind speed variability was underestimated for some 

areas and overestimated for other areas of the interpolated surface when compared to 

observed peak gust wind speed variability.  The highest wind speeds (30-39 m s-1) 

occurred on the Atlantic coast near the France/Spain border.  These high wind speeds 

occurred south of the storm's path.  The interpolated peak gust wind speeds are 2-3 m 

s-1 higher on the Atlantic Ocean side of the France/Spain border and about 7 m s-1 

higher in the mountainous region between France and Spain than reported elsewhere.  

This is most likely caused by the relative proximity of high and low wind speed 

observations in the mountainous region, thus causing a balancing affect. 

2.3.17 Quinten wind storm 

 A minimum/maximum range estimate of 9.07 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-7c).  A slightly positive ME 
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(0.006) and a RMSE value of 1.210 indicated that maximum sustained wind speed 

variability was slightly overestimated in some areas and slightly underestimated in other 

areas when compared to observed maximum sustained wind speed variability.  A 

minimum/maximum range estimate of 12.77 m s-1 was produced by the peak gust wind 

speed interpolation (Figure 2-7d).  A positive ME value of 0.013 and a RMSE value of 

1.178 indicated that peak gust wind speed variability was slightly overestimated for 

some areas and slightly underestimated for other areas of the interpolated surface when 

compared to observed peak gust wind speed variability.  The highest wind speeds (30-

36 m s-1) for the Quinten wind storm occurred in coastal western France and a small 

area of northern France along the English Channel – consistent with other reports.  The 

storm moved in a general west-east direction with high wind speeds occurring in 

concurrent locations south of the reported track. 

2.3.18 Xynthia wind storm 

 A minimum/maximum range estimate of 16.85 m s-1 was produced by the 

maximum sustained wind speed interpolation (Figure 2-7e).  A very low ME (~0.000) 

and a RMSE value of 1.043 indicated that maximum sustained wind speed variability 

was very slightly underestimated in some areas when compared to observed maximum 

sustained wind speed variability.  A minimum/maximum range estimate of 26.56 m s-1 

was produced by the peak gust wind speed interpolation (Figure 2-7f).  A ME value near 

zero (0.002) and a RMSE value of 1.049 indicated that peak gust wind speed variability 

was very slightly underestimated for some areas when compared to observed peak gust 

wind speed variability.  Wind speed magnitudes and locations were similar to other 

reports for the Xynthia wind storm with the highest wind speeds (27-33 m s-1) occurring 
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in northern Spain and central France.  The storm followed a general southwest to 

northeast path and the high wind speeds followed a similar directional trend. 

 
Figure 2-7. Maximum sustained and peak gust wind speed interpolations for the Klaus 

(2009) (a, b), Quinten (2009) (c, d), and Xynthia (2010) (e, f) wind storms. 
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2.4 Discussion 

 The variability of the estimated, or predicted, wind surface, as it relates to the 

observed surface, is the first statistical means of determining the interpolation’s 

accuracy.  Variability accuracy metrics (e.g., standardized ME and RMSE) indicated a 

reasonable and logical prediction for all storms, but some predicted slightly more 

accurately than others.  The highest ME was reported for the Klaus wind storm 

interpolation.  High negative ME values were found for both maximum sustained wind 

and peak gust, indicating an underestimation of the surface, but the RMSE was less 

than one, which indicated an overestimated surface.  The conflict was most likely 

created by high variability in mountainous regions of the Pyrenees along the 

France/Spain border that has multiple topographic peaks well over 3000 meters.  The 

lowest RMSE was reported for the Anatol wind storm, but the concurrent ME values 

again conflicted in the opposite direction.  The variability between adjacent coastal 

weather stations may have led to an overestimation of variability in the coastal area, but 

an underestimation of variability in the interior areas.  Also, much of central and 

northern Sweden were minimally impacted by the Anatol wind storm and including this 

large area in the interpolation may have impacted the variability of the surface.  The 

highest RMSE values were reported for the Quinten wind storm, inferring that more 

variability occurred on the surface than was predicted.  Some variability along the coast 

near landfall may have been lost in the interpolation because of the location of weather 

stations adjacent to coves, peninsulas, or other coastal geographic features.   

It is also important to note that standardized error was often highest (+/- 2.0 

standard deviations) at stations that were located in mountainous or coastal areas that 

often experienced the highest wind speeds for each storm.  Stations with high positive 
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standardized error were often adjacent to stations with high negative standardized error, 

indicating that wind speed can be drastically different across short distances depending 

on many geographic and atmospheric factors.  Stations with high positive/negative 

standardized error may also need to be examined individually to check their overall 

accuracy and dependability.  It is not expected that kriging, or other interpolation 

methods, would capture this disparate variability because the method predominantly 

predicts widespread (macroclimatological) wind speed patterns and not highly local 

(microclimatological) anomalies. However, kriging, as applied in this study, proved to be 

an excellent interpolation method for estimating the general wind surface associated 

with wind storms occurring across the diverse European landscape. 

 Maximum sustained and peak gust wind speed interpolations consistently 

underestimated the highest reported winds and overestimated the lowest reported 

winds.  These values were usually in the highest or lowest 3 percent of observed wind 

speeds and thus would have been considered outliers by the interpolation when 

creating the distribution of wind speeds across the surface.  Extreme local high/low wind 

speeds are accounted for by kriging because these observations impact the trend and 

directional covariance of wind speeds, but they are not predicted exactly because they 

would cause an illogical “eye” effect similar to an IDW-interpolated surface.  This, in 

turn, would have impacted the accuracy of wind speeds surrounding the anomalous 

stations and increased inaccuracy (Luo et al. 2008). 

Use of kriging for this study confirmed its appropriateness for this data type similar 

to use in previous studies (Luo et al. 2008, Zlatev et al. 2009).  The Luo et al. (2008) 

study, however, did not apply an anisotropic condition to the semivariogram because a 
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smaller geographic area was examined (only the UK).  Luo et al. (2008) indicated that 

directional covariance related to anisotropy did exist on the surface, but that the sill and 

maximal area were approximately the same thus eliminating the need to use anisotropy.  

Because this study modeled wind speeds in a much larger area, the use of anisotropic 

conditions for semivariogram creation significantly improved our results by capturing the 

widespread directional distribution of wind speeds in addition to the surface wind speed 

trends for most storms.  The only storm that exhibited large directional wind speed 

disparities between maximum sustained and peak gust winds was Emma.  Peak gust 

wind speeds exhibited a northwest-to-southeast pattern, while the maximum sustained 

wind speeds exhibited a west-to-east pattern.  This was most likely caused by the 

presence of a separate storm front immediately preceding wind storm Emma resulting in 

high winds moving in multiple directions. The weather pattern caused numerous, weak 

directional trends to occur on the surface and created confusion during the interpolation 

process since the “dominant” trend was different between peak gust and maximum 

sustained winds.  The peak gust wind speed direction was more accurate relative to the 

track of the storm, thus the anisotropic azimuth direction for maximum sustained wind 

speeds was manually changed to a more accurate northwest-to-southeast trend. 

Another unique feature found during the modeling process of many wind storms 

was the location of two separate areas of high wind speeds: coastal areas where the 

storm made landfall and mountainous areas that were often far away from the actual 

storm track.  These two areas were often separated by a more homogeneous surface 

where wind speed tended to be lower.  One reason for higher winds in mountainous 

areas located far away from the storm tracks is not only the presence of an exposed 
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ridgeline, but also the manifestation of pressure gradient differences associated with 

convergent air masses.  Steenburgh and Mass (1996) alluded to the tendency for high 

winds to flow through mountain gaps/valleys perpendicular to wind storm tracks in North 

America and it appears that this feature is also present in mountainous regions of 

Europe.  High downgradient flow in gaps and channels occurs because of large north-

south pressure gradients so if a storm moves from west to east, then north-south 

oriented gaps often experience an increase in wind speed (Steenburgh and Mass 

1996).   

2.5 Future Research 

Aspect, or the direction that a mountain slope faces, may be a major contributor to 

error associated with wind speed interpolations.  More research must be conducted to 

further analyze the legitimacy of this hypothesis, but  topographic variation does exert a 

great influence on wind speeds (Hofherr and Kunz 2010).  Elevation has often been 

used as a covariate during cokriging operations for wind speed interpolation (Luo et al. 

2008, Akkala et al. 2010, Zlatev et al. 2010) but aspect has been overlooked.  Since 

correction factors for topographic effects are applied to each WMO weather station, 

using elevation as a covariate may even be redundant in some cases.  Weather stations 

may share similar elevation, but may be located on opposite sides of a mountain, thus 

potentially diminishing the covariance between wind speeds and elevation.  For 

example, one weather station may be on the coastal side of a mountain range at an 

elevation of 1000 meters, while another station may be on the inland side of the same 

mountain range at the same elevation.  The first weather station may report very high 

wind speeds, but the second weather station may report very low wind speeds because 

of the blocking and diverting effect of the mountains.  To examine aspect within the 
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cokriging methodology, an involved process of segmenting the land surface may be 

needed based on defined topographic/geographic areas, similar to Luo et al. (2008).  An 

in-depth examination of topographic variation may also assist in explaining microclimatic 

impacts that may contribute to conflicting surface trends. 

 In addition to examining the impact of aspect in future studies, other models and 

statistical methods should be explored to improve surface wind speed estimates for 

European wind storms.  Through cokriging, additional covariates should also be 

examined to measure their impact on wind speeds across Europe.  Other knowledge-

assisted and computational learning methods need to be improved but hold promising 

capabilities in the field of wind interpolation.  Statistical techniques, such as Bayesian-

assisted kriging, could also improve interpolation estimates because the technique 

creates multiple local semivariograms instead of one global semivariogram for an entire 

dataset. 

When considering European wind storms as a whole, further research could help 

to determine recurrence intervals or return periods of various intensity storms (Della-

Marta et al. 2009).  In the United States, similar research was conducted to examine 

hurricane return periods for land-falling Atlantic basin storms (Keim et al. 2007).  It may 

also be useful to examine extreme wind distributions and recurrence intervals across 

Europe so that not only wind storms are included, but also any other extreme wind 

events (Simiu and Heckert 1996).  Examining each storm individually may allow for the 

calculation of continuously sampled sustained data based on the storms return period 

(e.g., is this a common, near-annual storm-type or a 100-year storm-type?).  Within the 

same realm of future research, it may also be useful to include additional data from 
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countries that were excluded from some storm models.  Some countries were included 

in some models and excluded in others because of the different locations of destructive 

impacts of each storm.  Future studies may examine more consistent spatial extents.  

These and other potential studies would be useful to help improve our climatic 

knowledge of European wind storms as well as the potential for repetitive disasters in 

specific locations.   
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CHAPTER 3. CROSS-CORRELATION MODELING OF EUROPEAN WIND STORMS: 

A COKRIGING APPROACH FOR OPTIMIZING SURFACE WIND ESTIMATES 

3.1 Introduction 

During excessive wind events, wind flows relatively uniformly across mostly flat 

and smooth terrain, but when terrain changes abruptly (e.g., coastal zones and/or the 

transition from flat land to hills and mountains), velocity and direction change based on 

the extent and diversity of terrain roughness (Tieleman 1992).   Improved modeling of 

wind storm-induced surface winds is critical for engineering purposes, while also 

propelling knowledge of geospatial analytical applications forward.  Currently, upper-

level winds are commonly used to estimate wind surfaces in wind storms (e.g., Della-

Marta et al. 2009), but interpolations of wind speeds at higher levels in the atmosphere 

do not reflect the complexity of the surface.  Use of modeled wind data based on upper-

level geopotential height gradients is less accurate than meteorological station readings 

as the former are not based on observed surface wind measurements.  In addition, 

record length of the former is usually shorter than station data, preventing long-term 

studies.  Station data can depict wind fluctuations at the local scale better than other 

data types, and are therefore most appropriate for this project.  We hypothesize that 

because aspect, elevation, and land cover affect surface-level wind speeds, it is 

important to consider their influence.   

The proposed project will address research questions that arose in Study One, 

specifically by developing a deeper understanding of the factors that resulted in high 

error measurements between the station data and interpolated surfaces in 

heterogeneous terrain.  It is hypothesized that covariates will improve the interpolation 

model by utilizing elevation, aspect, and land cover as potential predictors of wind 
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speed.  This hypothesis is grounded in the notion that cokriging with one or more 

covariates improves the accuracy of wind surface estimates previously created by 

ordinary kriging (Odeh et al. 1995, Luo et al. 2008, Wenxia et al. 2010, Zlatev et al. 

2010, Luo et al. 2011, Singh et al. 2011, Wang et al. 2011, Aznar et al. 2012, Li et al. 

2012).  Section 1.2 identifies literature that informs the current research and forms the 

basis of this hypothesis.   

3.1.1 Cokriging  

 While ordinary kriging is a common and often-used interpolation method, 

cokriging is less popular because of the added complexity involved in selecting 

appropriate covariates.  In utilizing various forms of cokriging along with ordinary 

kriging, universal kriging, multi-linear regression, and regression kriging models to 

predict soil properties based on landform attributes, Odeh et al. (1995) found that the 

regression kriging and cokriging models were superior to ordinary kriging models 

because they accounted for the relationship between the predictor variable (soil 

properties) and specific terrain attributes (slope angle, aspect, plan curvature, and 

profile curvature).  An earlier study examining soil physics concluded that cokriging 

reduced the variance and improved estimates of under-sampled variables by 

accounting for the spatial correlation between available water content, water stored at 

1/3 bar, and sand content values.  Air pollution surfaces have also been improved 

through the cokriging process.  To produce air pollution maps in Northern Italy, the 

results of a Chemical Transport Model simulation was used as the covariate, while 

ozone concentrations and daily mean particulate matter (>10) concentrations were the 

predictor variables (Singh et al. 2011).  Generalized additive models were also used to 

produce global residuals near nitrogen dioxide and nitrogen oxide sampling locations in 
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Southern California, with  greatly improved predicted oxide surfaces and very high 

cross-validated R2 values (~0.9) (Li et al. 2012). 

 Cokriging has been used to improve interpolated temperature surface estimates.  

Aznar et al. (2012) applied cokriging to produce a time series of monthly mean 

temperatures in northeastern Canada between 1961-2000.  Temperature recordings 

from 202 meteorological stations were utilized as the predictor variable and regional 

climate model-derived temperatures were incorporated as a covariate because of their 

incorporation of local variance (Aznar et al. 2012).  This study resulted in accurate and 

publicly available monthly mean temperature grids for the region.  Mahdian et al. (2009) 

utilized multiple geostatistical techniques to estimate monthly and annual temperature 

and found that cokriging with elevation used as a covariate produced a surface with a 

low mean absolute error compared to most of the other models.   

Cokriging has also been proven to be an optimal method for estimating 

precipitation surfaces through use of various covariates (Wenxia et al. 2010, Luo et al. 

2011, Wang et al. 2011).  Topography, or elevation, was especially effective for 

cokriging models that examined the Taihu Lake Basin in China (Luo et al. 2011) and the 

Chongqing tobacco planting region of China (Wang et al. 2011) in areas where 

topography varied greatly.  Improvements compared with other models were negligible 

in areas of homogeneous topography.  Wenxia et al. (2010) expanded on the traditional 

covariate of elevation by also including geographic factors (longitude, latitude, terrain, 

slope, aspect, and shelter degree).  Collectively, cokriging models from Wenxia et al. 

(2010) utilizing both topographic and geographic variables outperformed both the 
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cokriging technique that incorporated only elevation and the inverse distance weighted 

method.   

 On occasion, multiple variables (average daily maximum temperature, wind 

direction frequencies, nitrous oxide (N2O) emissions, distance downwind from N2O 

emission sources) have been used to estimate a surface ozone exposure.  For 

example, Phillips et al. (1997) revealed the possibility of including wind direction in a 

spatially anisotropic kriging- and cokriging-based surface ozone estimate.  In addition to 

the inherent ability to account for anisotropy, cokriging of wind speed adds the ability to 

incorporate many of the covariates (e.g., topography, aspect, terrain, slope, etc.) used 

in previous studies.  In examining seven different methods of spatial interpolation, Luo 

et al. (2008) concluded that cokriging with elevation as a covariate produced a superior 

daily mean wind speed surface with better accuracy metrics than the other six surfaces 

(one of which included ordinary kriging).  Similarly, Zlatev et al. (2010) also found 

cokriging to be superior to other forms of kriging and spatial interpolation based on 

lower error measurements when estimating daily mean wind speed.  In both studies, 

error reduction occurred over a rugged landscape (United Kingdom), suggesting that 

use of elevation may have been a key factor in model improvement.  By contrast, Sliz-

Szkliniarz and Vogt (2011) found that wind surface estimates were changed very little 

over the ordinary kriging approach by including elevation as a covariate, when applied 

to the topographically flat terrain of Poland.  Results of Luo et al. (2008), Zlatev et al. 

(2010), and Sliz-Szkliniarz and Vogt (2011) provide substantial evidence that covariates 

can help improve wind surface estimates in topographically varied regions, while 

maintaining the previous accuracy of ordinary kriging surface estimates in more 
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topographically homogeneous regions. Furthermore, the flexibility and robustness of 

cokriging, and geostatistical methods in general, in accounting for variance in station 

distribution and density – two very important variables when modeling and mapping 

data (MacEachren and Davidson 1987)  – suggest that they are well-suited for wind 

observation data.  

3.1.2 Study area and objectives 

Accurate wind surface estimates that capture regional wind speeds and directions 

can be created for large areas of Europe using an anisotropic semivariogram-derived 

kriging methodology (Joyner et al. in review).  Surface wind estimates suggested that 

coastal and mountainous regions often experienced the most extreme wind speeds 

(Joyner et al. in review).  Inland Europe, specifically the Black Forest and northern Alps, 

displayed excessive wind speeds relative to the surrounding areas – indicative of a 

complex topography/wind interaction (Joyner et al. in review).  Coastal and 

mountainous weather stations experienced the most intra-storm wind speed variability 

and also reported some of the highest error measurements – most likely a result of 

landscape heterogeneity and post-model smoothing (Joyner et al. in review).  Because 

of these high error measurements, this study examines multiple covariates through the 

cokriging technique in an effort to create more accurate surface wind interpolations and 

to improve understanding of local wind variability in these environments.  Previous 

studies that identified cokriging as superior for estimating surface winds utilized 

elevation as the singular covariate (e.g., Luo et al. 2008, Sliz-Szkliniarz and Vogt 2011); 

this study will incorporate aspect and land cover in addition to elevation.  The research 

questions for this study are as follows: 
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1) To what extent does cokriging improve interpolated wind surfaces in the 

coastal and mountainous regions of Europe, compared to ordinary kriging 

methods? 

2) Which covariate(s), if any, is(are) most influential in improving wind surface 

interpolations in heterogeneous terrain? 

 

3.2 Data and Methods 

3.2.1 Wind storm and covariate data 

 Five wind storms occurring between 1999 and 2008 were selected for this study 

(Table 3-1).  These storms were selected based on a combination of factors including 

extent and degree of impact and intensity as well as the availability of supporting data 

about each storm.  Each of the five storms impacted both coastal and mountainous 

regions where standard errors were highest, thus increasing the potential to show 

improvement in predicting surface winds in these areas through utilization of the 

cokriging methodology.   

Table 3-1. European wind storms selected for Study Two and impacted countries. 
Year Date Popular Name Countries 

1999 25-27 December Lothar France, Switzerland, Germany 

2002 26-28 October Jeanette UK, Denmark, Sweden, Germany, Netherlands, France, 
Austria, Poland, Czech Republic, Belgium, Ireland 

2007 16-19 January Kyrill France, Netherlands, Germany, UK, Belgium, Austria, 
Ireland 

2008 24-26 January Paula Poland, Germany, Austria, Denmark, Norway, Sweden 

2008 29 February-2 
March 

Emma Germany, Austria, Czech Republic, Belgium, 
Netherlands, Switzerland, Poland 

 

When a station that records wind speeds is not located at a 10-m height, the 

station data are adjusted to a 10-m estimated speed using the logarithmic wind profile 



 

55 

assumption.  A preliminary quality control analysis of the European wind storm data was 

conducted by plotting the sustained and peak gust values against the mean of each 

variable.  Outliers were examined to determine whether the values were reasonable for 

the given atmospheric conditions.  Stations that were modeled most successfully came 

proportionately from those with 10-m measurements and those at which the 10-m wind 

was adjusted from measurements at a different height.  Based on this analysis, it 

appears that the model performance is not unduly biased by the vertical adjustment of 

station-based wind values.  

Additionally, covariate data from Europe were obtained for the cokriging process.  

Elevation data were collected from Version 4 of the NASA Shuttle Radar Topographic 

Mission (SRTM) 90-m digital elevation dataset through the CGIAR Consortium for 

Spatial Information (CGIAR-CSI).  The land cover covariate was obtained from the 

European Space Agency (ESA) GlobCover Project Version 2 2008 database at a 

resolution of 300 m (GlobCover 2008).  The elevation and land cover datasets were 

clipped and resampled to 300 m for use in the present study.  Based on the theory 

behind “ecological fallacy” and the “modifiable areal unit problem (MAUP),” datasets can 

be aggregated into larger units (e.g., 90 m to 300 m), but cannot be divided into smaller 

units (e.g., 300 m to 90 m) without jeopardizing the integrity of the data (Robinson 1950, 

Openshaw 1984, Sayre 2005, Dark and Bram 2007).  The GlobCover land cover 

dataset contains 22 different land cover classification types ranging from various tree 

types, shrubs, and grasslands to bare land, artificial surfaces, and open water.  The 

covariate of aspect was derived from the 300-m resampled elevation dataset utilizing 
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tools available in the Spatial Analyst toolbox within ArcMap 10.1, in preparation for 

further analysis in this research. 

3.2.2 Kriging and cokriging methodologies 

 Kriging and cokriging rely on probability and autocorrelation when creating 

surface estimates.  The use of probability means that there is some variation in output 

values leading to an approximate, or stochastic, model.  Reliance on autocorrelation is 

based on the tendency for two variables to be related.  Within the field of geography, 

Tobler's first law states that "everything is related to everything else, but near things are 

more related than distant things" (Tobler 1970).  Correlation between objects usually 

decreases over distance and this is also true of the correlation between wind speeds at 

different stations.  Autocorrelation is a central tenet of geostatistics because 

observations are not independent of each other and geostatistics includes spatial 

location and distance during model creation.  Kriging and cokriging both rely on the 

same process for surface estimation, but cokriging incorporates one or more secondary 

variables to improve predictions in areas where simple autocorrelation may be 

insufficient.  Larger wind speed values may be underestimated in mountainous or 

coastal areas that lack a dense network of wind observation stations.  However, even 

when considering station location limitations, cokriging has been shown to estimate 

wind surfaces more accurately and in greater detail, while reducing prediction errors, 

compared to ordinary kriging (Luo et al. 2008). 

While ordinary kriging is described as 

                                                          Z(s) = µ + ε(s)                                                  

where constant mean µ is a deterministic trend that is associated with errors ε at 

each location s for the variable of interest Z(s), ordinary cokriging is described as 



 

57 

Z1(s) = µ1 + ε1(s) 

Z2(s) = µ2 + ε2(s) 

Zn(s) = µn + εn(s) 

where constants µ1…µn are unknown and associated with multiple errors εn at 

each location s to predict variable of interest Z1(s), while taking information from 

covariate(s) Zn(s) into consideration.  

In cokriging, different trends are estimated for each variable and autocorrelation 

occurs within each variable, while cross-correlation can also occur between the errors 

for each variable (Journel and Huijbregts 1978, Matheron 1979).  Measurement 

locations do not need to be the same when the level of cross-correlation is calculated 

between variables – a major advantage of cokriging.  Cokriging often utilizes 

autocorrelation and cross-correlation to make predictions, but the addition of one or 

more secondary variables (covariates) requires more estimation of unknown 

autocorrelation parameters and adds more model variability (Matheron 1979).  

However, the cokriging model is based on the kriging model and if no cross-correlation 

exists, the original autocorrelation remains the baseline.  This infers that cokriging 

models will not underperform compared to kriging models, but occasionally the added 

model variability of cokriging can increase standard error on a station-by-station basis 

(Stein and Corsten 1991).  Within kriging, random errors assume second-order 

stationarity, indicating that errors have a mean of zero and error covariance is not 

location-dependent, but instead is distance- and direction-dependent (Krige 1951).  In 

addition to ordinary cokriging, other methods of cokriging exist that include universal, 

simple, indicator, probability, and disjunctive.  These methods offer slight variants to the 
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ordinary cokriging methodology such as the ability to use multiple data thresholds, 

prediction thresholds, and variable trends (Georgakakos et al. 1990). 

Although normally distributed data are not required for kriging, normality is 

necessary to obtain quantile and probability maps.  Additionally, kriging is the optimal 

unbiased predictor when compared to only techniques produced from weighted 

averages regardless of data normality, but if the data are normally distributed, then 

kriging is the optimal predictor compared to all other unbiased predictors.  In this study, 

the data were examined to determine whether a transformation or other corrections was 

necessary to produce normally distributed data and to ensure that kriging is the "best" 

prediction compared to other unbiased predictors.  Prior to modeling each wind storm, 

multiple methods of exploratory spatial data analysis (ESDA) were employed using the 

Geostatistical Analyst within ArcMap 10.1 (ESRI 2010) to examine the univariate 

distribution (histogram), stationarity and spatial variability (Vornoi map, e.g., Ogniewicz 

and Ilg 1992), normality (normal QQ plot, e.g., Wilk and Gnanadesikan 1968), global 

trends (trend analysis), and spatial dependencies (semivariogram/covariance cloud, 

e.g., Gribov et al. 2000) of the wind observation data as well as the autocorrelation 

between covariates and between wind observation data and covariates (general QQ 

plot and crosscovariance cloud, e.g., Wilk and Gnanadesikan 1968, Gribov et al. 2000).  

The levels of skewness and kurtosis revealed by ESDA indicated that the wind 

observation data deviates slightly from a normal distribution.  Observational data were 

subsequently tested for normality using the Shapiro-Wilk test (Shapiro and Wilk 1965).  

The Shapiro-Wilk test examines the null hypothesis that a dataset is distributed 

normally.  Values below a certain alpha level (e.g., p < 0.05) indicate that the null 
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hypothesis of normality should be rejected and values above a certain alpha level 

indicate the opposite. 

3.3 Results 

3.3.1 Cokriging assessment and evaluation 

 Maximum sustained wind speeds and peak gusts were analyzed for each of the 

five wind storms to determine whether pre-processing data transformations were 

necessary and to identify the best combinations of covariates that produce optimal wind 

surface estimates based on multiple criteria.  The Shapiro-Wilk test revealed that the 

null hypothesis of normality for each station could not be rejected since p-values were 

greater than 0.05 for each storm and wind type (Table 3-2).   

Table 3-2. Shapiro-Wilk test for normality for each storm and wind type.  The null 
hypothesis (H0) is non-normality and a p-value greater than 0.05 indicates a 
rejection of this hypothesis and assumed normality of the data. 

Storm Wind Type Shapiro-Wilk (W) p-value Reject H0 

Lothar Max Sustained 0.997 0.79 No 

 
Peak Gust 0.995 0.38 No 

Jeanette Max Sustained 0.997 0.08 No 

 
Peak Gust 0.999 0.89 No 

Kyrill Max Sustained 0.999 0.97 No 

 
Peak Gust 0.998 0.84 No 

Paula Max Sustained 0.998 0.47 No 
  Peak Gust 0.998 0.70 No 
Emma Max Sustained 0.998 0.94 No 

 
Peak Gust 0.996 0.22 No 

 

Based on the results of the Shapiro-Wilk test, no data transformations were 

necessary for the station observation data.  Additionally, regression analysis of 

covariates revealed extremely low R-values (R < 0.1) and no values were significant (p 

> 0.05) between covariates and between wind observation data and covariates.  This 

result indicates that correlation between the sets of potential covariates is not a major 
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issue and that transformation of the covariates was therefore unnecessary. The ESDA 

tools within Geostatistical Analyst also revealed trends for each wind storm dataset.  

These trends were generally consistent with expected directional trends based on the 

track of each wind storm, resulting in west-east or northwest-southeast tendencies.   

 Daily weather maps and other climatological information from various reports 

were utilized to characterize the track and synoptic conditions and gather a more holistic 

view for each wind storm.  Ordinary cokriging was employed for each storm and wind 

type and every possible covariate combination was simulated.  The maximum number 

of combinations resulted in eight interpolated surfaces for each wind type and 16 total 

interpolated surfaces for each storm.  These eight interpolated surfaces included 1) 

ordinary kriging without covariates, 2) cokriging with elevation, 3) cokriging with aspect, 

4) cokriging with land cover, 5) cokriging with elevation and aspect, 6) cokriging with 

elevation and land cover, 7) cokriging with aspect and land cover, and 8) cokriging with 

elevation, aspect, and land cover.  Corresponding maps were created to represent the 

maximum sustained wind speeds and peak gusts across the region for the duration of 

each storm.  Accuracy metrics were calculated through a process of cross validation (n - 

1) during model simulation and included the root mean square prediction error 

(RMSPE), mean error (ME), and root mean square error (RMSE).  Stations with errors 

greater than +/- 2.0 standard deviations were identified.  Automatic wind direction trends 

were also recorded by calculating the azimuthal direction (0°=north, 90°=east, etc.) of 

the major axis of the ellipse derived from the semivariogram.  Additional maps were also 

created for each storm and wind type to identify the locations where high errors from 
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each cokriging model are found.  The optimal model output(s) was (were) determined 

for each storm and wind type.  

3.3.2 Cokriging models 

3.3.2.1 Wind storm Lothar 

Wind storm Lothar was the first of two major storms to impact northwestern 

Europe in 1999.  A subsequent storm, Martin, followed nearly the same path just one 

day later.  Lothar developed from a depression in the North Atlantic Ocean and collided 

with a cold air mass on land, resulting in increased surface turbulence along the frontal 

boundary and the rapid development and geographic expansion of Lothar.  The wind 

storm moved from west to east with major damage occurring in France, Germany, 

Switzerland, and Austria.  Approximately 140 deaths and €10 billion (euros) in damage 

were attributable to Lothar and Martin collectively (Environmental Quality Engineering - 

EQE 2000).  It is difficult to attribute the damage to Lothar vs. Martin, but Lothar was the 

stronger storm of the two.  During Lothar, several stations reported gusts in excess of 

40 m s-1 – comparable to Category 2 hurricane wind speeds.  Building roofs, 

communication networks, and fruit trees were particularly hard-hit by winds, while 

avalanches, mudslides, and flooding also occurred (EQE 2000).  A deadly avalanche in 

Galtuer, Austria, resulted in nine deaths.   

Cokriging model estimates of maximum sustained wind speeds (Figure 3-1) and 

peak gusts (Figure 3-2) provide additional evidence of the general west-east storm track 

for Lothar.  Wind speeds approaching 40 m s-1 were estimated by multiple peak gust 

models in coastal areas of France and mountainous areas of southeastern Germany 

approaching the Austrian Alps.  Some differences in wind speed estimates were 

observed between most surfaces.  For example, Figures 3-1a and 3-1c show higher  
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Figure 3-1. Maximum sustained wind surface estimates for wind storm Lothar (1999) 

produced by the following models: original kriging (A), cokriging with elevation 
(B), cokriging with aspect (C), cokriging with land cover (D), cokriging with 
elevation and aspect (E), cokriging with elevation and land cover (F), 
cokriging with aspect and land cover (G), and cokriging with elevation, aspect, 
and land cover (H). 
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Figure 3-2. Peak gust wind surface estimates for wind storm Lothar produced by the 

following models: original kriging (A), cokriging with elevation (B), cokriging 
with aspect (C), cokriging with land cover (D), cokriging with elevation and 
aspect (E), cokriging with elevation and land cover (F), cokriging with aspect 
and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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maximum sustained wind speed estimates in southeastern Germany, while most 

models estimated a decline in wind speeds across northeastern France before a 

reversion to increased wind speeds near Switzerland and southwestern Germany.  

Figure 3-2c reveals higher peak gust wind speed estimates in southeastern Germany, 

while Figure 3-2b shows a very spotty surface with smaller, more prominent areas of 

high and low wind speeds. 

To determine the optimal model(s) for each wind speed type for Lothar, multiple 

accuracy metrics were utilized during model implementation.  Accuracy metrics for each 

model and wind type are listed in Table 3-3.  For Lothar’s maximum sustained wind, the 

original kriging methodology produced the automated anisotropic conditions closest to 

the actual storm track of ~90°, or an approximate west-east track.  The model utilizing 

the covariate aspect produced the RMSE score nearest to 1.0 and the lowest RMSPE 

score, while the ME nearest to zero was produced by the model utilizing aspect and 

land cover. All models except two (original kriging and cokriging with aspect) reported 

only 14 high SE measurements after cross-validation.  For the peak gust wind models, 

the original kriging methodology again produced the automated anisotropic conditions 

closest to the actual storm track of ~90°.  The original kriging model also produced the 

RMSE score nearest to 1.0 and tied five other models with the fewest stations reporting 

a SE measurement exceeding +/-2.0.  The model utilizing only elevation as a covariate 

generated the lowest RMSPE score, while the ME nearest to zero was produced by the 

model incorporating only land cover.  

To examine in more detail the locations where high SE measurements occurred, 

maps were produced for each wind type for Lothar (Figure 3-3a-b).  Most stations with 
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Table 3-3. Wind storm Lothar (1999) accuracy metrics for each model indicating 
dominant automatic wind speed direction, inter-model error comparison 
(RMSPE), intra-model error comparison (ME and RMSE), and number of high 
error stations. 

Storm Method Anisotropy RMSPE ME RMSE 
SE (> 
+/- 2.0) 

Lothar Original kriging 81.4 6.34 -0.010 1.03 18 
Max Cokriging w/elev 70.5 6.35 0.004 0.97 14 
Sustained Cokriging w/asp 45.4 6.32 0.004 1.00 16 

 
Cokriging w/LC 63.5 6.55 0.003 0.95 14 

 
Cokriging w/elev & asp 70.5 6.35 0.004 0.97 14 

 
Cokriging w/elev & LC 70.3 6.35 0.005 0.97 14 

 
Cokriging w/asp & LC 63.8 6.55 0.002 0.95 14 

  
Cokriging w/elev, asp, & 
LC 70.3 6.35 0.005 0.97 14 

Lothar Original kriging 84.9 10.31 0.002 1.00 16 
Peak Cokriging w/elev 78.4 9.81 -0.030 1.04 20 
Gust Cokriging w/asp 55.2 10.31 0.002 1.02 20 

 
Cokriging w/LC 63.5 10.58 0.001 0.97 16 

 
Cokriging w/elev & asp 70.5 10.29 0.002 0.99 16 

 
Cokriging w/elev & LC 70.3 10.29 0.003 0.99 16 

 
Cokriging w/asp & LC 63.5 10.59 0.002 0.97 16 

  
Cokriging w/elev, asp, & 
LC 70.3 10.29 0.003 0.99 16 

 

high SE measurements received such measurements from multiple models.  For the 

maximum sustained wind speed models, high SE measurements were recorded by 

stations in mountainous regions of Switzerland and southern Germany approaching 

Austria, along with one station in the French Pyrenees.  Some stations on the island of 

Corsica also reported high SE measurements.  For the peak gust wind speed models, 

high SE measurements were recorded in near-identical areas in mountainous regions, 

while the Atlantic and Mediterranean coasts of France also contained stations with high 

SE measurements.  Stations coinciding with the optimal models based on SE 

measurements were also highlighted in Figure 3-3a-b and occurred in matching 
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mountainous and coastal areas. In the optimal model, many of the same stations with 

high SE measurements also showed high SE measurements in other models. 

 
Figure 3-3. Stations reporting high SE measurements for maximum sustained (A) and 

peak gust (B) winds. 
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3.3.2.2 Wind storm Jeanette 

Jeanette impacted much of northern Europe in late October of 2002 as it tracked 

across Ireland, the UK, North Sea, Denmark, and Sweden.  Jeanette developed from a 

low pressure system in the North Atlantic Ocean and had a long, attached frontal 

boundary that extended deep into southern Europe.  Because of the size of the storm 

and extent of the frontal boundary, Jeanette impacted more countries in Europe than 

most other wind storms with high winds distributed over relatively large areas.  The 

storm moved from west to east with major damage occurring in Ireland, the UK, France, 

Belgium, the Netherlands, Germany, Denmark, Sweden, Switzerland, Austria, Czech 

Republic, and Poland.  Approximately 30 deaths and €1.5 billion in damage were 

attributable to Jeanette with insured losses topping €1 billion (EQE Catastrophe - 

EQECAT 2002, Risk Management Solutions - RMS 2002).  The biggest losses occurred 

in the western and eastern coastal UK, Belgium, the Netherlands, and northern and 

eastern Germany.  Several wind observation stations in France, the Netherlands, 

Germany, and Poland reported gusts exceeding 40 m s-1 – comparable to Category 2 

hurricane wind speeds.  Buildings, communication and transport networks, power lines, 

and trees were particularly hard-hit by winds, while flooding was a major concern in 

Scotland and England (EQECAT 2002).   

Results of cokriging models for maximum sustained wind speeds (Figure 3-4) and 

peak gusts (Figure 3-5) provide additional evidence of the general west-east storm track 

for Jeanette.  Wind speeds approaching 33 m s-1 were estimated by multiple peak gust 

models in coastal areas of the UK, Belgium, and the Netherlands.  High wind speeds 

extended across much of central Germany, with wind speeds increasing in eastern 

Germany near the Czech Republic border (Figure 3-5c).  Some differences in  
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Figure 3-4. Maximum sustained wind surface estimates for wind storm Jeanette (2002) 

produced by the following models: original kriging (A), cokriging with elevation 
(B), cokriging with aspect (C), cokriging with land cover (D), cokriging with 
elevation and aspect (E), cokriging with elevation and land cover (F), 
cokriging with aspect and land cover (G), and cokriging with elevation, aspect, 
and land cover (H). 
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Figure 3-5. Peak gust wind surface estimates for wind storm Jeanette produced by the 

following models: original kriging (A), cokriging with elevation (B), cokriging 
with aspect (C), cokriging with land cover (D), cokriging with elevation and 
aspect (E), cokriging with elevation and land cover (F), cokriging with aspect 
and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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wind speed estimates were observed between most surfaces.  For example, Figures 3-

4c and 3-4d show variation in inland extent of the maximum wind speeds in eastern 

Germany, while most models estimated that greater wind speeds were maintained 

through Germany to the Czech Republic.  Figure 3-5c shows higher peak gust wind 

speed estimates in eastern Germany, while other peak gust models did not identify this 

area of higher winds. 

To determine the optimal model(s) for each wind speed type for Jeanette, multiple 

accuracy metrics were utilized during model implementation.  Accuracy metrics for each 

model and wind type are listed in Table 3-4.  For Jeanette’s maximum sustained wind, 

three models (original kriging, cokriging with aspect, and cokriging with elevation and 

aspect) produced the automated anisotropic conditions closest to the actual storm track 

of ~85°.  Three models (cokriging with elevation, cokriging with elevation and aspect, 

cokriging with all three covariates) also produced the lowest RMSPE score, while the 

ME nearest to zero was produced by five of the eight models. The model that utilized 

cokriging with elevation and land cover produced the RMSE score nearest to 1.0, while 

the cokriging model incorporating only land cover reported the fewest stations with high 

SE measurements (26) after cross-validation.  For the peak gust wind models, the 

original kriging model and the cokriging model utilizing aspect produced the automated 

anisotropic conditions closest to the actual storm track of ~85°.  Four models produced 

the lowest RMSPE score of 7.80, while three models (cokriging with land cover, 

cokriging with elevation and land cover, and cokriging with aspect and land cover) 

generated the ME score nearest to zero.  The cokriging model that included elevation 

and the cokriging model that included elevation and land cover produced the RMSE 



 

71 

score nearest to 1.0.  The cokriging model that utilized elevation and aspect resulted in 

the fewest stations (19) reporting a SE measurement of greater than +/-2.0.   

Table 3-4. Wind storm Jeanette (2002) accuracy metrics for each model indicating 
dominant automatic wind speed direction, inter-model error comparison 
(RMSPE), intra-model error comparison (ME and RMSE), and number of high 
error stations. 

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 
2.0) 

Jeanette Original kriging 90.0 4.78 0.001 0.87 29 

Max Cokriging w/elev 71.8 4.77 0.001 0.96 37 
Sustained Cokriging w/asp 90.0 4.78 0.008 0.87 29 

 
Cokriging w/LC 64.3 4.84 -0.001 0.89 26 

 
Cokriging w/elev & asp 80.0 4.77 0.001 0.96 37 

 
Cokriging w/elev & LC 69.6 4.78 0.002 0.97 36 

 
Cokriging w/asp & LC 74.5 4.78 0.001 0.94 35 

  
Cokriging w/elev, asp, & 
LC 74.1 4.77 0.011 0.96 37 

Jeanette Original kriging 90.0 7.80 0.007 0.87 33 
Peak Cokriging w/elev 69.6 7.82 0.002 0.96 38 
Gust Cokriging w/asp 90.0 7.80 0.006 0.86 32 

 
Cokriging w/LC 62.6 7.80 0.001 0.93 38 

 
Cokriging w/elev & asp 76.9 7.83 0.008 0.72 19 

 
Cokriging w/elev & LC 69.6 7.82 0.001 0.96 38 

 
Cokriging w/asp & LC 63.2 7.80 0.001 0.93 38 

  
Cokriging w/elev, asp, & 
LC 78.1 7.84 0.009 0.72 20 

 

To examine in more detail the locations where high SE measurements occurred, 

maps were produced for each wind type for wind storm Jeanette (Figure 3-6a-b).  Most 

stations with high SE measurements received such measurements from multiple 

models.  For the maximum sustained wind speed models, high SE measurements were 

recorded by stations in mountainous regions of Austria and southern Germany as well 

as the northern Czech Republic and Scotland.  Coastal areas of the UK, France, 

Germany, and Poland also reported stations with high SE measurements from multiple 

stations. For the peak gust wind speed models, high SE measurements were recorded  
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Figure 3-6. Stations reporting high SE measurements for maximum sustained (A) and 

peak gust (B) winds. 
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in near-identical areas in mountainous and coastal regions, with the addition of several 

stations along the coast of the Netherlands.  Stations coinciding with the optimal 

model(s) based on SE measurements were also highlighted and continued to exhibit a 

mountainous and coastal presence.  

3.3.2.3 Wind storm Kyrill 

Kyrill impacted large areas of northern Europe in January 2007 as it took a track 

similar to that of Jeanette across Ireland, the UK, North Sea, Denmark, and Germany.  

Kyrill developed from a low pressure system near Newfoundland in northeastern 

Canada on 15 January and moved across the North Atlantic Ocean before making its 

first landfall in Ireland on 17 January.  Hurricane-force winds extended far from the 

center of the storm and widespread major damage occurred as a result of these 

extensive high winds.  The wind storm moved from west to east with substantial 

damage reported in the UK, France, Belgium, the Netherlands, Germany, Austria, 

Czech Republic, and Poland.  Approximately 47 deaths and €5 billion in damage were 

attributable to Kyrill, with insured losses nearing €3.5 billion (EQECAT 2007, Hewston 

2007).  The biggest losses occurred in the southern UK and throughout most of 

Germany.  During Kyrill, isolated wind observation stations in Germany, Poland, and the 

Czech Republic reported gusts exceeding 50 m s-1 – comparable to Category 3 

hurricane wind speeds.  Buildings, communication and transport networks, power lines, 

and trees suffered major wind damage, while flooding was a major concern in Ireland 

and the Netherlands (EQECAT 2007, Hewston 2007).  Additionally, high winds over the 

Alps produced föhn (foehn) winds -- high, downslope winds that cause rapid adiabatic 
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warming of air -- across Austria and Italy, resulting in avalanche warnings and road 

tunnel closures. 

The results of cokriging models for maximum sustained wind speeds (Figure 3-7) 

and peak gusts (Figure 3-8) provide additional evidence of the general west-east storm 

track for Kyrill.  Wind speeds approaching 36 m s-1 were estimated by several peak gust 

models in coastal areas of the UK, the Netherlands, and central/eastern Germany.  High 

wind speeds extended across much of central Germany, with all models indicating an 

increase in wind speed as the storm tracked eastward towards the Czech Republic.  

Some differences in wind speed estimates were observed between most surfaces.  For 

example, Figures 3-7d and 3-7g do not show wind speeds over 20 m s-1 in eastern 

Germany, while all other maximum sustained and peak gust models estimated that wind 

speeds increased across central and eastern Germany.  Figures 3-7c and 3-8a show 

the highest maximum sustained and peak gust wind speed estimates in central and 

eastern Germany.  

To determine the optimal model(s) for each wind speed type for Kyrill, multiple 

accuracy metrics were utilized during model implementation.  The accuracy metrics for 

each model and wind type are listed in Table 3-5.  For Kyrill’s maximum sustained wind, 

the original kriging methodology produced the automated anisotropic conditions closest 

to the actual storm track of ~82°.  The cokriging models utilizing elevation, elevation and 

aspect, elevation and land cover, and all three covariates the lowest RMSPE score and 

the RMSE score nearest to 1.0.  Three cokriging models (aspect, elevation and aspect, 

and all three covariates) produced the ME nearest to zero.  The cokriging model utilizing 

only aspect reported the fewest stations (35) with high SE measurements.  For the peak  



 

75 

 
Figure 3-7. Maximum sustained wind surface estimates for wind storm Kyrill (2007) 

produced by the following models: original kriging (A), cokriging with elevation 
(B), cokriging with aspect (C), cokriging with land cover (D), cokriging with 
elevation and aspect (E), cokriging with elevation and land cover (F), 
cokriging with aspect and land cover (G), and cokriging with elevation, aspect, 
and land cover (H). 
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Figure 3-8. Peak gust wind surface estimates for wind storm Kyrill produced by the 

following models: original kriging (A), cokriging with elevation (B), cokriging 
with aspect (C), cokriging with land cover (D), cokriging with elevation and 
aspect (E), cokriging with elevation and land cover (F), cokriging with aspect 
and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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Table 3-5. Wind storm Kyrill (2007) accuracy metrics for each model indicating 
dominant automatic wind speed direction, inter-model error comparison 
(RMSPE), intra-model error comparison (ME and RMSE), and number of high 
error stations. 

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 
2.0) 

Kyrill Original kriging 80.3 4.44 0.016 0.98 39 
Max Cokriging w/elev 68.2 4.39 0.009 0.99 41 
Sustained Cokriging w/asp 72.1 4.40 0.008 0.93 35 

 
Cokriging w/LC 64.0 4.46 0.015 0.97 41 

 
Cokriging w/elev & asp 68.2 4.39 0.009 0.99 41 

 
Cokriging w/elev & LC 68.0 4.39 0.008 0.99 41 

 
Cokriging w/asp & LC 64.2 4.46 0.013 0.97 40 

  
Cokriging w/elev, asp, & 
LC 68.0 4.39 0.008 0.99 41 

Kyrill Original kriging 64.8 7.16 0.003 0.94 37 
Peak Cokriging w/elev 68.2 7.19 0.005 0.99 43 
Gust Cokriging w/asp 71.6 7.19 0.005 0.96 38 

 
Cokriging w/LC 64.2 7.24 0.001 0.96 40 

 
Cokriging w/elev & asp 68.2 7.19 0.005 0.99 43 

 
Cokriging w/elev & LC 68.2 7.20 0.005 0.99 42 

 
Cokriging w/asp & LC 64.5 7.23 0.000 0.96 40 

  
Cokriging w/elev, asp, & 
LC 68.2 7.19 0.005 0.99 43 

 

gust wind models, the cokriging model utilizing aspect produced the automated 

anisotropic conditions closest to the actual storm track of ~82°, while the cokriging 

model utilizing aspect and land cover generated the ME score nearest to zero.  The 

original kriging model produced the lowest RMSPE score and the fewest stations (37) 

reporting a SE measurement exceeding +/-2.0.  Half of the models produced the RMSE 

score nearest to 1.0. 

To examine in more detail the locations where high SE measurements occurred, 

maps were produced for each wind type for wind storm Kyrill (Figure 3-9a-b).  Most 

stations with high SE measurements received such measurements from multiple 

models.  For the maximum sustained wind speed models, high SE measurements were  
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Figure 3-9. Stations reporting high SE measurements for maximum sustained (A) and 

peak gust (B) winds. 
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recorded by stations in mountainous regions of Austria and southern Germany as well 

as coastal and interior areas of central and northern Germany.  Coastal areas of the 

Netherlands, and western and northern UK also contained stations with high SE 

measurements.  Additionally, mountainous areas of southern France and stations on 

the French island of Corse contained high SE measurements.  For the peak gust wind 

speed models, high SE measurements were recorded in near-identical areas in 

mountainous and coastal regions with an additional station in Ireland reporting high SE 

measurements.  Stations coinciding with the optimal model(s) based on SE 

measurements were also highlighted and extended across mountainous and coastal 

areas.   

3.3.2.4 Wind storm Paula 

Paula impacted much of northern Europe in January 2008 as it tracked across 

Norway, Sweden, Finland, and Denmark.  Paula developed from a low pressure system 

in the North Atlantic Ocean and had a long, attached frontal boundary that impacted 

areas of Europe as far south as Austria.  High winds were distributed over relatively 

large areas with some of the highest winds occurring in the Alps away from the center of 

circulation.  The wind storm moved from west to east with major damage occurring in 

Scandinavia, Germany, Poland, and Austria.  Only one death was reported, but ~€300 

million in damage were attributable to Paula in Austria (Lloyds 2008, VRS 2008).  

During Paula, several wind observation stations in Norway, Germany, Poland, and 

Austria reported gusts exceeding 40 m s-1 – comparable to Category 2 hurricane wind 

speeds.  Building roofs, communication and transport networks, power lines, and trees 

were damaged by winds (VRS 2008).   
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While Paula impacted a large area, Austria was particularly hard-hit despite higher 

winds not being identified in the country by any models.  Results of cokriging models for 

maximum sustained wind speeds (Figure 3-10) and peak gusts (Figure 3-11) provide 

additional evidence of the general west-east storm track for Paula.  Wind speeds 

approaching 36 m s-1 were estimated by multiple peak gust models in coastal western 

areas of the Norway.  Peak gusts exceeding 20 m s-1 extended across Denmark, 

northeastern Germany, and some parts of western Poland.  Some differences in wind 

speed estimates were observed between modeled surfaces.  For example, Figures 3-

10a, 3-10c, 3-11a, 3-11b, and 3-11c showed a pocket of higher winds around 

Copenhagen and another pocket in southwestern Poland, while other models estimated 

a gradual deterioration of wind speeds from west to east.  Localized higher winds in 

Austria may have been smoothed by the global interpolation process but could 

potentially be identified with regional wind speed models. 

To determine the optimal model(s) for each wind speed type for Paula, multiple 

accuracy metrics were utilized during model implementation.  Accuracy metrics for each 

model and wind type are listed in Table 3-6.  For Paula’s maximum sustained modeled 

wind, the original kriging methodology produced the automated anisotropic conditions 

closest to the actual storm track of ~100°.  Four models produced the lowest RMSPE 

score of 4.49, while the ME score nearest to zero was produced by the original kriging 

model and the cokriging model utilizing aspect.  The RMSE score nearest to 1.0 was 

produced by four cokriging models utilizing various combinations of all three covariates. 

Two models (cokriging with land cover and cokriging with aspect and land cover) 

reported the fewest number of stations (17) with high SE measurements after  
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Figure 3-10. Maximum sustained wind surface estimates for wind storm Paula (2008) 

produced by the following models: original kriging (A), cokriging with elevation 
(B), cokriging with aspect (C), cokriging with land cover (D), cokriging with 
elevation and aspect (E), cokriging with elevation and land cover (F), 
cokriging with aspect and land cover (G), and cokriging with elevation, aspect, 
and land cover (H). 



 

82 

 
Figure 3-11. Peak gust wind surface estimates for wind storm Paula produced by the 

following models: original kriging (A), cokriging with elevation (B), cokriging 
with aspect (C), cokriging with land cover (D), cokriging with elevation and 
aspect (E), cokriging with elevation and land cover (F), cokriging with aspect 
and land cover (G), and cokriging with elevation, aspect, and land cover (H). 
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Table 3-6. Wind storm Paula (2008) accuracy metrics for each model indicating 
dominant automatic wind speed direction, inter-model error comparison 
(RMSPE), intra-model error comparison (ME and RMSE), and number of high 
error stations.  

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 
2.0) 

Paula Original kriging 86.3 4.49 0.002 1.06 39 
Max Cokriging w/elev 68.0 4.49 0.012 1.00 33 
Sustained Cokriging w/asp 52.7 4.50 0.002 1.03 33 

 
Cokriging w/LC 64.0 4.58 0.020 0.89 17 

 
Cokriging w/elev & asp 68.0 4.49 0.012 1.00 33 

 
Cokriging w/elev & LC 68.0 4.51 0.014 1.00 33 

 
Cokriging w/asp & LC 64.0 4.58 0.020 0.89 17 

  
Cokriging w/elev, asp, & 
LC 68.0 4.49 0.012 1.00 33 

Paula Original kriging 86.1 7.09 0.002 1.07 38 
Peak Cokriging w/elev 69.1 7.05 0.012 1.00 40 
Gust Cokriging w/asp 44.8 7.15 0.006 1.00 30 

 
Cokriging w/LC 64.0 7.25 0.019 0.90 18 

 
Cokriging w/elev & asp 68.0 7.08 0.011 1.01 30 

 
Cokriging w/elev & LC 68.0 7.12 0.013 1.02 32 

 
Cokriging w/asp & LC 63.8 7.26 0.019 0.90 18 

  
Cokriging w/elev, asp, & 
LC 68.0 7.12 0.013 1.02 32 

 

cross-validation.  For the peak gust wind models, the original kriging methodology again 

produced the automated anisotropic conditions closest to the actual storm track of 

~100°.  Two models (cokriging with elevation and cokriging with aspect) produced the 

RMSE score nearest to 1.0, and two different models (cokriging with land cover and 

cokriging with aspect and land cover) reported the fewest number of stations (18) with 

SE exceeding +/-2.0.  The model utilizing elevation as a covariate generated the lowest 

RMSPE score, while the ME nearest to zero was produced by the original kriging 

model.  

To examine in more detail the locations where high SE measurements occurred, 

maps were produced for each wind type for Paula (Figure 3-12a-b).  Most stations with  
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Figure 3-12. Stations reporting high SE measurements for maximum sustained (A) and 

peak gust (B) winds. 
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high SE measurements received such measurements from multiple models.  For the 

maximum sustained wind speed models, high SE measurements were recorded by 

stations in the Alps of Austria and southern Germany, as well as coastal and interior 

stations in the southern half of Norway.  Other stations receiving high SE 

measurements were scattered in coastal Sweden, Germany, and Poland as well as the 

rugged border between Germany and the Czech Republic.  For the peak gust wind 

speed models, high SE measurements were recorded in near-identical areas in 

mountainous and coastal regions with a few exceptions.  Stations coinciding with the 

optimal model(s) based on SE measurements were also highlighted and occurred in 

concomitant geographical areas. 

3.3.2.5 Wind storm Emma 

Emma moved across northern and central Europe between 29 February and 1 

March 2008, and predominantly impacted the Netherlands, Belgium, Switzerland, 

Germany, Austria, Czech Republic, and Poland.  Emma developed from a low pressure 

system in the North Atlantic Ocean and joined a separate frontal system as it tracked 

into northern Europe, making it a very complex storm with disproportionately high 

sustained wind speeds and widely varying wind directions.  Variance in wind directions 

created confusion during modeling when anisotropy was considered.  The wind storm 

moved from west to east across northern Europe with the frontal boundary extending 

into southern Europe.  Approximately 15 deaths and €1.3 billion in insured losses were 

attributable to Emma with almost €1 billion of damage in Germany and ~€200 million of 

damage in Austria alone (Guy Carpenter 2008).  The greatest losses occurred in the 

Bavaria region of southeastern Germany.  During Emma, several wind observation 
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stations in Bavaria and Austria around Salzburg and Vienna reported gusts exceeding 

35 m s-1 – comparable to Category 1 hurricane wind speeds.  Building roofs, 

communication and transport networks, power lines, automobiles, and trees were 

particularly hard-hit by  winds, while flooding was a major concern in many eastern 

European countries (Guy Carpenter 2008).   

Results of cokriging models for maximum sustained wind speeds (Figure 3-13) 

and peak gusts (Figure 3-14) provide additional evidence of the general west-east storm 

track for Emma, while also alluding to the northwest-southeast wind speeds associated 

with the initial frontal system.  Wind speeds approaching 33 m s-1 were estimated by 

several peak gust models near the Germany-Denmark border.  Only one peak gust 

model (Figure 3-14e) indicated similar wind speeds in the Bavaria region of Germany 

near Austria as well as small areas of the Czech Republic.  The highest sustained wind 

speeds and peak gusts occurred in coastal areas of the Netherlands and Germany as 

well as interior southern areas of Germany, with a slight decrease in wind speeds 

evidenced in the northern plains of Germany.  Some differences in wind speed 

estimates were observed between most surfaces.  For example, Figures 3-13e, 3-13f, 

and 3-13g showed very spotty and localized excessive winds that appeared to be 

influenced by topography since each of those models used elevation and/or aspect as 

covariates.  The other, more smoothed surfaces may be more indicative of wind storm 

Emma's general wind speeds and patterns based on accuracy analysis – highlighting 

the complexity of surface winds caused by the unique meteorology associated with 

Emma. 
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Figure 3-13. Maximum sustained wind surface estimates for wind storm Emma 

produced by the following models: original kriging (A), cokriging with elevation 
(B), cokriging with aspect (C), cokriging with land cover (D), cokriging with 
elevation and aspect (E), cokriging with elevation and land cover (F), 
cokriging with aspect and land cover (G), and cokriging with elevation, aspect, 
and land cover (H). 
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Figure 3-14. Peak gust wind surface estimates for wind storm Emma (2008) produced 

by the following models: original kriging (A), cokriging with elevation (B), 
cokriging with aspect (C), cokriging with land cover (D), cokriging with 
elevation and aspect (E), cokriging with elevation and land cover (F), 
cokriging with aspect and land cover (G), and cokriging with elevation, aspect, 
and land cover (H). 



 

89 

Table 3-7. Wind storm Emma (2008) accuracy metrics for each model indicating 
dominant automatic wind speed direction, inter-model error comparison 
(RMSPE), intra-model error comparison (ME and RMSE), and number of high 
error stations. 

Storm Method Anisotropy RMSPE ME RMSE 
SE (> +/- 
2.0) 

Emma Original kriging 58.4 5.05 0.002 0.96 20 
Max Cokriging w/elev 159.6 5.02 0.001 0.92 16 
Sustained Cokriging w/asp 1.8 5.16 -0.015 0.82 13 

 
Cokriging w/LC 71.0 5.16 0.000 0.81 12 

 
Cokriging w/elev & asp 17.6 10.54 0.130 1.97 91 

 
Cokriging w/elev & LC 0.0 6.11 0.004 0.94 24 

 
Cokriging w/asp & LC 3.9 6.26 0.011 1.02 27 

  
Cokriging w/elev, asp, & 
LC 68.0 5.02 0.005 0.91 16 

Emma Original kriging 42.7 8.25 0.005 0.96 20 
Peak Cokriging w/elev 159.8 8.21 0.000 0.91 18 
Gust Cokriging w/asp 43.8 8.25 0.006 0.95 20 

 
Cokriging w/LC 154.3 8.21 0.002 0.94 21 

 
Cokriging w/elev & asp 16.5 15.99 0.111 1.81 84 

 
Cokriging w/elev & LC 68.0 8.21 0.003 0.89 16 

 
Cokriging w/asp & LC 154.3 8.21 0.029 0.94 21 

  
Cokriging w/elev, asp, & 
LC 68.0 8.21 0.003 0.89 16 

 

To determine the optimal model(s) for each wind speed type for Emma, multiple 

accuracy metrics were utilized during model implementation.  Accuracy metrics for each 

model and wind type are listed in Table 3-7.  For Emma’s maximum sustained wind, the 

cokriging methodology utilizing only land cover produced the automated anisotropic 

conditions closest to the actual storm track of ~113°, but automated anisotropy differed 

greatly between models.  The model utilizing the covariate elevation as well as the 

model utilizing all three covariates produced the lowest RMSPE score, while the ME 

nearest to zero and fewest stations with high SE measurements (12) was produced by 

the model utilizing only land cover. The combination of aspect and land cover produced 

the RMSE score nearest to 1.0.  For the peak gust wind models, the model utilizing only 
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land cover and the model utilizing both aspect and land cover produced the automated 

anisotropic conditions closest to the actual storm track of ~113°.  Multiple models 

produced the lowest RMSPE score, including the model utilizing only land cover as a 

covariate.  Two models (elevation and land cover, all three covariates) were tied for the 

fewest stations (16) reporting a SE measurement of greater than +/-2.0.  The model 

utilizing elevation as a covariate generated the ME nearest to zero, while the RMSE 

nearest to 1.0 was produced by two models: the original kriging model and the model 

incorporating aspect and land cover.  

To examine in more detail the locations where high SE measurements occurred, 

maps were produced for each wind type for wind storm Emma (Figure 3-15a-b).  Most 

stations with high SE measurements received such measurements from multiple 

models.  The major exceptions were the models that incorporated elevation and aspect 

collectively as covariates.  These models reported a large number of stations with high 

SE measurements located predominantly in the Alps of Switzerland and Austria.  For 

the maximum sustained wind speed models, most high SE measurements were 

recorded by stations in mountainous regions of Switzerland, Austria, and southern 

Germany as well as a rugged area in central Germany and mountainous border 

between the Czech Republic and Germany.  Stations in coastal areas reported very few 

high SE measurements; only one station on the Baltic Sea coast of Poland reported 

multiple high SE measurements.  For the peak gust wind speed models, high SE 

measurements were recorded in near-identical areas in mountainous and rugged 

regions as well as the one coastal station in Poland.  Stations coinciding with the 

optimal model(s) based on SE measurements were also highlighted and, while 
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improved compared to other models, continued to indicate a complex and difficult-to-

model environment in mountainous areas. 

 
Figure 3-15. Stations reporting high SE measurements for maximum sustained (A) and 

peak gust (B) winds. 
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3.4 Discussion 

3.4.1 Optimizing surface wind estimates through cokriging 

 Seven different cokriging models were produced using singular and assimilated 

combinations of each covariate with varying results of modification compared to results 

from the original kriging methodology.  The original kriging model was also produced for 

each of the five storms to allow for a side-by-side visual and statistical comparison 

through the use of multiple accuracy metrics.  Overall, 80 different modeled surface 

estimates were created – 16 for each of the five wind storms – and standard error maps 

were also created for each wind type.  The maps showed that most models produced 

logical surface estimates based on the known track, wind speed, and wind direction 

associated with each storm.  All wind storms followed a general west-east track across 

either central or northern Europe with the UK, France, the Netherlands, Belgium, and 

Germany being impacted the most by winds and infrastructure damage.  The strongest 

winds associated with each storm occurred predominantly in coastal and mountainous 

areas with a common tendency for winds to subside slightly as they moved inland, then 

to increase again when approaching the mountainous regions.  Higher levels of 

uncertainty (or error) were associated with both the coastal and mountainous regions.  

Wind speeds are difficult to model in coastal regions for two reasons: 1) the land-ocean 

interface creates turbulence and deflection when the surface that wind moves across 

changes (Wieringa 1973, 1986) and 2) wind observation stations rarely exist over water, 

thus providing an abrupt departure in station density (MacEachren and Davidson 1987, 

Wieringa 1997).  Wind speeds are difficult to model in mountainous regions for two 

reasons as well: 1) wind is deflected and funneled in multiple directions by varying 

topography (Wieringa 1973, 1986) and 2) as winds move upslope and downslope, wind 
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speed also changes resulting in locally high/low winds (Bowen and Lindley 1977, 

Hertenstein and Kuettner 2005).  These local wind patterns are difficult to estimate 

using a global model.   

Figures 3-13e and 3-13g (wind storm Emma) provide an example of global wind 

surfaces that were too specific in assigning local wind patterns and created a surface 

where the general wind patterns were difficult to visualize.  These same models also 

produced higher station error relative to the original kriging surface.  Because Emma 

was a complex storm that coincided with a separate frontal system moving across 

Europe, some model uncertainly may be expected.  Wind direction was also very 

difficult to model for Emma because of the contrasting atmospheric systems.  Excluding 

the models from Figures 3-13e and 3-13g, the use of covariates most often improves 

upon the original kriging surface by reducing station error.     

Covariates were not significantly spatially autocorrelated, but wind speed was 

autocorrelated and the use of anisotropy during modeling helped in identifying overall 

trends in wind direction based on high/low wind speeds.  Most modeled surfaces 

illustrated the general west-east or northwest-southeast movement of each wind storm, 

but the azimuth directions identified by the automatic anisotropy process sometimes 

varied widely. For example, azimuth direction varied by as much as ~35° for the models 

produced for Emma.  The greatest disparity was observed between the original kriging 

surfaces and the model that used only aspect as a covariate.  This result may indicate 

that the addition of aspect resulted in a more nuanced wind surface that possibly 

contained multiple wind directions at specific locations where one side of a mountain 

may have deflected the wind in a way that was different from the general wind pattern.  
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Topography can deflect wind and create changes in turbulence in the area immediately 

behind a mountain or mountain range (Bowen and Lindley 1977). 

Accuracy metrics were highly varied, indicating that one singular covariate does 

not always improve wind surface estimates for wind storms over large, heterogeneous 

terrain.  However, the major index of standard error (SE) reduction showed 

improvement over the original kriging surface in eight out of the ten model sets, with 

only one set (peak gust models for Kyrill) indicating that original kriging was optimal.  

Several peak gust models for Lothar did not reduce the SE, but also did not increase 

the SE.  The original kriging method also reported the lowest SE measurement in the 

set of peak gust models for Lothar, but five other models reported the identical stations 

with high SE (16) as well.  The SE for Paula was reduced by more than half (Table 3-6) 

and provides an example of how a singular covariate (land cover in this case) can 

improve surface estimates markedly.  Additionally, a change detection analysis was 

performed for Paula to better understand and identify the differences between the 

original kriging model and the optimal cokriging model that used land cover (Figure 3-

16).  The change detection map indicates that the border areas of Poland, Germany, 

and the Czech Republic experienced a large disparity in predicted wind speeds 

between each model.  Predicted wind speeds were also different in areas of central 

Norway and Sweden as well as the northern coast of Norway.  Overall, the model 

output of the optimal version was greatly improved compared to the original kriging 

model, as has been found in previous research (Luo et al. 2008, Akkala et al. 2010, 

Zlatev et al. 2010, Luo et al. 2011).   
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Figure 3-16. Change detection for wind storm Paula, showing original kriging model (A), 

optimal cokriging model using land cover (B), and the difference between 
each model (C). 

 

 Overall, models utilizing land cover (singularly or in conjunction with elevation 

and/or aspect) tended to produce optimal wind speed surface estimates, but this was 

not always true.  The optimal maximum sustained wind speed model for Kyrill was 

produced using only aspect as a covariate, while the optimal peak gust wind speed 

model for Jeanette was produced using both elevation and aspect collectively.  

Additionally, models utilizing land cover were much more computational intensive, 

typically requiring several hours (and occasionally days, e.g., Jeanette), while models 

utilizing elevation and/or aspect were completed in less than one hour.  This was most 

likely due to the complex nature of actual land cover on the surface as well as the 

categorical nature of the dataset within the geostatistical modeling environment.  Each 

step of the process was conducted manually, resulting in a more complicated and 

extended modeling process that would have been improved through automation.  

Regardless of modeling complexity and intensiveness, the general improvement shown 
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by models utilizing land cover is promising for future modeling efforts and covariate 

creation.  While land cover proved to be a useful covariate, there is some uncertainty 

about why it was often a stronger covariate than elevation and aspect since WMO 

standards indicate that data from all stations are adjusted to reflect wind speed in open 

terrain.  One explanation of this peculiarity may be that even when wind speed is 

corrected to open terrain, the strong mechanical turbulence produced by the 

surrounding rugged terrain or land cover features still has an impact on the wind speed, 

thus resulting in a correlation between land cover types and wind speed.  While use of 

land cover as a covariate provides an opportunity for model improvement, the observed 

relationship between land cover and wind speed may also suggest that WMO 

adjustments to open terrain may not fully exclude landscape influences. 

3.4.2 Overall impact of improved wind surface estimates 

 Improved wind surface estimates created through cokriging build on previous 

research that only utilized one covariate (elevation) to model wind speeds.  The addition 

of aspect and land cover improved surface estimates and may be used for other wind- 

or even non wind-related research.  Use of other covariates within cokriging may help to 

address other problems, ranging from hazards to energy.  Within wind storm research, 

models and extreme-event climatologies of wind simulation and hazard/risk assessment 

that are widely used in the insurance/reinsurance industry can be improved through the 

incorporation of our research results.  This study may also help to inform local cost-

benefit studies and subsequently save lives and resources for local government, private 

industry, and consumers.  Damage estimates may also be refined based on the 

resulting wind surface estimates, thus improving construction standards and adapting 

insurance needs.  The known impacts of wind storms on vegetation (e.g., trees; Kirk 
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and Franklin 1992) and civil infrastructure (Reed 2008) are severe, and improved spatial 

interpolations for wind storm-induced wind speeds will be fundamental to evaluating 

damages as well as potential changes needed for forest management and building 

codes/regulations.  Identification of high wind zones will also help to inform local 

vulnerability assessments that may be included in future hazard mitigation plans.  The 

results may also improve understanding of common wind storm features (e.g., 

directions, wind movements/patterns, surface interactions, etc.) that have long-term, but 

not necessarily immediate, impacts on sectors such as transportation, agriculture, and 

recreation.   

3.5 Future Research 

Local cokriging surfaces (e.g., country- and state-level) will be the focus of future 

research and these surfaces will be created to examine more specific wind speeds and 

directions that are often smoothed when performing regional cokriging (e.g., all of 

Europe).  This smoothing was evident in each of ten model sets because the general 

wind direction and speed were mapped correctly, but locally-strong winds were more 

difficult to discern.  Damage data (e.g., trees, infrastructure) may also be joined and 

overlaid spatially with the optimal local wind surface estimates to establish a damage-

wind ratio.  Proximity analysis and exposure-testing using aspect and slope may further 

aid in understanding high damage locations associated with wind storms.  Excessive 

wind speeds will likely recur in similar areas, thus there is also a need to identify 

repetitive windy and susceptible environments.  Using the ideal cokriging parameters 

and covariate combinations identified for Europe in this study, the transferability of the 

methods may also be tested for various wind storms in the Pacific Northwest region of 

North America where similar wind storms (called winter storms locally) occur.  
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Successful transferability of cokriging methods would imply that the techniques are 

responsive to areas with differing terrains and land covers and that the methods are 

adaptable.  

A major area of future research involves a complete remaking of the covariate 

dataset.  While the cokriging interpolation method improved surface wind estimates, an 

additional procedure could be tested to reduce the inherent concern of autocorrelation 

between covariates.  Just as principal components analysis (PCA) is used to combine 

strongly correlated variables into various components, a data reduction technique may 

be applied to create a “ruggedness” variable.  Issues of autocorrelation could potentially 

be eliminated through the development of one variable that incorporates both elevation 

and land cover to represent terrain ruggedness.  An anisotropic cokriging model will 

likely improve prediction of the contrasting effects on wind speeds caused by rough-to-

smooth vs. smooth-to-rough terrain transition areas where ruggedness may change 

abruptly.  Application of only one covariate may also help to reduce the error associated 

with the use of multiple covariates.  
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CHAPTER 4. THE INFLUENCE OF SCALE ON KRIGING AND COKRIGING: A CASE 
STUDY OF AUSTRIA  

4.1 Introduction 

Issues of scale are integral to geographic research and are constantly debated 

when exploring various types of spatial data and means of mapping such data 

(Meentemeyer 1989, Lam and Quattrochi 1992, Atkinson and Tate 2000, Wu 2004, 

Sayre 2005).  When climatic data (e.g., temperature, precipitation, wind speed, snowfall, 

etc.) are mapped and/or modeled, the choice between small-, medium-, and large-scale 

visualization is difficult because each scale level has advantages and disadvantages 

(Meentemeyer 1989, Atkinson and Tate 2000).  Within this discussion, scale can be 

defined as a ratio between the size of mapped objects versus their actual size; small-

scale refers to viewing a larger geographic area (e.g., an entire continent), while large-

scale refers to viewing a smaller geographic area (e.g., a single country or state).   

Spatial variation and patterns of spatial dependence and error are not easily identifiable 

at certain scales (Atkinson and Tate 2000).  For example, a small-scale model may 

identify general trends and patterns across a large area very well, but not be capable of 

identifying more local disparities and deviations.   

These complications lead to what is known as the “scale problem” in geography, in 

which conclusions are transferred erroneously across scales and hierarchies 

(Meentemeyer 1989).  The related concept of “ecological fallacy” was first 

acknowledged by Robinson (1950) who identified a common theoretical problem with 

statistical analysis.  Many researchers were treating ecological (or group) correlations 

the same as individual correlations, thus transferring a relationship between scales 

without any statistical justification.  For example, the assumption that demographic 
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information at the state level is identical at any particular county in the state is an 

ecological fallacy (Openshaw 1984).  It is acceptable, however, to perform a reverse 

analysis that aggregates all of the county level data in a state and collectively makes an 

assumption at the state level (Openshaw 1984).   

The modified areal unit problem (MAUP) also describes issues with spatial 

aggregation (Openshaw and Taylor 1979, Fotheringham and Wong 1991, Dark and 

Bram 2007).  MAUP contains two types of spatial data issues: scale problems and 

zoning problems (Jelinski and Wu 1996).  MAUP scale problems are the same as those 

discussed earlier, but zoning problems occur when the attribute(s) of two spatial entities 

is/are considered identical even though the sub-areal attribute(s) is/are distributed 

differently within the two entities (Jelinski and Wu 1996).  Within the context of spatial 

modeling, two separate models of adjacent areas that overlap in some sections could 

be combined, but the overlapping areas have slightly different raster cell locations and 

values resulting in an altered surface (Dark and Bram 2007).   

Numerous kriging and cokriging studies (e.g., Gilbert and Simpson 1985, Walter et 

al. 2001, Cattle et al. 2002, Huang et al. 2006, Tolosana-Delgado and Pawlowsky-

Glahn 2007) emphasize the importance of scale when considering how to process and 

analyze spatial data that may produce widely different results at different scales of 

analysis.  Kriging and cokriging are geostatistical techniques that model stochastically 

the spatial dependency and correlation across a surface.  These techniques can 

subsequently allow for the re-scaling of data via interpolation (Atkinson and Tate 2000).  

Scale becomes crucial in two of the stages of kriging/cokriging for identifying the 
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resulting surface: at the beginning when setting the geographic extent of observation 

stations and during the semivariogram modeling process.   

The validity of kriging and cokriging methods is often evaluated through cross-

validation, in which one spatial data point (e.g., weather station) is removed from the 

model while the variable of interest (e.g., wind speed) at the removed location is 

predicted based on the wind speed at surrounding stations.  The predicted wind speed 

is compared to the observed wind speed and a standard error measurement is 

produced.  At varying scales, this error measurement can fluctuate greatly because 

smoothing algorithms are scale-dependent, resulting in “smoother” continent-scale 

surfaces when compared to country-scale surfaces (Clark 1985).  The scale-

dependency of kriging/cokriging provides an avenue to explore how local wind surface 

trends compare and contrast to smaller-scale (i.e., larger-area) trends.  Furthermore, 

areas where wind speeds vary rapidly across space (e.g., mountainous areas) are ideal 

for local versus global kriging/cokriging model comparison as opposed to more 

homogenous landscapes (e.g., plains/low hills).  Wind speeds in homogenous areas 

generally remain constant across large expanses and there may be fewer scale-

dependent changes in these areas (Sliz-Szkliniarz and Vogt 2011). 

4.1.1 Study area and objectives 

Maximum sustained and peak wind speeds for four wind storms that impacted the 

rugged and topographically diverse country of Austria were modeled in this study.  The 

wind storms were Jeanette (2002), Kyrill (2007), Paula (2008), and Emma (2008).  Wind 

speeds from each storm varied, but models from Study One illustrated that the wind 

speeds of each storm were low and smooth across Austria with a slight north (higher 

winds) to south (lower winds) gradient (Figure 4-1).  Study Two revealed that a plurality  
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Figure 4-1. A closer examination of maximum sustained and peak gust wind surfaces 

for each storm impacting Austria derived from optimal methods found in Study 
Two. 

 



 

103 

of high error (> +/- 2.0 standard deviations) stations for each storm were located in 

mountainous areas of Austria, indicating that the wind speed may vary more, 

particularly in heterogeneous terrain, than the regional-scale models demonstrated.  

Additionally, wind storm Paula was examined individually because of the excessive tree 

damage it caused in south-central Austria.  The research questions for this study are as 

follows:  

1) Are local kriging/cokriging wind surface estimates more accurate than regional 

estimates? 

2) To what extent can tree damage be utilized as a proxy for validating 

interpolated wind surfaces? 

 

4.2 Data and Methods 

4.2.1 Wind observation and covariate data 

Maximum sustained and peak gust data for Austria were extracted from the 

original, larger datasets for each of the four storms.  There were 100 stations reporting 

data for wind storm Jeanette, 94 stations for Kyrill, and 92 stations for Paula and Emma.  

Jeanette maximum sustained wind models from Study Two revealed nine high-error 

(i.e., errors exceeding 2.0 standard deviations) stations in Austria for at least one of the 

eight models, while the model using peak gust wind identified seven high-error stations 

for the country.  Kyrill maximum sustained wind and peak gust wind models revealed 14 

and 10 high-error stations, respectively. Paula maximum sustained and peak gust wind 

models each revealed two high-error stations.  And Emma maximum sustained wind 

models revealed 34 high-error stations, while peak gust wind models identified 30 high-

error stations.  Most of the high-error stations for Emma occurred in only one model 
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(using elevation and aspect as covariates); if this model were excluded, only three 

stations are characterized as “high-error” for maximum sustained winds and four for 

peak gust.  Increased scrutiny was placed on station locations that consistently received 

high error measurements from both Study Two and the present study.  Specifically, 

Google Earth® aerial imagery was utilized to examine the physical setting of specific 

stations and identify commonalities and potential reasons for poor prediction. 

Additionally, covariate data were utilized for specific models and included 

elevation, aspect, and land cover.  Similar to Study Two, elevation data were collected 

from Version 4 of the National Aeronautics and Space Administration (NASA) Shuttle 

Radar Topographic Mission (NASA-SRTM) 90-m digital elevation dataset through the 

United Nations Food and Agricultural Organization’s Consultative Group on 

International Agricultural Research (CGIAR) Consortium for Spatial Information 

(CGIAR-CSI).  The land cover covariate was obtained from the European Space 

Agency (ESA) GlobCover Project Version 2 2008 database at a resolution of 300 m 

(GlobCover 2008).  The elevation and land cover datasets were clipped to Austria and 

resampled to 300 m for use in the present study.  The GlobCover land cover dataset 

contains 22 different land cover classification types ranging from various tree types, 

shrubs, and grasslands to bare land, artificial surfaces, and open water.  The covariate 

of aspect was derived from the 300-m resampled elevation dataset utilizing tools 

available in the Spatial Analyst toolbox within ArcMap 10 (ESRI 2010), in preparation for 

further analysis in this research. 

4.2.2 Wind storm Paula and damage data 

Winds from Paula were particularly damaging in certain areas of Austria and 

warranted closer examination utilizing local and more specific models as well as 



 

105 

regional damage estimates.  Wind storm-induced tree/infrastructure damage data were 

obtained from the Federal Ministry of Agriculture, Forestry, Environment, and Water 

Management (FMAFEWM) in Austria (http://www.lebensministerium.at/).  These data 

include maps and imagery showing major forest damage in the Austrian states of 

Kärnten (i.e., Carinthia) and Steiermark (i.e., Styria) as well as point and polygon 

shapefiles that contain detailed information about impacted areas in hectares (ha) and 

in forestry management units (fm).  Additional wind speed surfaces were obtained from 

the Zentralanstalt fur Meteorologie und Geodynamik (ZAMG) 

(http://www.zamg.ac.at/cms/de/aktuell), which utilized a different spatial weighting 

method for producing wind storm wind surface estimates.   

4.2.3 Wind surface estimates in Austria 

Local kriging and cokriging surfaces (i.e., country-level) were created utilizing wind 

observation data within Austria.  Wind observation data were examined using 

exploratory spatial data analysis methods including histograms, normality (normal QQ 

plot, e.g., Wilk and Gnanadesikan 1968), trend analysis, stationarity and spatial 

variability (Vornoi map, e.g., Ogniewicz and Ilg 1992), and spatial dependencies 

(semivariogram/covariance cloud, e.g., Gribov et al. 2000).  Collectively, histograms, 

normal QQ plots, and trend analysis were used to determine whether data 

transformation was necessary.  Voronoi maps created Thiessen polygons that visually 

examined spatial variability and stationarity of each station.  The polygons identified the 

wind observation station that was nearest to each location in Austria; this map aided in 

identifying potentially large data gaps in Austria based on the size of the polygons.  

Polygon size increases when a station is the nearest station to a large geographical 

area and decreases when a station is nearest to the collection of points in a smaller 
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area.  Semivariogram clouds were used to examine local characteristics of spatial 

autocorrelation within a dataset and find local outliers.   

During the modeling process, the ordinary kriging/cokriging and prediction output 

types were selected and no transformations were necessary.  Semivariogram modeling 

was optimized through Geostatistical Analysis in ArcGIS 10.1 and nugget size was 

enabled with a 100% measurement error.  A spherical model type was selected with 

range and sill calculated based on the lag size with 12 lags.  Because winds are not 

necessarily distributed equally, especially in rugged terrain, anisotropic analysis was 

selected to account for a directional correlation in wind speeds.  To ensure an objective 

comparison between Studies One, Two, and Three, kriging/cokriging settings were 

optimized in Study One, then duplicated in the subsequent studies.  During the surface 

creation process, a standard “search neighborhood” type was selected and the 

“maximum neighbors” was set to 5 and the “minimum neighbors” was set to 2.  

Neighborhood search numbers establish how many stations to include in a search 

radius that is centered on each station in a repeated procedure of the surface 

smoothing process.  The inclusion of more neighbors creates a smoother surface, while 

the opposite is true of the reduction of neighbors.  Eight sectors were selected during 

the neighborhood search process, meaning that there were between 2 and 5 neighbors 

(stations) included for every 45° section extending outward from each point in an 

ellipsoid shape based on anisotropic semivariogram angles.   

This combination of settings results in a range of between 16 and 40 stations 

being used for post-model surface smoothing.  Prediction errors and individual station 

errors were produced using a method of n-1 cross validation, where each station was 
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removed from the model in an iterative process to examine the differences between 

measured and predicted values.  The variables that were selected for inclusion in the 

cokriging models varied greatly, with the model for Jeanette incorporating land cover for 

maximum sustained winds and elevation and aspect for peak gust winds, that for Kyrill 

including aspect for both wind types, Paula’s model incorporating land cover for both 

wind types, and that for Emma using land cover for maximum sustained winds and land 

cover and elevation for peak gust winds.  Wind surface accuracy was examined through 

use of the root mean square prediction error (RMSPE), mean error (ME), root mean 

square error (RMSE), and station standard error (SE) statistics.  Lower RMSPE 

measurements, ME close to zero, RMSE close to one, and station SE less than +/- 2.0 

were preferred.  Automatic anisotropy was also utilized to test predicted surface trends 

versus actual surface trends. 

4.3 Results 

4.3.1 Localized wind surface estimates in Austria for each storm 

4.3.1.1 Wind storm Jeanette 

Based on results from Study Two, the original kriging algorithm was used to 

produce a local maximum sustained (4-2A) and peak gust (4-2B) wind surface estimate 

for Austria, while the cokriging method with land cover as a covariate (maximum 

sustained) and elevation and aspect as a covariate (peak gust) was utilized to produce 

the same surface estimates (4-2C and 4-2D) for comparison.  The wind surface 

estimates for Jeanette were very blocky and unlike other local kriging/cokriging models, 

indicating poor model fit at the local scale.  In each of the four models, the strongest 

winds occurred in the eastern and western states around Wien (i.e.: Vienna) and 

Innsbruck.  Much of the south-central region of Austria consisting of Kärnten and 
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Steiermark experienced lighter winds.  Table 4-1 shows the accuracy metrics for each 

map.  The kriging and cokriging methods produced similar results, with the cokriging 

peak gust model being a slight outlier.  The cokriging peak gust model resulted in fewer 

high-error stations, but a less optimal RMSE score.   

 
Figure 4-2. Original kriging models for maximum sustained (A) and peak gust (B) wind 

speeds and cokriging models for maximum sustained (C) and peak gust (D) 
wind speeds for Jeanette (2002). 

 
Table 4-1. Jeanette (2002) accuracy metrics for local kriging/cokriging models in Austria 

indicating dominant automatic wind speed direction, inter-model error 
comparison (RMSPE), intra-model error comparison (ME and RMSE), and 
number of high error stations. 

Wind Type Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 

Max 
Sustained 

Original Kriging 90.0 7.97 -0.03 0.99 4 

Cokriging w/LC 90.0 7.98 -0.02 0.99 4 

Peak Gust 
Original Kriging 90.0 12.91 -0.02 0.98 4 

Cokriging w/elev & asp 81.2 12.92 -0.01 0.83 2 

 

A B 

C D 
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4.3.1.2 Wind storm Kyrill 

Based on results from Study Two, the original kriging algorithm was used to 

produce a local maximum sustained (4-3A) and peak gust (4-3B) wind surface estimate 

for Austria, while the cokriging method with aspect as the covariate was utilized to 

produce the same surface estimates (4-3C and 4-3D) for comparison.  All four surface 

estimates identified a large area of strong wind in northern and western Austria in an 

area that coincides with the northern slopes of the Alps.  In each of the four models, a 

small pocket of intense wind also occurred in southern Kärnten, west of the town of 

Villach.  The exact location of the high wind zone centers on the peak of the Dobratsch 

 

Figure 4-3. Original kriging models for maximum sustained (A) and peak gust (B) wind 
speeds and cokriging models for maximum sustained (C) and peak gust (D) 
wind speeds for Kyrill (2007). 

 

A B 

C D 
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Mountain, which at ~2,170 meters is one of the highest mountains in the region.  There 

were other pockets of high and low wind scattered throughout northeastern Austria, with 

predominantly lighter winds in southern and southeastern Austria.  Table 4-2 shows the 

accuracy metrics for each map.  The kriging and cokriging methods produced similar 

results for both the maximum sustained and peak gust wind speed models, with the 

cokriging model increasing the number of high-error stations for maximum sustained 

wind compared to its kriging counterpart.   

Table 4-2. Kyrill (2007) accuracy metrics for local kriging/cokriging models in Austria 
indicating dominant automatic wind speed direction, inter-model error 
comparison (RMSPE), intra-model error comparison (ME and RMSE), and 
number of high error stations. 

Wind Type Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 

Max Sustained  
Original Kriging 72.4 6.62 0.02 0.97 5 

Cokriging w/asp 72.0 6.81 0.01 1.04 7 

Peak Gust 
Original Kriging 71.9 10.54 0.02 0.97 5 

Cokriging w/asp 75.0 10.54 0.01 0.99 5 

4.3.1.3 Wind storm Paula 

 Again, based on results from Study Two, the original kriging algorithm was used 

to produce a local maximum sustained (4-4A) and peak gust (4-4B) wind surface 

estimate for Austria, while the cokriging method with land cover as a covariate was 

utilized to produce the same surface estimates (4-4C and 4-4D) for comparison.  All four 

surface estimates identified a large area of intense wind in northeastern Austria in an 

area that is less mountainous than central and western Austria.  In three of the four 

models, small pockets of strong wind also occurred along the Kärnten, Salzburg, and 

Tirol borders as well as the Steiermark and Oberösterreich borders.  There were even 

smaller pockets of intense wind scattered throughout other parts of the country.  Table 



 

111 

4-3 shows the accuracy metrics for each map.  The cokriging method produced the 

optimal maximum sustained wind speed model, while the original kriging method 

produced the optimal peak gust wind speed model based on the various metrics.  The 

cokriging model for peak gust wind speed (Figure 4-4D) also appears highly 

fragmented, indicating a poor fit. 

 

Figure 4-4. Original kriging models for maximum sustained (A) and peak gust (B) wind 
speeds and cokriging models for maximum sustained (C) and peak gust (D) 
wind speeds for Paula (2008). 

Table 4-3. Paula (2008) accuracy metrics for local kriging/cokriging models in Austria 
indicating dominant automatic wind speed direction, inter-model error 
comparison (RMSPE), intra-model error comparison (ME and RMSE), and 
number of high error stations. 

Wind Type Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 

Max 
Sustained  

Original Kriging 123.2 3.68 -0.02 0.87 2 

Cokriging w/LC 123.0 3.62 -0.02 0.87 2 

Peak Gust 
Original Kriging 122.0 5.92 -0.01 0.88 2 

Cokriging w/LC 178.1 6.00 0.00 0.99 2 

A B 

C D 
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4.3.1.4 Wind storm Emma 

Again, based on results from Study Two, the original kriging algorithm was used to 

produce a local maximum sustained (4-5A) and peak gust (4-5B) wind surface estimate 

for Austria, while the cokriging method was utilized to produce the same surface 

estimates (4-5C and 4-5D) for comparison.  All four surface estimates identified two 

large areas of strong wind: one in northeastern Austria north of Wien and one in 

western Austria around Innsbruck.  Areas of weaker wind speed were predominantly in 

the south-central states of Austria including Kärnten and Steiermark.  The cokriging 

models for each wind speed type showed a slightly more fragmented wind surface, but 

high and low winds occurred in similar areas.  Table 4-4 shows the accuracy metrics for 

 
Figure 4-5. Original kriging models for maximum sustained (A) and peak gust (B) wind 

speeds and cokriging models for maximum sustained (C) and peak gust (D) 
wind speeds for Emma (2008). 

A B 

C D 
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each map.  The cokriging method produced the optimal maximum sustained wind speed 

model, while the optimal peak gust wind speed model was difficult to identify based on 

conflicting accuracy metrics.   

Table 4-4. Emma (2008) accuracy metrics for local kriging/cokriging models in Austria 
indicating dominant automatic wind speed direction, inter-model error 
comparison (RMSPE), intra-model error comparison (ME and RMSE), and 
number of high error stations. 

Wind Type Method Anisotropy RMSPE ME RMSE 
SE (> +/- 

2.0) 

Max 
Sustained  

Original Kriging 114.6 6.61 0.01 1.08 7 

Cokriging w/LC 72.2 6.59 0.01 1.04 6 

Peak Gust 
Original Kriging 112.3 10.73 0.01 1.07 6 

Cokriging w/elev & LC 40.2 10.66 -0.01 1.03 7 

 

4.3.2 Wind storm Paula validation in Kärnten and Steiermark, Austria 

Forestry damage data in Kärnten and Steiermark were overlaid on two separate 

wind speed maps: one produced by ZAMG and one produced by the local kriging peak 

gust model from Figure 4-4B (Figure 4-6).  Forestry damage seemed to follow an 

invisible line from west to east across northern Kärnten and then a southwest-northeast 

line in Steiermark.  Stronger wind speeds were noticeable in the ZAMG wind surface 

map for most areas of Steiermark where forestry damage occurred, but intense wind 

speeds from the kriging surface were not present in all areas where forestry damage 

occurred.  Specifically, the southernmost area of the largest block of forestry damage in 

Steiermark does not align with intense surface wind estimates in the local kriging 

surface.  In Kärnten, forestry damage did not always occur in areas of the highest wind 

speed as estimated by either wind estimate surface, but instead may have been more 

dictated by other variables individually.  Since damage estimates were provided at point 
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Figure 4-6. Wind surface estimates from ZAMG (A) and local kriging (B) overlaid with 
forestry damage locations.   
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(longitude, latitude) locations for Kärnten, values for elevation, land cover, and aspect 

were extracted for each location and visualized in Figures 4-7, 4-8, and 4-9.  For most 

damage locations, elevation ranged between 750 and 1,750 meters (Figure 4-7).  

Dense needle-leaved evergreen land cover dominated areas where forestry damage 

was high (over 60% of damage), indicating that areas with this vegetation type may 

have been more susceptible to wind damage than other vegetation types (Figure 4-8).  

Caution should be given for this conclusion because soil saturation may have 

destabilized certain vegetation types depending on location and slope.  Wind storm 

Paula tracked from west to east and most wind speed directions indicated a northwest-

southeast wind during the most intense segment of the storm, but the majority of 

forestry damage occurred on slopes that were either north/northeast-facing or 

south/southwest-facing (Figure 4-9).  Figure 4-9 also clearly illustrates the increase in  

 

Figure 4-7. Distribution of elevation at each location in Austria where forestry damage 
was reported. 
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Figure 4-8. Distribution of primary land cover types at each location in Austria where 
forestry damage was reported. 

 

 

 

Figure 4-9. Aspect of topography at each location in Austria where forestry damage was 
reported. 
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wind speed upslope AND downslope during a wind storm.  For this reason, aspect may 

have added a conflicting element to cokriging models for wind storm Paula since winds  

often change directions, deflect off mountains, and funnel through valleys, resulting in 

less favorable accuracy metrics than the best models (original kriging and cokriging with 

land cover).   

Additionally, aerial images were examined for the two stations with high error 

measurements for all four Paula models (Figures 4-10 and 4-11).  Both stations are 

located on the edge of the north-northeast slope of high mountain ridges in generally 

open areas – one at a ski resort and another adjacent to a mountain glacier.  Aerial 

photos showing forestry damage inflicted by wind storm Paula are shown in Figure 4-

12. 

 

 

Figure 4-10. Wind observation station (blue marker) located near the border between 
Salzburg and Kärnten at a height of ~3100 m. 
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Figure 4-11. Wind observation station (blue marker) located in Oberösterreich near the 

border with Steirmark at a height of ~1600 m. 
 

 

Figure 4-12. Aerial images where forestry damage occurred during wind storm Paula. 
 

4.4 Discussion  

Through use of local kriging/cokriging, a more detailed wind surface was created 

for Austria when compared to previous modeling efforts at the continental scale.  

Specific localized areas (e.g., mountains, ridges) were likely to have experienced 

stronger wind speeds that were more recognizable when modeled and smoothed at the 

country-level scale.  Wind storms Kyrill and Paula provided excellent examples of 
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increased surface variability with identifiable high wind spots in locations that previously 

showed a smooth surface at the continental scale.  Additionally, accuracy metrics 

improved for country-level models, resulting in reduced RMSPE measurements and 

fewer stations with high SE.  Anisotropy was not consistently improved, most likely 

because the study area was too small to identify the macroscale wind patterns and 

trends (Luo et al. 2008).  Luo et al. (2008) concluded that use of an anisotropic 

semivariogram had negligible influence on kriging-created wind speed surfaces in the 

United Kingdom (UK) since the sill of correlation was often not reached within a 

reasonable range, considering the smaller size of the UK compared to continental 

Europe.  Overall, continental-scale models from Studies One and Two predicted wind 

speed and trend accurately in most locations since winds were predominantly lower 

over much of Austria than areas farther north closer to the storm track. 

While accuracy metrics for most local-scale models showed an improvement when 

compared to previous continental-scale models, surfaces for Paula resulted in the same 

number of high error stations (two).  Upon closer examination, the two high-error 

stations from Study Two were in southern Oberösterreich and the border between 

Kärnten and Salzburg – areas that now show higher wind speeds more in line with 

actual observed wind speeds.  The high-error stations from local kriging/cokriging were 

in the same location, indicating either a localized area of intense winds or station error.  

The station locations were examined through aerial imagery and both were located on 

ridges above a deep valley.  The surface improved because it showed greater wind 

speeds at these two locations when compared to the surrounding area and more closely 

matched wind speed surfaces produced by the ZAMG, but the wind surface was still 
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less than the measured wind at the exact station location, resulting in high SE.  The two 

high-error stations faced in a north-northeast direction and the dominant wind direction 

during Paula was from the north-northwest.  The elevation (highest and 12th highest 

among all stations in Austria) and aspect at these two locations indicate that high wind 

speed variability was likely and that anomalously intense wind speeds could have 

occurred (Wieringa 1973, 1986).   

Kriging/cokriging-derived wind surfaces are often modeled at the state- (Akkala et 

al. 2010) or country- (Luo et al. 2008) scale, but rarely at the continent-scale, primarily 

because of an increase in station error.  However, model results suggest that both 

scales can be useful for differing reasons.  The small-scale (continent) model produced 

accurate surfaces that predicted wind speeds very well in most locations and showed 

macroscale wind speed trends and patterns.  The large-scale (country) model also 

produced accurate surfaces that illuminated small areas of greater wind speed that 

were muted and smoothed on the surface created by the small-scale model, thus 

identifying microscale variations.  General wind speed trends and patterns were more 

difficult to visualize on the surfaces produced by the large-scale model because the 

geographic extent of Austria was simply not large enough to detect such patterns.  This 

alludes to results of Luo et al. (2008) concerning use of anisotropic semivariograms at 

the national scale. 

Based on the influence of scale during geostatistical analysis, it is important to 

address the theoretical issues involved with the “scale problem.”  Meentemeyer (1989) 

proposed that there is a hierarchical component to space that should be integrated into 

hierarchy theory.  This hierarchical component can be visualized when examining the 



 

121 

differences between each modeled scale.  The two main scale issues that arise during 

kriging/cokriging center on smoothing and semivariogram creation.  Meentemeyer 

(1989) referenced Clark (1985) by stating that there are no simple rules or parameters 

available to identify the appropriate scale for different applications, and that continues to 

be true within geostatistical analysis.  Meentemeyer (1989) also warned that if 

geographic coverage is not available at finer scales, then the examination and inference 

of patterns should remain at a macro-scale level where there is more statistical certainty 

in the outcome.  Within geostatistical analysis, a minimum number of stations (normally 

30) should be used during any modeling process. Both the small- and large-scale 

models in this study meet this criterion, resulting in a high level of certainty at both 

scales. 

4.5 Future Research 

 A major area of future research involves the exploration of empirical Bayesian 

kriging (EBK) (Gribov and Krivoruchko 2011, Castruccio et al. 2012, Zhang 2012) as a 

possible solution to capturing local-scale changes when modeling at the continental 

scale.  Scale is not only determined when identifying geographic extent, but also when 

the semivariogram is modeled during the kriging/cokriging process.  For kriging and 

cokriging, only one semivariogram model is produced for the entire surface, but EBK 

produces multiple smaller semivariograms that fit different parts of the surface – a form 

of self-partitioning as opposed to forced partitioning (e.g., Zlatev et al. 2010).  

Theoretically, the smaller semivariograms are combined to produce a single surface, 

thus eliminating the impact of zonal scale problems inherent to the MAUP and 

potentially reducing the impact of other scale problems that occur between variably-

scaled wind surfaces.  An ideal EBK surface would model wind speed surfaces for wind 
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storms at the continental scale, while also capturing local-scale variation that previously 

was only captured by country-specific models.  Models generated in the exploratory 

phase of this dissertation using EBK have shown some improvement in the direction of 

creating an idealized modeled surface, but much more research is needed and an 

improvement to the EBK tool within ArcGIS may also be necessary.  Currently, the EBK 

model has many predetermined, inalterable settings and is less amenable to user 

adjustments.  Additionally, other variables (e.g., elevation, aspect, land cover) cannot be 

used to improve the EBK surface because cokriging-based EBK does not yet exist. 

Beyond testing other modeling techniques, more effective means of validation are 

necessary to determine whether predicted surface wind speeds match some equivalent 

impact on the ground.  The available forestry data were limited to two states in Austria 

that did not experience the highest wind speeds during Paula.  Damage data were not 

available for the two mountains/ridges that experienced the greatest wind speeds.  

Windward and leeward mountain slopes are influenced by higher wind speeds based on 

the laws of fluid dynamics.  Horizontal winds decelerate as they approach a mountain 

slop and accelerate downslope of the mountain, both as a result of the increased friction 

over the mountain – this is especially true of ridges where wind is less likely to deflect 

around the mountain.  The winds going downslope create turbulence on the leeward 

side of a mountain, often resulting in multiple eddies that can impact wind speeds and 

wind speed-induced damages.  Additional damage data will be needed to proceed with 

this type of wind speed surface validation.  Once an effective means of validation is 

vetted more thoroughly, then dissemination of results to the appropriate local and 
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national agencies and organizations will become a priority as well as the expansion of 

ground-truthing techniques to other countries and regions.  
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CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 

 This dissertation was written in three distinct, journal-style chapters and each 

chapter addressed specific objectives.  The objectives were as follows: 

Chapter 2 (Study One) 

1) to quantify the accuracy of numerous types of spatial interpolation methods for 

predicting extreme European wind storm-induced winds through verification 

and validation 

2) to identify regional patterns and areas of high and low wind speeds associated 

with eighteen different wind storms 

 
Chapter 3 (Study Two) 

1) to reduce error measurements associated with the original ordinary kriging 

surfaces produced in Study One through a process of cokriging with multiple 

covariates 

2) to identify one or more covariates that produced the most meaningful reduction 

in individual station error 

 
Chapter 4 (Study Three) 

1) to examine how wind speed interpolations vary at differing spatial scales and 

how local interpolations changed compared to regional interpolated surfaces in 

the mountainous country of Austria 

2) to analyze tree damage in the Austrian state of Carinthia and determine its 

utility in validating interpolated wind surfaces 
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5.1 Study One Conclusions 

Numerous methods of interpolation have been used for wind surface estimation, 

but this study confirms that kriging remains one of the better methods because of its 

ability to account for anisotropy and surface trends.  Analysis of 18 major European 

wind storms over the past 35 years is included in this study.  Interpolated surfaces for 

each storm were created within the same framework so they can be viewed 

simultaneously for improved visualization of the overall intensity and locations of high 

winds for each storm.  Peak gust and maximum sustained wind speed calculations and 

adjustments allowed for improved wind surface estimates and accuracy at reporting 

locations, thus improving final interpolations.  The major findings of Study One are as 

follows: 

1) Wind surface maps and an overall climatology for 18 major European wind 

storms occurring since 1976 have been created and catalogued in one study 

for the first time. 

2) Accurate wind surface estimates can be created for large areas of Europe 

using an anisotropic semivariogram-derived kriging methodology. 

3) Not surprisingly, coastal areas, especially those surrounding the English 

Channel and North Sea, often experienced the highest wind speeds during a 

wind storm. 

4) Inland areas of Europe, specifically the Black Forest and northern Alps, 

experienced very high wind speeds relative to the surrounding areas – 

indicative of a complex topography/wind interaction. 

5) Coastal and mountainous weather stations experienced the greatest 

difference in wind speeds across small distances within the same wind 
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storm, and therefore reported some of the highest error measurements.  

Additional research must be undertaken to improve our understanding of 

local wind variability in these environments. 

6)  Local wind variability may contribute to weak macroclimatic trends, perhaps 

at least in part because of changes in storm trajectory and its associated 

circulation near the station, causing principal trending directionality used in 

kriging to be poorly estimated. 

5.2 Study Two Conclusions  

Cokriging was utilized to create maximum sustained and peak gust wind speed 

surface estimates for five European wind storms over a 10-year period.  Results 

confirmed that cokriging is superior to kriging for most models and that elevation is a 

useful covariate.  The study expanded on the use of covariates by adding aspect and 

land cover, which also showed improvement in most models from previous kriging 

models.  Maps showing stations with high standard error (SE) were also produced and 

indicated that some stations were repeatedly found to have high SE measurements.  

The major findings of Study Two include the following: 

1) Aspect and land cover can be effective when used as covariates during the 

cokriging process. 

2) In most model sets, use of land cover as a covariate produced the best 

surface estimates with the fewest stations receiving high SE measurements. 

3) As was found in Study One, stations with high SE measurements occur in 

coastal and mountainous regions; however, the number of such stations was 

reduced by using cokriging rather than kriging for the anisotropic 

semivariogram-derived methodology in most model sets. 
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4) General wind speed and wind direction patterns were modeled correctly at a 

hemispheric scale, but more localized patterns were not identified. 

5) Use of multiple covariates resulted in differences in semivariogram direction 

within a storm when identifying the dominant azimuth direction of wind 

associated with each storm. 

5.3 Study Three Conclusions 

 Local kriging and cokriging procedures were examined to determine whether 

wind speed surface estimates for wind storms Jeanette, Kyrill, Paula, and Emma vary 

when modeled at different scales.  Based on various accuracy metrics, wind speed 

surfaces were often improved but surface trends and patterns were less discernible 

than in continent-scale models from Studies One and Two.  In addition to inner-model 

cross-validation, forestry damage data were utilized to assess a potential relationship 

between high winds and high damage.  While no strong correlations between the two 

were found, complex relationships between forestry damage and heterogeneous 

landscape characteristics were identified. The major findings of this study include the 

following:  

1) Modeled local kriging and cokriging wind speed surfaces show greater spatial 

variability than continental-scale surfaces, resulting in the identification of 

specific high-wind areas that were smoothed in previous models. 

2) Major patterns and trends are more difficult to ascertain for local-scale 

surfaces when compared to continental-scale surfaces. 

3) High station SE can be reduced but not eliminated through local 

kriging/cokriging, and some instances of surface improvement may continue 

to under- or over-predict observed wind speeds. 
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4) Relationships between forestry damage and specific covariate (elevation, 

aspect, land cover) parameters were identified, but validation of intense winds 

was difficult to test using forestry damage since damage data are only 

available for Austrian states that experienced lower wind speeds than other 

states. 

5.4 General Conclusions and Future Research 

Collectively, each study provided a major improvement in our basic and applied 

scientific understanding of multiple European wind storms and wind meteorology in 

rugged terrain, although it is important to remember that all models oversimplify the 

reality of rugged terrain.  Regardless, improvement of surface wind estimates through a 

combination of spatial analytic techniques substantially improved meso- and local-scale 

modeling attempts.  Previous wind storm surface estimates were characterized by 

coarse spatial resolution with little specific local precision.  This dissertation also 

advanced our knowledge of the relative advantages of spatial analytic techniques (i.e., 

kriging) that are sometimes selected without a priori knowledge of appropriateness.  In 

each of the three studies, user-selected criteria played a key role in wind surface 

estimations.  Additionally, cokriging techniques and covariates were previously not 

applied to surface wind interpolations of wind storms, thus this dissertation was 

innovative in its testing of a potential relationship between observed wind speeds and 

elevation, aspect, and land cover.   

Models and extreme-event climatologies of wind simulation and hazard/risk 

assessment that are widely used in the insurance/reinsurance industry can be improved 

through the incorporation of our research results.  Results may also help to inform local 

cost-benefit studies and subsequently save lives and resources for local government, 
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private industry, and consumers.  Damage estimates may also be refined based on the 

resulting wind surface estimates, thus improving construction standards and adapting 

insurance needs.  The known impacts of windstorms on vegetation (e.g., trees; Kirk and 

Franklin 1992) and civil infrastructure (Reed 2008) are severe, and improved spatial 

interpolations for windstorm-induced wind speeds will be fundamental to evaluating 

damages as well as potential changes needed for forest management and building 

codes/regulations.  The identification of high wind zones will also help to inform local 

government vulnerability assessments that may be included in future hazard mitigation 

plans.  The results will also inform understanding of common windstorm features (e.g., 

directions, wind movements/patterns, surface interactions, etc.) that have long-term, but 

not necessarily immediate, impacts on sectors such as transportation, agriculture, and 

recreation.   

Multiple avenues for future research exist, including future scale-dependent 

research in flat or hilly areas of relatively consistent winds (as opposed to highly-

variable, storm-generated wind speeds in mountainous areas) and coastal, 

heterogeneous areas.  Subsequent research would be a clear extension of Study 

Three.  Also, additional research should be conducted on the angle of wind that causes 

the most damage.  Anecdotally, it appears that a ~45° angle causes the most damage 

based on the results from Study Three, but this cannot yet be proven. 

A major area of future research involves the potential transferability of methods 

and models to a different region.  It would be ideal to implement the optimal method(s) 

identified in this dissertation to predict extreme wind speeds associated with mid-latitude 

cyclones in northwestern North America, or the Pacific Northwest (PNW), using a 
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different set of extreme wind data.  The specific type of mid-latitude cyclones to be 

studied in this region is called a “winter storm” and is very similar to its European 

counterpart.  Within such a study, there would be two main objectives: 1) to test the 

transferability of kriging/cokriging methods to the PNW to determine whether the same 

algorithm for estimating winds in Europe can be applied; and 2) to analyze the spatial 

patterns of high winds associated with PNW storms.  

When considering all 18 studied European wind storms collectively, cluster 

analysis may aid in identifying commonalities in storm tracks, high error station 

locations, and other wind storm-induced wind speed characteristics.  Based on the initial 

results of Study Two, additional change detection maps should be created to identify 

specific areas where wind speed predictions vary the most between the original kriging 

models and the optimal cokriging models.  These areas must be studied more closely to 

identify reasons for the disparity in wind speed predictions.  Additionally, analyzing a 

potential relationship between station error and covariates may reveal a trend in high 

error stations and certain landscape characteristics (e.g., are high elevation stations 

consistently reporting high error measurements?  What are the characteristics of 

consistently “anomalous” stations?).  Based on preliminary analysis from Study Three, 

correlation and regression analysis may be helpful in pinpointing significant 

relationships between tree damage and elevation, aspect, and/or land cover as well as 

other variables (e.g., soil type, moisture, etc.), but more tree damage data would be 

helpful to reach a broader conclusion.   

Another major area of future research is the creation of a ruggedness variable that 

synthesizes the major covariates and reduces autocorrelation among the potential 
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predictor covariates.  Just as principal components analysis (PCA) is used to combine 

strongly correlated variables into various components, a data reduction technique could 

be applied to create a “ruggedness” variable.  Issues of autocorrelation could potentially 

be eliminated, or at least minimized, through the development of one variable that 

incorporates both elevation and land cover to represent terrain ruggedness (Rt). This 

future project would be the first known study to incorporate such a variable in a 

cokriging model for wind data.  

Improved modeling of the effect of ruggedness in the surface boundary layer 

(SBL) will rely on the concept of roughness length (z0) – the theoretical height at which 

the wind speed approaches zero, ranging from 1 mm for very smooth surfaces to a few 

meters for forests and urban areas (Arya 2001).  According to boundary layer theory, z0 

is related to, the height of the roughness elements and is also a function of the shape 

and density distribution of the elements, with z0 maximized for an intermediate density 

of roughness elements.  A rule of thumb that is often employed is that z0 is about ten 

percent of the canopy height, but this can vary widely.  Davenport (1960) initially 

developed approximate z0 values for eight different terrain classes (Table 5-1).  An 

anisotropic cokriging model will likely improve prediction of the contrasting effects on 

wind speeds caused by rough-to-smooth vs. smooth-to-rough terrain transition areas 

where z0 values may change abruptly.  A drag coefficient utilizing zero plane 

displacement (d) – the vertical displacement caused by surface elements – may also be 

needed in Classes 4 or higher which encompass more complex terrain (Table 5-1).  In 

general, d is approximately two-thirds the height of the tree canopy.  For example, z0 

may be 1 m and d may be 7 m for a forest.  Because z0 and d will be utilized across 
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diverse terrain types in two different regions, these values will be revised to represent 

the study area appropriately. 

 Wieringa (1986) developed a mesoscale roughness parameter (z0m) and a two-

layer boundary layer model to assess mean regional surface wind speeds in the lower 

(at 10 m height) and upper SBL (60 m height).  To calculate z0m, Wieringa (1986) 

employed the Davenport roughness classification system (Davenport 1960) and made a 

few adaptations to model the terrain of the Netherlands (Wieringa 1980, 1986) (Table 5-

1).  Additionally, Wieringa (1986) utilized a formula developed by Smith and Carson 

(1977) to evaluate and define ‘elevation variability roughness lengths’ (zoh): 

                                                                                              

where dH represents the largest terrain elevation difference per block and L 

represents horizontal block distance.  For example, if the largest terrain difference over 

a 5 x 5 km block is 20 meters then dH would be 20 and L would be 5000.  To create 

z0m, the average surface roughness for each (perhaps 5 x 5 km) block (z0b) is multiplied 

by z0h.  For example, if the 5 x 5 km block is dominated by bushes and numerous 

obstacles (class 6 in Table 5-1), then z0b would be 0.5. 

The ruggedness variable, Rt, could be calculated through a combination of terrain 

roughness descriptions following the Davenport roughness classification system 

(Davenport 1960, Wieringa 1992, Wieringa et al. 2001) and elevation variable 

roughness lengths (z0h; Wieringa (1986) and Smith and Carson (1977)): 
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where z0b is the average block area surface roughness.  A spatial weights analysis 

may be necessary to determine the influence of roughness descriptions vs. topography.  

The Davenport classification of effective terrain roughness identifies roughness 

coefficients (z0) for eight different terrain types, thus obviating the need for the land 

cover covariate while simultaneously assigning a quantification for how wind is impacted 

over specific land cover types.  Classifications can be subdivided for more specific 

terrains (Wieringa 1986).  Although Wieringa (1986) utilized block areas of 5 x 5 km for 

the Netherlands, multiple block sizes could potentially be tested.  Ruggedness produces 

a drag coefficient that accounts for elevation variability and land cover over the specified 

block area, which may be storm and site-specific.  Mapping of Rt could be done initially 

for Europe and subsequently for the PNW.  Ideally, ruggedness would then be 

employed as the only covariate in a revised cokriging model for both regions. 

Regardless of the particular direction of future research that advances this 

methodology, the technique has the potential to protect lives and property to a greater 

extent than previously, because it enhances our ability to generate return periods for 

risk management applications.  

Table 5-1. Davenport roughness classification, adapted from Davenport (1960) and 
Wieringa (1980, 1986). 

Class Terrain Description Roughness Length [z0 in meters)] 

1 Open sea (fetch > 5 km) ~0.0002 
2 No vegetation/obstacles (e.g., snow) ~0.005 
3 Open flat terrain; grass ~0.03 
4 Low crops; occasional tree ~0.10 
5 High crops; scattered obstacles ~0.25 
6 Bushes; numerous obstacles ~0.5 
7 Regular large obstacles (e.g., suburb, forest) ~1.0 
8 City center with varied building heights >2.0 
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APPENDIX: STATION LOCATION MAPS 

 

Figure A.1. Station locations for Capella (1976) (A) and Storm 87J (1987) (B). 
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Figure A.2. Station locations for Daria (A) and Herta (B); both storms occurred in 1990. 
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Figure A.3. Station locations for Vivian (A) and Wiebke (B); both storms occurred in 
1990. 
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Figure A.4. Station locations for Anatol (A) and Lothar (B); both storms occurred in 
1999. 
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Figure A.5. Station locations for Martin (1999) (A) and Jeanette (2004) (B). 
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Figure A.6. Station locations for Dagmar (2004) (A) and Erwin (2005) (B). 
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Figure A.7. Station locations for Kyrill (2007) (A) and Paula (2008) (B). 
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Figure A.8. Station locations for Emma (2008) (A) and Klaus (2009) (B). 
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Figure A.9. Station locations for Quinten (2009) (A) and Xynthia (2010) (B). 
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