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The Lagrangian dynamics of two-dimensional incompressible fluid flows is consid-

ered, with emphasis on transport processes in atmospheric and oceanic flows. The

dynamical-systems-based approach is adopted; the Lagrangian motion in such sys-

tems is studied with the aid of Kolmogorov-Arnold-Moser (KAM) theory, and results

relating to stable and unstable manifolds and lobe dynamics. Some nontrivial ex-

tensions of well-known results are discussed, and some extensions of the theory are

developed. In problems for which the flow field consists of a steady background on

which a time-dependent perturbation is superimposed, it is shown that transport

barriers arise naturally and play a critical role in transport processes. Theoretical re-

sults are applied to the study of transport in measured and simulated oceanographic

and atmospheric flows. Two particular problems are considered. First, we study the

Lagrangian dynamics of the zonal jet at the perimeter of the Antarctic Stratospheric

Polar Vortex during late winter/early spring within which lies the “ozone hole”. In

this system, a robust transport barrier is found near the core of a zonal jet under

typical conditions, which is responsible for trapping of the ozone-depleted air within

the ozone hole. The existence of such a barrier is predicted theoretically and tested

numerically with use of a dynamically-motivated analytically-prescribed model. The



second, oceanographic, application considered is the study of the surface transport in

the Adriatic Sea. The surface flow in the Adriatic is characterized by a robust three-

gyre background circulation pattern. Motivated by this observation, the Lagrangian

dynamics of a perturbed three-gyre system is studied, with emphasis on intergyre

transport and the role of transport barriers. It is shown that a qualitative change in

transport properties, accompanied by a qualitative change in the structure of stable

and unstable manifolds occurs in the perturbed three-gyre system when the pertur-

bation strength exceeds a certain threshold. This behavior is predicted theoretically,

simulated numerically with use of an analytically prescribed model, and shown to be

consistent with a fully observationally-based model.
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1 Introduction

Understanding transport and mixing processes in fluids is an important question that

has been studied for many years. In the ocean transport by currents controls the

distribution of water mass properties on a broad range of scales, from the global

ocean scale to the microscale. Much of the work included in this dissertation focuses

on the role of transport barriers. In addition to being interesting physical features

with nontrivial dynamics, transport barriers have important biological implications

and implications for pollutant dispersal. When investigating transport of passive

tracers or fluid parcels it is most natural to adopt a Lagrangian point of view. The

equation of motion for a particle passively advected by the Eulerian velocity field

u (x, t) is

dx/dt = u (x, t) . (1)

Despite the simple form of Eq. (1), trajectories resulting from solving Eq. (1) may be

very complex. In nonsteady 2D flows, even in the case of simple time-periodic flows,

chaotic transport may occur.

In the ocean it is frequently assumed that there is a separation of scales between

deterministic and stochastic components of the velocity field u = U + u′, which

leads to an advection-diffusion or Fokker-Planck equation to describe transport. The

fluid particle trajectory is then controlled by two different processes: advection by

the large scale velocity field U and turbulent transport by the small scale stochastic

perturbation field u′, which is characterized by an effective diffusivity. This approach,

however, does not explain why mixing is enhanced in some regions and suppressed in

1



2

the others. Solving Eq. (1) numerically also does not answer this question.

An alternative approach to the study of fluid transport processes and Lagrangian

fluid mechanics is to apply results associated with dynamical systems theory. Equa-

tion (1) defines a dynamical system. This system has a special form when the velocity

field is two-dimensional x = (x, y) and incompressible. Then one can introduce a

streamfunction ψ (x, y, t) and the Lagrangian equations of motion are

ẋ = −∂ψ/∂y, ẏ = ∂ψ/∂x. (2)

It is well known that these equations have Hamiltonian form with streamfunction

playing the role of Hamiltonian: ψ (x, y, t) ↔ H (p, q, t). The Hamiltonian structure

of Eqs. (2) will be discussed extensively later. We are interested in understanding

both local and global dynamics in the phase space of the system, which in our case

coincides with the actual physical space. We would like to separate regions of qual-

itatively different motion and characterize the transport between these regions. Dy-

namical systems tools allow identifying some structures in the flow of interest, called

Lagrangian coherent structures (LCS) [1, 2, 3, 4, 5], which have major influence on the

mixing of fluids. LCSs are material lines of fluid and as such represent impenetrable

barriers to transport. Identification of LCSs is generally not possible from naked eye

inspection of measured or simulated velocity fields or individual particle trajectories.

Several techniques from dynamical systems theory have been developed and used to

reveal LCSs in various oceanic and atmospheric flows [6, 7, 8]. The LCSs that are

revealed are of two types. The first type, invariant stable and unstable manifolds
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of nonstationary hyperbolic points, is associated with chaotic motion in regions with

enhanced transport. The theory of lobe dynamics can be used to quantify chaotic

transport in time-dependent flows [9, 10, 11, 12]. The second type of LCSs, called

Kolmogorov-Arnold-Moser (KAM) invariant tori, is associated with regular or non-

chaotic motion and regions with inhibited transport. Both types of transport barriers

exist in nature. Transport barrier of the strong KAM stability type can be found,

for example, at the perimeter of the southern hemisphere stratospheric polar vortex

and is responsible for the trapping of the ozone-depleted air inside the “ozone hole”

in the austral spring [7]. Another vivid example can be found in the atmosphere of

Jupiter. The most striking feature of the Jovian atmosphere is a sequence of alter-

nating regions, belts and zones, that have different radiative transfer properties. The

existence of robust transport barriers associated with the strong KAM stability type

between neighboring belts and zones explains the absence of fluid exchange between

them [13]. A persistent transport barrier of the first type is present on the West

Florida Shelf and is responsible for the existence of the so-called forbidden zone on

the West Florida Shelf that is not visited by drifters that are released outside of this

region [8].

With these comments as a background, we can state the objectives of this work.

These objectives are: 1) to better understand and quantify transport processes in the

oceanic and atmospheric flows; 2) to develop associated descriptive and predictive

tools; and 3) to apply and test these tools using measured and simulated atmospheric

and oceanic flows. Two applications will be in the focus of our study. The first one

is concerned with the Lagrangian dynamics of the Stratospheric Polar Vortex and
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is motivated by the desire to understand the mechanism by which ozone-depleted

air is trapped within the ozone hole. The second application focuses on transport

properties in a three-gyre system and is motivated by the desire to better understand

transport in the Adriatic Sea, whose characteristic property is a well-defined three-

gyre background circulation pattern.

This thesis is organized as follows. In Chapter 2 a brief description of the clas-

sical view on the transport problem is given, where the problem is treated as an

advective-diffusive process. An alternative approach that explores techniques from

the dynamical systems theory is presented in Chapter 3. Chapter 4 is concerned with

Lagrangian dynamics of the Stratospheric Polar Vortex. In Chapter 5 transport in

a three-gyre system is studied with application to the Adriatic Sea. In Chapter 6 a

summary of the work presented is given.



2 Background. Advection-diffusion equation

The classical approach to understanding transport of fluids starts with the advec-

tion - diffusion equation that was first obtained by Einstein in the beginning of the

twentieth century; derivation and analysis of this very basic result are given in Sec.

2.1. The work of Eckart is reviewed in Sec. 2.2, where the homogenization of two

fluids is considered in more detail and three main stages of this process are identified.

The advection-diffusion equation is seen to be a special case of a Fokker-Plank equa-

tion that describes a stochastic process. As a consequence, the diffusion process can

be described by a stochastic differential equation, where the large scale mean flow is

responsible for advection and a smaller scale turbulent velocity field plays the role of

a random perturbation disturbing the system. A general review of stochastic differ-

ential equations and their connection to the advection-diffusion equation is given in

Sec. 2.3.

2.1 Diffusion

In 1827 a botanist Robert Brown observed that suspended pollen grains are in

uninterrupted and irregular motion. Being a botanist, he first believed that only

organic materials exhibit this behavior but very soon he extended his observation to

particles of inorganic matter. The cause of this Brownian motion was a subject of

an intermittent discussion throughout the nineteenth century until in 1877 Delsaux

suggested that the impact of molecules on a macroscopic particle produces observable

displacements. In 1905, after almost a century of debate, Einstein gave an explanation

of this phenomenon and derived the diffusion equation.

5
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Einstein considered a one-dimensional Brownian motion by projecting the posi-

tion of the particle onto a straight line, the x-axis. Two assumptions are necessary to

proceed. First, particles are assumed to move independently from one another and,

second, positions of particles are observed with time intervals τ that is much larger

then the time interval between particle collisions. As a result, the motion of the par-

ticle during each time interval τ is independent from what happened in the previous

intervals. In other words, the particle is involved into 1D random walk process, where

the “walker” takes steps of random length ∆ along the x-axis in a random direction.

Denote the probability density of ∆ by φ (∆), which is symmetric

φ (∆) = φ (−∆) (3)

and normalized ∫ ∞

−∞
φ (∆) d∆ = 1. (4)

Denote c (x, t) the concentration of particles at time t. The evolution of c (x, t) is

then defined by the equation

c (x, t+ τ) =

∫ ∞

−∞
c (x−∆, t)φ (∆) d∆. (5)

If the concentration is a slowly varying function of both time and space variables,

with use of a Taylor series expansion, Eq. (5) can be approximated by

c (x, t) + ct (x, t) τ ≈
∫ ∞

−∞
φ (∆) [c (x, t)− cx (x, t) ∆ + cxx (x, t) ∆2/2]d∆. (6)
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With use of Eqs. (3) and (4), the above Eq. (6) can be further simplified to give the

diffusion equation

ct (x, t) ≈ Dcxx (x, t) , (7)

where D = 〈∆2〉
2τ

and 〈〉 denotes the expected value. Note that higher order terms in

Taylor series expansion on the right-hand side of Eq. (6) lead to a hyper diffusive

term D̃cxxxx (x, t) on the right-hand side of Eq. (7). The advection-diffusion equation

can be obtained from the diffusion equation Eq. (7) by using the total derivative,

d/dt = ∂/∂t+ (u · ∇), instead of the partial derivative with respect to time, ∂/∂t.

An alternative derivation of the diffusion equation Eq. (7) can be obtained with

use of the Fick’s law, which assumes that the substance goes from high density regions

to low density regions,

J (x, t) = −D (x)∇c (x, t) . (8)

Here J (x, t) represents the flux of a substance c (x, t) and D (x) is the diffusion coef-

ficient. The balance law for an arbitrary region A dictates

d

dt

∫
A

c (x, t) dx = −
∫
∂A

J (x, t) · nd (∂A) +

∫
A

f (x, t, c) dx, (9)

where f represents the density of sources/sinks of c. With use of Eq. (8) and the

divergence theorem, Eq. (9) becomes

∫
A

∂c (x, t)

∂t
dx =

∫
A

[÷ (D (x)∇c (x, t)) + f (x, t, c)]dx. (10)

Since the choice of the region A was arbitrary, the following diffusive differential
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equation holds

∂c (x, t)

∂t
dx = ÷ (D (x)∇c (x, t)) + f (x, t, c) . (11)

Below some basic properties of the diffusion process are described with use of the

method of moments. A moment of order n of the concentration c is the integral of

the form
∫∞
−∞ xnc (x, t) dx. The zeroth moment of the concentration

∫∞
−∞ c (x, t) dx

is the total number of particles, N (t); the first order moment of the concentration∫∞
−∞ xc (x, t) dx is called the center of mass; and the second moment

∫∞
−∞ x2c (x, t) dx

is called the moment of inertia or the mean square displacement of particles and is

often denoted by 〈x2〉. Taking the zeroth moment of Eq. (5) leads to the particle

conservation law, N (t+ τ) = N (t). Taking the first moment of the diffusion equa-

tion Eq. (5) leads to the stationarity of the center of mass, d
dt

∫∞
−∞ xc (x, t) dx = 0.

The second moment of the diffusion equation Eq. (5) describes the mean square dis-

placement of particles, d
dt
〈x2〉 = 2DN . (We have assumed that terms xc (x, t) and

x2c (x, t) vanish at x → ±∞.) The last equation predicts the linear growth of the

mean square displacement of particles in time. This equation is often taken as the

defining characteristic of the diffusion process. Processes, in which the growth of the

mean square displacement of particles is described by the power low 〈x2〉 ∼ tm with

m 6= 1 are referred to as “anomalous diffusion” processes (examples of anomalous

diffusion processes can be found in [14, 15, 16, 17, 18]).

Another derivation of the advection-diffusion equation is presented below. As

mentioned in the introduction, the stochastic approach to transport and mixing in

fluid flows assumes a separation of scales between deterministic, U, and stochastic,
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u′, components of the velocity field. The motion of fluid particles, Eq. (1), then

dictates that

dx/dt = U + u′. (12)

For a phase space density function (or the trajectory density function in the case of 2D

incompressible fluid flows, since the phase space of the system is the actual physical

space where fluid motion takes place) f (x, t), which satisfies df (x, t) /dt = 0, the

following equation holds (because dx/dt = u = U + u′):

∂f/∂t+ U · ∇f + u′ · ∇f = 0. (13)

Similarly to the assumption of scale separation of the total velocity field, we assume

that

f = 〈f〉+ δf . (14)

With use of this equation, Eq. (13) becomes

∂〈f〉/∂t+ ∂δf/∂t+ U · ∇〈f〉+ U · ∇δf + u′ · ∇〈f〉+ u′ · ∇δf = 0. (15)

Direct averaging (taking the first moment) of Eq. (13) implies

∂〈f〉/∂t+ U · ∇〈f〉+ 〈u′ · ∇f〉 = 0. (16)
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With use of assumption Eq. (14), the last equation becomes

∂〈f〉/∂t+ U · ∇〈f〉+ 〈u′ · ∇〈f〉〉+ 〈u′ · ∇δf〉 = 0 (17)

or, noting that 〈u′ · ∇〈f〉〉 = 〈u′〉 · ∇〈f〉 = 0,

∂〈f〉/∂t+ U · ∇〈f〉+ 〈u′ · ∇δf〉 = 0. (18)

Combining Eqs. (16) and (18) yields the following equation

∂δf/∂t+ U · ∇δf = −u′ · ∇〈f〉 − u′ · ∇δf + 〈u′ · ∇δf〉. (19)

Noting that the last 2 terms in the right-hand side of Eq. (19) cancel each other to

the lowest order, Eq. (19) becomes

dδf/dt = (∂/∂t+ U · ∇) δf = −u′ · ∇〈f〉. (20)

or, in the integral form,

δf = −
∫ t

0

u′ · ∇〈f〉dt′, (21)

where the integration goes along the trajectory. Substituting Eq. (21) into Eq. (18)

yields

∂〈f〉/∂t+ U · ∇〈f〉 = 〈u′ · ∇
∫ t

0

u′ · ∇〈f〉dt′〉. (22)

Now it is insightful to rewrite the right-hand side of Eq. (22) in the more explicit
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notation

〈u′ (x, t) · ∇
∫ t

0

u′ (x (t′) , t′) · ∇〈f (x (t′) , t′)〉dt′〉 = (23)∫ t

0

dt′〈u′j (x, t)
∂

∂xj

(
u′i (x (t′) , t′)

∂

∂xi
〈f (x (t′) , t′)〉

)
〉.

Further simplification of Eq. (23) requires an additional assumption regarding the

statistical properties of the turbulent velocity field u′ to be made

〈u′j (x, t)u′i (x (t′) , t′)〉 = 〈(u′)2〉τδijδ (t− t′) (24)

where τ is the correlation time of the turbulent velocity field. Eq. (24) implies that

for any times t and t′, u′j (x, t) and u′i (x (t′) , t′) have zero correlation when i 6= j.

When i = j, the correlation between u′j (x, t) and u′i (x (t′) , t′) is nonzero only at a

zero time lag. In a strict mathematical sense, Eq. (24) is self-contradictory since it

implies a zero correlation time τ . However, when τ is sufficiently small (which agrees

with the scale separation assumption between the mean and turbulent components

of the velocity field), one may expect Eq. (24) to be valid. In this case, by defining

〈(u′)2〉τ = D, the advection-diffusion equation follows from Eq. (22)

∂〈f〉
∂t

+ U · ∇〈f〉 =
√
D∇ ·

√
D∇〈f〉. (25)
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2.2 Stirring and mixing

In this subsection the famous work of Eckart [19] is reviewed, where it is argued

that, by analogy with the everyday experience of mixing cream into coffee, the ho-

mogenization of two fluids occurs in three stages. The distinction between the stages

is made based on the value of the concentration gradient averaged over the domain.

In the initial stage there are large distinct volumes of cream and coffee, inside which

the gradient is small. Large gradients of concentration are present only on the in-

terfaces between the two volumes. Thus, in the first stage the averaged over the

entire domain gradient of the concentration is small. The intermediate stage, which

is called stirring, is characterized by the increase in the average gradient as a result

of stirring of liquids; the volumes of cream and coffee are distorted and the interfacial

regions, where the gradient is large, increase in size. In the final stage, which is called

mixing, gradients of concentration disappear and the liquid becomes homogeneous

due to molecular diffusion. In general, early stages of the process, in which both

stirring and mixing occur will be dominated by advective processes. Once the mean

gradient has increased, however, diffusive processes start to dominate. Following

the work of Eckart [19], the equation that governs the evolution of the mean square

gradient in the advection-diffusion process can be derived. We start with the usual

advection-diffusion equation

dc (x, t)

dt
= D

∂2c (x, t)

∂x2
i

, (26)

where dc(x,t)
dt

= ∂
∂t

+ui
∂
∂xi

and the summation goes over the repeated indices. Applying
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the ∇-operator to both sides of Eq.(26) yields

d

dt

∂c

∂xj
= D

∂

∂xj

∂2c

∂x2
i

− ∂ui
∂xj

∂c

∂xi
. (27)

Multiplication of the last equation, Eq. (27), by ∂c/∂xj and summation over the

repeated indices leads to the following equation

1

2

d

dt

(
∂c

∂xj

)2

= D
∂

∂xj

(
∂c

∂xj

∂2c

∂x2
i

)
−D

(
∂2c

∂x2
i

)2

− ∂ui
∂xj

∂c

∂xi

∂c

∂xj
. (28)

The integration of Eq. (28) over the material volume V that moves with the fluid

gives

1

2

dG2

dt
=

∫∫
∂V

n · ∇cdc
dt
d (∂V )−DI2 − S, (29)

where

G2 =
1

V

∫∫∫
V

(
∂c

∂xi

)2

dV (30)

defines the mean square gradient of the concentration in the volume V ,

I2 =
1

V

∫∫∫
V

(
∂2c

∂x2
i

)2

dV (31)

is a measure of inhomogeneity of the material inside the volume V , and

S =
1

V

∫∫∫
V

∂ui
∂xj

∂c

∂xi

∂c

∂xj
dV (32)

determines the rate of change of the mean square gradient as a function of stirring.
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Since usually stirring increases the mean square gradient of concentration, S is neg-

ative in most cases. In the case when the surface integral on the right-hand side of

Eq. (29) and S vanish, the mean square gradient never increases.

2.3 A review of stochastic differential equations and their
connection to the advection-diffusion equation

In the ocean it is often assumed that the velocity field has two distinct components,

a large scale mean flow U and a small scale turbulent perturbation u′. The connection

to stochastic differential equations follows from Eq. (1) when u′ is assumed to be a

random perturbation to U. Below we introduce the notion of a stochastic differential

equation and stochastic integral. The simplest model for u′ is an uncorrelated zero-

mean stochastic process (white noise) ξ (t). Equations of motion for a fluid particle

starting from the initial position x (0) = x0 are then given by Eq. (1)

dx/dt = U (x, t) + ξ (t) . (33)

In the case when U = 0 and x0 = 0, the solution to the previous equation is a

so-called Wiener process, or Brownian motion, denoted by W (t): dW/dt = ξ (t).

Equation (33) then becomes a stochastic differential equation

dx/dt = U (x, t) + dW/dt (34)

or, after multiplying by dt,

dx = U (x, t) dt+ dW. (35)
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Formally, one can rewrite the last equation as the stochastic integral of the form

x (t) = x0 +

∫ t

0

U (x, t) dt+

∫ t

0

dW. (36)

The meaning of
∫ t

0
dW, however, is yet to be defined.

In order to define a stochastic integral of the form
∫ T

0
GdW , where G (t) is

a stochastic process, following [20, 21, 22, 23], we first introduce the notion of

a partition. The partition P of the interval [0, T ] is a finite collection of points

P ≡ [0 = t0 < t1 < · · · < tm = T ] with the mesh size |P | ≡ max0<k<m−1 |tk+1 − tk|.

For a given partition P and the number 0 < λ < 1, the Riemann sum is defined as

Rn = (P, λ) ≡
∑n−1

k=1 G ((1− λ) tk + λtk+1) (W (tk+1)−W (tk)). The stochastic inte-

gral is then defined as the limit
∫ T

0
GdW = limn→∞,|P |→0Rn (P, λ). It can be shown

[20] that limn→∞,|P |→0Rn (P, λ) = W (T )2

2
+
(
λ− 1

2
T
)
, where the limit is taken in the

mean square sense, 〈
(
Rn − W (T )2

2
+
(
λ− 1

2

)
T
)2

〉 → 0. This limit and, consequently,

the value of the stochastic integral depend on the choice of λ. The Ito definition

corresponds to the choice of λ = 0. (An alternative definition, due to Stratonovich,

corresponds to λ = 1/2.) According to the Ito definition, stochastic integral

∫ t

0

WdW =
W (t)2

2
− t

2
. (37)

The last Eq. (37) is known as Ito’s formula. Another key formula of stochastic

calculus is Ito’s chain rule: let dx = Fdt+GdW and y (t) = y (x (t) , t), then

dy =
∂y

∂t
dt+

∂y

∂x
dx+

1

2

∂2y

∂x2
G2dt. (38)
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We return now to the stochastic differential equation Eq. (35). Using the chain rule

Eq. (38) for an arbitrary function f (x)

df =
∂f

∂x
dx+

1

2

∂2f

∂x2
dt =

(
∂f

∂x
U +

1

2

∂2f

∂x2

)
dt+

∂f

∂x
dW . (39)

It follows from the last equation that

〈df〉
dt

= 〈∂f
∂x
U +

1

2

∂2f

∂x2
〉. (40)

Let p (x, t) denote the probability density function of x. With use of the equality

〈df〉
dt

= d
dt
〈f〉 it follows from Eq. (40) that

∫
f
∂p

∂t
dx =

∫ [
∂f

∂x
U +

1

2

∂2f

∂x2

]
pdx. (41)

Integrating by parts and discarding surface terms gives

∫
f
∂p

∂t
dx =

∫
f

[
−∂ (Up)

∂x
+

1

2

∂2p

∂x2

]
dx. (42)

Since the choice of f (x) is arbitrary, the following equation should hold for any x and

t:

∂p

∂t
= −∂ (Up)

∂x
+

1

2

∂2p

∂x2
. (43)

We recognize the last equation as the advection-diffusion equation with diffusivity

D = 1. This is a special case of a more general Fokker-Planck equation in the theory

of stochastic differential equations.
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To summarize, the main concept of the stochastic view on transport in 2D fluid

flows is given below. In this approach, the flow field is decomposed into a large scale

mean velocity U and a small scale perturbation u′. Such decomposition of the flow

field leads to a Fokker-Planck equation that describes the space-time evolution of

the particle probability density function. This equation can also be thought of as an

advection-diffusion equation for concentration of a passive tracer. The corresponding

particle trajectory (Langevin) equations constitute a system of stochastic differential

equations; the small-scale velocity field u′ is treated as a stochastic process (such

as, for example, a Markov process satisfying the random-flight model [24]), the pa-

rameters of which need to be estimated statistically from available data sets. Such

statistical approach has been used extensively in a number of oceanographic studies

([25, 26, 27, 28, 29]). The fundamental difficulty relevant to all of these studies is

that in realistic (turbulent) fluid flows many interacting processes act simultaneously

over a wide range of scales. As a result, it may be very difficult to estimate parame-

ters for use in the corresponding stochastic model that adequately represent all these

interaction scales. Also, it is difficult to reconcile transport barriers, as described in

the following sections, with a stochastic/diffusive description of transport.



3 Overview of relevant dynamical systems results

This chapter is devoted to the dynamical systems view of transport and mixing

in fluids. The fluid flow is assumed to be two-dimensional and incompressible; the

associated Lagrangian equations of motion then have Hamiltonian form and the phase

space of a system and the physical space, where the motion takes place, coincide with

each other. The identification of barriers to transport will be an important focus

of our study. Techniques from dynamical systems theory can be applied to reveal

such barriers. An overview of relevant dynamical systems techniques is given in this

section. The revealed barriers are of two types: the first type is associated with

invariant stable and unstable manifolds of nonstationary hyperbolic points in the

flow of interest. The second type is associated with surviving KAM invariant tori;

barriers of this type are often found near cores of jet-like structures. Often these are

associated with the phenomenon of “strong KAM stability” as described below. Both

types of transport barriers can be described as a Lagrangian coherent structures in

dynamical systems theory.

This chapter is organized as follows. In Sec. 3.1 steady (time-independent)

fluid flows are considered and action-angle variables are introduced. In Sec. 3.2

periodically-perturbed fluid flows are studied. A review of lobe dynamics is given in

Sec. 3.3, where the notion of stable and unstable invariant manifold of nonstationary

hyperbolic points is introduced. Sec. 3.4 is concerned with estimating flux in regions

with chaotic behavior with use of the global perturbation method called the Melnikov

method. A numerical technique called the double time-slice method that can be used

18
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to estimate stable and unstable manifolds is explained in Sec. 3.5. The notion of

Lyapunov exponent is introduced and discussed in Sec. 3.6. In Sec. 3.7 a finite-

time generalization of Lyapunov exponent is introduced, the finite-time Lyapunov

exponent (FTLE), that is applicable to finite-time samples in real fluid flows with

general time-dependence. The notion of fractal dimension - a commonly exploited

manifestation of fractal behavior of trajectories - is discussed in Sec. 3.8, where a

numerical algorithm for estimating fractal dimension of trajectory from a set of dis-

crete samples is explained. Subsection 3.9 is devoted to the discussion of the famous

Kolmogorov-Arnold-Moser (KAM) theorem including several nontrivial extensions of

the basic result. These are concerned with the applicability of the theorem when

the usual statements of nondegeneracy condition are violated and applicability of

the theorem to multiply-periodic systems. In Sec 3.10 systems that locally violate

the twist condition are considered and the “strong KAM stability” phenomenon near

shearless tori is discussed. Transport barriers in unsteady 2d incompressible flows can

be characterized as Lagrangian Coherent Structures (LCS). In Sec. 3.11 the notion of

LCS is introduced and numerical techniques are discussed that allow extracting LCS

from measured or simulated velocity fields.

3.1 Steady 2D incompressible fluid flows

We are interested in the motion of fluid particle or passive tracers in 2D incom-

pressible fluid flows. The Lagrangian equations of motion are given by the system

of Hamilton’s equations, Eq. (2), with streamfunction ψ (x, y, t) playing the role of

Hamiltonian H (p, q, t). For any steady flow ψ (x, y) it follows from Eq. (2) that
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dψ/dt = 0 following the trajectory. The motion in this case is completely integrable

and fluid particle trajectories coincide with streamlines of the flow. This means that

chaotic motion cannot occur in such systems and all the trajectories are regular (non-

chaotic) curves in (x, y) space.

The analysis of such a system is most conveniently described in terms of action-

angle variables (I, θ). The equations of motion in action-angle form maintain its

Hamiltonian structure with H (I) = ψ (x, y)

İ = −∂H (I)

∂θ
= 0, θ̇ =

∂H (I)

∂I
= ω (I) . (44)

These equations can be trivially integrated to give I = const following the trajectory

and θ (t) = θ0+ω (I) t. Thus, action I is simply a label for a particular trajectory and

the motion is 2π-periodic in θ with angular frequency ω (I). The period of motion is

connected to the angular frequency of motion in the usual fashion, T (I) = 2π/ω (I).

The quantity ω′ (I) = dω/dI, which is a measure of shear on a particular trajectory,

will be very important in our later discussion. The trajectory satisfying the condition

ω′ (I) = 0 is referred to as shearless. (Also, terms twistless or degenerate are often

used.)

The canonical transformation that relates the old variables (x, y) to the new

action-angle variables (I, θ) with ψ (x, y) = H (I) is accomplished through the gener-

ating function

G (y, I) =

∫ y

x (y′, H) dy′. (45)
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Action and angle variables are then defined as follows

I (H) = (2π)

∮
x (y,H) dy, θ = ∂G/∂I. (46)

Details of this canonical transformation are well-known [30] and will not be further

discussed here. In many cases, it is necessary to introduce action-angle variables in

different regions of the (x, y) space in a piecewise fashion. Once it is done, however,

the equations of motion in each region are given by Eq. (44).

3.2 2D incompressible fluid flows with periodic
time-dependence

In this section Hamiltonian systems of the form Eq. (2) with bounded phase space

(x, y) and 2π/σ-periodic in t streamfunction

ψ = ψ (x, y, σt) (47)

are considered. As mentioned in the introduction, even in the simple time-periodic

case chaotic motion may occur and trajectories resulting from Eqs. (2) and (47) may

be quite complicated. Trajectories in such systems lie in 3D phase space (x, y, t mod 2π).

At that, regular trajectories lie on tori in the 3D phase space (these are so-called KAM

invariant tori) and chaotic trajectories fill volumes between these tori. Each torus is

a 2D surface that divides the 3D phase space into two disjoint regions - the well-

defined inside and outside. As such, each torus represents an impenetrable barrier to

transport of passive tracers in time-periodic flows.
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3.2.1 Poincare section

The usual way to view trajectories in 2D incompressible time-periodic fluid flows is

to construct a Poincare section. A Poincare section reduces the study of continuous

fluid flows to the study of area preserving maps. A Poincare section is the tech-

nique that allows to view trajectories in 2D space by taking a slice of 3D phase space

corresponding to fixed value of t mod 2π. To do so, one samples trajectory strobo-

scopically after each period of time, i.e., at discrete set of times t = t0 + 2πn/σ,

where n = 1, 2, · · · . Specific quantitative features of the Poincare section depend

on the choice of the staring time t0, however, Poincare sections for different t0 have

similar qualitative structure. Because each regular trajectory lies on the torus in 3D

phase space, it appears as a discretely sampled smooth curve on the Poincare section.

Chaotic trajectories fill volumes in 3D phase space, consequently they appear as sets

of scattered dots that fill areas on the Poincare section. Since the space (x, y) is the

actual physical space where fluid motion takes place, water is well-mixed inside each

chaotic region of the Poincare section. Regular trajectories lie on KAM invariant tori,

which act as barriers and prevent mixing of water between different disjoint chaotic

regions of the Poincare section.

3.3 Lobe dynamics

Chaotic motion is characterized by extreme sensitivity to initial positions of fluid

particles, which means that neighboring fluid particles separate from each other at

an exponential rate. Simultaneously, a compact blob of fluid particles or passive
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tracers will disperse throughout the chaotic region in such a way that the area of

the blob is conserved (this is a consequence of the incompressibility assumption). In

a bounded domain this is accomplished by repeated stretching and folding of fluid

elements; this process is linked to the existence of Smale horseshoes. This process

is called chaotic mixing. Lobe dynamics theory [31, 32, 33, 34, 10, 9] allows one to

characterize this process by determining special material curves, stable and unstable

manifolds of generally nonstationary hyperbolic points, that act as a template for

chaotic mixing.

First, consider a saddle-type stagnation point (a stationary hyperbolic point) of

a steady flow. The saddle-type nature of the stagnation point is determined by the

eigenvalues of the constant matrix which describes the linearized flow field in the

vicinity of the stagnation point. Associated with this stationary hyperbolic point

are stable and unstable invariant manifolds. In the case of a steady flow, stable and

unstable manifolds coincide with actual fluid particle trajectories. Along the stable

manifolds fluid particles exponentially approach the hyperbolic point in forward time;

along the unstable manifolds fluid particles exponentially approach the hyperbolic

point in backward time. In steady flows, stable and unstable manifolds fall on top of

each other forming homoclinic (or heteroclinic) trajectories, which act as separatrices

that separate regions of qualitatively different motion from each other.

For fluid flows with periodic time dependence, with period T , the notion of a sta-

tionary hyperbolic point of a flow is replaced by the notion of a stationary hyperbolic

point of the corresponding area-preserving map on the Poincare section. These are

constructed by sampling trajectories at t = t0 + nT , n = 1, 2, . . . (see Sec. 3.2 for
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details). Associated with this hyperbolic stationary point of a map there exist a corre-

sponding stable and unstable invariant manifolds, which, unlike the steady flow case,

do not coincide with each other but rather intersect transversally forming homoclinic

(or heteroclinic) tangles. Since the Poincare section depends on the particular choice

of t0, the position of the hyperbolic point (and, consequently, the corresponding stable

and unstable invariant manifolds) in the Poincare section also depends on t0. (The

existence of the hyperbolic point does not, however, depend on the choice of t0, i.e.,

if the hyperbolic point is present for one t0, it is present for all t0.)

The generalization of the hyperbolic stationary point for unsteady flows with ape-

riodic time dependence gives rise to the notion of the hyperbolic (or saddle-type)

trajectory, γ (t), in the extended phase space (x, y, t). The saddle-type nature of such

hyperbolic trajectory is also determined from the linearization of the flow about the

hyperbolic trajectory. However, in this case, the definition of the hyperbolic trajec-

tory is more complex because the eigenvalues of the time dependent matrix associated

with the linearized velocity field cannot generally be used to determine the saddle-

type nature of the trajectory. A rigorous mathematical definition of the hyperbolic

trajectory can be found in [34]. Physically, one can think of a hyperbolic trajectory

as a “moving saddle-point”. The stable and unstable manifold theorem for hyper-

bolic trajectories [34, 35] states that, associated with the hyperbolic trajectory in the

extended phase space (x, y, t), there exist stable and unstable invariant manifolds,

W s (γ (t)) and W u (γ (t)), which possess the following properties: 1) projections of

W s (γ (t)) and W u (γ (t)) to (x, y) space are moving invariant curves (corresponding

physically to material lines of fluid), so that particle trajectory cannot cross them;
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Figure 1: Geometry of the stable and unstable manifolds of hyperbolic trajectory in
the extended phase space (x, y, t) and on a time slice t = const.

and 2) particle trajectories that start on the stable manifold approach the hyper-

bolic trajectory at an exponential rate as t → ∞; particle trajectories that start on

the unstable manifold approach the hyperbolic trajectory at an exponential rate as

t→ −∞.

Below we discuss the implications of stable and unstable manifolds of hyperbolic

trajectories for transport, starting with the definition of the primary intersection point

between stable and unstable manifolds on a time slice, t = const. The geometry of

the stable and unstable manifolds of a hyperbolic trajectory in the extended phase

space (x, y, t) and on a time slice t = const is shown in Fig. 1. The intersection

point between stable and unstable manifolds is called the primary intersection point(
xPIP , yPIP

)
if a segment of the stable manifold from the hyperbolic point to the

intersection point
(
xPIP , yPIP

)
and a segment of the unstable manifold from the hy-
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perbolic point to the intersection point
(
xPIP , yPIP

)
intersect each other only at the

point
(
xPIP , yPIP

)
. Closed regions trapped between segments of stable and unstable

manifolds, bounded by two neighboring primary intersection points, are called lobes.

Because segments of stable and unstable manifold forming a lobe constitute barriers

to transport, fluid particles are trapped inside the lobe and constrained to move with

the lobe. Intersection points belong both to stable and unstable manifolds. Hence,

they approach nonstationary hyperbolic point along stable/unstable manifold in for-

ward/backward time. During this process, the segment of the stable/unstable mani-

fold that bounds a lobe decreases in length, while the segment of the unstable/stable

manifold increases in length. As a result, lobes transform into long filaments in such

a way that the area of the lobe is conserved. This is the mechanism by which chaotic

mixing occurs.

Segments of stable and unstable manifolds from the hyperbolic point to their first

primary intersection point (that is called boundary intersection point (BIP)) form a

well-defined boundary that divides the phase plane (x, y) into two disjoint regions.

Figure 2 illustrates schematically the geometry of intersecting stable and unstable

manifolds of hyperbolic trajectories, lobes and BIP on the time slice t = t0. Because

stable and unstable manifolds evolve in time, the boundary formed by their segments

also deforms as time progresses. Thus, at two different times the boundary is different.

However, at any given time t = const the boundary is well-defined. Lobe dynamics

theory predicts [31, 32, 33, 34, 10, 9] that the only points that can cross such a

boundary, formed by segments of stable and unstable manifolds, are contained in

lobes produced by these invariant manifolds. Also, lobe dynamics predicts the order
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γ (t = t0) BIP

Figure 2: Schematic diagram showing intersecting stable and unstable manifolds of
hyperbolic trajectory γ (t), lobes and the boundary intersection point (BIP) on a time
slice t = t0.

in which lobes will cross the boundary, this is the so-called turnstile mechanism.

These two predictions allow one to quantify flux of fluid or passive tracers across the

boundary and thus characterize transport.

For streamfunctions of the form Eq. (47), due to time-periodicity of the pertur-

bation, the manifold structure and consequently the boundary produced by segments

of invariant manifolds is constrained to repeat itself after each period T = 2π/σ. In

such systems, lobes cross the boundary in pairs, one lobe going from the inside of

the boundary to the outside, the other - from the outside to the inside. This has two

consequences: first, after one period of the perturbation, the flux across the boundary

consists of fluid contained in one lobe and, second, the area of all lobes is the same

because of the incompressibility (or area preservation) condition. The corresponding

behavior of non-time-periodic flows is more complicated.
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3.4 Melnikov method

For two-dimensional incompressible time dependent flows given by Eq. (2) with

the streamfunction of the form ψ (x, y, t) = ψ0 (x, y) + εψ1 (x, y, t) where ε � 1, the

area of the lobe can be computed with use of a global perturbation method, called

Melnikov’s method [36, 31, 34, 37]. The advantage of this method is that if the form

of the streamfunction is known, it only requires the knowledge of the unperturbed

homoclinic (or heteroclinic) trajectory
(
xh (t) , yh (t)

)
and does not require the com-

putation of stable and unstable manifolds. The Melnikov function

M (t0) = ε

∫ ∞

−∞

(
∂ψ0

∂x

∂ψ1

∂y
− ∂ψ0

∂y

∂ψ1

∂x

)
|(xh(t−t0),yh(t−t0),t) dt (48)

provides anO (ε) - estimate for the distance between the stable and unstable manifolds

on the nonstationary hyperbolic point. Zeros of the Melnikov function correspond to

primary intersection points of stable and unstable manifolds. The area of the lobe

bounded by intersection points tPIP1 and tPIP2 is given by

A =

∣∣∣∣∣
∫ tPIP

2

tPIP
1

M (t0) dt0

∣∣∣∣∣+O
(
ε2
)
. (49)

Two-dimensional flux of fluid across the corresponding segment of the boundary is

then given by F = A/∆t where ∆t is time required for the lobe to cross the boundary.

3.5 Double time-slice method

A numerical technique that is commonly used to compute stable and unstable

invariant manifolds in unsteady flows is called the double time-slice method [34].
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It requires evolving a set of initial conditions surrounding the hyperbolic point for-

ward and backward in time during some integration interval. At that, because of

rapid stretching of a set of initial conditions in the direction of stable/unstable man-

ifold, some care is required to maintain the resolution at longer integration intervals.

In numerical computations, a seeding procedure is often implemented to produce

smoothly resolved long enough segments of stable and unstable manifolds. An alter-

native technique that is capable of detecting transport barriers involves computation

of finite-scale (FSLE) or finite-time (FTLE) Lyapunov exponents. It will be discussed

in detail further in text.

3.6 Lyapunov exponents

The distinction between regular motion and chaotic motion is often quantified

with use of Lyapunov exponents. Lyapunov exponent provide a measure of rate at

which initially nearby trajectories diverge from each other under the influence of fluid

flow. The formal definition of the Lyapunov exponent λ is the following

λ = lim
t→∞

lim
d0→0

1

t
ln
d (t)

d0

, (50)

where d (t) is a suitably chosen measure of distance between two trajectories and d0 =

d (t = 0). Since chaotic motion is characterized by sensitivity to initial conditions,

chaotic trajectories diverge from each other at exponential rate and are characterized

by positive Lyapunov exponents. In regions that do not include hyperbolic points

and homoclinic or heteroclinic trajectories, regular trajectories diverge at polynomial

rate and correspond to λ = 0. Eq. (50) involves two limits and is not suitable for
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numerical calculation of Lyapunov exponents. The elimination of one limit (limd0→0)

is possible with use of variational equations. Consider the evolution of the initial

infinitesimal perturbation (δx0, δy0) to trajectory starting with (x0, y0) in the flow

Eq. (2). To the lowest order in (δx0, δy0),

 δx

δy

 = Q

 δx0

δy0

 , (51)

where Q is the Jacobian matrix of the associated flow often refered to as the stability

matrix

Q =

 ∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

 . (52)

It follows from Eq. (2) that the elements of the stability matrix evolve according to

dQ

dt
= JQ, (53)

with initial condition

Q (0) = I (54)

where and I is the identity matrix and J is the Jacobian matrix of the Hamiltonian

vector field

J =

 −∂2ψ
∂x∂y

−∂2ψ
∂y2

∂2ψ
∂x2

∂2ψ
∂x∂y

 . (55)

Let now λQ (t) be the largest of two eigenvalues of Q and consider the following
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definition (see, e.g. [38])

λ = lim
t→∞

1

t
ln
∣∣λQ∣∣ . (56)

If the limit in Eq. (56) exists and is not zero, then

(δx, δy) ∼ expλt (57)

i.e., nearby trajectories diverge exponentially in time. Hence, Eq. (56) can be taken

as a suitable definition of the Lyapunov exponent.

The geometrical interpretation of equation Eq. (56) will now be given. The

variational equations describe the evolution of an infinitesimal circle in the flow. This

circle gets deformed into an ellipse under the influence of the flow. During this

process, the area of the ellipse is conserved and equal to the area of the initial circle

due to the incompressibility of the flow (Liouville’s theorem [39, 40] guarantees that

the area is preserved in the phase space leading to the condition detQ = 1). The

eigenvectors of Q define the orientation of the ellipse and the largest eigenvalue λQ

is a measure of the semimajor axis of the ellipse. Hence, it is a suitable choice of

the distance d in Eq. (50). In highly chaotic flows, an initial circle tends to align

along the semimajor axis associated with the largest eigenvalue λQ very quickly. As

a result, matrix Q becomes ill-conditioned very quickly and λQ (and, consequently,

λ) can not be computed reliably at long times. Several techniques can be used to

overcome this problem.
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Following [41, 42], let A (t) be the bounded-element matrix such that

Q = A expλguesst. (58)

Consequently

λQ = λA expλguesst (59)

where λguess is a guessed value of λ. It follows from the variational equation Eq. (53)

that the evolution of A is given by the following equation

dA

dt
= (J − λguessI)A (60)

with the initial condition

A (0) = I. (61)

If λguess is close to λ, the matrix A remains well-conditioned at much longer times

then the matrix Q.

Another approach to overcome the problem of elements ofQ becoming ill-conditioned

involves successive renormalization of the elements of Q after some interval of time T

when integrating simultaneously Eqs. (2) and (53) [38]. Let δx0 = (δx0, δy0) be the

initial perturbation to the point x0 = (x0, y0) and define the 0-th iteration as follows

δx(0) = δx0, u(0) = δx0/ |δx0| , x(0) = x0. (62)

Let φT (x) denote the flow map that advances fluid particles from their initial position
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at time t to their final position at time t+ T . The first iteration is then defined as

δx(1) = δx
(
T ;u(0),x(0)

)
= φT

(
x(0)

)
u(0), (63)

u(1) = δx(1)/
∣∣δx(1)

∣∣ .
The second iteration is defined as

δx(2) = δx
(
2T ;u(0),x(0)

)
= φ2T

(
x(0)

)
u(0) =φ2T

(
x(0)

)
x(0) 1

|δx(0)|
= (64)

φT
(
x(1)

)
φT
(
x(0)

)
x(0) 1

|δx(0)|
= φT

(
x(1)

)
δx(1)

∣∣δx(0)
∣∣ 1

|δx(0)|
= φT

(
x(1)

)
δx(1) =

δx(2)
∣∣δx(1)

∣∣ = u(2)
∣∣δx(2)

∣∣ ∣∣δx(1)
∣∣ ,

u(2) = δx2/ |δx2|

and the k-th iteration as

δx(k) = δx
(
kT ;u(0),x(0)

)
= u(k)

∣∣δx(k)
∣∣ · · · ∣∣δx(1)

∣∣ ,
u(k) = δxk/ |δxk| (65)

In the case when k is sufficiently large, the Lyapunov exponent λ can be approximated

as follows

λ ≈ 1

kT
ln
∣∣δx

(
kT ;u(0),x(0)

)∣∣ =
1

kT
ln

k∏
k=1

∣∣δx(k)
∣∣ =

1

kT

k∑
k=1

ln
∣∣δx(k)

∣∣ . (66)
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3.7 FTLE

The relaxation of both limits in the definition Eq. (50) leads to the notion of

a finite-time Lyapunov exponent (FTLE), which is the finite-time average of the

maximum expansion or contraction rate for pairs of passively advected fluid particles.

More specifically, FTLE is defined as

σtt0 (x0) =
1

2 (t− t0)
lnλmax (t, t0,x0) (67)

where λmax (t, t0,x0) is the eigenvalue of the deformation-gradient tensor field (also

known as a Cauchy-Green strain tensor) Σt (x0, t0) which is defined by the following

expression

Σt (x0, t0) =

[
∂x (x0, t)

∂x0

]T [
∂x (x0, t)

∂x0

]
. (68)

FTLE σtt0 (x0), a finite-time generalization of Eq. (50), can be computed from finite-

time velocity samples in real fluid flows with general time dependence.

3.8 Fractal properties of trajectories. Fractal dimension

Discrete samples {x (ti) , y (ti)}, i = 1, 2, · · · of fluid particle trajectories, given by

Eqs. (2), may exhibit fractal properties in nonsteady fluid flows, even in the case

when the streamfunction ψ (x, y, t) is specified analytically [43]. One of the most

commonly exploited manifestations of fractal behavior of trajectories is anomalous

diffusion, which is characterized by the root-mean-square growth of particle displace-

ments proportional to t1/FD with fractal dimension FDε[1, 2]. Ballistic motion is

characterized by FD = 1 and Brownian motion is characterized by FD = 2.
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A box counting algorithm described below (see [43] for details) allows one to esti-

mate the fractal dimension FD of trajectory from it’s discrete sample {x (ti) , y (ti)},

i = 1, 2, · · · , N in systems with a bounded phase space. The phase space of the system

is first mapped onto a unit square and then by turns divided into 22m, m = 0, 1, 2, · · ·

square boxes. At the m-th step, the length of the box side is s (m) = 2−m and the

area of the box is s2 = 2−2m. Probabilities Pi (s) for a point from a discrete trajectory

sample to occupy the i-th square are then computed. The scaling relationship

C (s) ≡
∑
i

[Pi (s)]
2 ≈ sFD (69)

is then used to estimate the fractal dimension FD of the trajectory. Note that from

the last equation it follows that C (1) = 1 (all points from the discrete trajectory

sample fall into 1 box at the m = 0 step) and lims→0C (s) =
∑N

i=1[1/N ]2 = 1/N (as

the number of boxes m→∞, each point from the discrete trajectory sample occupies

its own box).

3.9 KAM theorem

In the XIXth century, the study of integrable problems, such as the two-body

problem or linear oscillations problem, was of the major interest. After the work of

Poincare, however, it became clear that the general dynamical system in nonintegrable

(i.e., its integrals of motion are not only unknown but do not exist).

All integrable problems with n degrees of freedom possess n single-valued first

integrals of motion in involution. Thus, in the 2n-dimensional phase space the mo-

tion occurs on invariant n-dimensional manifolds. If the phase space of the system is
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bounded, these invariant manifolds are n-dimensional tori. A vivid example of such

behavior is provided by 2-dimensional incompressible steady fluid flows with stream-

function ψ = ψ0 (x, y) discussed in Sec. 3.1. Fluid particle trajectories in such flows,

resulting from solving Eqs. (2), can be thought as either 1-dimensional surfaces in

(x, y) or tori in higher-dimensional phase space.

When a steady fluid flow is subjected to a small time-dependent perturbation,

many tori of the unperturbed system will break up and chaotic motion will occur.

However, the survival of some nonchaotic trajectories (or tori) is predicted by the

Kolmogorov-Arnold-Moser (KAM) theorem for certain classes of time-dependent per-

turbation. According to each of the many variants of the KAM theorem [44, 45, 46,

47], many of the unperturbed tori associated with the steady streamfunction survive

under the perturbation provided certain conditions are met. Due to the strong KAM

stability phenomenon [7], under most conditions, the invariant tori that are most

likely to survive in the perturbed system are those in close proximity of the shearless

or nontwist trajectory that is characterized by ω′ = 0.

The original Kolmogorov [44] form of the KAM theorem is suitable for 2D incom-

pressible fluid flows with the streamfunction of the form

ψ (x, y, t) = ψ0 (x, y) + εψ1 (x, y, σt) (70)

where ψ1 is a periodic function in t with period 2π/σ and ε is the perturbation

strength parameter. According to the theorem, tori in the vicinity of those tori of the

unperturbed system for which the ratio ω (I) /σ is sufficiently irrational survive in the
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perturbed system provided the strength of the perturbation is sufficiently weak and

a nondegeneracy condition is satisfied. The condition of sufficient irrationality of the

ratio ω (I) /σ is expressed quantitatively by means of a Diophantine condition. Its

meaning is straightforward and will not be discussed further. The application of the

nondegeneracy condition, on the other hand, is more challenging and will be discussed

in more detail. In the simplest form of the theorem the nondegeneracy condition reads

ω′ (I) 6= 0, which guarantees the invertibility of ω (I). This form of the nondegeneracy

condition was used in Kolmogorov original statement of the theorem [44]. Already in

the original proof of the theorem, Arnold [45] noted in the footnote that an alternative

form of the nondegeneracy condition, an isoenergetic condition, could be used instead.

Subsequently, Bruno [48], Russmann [46] and Sevryuk [47] announced forms of the

theorem that employ less restrictive nondegeneracy conditions.

The significance of the Russmann nondegeneracy condition is that for the system

of the form Eq. (70) it is satisfied in domains that include isolated zeros of ω′ (I), i.e.

that are degenerate in Kolmogorov sense. The Russmann nondegeneracy condition

is most naturally stated in words: for an autonomous system with N + 1 degrees of

freedom the image of the frequency map I → ω (I) may not lie on any hyperplane of

dimension N that passes through the origin. Applying this condition to systems of

the form Eq. (70) requires transforming the system into an equivalent autonomous

2 degree-of-freedom system with a bounded phase space. Such transformation is a

special case of the transformation given at the end of this section. After perform-

ing this transformation, the Russmann nondegeneracy condition requires that in the

(ω, σ)-space the locus of points (ω (I) , σ) does not lie on a line that passes through
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the origin. In other words, the Russmann nondegeneracy condition is satisfied in do-

mains that include isolated zeros of ω′ (I) and is only violated if ω (I) = const. The

Russmann form of the theorem is weaker that the original Kolmogorov’s form because

it only guarantees the existence of tori in the perturbed system whose frequencies are

close to those in the unperturbed system, but it does not guarantee that a torus with

a particular value of I will survive in the perturbed system with unchanged frequency.

For our purposes this distinction is not important because we are interested in the

presence of transport barriers and, from this point of view, it makes no difference

whether a particular torus with a fixed value of I or rather some nearby tori survive

in the perturbed system.

A version of the KAM theorem for quasiperiodically-perturbed one degree-of-

freedom Hamiltonian systems that satisfy the Russmann nondegeneracy condition

has been proven recently by Sevryuk [47]. This form of the KAM theorem is suitable

for 2D incompressible fluid flows with the streamfunction of the form

ψ (x, y, t) = ψ0 (x, y) + εψ1 (x, y, σ1t, σ2t, · · · , σN t) (71)

where ψ1 is a multiperiodic function in t with constituent periods 2π/σi, i = 1, 2, · · · , N

and ε� 1 is the perturbation strength.

An important observation relating to systems of the form (71) is that only fre-

quencies that are incommensurable (i.e., have the property that the ratio of all pairs

of frequencies is irrational) need to be considered. Otherwise, if we consider, for ex-

ample, a multiperiodic function with periods 4 and 6 days, the resulting function is a
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simple periodic function with period 12 days. In general, a reduction of the number

of frequencies can be achieved whenever two or more of the frequencies are commen-

surable. Thus, without loss of generality, it may be assumed that σ1, σ2, . . . , σN are

incommensurable, i.e., that ψ1 is a quasiperiodic with N incommensurable frequen-

cies.

Recall from Sec. 3.2 that for periodically-perturbed systems of the form Eq.

(70) each surviving KAM torus is a 2D surface in the 3D space (x, y, t mod 2π/σ)

that divides the 3d space into nonintersecting “inside” and “outside” regions and

thus provides an impenetrable barrier to transport. An extension of the same argu-

ment applies to the quasiperiodic problem. We show below that in quasiperiodically-

perturbed systems of the form Eq. (71) each surviving KAM torus has the dimension

one less than the dimension of space that the chaotic trajectories fill [43, 49]. Thus,

each surviving KAM torus provides an impenetrable barrier for transport.

To see this, note first that the nonautonomous 1 degree-of-freedom system de-

scribed by equations (2) and (70) can be written as an equivalent autonomous N + 1

degree-of-freedom system,

dqi
dτ

=
∂H

∂pi
,

dpi
dτ

= −∂H
∂qi

, i = 1, 2, . . . , N + 1 (72)

where qi = σit, pi = −ψ/σi, i = 1, 2, . . . , N , and qN+1 = y, pN+1 = x, with

H(p,q) = ψ(pN+1, qN+1; q1, q2, . . . , qN) +
N∑
i=1

σipi. (73)
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It is straightforward to verify that (72) and (73) reduce to dt/dτ = 1, equations

(2) and dψ/dt = ∂ψ/∂t. An important property of the transformed system (72,

73) is that each trajectory is constrained by the presence of N integrals (sometimes

called constants of the motion), i.e., N functions fi(p,q), i = 1, 2, . . . , N for which

dfi/dτ = 0. These integrals are H and fi = qi/σi− qN/σN , i = 1, 2, . . . , N − 1. If one

additional independent integral can be found, the system (72, 73) can be solved by

quadratures and is said to be integrable. (This should come as no surprise because

the original system (2, 70) also lacks only one integral to render it integrable.) For

our purposes, the principal significance of the N integrals is that, because of their

presence, each trajectory in the 2(N + 1)-dimensional phase space, lies on a surface

of dimension 2(N +1)−N = N +2. In a near-integrable system of this type in which

both KAM tori and chaotic trajectories are present, the tori have dimension equal

to the number of degrees of freedom, N + 1. In the N + 2-dimensional space that is

filled by chaotic trajectories, the N + 1-dimensional KAM tori serve as impenetrable

transport barriers. (Note, for example, that in (x, y, z) the 1-d circle x2+y2 = 1, z = 0

divides the 2-d z = 0 plane into nonintersecting inside and outside regions, but the

same 1-d circle does not divide the 3-d (x, y, z) volume into nonintersecting inside

and outside regions.)

The argument just given shows that in the system described by (2) and (70) (or

equivalently by (72) and (73)) Arnold diffusion does not occur. Loosely speaking,

this is the process which allows chaotic trajectories to bypass KAM invariant tori.

This process occurs in near-integrable autonomous systems with N ≥ 3 degrees of

freedom which, under perturbation, are constrained by only one integral H. For



41

such systems phase space has dimension 2N , chaotic trajectories lie on surfaces of

dimension 2N − 1, while KAM invariant tori have dimension N ; for N ≥ 3 these tori

do not serve as impenetrable barriers to the chaotic trajectories. The cause of the

absence of Arnold diffusion in the system described by (72) and (73) is the integrals

in addition to H that constrain the motion of all trajectories.

3.10 Resonance widths and the “strong KAM stability” phe-
nomenon

Hamiltonian systems that locally violate the twist condition (ω′ (I) 6= 0) arise

in many applications, including simple mechanical systems [50], charged particle dy-

namics in magnetic fields [51], celestial dynamics [52], stellar pulsations [53], plasma

physics [54], underwater acoustics [55], and transport and mixing in the ocean and

atmosphere [49, 56]. Numerical simulations reveal that when systems of this type are

perturbed, the degenerate or nontwist tori are remarkably stable. We refer to this

phenomenon as “strong KAM stability” near degenerate tori. In this section we show

that, owing to small resonance widths near degenerate tori under perturbation, robust

transport barriers are found near such tori under typical conditions. The resulting

transport barriers are important in all of the applications mentioned.

We consider a Hamiltonian system

İ = −∂H/∂θ, θ̇ = ∂H/∂I (74)
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with Hamiltonian of the form

H (I, θ, t) = H0 (I) + εH1 (I, θ,−→σ t) , (75)

where (I, θ) are action-angle variables, −→σ = {σ1, · · · , σN}, H1 is multiperiodic in time

with periods 2π/σi, i = 1, · · · , N and ε is the strength of the perturbation. Without

loss of generality, we may assume that frequencies σ1, · · · , σN are incommensurable,

otherwise a reduction of number of frequencies can be achieved. In the ε = 0 limit,

Eqs. (74, 75) define motion on a torus (see Sec. 3.1 for details). As the strength

of the perturbation ε becomes nonzero, many of the tori of the unperturbed system

will break up under the influence of the perturbation. Torus destruction is caused

by the excitation of resonances when the ratio of the frequency of the motion on the

unperturbed torus, ω (I), to the forcing frequency, σ, is rational. Associated with

each resonance is a characteristic width. Resonance widths are important because

overlapping resonances lead to the destruction of the unperturbed tori with I-values

between those of the resonant tori [57, 58, 59]. A general expression for the width

of a resonance is derived below. It will be shown that resonance widths scale like

∆ω ∼ εj/(j+1) where j = 1, 2, 3, . . . is the number of nondegenerate resonances that

coalesce at the degenerate point (the case of the nondegenerate resonance corresponds

to j = 1). We refer to j below as the order of the degeneracy. For small ε degenerate

resonance widths are generally smaller than nondegenerate resonant widths. This

leads to the phenomenon of “strong KAM stability” and very robust transport barriers

near degenerate tori. An example will be given below.
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We start the derivation of a general expression for the width of a resonance by

noting that since the perturbation H1 is multiperiodic in time and 2π periodic in θ,

it can be expanded into Fourier series

H1 (I, θ, t) =
∞∑

−→m,n=−∞

Vnm (I) cos (nθ −−→m−→σ t+ φn−→m) (76)

where −→m = m1, · · · ,mN and φn−→m ’s are phases. The equations of motion are

İ = ε
∞∑

−→m,n=−∞

nVn−→m (I) sin (nθ −−→m−→σ t+ φn−→m) , (77)

θ̇ = ω (I) +

ε
∞∑

−→m,n=−∞

nV ′
n−→m (I) cos (nθ −−→m−→σ t+ φn−→m) . (78)

Let ω(j) (I0) denote the jth derivative of ω(I) at I = I0. In the following we shall

assume that ε is small, ω (I) satisfies ω(j−1) (I0) = 0, ω(j) (I0) 6= 0 for some integer

j ≥ 2 and some I0 in the I-domain of interest, and −→σ is an adjustable N -dimensional

parameter that is close to the value −→σ 0 at which the resonance condition nω (I0) =

−→m−→σ 0 is satisfied. j is the number of nondegenerate resonances that coalesce at the

degenerate point. Below j will be referred to as the order of the degeneracy.

In the approximate analysis that follows, we will consider the vicinity of the res-

onant level. Let ψ = nθ − −→m−→σ t + φn−→m be the term corresponding to the resonant

set {n,−→m}. Then ψ̇ = nθ̇ − −→m−→σ . Following [58, 60], all the oscillating nonresonant

terms in Eqs. (77) and (78) will be omitted, Vn−→m (I) will be replaced by the resonant

value Vn−→m (I0) and ω (I) will be expanded in a Taylor series about I0 with δI = I−I0.
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For convenience, we introduce the notation Ωi = ω(i) (I0) /i!, i = 0, 1, . . . , j − 2. The

following approximate autonomous system results from Eqs. (77) and (78) in the

vicinity of the resonant level:

δİ = εnVn−→m (I0) sinψ, (79)

ψ̇ = n

(
Ω0 + Ω1δI + . . .+

Ωj−2 (δI)j−2 + ω(j) (I0)
(δI)j

j!

)
−−→m−→σ . (80)

An O (ε) term in Eq. (80) has been omitted. The justification for this is that it will

be shown below (Eq. (85)) that δI scales like ε1/(j+1). Equations (79) and (80) define

a Hamiltonian system

δİ = −∂H̃/∂ψ, ψ̇ = ∂H̃/∂δI (81)

with Hamiltonian

H̃ (δI, ψ) = n

(
Ω0δI + Ω1

(δI)2

2
+ . . .+

ω(j) (I0)
(δI)j+1

(j + 1)!

)
−−→m−→σ δI + εnVn−→m (I0) cosψ. (82)

Consistent with Eq. (82) is the expansion

ω (δI;Ω) = Ω0 + Ω1δI + . . .+ Ωj−2 (δI)j−2 + ω(j) (I0)
(δI)j

j!
. (83)

Below we estimate the width of a degenerate resonance of order j. At such a resonance

−→σ = −→σ0 with −→m−→σ0 = nΩ0 and Ω1 = Ω2 = . . . = Ωj−2 = 0, so the Hamiltonian (82)
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Figure 3: Level surfaces of H̃ (δI, ψ) defined by Eq. (84) in the phase plane (ψ, δI)
for j = 2 (a) and j = 3 (b).

reduces to

H̃ (δI, ψ) = nω(j) (I0)
(δI)j+1

(j + 1)!
+ εnVn−→m (I0) cosψ. (84)

Level surfaces of H̃ in the phase plane (δI, ψ) have qualitatively different features

depending on whether j is odd or even. An example of each type is shown in Fig.

3. In both cases, however, trajectories are divided by a separatrix into two types:

trajectories trapped in the resonance region and trajectories external to the resonance

region. It is natural to define the resonance width as the width of the trapped region.

This is the maximum δI excursion of the separatrix,

∆I =

(
2ε |Vn−→m (I0)| (j + 1)!

|ω(j) (I0)|

) 1
j+1

. (85)

The corresponding frequency width is

∆ω =
∣∣ω(j) (I0)

∣∣ (∆I)j
j!

=
∣∣ω(j) (I0)

∣∣ 1
j+1

(2ε |Vn−→m (I0)| (j + 1)!)
j

j+1

j!
. (86)

Equation (86) is the main result of this section.
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Figure 4: Frequency structure ω (I) and the corresponding Poincare section for
the system with Hamiltonian H0 (I) + εH1 (I, θ, σt) for two choices of H0 (I):
(a) linear ω (I); (b) cubic ω (I). In both cases ε = 0.026 and H1 (I, θ, σt) =∑19

i=1 cos (σit) cos (I + θ), where the 19 forcing frequencies are commensurable and
lie in the ω-domain plotted.

Because resonances are excited at discrete values of ω, it is the width ∆ω rather

than ∆I that determines whether neighboring resonances overlap. Note, that Eq.

(86) applies as well to the nondegenerate case j = 1 providing that nondegenerate

resonance widths scale like ∆ω ∼ (ε |ω′ (I0)|)1/2. Thus, small values of shear are

generally associated with small resonance widths. Also from Eq. (86) it follows that

degenerate resonances are generally associated with smaller resonance widths then

nondegenerate resonances. As a result, resonances near degenerate tori are less likely

to overlap and these regions are generally associated with enhanced stability. These

arguments provide an explanation for the “strong KAM stability”phenomenon near

degenerate tori, which is illustrated using j = 2 and N = 1 in Fig. 4. In that figure,

Poincare sections for two systems with H (I, θ, t) = H0 (I) + εH1 (I, θ, σt) are shown.

The structure and strength of the perturbation term εH1 (I, θ, σt) is the same in both

cases, but H0 (I) is not. In one case ω (I) is linear. In the other case ω (I) is cubic

and there are two isolated j = 2 degeneracies. The same ω (I)-domain is present
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for both choices of H0 (I), so the same resonances are excited in both cases. The

resonance widths are different, however, and, consistent with Eq. (86), this leads to

strong stability of the tori in the vicinity of the degenerate tori in the system with

cubic ω (I).

3.11 LCS

Theoretical work on dynamical systems [1, 2, 3, 4, 61] has characterized trans-

port barriers in unsteady 2D incompressible flows as Lagrangian Coherent Structures

(LCS). In such flows, transport barriers of two types are present. The first type is

associated with invariant stable and unstable manifolds of generally nonstationary

hyperbolic points. Barriers of this type are found in regions of chaotic motion. The

second type corresponds to surviving KAM invariant tori and is associated with reg-

ular (nonchaotic) motion. Barriers of the second type are often found near cores of

jet-like structures in the flow of interest and owe their existence to the strong KAM

stability phenomenon. Because both invariant manifolds of nonstationary hyperbolic

points and KAM tori are material lines of fluid, they provide impenetrable barriers

for transport of passive tracers. The underlying dynamics is, however, completely

different in the two cases.

Extracting LCS from measured or simulated velocity fields has proven to be a

challenging task. As a first attempt, one may try to localize LCS from instanta-

neous streamline configuration. The main shortcoming of such approach is its frame-

dependence, i.e. the location of features such as stagnation points depends highly

on the coordinate system in which the velocity field is viewed. A frame-independent



48

approach to identifying LCS was developed in [1, 2, 3, 4]. It allows the partition

of the phase space into elliptic, parabolic and hyperbolic regions, E (t), P (t) and

H (t), based on the sign of the inner product 〈ξ±,Mξ±〉. Here vectors ξ± span the

zero-strain set (define directions of zero strain), M = Ṡ + 2S∇v and S (x, t) is the

rate of strain tensor (the symmetric part of the velocity gradient field ∇v (x, t)). LCS

are then defined as locally the most robust hyperbolic, elliptic and parabolic material

lines. Hyperbolic LCS, which attract or repel trajectories for locally the longest time

in the flow, approximate stable and unstable manifolds of nonstationary hyperbolic

points, respectively.

Another technique that is capable of detecting LCS involves computation of

FTLEs. This Lyapunov-exponent-based detection scheme [4, 61, 62] is based on the

notion that since hyperbolic LCS attract or repel trajectories for locally the longest

time in the flow, the net growth of a unit vector transverse to them should be locally

the largest. Consider a repelling structure c (t) and select a unit vector e (t0) at a

point x0 (t0) ∈ c (t0) that is not tangent to c (t0). We propagate the unit vector along

the trajectory x (t;x0, t0) using the linearized flow map ∇x0x (t;x0, t0) to obtain the

evolution of the unit vector in time, e (t) = ∇x0x (t;x0, t0) e (t0). We now seek to

maximize |e (t) | over all possible choices of x0 and e (t0), i.e. we seek

max
|e|=1

|∇x0x (t;x0, t0) e (t0) |. (87)
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For any matrix A, the following norm operator can be defined

‖A‖ = max
|x|=1

|Ax| =
√
νmax (ATA), (88)

where νmax
(
ATA

)
is the largest eigenvalue of the positive definite symmetric matrix

ATA. With use of the definition Eq. (88), Eq. (87) becomes

max
|e|=1

|∇x0x (t;x0, t0) e (t0) | = ‖∇x0x (t;x0, t0) ‖ (89)

=
√
νmax ([∇x0x (t;x0, t0)]T [∇x0x (t;x0, t0)]).

Comparing the last expression Eq. (89) with the FTLE definition Eq. (67) reveals

that repelling (attracting) LCS correspond to maximizing curves or ridges of FTLE

field computed in forward (backward) time (see [61, 62] for more detail). The FTLE-

based detection scheme is also capable of detecting barriers of the second type, which

are linked to surviving KAM invariant tori. Barriers of this type are associated with

regular motion and thus are characterized by generally narrow bands of anomalously

small values of FTLE.



4 Stratospheric Polar Vortex

The work reported in this chapter was motivated by a desire to understand the

mechanism by which ozone-depleted air is trapped within the ozone hole. In that

problem the atmospheric flow is assumed to be two-dimensional and incompressible;

fluid particle trajectory equations then have Hamiltonian form. In the austral winter

and early spring, winds at high latitudes in the stratosphere are characterized by

a nearly zonal eastward jet. In this section it is shown that owing to the “strong

KAM stability” phenomenon, invariant tori near the core of the zonal jet provide a

robust barrier to meridional transport of passive tracers under commonly encountered

conditions. Causes for the breakdown of such a barrier are discussed.

This chapter is organized as follows. In Sec. 4.1 a dynamically motivated simple

analytical form of the streamfunction is derived, which is known as a Bickley jet.

It consists of a zonal jet background flow on which two traveling Rossby waves are

superimposed. In a reference frame moving with one of the Rossby waves, the flow

consists of a steady background subject to a time-periodic perturbation. In Sec. 4.2

the Lagrangian dynamics in such a system is discussed with the emphasis on the

“strong KAM stability” of tori near the core of the zonal jet. It is shown that, under

typical conditions, trajectories near the core of a zonal jet provide a barrier to the

meridional transport. In Sec. 4.3 a more general system is considered, which consists

of a steady zonal flow subject to a time-multiperiodic perturbation. It is argued that

conclusions of the previous subsection are unchanged in the time-multiperiodic case.

In Sec. 4.4 our “strong KAM stability” argument for the transport barrier at the

50
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perimeter of the ozone hole is contrasted to the potential vorticity barrier argument.

4.1 Bickley Jet

The ozone hole forms in the stratosphere over Antarctica in the austral late win-

ter/early spring as a result of a sequence of chemical reactions whose initiation re-

quires the right combination of low temperatures and light. Some depletion of ozone

also occurs over the Arctic in the northern hemisphere late winter/early spring, but

this is generally less severe than its Antarctic counterpart and the trapping mecha-

nism described below is less efficient. In the winter and early spring, winds at high

latitudes in the stratosphere are characterized by a nearly zonal eastward jet; the

Stratospheric Polar Vortex (SPV) can be defined as the region poleward of the jet

core. With this system in mind, we consider the Lagrangian dynamics of zonal jets in

the atmosphere, with particular attention paid to explaining why, under commonly

encountered conditions, zonal jets serve as barriers to meridional transport.

With a focus on the zonal jet, it is natural to make use of a β-plane approximation

with β = (2Ω/re) cosϕ0 defined at the latitude ϕ0 of the core of the zonal jet. Here

Ω = 2π/ (1day) is the angular frequency of the Earth’s rotation and re = 6371 km

is the Earth’s radius. We consider an incompressible two-dimensional flow on an

isentropic surface in the atmosphere (or surface of constant potential density in the

ocean), which allows the introduction of streamfunction ψ (x, y, t), where x increases

to the east from an arbitrarily chosen longitude and y increases to the north from ϕ0.

The fluid parcel trajectory equations of motion then have Hamiltonian form with the
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streamfunction playing the role of the Hamiltonian (ψ (x, y, t) ↔ H (p, q, t)),

dx

dt
= −∂ψ

∂y
,
dy

dt
=
∂ψ

∂x
. (90)

The streamfunction is dynamically constained. Consistent with our assumption of 2-d

incompressible flow on a β-plane, conservation of potential vorticity Q = ∇2ψ + βy

dictates that

∂Q

∂t
− ∂ψ

∂y

∂Q

∂x
+
∂ψ

∂x

∂Q

∂y
= 0. (91)

A dynamically motivated model of a streamfunction, which is known as a Bickley jet,

can be derived by assuming

ψ(x, y, t) = ψ0(y) + ψ1(x, y, t), (92)

where ψ1 will be treated as a small perturbation to ψ0. The same streamfunction has

been used previously in [56], and [63]. Our presentation follows that of del-Castillo-

Negrete and Morrison; more details can be found in that work. Substituting Eq. (92)

into Eq. (91) and keeping only leading-order terms yields

∂

∂t
∇2ψ1 + u0(y)

∂

∂x
∇2ψ1 + (β − u′′0(y))

∂ψ1

∂x
= 0, (93)

where prime denotes a differentiation with respect to y. Further, assuming that

ψ1 = φ(y) exp(ik(x− ct)), the last equation yields the Reyleigh-Kuo equation

(u0(y)− c)(φ′′(y)− k2φ(y)) + (β − u′′0(y))φ(y) = 0. (94)
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The Bickley jet velocity profile is a zonal jet that has a single maximum at y = 0 and

is given by [64]

u0(y) = U0sech
2
( y
L

)
, (95)

where U0 and L are constants. For this velocity profile, Eq. (94) admits two neutrally

stable (Imc = 0) solutions of the form

φi(y) = AiU0Lsech2
( y
L

)
, (96)

provided that

U0L
2k2 = 6c, (97)

6c2 − 4U0c+ βU0L
2 = 0 (98)

and

βL2/U0 < 2/3. (99)

Here Ai, i = 1, 2 are dimensionless amplitudes, β, U0 and L are environmental pa-

rameters that define c and k through Eqs. (97) and (98). Because of the periodic

boundary conditions in x, at φ0 = 60◦ only the following discrete set of k is allowed

kn =
2n

re
, n = 1, 2, . . . . (100)

For numerical simulations we have chosen the following values of the parameters:

U0 = 62.66 m/s, L = 1770 km, corresponding to zonal wavenumbers n = 2 and

n = 3, c2/U0 = 0.205 and c3/U0 = 0.461. This choice is self-consistent and satisfies
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Eqs. (97), (98) and (100) simultaneously. The streamfunction is then

ψ(x, y, t) = −U0L tanh
( y
L

)
+ A3U0L sech2

( y
L

)
cos(k3(x− c3t))

+ A2U0L sech2
( y
L

)
cos(k2(x− c2t)). (101)

An important observation is that the time dependence associated with one of the two

Rossby waves in (101) can be eliminated by viewing the flow in a reference frame

moving at the phase speed of that wave. In the reference frame moving at speed c3

the streamfunction is

ψ(x, y, t) = c3y − U0L tanh
( y
L

)
+ A3U0L sech2

( y
L

)
cos(k3x)

+ A2U0L sech2
( y
L

)
cos(k2x− σ2t) (102)

where σ2 = k2(c2−c3). Note that σ2 is negative because in the reference frame moving

at the faster n = 3 wave, the n = 2 wave has westward propagating phases. Thus, in

a moving reference frame the motion is governed by the pair of Hamilton’s equations

with streamfunction Eq. (102) consisting of two parts, a steady background flow

ψ0(x, y) = c3y − U0L tanh
( y
L

)
+ A3U0L sech2

( y
L

)
cos(k3x) (103)

and a time-periodic perturbation

ψ1 (x, y, σ2t) = A2U0Lsech2
( y
L

)
cos (k2x− σ2t) . (104)
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Figure 5: Bifurcation diagram in the (A, c/U0) parameter space corresponding to the
streamfunction ψ (x, y) = cy − U0L tanh

(
y
L

)
+ AU0Lsech2

(
y
L

)
cos (kx).

Nondimensionalization (ψ → ψ/(U0L), x → kx, y → y/L) reveals that there are two

irreducible dimensionless parameters, A3 and c3/U0 that govern the structure of the

background flow. A bifurcation diagram (Fig. 5) shows that there are 3 topologically

distinct regions and two critical curves separating these regions. Depending on the

choice of A3 and c3/U0, the zonal jet may be strong, weak or absent. All possible

topologies for ψ0 can be revealed by holding A3 = const while varying c3/U0. For the

SPV problem, the relevant domain on the bifurcation diagram is small values of both

dimensionless parameters.
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4.2 A steady background flow subject to a time-periodic per-
turbation

We turn our attention now to the periodically perturbed Hamiltonian systems

(90) with streamfunction of the form

ψ(x, y, t) = ψ0 (x, y) + ψ1 (x, y, σt) , (105)

of which Eq. (102) is a special case. The usual way to view trajectories in such

system is to construct a Poincare section (see Sec. 3.2 for detail). Three examples,

corresponding to the system described by Eq. (102) with A3 = 0.3, c3/U0 = 0.461

and three choices of the perturbation strength A2, are shown in Fig. 6. On these

plots regular (nonchaotic) trajectories appear as discretely sampled smooth curves,

while chaotic trajectories appear as sets of discrete samples that fill areas. The curves

(corresponding to KAM invariant tori) that remain unbroken in the perturbed system

represent impenetrable barriers to transport. From Fig. 6 it is seen that tori in the

vicinity of the core of the zonal jet appear to be most resistant to breaking. This

behavior is due to the “strong KAM stability” phenomenon described in Sec. 3.10;

the connection will be explained below.

An additional Poincare section is shown in Fig. 7. The parameters used to

construct that figure are identical to those used to construct the middle panel of Fig.

6 except that in Fig. 7 U0 is decreased to 41.31 so that c3/U0 is increased to 0.7. (Note

that with this change the flow is no longer a dynamically self-consistent Bickley jet.)

This transition shows qualitatively what happens during the spring warming of the
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Figure 6: Poincare sections corresponding to the system described by equations (90)
and (102) with c3/U0 = 0.461 and A3 = 0.3 for three values of A2: 0 (upper plot), 0.1
(middle plot), and 0.7 (lower plot). Note the robustness of the tori in the vicinity of
the jet core.

polar vortex, which is associated with a decrease in U0, and illustrates the importance

of the background flow. The transition from Fig. 6 to Fig. 7 corresponds to a shift

to the right in the bifurcation diagram shown in Fig. 5; the new choice of parameters

corresponds to conditions in the central region of the bifurcation diagram, but very

close to the bifurcation curve on the left. The loss of stability of the central region in

Fig. 7 is caused by the change in the background flow topology seen in Fig. 5, and

in particular, the lack of stability of motion in the vicinity of hyperbolic chains under

perturbation. The transition from Fig. 6 (middle panel) to Fig. 7 is consistent with

the work described in [65] which focuses on the breakdown of the transport barrier
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Figure 7: Poincare sections corresponding to the system described by equations (90)
and (102) with c3/U0 = 0.70, A3 = 0.3 and A2 = 0.1. Note that the central barrier
seen in the middle plot in Fig. 6 has been lost as a result of an increase in c3/U0.
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Figure 8: For the streamfunction ψ0 (x, y) given by Eq. (103) with A3 = 0.3, c3/U0 =
0.461: (a) selected level surfaces of ψ(x, y); (b) |u|(y) at k3x = π/2; (c) ω(I); d) T (I);
and (e) ω′(I). In (b), (c), (d) and (e) only values of y and I corresponding to the
shaded region near the jet core in (a) are shown.

at the perimeter of the polar vortex when c/U0 exceeds a threshold that is close to

unity.

In order to explain why the “strong KAM stability” transport barrier mechanism

(recall Sec. 3.10) is relevant to tori in vicinity of the core of the zonal jet, we need

to make use of action-angle variables (I, θ), which are introduced in the background

flow ψ0 (x, y). A canonical transformation (x, y) → (I, θ) that transforms ψ0 (x, y) to

H0 (I) is explained in Sec. 3.1 and is given by Eqs. (45) and (46). In the transformed

system the equations of motion are İ = −∂H0/∂θ = 0, θ̇ = ∂H0/∂I ≡ ω (I); I is a

trajectory label and T (I) = 2π/ω (I) is the period of the motion, i.e., the time taken
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by a trajectory to make one circle around the Earth.

For A = 0.3, c/U0 = 0.461, plots of |u| = (u2 + v2)1/2, ω(I), T (I) and ω′(I) are

shown in Fig. 8 for trajectories in the vicinity of the jet core only. Note that from

Fig. 3 it is seen that in the vicinity of the jet core T (I) has a local minimum, ω(I)

has a local maximum and ω′(I) = 0. Thus, at the core of a jet there is a shearless

torus, which corresponds to the degeneracy of order j = 2 (ω′ = 0, ω′′ (I) 6= 0). This

feature provides a basis for the “strong KAM stability” of tori in vicinity of the core

of the zonal jet.

A simple analysis described in Sec. 3.10 reveals that nondegenerate resonance

widths scale like ∆ω ∼ (ε|ω′ (I) |)1/2. Thus, small values of shear ω′ (I) are associated

with small resonance width. The resonance width for a degenerate resonance of second

order scales like ∆ω ∼ ε2/3|ω′(I)|1/3
. Thus, for small ε the degenerate resonance width

is generally smaller than the width of a nondegenerate resonance. Consequently, even

though some resonances are excited near the jet core, the corresponding resonance

widths are generally sufficiently small that neighboring resonances do not overlap.

This provides a basis for the notion of “strong KAM stability” and explains the

remarkable stability of the tori in the vicinity of the jet core. The stability of tori

near the jet core is not absolute as the excitation of low-order resonance very close

to the jet core can overcome the smallness of shear and change the picture.

4.3 A steady background flow subject to a time-multiperiodic
perturbation

In this subsection we consider a simple generalization of Eq. (102), which con-

sists of a multiperiodic perturbation superimposed on a steady background flow. An
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important observation is that only frequencies that are incommensurable need to be

considered, otherwise a reduction of number of frequencies can be made (see Sec. 3.9

for more details). Because all the mathematical difficulties associated with a mul-

tiperiodic perturbation are present already in the 2-frequency case and because this

case is most convenient for numerical purposes, it is natural to focus on this case.

Considered the streamfunction

ψ (x, y, t) = c3y − U0L tanh
( y
L

)
+ A3U0Lsech2

( y
L

)
cos (k3x) (106)

+A2U0Lsech2
( y
L

)
cos (k2x− σ2t) + A1U0Lsech2

( y
L

)
cos (k1x− σ1t) .

This streamfunction represents a steady zonal flow ψ (y) = −U0L tanh
(
y
L

)
on which a

sum of three traveling Rossby-like waves is superimposed, viewed in a reference frame

moving with speed c3. The new perturbation term in Eq. (106) corresponds to zonal

wavenumber 1 and, for convenience, is assumed to have the same meridional structure

as other waves; the ratio σ1/σ2 is chosen here to be the golden mean
(√

5− 1
)
/2,

which is the most irrational real number. Unlike Eq. (102), the new multiperiodic

streamfunction (106) is not dynamically motivated, but it is useful to illustrate some

properties of quasiperiodic systems. In the A1 = 0 limit Eq. (106) is identical to the

streamfunction described by equation (102).

Since the background flow ψ0 (x, y) has not changed and the analysis described

in Secs. 3.9 and 3.10 apply to the time-multiperiodic perturbations, we expect that

tori in the vicinity of the core of a zonal jet will exhibit “strong KAM stability” due

to small resonance widths in this region. In Sec. 3.9 it was shown that, as in the
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time-periodic case, in the time-multiperiodic case each surviving KAM invariant torus

provides an impenetrable barrier to transport of passive tracers. With use of these two

arguments, the conclusions of the previous section carry over to a time-multiperiodic

perturbation. Under typical conditions, a thin band of surviving KAM invariant tori

is expected to be present in the vicinity of the jet core that acts as a barrier to

the meridional transport of passive tracers. The minor difference in behavior of the

unbroken tori in time-multiperiodic case is that in the time-multiperiodic case these

tori undulate with the same frequencies that are present in the perturbation. (For

the time periodic case, the shape of the barrier repeats itself after each period of the

perturbation.) For our purposes, this minor difference is not important because we

are interested primarily in the presence or absence of the barrier.

Numerical simulations shown in Figs. 9, 10, and 11, which are based on the

system defined by (106), serve to confirm our predictions. Figure 9 shows the time

evolution of two sets of air parcels at times ranging from t = 0 to t = 86 days. The

initial conditions are chosen to fall on two zonal lines y = const on opposite sides

of the zonal jet. It is seen that after 86 days each side of the jet is well stirred, as

indicated by what appears to be random distributions of dots on each side of the jet,

but there is no transport across a wavy boundary near the core of the jet. The cause

of this behavior is a thin band of KAM invariant tori near the jet core that survive

in the perturbed system and form a meridional transport barrier. This thin band of

KAM invariant tori that separate the polar region from the midlatitude region in our

idealized system undulates in a quasiperiodic fashion in time.

In Sec. 3.11 it was explained that FTLE-based detection scheme is capable of
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identifying barriers to transport of two types: the first type is associated with stable

and unstable manifolds of nonstationary hyperbolic points and the second type is

associated with surviving KAM invariant tori. The latter type is often linked to the

strong KAM stability phenomenon near shearless tori. Recall from Sec. 3.7 that the

FTLE is a finite-time measure of the divergence rate of neighboring passively advected

fluid particles. Because chaotic trajectories diverge at exponential rate and regular

trajectories diverge at polynomial rate, regions of regular motion in the phase space

are characterized by anomalously small values of FTLE. The distinction between

chaotic and regular regions becomes more clear at longer integration times. In Fig.

10, FTLE is shown as a function of initial condition for a set of air parcel trajectories

that spans the zonal jet. In the computation shown in Fig. 10, the integration time

was chosen to be approximately 86 days. This figure shows that the region in the

immediate vicinity of the jet core is characterized by thin band of anomalously small

Lyapunov exponents, which indicates regular motion in this region. This is consistent

with the interpretation that there is a narrow band of surviving KAM invariant tori

in this region that provide a barrier to meridional transport.

For the same choice of parameters that was used to produce Figs. 9 and 10, the

corresponding manifold structure is shown in Fig. 11. Two upper subplots of this

figure show FTLE estimates, computed in backward time (upper subplot) and in for-

ward time (middle subplot), as a function of initial condition for a set of air parcel

trajectories that spans the zonal jet. The integration time used in this calculation

was chosen to be approximately 1 week. In agreement with material presented in Sec.

3.11, regions of the most intense dark colors in the upper two subplots of Fig. 11,
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which indicate maximizing ridges of FTLE estimates, correspond to stable and unsta-

ble manifolds of nonstationary hyperbolic points. In the lower subplot, segments of

stable and unstable manifolds were produced with use of the double time-slice method

described in Sec. 3.5. It requires evolving a set of initial conditions surrounding the

hyperbolic point forward and backward in time during some integration interval. In

the computations shown, a seeding procedure was implemented to produce smoothly

resolved manifolds. We see from Fig. 11 that manifolds computed as maximizing

ridges of the FTLE field agree with those computed with use of the double time-slice

method. In the lower subplot of Fig. 11, segments of unstable manifolds are shown

as red curves above the jet and pink curves below the jet; segments of stable mani-

folds are shown as blue and light blue curves. Lobe dynamics theory (see Sec. 3.3 for

detail) predicts that in unsteady 2D incompressible fluid flows each nonstationary hy-

perbolic point is associated with a pair of stable and unstable manifolds. Intersecting

stable and unstable manifolds produce lobes and govern transport of fluids in regions

with chaotic behavior through the turnstile mechanism. In Figs. 9 and 10 it is seen

that there are two nonintersecting regions associated with chaotic motion, which are

separated from each other by a narrow band of regular motion. In agreement with

Figs. 9 and 10, in Fig. 11 we see intersecting stable and unstable manifolds above the

jet and intersecting stable and unstable manifolds below the jet. However, because

chaotic regions above and below the jet are separated from each other by a thin band

of regular motion near the core of the jet, intersections between invariant stable and

unstable manifolds across the jet are prohibited (insuring that points from different
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Figure 9: Time evolution of two sets of 25000 points that at t = 0 fall on zonal lines
on opposite sides of the core of the zonal jet in the system described by equations (90)
and (106) with c3/U0 = 0.461, A3 = 0.3, A2 = 0.4, A1 = 0.075. Note that, although
trajectories are predominantly chaotic, there is no transport across an undulating
barrier in the vicinity of the jet core.

chaotic regions do not mix with each other).

In this subsection we have argued that, with some minor modifications, the con-

clusions of the previous section carry over to a multiperiodic perturbation. Numerical

simulations provide strong evidence that such a result holds. The qualitative features

that were described – the robust nature of nonchaotic trajectories near the jet core

that serve to isolate chaotic trajectories on opposite sides of the jet – are expected

to be seen whether there are 2 or 20 Rossby waves superimposed on the background

zonal jet.
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Figure 10: Finite-time Lyapunov exponent estimates as a function of initial position
for the system described by equations (90) and (106) with c3/U0 = 0.461, A3 = 0.3,
A2 = 0.4, A1 = 0.075. The integration time for the estimates shown is 86.5 days.
Note that the region in the vicinity of the jet core is characterized by small Lyapunov
exponent estimates.

4.4 Connection to the potential vorticity barrier argument

In this subsection, a connection between our “strong KAM stability” explanation

for the transport barrier at the perimeter of the ozone hole and “potential vorticity

barrier” (PV-barrier or Q-barrier) explanation [66] (see also [67], [68] and references

contained therein) of the transport barrier will be discussed.

A consequence of a nearly zonal transport barrier, like the one shown in Fig. 10, is

that coarse-grained tracer distributions on opposite sides of the barrier are expected

to be nearly homogeneous. This statement applies to both passive tracers and the

dynamically active tracer Q. Thus associated with the transport barrier that we have

described one expects to find a Q-barrier or Q-front.

According to the “potential vorticity barrier” explanation, the jump in Q across

the perimeter of the polar vortex is the cause of the associated meridional transport
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Figure 11: For the same model system that was used to produce Figs. 9 and 10,
the corresponding stable and unstable manifold structure. Two upper subplots show
FTLE estimates, computed in forward (upper subplot) and backward (middle sub-
plot) time, as a function of initial condition for a set of air parcel trajectories that
spans the zonal jet. The integration time for the estimates shown is 7 days. (lower
subplot) segments of stable and unstable manifolds computed with use of the double
time-slice method. Unstable manifolds are shown as red curves above the jet and
pink curves below the jet; segments of stable manifolds are shown as blue and light
blue curves, correspondingly, above and below the jet.

barrier. Associated with the jump in Q is a strong Q-gradient which, in turn, is

associated with a strong Rossby wave restoring force and therefore a tendency to

resist large scale deformation. The Rossby elasticity mechanism does not work at

small scales, so it must be augmented by some other mechanism, which is shear, to

explain the impermeability of the barrier to small-scale intrusions. The most recent

discussion of these ideas is that of [68]. While we agree that a transport barrier

at the perimeter of the ozone hole is associated with a jump in Q, we argue below
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that it is most correct to think of the eastward zonal jet at the perimeter of the

stratospheric polar vortex as being the cause of the barrier to meridional transport

and the associated coarse-grained step in Q as a consequence of the transport barrier.

An interesting case to consider is the background flow

u (y) = u0 + βy2/2 (107)

with u0 < 0, corresponding to a westward zonal jet. Under perturbation, trajectories

near the jet core will exhibit strong KAM stability and thus a robust meridional

transport barrier near y = 0 is expected to be present. Moreover, under perturbation

this flow is dynamically consistent in a coarse-grained sense with Q = const (the

same value for positive and negative y). Note that to observe a transport barrier in

this flow under perturbation, a tracer other than Q needs to be used. A dynamically

consistent example of a barrier of this type was obtained numerically in [13]. This

example shows that even in the absence of a Q-barrier, the strong KAM stability

argument is valid. This strongly suggests that for eastward jets it is more natural to

think of a jet as the cause (owing to strong KAM stability) of the barrier and the

steplike Q-structure as a dynamically consistent consequence.

The role of shear will now be discussed. The quantity identified above as ω′(I)

is a measure of shear. As noted above, nondegenerate resonance widths scale like

(ε|ω′(I)|)1/2. Thus, as the magnitude of the shear |ω′(I)| increases, more resonances

overlap and more tori – which would otherwise act as transport barriers – are broken.

Shear is thus a destabilizing influence. This simple observation is consistent with the
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arguments given above and our assertion that the cause of the transport barrier at

the perimeter of the polar vortex is the eastward zonal jet at whose core is a shearless

torus.

Some comments on the limits of validity of the analysis presented are appropri-

ate. The most restrictive assumption is that the flow of interest consists of a time-

multiperiodic perturbation superimposed on a steady background flow. The class of

multiperiodic perturbations considered is surprisingly large. Recall that the number

of terms N included in the multiperiodic perturbation need only be finite and that we

focussed on the quasiperiodic case because this is the only mathematically nontrivial

case to consider. Thus, with an appropriate choice of amplitudes and phases, the class

of describable perturbations ranges from simple periodic (N = 1) to a deterministic

wave packet (small N , narrow spectrum), to an approximation to white noise forcing

(large N , flat and broad spectrum, random phases) – see, e.g., [69] for a discussion

of the latter class of problems. Finally, we note that, although KAM theory assumes

that the perturbation strength ε is small, numerical simulations show that invariant

tori – and those in the vicinity of Kolmogorov-degenerate tori, in particular – per-

sist for surprisingly large perturbation strengths. In the lower panel of Fig. 4, for

instance, ε = 0.7. Thus the small ε assumption is less restrictive than one might

expect.



5 Transport in a perturbed three-gyre system with

application to the Adriatic Sea

Observations of surface drifters in the Adriatic Sea suggest the presence of a

robust three-gyre background flow pattern. Motivated by this observation, surface

transport in a three-gyre system is studied with the aid of dynamical systems tech-

niques. The velocity field is assumed to be two-dimensional and incompressible. In

this section, two models of the Adriatic Sea surface circulation are considered: 1) an

observationally-based model of the Adriatic Sea consisting of the mean surface circu-

lation derived from surface drifter trajectories on which a time-dependent altimetric

perturbation velocity field is superimposed; and 2) an analytically prescribed model

consisting of a steady three-gyre background on which a multiperiodic time-dependent

perturbation is superimposed.

It is shown that the behavior of the perturbed three-gyre system undergoes an

important qualitative change when the perturbation exceeds a certain threshold.

For small perturbation, two nonoverlapping well-mixed figure-eight-shaped bands are

present, each with a crossing region that includes a nonstationary hyperbolic stagna-

tion point. These bands are separated from each other by a robust transport barrier.

As a result, two of the gyres exchange no fluid with the third gyre. For large per-

turbation, one large well-mixed region is formed that includes portions of all three

gyres. As a result, transport between all three gyres occurs. The qualitative change

of behavior of the perturbed three-gyre system is accompanied by a corresponding

qualitative change in its manifold structure. For a small perturbation, all stable and

unstable manifold intersections are of the homoclinic type. When the perturbation

69
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exceeds a certain threshold, heteroclinic intersections between stable and unstable

manifolds are formed. In this section this behavior is described theoretically, illus-

trated using the analytically-prescribed model and shown to be consistent with the

observationally-based model of the Adriatic.

This chapter is organized as follows. In Sec. 5.1 descriptive material on the Adri-

atic Sea is given: an observationally-based model of the mean surface circulation in

the Adriatic Sea derived from surface drifter trajectories is described; and an ideal-

ized analytically prescribed three-gyre model of the mean surface circulation in the

Adriatic Sea is introduced. In Sec. 5.2 numerical results based on the idealized three-

gyre system subject to a multiperiodic perturbation are presented to illustrate the

qualitative change in behavior of the perturbed three-gyre system as the perturba-

tion strength increases. Relevant aspects of stable and unstable manifold structure,

lobe dynamics, and KAM theory are discussed; the complementary nature of these

ideas is emphasized. In Sec. 5.3 we turn our attention to a purely observationally-

based model of the Adriatic Sea consisting of a surface-drifter-based estimate of the

mean circulation on which a measured time-dependent altimetric perturbation is su-

perimposed. It is demonstrated that all of the important qualitative features of the

perturbed three-gyre model that were described in Sec. 5.2 can be identified in the

observationally-based model. In Sec. 5.4 we summarize and discuss our results.

5.1 The Adriatic Sea mean surface circulation

The Adriatic Sea is the semi-enclosed elongated and somewhat rectangular basin

of the Mediterranean Sea separating the Appenine peninsula from the Balkan region.
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Figure 12: 201 surface drifter tracks in the Adriatic Sea between 1 August 1990 and
31 July 1999. (figure adapted from [28])

Its western coast is described by gentle curves, whereas its eastern coast has a more

rugged coastline, including many islands. The circulation of the Adriatic Sea has been

studied starting from the first half of nineteenth century so its qualitative character-

istics are well known. A more quantitative knowledge of its mean surface circulation,

transport and mixing properties is however more recent; previous studies of fluid mo-

tion in the Adriatic Sea are described in [70, 71, 27, 26, 72, 73, 74, 75, 28, 76, 77, 29].

A striking feature of the Adriatic Sea surface circulation is the robustness of the

background multiple gyre flow pattern. Figure 12 (see also Fig. 1(b) in [28]) shows

a large ensemble of surface drifter trajectories in the Adriatic Sea. The trajectories

shown cover the period from August 1, 1990 to July 31, 1999. This plot gives insight

into the mean surface circulation, its variability and the complexity of the associated

Lagrangian motion. Neglecting the small northwesternmost gyre in the Adriatic basin

(on the left side of the figure), three dominant gyres with cyclonic average circulation

can be identified in Fig. 12. Drifters are seen to sometimes get trapped for a long

time in one of the gyres, but many examples of drifters moving from one gyre to

another can also be seen. These observations suggest the following question, which is
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the central theme of this chapter: what controls intergyre transport in a perturbed

three-gyre system?

In many of the previous studies of Lagrangian description of fluid motion in the

Adriatic Sea ([26, 27, 28, 29]) a stochastic framework has been used. In this section

we will make use of a dynamical systems approach. The flow is assumed to be two-

dimensional and incompressible so that Eqs. (2) are valid. Furthermore, we shall

assume that the streamfunction can be expressed as the sum of a steady background

and a time-dependent perturbation,

ψ (x, y, t) = ψ0 (x, y) + εψ1 (x, y, t) , (108)

where the dimensionless perturbation strength ε need not be small. It is natural

to assume that the temporal mean of the perturbation is zero. The observational

streamfunction ψ0 (x, y) can then be estimated from time-averages of binned mea-

sured velocities. This can be done by writing a finite-difference approximation to the

equations 〈u〉 = −∂ψ0/∂y, 〈v〉 = ∂ψ0/∂x, followed by a least-squares fitting proce-

dure. Figure 13 shows the result of such a calculation using surface-drifter-derived

estimates of averaged velocities on a 0.1 deg grid using overlapping 0.2 deg × 0.2 deg

bins.

In Fig. 13 the geographical domain of the Adriatic has been rotated counter-

clockwise by about 45◦ (as was done in Fig. 12) so that x increases from the northwest

to the southeast. Also, for convenience the origin of the coordinate system has been

shifted. To produce Fig. 13, the domain was closed by enforcing a no-flow condition
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Figure 13: Level surfaces of the streamfunction ψ0 (x, y) that describes the mean
surface circulation in the Adriatic Sea inferred from surface drifter trajectories. The
thick brown line shows the smoothed boundaries of the Adriatic basin. Black line at
x = 545 km shows the initial positions of trajectories that were used to produce the
left panel of Fig. 15.

through the Strait of Otranto (large x) and along coastlines. This smoothing of the

boundaries does not affect the interior flow. The prominent three-gyre structure of

the surface circulation, which is evident on Fig. 13, is consistent with the earlier

discussion, based on Fig. 12. In subsection 5.3 a measured time-dependent altimetric

perturbation will be added to this surface-drifter-based background streamfunction

to obtain a fully observationally-based model of the Adriatic Sea surface circulation.

Caveats relating to ψ0 (x, y) shown in Fig. 13, including limitations linked to the

relevance of a temporal mean circulation, will be discussed later.

We now introduce a simple analytically-prescribed background streamfunction

ψ0 (x, y):

ψ0 (x, y) = A sin (Cy) (E − cos (Bx)) (exp (D (x− Lx))− 1) (x/Lx)
F . (109)

The values of the adjustable constants Lx = 600 km, Ly = 150 km, A = 2.62 × 103

m2s−1, B = 6π/Lx, C = π/Ly, D = 30/Lx, E = 3 and F = 1/2 were chosen to mimic
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Figure 14: Level surfaces of the analytically-specified streamfunction ψ0 (x, y) given
by Eq. (109). Black line at x = 500 km shows the initial positions of simulated
trajectories that were used to produce the right panel of Fig. 15.

the observationally-based streamfunction shown in Fig. 13. With these parameters,

streamlines corresponding to Eq. (109) are shown in Fig. 14. Later in text, in

subsection 5.2, this analytically specified background streamfunction will be subjected

to a temporally multiperiodic perturbation to obtain an analytically-prescribed time-

dependent model of the Adriatic Sea surface circulation. This analytical model will be

used to illustrate the behavior of a perturbed three-gyre system as the perturbation

strength increases. In spite of its simplicity, the analytically described background

streamfunction Eq. (109) reproduces the three-gyre structure of the Adriatic Sea and

has correct length and time scales as is evident from Figs. 14 and 15.

The background three-gyre geometry implies the existence of 5 stagnation points:

3 of the elliptic type that are associated with the core of each gyre and 2 of the

hyperbolic type that separate adjacent gyres from each other. For the streamfunctions

shown in Figs. 13 and 14, associated with each of the two hyperbolic stationary points

is a homoclinic trajectory that goes through a stagnation point and is characterized

by an infinitely long period of motion. The two homoclinic trajectories form two
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Figure 15: Periods of simulated trajectories, T , for a family of trajectories with
variable initial position, y0, obtained with use of: (left) observationally-based steady
streamfunction that is shown in Fig. 13; (right) the analytically-specified steady
streamfunction given by Eq. (109) that is shown in Fig. 14.

figure eights, one embedded inside the eastern loop of the other. The homoclinic

trajectories separate regions of qualitatively different motion and are often referred to

as separatrices. The special case in which the two hyperbolic stagnation points fall on

the same level surface of ψ0 has a different topology consisting of two heteroclinic and

two homoclinic connections. That special case is not consistent with the observational

data base (Figs. 12 and 13) and will not be considered here.

Fig. 15 shows periods of simulated trajectories, T , as a function of initial position

for a set of trajectories that includes the two homoclinic trajectories. The left panel

was constructed using the observationally-based streamfunction that is shown in Fig.

13.

The right panel of Fig. 15 was constructed using the analytically-specified stream-

function given by Eq. (109) that is shown in Fig. 14. The initial positions of the

simulated trajectories that were used in these calculations are shown in Figs. 13

and 14, respectively, with black dots (at x = 540 km and x = 500 km, respectively).

Three regions of qualitatively different motion can be identified on both panels of Fig.

15 based on the values of T in these regions: trajectories trapped inside the eastern

gyre, trajectories going around the central and eastern gyre, and trajectories involved
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in the basinwide motion, i.e. going around all three gyres. Homoclinic trajectories

separate these three regions of qualitatively different motion from one another. Note

that the initial positions yh0 of the homoclinic trajectories coincide with the trajec-

tories for which T → ∞. Between the two homoclinic trajectories T (y0) has a local

minimum. Note that the periods of simulated trajectories for our simple analytical

streamfunction given by Eq. (109) are in good quantitative agreement with those

produced by the streamfunction deduced from the drifter data.

We now review the essentials of action-angle variables as a first step towards

applying some KAM-theory-related ideas. For any steady streamfunction ψ0 (x, y)

the Lagrangian equations of motion, Eq. (2), can be transformed to action-angle

form: (x, y) → (I, θ), ψ0 (x, y) → H (I). A canonical transformation (x, y) → (I, θ)

that transforms ψ0 (x, y) to H0 (I) is explained in Sec. 3.1 and is given by Eqs. (45)

and (46). In the transformed system the equations of motion have the form Eq. (44),

I is a trajectory label and motion is 2π-periodic in θ with angular frequency ω (I);

the period of motion on a trajectory is T (I) = 2π/ω (I). Recall from Sec. 3.1 that

the quantity ω′ (I) = dω/dI is a measure of shear on a trajectory, and a trajectory

satisfying the condition ω′ = 0 is referred to as shearless or twistless.

For the analytical streamfunction, Eq. (109), plots of T (I), ω (I) and ω′ (I) for

trajectories lying between the two homoclinic trajectories are shown in Fig. 16. Note

that in the vicinity of the homoclinic trajectories T (I) and ω′ (I) are large, while

between the two homoclinic trajectories T (I) has a local minimum, ω (I) has a local

maximum and ω′ (I) = 0. In other words, between the two figure eights that are

formed by homoclinic trajectories lies a shearless trajectory, while the vicinity of
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Figure 16: Plots of T (I) (left), ω (I) (middle), and ω′ (I) (right) for trajectories lying
between the two homoclinic trajectories for the analytically described streamfunction,
Eq. (109).

homoclinic trajectories is characterized by large value of shear. These observations

will be important in the later discussion because it provides a basis for the “strong

KAM stability” of tori near the shearless torus.

5.2 Qualitative behavior of an idealized steady three-gyre
system under the influence of time-dependent perturba-
tion

In this section we consider a general multiperiodic perturbation ψ1 (x, y, t), de-

noted symbolically ψ1 (x, y, σ1t, σ2t, · · · , σN t), where the number of frequencies present,

N , is assumed to be finite. The choice of a multiperiodic perturbation is made for two

reasons. First, this class of perturbations is sufficiently general that one can argue

that any time-dependent perturbation that is measured over a finite time interval

(such as the one discussed in the following section, for example) can be accurately

approximated as a multiperiodic function. In general the frequencies are incommen-

surable (not rationally related) and ψ1 is a quasiperiodic function of t. The second

reason for using multiperiodic perturbation is that rigorous mathematical results -

a KAM theorem [44, 45, 46, 47], in particular (see Sec. 3.9 for details) - apply to
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this class of problems. According to the KAM theorem for such systems [78, 47],

for sufficiently small perturbation and assuming certain other conditions are satis-

fied, some unbroken tori exist in the perturbed system. These unbroken tori provide

impenetrable transport barriers [49]. (This is because it can be shown that in the

relevant higher dimensional phase space there is no Arnold diffusion as described in

Sec. 3.9.)

We turn our attention now to the resonance width arguments and application of

the strong KAM stability phenomenon to the perturbed three-gyre system. Recall

from Fig. 16 that near the shearless torus | ω′ (I) | is small. A simple analysis

presented in Sec. 3.10 reveal that tori in the vicinity of the shearless torus are expected

to be resistant to breaking due to the smallness of resonance widths (Eq. 86) in this

region. Resonances are excited near the shearless torus, on which ω′ (I) = 0, but

because resonance widths are generally very small, these resonances generally do not

overlap. The arguments just given lead to the notion of strong KAM stability near

shearless (also known as degenerate) tori [49, 7]. It is important to understand,

however, that the stability of tori near the shearless torus is not absolute: these tori

will break up either when a low-order resonance is excited in the close proximity of the

shearless torus or when the strength of the perturbation ε overcomes the smallness

of ω′ in this region. The theoretical results just described lead to the expectation

that a qualitative change in transport properties of the perturbed three-gyre system

will occur as the perturbation strength exceeds a certain threshold. This change is

associated with the breakup of the last surviving KAM torus in the vicinity of the
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Figure 17: Simulations based on the system described by Eqs. (2, 108, 109, 110) for
two values of ε: ε = 0.05 on the left and ε = 0.3 on the right. (Upper plots) Poincare
sections for systems with a periodic perturbation comprised of a superposition of 14
standing waves whose frequencies are commensurable with a common period of 60
days. A KAM invariant torus is shown in green on the upper left subplot. Note
that this closed curve serves as a transport barrier for the color-coded trajectories
whose initial positions are inside (red dots) and outside (black dots) the closed curve.
(Middle plots) Stable (blue and light blue curves) and unstable (red and pink curves)
manifolds of nonstationary hyperbolic points for the same systems that were used to
produce the upper plots. (Lower plots) Stable (blue and light blue curves) and un-
stable (red and pink curves) manifolds of nonstationary hyperbolic points for systems
with a quasiperiodic perturbation comprised of a superposition of 14 standing waves
whose frequencies are not commensurable.

shearless trajectory.

Some of the results just described are illustrated with numerical simulations that

are shown in the upper panels of Fig. 17. These numerical simulations use the

analytically prescribed streamfunction, Eq. 109, and assume a particular form of a
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multiperiodic perturbation, consisting of a superposition of standing waves,

ψ1 (x, y, t) =
∑
n,m

anm cos (σnmt+ φnm) sin (knxx) sin
(
kmy y

)
(110)

with knx = πn/Lx, k
m
y = πm/Ly so that the boundary condition ψ = 0 at x = 0,

x = Lx, y = 0 and y = Ly is satisfied. The frequency spectrum is assumed to be red

with anm ∼ σ−1
nm, and the wavenumber spectrum is assumed to be isotropic, σ (k) =

σ (| k |). The latter assumption together with geometrical dimensions of the basin,

Lx = 4Ly, leads to degenerate frequencies defined by the condition σn1,m1 = σn2,m2 .

For nmax = 8 and mmax = 2, which are used for modeling purposes, two degenerate

frequencies are present. Thus, for the perturbation considered, 14 different frequencies

σnm are present. For the numerical simulations shown here, the periods of standing

waves in Eq. (110) were chosen to span the time interval from approximately 1 week

to 2 months. Note that these periods are small compared to typical periods of rotation

in the background flow - recall Fig. 15.

The upper panels of Fig. 17 are Poincare sections (see Sec. 3.2 for details).

These can be constructed when the perturbation ψ1 is periodic. To achieve this, the

14 standing wave periods were chosen to be commensurable with a common period

of 60 days. This choice was made purely for the convenience of allowing Poincare

sections to be made. It should be emphasized that the class of problems to which

KAM theorems are known to apply is larger than the class of periodic perturbations.

Relevant results are discussed in [46, 78, 79, 47]. This will not be discussed further

except to note that in quasiperiodic systems (the general multiperiodic case) KAM
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invariant tori undulate in time, undergoing what Jorba and Simo [78] refer to as a

“quasiperiodic dance”. Only in the special case of a periodic perturbation do the

positions of the invariant tori (transport barriers) repeat themselves in a periodic

fashion.

Consistent with the discussion above, Fig. 17 shows that for small ε some invariant

tori (one such torus is shown in green in the upper left panel) in close proximity to the

shearless torus provide an impenetrable transport barrier that separates the western

gyre from the central and eastern gyre. There are seen to be two large figure-eight-

shaped chaotic regions, one inside the eastern loop of the other, that do not overlap.

For large ε the barrier between these figure-eight bands is broken and a large chaotic

region that includes portions of all three gyres is present. This is illustrated in the

upper right panel of Fig. 17.

Note also that, consistent with the resonance width analysis described in Sec.

3.10, trajectories near the homoclinic trajectories that are characterized by a very

large value of ω′ are the first to break under the perturbation.

Several techniques from dynamical systems theory - stable and unstable manifolds,

lobe dynamics, LCSs - are suited for studying transport and mixing in systems with

nonperiodic time dependence. These techniques are reviewed in Secs. 3.3, 3.4, 3.5,

3.7, and 3.11. We turn our attention now to the theory and applications of such

dynamical systems tools.

In nonsteady flows chaotic transport of fluids is driven by stable and unstable man-

ifolds of nonstationary hyperbolic points (or hyperbolic trajectories) - see Sec. 3.3.

Stable and unstable manifolds are material curves and as such can not be traversed
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by fluid particles. In nonsteady flows, stable and unstable manifolds intersect each

other. Closed regions produced by segments of intersecting stable and unstable man-

ifolds are called lobes. Lobes are important because fluid particles that are originally

located inside the lobe are constrained to remain within the lobe as the flow evolves.

When approaching the nonstationary hyperbolic point, stable and unstable manifolds

and the associated lobes form complicated structures called homoclinic or heteroclinic

tangles, which provide a template for chaotic mixing within the corresponding chaotic

region.

The qualitative change in transport properties of the perturbed three-gyre system

associated with the break up of the last surviving torus in the vicinity of the shearless

trajectory must be accompanied by the qualitative change in the manifold structure.

This is illustrated in the middle and lower panels of Fig. 17. This figure shows the

manifold structure for the system (2, 108, 109, 110) with two values of ε: small ε

(ε = 0.0.05) on the left and large ε (ε = 0.3) on the right. The two middle subplots of

Fig. 17 correspond to the periodic perturbation ψ1; the parameters used to produce

the middle panels are identical to those used to produce the upper panels of Fig. 17.

The two lower panels of Fig. 17 correspond to the quasiperiodic perturbation ψ1; 14

periods of standing waves in Eq. (110) were chosen to be incommensurable and cover

the time interval from approximately 7 days to 63 days.

In the left middle and left bottom panels of Fig. 17 (which correspond to small

ε), stable and unstable manifolds associated with the same hyperbolic point intersect

each other in the homoclinic manner. Associated with each of the two nonstationary

hyperbolic points is a homoclinic tangle. Each homoclinic tangle provides a template
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for chaotic mixing within the corresponding figure-eight-shaped chaotic band. No

heteroclinic intersections are present. This is consistent with the notion that two

figure-eight bands are separated from each other by an impenetrable barrier (an

invariant KAM torus) and do not mix. In the right middle and right bottom panels

of Fig. 17 (which correspond to large ε), the transport barrier is broken and both

homoclinic and heteroclinic intersections between stable and unstable manifolds are

present. Heteroclinic tangles and the associated heteroclinic lobes provide a template

for fluid exchange between all three gyres. This is consistent with the upper right

panel of Fig. 17 where one well-mixed chaotic region is seen that includes portions

of all three gyres.

Due to time-periodicity of the perturbation, the manifold structure in the middle

panels of Fig. 17 repeats itself after each period of the perturbation 2π/σ. This is

not true for the two lower panels of Fig. 17 where the manifold structure evolves

in time in a non time-periodic fashion. The qualitative similarity between the left

middle and left bottom panels of Fig. 17 (also, right middle and right bottom panels

of Fig. 17) suggest that the details of the structure of the perturbation are less

important than the geometry of the background streamfunction (such as existence of

hyperbolic points, homoclinic trajectories and shearless trajectories) and the strength

of the perturbation.

To summarize, the behavior of the steady three-gyre system under time-dependent

perturbation is as follows. For small ε two nonoverlapping figure-eight-shaped chaotic

regions, each with a crossing region that covers one of the nonstationary hyperbolic

points, are present. The two figure-eights are separated from each other by an im-
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penetrable transport barrier comprised of a thin band of KAM invariant tori in the

vicinity of the shearless trajectory. Only manifold intersections of the homoclinic

type are present. Under such conditions two of the gyres exchange no fluid with the

third gyre. For large ε, the transport barrier associated with KAM invariant tori in

the vicinity of the shearless torus is broken. The two chaotic figure-eight-shaped re-

gions merge with each other and one chaotic region that includes portions of all three

gyres is formed. Both homoclinic and heteroclinic intersections between stable and

unstable manifolds are present. Under such conditions transport between all three

gyres occurs.

5.3 Transport in an observationally-based three-gyre model

In this section an observationally-based model of the surface circulation of the

Adriatic Sea is used to test whether qualitative features of the three-gyre system under

perturbation can be identified in a more realistic setting. The observationally-based

streamfunction has the form of Eq. (108) where ψ0 (x, y) is the surface-drifter-derived

mean streamfunction shown in Fig. 13 and ψ1 (x, y, t) is a measured altimetric (sea

level height) perturbation. To produce the perturbation field ψ1 (x, y, t) a geostrophic

balance is assumed to be satisfied so that ψ1 = g
f
η, where η is the sea level height and

the coriolis parameter f = 2Ω sinφ is assumed to be constant. Knowledge of both

ψ0 (x, y) and ψ1 (x, y, t) allows dependence on the perturbation strength ε in Eq.

(108) to be explored. In our simulations ε = 1 corresponds to the true perturbation

strength. The measured altimetric perturbation field covers the time interval of one

year, from 5 January 1993 (that corresponds to t = 0 days) to 6 January 1994
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(that corresponds to t = 365 days) with ∆t = 7 days. Measured altimetric height

fields were modified in a thin boundary layer around the perimeter of the domain to

enforce the condition ψ1 = const on the smoothed coastline. The relative strength of

the background field compared to the perturbation field, i.e., the ratio of the time-

averaged integrated kinetic energy associated with ψ1 to the integrated kinetic energy

associated with ψ0, is 1.05.

Before proceeding some shortcomings of our observationally-based model of the

surface circulation of the Adriatic Sea will be noted. First, the surface circulation in

the Adriatic Sea is strongly influenced by intense short-lived Bora and Sirocco wind

forcing events, during which the decomposition Eq. (108) is questionable [80]. Sec-

ond, the measured altimetric (sea level height) perturbation is a measure of vertically

integrated transport which need not coincide with near-surface transport. Third,

the altimetric height field ψ1 (x, y, t) does not resolve any submesoscale structure.

And fourth, tide removal is difficult in enclosed basins such as the Adriatic, lead-

ing unavoidably to some aliasing of tidal energy into mesoscale fields. In spite of

these caveats it should be emphasized that both ψ0 (x, y) and ψ1 (x, y, t) used here

are observationally-based and their sum fairly accurately represents mesoscale near-

surface current variability in the Adriatic Sea.

The altimetric perturbation field ψ1 (x, y, t) is not a periodic function, so it is

not possible to construct a Poincare section for the flow described by ψ0 (x, y) +

εψ1 (x, y, t). However, the KAM-theory-based arguments presented in the previous

section are still applicable if 1) 〈ψ1 (x, y, t)〉 = 0 and 2) ψ1 (x, y, t) can be accurately

approximated by a multiperiodic sum with a finite number of terms. Both conditions
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are expected to be satisfied. With this in mind, we expect that all of the impor-

tant qualitative features of the perturbed three-gyre system that were discussed in

the preceding section hold for the observationally-based system considered here. In

particular, we seek to test whether the following qualitative features of the manifold

and lobe structure, which were emphasized in the previous section, can be reproduced

using the measured velocity fields: 1) for small ε all manifold intersections are of the

homoclinic type and manifolds form two nonoverlapping figure-eight-shaped bands,

each with a crossing region that covers one of the hyperbolic points; and 2) for large

ε the transport barrier between the two figure eight bands is broken and heteroclinic

manifold intersections are formed, thereby allowing transport between all three gyres.

Before proceeding we wish to emphasize that our concern is with the manifold

structure associated with the basin-scale circulation in the Adriatic. This structure

is linked to the two hyperbolic points that separate the three main gyres. We exclude

from consideration more localized structures associated with the hyperbolic points

near the northwestern end of the smoothed Adriatic domain (recall Fig. 13) that we

are using, and the localized structures near the centers of the three main gyres. Also,

under perturbation new hyperbolic points may form. For a weak perturbation, regions

where ψ0 is locally flat - near the centers of the main gyres, are most susceptible to this

behavior. (Note also that the hyperbolic points need not coincide with the hyperbolic

stagnation points of the flow, whose locations are sensitive to the choice of reference

frame.) The manifolds associated with these localized structures are important locally

but do not influence the larger scale intergyre transport that is the focus of our study.
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Figure 18: Simulations of stable and unstable manifolds using the observationally-
based model of the Adriatic Sea for two values of the perturbation strength: ε = 0.1
in the left panels and ε = 1 in the right panels. (Upper panels) FTLE estimates
computed in forward time relative to t = 182 days. Ridges of intense red correspond
to stable manifolds. (Middle panels) FTLE estimates computed in backward time
relative to t = 182 days. Ridges of intense red correspond to unstable manifolds.
(Lower panels) Stable (red and pink curves) and unstable (blue and light blue curves)
manifolds computed using the double time-slice method relative to t = 182 days. Note
that the estimated structures of the stable and unstable manifolds computed using
FTLEs and the double time-slice method are in excellent agreement.

Numerical simulations based on the observationally-based model described above

are shown in Figs. 18, 19, 20 and 21. For two values of ε, small ε (ε = 0.1) on the left

and large ε (ε = 1) on the right, stable and unstable manifolds of generaly nonstation-

ary hyperbolic points are shown in Fig. 18. The upper four subplots of Fig. 18 show

FTLE estimates computed in forward (upper two subplots) and backward (middle

two subplots) time as a function of initial condition; regions of most intense red colors

in the upper two subplots and in the middle two subplots of Fig. 18 correspond to
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stable and unstable manifolds, respectively, of nonstationary hyperbolic points. The

lower two subplots of Fig. 18 show segments of stable and unstable manifolds con-

structed using the double time-slice method described in Sec. 3.5. Unstable manifolds

of the two hyperbolic points are shown using red and pink curves; stable manifolds

are shown using blue and light blue curves. Note that manifold estimates computed

as maximizing ridges of the FTLE field agree well with manifolds computed using the

double time-slice method.

Consistent with the behavior of an idealized three-gyre system under perturbation

and in qualitative agreement with Fig. 17, both methods serve to confirm that in

the small ε case (left three panels of Fig. 18) all manifold intersections are of the

homoclinic type. This strongly suggests the existence of two nonoverlapping figure

eight bands of chaotic motion, each with a crossing region that covers one of the

hyperbolic points. Chaotic motion inside each figure eight band is governed by lobes

produced by homoclinic intersections of stable and unstable manifolds of the corre-

sponding hyperbolic point. The absence of heteroclinic intersections indicates that

the two figure-eight bands do not exchange fluid with each other and suggests the

existence of a barrier to transport between the two figure-eights. In the large ε case,

which is illustrated in the three right panels of Fig. 18, both methods produce mani-

fold intersections of both the homoclinic and the heteroclinic type. It is the presence

of the hetroclinic intersections and heteroclinic lobes that indicates a formation of

one large chaotic region that includes portions of all three gyres. Heteroclinic lobes

provide a template for gyre-to-gyre-to-gyre transport within this large chaotic region.
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Figure 19: Simulations of the heteroclinic lobe evolution in forward and backward
time relative to t = 182 days using the observationally-based model of the Adriatic
Sea with the true value of the perturbation strength, ε = 1. The boundary of the
heteroclinic lobe is shown at the times indicated in the three panels. The portion of
the boundary of the lobe that is comprised of a segment of the unstable manifold is
shown in pink; the portion of the boundary of the lobe that is comprised of a segment
of the stable manifold is shown in blue. Positions of the two (eastern and western)
nonstationary hyperbolic points are shown with asterisks. In the middle subplot,
the stable and unstable manifolds which form the heteroclinic lobe are shown by
dashed blue and dashed pink lines. Arrows on the manifolds indicate the direction of
attraction/repulsion.

The evolution of a heteroclinic lobe in forward and backward time is illustrated in

Fig. 19, where the position of the heteroclinic lobe is shown at three different times,

t = 164 days, t = 182 days and t = 210 days. To produce the upper and lower panels

of Fig. 19, the heteroclinic lobe formed by stable and unstable manifolds at t = 182
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Figure 20: FTLE estimates for the observationally-based model of the Adriatic Sea
surface circulation for two values of ε: (left) ε = 0.1; (right) ε = 1 (true perturbation
strength). The integration interval is 120 days.

days (which is shown in the middle panel of this figure) was evolved backward and

forward in time. Because stable and unstable manifolds are material lines and thus

constitute impenetrable transport barriers, fluid particles initially located within the

lobe are constrained to remain within the lobe as the flow evolves. From Fig. 19 it is

seen that the segment of the stable manifold bounding the lobe decreases in length

as time progresses as this segment approaches the western nonstationary hyperbolic

point while the segment of the unstable manifold increases in length. In backward

time, the segment of the stable manifold bounding the lobe increases in length while

the segment of the unstable manifold decreases in length as this segment approaches

the eastern nonstationary hyperbolic point. As a result, in forward/backard time lobes

evolve into long filaments stretched in the direction of the unstable/stable manifold.

This process leads to effective nonlocal stirring.

The FTLE-based detection scheme (described in Sec. 3.11) that was used to iden-

tify stable and unstable manifolds in Fig. 18 is also capable of identifying barriers

to transport associated with surviving KAM invariant tori. However, in most cases,

longer integration intervals are required for this task. (In particular, the integration

time used to produced upper four panels of Fig. 18 is sufficient to give estimates of
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Figure 21: Initial (at t = 182 days) and final (at t = 302 days) position of two sets of
passive tracers in the observationally-based model of the Adriatic Sea for two values
of the perturbation strength: (left) ε = 0.1; (right) ε = 1. The initial positions of
the two sets of tracers lie inside two circles and are shown in red and blue; the final
positions of two sets of tracers are shown by red and blue dots, respectively.

stable and unstable manifolds but is not sufficient to detect a transport barrier near

the shearless trajectory comprised of a thin band of surviving KAM tori.) The result

of the FTLE computations with longer integration time is shown in Fig. 20. The

region in the immediate vicinity of the shearless trajectory in the small ε case (left

panel) is seen to be associated with a thin band of anomalously small Lyapunov expo-

nents. This indicates regular (nonchaotic) motion in this region, which is associated

with a transport barrier comprised of surviving KAM invariant tori. The right panel

of Fig. 20 indicates that this barrier is broken when ε is increased.

A consequence of the two nonoverlapping figure eight chaotic regions that are sep-

arated from each other by an impenetrable transport barrier is that the distribution

of passive tracers will be homogenized on each side of the barrier within each of the

two figure eight bands. When the barrier is broken and the two figure eight bands

merge forming one large chaotic region, the distribution of passive tracers will be

homogenized within this large chaotic region. This behavior is illustrated in Fig. 21,

which shows the initial (at t = 182 days) and final (at t = 302 days) positions of two

sets of fluid particles for the observationally-based model with two values of ε, small
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ε (ε = 0.1) on the left and large ε (ε = 1) on the right. For both values of ε the same

initial positions of the two sets of fluid particles are used. Initial positions of the two

sets are chosen to fall on two nonintersecting circles on opposite sides of the transport

barrier in the vicinity of the shearless torus in the small ε case. In the small ε case,

shown in the left panel of Fig. 21, after 120 days of integration the fluid inside each

circle is well stirred, but there is no mixing between the two sets, due to the presence

of the transport barrier. In the large ε case, shown in the right panel of Fig. 21, after

120 days the two sets of initially separated fluid particles are mixed with each other,

as indicated by what appears to be random distributions of dots of two colors. This

mixing is possible because of the absence of a transport barrier and is facilitated by

heteroclinic tangles.

The observationally-based model of the surface circulation in the Adriatic Sea

does not have periodic time dependence. Consequently, the quantitative features of

Figs. 18 and 21 depend on the starting time and integration time used in numerical

simulations. However, Figs. 18 and 21 are representative of typical behavior of the

system under investigation.

5.4 Summary and conclusion

In this chapter we have studied the behavior of a steady three-gyre system under

time-dependent perturbation with the aid of relevant dynamical systems results, in

particular, KAM theory, stable and unstable manifolds, and lobe dynamics. An

analytically specified model was introduced to illustrate the importance of LCSs and

the manner in which they control transport. A fully observationally-based model of
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the Adriatic Sea surface circulation was used to test the robustness of the qualitative

features of a perturbed three-gyre system when applied to a more realistic fluid flow.

The behavior of a three-gyre system under time-dependent perturbation is shown

to be qualitatively different for small and large perturbation: differences in transport

properties, manifold structure, barriers to transport and intergyre transport were

found. For small perturbation all manifold intersections are of the homoclinic type;

homoclinic tangles are present but heteroclinic tangles do not form. A barrier to

transport is present that insures that two of the gyres exchange no fluid with the

third gyre. In other words, gyre-to-gyre-to-gyre transport is prohibited under these

conditions. The existence of such a barrier is linked to strong KAM stability near

shearless tori. This transport barrier breaks down when the perturbation reaches a

critical value (which depends on both the background and the perturbation). For large

perturbation, both homoclinic and heteroclinic manifold intersections are present;

transport between all three gyres occurs. KAM theory arguments and lobe dynamics

arguments are consistent with each other.

In most realistic oceanic and atmospheric problems, the full complexity of the

flow can not be captured by available measurement techniques. Available numerical

modeling schemes usually contain some missing physics as well. In this section, using

the example of the surface circulation in the Adriatic Sea, we have shown that, even

when ψ (x, y, t) is not known exactly, the dynamical systems approach allows one to

obtain important qualitative information about the system under investigation.



6 Summary

The work reported here is concerned with understanding transport and mixing in

two-dimensional and incompressible oceanic and atmospheric fluid flows. The associ-

ated Lagrangian dynamics was studied with the aid of dynamical systems techniques:

KAM theory, stable and unstable manifold structure, and lobe dynamics. The Hamil-

tonian structure of the Lagrangian equations of motion has been exploited extensively

in our studies.

Much of the work focused on the role of transport barriers, their underlying dy-

namics, and methods of their identification. In the theory of dynamical systems,

transport barriers in nonsteady 2D incompressible flows can be characterized as LCSs.

Identification of LCSs is generally not possible from naked eye inspection of Eulerian

velocity fields and requires the use of dynamical systems techniques. Two types of

LCSs are of primary importance: 1) stable and unstable manifolds of generally non-

stationary hyperbolic points; and 2) invariant KAM tori, the existence of which is

predicted by the KAM theorem provided the flow of interest satisfies certain condi-

tions. Because both types of structures are material lines of fluid they can not be

traversed by, and therefore strongly constrain the motion of, neighboring fluid par-

ticles. Stable and unstable manifolds in nonsteady flows are involved in facilitating

efficient transport in regions with chaotic behavior, while KAM invariant tori provide

barriers to transport. Transport barriers associated with KAM invariant tori are of-

ten found near cores of jet-like structures in the flow of interest due to the strong

KAM stability phenomenon.

94
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The complementary nature of the KAM theory and stable and unstable manifold

structure has been emphasized. In particular, the presence of KAM invariant tori

in the system imposes strong constraints on the corresponding stable and unstable

manifold structure. One such constraint is that in regions where stable and unstable

manifold intersections are formed, KAM invariant tori can not be present. Also,

resonance widths arguments, which lead to strong KAM stability near shearless tori,

predict that tori near the homoclinic and heteroclinic trajectories are the first to

break under the perturbation. This provides an alternate explanation of well-known

results from lobe dynamics theory, which predicts that in nonsteady flows stable and

unstable manifolds generally do not coincide with each other; instead they intersect

transversally forming lobes that govern transport in regions with chaotic behavior.

Two applications, one atmospheric and one oceanic, were considered in the work

presented. The first application considered concerns with the Lagrangian dynam-

ics of the zonal jet at the perimeter of the Stratospheric Polar Vortex, which forms

over Antarctica in the late winter/early spring. A dynamically-motivated model was

employed in these studies. A robust transport barrier of the strong KAM stability

type was found near the core of the zonal jet under typical late winter/early spring

conditions. This type of barrier provides the trapping mechanism which keeps ozone-

depleted air within the ozone hole. Causes for the breakdown of such a barrier were

discussed. Our strong KAM stability explanation for the transport barrier at the

perimeter of the ozone hole was contrasted to the potential vorticity barrier explana-

tion. Recent work on transport barriers in planetary atmospheres [13] reveals that,

consistent with our strong KAM stability arguments but conflicting with the potential
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vorticity barrier arguments, both eastward and westward zonal jets serve as robust

meridional transport barriers in the atmosphere of Jupiter. The flow considered in

[13] provides an example of a dynamically-consistent flow where transport barriers

are present that are not associated with a jump in potential vorticity.

The second application considered was concerned with intergyre transport in a

perturbed three-gyre system. The study of this problem was motivated by the ob-

servations of surface drifters in the Adriatic Sea, which suggest the presence of a

robust three-gyre background flow pattern. It was shown that the behavior of the

perturbed three-gyre system is qualitatively different for small and for large pertur-

bation. For small perturbation, a transport barrier of the strong KAM stability type

is present, which separates two gyres from the third gyre, so that two of the gyres

exchange no fluid with the third gyre. Under such conditions all stable and unstable

manifold intersections are of the homoclinic type. After the perturbation reaches a

certain threshold, the transport barrier of the strong KAM stability type is broken,

heteroclinic intersections between stable and unstable manifolds form and transport

between all three gyres occurs. This behavior was shown to be predicted theoretically,

and was illustrated using an analytically prescribed model and then tested in a more

realistic setting using a fully observationally-based model of the surface circulation in

the Adriatic Sea.

Our work on the perturbed three-gyre system is important as a first step to-

wards understanding transport and mixing in more realistic multiple-gyre systems.

Motivated by the obtained results on the perturbed three-gyre system, we expect

that finite amplitude bifurcations will occur in perturbed multiple-gyre systems as
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the perturbation strength increases. Similarly to the perturbed three-gyre system,

these bifurcations are associated with the break up of transport barriers of the strong

KAM stability type, the formation of heteroclinic tangles and appearance of intergyre

transport between gyres that exchanged no fluid with each other for smaller values

of the perturbation. It is the presence of heteroclinic tangles that allows for efficient

nonlocal stirring of fluid.
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