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Recent advancements in nonlinear dynamical systems theory have led to the devel-

opment of a methodology, called geodesic eddy detection, for the objective (i.e., frame-

independent) framing and tracking of coherent Lagrangian eddies in two-dimensional

unsteady flows. Such eddies have material boundaries that do not stretch or fold over

long periods of time, thereby providing an explicit mechanism of transport of fluid

and distinguished properties, such as temperature and salinity. Eddies identified from

Eulerian criteria (e.g., as regions enclosed by streamlines where rotation dominates

over strain instantaneously) do not possess this property as such criteria either depend

on the choice of reference frame or fail to reveal long-term material response of the

flow field. Applying geodesic eddy detection on surface currents derived from the over

two-decade-long record of satellite altimetry measurements, we isolated coherent La-

grangian Agulhas Current rings capable of traversing the South Atlantic basin with no

noticeable signs of filamentation. The rings are found to acquire material coherence

from incoherent fluid away from the Agulhas retroflection region in the South Atlantic,

revealing that their genesis mechanism differs substantially from the commonly ac-

cepted picture in which rings are shed from the Agulhas retroflection as a result of

occasional occlusions. While ability of Agulhas rings in transporting fluid over long



distances is confirmed, this is found to be more restricted than suggested by earlier

assessments. First, coherent transport estimates are found to be small compared to esti-

mates from Eulerian analysis. The reason for this is that Eulerian analysis significantly

overestimates the volume of the coherently transported fluid. Second, the coherent

transport estimates are smaller than the total Agulhas leakage reported in numerical

studies. These conclusions remain unaltered by the discovery that Agulhas rings can

be shielded by Atlantic Ocean water as a result of successive short-term material co-

herence regain events. In fact, while the volume of fluid trapped by these short-term

shields is larger than that from a long-term material coherence assessment, the fraction

of such volume traceable into the Indian Ocean is in general rather small.
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lected the Poincaré section. (bottom) Limit cycles (red closed curves) of

system (4.1) fill up the eddy region, and traverse the stationary points,
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Chapter 1

Introduction

1.1 Mesoscale eddies and the Agulhas Current rings

A long-standing question in physical oceanography concerns the role of mesoscale ed-

dies in transport. Mesoscale eddies are commonly recognized as swirling bodies of

water in the ocean [Robinson, 1983], with horizontal spatial scales between 50 and 300

km and temporal scales ranging from several weeks to years [Chelton et al., 2007; Chel-

ton et al., 2011b]. Such coherent structures are increasingly believed to play a crucial

role in transporting mass, heat, salt, carbon dioxide, and other biogeochemical tracers

over long distances across the world oceans, profoundly modifying the marine ecosys-

tems, large-scale ocean circulations, and long-term global climate [Dong et al., 2014;

Zhang et al., 2014]. Figure 1.1 shows a high concentration of biological tracer trapped

and carried by an eddy in the Drake Passage.

A case of particular interest illustrating the significance of oceanic eddy transport is

that of Agulhas Current rings, the largest in the world ocean [Olson and Evans, 1986],

and their role in carrying the Agulhas leakage over long distances. The Agulhas Current

is one of the strongest western boundary currents flowing along the eastern Africa coast

driven by the positive curl of wind stress field over the subtropical Indian Ocean [Beal

1



2

Figure 1.1: A plankton bloom trapped inside an eddy in the Drake passage captured
by SeaWIFS. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight
Center, and ORBIMAGE.
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Figure 1.2: A snapshot of near-surface speeds around Africa in a high-resolution model
nested in a global, coarse-resolution model. From A. Biastoch, Modelling the Agulhas
Current and Its Coupling with the Atlantic Circulation (presentation file).

et al., 2011]. Beyond the southern tip of Africa, the current is forced by inertia to

overshoot the continental shelf to the latitude where the wind stress curl vanishes [Beal

et al., 2011; de Ruijter et al., 1999]. As a result, a substantial part of the current loops

back into the Indian Ocean to match the Sverdrup regime far to the east [de Ruijter

et al., 1999]. This loop (Figure 1.2), known as the Agulhas Retroflection, is observed

to occasionally occlude on itself and shed large anticyclonic eddies, which, along with

other forms (e.g., filaments, cyclonic eddies, etc.) of Indian Ocean water intrusion into

the South Atlantic, constitute the Agulhas leakage.

With sources of excessive heat and salt from the Indian Ocean, the Agulhas leakage

has been suggested to be fundamental in regulating the Atlantic Meridional Overturn-

ing Circulation (AMOC) and therefore long-term global climate [Biastoch et al., 2009;

Beal et al., 2011]. Gordon [1986] proposes that the Agulhas leakage constitutes the



4

warm water route of the global overturning circulation systems, and, by carrying large

amount of salt, preconditions the Atlantic thermocline water for deep convection, which

further stimulates the formation of North Atlantic Deep Water (NADW). Idealized nu-

merical simulations [Weijer et al., 2002] show that northward advection of positive

salinity anomalies from the Agulhas Current strengthens the AMOC by increasing the

meridional pressure gradient of the Atlantic. Furthermore, due to an apparent poleward

shift of the southern hemisphere westerlies [Biastoch et al., 2009], the leakage has been

speculated to be increasing, leading to the conjecture that the weakening of AMOC

due to continuous accumulation of freshwater around the Arctic region in a warming

climate could be mitigated by the leakage [Beal et al., 2011].

The amount of Agulhas leakage carried by Agulhas rings, however, has been highly

uncertain. Combining drifter and float data with altimetry record of Schouten et al.

[2000], Richardson [2007] proposes that transport by Agulhas rings, which amounts up

to 10–13 Sv (1 Sv = 106 m3 s−1), forms a large portion of the total leakage, around 15 Sv.

This estimate is based on the assumption of fixed annual ring shedding frequency and

ring size. Byrne et al. [1995], through tracking satellite altimetric sea surface height

(SSH) anomalies, reports that Agulhas rings experience intense amplitude reduction

during crossing the South Atlantic basin. The original study of Schouten et al. [2000]

also shows that Agulhas rings decay fast within the Cape Basin immediately after shed-

ding events, and that over 60% of initial total ring volume is lost in the South Atlantic.

Using numerical simulations, Doglioli et al. [2006] suggest that no more than 15% of

the leakage is trapped in rings based on the analysis of spinning characteristics of nu-

merical Lagrangian particles in the Cape Basin. van Sebille et al. [2010] made a more

comprehensive analysis in a model and showed that Agulhas rings only trap leakage

temporarily in the Agulhas region and experience fast decay within the Cape Basin.
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The results from these numerical simulations are supported by Dencausse et al. [2011],

who use over 14 years of altimetry SSH observations to conclude that leakage carried

by rings decreases from about 8.5 Sv to 1.4 Sv in the Cape Basin due to fast ring decay.

1.2 Traditional eddy detection methods

An important reason for the uncertainty around the ring transport in previous studies

is that Agulhas rings are isolated features that change volumes over time. As a result,

ring transport is highly dependent on the reference location where transport is evalu-

ated [Dencausse et al., 2011]. Using the initial sizes and shedding frequencies of rings

leads to transport values applicable to locations around the Agulhas retroflection only

[Richardson, 2007]. Both numerical [van Sebille et al., 2010] and observational [Den-

causse et al., 2011] studies show that such values drop significantly as the reference

locations are moved westward due to the fast decay and dissipation of rings.

Moreover, most of these previous studies depend on diverse and nonobjective eddy

detection methods, namely, the definition of eddy boundaries are chosen ambiguously

based on different criteria influenced by the reference frame chosen. Using these criteria

to calculate ring transport leads to inaccurate results. This is seen in the study of de

Steur et al. [2004], who define three types of ring boundaries, which are: (1) a specific

pressure level around a ring, (2) the kinematic separatrix of the streamfunction under

a reference frame comoving with a ring, and (3) the maximum density gradient level

(corresponding to the maximum swirl velocity) around a ring. Similar eddy boundaries

are widely used in observational studies [Olson and Evans, 1986; Goni et al., 1997;

Garzoli et al., 1999; Chelton et al., 2007; Chelton et al., 2011b; Dong et al., 2014]. By

tracking the local behavior of Lagrangian (i.e., material) tracer in a numerical model,

however, de Steur et al. [2004] find that the tracer does not evolve consistently with
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these boundaries. We argue that this is not a manifestation of incapability of eddies

in trapping fluid, as suggested by the authors, but rather the fact that none of these

boundaries are necessarily Lagrangian, and, more importantly, observer independent

or objective. Indeed, trapping of fluid parcels by an eddy and any other Lagrangian

response of a flow field are objective, which requires that the detection methods able to

isolate such responses to be objective as well [Peacock et al., 2015].

The noisy results yielded by most Eulerian eddy detection methods necessiate the

use of filtering and threshold parameters. Applying such detection methods to satellite

altimetry record, Souza et al. [2011a] report up to 50% variance in the number of eddies

detected, dependent on the choice of parameters and filtering methods. This implies

that Lagrangain eddy behaviors revealed by Eulerian predictions are highly uncertain.

Analysis of spinning characteristics of numerical Lagrangian particles [Doglioli et al.,

2006] yields statistical characteristics of an eddy field influenced by eddy splitting,

merging, and eddy-eddy interaction processes. The statistical nature of this method also

makes it difficult to locate eddy boundaries in a Lagrangian fashion unambiguously.

Recent studies [Zhang et al., 2014; Dong et al., 2014] emphasize that mesoscale

eddies transport considerable amounts of mass and heat on a global scale by trapping

fluid parcels during migration. Following these results, Agulhas rings may provide an

express lane for the Agulhas leakage to the North Brazil Current, given that these rings

may cross the South Atlantic basin in less than 3 years [Gordon and Haxby, 1990].

Agulhas leakage transported as such may modulate the stratification of the Atlantic

[Weijer et al., 2002] with a faster time scale compared to advection by wind-driven

gyres [Rühs et al., 2013]. The goal of this thesis is to identify Agulhas rings capable

of trapping Agulhas leakage over long distances across the South Atlantic and quantify

the associated mass transport in an objective manner.
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1.3 Geodesic eddy detection

To accurately track and quantify the leakage trapped by Agulhas rings, a Lagrangian

eddy detection method is crucial. Such a method is provided by geodesic eddy detec-

tion, a technique rooted in nonlinear dynamical systems theory. The basis for this eddy

detection method, provided by Haller and Beron-Vera [2012], is the geodesic theory

of transport barriers. Such a theory seeks transport barriers, or Lagrangian Coherent

Structures (LCS), as extremum curves of absolute deformation. These curves turn out

to be geodesics of the Cauchy-Green strain tensor, an objective measure of deformation.

Elliptic LCS, in particular, are closed material lines maximizing the local Lagrangian

shear pointwise in an unsteady, two-dimensional flow. Beron-Vera et al. [2012] de-

fine Lagrangian eddy boundaries as the outermost member in nested families of closed

lines of this type which is most closely shadowed by least-stretching Cauchy-Green

geodesics. Eddy boundaries defined as such have the property that their initial arclength

is regained in the incompressible flow case. Constancy of arclength and enclosed area

preservation renders these boundries exceptionally coherent: they leave no room for fil-

amentation. Later, Haller and Beron-Vera [2013, 2014] seek elliptic LCS as stationary

curves of relative deformation. Such elliptic LCS are also geodesics of a generalized

Green-Lagrangian strain tensor, another objective measure of deformation. Particularly,

they form the centrepieces of material belts across which averaged material strain does

not change at leading order. These very special material lines also resist exponential

stretching induced by turbulence. Unlike the previous material lines, they do not neces-

sarily restore their arclength. Coherent Lagrangian eddy boundaries are defined as the

outermost members in nested families of curves of this type.
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1.4 Organization

The reminder of this thesis contains results from two peer-reviewed articles (Chapters 3

and 4) and a preprint (Chapter 5), preceded by a detailed exposition of the methodology

employed (Chapter 2), and followed by general conclusions (Chapter 6). Chapters 3–5

are self-contained, including the essential theory required to understand their content.

Chapter 2, which provides mathematical details of geodesic eddy detection, may thus

in principle be safely skipped and consulted occasionally if needed for more in depth

details.

More specifically, in chapter 3, we apply the geodesic eddy detection in a region

of the South Atlantic and compare the results with two other widely used Eulerian

eddy diagnostic methods and a recent Lagrangian criterion to highlight the significance

of objectivity in quantifying eddy transport. We show that geodesic eddy detection

outperforms most contemporary approaches in revealing the true material structures

of oceanic eddies that can preserve their coherence for several months. Independent

observations (satellite derived chlorophyll) further support our results and suggest that

geodesically detected eddies are capable of trapping non-passive tracers in the ocean.

This study lays a foundation for objectively quantifying material transport of Agulhas

rings over an extended time period.

In chapter 4, we apply the geodesic eddy detection method to the over two-decade-

long (1993-2013) satellite altimetry SSH record. Our goal is to determine the role of

rings in coherently transporting Agulhas leakage across the South Atlantic. Specifi-

cally, by varying the coherence time scale in geodesic eddy detection, we calculate the

translational speeds, diameters, and annual detection frequencies of Agulhas rings and

determine the relationship of these parameters with ring lifetimes. More importantly,
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geodesic eddy detection allows us to track the most robust rings both backward and

forward in time, from their stages of genesis to full loss of material coherence. We

isolate the rings able to reach the vicinity of the Brazil coast and estimate their potential

contribution to the warm water route of the overturning circulation. Gordon and Haxby

[1990] proposed that long-lived Agulhas rings may enter the Brazil current system and

potentially modify the AMOC by being transported into the northern hemisphere, while

Schouten et al. [2000] found that the subtropical gyre is likely to absorb these long-lived

features and carry their fluid southward. We will quantitatively test these pathways in

this chapter.

Finally, in chapter 5, we present results from a preliminarily study of the life cycle

of a material Agulhas ring by applying geodesic eddy detection on a monthly basis as

the ring traverses the South Atlantic subtropical gyre. At the time of writing our most

relevant finding is that the ring evolves as a quite coherent material entity for a period

of about 2 years after the initial coherence is lost upon crossing the Walvis Ridge. This

is attributed to the continual development of short-term coherent material boundaries

shielding the ring, preventing its interior from being mixed with the ambient turbulent

flow. We show that such coherence regaining cannot be inferred from Eulerian analysis.

This finding complements the study on the ability of Agulhas rings in transporting fluid

across the South Atlantic.



Chapter 2

Objective eddy detection

2.1 Background

Coherent eddies or vortices are ubiquitous in nature (Figure 2.1). Close inspection of

such coherent structures lead to the physical assumption that eddies are enclosed by

hidden, elliptical or cylindrical material barriers that forbid effective mixing between

the eddy interior and ambient flows. For instance, storms in planetary weather layers

(Figures 2.1a and 2.1c) are distinguished by locking high momentum and energy. The

Great Red Spot (Figure 2.1b), a gigantic vortex within Jupiter’s weather layer, contains

gases with distinct chemical constitutions that do not seem to mix with the surrounding

fluid. Satellite images also constantly capture strong signals of plankton activities con-

fined inside vortex-like features in the ocean (Figure 2.1d). As a result, eddies are often

viewed as isolated islands of fluid travelling through an otherwise incoherent flow field

[Provenzale, 1999; Haller and Beron-Vera, 2013].

Defining coherent eddy boundaries as closed material lines or surfaces that permit

zero volume flux is not optimal, as all material lines, whether closed or not, are like that

[Haller and Beron-Vera, 2012]. Like other types of coherent structures, coherent eddies

admit distinct expressions in almost all scalar diagnostics of fluid dynamics [Haller,

10
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Figure 2.1: Eddy structures in nature. (a) A vortex in the north pole of Saturn’s weather
layer captured by NASA’s Cassini spacecraft in November 2012 (NASA/JPL). (b)
Jupiter’s Great Red Spot captured by NASA’s Voyager 1 in February 1979 (NASA/JPL).
(c) Tropical storm Halong in the western Pacific captured by the MODIS on the Terra
satellite in July 2002. (d) A plankton bloom trapped within a vortex-like structures in
the ocean south of Africa captured by MODIS on NASA’s Terra Satellite in December
2011.
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2014]. For instance, specific dynamical properties, such as dominant concentration

of vorticity have been favored as major characteristics of eddies [McWilliams, 1984;

Okubo, 1970; Weiss, 1991; van Sebille et al., 2010]. In the geophysical case, potential

vorticity anomalies have been tracked to study oceanic eddies globally [Zhang et al.,

2014]. Besides dynamical properties, special geometrical features of velocity field (e.g.,

closed streamlines) are also observed to reside in coherent eddies [Chelton et al., 2007;

Chelton et al., 2011b; Dong et al., 2014]. In turn, such expressions are constantly used

to track the motions of coherent eddies and quantify the transport induced by eddy

movements.

However, expressions in scalar field do not reveal the hidden barriers that create the

coherence of eddies and therefore should be treated as a necessary instead of a sufficient

condition for existence of coherent eddies. Indeed, even a simple parallel shear flow

admits high concentration of vorticity. Refined criteria based on Eulerian signatures of

the eddy field, such as the Okubo-Weiss criterion [Okubo, 1970; Weiss, 1991], which

seeks eddy regions with vorticity dominating over shear and strain, may only frame

eddy evolution in short term due to the instantaneousness nature of Eulerian signatures.

A more severer issue associated with such Eulerian eddy detection methods is that their

criteria are not objective: Eulerian signatures of a flow field can change dramatically

under the change of reference frames [Haller, 2005]. Yet eddy coherence, as a material

response of a flow field, should not depend on the choice of reference frame [Haller,

2014; Peacock et al., 2015].

The classical theory of dynamical systems provides a comprehensive characteriza-

tion of material coherence for analyzing idealized flows. Specifically, closed stream-

lines around fixed points (i.e., points where velocity vanishes) of centers and KAM

curves (Figure 2.2) constitute the material boundaries of coherent eddies in steady and
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Figure 2.2: The topology of a center and a KAM torus in classical dynamical systems
theory . From Haller [2014].

time (quasi)periodic flows. Over infinitely long time, these idealized eddy boundaries,

along with other types of recurrent structures (e.g., hyperbolic manifolds and jet cur-

rents), dominate tracer patterns and become the root cause of coherence of the entire

flow field [Beron-Vera, 2015]. However, those who apply such theoretical tools soon

find that recurrent structures are unrealistic in real flows because (1) such flows are

highly unsteady, admitting no recurrent structures, and (2) real eddy features do not

create permanent coherence. Indeed, no fixed point or KAM curve may exist in oceanic

flows. Meanwhile, real eddy features have only finite lifetimes.

The geodesic theory of transport barriers [Haller and Beron-Vera, 2012], on the

other hand, provides an objective (i.e., frame-independent) framework for detecting co-

herent material eddies in two-dimensional unsteady flows. This theory led to the devel-

opment of a method, called the geodesic eddy detection, which seeks eddy boundaries

as special closed material lines or surfaces that do not deform at leading order over a fi-

nite time interval in turbulence, which cannot be achieved by Eulerian eddy diagnostics

[Haller and Beron-Vera, 2012, 2013; Beron-Vera, Wang et al., 2013]. Eddies framed as
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such are able to travel with absolutely no leakage over their lifetimes.

In section 2.2 of this chapter, we use two simple analytical examples to highlight

the issue of non-objectivity associated with Euelerian eddy criteria. Then we proceed to

review the mathematical details of geodesic theory of transport barriers in section 2.3,

which is divided into two parts. In the first part we define eddy boundaries as material

lines based on their absolute deformation [Beron-Vera, Wang et al., 2013], while in the

second we seek eddy boundaries as material lines based on their relative deformation

[Haller and Beron-Vera, 2013, 2014]. Finally, we prove that under certain circumstance,

these two definitions of eddy boundaries are consistent with each other.

2.2 The issue with Eulerian eddy detection

We begin by considering the incompressible two-dimensional flow with the streamfunc-

tion defined as

ψ = sin y cos(x− ct), (2.1)

where c is a constant parameter. Such flow can be regarded as being produced by a

Rossby wave travelling in a zonal channel.

According to Eulerian criteria (e.g., regions with nested closed streamlines), this

flow field contains a periodic chain of eddy pairs with alternating polarities comoving

to the right, regardless of the magnitude of wave phase speed c. Yet passive tracer

initialized within one of these “eddies” is not trapped inside but stretched along the

channel (Figure 2.3 top panels).

It is also simple to prove that the zonal flux through any fixed meridional section

across the channel is zero at all times, independent of c. As such, another tempting yet

unverified conclusion could be that this flow does not contain material eddies, despite

the apparent eddy chain structure described by the streamlines.
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However, true material structures in a time dependent system can neither be uncov-

ered by instantaneous Eulerian flow information (e.g., geometry of streamlines) nor in-

ferred from its net flux across a fixed section. Revealing such hidden structures requires,

in most analytical cases, transforming the flow field into a distinguished reference frame

under which the field becomes steady. In this case, such a distinguished frame is the

one co-moving zonally with the same constant speed c, namely, (X, y) = (x − ct, y).

In this frame, the (steady) streamfunction takes the form:

Ψ(X, y) = cy + sin y cosX. (2.2)

As shown in the middle panel of Figure 2.3, varying the phase speed c gives rise

to different flow structures. In particular, as c is increased from 0.1 (middle-left) to 0.5

(middle-middle) to 1 (middle-right), the flow transforms from eddy-dominant to eddy-

jet-coexisting to jet-dominant fields, respectively. In steady flows, streamlines coincide

with trajectories of fluid parcels and are thus true material lines. This is further verified

in the bottom panel of Figure 2.3, where a blob of passive tracer (red) initialized within

a closed isoline of (2.2) at t = 0 (when x = X) is found to preserve its initial shape

under the original system (2.1) with c = 0.5. In contrast, tracer (blue) initially residing

outside of any closed isoline of (2.2) is controlled by meandering jets and advected in

opposite direction under (2.1). In effect, distinct material structures moving in different

directions lead to the zero zonal net flux mentioned above.

The second example, proposed by Haller [2005], is an exact solution of the Navier-

Stokes equation with the velocity field expressed as

v(x, t) =

 sin 4t 2 + cos 4t

−2 + cos 4t − sin 4t

x, (2.3)

where v(x, t) denotes the two-dimensional velocity field and x is two-dimensional lo-
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Figure 2.3: (top) Evolution of a passive tracer initialized within a closed streamline of
the wave field with instantaneous streamlines overlaid, (middle) streamlines of the same
wave field observed in a reference frame co-moving with it, and (bottom) evolution of
a passive tracer initialized inside and outside the transport barrier inferred from the
moving reference frame and advected by the original wave field.
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Figure 2.4: (top) A planar unsteady velocity field identified as an eddy by most Eulerian
criteria. By being transformed into a frame in which the flow becomes steady, however,
the velocity field exhibit a steady saddle flow with no closed transport barriers. Top
panel adopted from Haller [2005]. (bottom) A blob of passive tracer initialized within
the innermost closed streamline is not trapped inside but continuously stretched by the
flow over time. Bottom panel credit Francisco J. Beron-Vera.

cation. System (2.3) highlights the issues with Eulerian eddy detection methods, ac-

cording to which an eddy exists for all time, in particular, streamlines stay closed and

vorticity dominates over strain and shear at all times. Yet tracer initialized within an

inner closed streamline turns out to be controlled by a rotating saddle structure (Fig-

ure 2.4). Indeed, by transforming (2.3) into a reference frame under which the flow

field becomes steady (Figure 2.4 upper panels), one readily observes a saddle structure

within the flow with no closed transport barriers [Haller, 2005].

It should be realized that the above two examples are idealized cases. In realistic

geophysical fluid flows, no distinguished reference frame exists: such flows remain

unsteady in any reference frame [Lugt, 1979]. Conclusions about flow structures and
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material transport, therefore, should not depend on the choice of reference frame. The

issue with nonobjective eddy detection methods is critical to consider when estimating

eddy-induced transport.

2.3 Objective Lagrangian eddy detection

This section presents the mathematical details of geodesic eddy detection [Haller and

Beron-Vera, 2012, 2013, 2014; Beron-Vera, Wang et al., 2013], which brings the de-

sired objectivity into eddy framing.

2.3.1 Mathematical Setup

Consider a two-dimensional unsteady flow field with velocity v(x, t), where x refers to

spatial position in R2 and t is time. The trajectories of fluid particles within this field

satisfy the first order ordinary differential equation:

dx

dt
= v(x, t). (2.4)

The flow map, defined by

F t
t0

:= x(t; t0, x0), (2.5)

takes an initial fluid particle at location x0 and time t0 to its later position x(t; t0, x0) at

time t. For instance, a material curve γ0 at t0 is mapped or advected by the flow into the

curve γt = F t
t0

(γ0), as illustrated in Figure 2.5.

For a smooth velocity field v(x, t), the derivative of the flow map with respect to

the initial positions DF t
t0

is an invertible tensor field [Arnold, 1973], conventionally

called deformation gradient. The deformation gradient serves as the fundamental matrix

solution of the equation of variations,

ẏ = Dv(F t
t0

(x0), t)y, (2.6)
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Figure 2.5: Evolution of a material curve under the flow map in phase space.

where y(t) is an infinitesimal perturbation to a trajectory (Figure 2.6). Specifically,

y(t) = DF t
t0
y(t0). (2.7)

Therefore square of the distance between initially nearby particles,

[y(t)]2 = [DF t
t0

(x0)y(t0)]2 = y(t0) · Ct
t0

(x0)y(t0), (2.8)

where

Ct
t0

(x0) = DF t
t0

(x0)>DF t
t0

(x0) (2.9)

is the right Cauchy-Green strain tensor.

Clearly, C is symmetric. Also, because DF is invertible, C is positive definite,

u>Cu = (DFu)2 > 0 for all u 6= 0. So (2.8) is physically sensible.

Another important property of C is objectivity. To see this consider the coordinate

transformation between two frames unsteadily moving and rotating relatively to each
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Figure 2.6: Evolution of an infinitesimal perturbation to a fluid particle trajectory.

other:

x 7→ x = Q(t)x+ c(t), (2.10)

where Q is a rotation (i.e., Q> = Q−1 and detQ = 1). Then consider the deformation

gradient G = DF t
t0

(x0) = ∂x
∂x0

and the right Cauchy Green strain tensor C = G>G

in the x frame. Under (2.10) the deformation gradient becomes G = ∂x
∂x

∂x
∂x0

= QG,

where a fixed set of reference configuration (i.e., material coordinates) x0 applies to all

reference frames as the continuum body itself is invariant [Truesdell and Noll, 2004].

Finally, the right Cauchy-Green tensor in the frame x is C = G
>
G = (QG)>(QG) =

G>Q>QG = G>G = C. That is, C is not affected by the coordinate transformation,

so is objective or frame invariant.

The frame-invariance of Cauchy-Green strain tensor has fundamental significance

when it is used for extracting coherent structures in continuum medium, as the final

results of material response are consistent for different observers in different reference

frames. In oceanic applications, material features, such as a mesoscale eddy or a front,

identified on the basis of Cauchy-Green strain tensor are self-consistent, regardless of

whether the observation is processed from a satellite, on a ship, or along the coast

[Peacock et al., 2015; Peacock and Haller, 2013].
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Figure 2.7: The geometrical meaning of the eigenvalues and eigenvectors of the
Cauchy-Green Strain tensor

The eigenvalues λi(x0) and normalized eigenvectors ξi(x0) of Ct
t0

satisfy

Ct
t0
ξi = λiξi, |ξi| = 1, i = 1, ..., n; 0 < λ1 6 ... 6 λn, ξi ⊥ ξj, i 6= j. (2.11)

Geometrically, ξi and λi are interpreted as follows (Figure 2.7): an infinitesimally small

circle of initial conditions at t0 is carried and deformed by the flow map into a small

ellipse at time t, the ith principal axis of which is aligned with the vector DF t
t0
ξi and

has the length
√
λi times the radius of the initial circle.

Finally, another important symmetric tensor in classic continuum mechanics is the

Green-Lagrangian strain tensor, defined as

E(x0) =
1

2
[C(x0)− I] , (2.12)

where I is identity matrix. We suppress the dependence of tensors C and E on the finite

time window [t0, t] here for notational simplicity. Note that

E(x0)ξi =
1

2
[C(x0)ξi − Iξi] =

1

2
(λi − 1) ξi. (2.13)

Therefore, a tensor E and its corresponding tensor C share the same set of (normalized)

eigenvectors. Meanwhile, the eigenvalues of E are µi = 1
2
(λi−1). As such, tensor E is

not necessarily positive definite. Indeed, for instance, in two-dimensional incompress-

ible flows, we usually have λ1 < 1 < λ2 at an initial location, therefore µ1 < 0 < µ2.
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It should be noted that E is also invariant to change of reference frames (i.e., objective)

owing to the objectivity of both C and reference configuration of the continuum body.

Geometrically, unlike λi, µi of E measure the difference between an infinitesimally

small circle of initial conditions at time t0 with its advected image under the flow map

F at time t.

2.3.2 Eddy boundaries as extremum curves of absolute deformation

I. Formulation

In classical nonlinear dynamical systems theory, KAM curves are characterized as el-

liptical, closed material lines that resume their initial position periodically or quasiperi-

odically and exhibit strong twisting (i.e., shear) locally. As such, they can be viewed as

idealized coherent eddy boundaries in incompressible two-dimensional (quasi)periodic

flows. A material segment of a KAM curve generally experiences the least absolute

stretching over several periods compared to its neighbouring curves that share the same

endpoints of the segment. Its neighbouring curves are stretched exponentially fast due

to the strong twisting around the reference torus segment (Figure 2.8).

In a two-dimensional unsteady flow defined over a finite time interval, locating at

time t0 the positions of material lines that will stretch the least over the time interval

[t0, t] leads to a variational problem. As shown in Haller and Beron-Vera [2012], the

solutions of this problem are distinguished material curves at time t0 that turn out to be

minimal geodesics (shortest paths) of the metric g(u, v)(x0) = u · Ct
t0

(x0)v generated

by the Cauchy-Green strain tensor Ct
t0

(x0).

Among all geodesics passing through x0, the locally least-stretching geodesic at x0

is of particular interest. This geodesic is tangent to the direction of minimal strain, ξ1,

at x0.
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Figure 2.8: Minimal stretching property for a closed transport barrier (a KAM curve) in
a two-dimensional temporally time T–periodic flow, for large enough iteration numbers
of the Poincare map. Note that fixed-endpoint perturbations to the curve γ0 stretch
longer than γnT , whether or not they were initially longer than γ0. From Haller and
Beron-Vera [2012].

Typical geodesics in a turbulent flow are still stretched by a relatively large amount,

even though they are stretched less than any other curve connecting their endpoints.

Most geodesics, therefore, do not act as observable transport barriers. Observable bar-

riers, however, must necessarily run close to locally least-stretching geodesics. This

means that at each point x0 of an observable transport barrier, both the tangent and the

curvature of the barrier must be close to the tangent and curvature of the locally least-

stretching geodesic through x0. For short, we say that such a barrier is a material line

that is geodesically shadowed over the time interval [t0, t].

Inspired by the local behavior of classical KAM curves, Haller and Beron-Vera

[2012] seek maximizers of Lagrangian shear along a closed material line that is geodesi-

cally shadowed in an objective fashion.

Consider a parametrized material curve γ0 = {x0 = r(s) ⊂ U, s ∈ [s1, s2]} at

initial time t0, where s is arclength. The unit normal vector n0 of this curve on any
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Figure 2.9: (left) A material line γ0 of initial condition in a two-dimensional dynamical
system, with the unit normal vector n0 and unit tangential vector e0 at point x0 on
it. (right) The initial curve γ0 is carried and deformed by the flow map into curve γt
(x0 mapped to xt), with the initial unit normal n0 transformed into vector DF t

t0
(x0)n0

(DF t
t0

(x0)n0 denotes the deformation gradient tensor). The material shear at point xt,
σ, is the projection of DF t

t0
(x0)n0 onto the unit tangetial vector et locally.

point x0 ∈ γ0 can be expressed in terms of the unit tangent vector e0 of this curve on

the same point as

n0 = Ωe0, (2.14)

where Ω is an orthogonal, counterclockwise rotation tensor. It is also simple to prove

that the tangent space Txtγt along the trajectory xt = F t
t0

(x0) of the evolving material

curve γt = F t
t0

(γ0) is the linear span of DF t
t0

(x0)e0 by the chain rule

dF t
t0

(r(s))

ds
= DF t

t0
r′(s) = DF t

t0
e0. (2.15)

Therefore, a unit tangent vector at xt on Txtγt can be expressed as

et = DF t
t0

(x0)e0/|DF t
t0

(x0)e0|. (2.16)

Haller and Beron-Vera [2012] define the Lagrangian shear, σtt0(x0), as the normal
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projection of the linearly transformed unit normal vector DF t
t0

(x0)n0 onto the unit tan-

gent vector et of the advected curve γt (Figure 2.9).

As noted by Haller and Beron-Vera [2012], there is no necessarily explicit reference

to the underlying material line γt, yet one can still compute σtt0 with respect to any

initial point x0 and any initial tangent vector e0 as

σtt0(x0) = DF t
t0

(x0)n0 · et ≡
Ωe0 · Ct

t0
(x0)e0√

e0 · Ct
t0(x0)e0

. (2.17)

The Lagrangian shear (2.17) naturally has two signs: positive σtt0 values correspond

to clockwise shear in the local coordinate frame [ξ1(x0), ξ2(x0)], whereas negative σtt0

values correspond to counterclockwise shear in the same local coordinate frame.

We proceed to seeking the local extrema of σtt0(x0; e0). Without loss of generality,

we rewrite the unit tangent vector e0 as linear combinations of the local coordinate basis

vectors as

e0 = αξ1 + βξ2, (2.18)

with the coefficients α and β yet to be determined. Note that ξ1 and ξ2 are normalized

and orthogonal vectors, therefore we have

|e0|2 = α2 + β2 = 1. (2.19)

Substituting (2.18) into (2.17), we obtain

σtt0(x0, α, β) =
[Ω(αξ1 + βξ2)] · [Ct

t0
(αξ1 + βξ2)]√

(αξ1 + βξ2) · [Ct
t0(αξ1 + βξ2)]

=
(αξ2 − βξ1) · [Ct

t0
(αξ1 + βξ2)]√

(αξ1 + βξ2) · [Ct
t0(αξ1 + βξ2)]

=
αβ(λ2 − λ1)√
α2λ1 + β2λ2

,

(2.20)

where we have fixed the relative direction of local basis vector as ξ2 = Ωξ1.
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At extrema of σtt0(x0), we have

∂σ

∂α
=
β(λ2 − λ1)(α2λ1 + β2λ2)− αβ(λ2 − λ1)αλ1

(α2λ1 + β2λ2)3/2
= 2λα

∂σ

∂β
=
α(λ2 − λ1)(α2λ1 + β2λ2)− αβ(λ2 − λ1)βλ2

(α2λ1 + β2λ2)3/2
= 2λβ,

(2.21)

where λ here is a Lagrange multiplier introduced by the condition (2.19). Equivalently,

we have

(λ2 − λ1)
β3λ2

(α2λ1 + β2λ2)3/2
= 2λα

(λ2 − λ1)
α3λ1

(α2λ1 + β2λ2)3/2
= 2λβ

(2.22)

The quotient of the two equations in (2.22) yields

α

β
= ± 4

√
λ2

λ1

. (2.23)

Combining (2.19) with (2.23) gives the following two directions for e0:

χ± =

√ √
λ2√

λ1 +
√
λ2

ξ1 ±

√ √
λ1√

λ1 +
√
λ2

ξ2. (2.24)

By calculating the second derivatives of |σtt0(x0)|2 with respect to α and β, one readily

verifies that χ± indeed admit local extrema instead of other types of stationary values

of σtt0(x0), which are given by

σtt0(x0, χ±) = ±
√
λ2(x0)−

√
λ1(x0)

4
√
λ1(x0)λ2(x0)

. (2.25)

Haller and Beron-Vera [2012] define orbits of (2.24) as shearlines.

Note that

χ± · Ct
t0
χ± =

√
λ2λ1√

λ1 +
√
λ2

+
λ2

√
λ1√

λ1 +
√
λ2

=
√
λ1λ2. (2.26)

In the incompressible flow case, λ1λ2 = 1, so a shearline resumes its initial arclength

over the finite time interval [t0, t]. In addition, the mapping F t
t0

is area preserving for
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Figure 2.10: Schematic of an elliptic transport barrier. A closed shearline γt0 , computed
from flow data over [t0, t0 + T ] plays the role of a generalized KAM curve. Dashed
line indicates a hypothetical translated and rotated position of γt0 for reference. The
advected material line γt0+T has the same arclength, and encloses the same area as γt0
does. From Haller and Beron-Vera [2012].

all time in such case. This implies that a closed shearline in a two-dimensional incom-

pressible flow will preserve its enclosed area and resume its arclength under the flow

map F t
t0

. In (quasi)periodic dynamical systems, such a simultaneous preservation of en-

closed area and arclength reassumption makes the KAM curves extraordinarily robust,

thereby qualifying as boundaries of idealized eddies. For this particular reason, Haller

and Beron-Vera [2012] classify closed shearlines as generalized KAM curves in aperi-

odic flows, and define the member of a nested family of such lines that is most closely

geodesically shadowed as the boundary of a coherent Lagrangian eddy. Eddy bound-

aries defined as such have particular significance, namely, while a closed shearline may

be substantially translated and rotated by the flow map F t
t0

, it can only be deformed

slightly, because both its enclosed area and arclength must be preserved from the initial

to final times (Figure 2.10).
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II Numerical algorithm

Here we introduce the numerical algorithm for extracting eddy boundaries as closed

shearlines:

1. Fix a finite time interval [t0, t] over which shearlines are to be computed. Con-

struct the flow map F t
t0

by integrating equation (2.4) over a grid G0 of initial

conditions x0.

2. Calculate the Cauchy-Green strain tensor field Ct
t0

(x0), and its eigenvalues fields

λi and eigenvector fields ξi using finite differencing over G0, .

3. Calculate shearlines by solving the ordinary differential equations (2.24), locate

each eddy candidate region filled with limit cycles of (2.24).

4. Extract limit cycles of (2.24) with the aid of a Poincaré section.

5. Find the limit cycle that is most closely shadowed by the least-stretching Cauchy-

Green geodesic in the sense that the geodesic deviation,

dχ±g (x0) = |1− α1|+
∣∣∣∣(α1 +

λ1

λ2

− 1

)
κ1 ∓ α2κ2 ∓

∇α1 · χ±
α2

− ∇λ1 · ξ2

2λ2

∣∣∣∣ ,
where κi(x0) = ∇ξi(x0)ξi(x0) · ξj(x0) and i 6= j, is minimized in the family of

limit cycles.

6. To obtain the location of a coherent Lagrangian eddy at later times, advect the

eddy boundary by the flow map F t
t0

.

2.3.3 Eddy boundaries as stationary curves of relative deformation

On the basis of previous work [Haller and Beron-Vera, 2012], Haller and Beron-Vera

[2013, 2014] provide a generalized framework, geodesic theory of elliptic Lagranigan
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Coherent Structures (LCS), for locating coherent Lagrangian eddies in two dimensional

unsteady flows. Here we review the details of this theory as well as the eddy detection

method based on it.

I Formulation

Consider a closed material belt initialized in a two-dimensional flow field with aperiodic

time dependence (Figure 2.11 left panel). Typically, the centrepiece loop γ (red) and its

neighbouring curves (green) of this belt will be stretched at exponentially fast but very

different rates under the flow map F t
t0

(γ) due to the high sensitivity of initial conditions

in turbulent flow. Over a finite time interval, one readily observes the inhomogeneity

across the belt, as material strain experienced by γ is different from its neighboring

curves.
G. Haller and F. J. Beron-Vera

Typical material belt Coherent material beltHarry clarke's illustration for  
'A Descent into the Maelstrom' 

by Edgar Allan Poe (1841)

FIGURE 1. Edgar Allan Poe’s maelstrom and material belts in turbulence. A closed material
curve � (red) at time t0 is advected by the flow into its later position Ft

t0
(� ) at time t. The

advected curve remains coherent if an initially uniform material belt (green) around it shows no
leading-order variations in stretching after advection.

In unsteady flow, however, Eulerian vortex boundaries are not material barriers. A
fluid mass initialized in an Eulerian vortex will generally lose coherence, showing
stretching and filamentation along the vortex path. The end-result for the fluid mass
is widespread dispersion with little or no directionality (Beron-Vera et al. 2013). Yet
the identification of coherent material vortices is becoming increasingly important in a
number of areas. For instance, mesoscale oceanic eddies are broadly thought to carry
water without substantial leakage or deformation. If their boundaries indeed resist
filamentation, such eddies can create moving oases for the marine food chain (Denman
& Gargett 1983), or even impact climate change through their long-range transport of
salinity and temperature (Beal et al. 2011).

Lagrangian diagnostic tools show that some Eulerian vortices can carry fluid, but
their leakage tends to be substantial (Provenzale 1999; Froyland et al. 2012). A
rigorous approach to finding non-leaking material boundaries has recently emerged,
but focuses only on relatively rare boundaries that maximize Lagrangian shear (Beron-
Vera et al. 2013).

Parallel to these developments, coherent vortices are sometimes described as
whirlpools, or maelstroms, in popular fiction. An early example can be found in
Edgar Allan Poe’s short story entitled A Descent into a Maelström:

‘The edge of the whirl was represented by a broad belt of gleaming spray; but no particle
of this slipped into the mouth of the terrific funnel . . . ’

This literary account depicts a belt-like vortex boundary that keeps particles from
entering its interior (figure 1). Altogether, Poe’s view on vortices is Lagrangian, and
resonates with our intuition for black holes in cosmology.

As we show below, this view turns out to have some merit. When appropriately
modelled, Poe’s coherent belt becomes mathematically equivalent to a photon sphere,
i.e. a surface on which light encircles a black hole without entering it. This
analogy yields computational advantages, which we exploit in locating material eddy
boundaries in the South Atlantic Ocean. Using satellite altimetry-based velocities from
this region, we uncover super-coherent Lagrangian vortices, and derive estimates for
coherent material transport induced by the Agulhas leakage.

731 R4-2

Figure 2.11: (left) Typical material belt exhibits inhomogeneity after a finite time inter-
val in unsteady flows due to the sensitivity of initial condition difference across the belt.
(right) Exceptional material belts within which material loops stretch by the same fac-
tor within a finite time interval, hence exhibiting no leading order variations in material
strain across the belt. From Haller and Beron-Vera [2013].

The geodesic theory of elliptic LCS [Haller and Beron-Vera, 2013, 2014], on the
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other hand, seeks coherent Lagrangian eddy boundaries as material loops embedded in

coherent material belts of fluid elements that resist the aforementioned inhomogeneity

induced by the ambient turbulent flow, exhibiting no leading order change in averaged

material strain (Figure 2.11 right panel). As a result, they do not stretch into, or break

away from the enclosed fluid region.

To describe this coherence principle more mathematically, assume ε > 0 as a mini-

mal threshold over which difference in averaged material strain of nearby loops can be

physically observed over a finite time interval [t0, t]. According to the smooth depen-

dence on initial fluid positions [Arnold, 1973], a strain difference of O(ε) is observable

within an O(ε) width of material belt around a typical closed loop γ. Yet we expect the

O(ε) strain variation to vanish in exceptional material belts.

Consider a smooth, parametrized curve of initial conditions

γ(t0) = γ0 = {x0 = r(s) ⊂ U, s ∈ [s1, s2]}, (2.27)

where s is an arbitrary parameter (e.g., arclength) and U refers to an open domain of

interest; γ0 is carried forward by the flow map into its later position

γ(t) = γt = F t
t0

(γ0). (2.28)

We then denote the length of γ0 and γt as lt0 and lt, respectively, which can be

expressed as

lt0 =
√
r′(s) · r′(s), lt =

√
r′(s) · Ct

t0(r(s))r
′(s), (2.29)

The integrated material strain along γ over [t0, t] is given by

Q(γ) =

∮
lt
lt0

ds. (2.30)

The special material belts of interest must have Q(γ + εh) = Q(γ) +O(ε2), where

εh represents a small perturbation to γ. This requires that the first variation of Q must
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vanish on γ:

δQ(γ) = 0. (2.31)

In other words, γ is a stationary solution of (2.30).

As noted by Haller and Beron-Vera [2013], the calculus of variations (2.31) leads to

Euler-Lagrange equations that provide no immediate insight. Instead of solving them

directly, Haller and Beron-Vera [2013] take advantage of the Noether’s theorem.

In effect, because the Lagrange L(r, r′) =
√

r′·C(r)r′

r′·r′ does not depend explicitely on

s (the time-like variable), the energy (Hamitonian) must be preserved:

L− r′ · ∂r′L ≡ L = const. (2.32)

Therefore, the stationary curves of averaged material strain must satisfy

l2t (r, r
′)− λ2l2t0(r) = 0 (2.33)

for some choice of parameter λ > 0. Material loops of this type are uniformly stretched

by the same factor λ over the time interval [t0, t] and serve as perfectly coherent centre-

pieces of observably coherent material belts.

Haller and Beron-Vera [2013] show that material loops satisfying (2.33) are also

null geodesics of the Lorentzian metric

gλ(u, v) = u · Eλv, Eλ =
1

2
[C(x0)− λ2I], λ > 0 (2.34)

where Eλ denotes an generalization of the classic Green-Lagrangian strain tensor E

(2.12). Similar to E, Eλ is symmetric and generally not positive definite. Geometri-

cally, it measures the deviation of an ellipse generated by a flow map that acts on an

infinitesimal circle of initial conditions from the circle obtained by simply expanding

the same initial condition isotropically by factor λ [Haller, 2014].
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We next substitute (2.29) into (2.33) and obtain

r′ · Ct
t0
r′ − λ2r′ · r′ = 0. (2.35)

We then write the vector r′ as linear combinations of the right Cauchy-Green tensor

eigenvectors as r′ = αξ1 + βξ2, and make r′2 = α2 + β2 = 1 (so r′ is a unit vector),

both of which, after substitution into (2.35), yield:

α = ±

√
λ2 − λ2

λ2 − λ1

, β = ±

√
λ2 − λ1

λ2 − λ1

, λ1 < λ2 < λ2 (2.36)

The problem reduces to seeking limit cycles of the ordinary differential equations:

r′(s) = η±λ (r(s)), η±λ =

√
λ2 − λ2

λ2 − λ1

ξ1 ±

√
λ2 − λ1

λ2 − λ1

ξ2. (2.37)

Such limit cycles, named λ−loops, are found to occur in non-intersecting families

[Haller and Beron-Vera, 2013].

Note that ξ1 and ξ2 are also eigenvectors of tensor Eλ and become ill-defined at

locations where λ1 = λ2. Null-geodesics therefore cannot be extended to points where

Eλ = 0. Topologically (detailed proof is in Appendix D of [Haller and Beron-Vera,

2013]), a family of limit cycles of ηλ constitutes an annular, singularity-free region, but

necessarily encircle clusters of singularities around their center. In the incompressible

context where λ1λ2 = 1, the Cauchy-Green strain tensor at a singularity point becomes

identity matrix (Figure 2.12 left panel).

The limit cycles of (2.37) will either grow or shrink under changes in λ over the

time window [t0, t]. We define the outermost member of a family of such limit cycles

as the coherent Lagrangian eddy boundary (Figure 2.12 right panel). This boundary is

optimal inasmuch as immediately outside of it, no coherent material belts may exist.

Typically, the limit cycles only exist for λ ' 1.



33

Figure 2.12: (left) In two dimensional fluid flows, coherent Lagrangian eddies neces-
sarily contain at least one Green-Lagrangian singularity where the Cauchy-Green strain
tensor becomes identity matrix. (right) Out of all members of nested λ−loops, the
outermost one is defined as the boundary of a coherent Lagrangian eddy

II Numerical algorithm

Numerically, the geodesic eddy detection can be implemented as following steps [Haller

and Beron-Vera, 2013] :

1. Fix a grid G0 of initial conditions and a time scale T over which geodesic eddies

are to be detected. For each initial condition x0 ∈ G0, integrate the differential

equation (2.4) from an initial time t0 to time t = t0 + T to obtain a discrete

approximation of flow map F t
t0

(x0) over G0.

2. Using finite differencing to obtain the deformation gradient field DF t
t0

(x0), then

compute the Cauchy-Green strain tensor field Ct
t0

(x0) and its eigenvalue and

eigenvector fields, λi(x0) and ξi(x0).

3. Locate singularities of Eλ(x0), which limit cycles of (2.37) must encircle. For

an incompressible flow, such singularities can be isolated as intersections of the
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level curves C12 = 0 with the level curves C11 − C22 = 0, where Cij denotes the

ijth entry of Ct
t0

(x0).

4. Locate candidate regions for geodesic eddies whose sizes are in the range of in-

terest. Specifically, fix a length scale L for eddy radii of interest, then isolate

clusters of singularities encircled by annular, singularity-free regions of radius

larger than L.

5. In the candidate region seek the outermost possible limit cycle of (2.37) with the

aid of a Poincaré section. If such a limit cycle exists for λ =1, a primary geodesic

eddy is found.

6. If no limit cycle is found for λ =1, then search for the outermost possible limit

cycle with λ 6=1 by varying λ appropriately. If a limit cycle is found, a secondary

geodesic eddy is located. If no limit cycle is found for any λ, the candidate region

does not contain a geodesic eddy.

7. To track the motion of geodesic eddies in time, obtain their time−t positions by

applying the flow map F t
t0

to their boundaries detected at time t0.
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2.3.4 Equivalence of the two formulations in the incompressible case

When λ = 1 (absolutely no stretching), in the incompressible flow case (λ1λ2 = 1) it

follows that:

η±1 =

√
λ2 − 1

λ2 − λ1

ξ1 ±
√

1− λ1

λ2 − λ1

ξ2

=

√
(λ2 − 1)λ2

λ2
2 − 1

ξ1 ±

√
(1− λ1)λ1

1− λ2
1

ξ2

=

√
λ2

1 + λ2

ξ1 ±
√

λ1

1 + λ1

ξ2

=

√ √
λ2√

λ1 +
√
λ2

ξ1 ±

√ √
λ1√

λ1 +
√
λ2

ξ2

≡ χ±. (2.38)

In other words, in incompressible two-dimensional flows, closed shearlines coincide

with λ = 1 loops.

The difference between closed shearlines and λ−loops can be generalized as follow-

ing: (1) shearlines are extracted based on the local behavior of fluid structures, whereas

λ−loops are stationary solutions to a global variational principle [Haller, 2014]; (2)

in incompressible flows, shearlines do not include λ−loops with λ 6= 1 (i.e., coherent

Lagrangian eddy boundaries experiencing minor stretching or shrinking). As a result,

shearline detection isolates coherent Lagrangian eddies with more restrictions but yields

the most robust eddy candidates in the incompressible case. In contrast, λ−loops permit

minor deformation of eddies. Eddies bounded by λ−loops are therefore more suitable

for quantifying transport as well as detailed analysis of material growth and decay in a

long run, which is explored in chapters 4–5.



Chapter 3

Objective detection of Agulhas rings

3.1 Overview

Mesoscale oceanic eddies are routinely detected from instantaneous velocities derived

from satellite altimetry data. While simple to implement, this approach often gives spu-

rious results and hides true material transport. Here it is shown how geodesic transport

theory, a recently developed technique from nonlinear dynamical systems, uncovers

eddies objectively. Applying this theory to altimetry-derived velocities in the South At-

lantic reveals, for the first time, Agulhas rings that preserve their material coherence for

several months, while ring candidates yielded by other approaches tend to disperse or

leak within weeks. These findings suggest that available velocity-based estimates for

the Agulhas leakage, as well as for its impact on ocean circulation and climate, need

revision. This chapter is published in Journal of Physical Oceanography [Beron-Vera,

Wang et al., 2013].

3.2 Background

Oceanic eddies are commonly envisaged as whirling bodies of water that preserve their

shape, carrying mass, momentum, energy, thermodynamic properties, and biogeochem-

36
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ical tracers over long distances [e.g., Robinson, 1983]. While this widespread view on

eddies is fundamentally Lagrangian (material), most available eddy detection methods

are Eulerian (velocity-based).

Eulerian detection of mesoscale eddies (with diameters ranging from 50 to 250 km)

is routinely applied to instantaneous velocities derived from satellite altimetry mea-

surements of sea surface height (SSH). In some cases, eddies are identified from the

Okubo–Weiss criterion as regions where vorticity dominates over strain [e.g., Isern-

Fontanet et al., 2003; Morrow et al., 2004; Chelton et al., 2007; Henson and Thomas,

2008]. In other cases, eddies are sought as regions filled with closed streamlines of the

SSH field [e.g., Goni and Johns, 2001; Fang and Morrow, 2003; Chelton et al., 2011b,a],

or as features obtained from a wavelet-packet decomposition of the SSH field [Doglioli

et al., 2007; Turiel et al., 2007]. These detection methods invariably use instantaneous

Eulerian information to reach long-term conclusions about fluid transport. Furthermore,

they give different results in reference frames that move or rotate relative to each other.

The problem with the use of instantaneous velocities is their inability to reveal long-

range material transport and coherence in unsteady flows [Batchelor, 1964]. An exam-

ple is shown in Fig. 3.1, where the instantaneous velocity field is classified as eddy-like

for all times by each of the Eulerian criteria mentioned above. Specifically, vorticity

dominates over strain, and streamlines are closed for all times. Yet actual particle mo-

tion turns out to be governed by a rotating saddle point with no closed transport barriers

Figure 3.1 also highlights the issue with frame-dependent eddy detection, whether

Eulerian or Lagrangian. Truly unsteady flows have no distinguished reference frames:

such flows remain unsteady in any frame [Lugt, 1979]. Conclusions about flow struc-

tures, therefore, should not depend on the chosen frame, because it is not a priori known

which—if any—frame reveals those structures correctly.
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Figure 3.1: A planar unsteady velocity field identified as an eddy by Eulerian criteria.
In an appropriate rotating frame, however, the velocity field becomes a steady saddle
flow with no closed transport barriers. From Haller [2005].

Beyond conceptual problems, Eulerian eddy detection yields noisy results, necessi-

tating the use of filtering and threshold parameters. Applying such detection methods

to altimetry data, Souza et al. [2011b] report variabilities up to 50% in the number of

eddies detected, depending on the choice of parameters and filtering methods. A sys-

tematic comparison of these varying numbers with actual material transport is difficult

because of the sparseness of in-situ hydrographic measurements and Lagrangian data.

In particular, most useful drifter trajectory data are only available from dedicated exper-

iments, and satellite ocean color imagery is constrained by cloud cover or the absence

of biological activity. This in turn implies that Eulerian predictions for Lagrangian eddy

transport have remained largely unverified.

These shortcomings of contemporary eddy detection are important to consider when

quantifying transport by eddies. For instance, recent studies suggest that long-range

transport by anticyclonic mesoscale eddies (Agulhas rings) pinched off from the Ag-

ulhas Current retroflection is a potential moderating factor in global climate change.

Known as the largest eddies in the ocean [Olson and Evans, 1986], Agulhas rings trans-

port warm and salty water from the Indian Ocean into the South Atlantic (Agulhas

leakage). They may also possibly reach the upper arm of the Atlantic Meridional Over-
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turning Circulation (AMOC) when driven northwestward by the Benguela Current and

its extension [Gordon, 1986]. Following an apparent southward shift in the subtropical

front [Ridgway and Dunn, 2007], the intensity of the Agulhas leakage has been on the

rise [Biastoch et al., 2009], leading to speculation that it may counteract the slowdown

of the AMOC due to Arctic ice melting in a warming climate [Beal et al., 2011]. To

assess this conjecture, an accurate Lagrangian identification of Agulhas rings is critical.

Indeed, most eddies identified from Eulerian footprints will disperse over relatively

short times. While some of these dispersing features still drag water in their wakes,

the transported water will stretch and fold due to the lack of a surrounding, coherent

material boundary. As a consequence, distinguished features of the transported water,

such as high temperature and salinity, will be quickly lost due to enhanced diffusion

across filamented material boundaries.

Counteracting the effects of melting Arctic ice on AMOC requires a supply of warm

and salty water [Beal et al., 2011]. Agulhas rings with persistent and coherent mate-

rial cores deliver this type of water directly from its source, the Agulhas leakage. By

contrast, transient Eulerian ring-like features mostly stir the ocean without creating the

clear northwest pathway for temperature and salinity envisioned by Gordon [1986].

In steady flow, coherent material eddies are readily identified as regions of closed

streamlines. In near-steady flows with periodic time dependence, the Kolmogorov–

Arnold–Moser (KAM) theory [cf., e.g., Arnold et al., 2006] reveals families of nested

closed material curves (so-called KAM curves) that assume the same position in the

flow after each temporal period. An outermost such KAM curve from a given family,

therefore, plays the role of a coherent material eddy boundary. This result extends

to near-steady time-quasiperiodic flows, in which KAM curves are quasiperiodically

deforming closed material lines [Jorba and Simó, 1996].
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Identifying similar material boundaries for coherent eddies in general unsteady

flows has been an open problem. Recently, however, Haller and Beron-Vera [2012]

developed a new mathematical theory of transport barriers that, among other features,

identifies generalized KAM curves (elliptic transport barriers) for arbitrary unsteady

flows. Here we use this new theory to devise a methodology, geodesic eddy detection,

for the objective identification of Lagrangian eddy boundaries in the ocean.

Analyzing altimetry measurements in the eastern side of the South Atlantic subtrop-

ical gyre, we find that geodesic eddy detection significantly outperforms available Eu-

lerian and Lagrangian methods in locating long-lived and coherent Agulhas rings. An

independent analysis of available satellite ocean color (chlorophyll) data corroborates

our results by showing localized and persistent biological activity in an eddy identi-

fied using geodesic eddy detection. Our findings suggest that Eulerian estimates of the

volume of water transported by Agulhas rings in a coherent manner are significantly

exaggerated.

3.3 Methodology

3.3.1 Dynamical systems setup

Consider an unsteady flow on the plane with velocity field v(x, t), where x = (x, y) de-

notes position and t is time. The evolution of fluid particle positions in this flow satisfies

a nonautonomous dynamical system given by the following differential equation:

dx

dt
= v(x, t). (3.1)

Material transport in (3.1) is determined by the properties of the flow map,

F t
t0

: x0 7→ x(t;x0, t0), (3.2)



41

Figure 3.2: A fluid domain at time t0, D(t0), deformed under the flow map, F t
t0

: x0 7→
x(t;x0, t0), into a domain D(t) at time t 6= t0 along fluid particle trajectories. From
Beron-Vera, Wang et al., [2013].

which takes an initial fluid particle position x0 at time t0 to its later position x(t; t0,x0)

at time t 6= t0, along trajectories of (3.1) (Fig. 3.2).

When obtained from satellite altimetry (cf. section 3.3.5), the velocity field in (3.1)

is a temporally aperiodic, highly unsteady finite-time dataset. Material transport in the

resulting flow, therefore, cannot be described by classic dynamical systems methods,

such as those surveyed by Ottino [1989]. Instead, we adopt the recent approach of

Haller and Beron-Vera [2012] by seeking transport barriers in (3.1) near least-stretching

material lines.

3.3.2 Transport barriers as geodesics

As noted in Haller and Beron-Vera [2012], the least-stretching behavior of transport

barriers is observed in several canonical flow examples where they are known to exist.

Examples include steady flow around a stagnation point, steady shear jet flow, and

steady circular shear flow.

Of particular relevance for our purposes here is the steady circular shear flow, the

prototype of a coherent eddy. The least-stretching property of circular transport barriers

in this flow is illustrated in Fig. 3.3. Indeed, for sufficiently long time, perturbations to
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Figure 3.3: Minimal stretching property of a material curve γt0 , for times t sufficiently
larger than t0, in a steady circular shear flow among material curves with the same
endpoints, γ̂t0 and γ̄t0 . Note that γ̂t0 and γ̄t0 stretch longer than γt, regardless of whether
they are initially shorter or longer than γt0 . From Beron-Vera, Wang et al., [2013].

a reference material curve lying on a closed streamline grow longer than the reference

curve, even if the perturbation was initially shorter than this curve.

Similar behavior is seen for KAM curves in near-steady time-periodic and quasiperi-

odic flows. As noted earlier, nested families of KAM curves in such flows objectively

indicate the presence of coherent material eddies. The stretching of material lines off a

KAM curve is due to the twist (shear) across the curve, which may be even magnified

by the presence of resonance islands.

In a time-aperiodic flow defined over a finite-time interval, locating at time t0 the

positions of material lines that will stretch the least over the time interval [t0, t] leads

to a variational problem. As shown in Haller and Beron-Vera [2012], the solutions of

this problem are distinguished material curves at time t0 that turn out to be minimal
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geodesics (shortest paths) of the metric generated by the Cauchy–Green strain tensor,

Ct
t0

(x0) = ∇F t
t0

(x0)>∇F t
t0

(x0), (3.3)

where > denotes transpose and∇ refers to the spatial gradient operator.

From each point x0 in the initial flow configuration, Cauchy–Green geodesics em-

anate in all possible directions. In fact, any pair of points on the plane are connected by

a unique Cauchy–Green geodesic, which is locally the least-stretching material line out

of all material lines connecting those two points (Fig. 3.4a).

Among all geodesics passing through x0, the locally least-stretching geodesic at x0

is of particular interest. This geodesic is tangent to the direction of minimal strain at x0.

More specifically, consider

Ct
t0
ξi(x0) = λi(x0)ξi(x0), 0 < λ1(x0) ≤ λ2(x0), |ξi(x0)| = 1, i = 1, 2, (3.4)

where λi(x0) and ξi(x0) are the ith eigenvalue and eigenvector of Ct
t0

(x0), respectively,

and | · | denotes Euclidean norm. Then the locally least-stretching geodesic through x0

is tangent to the weakest strain eigenvector at x0, ξ1(x0), as shown in Fig. 3.4a.

Typical geodesics in a turbulent flow still stretch by a relatively large amount,

even though they stretch less than any other curve connecting their endpoints. Most

geodesics, therefore, do not act as observable transport barriers. Observable barriers,

however, must necessarily run close to locally least-stretching geodesics. This means

that at each point x0 of an observable transport barrier, both the tangent and the cur-

vature of the barrier must be close to the tangent and curvature of the locally least-

stretching geodesic through x0. For short, we say that such a barrier is a material line

that is geodesically shadowed over the time interval [t0, t].
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Figure 3.4: (a) Cauchy–Green geodesics emanating from an initial position x0, rep-
resenting least-stretching curves out of all material curves connecting two initial posi-
tions, such as x0 and x̂0. The locally least-stretching geodesic at x0 is tangent to the
weakest strain eigenvector ξ1 of the Cauchy–Green tensor, a quantity commonly used to
measure deformation in continuum mechanics. (b) Shearlines are curves tangent to the
Lagrangian shear vector fields χ±, along which an objective (i.e., frame-independent)
measure of shear is maximized. A shear barrier at time t0 between points a and b is a
shearline shadowed by locally least-stretching geodesics. (c) Closed shearlines are limit
cycles of the χ± vector fields. (d) A geodesic eddy boundary is a member of a nested
limit cycle family with the smallest average geodesic deviation. The family may also
just consist of one member. From Beron-Vera, Wang, et al., [2013].



45

3.3.3 Shear barriers

With the behavior of streamlines in the steady circular flow example in mind, it is natural

to seek the transport barriers of interest as those maximizing shear. An appropriate

frame-independent form of shear in unsteady flows is given by the Lagrangian shear,

defined as the tangential projection of the linearly advected normal to a material line.

As shown in Haller and Beron-Vera [2012], Lagrangian-shear-maximizing transport

barriers (or shear barriers) over [t0, t] turn out to be geodesically shadowed trajectories

of the Lagrangian shear vector fields

χ±(x0) = α1(x0)ξ1(x0)±α2(x0)ξ2(x0), αi(x0) =

√ √
λj(x0)√

λ1(x0) +
√
λ2(x0)

, i 6= j.

(3.5)

Closeness of a trajectory (or shearline) of (3.5) to its shadowing least-stretching geodesic

at x0 can be computed as the sum of their tangent and curvature differences. This sum,

the geodesic deviation of a shearline, can be proven to be equal to [Haller and Beron-

Vera, 2012]

dχ±g (x0) = |1− α1|+
∣∣∣∣(α1 +

λ1

λ2

− 1

)
κ1 ∓ α2κ2 ∓

∇α1 · χ±
α2

− ∇λ1 · ξ2

2λ2

∣∣∣∣ , (3.6)

where

κi(x0) = ∇ξi(x0)ξi(x0) · ξj(x0), i 6= j, (3.7)

is the curvature of the curve tangent to the ith strain eigenvector field at x0 (Fig. 3.4b).

Shear barriers are either open curves (parabolic barriers) or closed curves (elliptic

barriers). While sets of parabolic barriers generalize the concept of a shear jet to arbi-

trary unsteady flow, elliptic barriers generalize the concept of a KAM curve. As limit

cycles of the shear vector field (Fig. 3.4c), elliptic barriers are robust with respect to per-

turbations of the underlying velocity data, and hence smoothly persist under moderate

noise and small changes to the observational time interval [t0, t].
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3.3.4 Eddy boundaries

If elliptic barriers occur in a nested family, the outermost barrier is the physically ob-

served eddy boundary, enclosing the largest possible coherent water mass in the region.

Outermost elliptic barriers, however, also tend to be the most sensitive to errors and

uncertainties in the velocity data.

Figure 3.5: Schematics of a closed shearline γt0 computed using flow data over the
time interval [t0, t]. The dashed curve indicates a translated and rotated position of γt0
for reference. If the flow is incompressible, the advected material line γt has the same
arclength, and encloses the same area, as γt0 . From Beron-Vera, Wang, et al., [2013].

To obtain a robust eddy boundary, we select the member of a nested family of closed

shearlines which has the lowest average geodesic deviation, 〈dχ±g 〉, in the family (Fig.

3.4d). As discussed in Haller and Beron-Vera [2012], 〈dχ±g 〉 along an elliptic barrier

measures how much the barrier extraction procedure has converged over the time in-

terval [t0, t]. Accordingly, an elliptic barrier with the lowest 〈dχ±g 〉 value in a nested

family of barriers is the best eddy barrier candidate. As such, it is also the least suscep-

tible to errors and uncertainties. Based on these considerations, geodesic eddy detection

comprises the algorithmic steps described in section 3.3.6.

We finally note that, in incompressible flows, elliptic barriers have two important
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conservation properties: 1) they preserve the area they enclose, and 2) they reassume

their initial arclength at time t (Fig. 3.5) [Haller and Beron-Vera, 2012]. These two

properties make elliptic barriers ideal boundaries for coherent eddy cores.

3.3.5 Velocity data

Eulerian eddy detection is routinely applied to satellite altimetry measurements, a unique

source of SSH data for global monitoring of mesoscale variability available continu-

ally since the early 1990s [Fu et al., 2010]. The basis for this is the assumption of

a geostrophic balance in which the pressure gradient is caused by differences in SSH,

with the resulting currents reflecting an integral dynamic effect of the density field above

the thermocline.

The velocity field v(x, t) in (3.1) is thus assumed to be of the form:

v(x, t) =

(
− g
f

∂η(x, t)

∂y
,
g

f

∂η(x, t)

∂x

)
. (3.8)

Here x = (x, y) denotes position on a plane with Cartesian x (y) zonal (meridional)

coordinate; η(x, t) denotes SSH; f is the Coriolis parameter (twice the local vertical

component of the Earth’s angular velocity); and g is the acceleration of gravity. While

we choose to work on a planar domain here for simplicity, the underlying geodesic

transport theory also applies to flows on a sphere [Haller and Beron-Vera, 2012].

The background η-component is steady, given by a mean dynamic topography con-

structed from altimetry data, in-situ measurements, and a geoid model [Rio and Her-

nandez, 2004]. The perturbation η-component is transient, given by altimetric SSH

anomaly measurements provided weekly on a 0.25◦-resolution longitude–latitude grid.

This perturbation component is referenced to a 7-yr (1993–1999) mean, obtained from

the combined processing of a constellation of available altimeters [Le Traon et al.,

1998].
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3.3.6 Numerical implementation

Geodesic eddy detection for the flow defined by (3.1) and (3.8) involves the following

computational steps:

1. Fix a grid G0 of initial positions in the flow domain of interest, and time scale T

over which coherent eddies are to be tracked. For each initial condition x0 ∈ G0,

integrate the nonautonomous dynamical system (3.1) from an initial time t0 to

time t = t0 + T . This leads to a discrete approximation of the flow map F t
t0

(3.2)

over the grid G0.

2. Compute the deformation gradient field∇F t
t0

(x0). Using central differences over

a rectangular G0 this can be achieved as follows. Let xi,jt = (xi,jt , y
i,j
t ) denote the

image under the flow map F t
t0

of a point xi,j0 = (xi,j0 , y
i,j
0 ) ∈ G0. Then

∇F t
t0

(xi,j0 ) =


xi+1,j
t − xi−1,j

t

xi+1,j
0 − xi−1,j

0

xi,j+1
t − xi,j−1

t

yi,j+1
0 − yi,j−1

0

yi+1,j
t − yi−1,j

t

xi+1,j
0 − xi−1,j

0

yi,j+1
t − yi,j−1

t

yi,j+1
0 − yi,j−1

0

 . (3.9)

3. Construct the Cauchy–Green strain tensor fieldCt
t0

(x0) defined in (3.3), and com-

pute its eigenvalue and eigenvector fields, λi(x0) and ξi(x0), as defined in (3.4).

The following are explicit formulas:

λ1 = 1
2
T −

√
1
4
T 2 −D, λ2 = 1

2
T +

√
1
4
T 2 −D, (3.10)

where T and D denote trace and determinant of Ct
t0

(x0), respectively, and

ξ1 =

 0 1

−1 0

 ξ2, ξ2 =


C12√

(C11 − λ2)2 + C2
12

C11 − λ2√
(C11 − λ2)2 + C2

12

 , (3.11)

where Cij is the ijth entry of Ct
t0

(x0).
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4. Compute the trajectories of the shear vector fields χ±(x0), defined in (3.5), by

solving the differential equation

dx0(s)

ds
=

(
χ±(x0(s)) · dx0(s−∆)

ds

)
χ±(x0(s)), (3.12)

with ∆ denoting the integration step in s. The factor multiplying χ±(x0(s)) in

(3.12) removes orientational discontinuities in χ±(x0(s)) arising from the lack of

a global orientation for ξi(x0) [cf. Haller and Beron-Vera, 2012, for details].

5. In the phase portrait of χ±(x0), locate all nested families of limit cycles. Such

closed shearlines can be located as fixed points of Poincare maps defined on one-

dimensional sections locally transverse to trajectories of (3.12). To construct a

Poincare map, one considers a trajectory with initial condition on the section and

observes the location at which this trajectory first returns to the section; a fixed

point is given by an initial condition that is mapped onto itself [cf., e.g., Ottino,

1989, Section 5.5].

6. In each nested family of limit cycles, locate a geodesic eddy boundary at time

t0 as the limit cycle with the lowest average geodesic deviation 〈dχ±g (x0)〉, with

dχ±g (x0) defined in (3.6).

7. To track geodesic eddies in time, find their time t positions by applying the flow

map F t
t0

to geodesic eddy boundaries identified at time t0.

3.3.7 Numerical details

All trajectory integrations in this paper were carried using a stepsize-adapting fourth-

order Runge–Kutta method. The interpolations involved were obtained from a cubic

scheme. Differentiation was executed using finite differences on an auxiliary grid of
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four points neighboring each point in a regular grid of size 20002. Geodesic eddy de-

tection was initialized by searching for regions possibly including closed shearlines.

This process was started on a coarser grid of points covering the whole geographical

domain of interest. Once a potential geodesic eddy region was identified, a refined cal-

culation in that region was conducted. This involved launching shearlines on a straight

segment of 2500 grid points. The Poincare section was appropriately located across

the region to construct a first return map onto this segment for the computation of limit

cycles.

3.4 Results

We consider a region of the South Atlantic subtropical gyre, bounded by longitudes

[14◦W, 9◦E] and latitudes [39◦S, 21◦S], which encompasses possible routes of Agulhas

rings (dashed rectangle in each panel of Figs. 3.7 and 3.8). The same region has been

analyzed by Beron-Vera et al. [2008], who showed that the finite-time Lyapunov expo-

nent, a widely used Lagrangian diagnostic [Haller, 2001; Peacock and Dabiri, 2010],

does not reveal coherent material eddies. More recently, the same area was also stud-

ied by Lehahn et al. [2011], who reported observations of a nearly isolated mesoscale

chlorophyll patch, traversing the region in the period from November 2006 to Septem-

ber 2007.

We apply geodesic eddy detection to altimetry-derived currents (cf. section 3.3.5) in

the selected region starting on t0 = 24 November 2006, with the detection time scale set

to T = t − t0 = 90 d. Following the algorithmic steps described in section 3.3.6, with

numerical details given in section 3.3.7, geodesic eddy detection isolates two coherent

material eddies (denoted geodesic eddies). The boundary of the first eddy is obtained

as a limit cycle of the χ+(x0) shear vector field, with an anticyclonic polarity. The
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Figure 3.6: Identification of a coherent material eddy boundary on t0 = 24 Novem-
ber 2006 from geodesic eddy detection with detection time scale T = t − t0 = 90
d. Marked in red, the eddy boundary is obtained as an average-geodesic-deviation-
minimizing member of a nested family of limit cycles of the Lagrangian shear vector
field χ+. The full limit cycle family is shown in blue in the upper panel, with grey ar-
rows indicating the χ+ vector field. The middle panel shows the first return (Poincare)
map, x 7→ P (x), onto a section Σ locally transverse to χ+ vector field. Dots indicate
the fixed points of the Poincare map, P (x) = x, corresponding to each of the limit
cycles. The bottom panel shows the distribution of the average geodesic deviation over
the limit cycles. From Beron-Vera, Wang et al., [2013].
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boundary of the second eddy is recovered as a limit cycle of the χ−(x0) field, with a

cyclonic polarity. The extraction of the anticyclonic eddy boundary is detailed in Fig.

3.6. The geographical locations of the two eddies identified on 24 November 2006 are

shown in the upper-left panel of Fig. 3.7, with the anticyclonic eddy indicated in red

and the cyclonic eddy in blue.

The remaining panels in the left column of Fig. 3.7 show several later advected

positions of the two geodesic eddies to illustrate their coherence. Note the complete

lack of material filamentation or leakage from these eddies over 90 d. This can be

seen in more detail in the left column of Fig. 3.9, which shows the two eddies on the

detection date and 90 d later. Closed material lines like the boundaries of these eddies

are highly atypical in an otherwise turbulent flow. Their role is indeed best compared

to the role of KAM curves in time-periodic or quasiperiodic flows.

Remarkably, the coherence of the anticyclonic eddy is preserved well over the 90-d

period on which our computations were performed (Fig. 3.7, left column). Indeed, this

eddy preserves its coherence even 540 d later, exhibiting only translation, rotation, and

minor deformation without noticeable leakage, stretching or folding. The remarkable

coherence of this eddy can attributed to its interior being foliated by a large number of

nested closed shearlines. The inner shearlines are less exposed to the ambient turbu-

lent mixing than the outer ones, thereby providing a stability buffer for the eddy. By

contrast, the boundary of the cyclonic eddy is the only member of a family of nested

closed shearlines. With the stability buffer absent, the boundary of this eddy exhibits

filamentation immediately after 90 d.

For comparison, the remaining columns of Fig. 3.7 illustrate the accuracy of the two

most widely used Eulerian eddy diagnostics and one recent Lagrangian eddy diagnostic

on the same dataset.
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Figure 3.7: (left) Selected snapshots of the 90-day evolution of fluid inside eddies iden-
tified by geodesic eddy detection; (middle left) the method of Chelton et al. [2011b]
with U/c > 1 over at least 90 days; (middle right) the OkuboWeiss (OW) criterion; and
(right) the criterion of Mézic et al. [2010]. From Beron-Vera, Wang et al., [2013].
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The middle-left column of Fig. 3.7 shows the material evolution of eddies (denoted

SSH eddies) obtained from the method of Chelton et al. [2011b], who argue that closed

SSH contours can play roughly the same role in inhibiting transport as closed stream-

lines do in steady flows. Chelton et al. [2011b] suggest that this should be the case

when the rotational speed of the eddy, U , dominates its translational speed, c [cf. also

Early et al., 2011]. More specifically, Chelton et al. [2011b] propose that U/c > 1

should signal the presence of a coherent eddy, as opposed to a linear wave (U/c < 1).

However, as revealed by the Lagrangian evolution of closed SSH contours in the upper-

middle row of Fig. 3.7 (all with U/c > 1 over at least 90 d), most such contours rapidly

stretch and fold, exhibiting leakage and filamentation that disqualifies them as physi-

cally reasonable coherent material eddy boundaries. Only two SSH eddies approximate

coherent geodesic eddies on 24 November 2006 (Fig. 3.9, middle-left column). How-

ever, both eddies exhibit almost instantaneous material filamentation beyond that date.

The panels in the right column of Fig. 3.8 further demonstrate the inability of an SSH

eddy with U/c > 1 for a period of at least 540 d to trap and carry within water in

a coherent manner. We conclude that the SSH contour approach, with or without the

U/c > 1 requirement,1 shows major inaccuracies in detecting material eddies, includ-

ing the overestimation of coherent material eddy cores, as well as the generation of a

large number of false positives.

The middle-right column of Fig. 3.7 documents similar findings for the Okubo–

Weiss criterion [Okubo, 1970; Weiss, 1991], the other broadly used frame-dependent

Eulerian method for eddy identification. Relative to a reference frame, this method

identifies eddies (denoted OW eddies) as regions of fluid where vorticity dominates

over strain. The regions indicated in black qualify as OW eddies in the Earth’s frame

1Indeed, U/c→∞ in the flow defined in Fig. 3.1.
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Figure 3.8: Selected snapshots of the 540-day evolution of fluid inside (left) a geodesic
eddy and (right) an SSH eddy. The instantaneous SSH contour that defines the SSH
eddy, which has U/c > 1 over at least 540 days, is indicated. From Beron-Vera, Wang
et al., [2013].
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on 24 November 2006. In a similar manner to SSH eddies, coherent geodesic eddies

on 24 November 2006 are roughly approximated by two OW eddies, which deform

rapidly after that date (Fig. 3.9, middle-right column). The remaining OW eddies are

false positives for Lagrangian eddies: they undergo intense stretching and filamentation,

before fully dispersing a few months later. We conclude that when used for coherent

material eddy detection, the Okubo–Weiss approach also shows major inaccuracies.

This includes the inability to capture actual coherent eddies accurately, as well as well

as the tendency to generate numerous false positives. False negatives also arise once

threshold values (not discussed) are introduced for the Okubo–Weiss parameter.

Recent application of Okubo-Weiss criterion in studying the physical-biological in-

teractions of the Southern Ocean also gives rise to combined Eulerian-Lagrangian eddy

retention diagnostics [d’Ovidio et al., 2013]. In that study, instantaneous Okubo-Weiss

parameters are calculated along trajectories of fluid particles over time, and the change

of sign of the parameter signals the trapping inside, or escaping from, a coherent eddy of

the fluid. Similar philosophy can be found in the study by van Sebille et al. [2010], who

calculate the relative vorticity along fluid particles released from the Agulhas Current

flowing into the South Atlantic Ocean in a numerical model, and find out that along-

trajectory vorticity keeps decreasing over time, which implies that Agulhas rings decay

fast. Another advanced, combined Euler-Lagrangian criterion in isolating oceanic rota-

tional or non-rotational features is the spin parameters (e.g., [Doglioli et al., 2006]), de-

fined as Ω = 〈u′dv′−v′du′〉
2∆EKE

, whereEKE denotes the eddy kinetic energy (〈u′2〉+〈v′2〉)/2.

An essential difference between the spin parameter calculation and other two methods

is that Ω is an average value over a fixed time window, thereby incorporating more La-

grangian information. However, all these methods require Eulerian fingerprints from

the flow field, which depends on the reference frame chosen and often fails to reveal
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material response, and are therefore yet to be tested on detecting isolated material ed-

dies.

We now proceed to consider the application of the more recent Lagrangian eddy

diagnostic of Mézic et al. [2010]. This approach views a fluid region at time t0 as a

mesoelliptic region if the eigenvalues of the deformation gradient ∇F t
t0

(x0) are purely

imaginary for all x0 in that region. Even though this approach is Lagrangian, the eigen-

values of ∇F t
t0

(x0) are frame-dependent, and hence the resulting eddy candidates are

not objective. As noted in Mézic et al. [2010], mesoelliptic regions approach Okubo–

Weiss elliptic regions as t tends to t0. For increasing T = t − t0, mesoelliptic regions

(denoted ME eddies) tend to rapidly fill the full domain of extraction, as most initial

conditions accumulate enough rotation in their evolution to create imaginary eigenval-

ues for∇F t
t0

(x0). As a result, identifying ME eddies over time scales longer than a few

days becomes unrealistic. Instead, we have chosen to use T = 4 d, following Mézic

et al. [2010].

Shown in the right colum of Fig. 3.7, ME eddies resemble OW eddies closely, as

expected. In a fashion similar to OW eddies, only two ME eddies approximate the

geodesic eddies detected on 24 November 2006. Just as OW eddies, these ME eddies

develop substantial material filamentation beyond that date (Fig. 3.9, right column).

Independent observational evidence for the Lagrangian eddies can be inferred from

surface ocean chlorophyll concentration in the South Atlantic. Figure 3.10 shows a

sequence of snapshots of chlorophyll concentration derived from the MODIS (Moder-

ate Resolution Imaging Spectroradiometer) sensor aboard the Aqua satellite. Note the

patch of high chlorophyll concentration, discussed in Lehahn et al. [2011], which trans-

lates inside the anticyclonic geodesic eddy detected on 24 November 2006 from this

date through 23 May 2007. Due to the lack of filamentation in the ring boundary, the
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Figure 3.9: Fluid positions of eddy candidates obtained from different detection meth-
ods on t0 = 24 Nov 2006 and 90 days later. (middle left, middle right, and right columns)
The red and blue eddy candidates by other eddy detection methods are the closest ones
to (left) the similarly colored geodesic eddies. From Beron-Vera, Wang et al., [2013].

diffusion of chlorophyll is moderate and remains confined to the periphery of the ring.

This observation confirms the ability of Lagrangian eddies to preserve the concentration

peaks of diffusive substances over long distances.

We now derive estimates for the volume of water carried by eddies obtained from

different methods. For simplicity, we assume that the eddies are quasigeostrophic and

equivalent barotropic, with their base lying on the 10◦C-isotherm at a depth of 400 m

[Garzoli et al., 1999]. We argue that such a ring depth value should be considered as a

lower bound. Indeed, Souza et al. [2011a] reported that mature Agulhas ring trapping

depth can extend to 1000 m based on float-profiling hydrography. Under these assump-

tions, we obtain the volume estimates in Table 3.1 for a single day, with other dates

giving similar results. The volume estimates are grouped by the polarity of the eddies

involved, with anticyclonic eddies being candidates for Agulhas rings.

OW eddies have been reported to overestimate eddy transport rates based on com-

parisons with other Eulerian estimates [Souza et al., 2011b], as opposed to comparisons

with observed material transport. The volume estimates in Table 3.1 show that even

other Eulerian indicators, such as closed streamlines of the SSH field with U/c > 1
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Figure 3.10: Sequence of snapshots of satellite-derived surface ocean chlorophyll con-
centration with the boundary of the anticyclonic geodesic eddy detected on 24 Nov
2006 overlaid. The color scale varies from figure to figure to aid the visualization of
chlorophyll anomalies. From Beron-Vera, Wang et al., [2013].
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Geodesic eddies SSH eddies OW eddies ME eddies
Cyclonic 0.5 11.5 19.2 19.8
Anticyclonic 1.0 23.5 35.4 37.2

Table 3.1: Estimated volume [104 km3] of water warmer than 10◦C carried by eddies on
24 November 2006, grouped by their polarity, as identified by different eddy detection
methods [Beron-Vera, Wang et al., 2013].

as proposed by Chelton et al. [2011b], significantly overestimate the volume of coher-

ent material eddies. The same observation applies to the Lagrangian indicator intro-

duced by Mézic et al. [2010]. A recent set-theoretical study [Froyland et al., 2012] of

a three-dimensional Agulhas ring produced by an ocean general circulation model also

yields results similar to those from the Eulerian techniques surveyed here. This pro-

vides further illustration that Lagrangian approaches also lead to exaggerated transport

estimates, if they fail to capture the frame-independent details of material stretching.

Note that the coherently transported water mass (Table 3.1, left column) is carried

mostly by an anticyclonic geodesic eddy. As an impermeable whirling body of wa-

ter showing minor deformation over roughly a year-and-a-half period, such an eddy

represents an exact mathematical construction of what has been (somewhat loosely)

defined as a mesoscale ring in oceanography. Furthermore, this particular ring is best

referred to as an Agulhas ring, as its backward-time advection (not shown) to the Agul-

has retroflection area confirms. Thus, by Table 3.1, actual transport of warm and salty

water by (coherent material) Agulhas rings is about one order of magnitude less than

what can be deduced from available nonobjective eddy detection methods.

To illustrate the general validity of these conclusions, we present in Table 3.2 the

results from a more extended survey of the volume carried by geodesic and SSH eddies

in the years 1997, 2002, and 2007. In agreement with the results discussed above, the

volume of eddies identified in the Eulerian frame is found to be always significantly
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Year 1997 Year 2002 Year 2007
Geodesic eddies 7 (5) 10 (9) 9 (7)
SSH eddies 63 (29) 62 (36) 57 (27)

Table 3.2: Estimated volume [104 km3] of water warmer than 10◦C carried by eddies
along the years. Indicated in parenthesis is the volume estimate corresponding to eddies
with anticyclonic polarity [Beron-Vera, Wang et al., 2013].

larger than that of geodesic eddies, thereby overestimating the volume of water that can

be transported coherently. Clearly, to correctly assess the role of geodesic eddies in the

Agulhas leakage, a detailed survey is needed. This should include a backward tracking

of the geodesic eddies to determine their origins.

We reiterate that coherent material transport (as opposed to the widespread disper-

sion of SSH, OW and ME eddies observed in Fig. 3.7) is the relevant metric for quanti-

fying the transport of diffusive quantities, such as salinity and temperature. Indeed, the

disintegration of SSH, OW and ME eddy candidates is accompanied by the erosion of

salinity and temperature differences between the water they carry in their wake and the

water they traverse.

The use of filters, thresholds, and size-limits would undoubtedly reduce the eddy

count and transport estimates obtained from nonobjective detection methods. Such

post-processing steps, however, are largely heuristic: they exploit the high sensitiv-

ity of the underlying nonobjective detection methods to bring them in line with each

other, and with sporadic in-situ hydrographic measurements [Souza et al., 2011b]. We

stress that geodesic eddy detection has no such tuning parameters, and the underlying

mathematics (structural stability of limit cycles) renders its conclusions robust.
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3.5 Concluding remarks

We have introduced a new method, geodesic eddy detection, for the objective (frame-

independent) identification and tracking of mesoscale eddies in the ocean. In short,

geodesic eddy boundaries are limit cycles of the Lagrangian shear vector field that

are the closest to least-stretching geodesics of the Cauchy–Green strain tensor. When

tracked as material lines, geodesic eddy boundaries in a two-dimensional incompress-

ible flow preserve their enclosed area and arclength, acting as impenetrable islands of

minimal deformation in an otherwise turbulent flow. This in turn enables them to pre-

serve the concentration of diffusive tracers they carry for extended periods. By the

structural stability of limit cycles, geodesic eddy boundaries are robust with respect

velocity measurement errors and changes in their detection period.

Using geodesic eddy detection, we have isolated highly coherent Agulhas rings that

carry warm and salty water over large distances. Remarkably, one geodesic eddy con-

structed from three months of data was found to show no sign of disintegration up to one

year and a half. By comparison, eddies identified by two currently used Eulerian meth-

ods and one recent Lagrangian diagnostic showed clear signs of leakage and stretching

within weeks. The volume of water that such eddies would transport if they were co-

herent was found to be about an order of magnitude larger than the volume of water

transported by actual coherent material eddies. Satellite observations of a highly co-

herent chlorophyll patch provided independent confirmation that geodesically detected

Agulhas rings carry diffusive substances over large distances.

We argue that geodesically detected Agulhas rings are better positioned to impact

AMOC than their counterparts obtained from nonobjective methods. Indeed, the latter

rings lack a coherent material boundary and hence the ability to deliver warm and salty
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water effectively into the upper arm of AMOC. Our argument does assume that the

geodesically detected Agulhas rings are not trapped within the subtropical gyre. A

verification of this assumption is currently underway.

The present analysis is based on forward-time integration of the surface velocity

field, and hence is appropriate for a historical assessment of eddy formation and trans-

port. In a real-time operational setting, geodesic eddy boundaries are determined from

backward integration, i.e., from reverse fluid motion available up to the present time.

Undoubtedly, both the forward-time and the backward-time Lagrangian analyses are

computationally more demanding than an assessment of the SSH field, either instan-

taneous or over time. By nature, however, Lagrangian calculations are highly paral-

lelizable, benefiting from up to two orders of magnitude speed-ups on multi-processor

clusters [Garth et al., 2007; Conti et al., 2012].

In our view, an investment in additional computational resources is well justified by

the objectivity of the results, which promises a better assessment of the role of transport

by mesoscale eddies in global ocean circulation and climate.

In the next chapter, we extend geodesic eddy detection to the nearly 20 year long

(1992-2013) records of satellite altimetry within the Agulhas corridor [Goni et al.,

1997]. The purpose of the study is to quantify long-range transport of Agulhas leakage

achieved by coherent Agulhas rings. To this end, the coherence time scale T is also

increased from 90 to 360 days. The indication and significance of the obtained material

ring transport will be discussed.



Chapter 4

Coherent transport across the South Atlantic

4.1 Overview

This chapter extends the identification and tracking of coherent Lagrangian eddies of

the Agulhas Current from a specific time interval in previous chapter to a 20 year long

period (1992-2013), aiming to objectively investigate the role of eddies in coherently

transporting Agulhas leakage across the South Atlantic. In particular, we apply the

geodesic eddy detection to nearly the whole available altimetry record, expand the

coherence time scales from 3 months to half and one year, isolate eddies capable of

preserving material coherence for the longest time, and assess their stability through

their lifetimes. Eddies are found to acquire material coherence near the Walvis Ridge,

which implies the impact of intense turbulent diffusion within the Cape Basin to ini-

tiation of material coherence. One to four coherent Lagrangian eddies are identified

annually with diameters ranging from 40 to 280 km. Among these, 23 are found to

contain robust eddy cores of about 50 km in diameter and with at least 30% of core

water traceable to the Indian Ocean. These eddy cores travel across the South Atlantic

subtropical gyre with minor filamentation, however only one such core is found to pour

its contents on the North Brazil Current. While the ability of mesoscale eddies to carry

64
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Agulhas leakage coherently across the South Atlantic is supported by our study, this is

much more restricted than suggested by earlier ring transport assessments. This chapter

is published in Geophysical Research Letters [Wang et al., 2015b].

4.2 Background

Mesoscale eddies are widely viewed as potential agents of long-range water transport

(e.g., Robinson [1983]). Agulhas rings, in particular, have long been thought as conduits

for the leakage of warm and salty Indian Ocean water into the South Atlantic [de Rui-

jter et al., 1999; Gordon, 1986; Lutjeharms, 2006; Richardson, 2007; van Sebille and

van Leeuwen, 2007] and as such contributors to the maintainance of the meridional

overturning circulation in the Atlantic [Gordon, 1986; Weijer et al., 2002; Knorr and

Lohmann, 2003; Peeters et al., 2004; Beal et al., 2011]. The role of rings in transport-

ing Agulhas leakage was emphasized by Gordon and Haxby [1990], who argue that

the rings, after being shed from the Agulhas retroflection as the result of occasional

Indian-Ocean-entrapping occlusions, will enter the Brazil Current system and that their

contents can be transferred to the northern hemisphere gyre through the North Brazil

Current (Figure 4.1).

This long-range transport view on Agulhas rings has been challenged ever since.

Ring signatures inferred from the Geosat ERM data indicates that large volume of wa-

ter is lost from rings as they reach the western South Atlantic [Byrne et al., 1995]. In

parallel, Schouten et al. [2000] argue that the rapid decay of Agulhas rings is evident

in the Cape Basin and that ring contributions to the inter-ocean exchange are attributed

to ring decay processes instead of ring trapping. By analyzing 14 years of satellite al-

timetry record, Dencausse et al. [2010] propose that rings plays a more minor role in

Agulhas leakage due to their early dissipation in the Cape Basin. Besides observational
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Figure 4.1: Scenario of Gordon and Haxby [1990]: After formation, Agulhas rings
cross the South Atlantic basin and enter the brazil Current system. The ring contents
can be transferred to northern hemisphere by the North Brazil Current.

studies, numerical experiments impose challenges on long-range transport view of rings

as well. de Steur et al. [2004] state that rings are not effective in trapping passive trac-

ers. Lagrangain analysis of numerical particles suggests that majority of the Agulhas

leakage is not in rings at all [Doglioli et al., 2006], and the roles of filaments and other

non-rotating forms are dominant in Indian Ocean water intrusion into Atlantic [van Se-

bille et al., 2010]. Most of these conclusions, however, are drawn from Eulerian or

combined Eulerian-Lagrangian eddy diagnostics, the shortcomings of which are high-

lighted in the previous chapter. To objectively test the ability of long-range transport

by rings, structures of interest should be unambiguously located, namely, eddies with

persistent material cores. In this chapter, we extract mesoscale coherent material eddies
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from geostrophic current inferred from the over two decade long record of satellite al-

timetry measurements of sea surface height (SSH), analyse their life cycles, construct

a time series of coherent water transport, and evaluate the significance of the obtained

transport estimates. We track, in forward direction till the time of their demise and in

backward direction to the time of their genesis, of eddy cores detected with the largest

possible coherence time scales. These cores coherently transport the enclosed fluid

with no visible leakage through the flow domain for the whole extent of their lifetimes.

Eddies revealed from their Eulerian footprints, as is the case of the rings considered

by Gordon and Haxby [1990], do not possess this property [Beron-Vera, Wang et al.,

2013], which is critical to assess the validity of Gordon and Haxby’s [1990] long-range

transport view on Agulhas rings.

4.3 Methodology

Haller and Beron-Vera [2013, 2014] consider exceptional material loops in turbulent

flow that form the centerpieces of thin material belts exhibiting no leading order change

in averaged stretching as the widths of the belts are varied. Solutions to this variational

problem are material loops such that each of their subsets is stretched by a unique factor

λ when the loops are advected from time t0 to time t. Being uniformly stretching, these

λ loops resist the exponential stretching typical material loops experience in turbulence.

Represented as closed curves s 7→ x0(s), where parameter s is periodic, the λ loops

satisfy one of the two equations:

dx0

ds
=

√
λ2(x0)− λ2

λ2(x0)− λ1(x0)
ξ1(x0)±

√
λ2 − λ1(x0)

λ2(x0)− λ1(x0)
ξ2(x0) (4.1)

Here 0 < λ1(x0) ≤ λ2(x0) and ξi(x0)ξj(x0) = δij are eigenvalues and (normalized)

eigenvectors, respectively, of the right Cauchy-Green strain tensor field, Ct
t0

(x0) :=

DF t
t0

(x0)>DF t
t0

(x0), a frame-invariant (or objective) measure of deformation where
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F t
t0

(x0) is the flow map that associates times t0 and t positions of fluid particles, which

evolve according to
dx

dt
= v(x, t), (4.2)

where v(x, t) is a two-dimensional velocity field. Closed curves satisfying (4.1) oc-

cur in families of nonintersecting limit cycles, necessarily encircling singularities of

Ct
t0

(x0), i.e., points where the field is isotropic. The outermost member of a family

of λ−loops will be observed physically as the boundary of a coherent material eddy:

immediately outside, no coherent belt may exist containing the eddy. Limit cycles of

(4.1) tend to exist only for λ ' 1. Material loops characterized by λ = 1 reassume their

initial arclength at time t. This property, along with conservation of enclosed area in the

incompressible case, creates extraordinary coherence.

Coherent material eddy detection and tracking are implemented as follows.

1. Fix a domain U and a coherence time scale T over which eddies are to be located.

2. On U set a grid GU of initial positions x0.

3. For each x0 ∈ GU integrate (4.2) from t0 to t = t0 + T , obtaining a discrete

approximation of flow map F t
t0

(x0).

4. Evaluate DF t
t0

(x0) using finite differences, then construct Ct
t0

(x0), and finally

compute the corresponding eigenvalues {λi(x0)} and eigenvectors {ξi(x0)}.

5. Locate eddy candidates regions V by isolating singularities ofCt
t0

(x0) surrounded

by singularity-free annular regions.

6. In each V repeat the first two steps using a finer grid GV and seek the outermost

possible limit cycles of (4.1) with the aid of a Poincaré section starting with λ =
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Figure 4.2: (top) A coherent Lagrangian eddy is an annular, singularity-free region
which enclose a clutter of singularities (green dots), dotted line is selected the Poincaré
section. (bottom) Limit cycles (red closed curves) of system (4.1) fill up the eddy
region, and traverse the stationary points, where P (x) = x, of the Poincaré section.
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1. If no limit cycle is found for any λ (near 1), the candidate region does not

contain a coherent material eddy.

7. Finally, advect the boundary of the coherent material eddy detected to track its

motion.

Figure 4.2 illustrates the case in which a coherent Lagrangian eddy exists.

We consider again the geostrophic velocity field derived from SSH field distributed

by AVISO (Archiving, Validation, and Interpretation of Satellite Oceanographic data);

specific products employed are Rio05 mean dynamic topography and DT-MSLA ”all

sat merged” SSH anomaly, respectively. The mean dynamic topography is constructed

from satellite altimetry data, in situ measurements, and a geoid model [Rio and Her-

nandez, 2004]. The SSH anomaly is provided weekly on a 0.25◦ resolution longitude-

latitude grid. This is referenced to a 20 year (1993–2012) mean, obtained from the com-

bined processing of data collected by altimeters on the constellation of available satel-

lites [Le Traon et al., 1998]. Here the weekly SSH fields are interpolated daily, which re-

duces trajectory overshooting [Keating et al., 2011]. We chooseU = [20.5◦W, 10.5◦E]×

[29.5◦S, 32.5◦S] (indicated by a box in Figure 4.3) as our detection domain. This do-

main intersects the so-called Agulhas corridor [Goni et al., 1997]. It lies sufficiently

away from the Agulhas retroflection to allow coherence to build up and is sufficiently

large to capture all eddies possibly shed and to fit the largest such eddies. We set co-

herence time scales T = 90, 180, and 360 days. This resultes in detection of eddies

with maximum diameters decreasing from around 280 km to 100 km. Eddy diameters

remain stable for T in the range 30–90 days; for T shorter than 30 days or longer than

360 days coherence is difficult to find. This may be qualitatively related to the fact that

Lagrangian coherent structures are usually converged from a sufficiently long computa-
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tional time interval [t0, t0+T ] [Haller and Beron-Vera, 2012]. Detections are carried out

over 1992–2013 (nearly the entire period of available altimetry measurements) in such a

way that U is filled with new eddies at each t0, thereby avoiding defective or redundant

eddy counting. We set GU and GV to be regular with square elements of roughly 1.5

and 1 km sides, respectively. All integrations are carried out using a step-size-adapting

fourth order Runge-Kutta method with interpolations obtained with a cubic scheme. In

the case of (4.1), further care had to be taken by enforcing a unique eigenvector field

orientation at each integration step.

4.4 Results

We begin by showing in Figure 4.3 trajectories (left column) and histograms of mean

translational speeds and diameters (right column) of coherent material eddies detected

from T = 90 (top row), 180 (middle row), and 360 (bottom row) day integrations. A

total of 59 (4), 47 (1), and 23 (0) anticyclonic (cyclonic) eddies are detected over 1992–

2013. Ignored from our records are only 7 (6), 3 (3), and 1 (0) anticyclones (cyclones)

that take southwestward directions and dissipate fast as these eddies are not relevant

for our purpose. The predominance of anticyclones over cyclones signals enhanced

stability for anticyclones consistent with prior results [van Sebille et al., 2010]. Among

these eddies, 39, 40, and 19 are found with stretching factor λ = 1; for all other eddies,

λ ranges from 0.9 to 1.1. It should be realised that 180 and 360 day eddies reside

inside 90 day eddies at detection time. i.e., 180 and 360 day eddies do not constitute

different eddies but rather constitute 90 day eddy coherent material cores. In effect, an

eddy boundary detected with a given T typically lies quite close to some member of

the family of λ loops that fill an eddy detected with a shorter T . The detection rate

is quite irregular, varying from one to four eddies per year. This applies to 90 and
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Figure 4.3: (left column) Trajectories and (right column) mean translation speeds
and diameters of coherent material eddies in the Agulhas corridor as detected from
altimetry-derived velocities over 19922013 with lifetimes (top row) 90, (middle row)
180, and (bottom row) 360days. (bottom left) Detection domain (solid rectangle) and
the reference section used in the construction of the coherent transport time series of
Figure 4.6 (dashed line). Selected bathymetry levels (in km) are indicated in the top left
along with two relevant topographic features. From Wang et al. [2015b].
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180 day eddies; it applies to 360 day eddies too when they are present, namely, all

years except 1994–1995, 2004, and 2006-2007. The irregularity of the detection rate is

indicative of substantial coherent material eddy episodicity rather than artifact created

by the altimetry set. Indeed, while earlier years are covered by fewer satellite altimeters

than later years, gaps with no eddy detected are present in both earlier and later years.

An obvious observation from inspection of the figure is that trajectory lengths increase

with T increasing from 90 to 180 to 360 days. In particular, these increase on average

from 450 to 900 to 1800 km. This is accompanied by a reduction in eddy size. In

effect, mean eddy diameters decrease on average roughly from 140 to 100 to 50 km.

This suggests an average eddy decay rate of 40 km2 d−1 in 360 days. Mean eddy

translational speeds remain quite stable around 5 km d−1 (about twice the speed of long

baroclinic Rossby waves) independent of T .

We next proceed to discussing transport estimates. Let Σ be a reference curve and

assume that it is traversed by coherent material eddies, episodically and all in the same

direction. We define coherent transport the contribution by such eddies to the flux

across Σ of the two-dimensional velocity supporting the eddies. For a simple, analyt-

ical eddy, for instance, the one detected from system (2.1) in chapter 2, the eddy flux

at each time step is calculated by integrating the instantaneous velocity inside this eddy

along the reference curve Σ (dashed line in top panel Figure 4.4), which yields a time

series that approximates a parabola (red solid curve in bottom panel Figure 4.4) for

the time interval over which the eddy crosses Σ. Such a parabola-shaped function is

then the coherent transport in this case. For an eddy in complex unsteady flows, we

approximate this function by a boxcar with amplitude equal to the area of the eddy di-

vided by the length of the time interval over which it crosses Σ. For multiple eddies,

a coherent transport time series will be given by a sequence of boxcars with different
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Figure 4.4: (top) Initial and final positions of an idealized coherent Lagrangian eddy.
(bottom) Instantaneous, two-dimensional flux T (red curve) caused by eddy penetration
through the dashed line (Σ : x = 5.0) in top panel over time.

amplitudes resulting from superimposing episodic individual eddy contributions. We

estimate transport of 360 day eddies only, as they are most capable of coherently car-

rying water across the South Atlantic. Eddies that can only be detected with shorter T

lose coherence more easily. For an eddy containing both a 360 day material eddy core

and an outer boundary from a shorter T day integration, the fluid sandwiched between

the core and outer boundary tends to disperse fast beyond T , while the eddy core may

still stay compact even after 360 days (Figure 4.5).

Figure 4.6 (top) shows a time series of coherent transport estimates over the period

1992–2013 obtained by considering 360 day eddies and Σ as indicated by the dashed
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Figure 4.5: A material eddy detected from T = 90 day integration contains an inner
360 day eddy core (red). Fluid (blue) trapped between the outermost 90 day boundary
and inner 360 day boundary stays compact for at least 90 days. Over extended time
period, however, this part of fluid disperse quickly. While the 360 day eddy core still
stays compact, even beyond its integrating time length.

segment in Figure 4.3 (bottom left), which is traversed by all identified 360 day eddies

(and their residuals, after coherence is lost) in one direction. While transport defined

above is two-dimensional in nature, we report three-dimensional transport values mea-

sured in Sverdrup (Sv) (1 Sv = 106 m3 s−1). These are obtained by multiplying the com-

puted two-dimensional transport values by 1 km. With a certain degree of uncertainty

[de Steur et al., 2004], this value is in the range of mature Agulhas ring trapping depths

inferred from float-profiling hydrography [Souza et al., 2011a]. A distinguishing feature

of the computed transport time series is a large variability, both intra- and interannual.

Nonzero transport estimates range approximately from 0.25 to 3 Sv (about 1.5 Sv on

average). These varying transport estimates are attributed mainly to varying eddy sizes.

Interspersed zero transport gaps last roughly from 3 months to 3 years. These varying

length gaps cannot be explained by previously reported Agulhas ring shedding rates of

one ring every 2 to 3 months [Byrne et al., 1995; Goni et al., 1997; Schouten et al.,

2000]. Rather, they are due to marked eddy episodicity. Gray-shaded bar portions in
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Figure 4.6 (top) correspond to transport of water that can be identified with leaking

Indian Ocean water into the South Atlantic. The Indian Ocean water fraction carried

within eddies is estimated by advecting the eddy boundaries backward in time for as

long as at least 90% reversibility is attained (about 1.25 year on average) and com-

puting the proportion of the enclosed fluid found east of 20◦E, the longitude at which

Indian Ocean and South Atlantic meet [Richardson, 2007]. We note that reversibility

is strongly restricted by sensitive dependence on initial conditions. Also, the Agulhas

retroflection typically extends west of 20◦E [Dencausse et al., 2010]. Therefore, our

estimates of Indian Ocean water content should be considered as a lower bound. At

least, then, the eddies are found this way to carry on average about 30% of contents that

can be unambiguously identified with Indian Ocean water. Accordingly, the transport

of Indian Ocean water trapped inside the eddies is found to be approximately 0.5 Sv

on average. Rare cases are eddies detected in mid-2002 and early 1996, which carry

barely 1 and almost 99% of Indian Ocean water, respectively. The Indian Ocean water

transported by these eddies is about 0.01 and 1 Sv, respectively.

Figure 4.6 (bottom) shows a time series of annual coherent transport estimates com-

puted by averaging the (instantaneous) estimates in Figure 4.6 (top) within each year

(as in that panel, gray-shaded bar portions correspond to Indian Ocean water transport).

The maximum annual transport produced by 360 day coherent material eddies is about

0.3 Sv. Our estimate is 2 orders of magnitude smaller than earlier estimates obtained as

total volume of eddies detected during a given year, divided by 1 year [Garzoli et al.,

1999; Richardson, 2007; Dencausse et al., 2011; Souza et al., 2011a]. This large dif-

ference might be reduced by an order of magnitude if a larger vertical extent for the

eddies is assumed. Indeed, van Aken et al. [2003] report vertical extents of 4 km but

only for very young Agulhas rings. A reason for this large discrepancy is that our focus
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Figure 4.6: (top) Instantaneous and (bottom) annual average time series of transport
produced by 360-day coherent material eddies crossing the reference section indicated
by the dashed segment in the bottom left of Figure 4.3. Gray-shaded bar portions cor-
respond to transport of Indian Ocean water trapped inside the eddies. From Wang et al.
[2015b].
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is on the rings that are most capable of traversing the South Atlantic basin, the average

diameter and number of which are inherently smaller than young and short-lived rings.

Moreover, earlier estimates implicitly assume that eddy signatures whose diameters at

detection time are 250 km or so can reflect material fluid evolution to some extent.

This cannot be guaranteed by Eulerian analysis of altimetry or the inspection of in situ

and profiling-float hydrography, and drifter and float trajectories, which led to the ear-

lier transport estimates. Truly material eddies as large as 250 km in diameter revealed

from altimetry in the region of interest are very rare. Most such eddy signatures do

not transport fluid and tend to disperse rather quickly [Beron-Vera, Wang et al., 2013].

The maximum annual transport of Indian Ocean water trapped inside 360 day coherent

material eddies does not exceed 0.2 Sv. This is also smaller, by 2 orders of magni-

tude, than the annual Agulhas leakage estimates obtained from numerical simulations

[Doglioli et al., 2006; Biastoch et al., 2009; Le Bars et al., 2014]. While these Agulhas

leakage estimates still lack observational support, the noted large mismatch suggests

that cross-basin trapping by rings is not a major mechanism through which Agulhas

leakage enters the AMOC.

Finally, we turn to discussing aspects of the evolution of detected coherent mate-

rial eddies. As before we focus on 360 day eddies, the most persistent of all eddies

detected. Figure 4.7 shows snapshots of the long-term evolution of two eddies selected

according to their behavior during their early and late evolution stages. The eddy in

Figure 4.7 (left column) illustrates typical behavior, while the eddy in Figure 4.7 (right

column) illustrates exceptional behavior. The evolutions are constructed by advecting

passive tracers inside each eddy boundary (indicated in black) at detection time in back-

ward time for as long as at least 90% reversibility is attained and also in forward time

beyond the theoretical coherence time lengths. The typical behavior is characterized
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Figure 4.7: Snapshots of the long-term evolution of two 360-day coherent material
eddies with (left column) typical and (right column) exceptional genesis and demise
stages. The boundaries of the eddies while they constitute coherent material eddies are
indicated in black. Indicated in red are passive tracers that completely fill these eddies
during their coherent material stage. From Wang et al. [2015b].



80

by organization into small coherent material eddies (the specific eddy depicted in left

column of Figure 4.7 is approximately 90 km in diameter) from rather incoherent fluid

composed of a mixture mainly of water that resides in the South Atlantic and a much

smaller fraction of water traceable into the Indian Ocean. Typical coherent material ed-

dies emerge away from the Southern tip of Africa, just east of the Walvis Ridge in the

South Atlantic. This genesis picture does not adhere to the commonly accepted concep-

tual picture in which Agulhas rings are shed from the Agulhas retroflection as a result

of eventual Indian-Ocean-entrapping occlusions [Pichevin et al., 1999]. Our results are

more consistent with those from earlier works [Schouten et al., 2000; Boebel et al.,

2003] reporting intense mixing in the Cape Basin. But coherence eventually emerges

from the mostly incoherent water resulting from this process close to the Walvis Ridge

and is followed by propagation of small eddy cores with minor filamentation across

the subtropical gyre. Coherence is eventually lost, the contents of the eddies are mixed

with the ambient water in the vicinity of the bifurcation of the subtropical gyre, and

finally transported mostly southward by the Brazil Current. Out of a total of 23 eddies

detected, 15 adhere to this picture. The exceptional behavior, observed by only one

eddy, is also characterized by emergence of small coherent material eddies (the partic-

ular eddy shown in right column of Figure 4.7 has roughly 40 km in diameter) out of

rather incoherent water, the only difference being that most of the water inside this eddy

is traceable into the Indian Ocean. This is still different from the widely accepted ring

genesis picture inasmuch as material coherence is not acquired immediately but rather

after some time, near the Walvis Ridge. Propagation across the subtropical gyre then

follows with minor filamentation until coherence starts to be gradually lost. The eddy

contents mix with the surrounding water near the bifurcation of the subtropical gyre.

The majority of these is then transported northward close to the coast by North Brazil
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Current. This behavior most closely adheres to the scenario put forward by Gordon and

Haxby [1990] (Figure 4.1). The behavior of the remaining seven eddies detected shares

aspects of the two markedly distinct behaviors just described.

4.5 Concluding remarks

Aided by a recently developed Lagrangian technique from nonlinear dynamical systems

theory, we have extracted from geostrophic velocities derived from nearly two decades

of altimetry measurements a coherent transport signal across the South Atlantic through

the so-called Agulhas corridor. The technique enables accurate, frame-independent

identification of mesoscale eddies with cores whose material boundaries remain co-

herent, i.e., without showing noticeable signs of filamentation, for up to 1year. These

coherent material eddies were used in the coherent transport computation, which turned

out to be smaller (by at least 2 orders of magnitude) than earlier ring transport estimates.

The main reason is that those transport estimates implicitly assumed material coherence

for eddies revealed from their Eulerian footsteps in the altimetry data set. Such eddies

are either too large (by 1 order of magnitude) for long-range material coherence to be

guaranteed or simply do not represent coherent material eddies. The portion of Indian

Ocean water annually carried within the coherent material eddies was also identified

and found to be small (by 2 orders of magnitude) compared to recent estimates of total

Agulhas leakage based on numerical simulations. This result suggests a reduced role

of Agulhas rings in transporting leaked Indian Ocean water. We also investigated the

evolution of the detected coherent material eddies. We found that the conceptual picture

in which Agulhas rings are shed from the Agulhas retroflection as a result of episodic

Indian-Ocean-water-entrapping occlusions is, in general, not valid. Coherent material

eddies tend to emerge near the Walvis Ridge from rather incoherent water, mostly resid-
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ing in the South Atlantic and to a small extent traceable into the Indian Ocean. How this

precisely happens is not known and is subject of ongoing investigation. The majority of

the coherent material eddies formed this way (15 out of a total of 23) was found to cross

the subtropical gyre and eventually to be absorbed into the Brazil Current. However,

only one eddy consisting of mainly Indian Ocean water was seen to pour its contents

on the North Brazil Current. This suggests that the contribution by coherent material

Agulhas rings trough advective trapping across the South Atlantic to the global thermo-

dynamical budget is much less significant than originally thought [Gordon and Haxby,

1990]. While we find ability of eddies to transport water over long distances, this is less

important than recently argued for eddies beyond Agulhas rings based on lax assump-

tions about material coherence [Dong et al., 2014; Zhang et al., 2014]. Finally, explicit

resolution of three-dimensional aspects of ring transport, which can be done by ap-

plying extensions of the technique employed here [Blazevski and Haller, 2014; Haller,

2014] to an ocean general circulation model, is not expected to substantively modify

our results. Indeed, these may be actually more constrained by diffusion induced by

submesoscale turbulence unresolved by altimetry and most models.



Chapter 5

Life cycle of a material Agulhas Current ring

5.1 Overview

At the time of writing, results from additional research are being prepared for publi-

cation [Wang et al., 2015a]. This publication in preparation, whose main findings so

far are reported here, is aimed at providing a detailed characterization of the life cy-

cle of a long-lived Agulhas ring. These findings concern the evolution of the ring as a

quite coherent material entity for a period of about 2 years after the initial coherence

is lost upon crossing the Walvis Ridge. We attribute this to the continual development

of short-term coherent material boundaries around the ring. These boundaries provide

continual short-term shields for the ring, which prevent its interior from being mixed

with the ambient turbulent flow. We show that such coherence regaining cannot be in-

ferred from Eulerian analysis. These findings complement the study on the ability of

Agulhas rings in transporting fluid across the South Atlantic.

5.2 Background

The ability of Agulhas rings detected from satellite altimetry measurements of sea sur-

face height (SSH) to maintain long-term Lagrangian (i.e., material) coherence has been

83
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subject of recent investigation using nonlinear dynamical systems techniques that en-

able objective (i.e., observer-independent) framing of Lagrangian coherence. Lehahn

et al. [2011] demonstrated the significance of such rings using satellite ocean color

imagery, which provides an assessment of Lagrangian coherence independent of the

analysis of satellite altimetry. Using the over two-decade-long altimetry record, Wang

et al. [2015b] found that long-lived (of up to at least 1 year of duration) rings have

small (about 50-km in diameter) coherent Lagrangian cores, suggesting a fast decay

for the rings. On the other hand, they found that such cores carry a small (about 30%)

fraction of water traceable into the Indian Ocean. The two findings together question

the long-range ability of rings in transporting Agulhas leakage that Eulerian analysis

of SSH appear to suggest [Zhang et al., 2014]. In turn, Froyland et al. [2015], through

the application of a probabilistic method on satellite altimetry data, found that the rings

decay slowly, enabling long-range Agulhas leakage transport.

The goal of the present paper is to bridge the gap between the latter two contra-

dicting results by carrying out a detailed objective investigation of the evolution of the

ring studied by Froyland et al. [2015]. This is done using geodesic eddy detection

method [Haller and Beron-Vera, 2013, 2014], which enables optimal detection of rings

with Lagrangian boundaries that exhibit no signs of filamentation over the coherence

assessment time interval.

Initial coherence of the ring is abruptly disrupted upon traversing the Walvis Ridge,

which is qualitatively in line with the SSH anomaly response. Beyond the Walvis Ridge

a large fraction of the ring (about 300 km3, corresponding to an at least 2-km-deep ring

of 150-km of diameter) is observed to stay as a compact Lagrangian entity far beyond

the theoretical Lagrangian coherence horizon. This is shown to be caused by successive

short-term coherence regain events. Demise of the ring eventually occurs after a rapid
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decay of the area enclosed by coherent Lagrangian loops that provide the fluid in their

interior successive short-term shielding from turbulent mixing with the ambient fluid.

Not all aspects of the life cycle of the ring are inferable from Eulerian analysis of SSH

anomaly, which signals coherence gain upon crossing the Walvis Ridge and slow decay

thereafter. It is noted finally that even if this behavior generalizes to all Agulhas rings,

which needs to be verified, their long-range transport ability is still limited.

5.3 Methodology

We are concerned with fluid regions enclosed by exceptional material loops that defy

the exponential stretching that a typical loop will experience in turbulent flow. As Haller

and Beron-Vera [2013, 2014] have shown, such loops have small annular neighborhoods

exhibiting no leading-order variation in averaged material stretching.

More specifically, solving the above variational problem reveals that the loops in

question are uniformly stretching: any of their subsets are stretched by the same factor λ

under advection by the flow from time t0 to time t. The time t0 positions of λ-stretching

material loops turn out to be limit cycles of one of the following two equations for

parametric curves s 7→ x0(s):

dx0

ds
=

√
λ2(x0)− λ2

λ2(x0)− λ1(x0)
ξ1(x0)±

√
λ2 − λ1(x0)

λ2(x0)− λ1(x0)
ξ2(x0). (5.1)

Here λ1(x0) < λ2 < λ2(x0), where {λi(x0)} and {ξi(x0)}, satisfying

0 < λ1(x0) ≡ 1

λ2(x0)
< 1, ξi(x0) · ξj(x0) = δij i, j = 1, 2, (5.2)

are eigenvalues and (normalized) eigenvectors, respectively, of the Cauchy–Green ten-

sor,

Ct
t0

(x0) := DF t
t0

(x0)>DF t
t0

(x0), (5.3)
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an objective (i.e., independent of the observer) measure of material deformation, where

F t
t0

: x0 7→ x(t;x0, t0) is the flow map that takes time t0 positions to time t positions of

fluid particles, which obey
dx

dt
= v(x, t), (5.4)

where v(x, t) is a two-dimensional velocity field assumed divergence free.

Limit cycles of (5.1) either grow or shrink under changes in λ, forming smooth

annular regions of nonintersecting loops. The outermost member of such a band of

material loops is observed physically as the boundary of a coherent Lagrangian eddy.

Limit cycles of (5.1) tend to exist only for λ ≈ 1. Material loops characterized by

λ = 1 resist the universally observed material stretching in turbulence: they reassume

their initial arclength at time t. This conservation of arclength, along with enclosed area

preservation (which holds by assumption), produces extraordinary coherence [Beron-

Vera et al., 2013]. Finally, limit cycles of (5.1) are (null) geodesics of the generalized

Green–Lagrange tensor Ct
t0

(x0)−λ2, which must necessarily contain degenerate points

of Ct
t0

(x0) where its eigenvector field is isotropic. For this reason the above procedure

is known as geodesic eddy detection.

The specific form of the velocity field considered here is given by

v(x, t) =
g

f
∇⊥η(x, t), (5.5)

where g is the acceleration of gravity, f stands for Coriolis parameter, and η(x, t) is

the SSH, taken as the sum of a (steady) mean dynamic topography and the (transient)

altimetric SSH anomaly. The mean dynamic topography is constructed from satellite al-

timetry data, in-situ measurements, and a geoid model [Rio and Hernandez, 2004]. The

SSH anomaly is provided weekly on a 0.25◦-resolution longitude–latitude grid. This is

referenced to a 20-year (1993–2012) mean, obtained from the combined processing of
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data collected by altimeters on the constellation of available satellites [Le Traon et al.,

1998].

For the purpose of the present investigation we have chosen to focus on the ring

detected and tracked by Froyland et al. [2015] over the period 1999–2001. This ring

was considered by Wang et al. [2015b] in their coherent transport calculations. The

numerical implementation of geodesic eddy detection is documented at length [Haller

and Beron-Vera, 2013, 2014; Beron-Vera et al., 2015; Wang et al., 2015b; Karrasch

et al., 2014] and a software tool is now available [Onu et al., 2015]. Reproducibility

of the results only requires one to known that the width of the computational grid was

set to 0.5 km. This enabled us to push the Lagrangian coherence detectability horizon

close to 1.5 years.

5.4 Preliminary results

Instead of extracting the boundary of a coherent Lagrangian eddy, the coherent set ap-

proach [Froyland and Padberg-Gehle, 2014] isolates a series of regions in time such

that fluid particles initialized in one region are most probable to fall inside its neigh-

boring one in a non-dispersive fashion under the flow map. Using such an approach,

Froyland et al. [2015] detected an Auglhas ring able to travel across the South Atlantic

subtropical gyre for over 2 years from satellite altimetry data. The monthly positions

of coherent sets associated with this ring are shown in Figure 5.1. The coherent sets

are not truly material patches in that the areas of these sets are not conserved over time

under the geostrophic assumption. Nonetheless, fluid particles flowing from the initial

coherent set into successive ones are well retained, given that only a total of 15% to

20% of these particles are found to reside out of the final coherent set after more than 2

years [Froyland et al., 2015].
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Figure 5.1: Monthly positions of an Agulhas ring over more than 2 years. Colored
contours denotes the boundaries of coherent sets, going from green to red as time pro-
gresses. Blue shading indicates the bathymetric features. From Froyland et al. [2015].

An observation from the inspection of the monthly positions of coherent sets (Fig-

ure 5.1) is that the size of the ring only changes slightly over the whole ring lifetime,

which appears to contradict the results of Wang et al. [2015b], who find that long-lived

material rings decay at a rate of around 40 km2d−1 in horizontal area over the first year

of detection.

With the purpose of resolving these seemingly contradicting results, we begin by

applying geodesic eddy detection on t0 = 31 March 1999, date by which the ring in

question is in a sufficiently mature Lagrangian coherence stage. On that date the ring is

found inside the region indicated by the square in the left panel of Figure 5.2a. Geodesic

eddy detection was carried over t0 through t = t0 + T for T increasing from 30 d in

steps of 30 d out to 480 d, the longest T from which it was possible to extract a coher-

ent Lagrangian eddy boundary. This is a very long Lagrangian coherence time scale,

consistent with the statement above that the ring is in a mature Lagrangian coherence

stage. Application of geodesic eddy detection resulted in a nested family of Lagrangian

boundaries with coherence time scale increasing inward (for each T considered there

is a nested family of λ−loops; the boundary shown is the outermost one in each fam-

ily). These boundaries are indicated in red on the detection date in Figure 5.2a (the
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right panel is a blowup of the region indicated by the rectangle in the left panel). The

outer, shorter-lived boundaries provide a shield to the inner, longer-lived boundaries

surrounding the core of the coherent Lagrangian ring. This is evident in the successive

advected images of the boundaries under the flow. These are shown in Figs. 5.2b–f on

selected dates over more than 2 years of evolution. An advected boundary is depicted

red when it is within its theoretical Lagrangian coherence horizon and in a blue tone

when is beyond it. As predicted, no signs of filamentation are observed up to that time

scale (i.e., boundaries do not shed any filament when they are depicted red). The fila-

mentation observed beyond the theoretical Lagrangian coherence time scale reveals that

the evolution of the ring is characterized by a clear decay process.

The large gap separating the boundaries occurs as Lagrangian coherence time scales

are set to T = 270 and 300 d on 31 March 1999 (cf. Figure 5.2a, right panel). Such a

gap indicates an abrupt loss of Lagrangian coherence. Inspection of Figure 5.2g allows

one to identify in space where this abrupt Lagrangian coherence loss takes place. This

plot shows the area enclosed by the largest boundary that are theoretically coherent

evolving from t0 as a function of geographical longitude. Note that the area drops

abruptly right after the ring traverses the Walvis Ridge. This is a sign of destabilization,

in this case likely resulting from interaction of the ring with the bottom topography. A

large vertical extent for the ring is therefore suggested given that this ring must feel the

Walvis ridge, the characteristic depth of which is over 2 km [Byrne et al., 1995] within

the Agulhas ring corridor [Goni et al., 1997]. Such a large vertical extent is in line with

in-situ observations [van Aken et al., 2003] and qualitatively consistent with the SSH

anomaly evolution of this ring upon encountering the ridge. Note that the amplitude of

SSH anomaly (Figure 5.3b), after decaying at a rate of roughly 5 cm per month from

31 March 1999, increases upon crossing the Walvis Ridge, recovering nearly 85% of
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Figure 5.2: (a) Nested family of coherent Lagrangian eddy boundaries extracted from
altimetry-derived velocity by applying geodesic eddy detection on t0 = 31 March 1999
inside the region indicated by a rectangle. Each member of the family has a different
Lagrangian coherence time scale T ranging from 30 d (outermost) to 40 d (innermost)
in steps of 30 d. Selected isobaths (in km) are indicated in gray. The outset is a blowup
of the indicated region. (b–f) Advected images under the flow (i.e., evolution) of the
coherent Lagrangian eddy boundaries in (a) on selected dates. An advected boundary
is depicted red when it is within its theoretical Lagrangian coherence horizon and in a
blue tone when is beyond it. (g) As a function of longitude, area of the largest domain
enclosed by advected boundaries within their theoretical Lagrangian coherence horizon.
From Wang et al. [2015a].
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Figure 5.3: (a) Streamlines of the altimetric sea surface height (SSH) field in each
rectangular region indicated in Figure 5.2a–f plus the streamline snapshot when no
short-term coherence is detectable any more. (b) As a function of longitude, maximum
SSH anomaly in each such region. From Wang et al. [2015a].

its amplitude on 26 December 1999, to about 35 cm. Schouten et al. [2000] speculated

that such a behavior is a reflection of ring being able to contact with the Walvis Ridge

directly. This speculation is supported by de Steur and van Leeuwen [2009], who used

numerical experiments to find that a ring transfers its kinetic energy from lower to upper

layer upon traversing a meridional ridge, which tends to intensify the SSH amplitude

through geostrophy.

Beyond the Walvis Ridge, the amplitude of the SSH anomaly falls at a rate of about

1 cm per month, suggesting decay of the ring, albeit slow (Figure 5.3b). While filamen-

tation of the ring is observed starting 30 d after detection on 31 March 1999, and abrupt

Lagrangian coherence loss happens about 10 months after that date, a large fraction of

the ring’s fluid preserves a strikingly compact entity over almost 2 years of evolution.
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This is manifested by the tendency of the second-to-outermost Lagrangian eddy bound-

ary (depicted in dark blue in Figure 5.2b–f) to develop mainly tangential filamentation

beyond its theoretical coherence horizon (60 d) and for nearly 2 years. This bound-

ary encloses nearly 95% of the total area of the ring detected on 31 March 1999. We

explain the enduring Lagrangian coherence of the ring as a consequence of successive

short-time Lagrangian coherence regain events.

To illustrate this, in Figure 5.4a we show (in blue) selected advected positions of

the 60-d coherent Lagrangian ring boundary detected on 31 March 1999 (second-to-

outermost boundary in Figure 5.2a). Overlaid on each we depict (in red) a 30-d coherent

Lagrangian ring boundary identified on the date that advected 60-d boundary is shown.

For nearly 2 years the advected 60-d boundary is instantaneously very closely shadowed

by a 30-d boundary, which provides an effective short-term shield to mixing of the fluid

inside the advected 60-d boundary with the ambient fluid stirred by turbulence. Beyond

approximately 2 years filamentation of the advected 60-d boundary ceases to be tangen-

tial, signaling more intense mixing with the ambient fluid. Consistent with this the 30-d

boundaries start to shrink, loosing their shielding power, until no 30-d boundary can be

detected. This happens on 18 February 2001. Beyond this date only 15-d boundaries

can be extracted. Eventually by 1 September 2001 no short-term boundary is possible

to be identified, the ring detected on 31 March 1999 loses Lagrangian entity completely,

and can be declared dead prior to reaching the South American coast.

Plotting the area of the short-term shielding boundaries as a function of longitude

(Figure 5.4b) helps visualize the two stages that typify the Lagrangian evolution of the

Agulhas ring under investigation. This is characterized by a stage of extended period

of sustained coherence revealed by a nearly constant area enclosed by the short-term

shielding boundaries, ranging from 31 March 1999 to 18 February 2001, about 2 years.
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Figure 5.4: (a) In blue, selected advected positions of the second-to-outermost material
loop in fig:evola, corresponding to the Lagrangian ring boundary with coherence time
scale T = 60 d detected on 31 March 1999. In red, short-time boundaries detected on
the dates the advected loop positions are shown. From 31 March 1999 to 18 February
2001, T = 30 d, and from 18 February 2001 to 1 September 2001, T = 15 d. (b) Area
enclosed by the short-time boundaries as a function of longitude. From Wang et al.
[2015a].

This stage is followed by fast coherence decay revealed by a rapid drop in the area

enclosed by the shielding boundaries, from 18 February 2001 to 1 September 2001, just

a bit over 6 months.

Certain behavior of the Lagrangian ring is qualitatively reflected in the SSH field.

The SSH anomaly exhibits a clear oscillation in amplitude when the ring traverses the

Walvis Ridge and experiences sudden loss of coherence. Nevertheless, the slow decay

of SSH anomaly beyond the ridge masks the fact that coherence is eventually regained

by the ring. For almost 2 years after crossing the ridge, the ring does not exhibit any

sign of material decay, as successive short-term boundaries over this period fully shield



94

the ring (cf. Figure 5.4a). A compact region of closed SSH streamlines exists even when

the ring has completely filamented (cf. Figures. 5.3a and 5.2f). As argued before, this

is a manifestation of the ambiguity of Eulerian analysis in making mature coherence

assessments, which is attributable to its observer dependence.

5.5 Concluding remarks

The continual emergence of short-term coherent material boundaries around the Agul-

has ring unveiled in this work provides an objective (observer-independent) explanation

for the extended stability (about 2 years) of the size of the ring as inferred by the prob-

abilistic coherent set approach [Froyland et al., 2015]. These successive short-term

boundaries prevent the mixing of the ring’s interior with the ambient fluid, and mainly

develop to the west of Walvis Ridge, which may be favored by the more quiescent envi-

ronmental conditions there than in the Cape Basin [Schouten et al., 2000; Boebel et al.,

2003]. Our results suggest that not all Agulhas rings decay as fast as argued in previous

studies based on numerical simulations [van Sebille et al., 2010]. Whether the reported

behavior is typical among all altimetry-derived material rings is yet to be determined.

Also, the mechanism of the coherence regain described here and how this may influence

coherent transport of Agulhas rings are unclear and deserve to investigated.

An important question is how these results may affect those of Wang et al. [2015b]

(Chapter 4) if they were extensible to all Agulhas rings. A quick computation reveals

that material rings would carry yearly about 5 Sv of water across the South Atlantic.

This rough estimate follows from assuming that the coherence response at the surface

extends down to 2 km, the ring trapping depth for rings behaving as reported here, and

that about 3 material rings with 150 km in diameter are formed annually, an estimate

made by Wang et al. [2015b]. If we further assume that about half of the rings’ contents
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are traceable into the Indian Ocean, as is applicable to the ring investigated here, then

the Agulhas leakage trapped in rings which is able to traverse the South Atlantic would

amount up to 2.5 Sv. Overall, the transport results of Wang et al. [2015b] may be

underestimated by one order of magnitude. Despite this the main conclusions of Wang

et al. [2015b] remain unaltered because Eulerian annual ring transport estimates and

Agulhas leakage estimates are still almost an order of magnitude bigger. On the other

hand, there is large uncertainty around the behavior of the rings below the surface.

For instance, according to numerical simulations [de Steur et al., 2004], the vertical

structure of a ring may decay much faster than its surface signature. Moreover, Wang

et al. [2015b] show that only a small fraction (less than 50%) of the water trapped inside

material rings detected over the last two decades is traceable into the Indian Ocean. As a

result, while Agulhas rings do provide a direct route for Agulhas leakage waters across

the subtropical gyre, the majority of Indian Ocean waters are advected outside coherent

rings by slower and more turbulent processes.



Chapter 6

Conclusions

The ability of Agulhas Current rings in transporting the Agulhas leakage across the

South Atlantic has been debated over the past few decades. Most ring transport esti-

mates in the literature are based on Eulerian criteria, the output of which either depends

on choice of the reference frame, or fails to reveal long-term Lagrangian response of

the flow field. In effect, even in simple analytical flows, a strong Eulerian eddy signal

may mask the underlying hyperbolic structure truly controlling material evolution. As

a result, fluid initially residing within the eddy may disperse fast while the eddy signal

remains.

To objectively (i.e., in a frame-invariant fashion) identify and track oceanic eddies,

geodesic eddy detection, a novel method rooted in nonlinear dynamical systems theory,

is employed in this thesis. Geodesic eddy boundaries are sought as very special closed

material curves which can neither stretch into nor break away from the eddy interior.

In two-dimensional incompressible flows, geodesic eddy boundaries preserve their en-

closed areas and nearly resume their initial arclength over the time interval they are

detected, acting as impenetrable islands of minimal deformation in an otherwise turbu-

lent field. This potentially enables them to preserve the concentration of non-passive

96
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tracers for extended periods.

Using geodesic eddy detection, we have isolated highly coherent Agulhas rings ca-

pable of carrying fluid over long distances. Remarkably, some geodesic eddies show no

visible sign of filamentation beyond their coherence time scales. By comparison, ed-

dies uncovered by Eulerian methods and nonobjective Lagrangian diagnostics disperse

quickly within weeks. The inconsistency of Eulerian signal coherence and Lagrangian

deformation is critical to consider when quantifying eddy transport, as in the case of

Agulhas rings executing the Agulhas leakage. Satellite observations of highly con-

centrated chlorophyll patches provided independent confirmation that geodesic eddies

carry non-passive tracers over long distances.

To evaluate the validity of the widely accepted long-term transport view of Agul-

has rings, we have extracted from geostrophic velocity fields derived from nearly two

decades of satellite altimetry measurements coherent material eddies across the Agulhas

corridor. These eddies contain material cores whose boundaries exhibit no noticeable

sign of filamentation for up to one year. The transport by such material cores turns out

to be smaller than earlier ring transport estimates. Although the choice of reference

location where ring transport is evaluated (mid-Atlantic in our case) will cause discrep-

ancy in the final results, we argue that previous studies inevitably overestimate ring

transport by using Eulerian footprints in the altimetry dataset, which do not constitute

the true material structures. The portion of Indian Ocean water annually carried within

the coherent material eddies is also identified and found to be small compared to recent

estimates of total Agulhas leakage based on numerical simulations. Even assuming that

coherence is continually regained over time and these eddies possess a deep vertical

structure in a long run, we find that Agulhas leakage trapped and transported by such

eddies is still limited.
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Material Agulhas rings tend to emerge spontaneously near the Walvis Ridge from

rather incoherent water, most of which resides in the South Atlantic. This finding con-

tradicts the widely accepted scenario in which Agulhas rings are shed directly from the

Agulhas retrofleciton, but is more consistent with the fact that turbulent stirring within

the Cape Basin is extremely strong, thereby constraining the emergence of material

coherence. Successive coherence regain events occur when a material Agulhas ring

traverses the Walvis Ridge and loses its initial coherence. This resolves the paradox be-

tween the conclusions on long-term evolution of Agulhas rings based on the geodesic

eddy detection method and the coherent set approach. Most coherent material rings are

found to cross the subtropical gyre and enter the Brazil Current eventually. However,

only one ring consisting of mainly Indian Ocean water is seen to pour its contents on the

North Brazil Current. This suggests that the contribution of coherent material Agulhas

rings to the global thermodynamical budget by trapping the Agulhas leakage across the

South Atlantic is not as significant as originally thought [Gordon and Haxby, 1990].

Geodesic eddy detection has been mostly applied to the South Atlantic in recent

years [Beron-Vera, Wang et al., 2013; Haller and Beron-Vera, 2013; Wang et al.,

2015a,b], yet is applicable to any region globally. Global assessments of transport of

fluid and thermodynamic properties by mesoscale eddies have been a topic of rising

interest in physical oceanography, yet latest assessments are invariably nonobjective

[Chelton et al., 2011b; Dong et al., 2014; Zhang et al., 2014]. Given the shortcom-

ings of Eulerian eddy criteria, these results are subject to question and thus should be

revised.
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