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Sound transmission through a fluctuating deep ocean environment is considered.

It is assumed that the environment consists of a range-independent background, on

which a small-scale perturbation, due for example to internal waves, is superimposed.

The modal description of underwater sound propagation is used extensively. The

temporal spread of modal group arrivals in weakly range-dependent deep ocean envi-

ronments is considered. The phrase “modal group arrival” refers to the contribution

to a transient wavefield corresponding to a fixed mode number. It is shown that there

are three contributions to modal group time spreads which combine approximately

in quadrature. These are the reciprocal bandwidth, a deterministic dispersive con-

tribution, and a scattering-induced contribution. The latter two contributions are

shown to be proportional to the waveguide invariant β, a property of the background

sound speed profile. The results presented are based mostly on asymptotic theory.

Some extensions of the asymptotic modal theory are developed. These theoretical

results are shown to agree well with full-wave numerical wavefield simulations and

available exact mode theoretical results. Theoretical predictions of modal group time

spreads are compared to estimates derived from data that was collected during the

2004 LOAPEX experiment. The effects of deficiencies in the receiving array on esti-

mates of modal group time spreads are discussed. It is shown that in spite of array



deficiencies in the LOAPEX measurements it is possible to estimate modal group

time spreads for almost all propagating modes and these estimates agree well with

results obtained from numerical simulations and the developed theory. The effect of

ocean internal waves on sound speed fluctuations is also considered, motivated by the

observation that the amount of energy being scattered along the propagation path

is sometimes greater in the experimental data than predicted by numerical simula-

tions and theory. It is shown that the usual assumption that the potential sound

speed gradient is proportional to the squared buoyancy frequency is often not a good

approximation.



Acknowledgments

This study was carried out under the supervision of Prof. Michael G. Brown. Deep

appreciation is expressed to him for his kind help, great care, valuable assistance,

advice, and encouragement during the time of my doctoral work. He provided an

excellent scientific guidance for my dissertation research, countless opportunities to

interact with other researchers in the field, and wise directions throughout my whole

study that significantly broaden my scientific views and experience.

Financial support for this research was mainly provided by ONR through the

Ocean Acoustics Program, Code 321.

I would like to thank my other dissertation committee members, Dr. Francisco
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1 Introduction

The ocean is an extremely complicated acoustic environment. Underwater acoustics,

the science of sound propagation in the ocean, has been developed extensively during

the last several decades. The theory now provides a general understanding and a

detailed description of how sound travels in the ocean, and of the mechanisms affecting

it. The quantitative connection between ocean structure and sound fluctuations has

been extensively studied in the past.

In this study we focus on the use of normal mode methods. Some important

milestones in the development of this theory are the following. The theory of wave

propagation in layered media has been developed in the extensive investigations of

Brekhovskikh [1]. A theory of propagation of elastic and electromagnetic waves is

presented since the same mathematical methods may be applied in both cases. Pekeris

developed the theory for a simple two-layer model of the ocean (constant sound speed

water column with semi-infinite homogeneous fluid bottom) – the so-called Pekeris

waveguide [2]. The idea of the method is based on the technique of separation of

variables for the Helmholtz equation. The normal mode method for the solution of

problems in underwater sound propagation is exact in a layered environment and a

number of computer codes have been developed [3, 4, 5].

However, the real ocean environment has range dependence and there are a number

of ways in which normal mode theory has been extended to apply to range-dependent

problems. Pierce [6] used adiabatic invariance which assumes that there is no inter-

change of energy between modes and that each mode function adjusts itself to the

1
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sound speed profile at each range. Another work on range-dependent normal modes

was done by Rutherford and Hawker [7] who used an approximate separation of the

wave equation to develop mode coupling coefficients to describe the redistribution of

energy as the normal modes propagate in range. Thompson [8] expanded the normal

modes in terms of harmonic oscillator functions and solved the wave equation for the

range-dependent harmonic oscillator coefficients. Another extension of the normal

mode theory to range-dependent problems is the coupled mode theory introduced by

Evans [9]. The environment is divided into a number of range-independent sections to

give a stepwise approximation to the range-dependent problem. The stepwise problem

is solved exactly in each section and solutions are matched at the step boundaries.

A theory of acoustic propagation in a model random ocean based on statistics of

normal mode amplitudes, valid in the limit of low acoustic frequency was developed

by Dozier and Tappert [10]. Beginning with this work the research done on mode

coupling has focused on distributions of modal amplitudes as a function of range.

This dissertation focuses on mode coupling but considers, in addition to distributions

of modal amplitudes, the question “What is the associated wavefield structure in

depth–range or depth–range–time space?”.

Over many years the conceptual picture of sound propagation through a fluctu-

ating ocean was as follows (Fig. 1). Suppose in the deep ocean there is a certain

background structure of a sound speed profile c (z). Then with the presence of the

acoustic source s (t) the pressure field at the receiver location is p (z, r, t) and the

details of this pressure field are controlled by the background sound speed structure.

Now, suppose there is a depth- and range-dependent small disturbance of the sound



3

c(z) + δc(z, r)

p(z, r, t)

s(t)

+ δp(z, r, t)

c(z) + δc(z, r)

p(z, r, t)

s(t)

+ δp(z, r, t)

Figure 1. Conceptual picture of traditional (left) and new (right) view of sound prop-
agation through a fluctuating ocean.

speed profile (for example due to the presence of internal waves) δc (z, r), which cre-

ates in turn the disturbance of the pressure field at the receiver location δp (z, r, t).

Much earlier work has assumed that the details of δp (z, r, t) are controlled by the

details of the perturbation of the sound speed profile δc (z, r). Recent theoretical

work, numerical simulations and analysis of experimental data strongly suggest that

this assumption is incorrect. This recent work suggests that while δc (z, r) is the

cause of δp (z, r, t), the structure of δp (z, r, t) is largely controlled by the background

sound speed profile. The objective of this work is to improve our understanding

of sound transmission at long-range in the deep ocean by utilizing a coupled-mode-

based theoretical model and testing the predictions of such a model against recent

measurements.

Another important motivation for this work is to interpret and understand mea-

surements made during the 2004 long-range acoustic propagation experiment (LOAPEX)

that was conducted in the eastern North Pacific ocean [11]. Essential elements of the
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experiment are that broadband signals in the 50 Hz to 100 Hz band from a submerged

compact source were transmitted to a vertical receiving array at ranges of approxi-

mately 50, 250, 500, 1000, 1600, 2300 and 3200 km. The propagation path had weak

background range-dependence on which smaller scale structure, due mostly to inter-

nal waves, was superimposed. The receiving array had several deficiencies (which

will be discussed in Sec. 5.2 and Sec. 5.3) but this array still allows some mode

filtering to be performed. These comments suggest that a natural way to describe

the wavefield and interpret the measurements is to employ a modal description that

accounts for the broadband nature of the field and its range evolution in the presence

of weak scattering (mode coupling). In this work we present simulated wavefields

that correspond approximately to conditions during the LOAPEX experiment and

test developed theoretical results. Some analysis of the LOAPEX measurements is

presented and discussed.

Previously, simulation and data-based estimates of modal group time spreads

for multimegameter transmissions in the eastern North Pacific Ocean have been re-

ported in [12, 13]. In addition, Colosi and Flatté [14] have presented an extensive set

of numerical simulations that were designed to investigate the influence of internal-

wave-induced mode coupling on modal group time spreads. The questions that mo-

tivated their work included understanding the limitations imposed by mode coupling

on acoustic tomography and matched field processing, and understanding the limita-

tions of the adiabatic mode approximation. These issues continue to be of interest.

Thus, in addition to providing a basis for interpreting the LOAPEX measurements,

earlier measurements and simulations, the results presented here have implications
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for aspects of broadband signal coherence and stability.

This dissertation is organized as follows. Chapter 2 reviews some traditional ap-

proaches to wave propagation in random inhomogeneous media. Chapter 3 discusses

some theoretical results, including those obtained by the use of ray methods. A few

important aspects of ray-mode duality are outlined in this chapter as well. Chapter

4 is devoted to the theoretical study of wavefield structure and mode coupling in the

deep ocean. Dispersion diagrams are introduced and discussed in Sec. 4.3 and a

method to improve the accuracy of these diagrams is derived in Sec. 4.4 of this chap-

ter. Chapter 5 presents the analysis of the LOAPEX experimental data set, discusses

effects of deficiencies in the receiving array, and reconciles the experimental data with

the theory. Chapter 6 considers the quantitative connection between internal-wave-

induced fluid particle displacements and sound speed fluctuations. A summary of the

results and final conclusions are included in Chapter 7. Possible future work is also

outlined.



2 Background

In this chapter different approaches to wave propagation in random inhomogeneous

media that were developed over past several decades are briefly reviewed. At the

beginning the simple homogeneous background problem is briefly discussed. Then

some aspects of the more sophisticated Φ–Λ theory that accounts for the inhomo-

geneities of the background sound speed profile are presented. Also classical works

on mode coupling and some recent developments on the applicability of the adiabatic

approximation for modes are overviewed.

2.1 Traditional approaches to wave propagation in random
inhomogeneous media

2.1.1 The homogeneous background problem

The scattering of radiation in an environment consisting of a homogeneous back-

ground on which an inhomogeneous perturbation is superimposed has been treated

using both wave and ray theoretical methods in a book by Chernov [15]. This mono-

graph contains a systematic treatment of the theory of wave propagation in a ho-

mogeneous background medium with random inhomogeneities and includes a unified

general treatment of weak-scattering methods. Another treatment of the homoge-

neous background problem with a homogeneous isotropic perturbation can be found

in the book by Tatarskii [16]. A complete treatment of the weak-scattering regime un-

der the conditions of isotropic turbulence and some progress in the strong-scattering

regime are present in this book. But this work and work by most other authors

6
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treat only isotropic cases without specializing to the ocean environment. Their re-

sults have been widely applied in ocean acoustics, but their neglect of anisotropy,

which is fundamental to the ocean environment, limits the practical utility of their

results. A brief discussion of the propagation of signals in a random inhomogeneous

medium with isotropic statistical properties can be found in the book by Tolstoy and

Clay [17]. These authors represent the ocean as a transmission channel, and describe

its properties by certain correlation coefficients that are not readily identifiable with

known physical processes.

2.1.2 Φ–Λ theory

An important contribution to the development of the theory of sound transmission

through a fluctuating ocean was made by Flatté et al. [18]. An important concept in

this theory of sound transmission through a fluctuating ocean is the concept of a Λ,

Φ space representation which is divided into several regimes; Λ is the diffraction pa-

rameter that gives a measure of the received volume scattering, and Φ is the strength

parameter that is a measure of the accumulated root mean square (rms) sound speed

variations along the path of propagation. In each of these regimes, one can derive

expressions for the statistics of acoustic fluctuations in terms of Λ, Φ and D, the

phase structure function. Internal waves are assumed to be the source of sound speed

fluctuations and the Garrett-Munk model [19] is used for predictions. The oceanic

sound speed as a function of space and time can be expressed as

c (x, t) = c0 (1 + u0 (z) + µ (x, t)) , (1)
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where x is the coordinate vector and z is the vertical coordinate. The strength

parameter Φ can be regarded as either the sum of rms sound speed fluctuations along

the ray or as the rms variation in phase of the received signal [18] in the geometrical

optics regime. It is defined as

Φ2 = k2
0

∫ R

0

dr

∫ R

0

dr′ρ (z (r) , z (r′) , r − r′, θ, 0) , (2)

where k0 = σ/c0 is the acoustic wavenumber (to zeroth order), R is the range,

ρ (z (r) , z (r′) , r − r′, θ, τ) is the correlation function of the sound speed fluctuations

along the path of integration z (r), which is also the ray path, and θ is the angle the

ray makes with horizontal. The correlation function is related to the sound speed

fluctuations and to the vertical displacement of water particles by

ρ (z (r) , z (r′) , r − r′, θ, τ) = 〈µ (z (r) , r, t)µ (z (r′) , r′, t+ τ)〉t . (3)

Here

µ (z, r, t) =
δc

c
= c−1 δcp

δz
ξ (z, r, t) , (4)

where cp is the potential sound speed, c is the characteristic sound speed, and ξ is

the vertical displacement of a fluid particle (due to internal waves, for instance). The

size of a Fresnel zone for particular source–receiver geometry plays an important role

in the Φ–Λ theory. The concept of a Fresnel zone in ocean sound transmission is

complicated by the presence of the sound channel.
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0 r R r′

α2

α1

x + Δx

x

a

zray (r)

xR = (zR, rR, yR)

θ

Figure 2. Geometry for defining Fresnel zones and ray tubes in the presence of a
deterministic sound channel (after S. M. Flatté et al. [18]).

Consider a ray in the deterministic sound channel with no fluctuations from in-

ternal waves or other disturbances (Fig. 2). The acoustic path length along the ray

is [18]

S0 (0,xR) =

∫ xR

0

{
1

2

(yR
R

)2

+
1

2

[
z′ray (r)

]2 − u0 (z)

}
dr, (5)

where the subscript zero indicates the path length undisturbed by fluctuations. The

phase curvature, A (r), is defined by

A (r) = ∂zz [S0 (0,x) + S0 (x,xR)] (6)

so that A (r) is the second derivative of the path length for a small vertical displace-

ment at a range r. In [17] it is argued that the radius of the first Fresnel zone RF

is
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R2
F = 2π (k0A)−1 . (7)

Now the diffraction parameter Λ is given by

Λ = Φ−2k2
0

∫ R

0

dr

∫ R

0

dr′ρ (z (r) , z (r′) , r − r′, θ, 0)
∣∣k0AL

2
v

∣∣−1
, (8)

where Lv is the vertical correlation length. The diffraction parameter characterizes the

diffraction effect caused by the spatial extent of the sound speed fluctuations. A term

associated with a Fresnel zone for horizontal displacements of the unperturbed ray is

neglected because the correlation length in the horizontal direction is much greater

than in vertical in the ocean medium. The behavior of sound signals is characterized

in different regions of Λ–Φ space. Assume that the path of the perturbed ray is

separated from the unperturbed ray by a distance a at the midpoint (Fig. 2), with

the unperturbed ray followed from the origin (0) to the receiver (xR). The full path

length from source to receiver can then be written as

S (0,xR) = S0 (0,xR) +
1

2
Aa2 −

∫
µdS, (9)

where A is the phase curvature and the integral of µ is taken over the new path. It

is convenient to set ξ = a/Lv and define

u (ξ) = −Φ−1k0

∫
µdS. (10)

Then the path length can be expressed in terms of dimensionless variables u (ξ) and
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Figure 3. Regions in Λ–Φ space (after S. M. Flatté et al. [18]).

ξ and the important parameters Φ and Λ:

k0S (0,xR) ≈ k0S0 (0,xR) +
1

2

ξ2

Λ
+ Φu (ξ) . (11)

The regions of different sound fluctuation behavior can be identified in terms of re-

gions in Φ–Λ space (Fig. 3). In saturated (strong scattering) regions, when Φ > 1

and ΦΛ > 1, each unperturbed ray will split up into a number of micropaths. On the

average the number of micropaths is ΦΛ. The vertical spacing between these paths

is typically of order Lv. In the diffractive, unsaturated regime (Λ > 1, Φ < 1) the
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Figure 4. Sound transmission regions translated into range-frequency space (after S.
M. Flatté et al. [18]).

small scattered wave is not well described by a ray approximation, but because Φ is

small, a perturbation expansion can be made. The result is similar to the formulation

in the geometrical optics regime. To determine in which region a particular sound-

transmission is operating, one must calculate Φ and Λ, which depend on the sound

frequency, the range from source to receiver, and on which unperturbed ray is con-

sidered. Figure 4 shows the regions translated into range-frequency space. Numerical

methods are developed for computation of Φ and Λ for arbitrary vertical sound speed

and Brunt-Väisälä frequency profile [20].
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The main flaw of this method is probably that the integrals for Φ and Λ (Eqs. (2)

and (8)) are computed along the unperturbed ray path and there is no justification

for validity of these expressions for the ocean medium with the presence of range-

dependent inhomogeneous perturbation of the sound speed. In the paper by Colosi et

al. [21] it is pointed out that predictions of pulse spread and wave propagation regime

were in strong disagreement with the observations during a 3250-km propagation

experiment in the eastern North Pacific ocean. Pulse time spread estimates were more

than two orders of magnitude too large, and Φ–Λ theory predicted full saturation,

but experimental results suggested that the propagation was either in the partially

saturated or the unsaturated regime.

2.1.3 Mode coupling (Dozier-Tappert theory and extensions)

An alternate approach makes use of the modal description of underwater sound prop-

agation. In a range-dependent environment acoustic energy is scattered among modes

with different mode numbers. The development of a theory of acoustic propagation

in a random ocean based on statistics of normal mode amplitudes is described by

Dozier and Tappert [10]. A system of stochastic ordinary differential equations, that

are the coupled mode equations, is derived with randomness entering solely through

the variation of the sound speed profile δc .

The Helmholtz equation in cylindrical coordinates for the acoustic pressure ū (z, r, σ)

due to a point source with angular frequency σ at r = 0 is

1

r

∂

∂r

(
r
∂ū

∂r

)
+
∂2ū

∂z2
+ k2ū = 0, (12)
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where k = σ/c (z, r). The following boundary conditions are imposed: 1) The wave

should be outgoing as r → ∞. 2) The flat ocean surface is a pressure release

surface: ū (0, r, σ) = 0. 3) The flat ocean bottom is rigid and totally reflecting:

∂ū
∂n

(−h, r, σ) = ∂ū
∂z

(−h, r, σ) = 0. In a stratified ocean (possibly including a weak

perturbation δc (z, r, t) ) the far field is described by

∂2P

∂z2
+
∂2P

∂r2
+ k2P = 0, (13)

where P =
√
rū. Now P can be expanded in terms of normal modes φn of the

deterministic background profile c̄ (z) :

d2φn
dz2

+
σ2

c̄2 (z)
φn = l2nφn, n = 1, 2, ... (14)

φ (0) = 0,
∂φ

∂z
(−h) = 0,

∫
dzφnφm = δnm. (15)

P (z, r, t) = e−iσt
N∑

n=1

An (r, t)φn (z) . (16)

It is shown in [6] that under quasi-static and forward-scattering approximations, the

problem can be reduced to the initial value problem and for the scaled amplitude

ξn =
√
lnAn it becomes:

∂ξn
∂r

(r, t)− ilnξn (r, t) = −i
N∑

m=1

Rnm (r, t) ξm (r, t) , (17)

where



15

Rnm (r, t) =
σ2

c2
0 (lnlm)1/2

∫
dz
δc (z, r, t)

c0

φn (z)φm (z) . (18)

Removing the oscillations by the substitution ψn = e−ilnrξn yields the coupled mode

equations:

∂ψn
∂r

(r, t) = −i
N∑

m=1

Rnm (r, t) ei(lm−ln)rψm (r, t) , (19)

ψn (0, t) = ψ0
n (t) , 1 ≤ n ≤ N.

A closed system of equations for statistical averages of the solutions of the coupled-

mode equations, called the coupled power equations, is derived which describes the

transfer of energy between the propagating acoustic normal modes:

d

dr
Wn (r) =

∑

m=1
m6=n

anm [Wm (r)−Wn (r)] 1 ≤ n ≤ N, (20)

Wn (0) =
∣∣ψ0

n

∣∣2 .

Here Wn (r) =
〈
|ψn (r)|2

〉
. Equation (20) describes an irreversible tendency toward

equilibrium, whereas the coupled mode equations (19) are reversible in range for any

particular realization. The coefficients anm in Eq. (20) are the transition probabil-

ities between modes. The coupled power equations are derived under the following

assumptions: 1) incoherent modes, i.e. 〈ψn (r)ψ∗m (r)〉 = 〈|ψn (r)|2〉δnm; 2) random
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phase sound speed perturbations, i.e. 〈R̂nm (k) R̂nm (k′)〉 = 〈
∣∣∣R̂nm (k)

∣∣∣
2

〉δ (k − k′),

(here R̂nm (k) = 1
2π

∫∞
−∞ drRnm (r) eikr ); and 3) independence of sound speed per-

turbation and modes, i.e. 〈R̂nm (k)ψn (r)ψ∗m (r)〉 = 〈R̂nm (k)〉〈ψn (r)ψ∗m (r)〉 and

〈R̂nm (k) R̂jm (k′)ψn (r)ψ∗j (r)〉 = 〈R̂nm (k) R̂jm (k′)〉〈ψn (r)ψ∗j (r)〉.

In addition to the average modal powers, described by the coupled power equa-

tions, coupled fluctuations equations are derived in [10]. Finally, the full statistical

distribution of normal amplitudes is discussed, with the detailed analysis of its prop-

erties.

Another way to derive a mode coupling equations can be found in the work by

Virovlyansky et al. [22]. The results are obtained for the wave field that obeys

the parabolic equation. A monochromatic wave field at a carrier frequency f in a

two-dimensional acoustic waveguide with the sound speed c (z, r) is governed by the

Helmholtz equation (12), where σ = 2πf . It is convenient to introduce an envelope

function v̄ (z, r) connected to ū (z, r) by an expression

ū =
v̄√
r

eik0r, (21)

with k0 = σ/c0, where c0 is the reference sound speed. In the far field this function

is approximately described by the standard parabolic equation:

2ik0
∂v̄

∂r
+
∂2v̄

∂z2
− 2k2

0Uv̄ = 0, (22)
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where

U (z, r) =
1

2

(
1− c2

0

c2 (z, r)

)
. (23)

In each cross-section of a range-dependent waveguide the field is decomposed into

a sum of the local modes, that is the modes of an imaginary range-independent

waveguide whose depth structure coincides with that of a real one at the given range.

The normal mode representation of the wave field in a range-dependent waveguide

has the form

ū (z, r) =
∑

m

am (r)φm (z, r) . (24)

Substitution of this expression into Eq. (22) and use of the orthogonality condition

for normal modes results in the mode coupling equation

dam
dr

+ ik0Hmam = −
∑

m1

am1

∫
dz
∂φm1

∂r
φm. (25)

HereHm is the value of the Hamiltonian associated with them-th mode (a relationship

between Hm and mode number m will be established in Sec. 4.1 by Eq. (89) or an

asymptotic form of this equation, Eq. (100)). For a point source, Eq. (25) should be

solved with an initial condition

am (0) = φm (0, z0) . (26)
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The derivative ∂φm/∂r can be written as an expansion

∂φm
∂r

=
∑

ν 6=0

Bmνφm+ν . (27)

Equation (25) now is written as

dam
dr

+ ik0Hmam =
∑

ν 6=0

Bmνam+ν . (28)

It is shown in [22] that

Bmν =
1

Hm −Hm+ν

∫
dzφm

∂U

∂r
φm+ν . (29)

In the high frequency approximation Eq. (29) reduces to

Bmν = − k0

2νωm
V|ν| (Im, r) . (30)

The form of V|ν| (Im, r) is given in Virovlyansky et al. [22], and ωm is defined by Eq.

(35). An important result follows directly from Eq. (29). Since Bmν ∼ 1
Hm−Hm+ν

,

it can be concluded that the mode coupling coefficients Bmν are larger for small

absolute values of ν. This means that in the presence of mode coupling the energy

from a particular mode will be scattered primarily between neighboring modes. The

same can not be easily concluded from Eq. (18).
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2.2 Adiabatic approximation for modes

An important limiting case of the mode coupling problem is the so-called adiabatic

limit. This is an approximation in which the interaction between normal modes is

neglected. The amplitude of each mode and its vertical structure at a given section of

the waveguide depend only on the distribution of the medium’s parameters across this

section. The physical meaning of this condition is that mode coupling is negligible.

In the adiabatic approximation the right hand side of the mode coupling equation

(28) is assumed to be negligible, and Eq. (28) can be integrated to obtain

am (r) = am (0) e−ik0

∫ r
0 Hm(r′)dr′ . (31)

The first-order correction can be obtained using a simple perturbation theory. Con-

sider the case when only one mode with number m0 is excited at r = 0, that is

am (0) = δmm0. (32)

Substituting Eq. (31) with am (0) defined by Eq. (32) into the right hand side of Eq.

(28) we find that for m 6= m0

am (r) = e−ik0

∫ r
0 Hm0 (r′)dr′qm, (33)

where

qm =

∫ r

0

dr′Bm,m0−m (r′) ei(m−m0)
∫ r′
0 ωm0 (r′′)dr′′ . (34)
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Here

ωm = ωm (Im) =
dH (I)

dI
|Im (35)

and the quantity Im = I (Hm) is the action variable associated with the m-th mode.

At high frequencies, when Eq. (30) is valid, qm can be presented in the form

qm = − k0

2 (m−m0)

∫ r

0

dr′

ωm (r′)
V|m−m0| (r

′, Im) ei(m−m0)
∫ r′
0 ωm0 (r′′)dr′′ . (36)

The condition

|qm| � 1 (37)

(or its analog for the Helmholtz equation) is traditionally considered as a starting

point for studying the applicability of adiabatic approximation. In particular it turns

out that the inequality (37) requires that

R/L� 1, (38)

where R = 2π/ω is the cycle distance of a ray and L is the characteristic scale of

the horizontal range dependence. Another criterion involving the dependence on a

frequency of the propagating wave that was used by Milder [23] has the form

k0R
2/L� 1.

The research work discussed in Chapter 2 has focused on distributions of modal

amplitudes as a function of range. In this dissertation we are investigating the as-
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sociated wavefield structure in depth-range or depth-range-time space and discussing

what properties of the environment control the wavefield structure and stability.



3 Some theoretical results

This chapter is devoted to the discussion of some recent important theoretical results

that help to understand how the characteristics of the background sound speed struc-

ture are related to the wavefield structure and stability. Some connections between

ray and normal mode theories are outlined and some results establishing the connec-

tion between the background sound speed profile and ray and travel time stability

are presented.

3.1 The connection between the ray-based stability parame-
ter α and mode-based waveguide invariant β: an aspect
of ray-mode duality

In this section some important aspects of ray–mode duality are discussed. Starting

with the Helmholtz equation, the system of ray equations is introduced, and then with

the help of the action-angle variables introduced in range-independent environment

an important connection between the ray and modal descriptions of the wavefield is

derived.

Fixed frequency acoustic wave fields satisfy the Helmholtz equation

∇2ū+ σ2c−2 (z, r) ū = 0, (39)

where ū (z, r, σ) is the Fourier transform of the acoustic pressure u (z, r, t), σ = 2πf

is the angular frequency of the wavefield, and c (z, r) is the sound speed. The prop-

agation in a vertical plane (z, r) is considered where z is depth and r is range. The

22
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so-called short wave approximation can be used when σ >> |∇c| , i.e. when acoustic

wavelength is much smaller than all length scales that characterize variations in c. It

is well known (see e.g.,[24]) that substitution of the geometric ansatz

ū (z, r, σ) = a (z, r) eiσT (z,r) (40)

into the Helmholtz equation (39) and collecting terms in descending powers of σ

yields the eikonal and transport equations. The solution to the eikonal equation can

be reduced to the solution of ray equations. For guided wave propagation in the

direction of increasing r the ray equations may be written as

dz

dr
=
∂H

∂p
,

dp

dr
= −∂H

∂z
, (41)

and

dT

dr
= p

dz

dr
−H, (42)

where p = ∂T
∂z

is the z-component of the slowness vector and

H (p, z, r) = −
√
c−2 (z, r)− p2 (43)

is the Helmholtz Hamiltonian that is equal to the minus r-component of the slowness

vector. For the range-independent problem (c = c (z) ) z (r) and p (r) (following

rays) are periodic functions. The periodic motion is most naturally described using
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action-angle variables (I, θ). The transformed ray equations are [25, 26]

dI

dr
= −∂H̄

∂θ
= 0, (44)

dθ

dr
=
∂H̄

∂I
= ω (I) , (45)

dT

dr
= Iω (I)− H̄ (I) +

d

dr
(G− Iθ) , (46)

where H̄ (I) is the transformed Hamiltonian and G is the generating function of the

canonical transformation

G (z, I) = πI ±
∫ z

dξ
√
c−2 (ξ)−H2 (I), (47)

which relates implicitly the new variables (I, θ) to the original variables (p, z) through

p =
∂G

∂z
, θ =

∂G

∂I
. (48)

The action is defined as

I (H) =
1

π

∫ ẑ

ž

p (z) dz =
1

π

∫ ẑ

ž

dz
√
c−2 (z)−H2, (49)

where ẑ (ž) corresponds to the ray upper (lower) turning depth. The range of a ray

cycle (double loop) is

R (H) = 2π
dI

dH
=

2π

ω (I)
= −2H

∫ ẑ

ž

dz√
c−2 (z)−H2

. (50)
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It is also convenient to introduce the corresponding expression for the single-cycle

travel time:

T (H) = 2

∫ ẑ

ž

c−2 (z) dz√
c−2 (z)−H2

. (51)

Now, the stability parameter α (I), that is a property of a background sound speed

profile, is defined as

α (I) =
I

ω (I)

dω

dI
. (52)

It follows from Eqs. (50) and (52) that α (I) can be expressed in the form

α (H) = −2π
I (H)

R2 (I)

dR (H)

dH
. (53)

A connection between the ray stability parameter α, obtained with the use of ray-

based description, and the mode based waveguide invariant parameter β [27, 28, 29]

can be made. The modal description will be discussed in more detail in Sec. 4,

where asymptotic expression relating to the normal mode based description will be

derived. However, it is important to emphasize here that such a connection exists

because the influence of the parameter α is essential in the study of wavefield structure

and stability. Consistent with the asymptotic analysis presented here, an asymptotic

expression for group slowness is

Sg (H) =
T (H)

R (H)
=
−HR (H) + 2πI (H)

R (H)
. (54)

The justification for the latter expression is presented in Sec. 4.1. The waveguide
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invariant is defined as [27, 28, 29]

β =
∂Sg (H)

∂H
. (55)

It follows from Eqs. (50), (54) and (55) that β can be expressed as

β = −2π
I (H)

R2 (H)

dR (H)

dH
. (56)

A comparison of (53) and (56) reveals α = β. It should be emphasized that this result

is based on asymptotic modal analysis, so only the asymptotic equivalence of α and

β is demonstrated. This result was derived by Brown et al. [29] with some relevant

discussion of the influence of α (or β) on the wavefield structure and stability.

3.2 Review of results obtained by ray methods relating to
the wavefield stability parameter

Ray stability and travel time stability are important characteristics of the wavefield

in underwater acoustics. Ray stability was investigated by Beron-Vera and Brown

[25] in environments consisting of a range-independent background sound-speed pro-

file on which a range-dependent perturbation is superimposed. The results presented

in that work show that ray stability is strongly influenced by the background sound

speed structure; ray instability was shown to increase with increasing magnitude of

α. This conclusion was based largely on numerical simulations, but a very impor-

tant observation follows directly from the action-angle formalism. Assume that the
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sound speed can be split into a background (range-independent) part, c (z), and a

small range-dependent perturbation δc (z, r). Then, to the lowest order in δc/c, the

Hamiltonian takes the additive form

h = H (p, z) + δh (p, z, r) . (57)

By means of the canonical transformation, the ray equations (41) and (42) can be

written in action-angle variables

dI

dr
= − ∂

∂θ
δh̄,

dθ

dr
= ω +

∂

∂I
δh̄, (58)

and

dT

dr
= I

dθ

dr
− H̄ − δh̄+

d

dr
(G− Iθ) , (59)

where h (p, z, r) → H̄ (I) + δh̄ (I, θ, r). The action-angle form of the variational

equations for the perturbed system strongly suggests that the ray stability and dω/dI

(or α) are closely linked. The mechanism through which dω/dI influences ray stability

can be seen from the action-angle form of the ray variational equations,

d

dr
δI = − ∂

2δh̄

∂I∂θ
δI − ∂2δh̄

∂θ2 δθ, (60)

d

dr
δθ =

dω

dI
δI +

∂2δh̄

∂I2
δI +

∂2δh̄

∂I∂θ
δθ. (61)

Equations (58), (60) and (61) describe the evolution of (I, θ, δI, δθ). If one assumes

that the second derivatives of δh̄ are zero-mean random variables, then when dω/dI =
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0 these terms should lead to slow (power-law) growth of δθ and δI. But if |dω/dI| is

large, this term will cause |δθ| to rapidly grow for any nonzero |δI|. The perturbation

terms will then lead to a mixing of |δθ| and |δI|. The term dω/dI will lead, in turn, to

further growth of |δθ|. As this process repeats itself, both |δI| and |δθ| are expected

to grow rapidly. Thus ray instability is expected to be significantly enhanced when

|dω/dI| is large. The importance of α was illustrated with numerical simulations of

ray motion in deep ocean environments including internal-wave-induced scattering,

and in upward-refracting environments including rough surface scattering.

Another important characteristic of the wavefield in underwater acoustics is the

ray travel time. It represents an arrival time of a pulse signal propagating along a

ray path connecting the source and the receiver. In field experiments such pulses,

especially those propagating through steep ray paths, can sometimes be resolved and

identified even at ranges of hundreds of kilometers and longer. In many schemes of

acoustic monitoring of ocean structure, ray travel times are the main observables used

to reconstruct variations in the environment. Travel time stability was investigated

in recent works by Beron-Vera and Brown [26] and Virovlyansky [30]. Three different

measures of travel time spreads were considered in [26]: (i) unconstrained spread of

ray travel time along the timefront; (ii) unconstrained spread of rays whose turning

history and final depth are fixed but whose final range is not; and (iii) scattering-

induced broadening of an individual branch of the timefront at a fixed measurement

location. All three measures of time spreads were shown to be largely controlled

by α, a property of the background sound-speed profile. Surprisingly, this is the

same property that controls ray spreading and, hence, ray amplitudes. The argument
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why travel time spreads should be controlled by the same property comes from the

variational equations in the extended phase space (I, θ, T ) (Eqs. (60), (61) together

with (58)) and another equation for the variation of travel time:

d

dr
δT = I

dω

dI
δI + I

∂2δh̄

∂I2
δI + I

∂2δh̄

∂I∂θ
δθ − ∂δh̄

∂θ
δθ. (62)

For the class of problems considered here the non-zero sound speed perturbation

terms on the right hand side of Eqs. (60)-(62) are generally much smaller than the

dω/dI and Idω/dI terms. Thus, one expects that the dominant cause of the growth

of (δI, δθ, δT ) is the background sound speed structure via α, rather than the small

sound speed perturbation terms. Loosely speaking, the perturbation terms provide a

seed for the growth of (δI, δθ, δT ), while the subsequent growth of these quantities is

largely controlled by α.

3.3 Theory of spreads of energy in depth-range domain for
continuous wave fields. Fresnel zones for modes

All discussions of the wavefield structure and stability up to this point are limited

to the analysis in depth-time space. Other important characteristics of the wavefield

describe the wavefield structure in depth-range space for a monochromatic source.

One such characteristic is the width (in range or in depth) within which most of the

energy of a particular mode is contained; this is closely related to the concept of the

Fresnel zones for modes. The influence of α on Fresnel zone width is investigated in

this section.

The notion of Fresnel zones for modes is analogous to the usual Fresnel zones
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introduced for rays. In the ray representation each ray trajectory is governed by

Snell’s law cos θ = −c (z)H , where θ is the current grazing angle and H is constant

following a ray when c = c (z). The ray trajectory connecting the lower turning point

ž and the point at the depth z has horizontal extent

R (z,H) = −H
∫ z

ž

dz√
c−2 (z)−H2

. (63)

The ray cycle distance (double loop) is determined by Eq. (50). For simplicity it is

assumed that both turning points are inside the water column and lateral shifts on

both boundaries are neglected. A ray path connecting a source at (z0, r) and receiver

at (z, r) satisfies

r = rN,j (z,H) = ajR (z0, H) +NR (H) + bjR (z,H) , (64)

where N is the number of lower turning points, and aj and bj are constants equal to +1

or −1, depending on the sign of the launch and arrival angles. The rays are separated

into four groups distinguished by the index j = 1, 2, 3, 4, according to whether the

trajectory leaves the source in the upward or downward direction and arrives at the

point (z, r) from above or below. In the scope of the ray representation the solution

of the Helmholtz equation is [31, 32]

ū (z, r) =
4∑

j=1

∑

N

AN,je
iΨN,j |H=HN,j (65)
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with the ray amplitudes

AN,j =
(−H)1/2 e

iπ
4√

r |∂rN,j/∂H|
1

4
√

(c−2 (z0)−H2) (c−2 (z)−H2)
, (66)

and phases

ΨN,j = σ [ajJ (z0, H) + 2πNI (H) + bjJ (z,H)−Hr]− (67)

−Nπ − π

4
(aj + bj) +

π

4
sgn

(
∂rN,j
∂H

)
,

where

J (z,H) =

∫ z

ž

√
c−2 (ξ)−H2dξ, (68)

I (H) is the action given by Eq. (49) and the function sgn is the sign of its argument.

The normal mode solution in the far field can be easily found by the use of

the asymptotic form of the Hankel function. Asymptotically, the function φm (z, σ)

between the turning points can be expressed as [31, 32]

φm (z, σ) = φ+
m (z, σ) + φ−m (z, σ) , (69)

where

φ±m (z, σ) =
1

4
√
c−2 (z)−H2

m

√
−Hm

R (Hm)
exp [±i (σJ (z,Hm)− π/4)] . (70)

The functions φ+
m and φ−m present upgoing and downgoing waves (the so-called Bril-
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louin waves) forming the m-th mode. Within the context of the WKB approximation

the mode representation of the wavefield (the monochromatic problem is considered

here) takes the form

ū (z, r) =
4∑

j=1

∑

m

Bm,je
iΦm,j |H=Hm , (71)

where

Bm,j =

√
−2πH

σr

1

R (H)

1
4
√

(c−2 (z0)−H2) (c−2 (z)−H2)
, (72)

Φm,j = σ [ajJ (z0, H) + bjJ (z,H)−Hr]− π

4
(aj + bj) +

π

4
. (73)

Here aj and bj are the same constants as those in Eq. (67).

Let us now compare the phases of two terms in Eq. (71) having the same index j

and corresponding to the m-th and (m+ µ)-th modes. It is shown in [32] that, along

the trajectory of the mode ray, the approximate relation

Φm+µ,j − Φm,j = −2πNµ−
(

2π

R (Hm)

)2
1

2σ

∂rN,j (z,Hm)

∂H
µ2 (74)

holds for |µ| � m. The value of |µ| at which the last term becomes equal to π can be

chosen as an estimation of the number of modes constructively interfering with the

m-th mode along one of its mode rays. Denoting these estimates as M±
m we get

M±
m =

√
σR2 (Hm)

2π |∂rN,j (z,Hm) /∂H| =

√
Rm (H)

∣∣∣∣
tan θ±m
∂z±m/∂m

∣∣∣∣. (75)

Here ∂z±m/∂m = z±m+1 (r) − z±m (r), and θ±m are the grazing angles of the mode rays.
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Equation (75) cannot be used near caustics where M±
m goes to infinity. Note that far

from caustics the derivatives |∂rN,j/∂H| are almost linearly increasing with distance.

This means that M±
m are decreasing with distance, on average as r−1/2, and at large

enough ranges each mode ceases to add in phase with neighboring modes.

Now we derive the expression for the width of the Fresnel zones on a cylindrically

symmetric surface. Let us consider a surface r = rs surrounding the point source

that produces a monochromatic wave. The total field complex amplitude ū (z, r) at

r ≥ rs is connected with the amplitude at the cylindrical surface by the approximate

relations

ū (z, r) =
∑

m

Umφm (z) e−iσHm(r−rs), (76)

Um =

∫ 0

−h
ū (z, rs)φm (z) dz. (77)

Dividing φm (z) into two terms according to Eq. (69) and using the ray representation

for ū (z, rs) (Eq. (65)) we get the following expression for the mode amplitudes Um:

Um =
∑

N,j

(
P+
N,j + P−N,j

)
, (78)

where

P±N,j =

∫
dzAN,je

iQ±N,j , (79)

QN,j = Ψ±N,j ± [σJ (z,Hm)− π/4] . (80)

According to the Huygens–Fresnel principle [33] the field at r ≥ rs is a result of

interference of waves generated by secondary (virtual) sources on the surface r = rs.
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The contribution from the sources located in the depth interval z1 ≤ z ≤ z2 (the

difference z2 − z1 is assumed to be considerably greater than the wavelength) are

given by Eqs. (76)-(80) with the integrals in Eqs. (79) and (80) running from z1 to

z2. So, as it is shown by Virovlyansky et al. [32], the constituent of the total field

formed by the secondary sources located in the above range can be approximately

represented as

ū (z, r) =
∑

m

√
− 2π

σHmr

[
ξ+
mφ

+
m (z0) + ξ−mφ

−
m (z0)

]
φm (z) e−iσHm(r−rs)+iπ/4, (81)

where

ξ±m =
1

ρ±m

∫ z2

z1

dz exp

[
−isgn

(
∂rN,j
∂H

)

r=rs

(
π (z − z±m (rs))

2

(ρ±m)2 − π

4

)]
. (82)

The radii of the first Fresnel zones in vertical direction are:

ρ±m =

√
1

f

∣∣∣∣
∂rN,j (z,Hm)

∂H

∣∣∣∣ tan2 θ±m =

√
R (Hm)

∣∣∣∣
∂z±m
∂m

tan θ±m

∣∣∣∣. (83)

This result shows that comparatively small intervals surrounding the depths z±m (rs)

on the surface r = rs can be indicated, where the secondary sources are located which

play the main role in forming the field of an m-th mode. It should be noted, however,

that the Fresnel zones are not circles, but it is convenient to use the term “radii”

to describe their widths. It seems that these widths are largely controlled by the

background invariant parameter β. It is expected that the radii of Fresnel zones to

be proportional to |β|1/2 , because it follows directly from Eq. (83) that for complete
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ray cycles, r = nR,

ρ±m =

√
2πn

f

|β|
ω2I
|H=Hm . (84)



4 Modal group time spreads in weakly range-

dependent deep ocean environments

In this chapter the temporal spread of modal group arrivals in weakly range-

dependent deep ocean environments is considered. First, some basic results relating

to the modal description of transient underwater sound fields are presented. The main

steps of the mode processing technique, which are used for modal analysis of numerical

simulations and experimental data are outlined in Sec. 4.1. Then the concept of

“modal group time spreads” is introduced and deterministic modal group time spreads

in a range-independent environment are discussed in Sec. 4.2. In Sec. 4.3 the notion

of a dispersion diagram is presented. A new method to improve the accuracy of

modal group time spreads estimates is presented in Sec. 4.4. The scattering-induced

contribution to modal group time spreads is discussed in detail in Sec. 4.5. Various

numerical results that support theoretical investigations are presented in Sec. 4.7 and

Sec. 4.8.

4.1 Modal description of underwater sound propagation. Mode
processing technique

In this section basic results relating to modal group time spreads are presented.

The phrase “modal group arrival” is taken here to mean the contribution to a tran-

sient wavefield corresponding to a fixed mode number. The measurement of modal

group arrivals requires that the wavefield be measured on a vertical array that is suffi-

ciently long and dense to allow the processing steps described below to be performed.

Receiving array deficiencies will be discussed in Sec. 5.2 and 5.3. In Secs. 4.1-4.4 it

36
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is assumed that the sound speed is a function of depth only, c = c (z). Some of the

material presented in this section is contained in [34, 29].

It is assumed that the transient acoustic field, where u (z, r, t) denotes acoustic

pressure, is generated by a transient point source, with time history s (t), located at

r = 0, z = z0. Thus u (z, r, t) satisfies

∇2u (z, r, t)− c−2 (z)
∂2u (z, r, t)

∂t2
= −δ (z − z0)

δ (r)

2πr
s (t) . (85)

Let s̄ (σ) denote the Fourier transform of s (t), and similarly for ū (z, r, σ), where

σ = 2πf is angular frequency. The solution to Eq. (85) can be written as a Fourier

integral:

u (z, r, t) =
1

2π

∫ ∞

−∞
s̄ (σ) ū (z, r, σ) e−iσtdσ, (86)

where

ū (z, r, σ) =
i

4

∞∑

m=0

φm (z0,σ)φm (z, σ)H
(1)
0 (σpmr) /

∫
φ2
m (z, σ) dz (87)

is a sum of normal modes, and H
(1)
0 is the zeroth order Hankel function of the first

kind. The normal modes φm (z, σ) satisfy

d2φm
dz2

+ σ2
(
c−2 (z)− p2

m

)
φm = 0, (88)

together with a pair of boundary conditions, where pm = km/σ is a discrete value of
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the horizontal component of the slowness vector pr = kr/σ. (The variables km and

pm are discrete samples of the continuous variables kr and pr.) Imposition of these

conditions leads to a quantization condition

pm = pr (m,σ) , m = 0, 1, 2, ..., (89)

which determines the allowed values of pm (σ) , m = 0, 1, 2, .... The contribution to

the wavefield from the mode with frequency σ and mode number m can be written

ūm (r, σ) =

∫
ū (z, r, σ)φm (z, σ) dz/

∫
φ2
m (z, σ) dz. (90)

The inverse Fourier transform of ūm (r, σ) is um (r, t) which has the asymptotic form

um (r, t) ≈ 1

2π

∫
ām (σ)√

r
ei(km(σ)r−σt)dσ, (91)

where

ām (σ) =
i

4

(
2

πkm

)1/2

e−iπ/4φm (z0, σ) s (σ) /

∫
φ2
m (z, σ) dz (92)

(here the far-field approximation σpmr � 1 is assumed).

Now the main steps of the mode processing technique can be outlined. In order

to compute contributions to a given transient wavefield from each mode number, one

has to apply direct Fourier transform to the given transient wavefield to obtain the

frequency spectrum of this wavefield. Then this frequency domain field is substituted

instead of ū (z, r, σ) into Eq. (90) to compute individual modal contributions in
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Figure 5. The structure of normal modes in a typical midlatitude ocean environment.
The upper panels are different mode numbers m = 0, 5, 10, 15, and 20 computed for
the same frequency of the acoustic source, f = 75 Hz. The lower panels are for the
same mode number m = 10, computed for different frequencies of the acoustic source
f = 55, 65, 75, 85, and 95 Hz.

frequency domain, and then application of the inverse Fourier transform allows the

computation of contributions to the transient wavefield in time domain for each mode

number. This technique is based on orthogonality of normal modes and sometimes

called the direct projection technique. It requires that the acoustic field is recorded

on a vertical array that is both dense and long.

The conceptual picture (Fig. 5) that shows different modal structures helps to

understand how the mode processing should be performed. It is necessary to compute
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the complete set of propagating modes in the given environment for the full frequency

band of interest. The number of propagating modes is different at different frequencies

(increases with increasing frequency). In a typical midlatitude ocean environment the

number of propagating non-surface-reflecting modes generated by a 75 Hz acoustic

source is approximately 70. The five upper panels in Fig. 5 show modal structure for

different mode numbers (m = 0, 5, 10, 15, and 20) computed for 75 Hz frequency. Note

that the number of zero-crossings of each mode is equal to the mode number. The

five lower panels show modal structure for fixed mode number (m = 10) computed for

five different frequencies (f = 55, 65, 75, 85, and 95 Hz). Though the structure of the

mode looks similar, it is changing with frequency: the distance between neighboring

maxima and minima decreases with increasing frequency. This frequency dependence

is crucial for correct application of the mode processing technique when individual

modal contributions in frequency domain are computed with the use of Eq. (90).

4.2 Deterministic modal group time spreads

Under the assumption of a narrow-band signal (i.e., that the spectral content of the

source is sharply peaked around the center frequency σ0 = 2πf0) a Taylor series

expansion of km (σ) about σ0 gives

km (σ) ≈ km (σ0) + Sg (m,σ0) (σ − σ0) +
1

2

dSg
dσ

(m,σ0) (σ − σ0)2 , (93)

where Sg (m,σ) = dkm/dσ is the group slowness. Consistent with the narrow-band

assumption and Eq. (93) we shall assume that ām (σ) can be approximated by a
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Gaussian ām (σ) = Ae

(
−π(f−f0)2

(∆f)2

)

that is peaked at the center frequency σ0. This

assumption allows the Fourier integral (91) to be evaluated analytically. The result

is

um (r, t) = |A|
√

∆f

r∆t0m (r)
exp

(
−π (t− Sg (m,σ0) r)2

(∆t0m (r))2

)
exp (i (km (σ0) r − σ0t+ γ)) .

(94)

This represents a slowly-varying dispersive wavetrain whose envelope moves at the

group slowness Sg (m,σ0), under which surfaces of constant phase move at the phase

slowness pm. Note that this statement remains valid even if higher order terms are

retained in the Taylor series expansion (93). The point to emphasize here is that

energy propagates at the group slowness, and the time of arrival of modal energy is

t = Sgr. The exact form of the phase term γ in (94) is not important for our purposes.

The temporal width of the envelope, i.e., the modal group time spread, is

∆t0m (r) =
√

∆t2bw + ∆t2d. (95)

Here

∆tbw = (∆f)−1 (96)

and

∆td = −2πr∆fβ (m,σ0)
∂pr
∂σ

(σ0) , (97)

where

β (m,σ) = −∂Sg
∂pr

(98)
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is the waveguide invariant [27, 28, 29]. The product −β (m,σ) ∂pr (σ) /∂σ is the

derivative ∂Sg (m,σ) /∂σ. Partial derivatives are used here to emphasize that m is

held constant. Simplification of (97) and (98) is generally possible if the quantization

condition (89) is known. These expressions have a particularly simple form when

a simple asymptotic form of the quantization condition is used. These expressions

will be derived at the end of this section. Another asymptotic approximation will be

discussed in the Sec. 4.4. The superscript 0 is used in ∆t0m in Eq. (95) to distinguish

this quantity from ∆tm, defined below, which includes a scattering contribution.

It should be emphasized that the validity of Eqs. (95)-(98) is not limited to asymp-

totic analysis. These results do, however, require that β (m,σ0) 6= 0 (so the quadratic

term in the Taylor series expansion (93) does not vanish) and that the bandwidth

is sufficiently narrow that across this band β (m,σ) is approximately constant. The

geometric interpretation of these constraints is that the slope of the dispersion curve

– discussed in the following section – for mode number m is finite and nearly constant

across the relevant frequency band ∆f .

The widths ∆f and ∆t are defined as the half-widths of the Gaussian distributions

at the point where the amplitude of the distribution (in f or in t) is reduced by a

factor of e−π relative to the peaks. Equivalently, ∆f and ∆t are the full widths of

the Gaussian at the points where the amplitude is reduced by a factor of e−π/4 ≈

0.456 ≈ 0.5. Thus, for distributions that can be approximated as Gaussians, to a

good approximation ∆f and ∆t can be defined as the full width of the distributions

at the half-amplitude points.

Equation (97) can be written as ∆td = r (∂Sg (σ0) /∂σ) ∆σ, where ∆σ = 2π∆f .
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Note that the validity of the truncated Taylor series expansion (93) rests on the as-

sumption that the curvature of Sg (σ) in the ∆σ band centered at σ = σ0 is small. If

this condition is satisfied, then an equivalent expression is ∆td = r|Sg (m,σ0 + ∆σ/2)−

Sg (m,σ0 −∆σ/2) |. The correctness of the latter expression is an obvious conse-

quence of the negligible curvature assumption together with the observation that the

time of arrival of modal energy is t = Sg (m,σ) r. An immediate consequence of the

latter observation is the general result

∆td = r

[
max

|σ−σ0|≤∆σ/2
Sg (m,σ)− min

|σ−σ0|≤∆σ/2
Sg (m,σ)

]
(99)

which holds even when Sg (m,σ) is not a monotonic function of σ for a fixed m.

Note that according to (99) d∆td/d∆σ ≥ 0, but that this derivative is generally not

constant, as assumed in (97). Equation (99) is a generalization of (97). Note that we

have shown that (95), (96) and (99) are consistent with each other only in the limit

of small bandwidth, where (99) reduces to (97). But (95), (96) and (99) predict the

correct behavior in the limits of small and large r, so it is natural to assume that (95)

remains approximately valid when (99) replaces (97). Finally, we emphasize that the

validity of the results presented so far is not limited to asymptotic validity.

In an environment in which c (z) has a single minimum, it is well known [31, 35]

that modes with two internal (nonreflecting) turning points asymptotically satisfy

the quantization condition

σI (pr) = m+
1

2
, m = 0, 1, 2, ..., (100)
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where the classical action

I (pr) =
1

π

∫ ẑ(pr)

ž(pr)

(
c−2 (z)− p2

r

)1/2
dz (101)

with c (ẑ (pr)) = c (ž (pr)) = 1/pr, where ž and ẑ are lower and upper turning points,

respectively. Note that these equations define pm = pr (m,σ). For the class of prob-

lems for which (100) is valid

Sg (pr) =
T (pr)

R (pr)
. (102)

Here R (pr) = −2πdI/dpr and T (pr) = 2πI (pr) + prR (pr) are the range and travel

time, respectively, of a ray double loop. Use of Eqs. (100)-(102) leads to a simple

explicit expression for ∆td (97),

∆td = −2πr∆f
I

R (I) f0

β (I) , (103)

where I and R (I) are those values corresponding to the relevant (m,σ0) pair and

β (I) = 2πI
R2

∂R
∂pr

.

4.3 Dispersion diagrams

The dispersion diagram [34] shows the dependence of group slowness on frequency

and mode number. The asymptotic quantization condition (100) and asymptotic ex-

pression for the group slowness (102) provide a very simple connection between phase

slowness, group slowness, acoustic frequency, and mode number. This connection



45

D
ep

th
[k

m
]

C0 sound speed profile β (I)

β

Sound speed [km/s]

D
ep

th
[k

m
]

C17 sound speed profile

Action [s]

β

m(f=50Hz)
m(f=100Hz)

0 50 100
0 20 40 60

0 0.05 0.1 0.15 0.21.45 1.5 1.55 1.6

0 0.05 0.1 0.15 0.21.45 1.5 1.55 1.6

−1

−0.5

0

−5
−4

−3
−2
−1

0

−1

−0.5

0

−5
−4
−3
−2
−1

0

Figure 6. Sound speed profiles: C0 (upper left) and C17 (lower left) and β curves as
functions of action for C0 profile (upper right) and for C17 (lower right). The two
axes in the middle of right panel are mode number axes.

allows the construction of dispersion diagram that supplies important information

about the structure of modal arrivals in time. Dispersion curves are most naturally

plotted as a family of curves, each corresponding to a fixed value of m, in (f, Sg)

space. Here we have produced these diagrams for two different environments: canon-

ical environment derived by Munk [36] (C0) and slightly modified canonical profile

with a small Gaussian disturbance added in the upper ocean (C17) (Fig. 6).

Figure 6 shows two different sound speed profiles (left panels). Upper left panel is

the canonical profile C0 [36], cM (z), and lower left panel is the perturbed canonical

profile C17, c (z) = cM (z) + dc exp
(
−1

2
((z − zc) /zw)2), cM = ca (1 + ε (eη − η − 1))

with η = 2 (z − za) /b. Here z increases upwards, za = −1.1 km is the sound channel
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Figure 7. Dispersion diagrams for canonical profile C0 (left panel) and modified canon-
ical profile C17 (right panel). Two pairs of hotizontal lines on each diagram corre-
spond to the acoustic source with central frequency f0 = 100 Hz and frequency
bandwidth ∆f = 50 Hz (cyan) and ∆f = 12.5 Hz (red).

axis depth, ca = 1.49 km/s is the sound speed on the channel axis, b = 1.0 km is the

thermocline depth scale, ε = 0.0057 is a dimensionless constant, zw = 0.1 km is the

width of the Gaussian sound speed perturbation that is centered at depth zc = −0.35

km, and dc = 0.008 km/s is the amplitude of the Gaussian perturbation. The two

right panels show β (I) for the two profiles. The two axes in the middle are mode

number axes plotted for two different choices of frequency (f = 50 Hz and f = 100

Hz) using the simple quantization condition (100). It is clear that the choice of the

frequency in this quantization condition does not change the structure of β (I), but

leads only to the rescaling of the horizontal mode number axis.

Consider a horizontal strip corresponding to a hypothetical energy-containing fre-

quency band, |f − f0| ≤ ∆f/2 (Fig. 7). The two red lines on each diagram corre-

spond to the source with the central frequency f0 = 100 Hz and frequency bandwidth
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Figure 8. Modal group time spread estimates (simple asymptotic normal mode theory)
for C0 profile (upper panels) and C17 profile (lower panels) for the central frequency
of the source f0 = 100 Hz and two different bandwidths of 50 Hz (left panels) and
12.5 Hz (right panels).

∆f = 12.5 Hz; the two cyan lines on each diagram correspond to the frequency band-

width ∆f = 50 Hz. Assuming the slopes of the dispersion curves are nearly constant

across the frequency band of interest, the temporal width of modal group arrival is

∆td = r

∣∣∣∣
∂Sg
∂f

∣∣∣∣
m

∆f, (104)

in agreement with (103) after one makes use of (98) and (100).

Equation (99) provides a more accurate estimate of ∆td. In order to use that
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expression one has to find two group slowness values corresponding to intersections of

each dispersion curve with lower and upper bound of the frequency band of interest.

In order to convert these values into arrival time bounds one has to multiply them

by the final range of interest. Figure 8 was constructed in this way for two different

environments (C0 and C17), f0 = 100 Hz central frequency of the acoustic source and

two different bandwidths ∆f = 50 Hz (left panels) and ∆f = 12.5 Hz (right panels).

Note that frequency bounds shown on the dispersion diagram (Fig. 7) by cyan line

(for ∆f = 50 Hz) and by red line (∆f = 12.5 Hz) transform into cyan and red

lines, respectively, on modal group time spread diagrams (Fig. 8). The results shown

illustrate that the modal group time spread increases with increasing bandwidth and

the dependence of the modal group time spread on mode number is largely controlled

by the background sound speed structure via the parameter β. Another example of

the dispersion diagram is constructed in Sec. 4.4.

4.4 Asymptotic approximations

In this section full wave numerical simulations in a range-independent environment

are presented and compared to the wavefield structure predicted by Eqs. (94-98). In

particular, we focus on the modal group time spread (95). For numerical simulations

C17 profile (Fig. 9) was chosen. Asymptotic analysis is exploited, particularly in the

evaluation of β (m,σ) (98).

The exact expression for the group slowness is [37, 38]
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Sg (m,σ) =

∫
φ2
m (z, σ) c−2 (z) dz

pm (σ)
∫
φ2
m (z, σ) dz

. (105)

Both this expression and the derivative dSg (m,σ) /dσ can be evaluated numerically.

Then, using (96) and (97), the modal group time spread (95) can be computed.

While this process is not difficult to carry out, it offers no computational advantage

over numerically evaluating (90)-(92) directly. In the following we show that the

approximate theoretical results (94)-(98) provide an accurate description of modal

energy distributions provided β (m,σ0) 6= 0 and that under most circumstances simple

asymptotic expressions for β (m,σ0) and ∂pr/∂σ provide very good approximations.

Using the sound speed profile shown in Fig. 9 the simulations shown in Figs.

10, 11 and 12 were performed to illustrate some important features of the results

described above, and to test the validity of some of the approximations made.

Under commonly encountered experimental conditions ∆td � ∆tbw. With this

assumption dispersion diagrams provide a complete picture of the modal group arrival

structure. For the sound speed profile shown in Fig. 9, the dispersion diagram is

shown in Fig. 10. That figure was constructed using the asymptotic results (100)-

(102); those equations parametrically define a family of curves Sg (m,σ). Because

Eqs. (100) and (102) are approximate the dispersion diagram shown in Fig. 10

contains some errors which will be discussed below. The reason this diagram differs

slightly from the diagram shown before (Fig. 7) is that the surface reflections in

the new diagram were treated accurately, that lead to the presence of cusps on this

diagram. On the diagram shown in the previous section, the ocean domain was
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Figure 9. Sound speed profile used in the simulations shown in Figs. 10, 11 and 12.

assumed to be unbounded. An exact dispersion diagram can be constructed from the

exact quantization condition (89) (which in general must be found numerically) and

(105). Because energy associated with mode number m at frequency σ arrives at time

t = Sg (m,σ) r, the dispersion diagram shows the temporal structure of the wavefield

for all mode numbers in the frequency band of interest.

The upper panel of Fig. 11 shows full wave numerical simulations at r = 2500 km

with |f − f0| ≤ ∆fc/2, f0 = 75 Hz, ∆fc = 18.75 Hz, that correspond to conditions

shown in Fig. 10. Here ∆fc is the full computational bandwidth. The source spectrum

s̄ (σ) had the shape of a Hanning window, for which ∆f ≈ ∆fc/2. The simulations
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Figure 10. Dispersion diagram for mode numbers m = 0, 5, 10, ..., 95 in the environ-
ment shown in Fig. 9, computed using the simple asymptotic results, Eqs. (100)-
(102).

shown in Fig. 11 were performed by solving the standard parabolic wave equation

in a transformed environment c̄ (z̄) as described in [39, 40]. Loosely speaking, the

transformation from c (z) to c̄ (z̄) is constructed in such a way that the solution to the

standard parabolic wave equation in c̄ (z̄) is the same as the solution to the Helmholtz

equation in c (z). In particular, we note that I (pr), R (pr) and T (pr) that appear in

(102) and (103) are preserved under the transformation. The reason for making use of

this transformation is that it provides a relatively simple means to construct accurate
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Figure 11. (upper panel) Wavefield intensity, shown on a logarithmic scale, computed
in the environment shown in Fig. 9 using an axial source with f0 = 75 Hz and a
full computational bandwidth of 18.75 Hz at a range of 2500 km. (lower panel) The
corresponding mode-processed wavefield shown using the same time axis t = Sgr.

approximate solutions to the Helmholtz equation in a range-dependent environment;

simulations in range-dependent environments will be presented in Sec. 6. The lower

panel of Fig. 11 shows the mode-processed wavefield |um (t)|2 corresponding to the

wavefield |u (z, t)|2 shown in the upper panel. Note that the time axis is the same in

both plots, t = Sgr with r = 2500 km.

An estimate of ∆t0m, derived from the wavefield shown in Fig. 11, is plotted as

a function of mode number m in Fig. 12. Also on this figure, ∆tbw (96) and ∆t0m,

constructed using (95), (96) and (103), are plotted as a function of m. The latter curve

is labelled simple asymptotic estimate. Note that according to (95) a lower bound on
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Figure 12. Theoretical and simulation-based estimates of modal group time spreads
∆t0m for the wavefield shown in Fig. 11, corresponding to the dispersion diagram
shown in Fig. 10. Theoretical estimates make use of Eqs. (95) and (96). In the
simple asymptotic estimate of ∆t0m, Eq. (103) was used to compute ∆td. Eqs. (99),
(109) and (110) were used to compute ∆td in the corrected estimate of ∆t0m.

∆t0m is predicted to be (∆f)−1. Overall, the agreement between simple theory ((95),

(96) and (103)) and estimates of ∆t0m derived from simulations is seen to be good,

but a systematic deviation between simulation-based estimates of ∆t0m and the simple

theoretical prediction of ∆t0m is seen in two bands of mode numbers. First, consider

39 . m . 46. For this band of m the slopes of the dispersion curves in the 65 Hz to

85 Hz frequency band seen in Fig. 10 are seen to be nonconstant. As a result, Eqs.

(97) and (103), which assume a constant slope, give a poor approximation to ∆td. To
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correct this problem one needs only replace Eq. (103) by Eq. (99), which gives good

agreement with simulation-based estimates of ∆t0m even when the simple asymptotic

expression (102) is used to compute Sg. The second band of mode numbers where a

systematic deviation between theory and simulation-based estimates of ∆t0m is seen

in Fig. 12 is 60 . m . 75. This range of m corresponds to modes with upper

turning depths near the surface. The cause of the misfit between simulations and the

simple theory for these mode numbers is the use of (103) which, in turn, depends on

(100)-(102). Those equations do not correctly describe near-surface-reflecting modes.

It is possible, however, to derive corrections within an asymptotic framework to those

equations. This issue will now be addressed.

Corrections to (100)-(102) for near-grazing (surface and/or bottom) modes have

previously been described by many authors. A straightforward and quite general

approach to addressing problems of this type is to note that (100) is a special case of

a general expression (see e.g., [22])

σJ (pm) = m− ϕu + ϕl
2π

. (106)

Here J (pm) has the same form as I (pm) in (101) except that the lower and upper

bounds on the integral coincide with the modal turning depths, which may coincide

with one or both of the boundaries, while ϕu and ϕl are the phases of the upper and

lower reflection coefficients, Ru and Rl, respectively. For modes with upper and lower

turning depths far from the boundaries Ru = Rl = −i, and (106) reduces to (100).

In the following we focus on near-surface-grazing modes in an environment with
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a deep sound speed excess, so Rl = −i and Ru transitions smoothly from −i (c (ẑ)�

c (0), non-surface-reflecting modes) to −1 ( c (ẑ) � c (0), surface-reflecting modes).

For the latter class of modes (106) reduces to σJ (pm) = m+ 3
4
. The desired reflection

coefficient, with the properties just described was derived originally by Murphy and

Davis [41]. For c (ẑ) < c (0) (RR modes with upper turning depths close to the

surface)

Ru = exp

[
i

(
−π

2
− 2 tan−1 Ai (S)

Bi (S)

)]
, (107)

where

S =

[
3

2
σ

∫ 0

ẑ

√
p2
r − c−2 (z)dz

]2/3

. (108)

(These equations require some modification for surface-reflecting modes, c (ẑ) > c (0),

but this will not be discussed here.) With Rl = −i and Ru given by (107), (106)

becomes

σI (pm) = m+
1

2
+

1

π
tan−1

[
Ai (S)

Bi (S)

]
. (109)

Note that (109) reduces to (100) for large S (upper turning depth many wavelengths

away from the surface) and to σI = m + 2
3

for a surface grazing mode (S = 0).

We note also that Eq. (109) is a special case of Eq. (5.21) in reference [31] with

the assumption that ocean bottom is many wavelengths away from the lower modal

turning depth. Noting that km = σpm and Sg = ∂km/dσ, differentiation of (109) with
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respect to σ (with m fixed) gives

Sg (pm, σ) =
T (pm) + 2

(
3
2

)−1/3
κσ−1/3

(∫ 0

ẑ

√
p2
m − c−2 (z)dz

)−1/3 ∫ 0

ẑ
c−2(z)dz√
p2
m−c−2(z)

R (pm) + 2pm
(

3
2

)−1/3
κσ−1/3

(∫ 0

ẑ

√
p2
m − c−2 (z)dz

)−1/3 ∫ 0

ẑ
dz√

p2
m−c−2(z)

,

(110)

where

κ = − 1

π
(
Ai2 (S) + Bi2 (S)

) . (111)

Elimination of pm from (109) and (110) allows the construction of a dispersion dia-

gram.

An estimate of ∆t0m, constructed using (109) and (110) is plotted as a function

of mode number m in Fig. 12 with solid line. The agreement between the corrected

theory and estimates of ∆t0m derived from simulations is seen to be excellent even

for modes with turning depths close to the pressure release surface. Equations (108)-

(111) generalize Eqs. (100)-(102) for near-surface-grazing modes with lower turning

depths far from the water/bottom interface. Modes of this type are observed in most

single-minimum deep ocean sound channels with a deep sound speed excess, including

the LOAPEX environment. Although the validity of Eqs. (108)-(111) is restricted

to this class of modes, the type of analysis that we have presented can easily be

generalized to treat other classes of modes for which Eqs. (100)-(102) are invalid.

The modal group time spread diagrams constructed with the use of simple asymp-

totic theory (Fig. 8) can also be improved by making use of Eqs. (108)-(111). Fig-
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Figure 13. Modal group time spread estimates for C0 profile (upper panels) and C17
profile (lower panels) with the central frequency of the source f0 = 100 Hz and
bandwidth of 12.5 Hz computed from full wave normal mode simulations (left panels)
and corrected asymptotic normal mode theory (right panels).

ure 13 compares the dispersion diagrams constructed in two environments (C0 and

C17), obtained by two different methods. The left panels were produced from a

full wave normal mode solution computed using normal mode code PROSIM [5];

the right panels were computed using improved theoretical estimates with the use

of Eqs. (108-111). It is seen that the agreement between modal group time spreads

computed from dispersion diagrams constructed with the use of simple asymptotic

theory (Fig. 8) and exact full wave numerical simulations (left panels of Fig. 13)
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is not very good for modes with turning depth close to the ocean surface. However,

the agreement between full wave simulations and results obtained from asymptotic

theory with correction derived in this section (right panels of Fig. 13) is significantly

improved.

4.5 The scattering-induced contribution to modal group time
spreads

The results presented in the previous section need to be amended to account

for the mode coupling that occurs in realistic range-dependent ocean environments.

We focus here on environments consisting of a range-independent background on

which a highly structured range-dependent perturbation, due for example to internal

waves, is superimposed. Mode coupling is then predominantly local in mode number.

The predominance of nearest neighbor mode coupling is discussed in [22]. In [42]

the same authors show that to an excellent approximation ray scattering can be

described by a diffusion process in action I. But the quantization condition (100) (or

some generalization thereof, such as (109)) shows that as acoustic energy diffuses in

action in the ray description it diffuses (taking discrete steps) in mode number in the

mode description. This is an aspect of ray-mode duality that, like other aspects, is

particularly transparent when asymptotic mode results, such as (100), are used. With

the above comments as background, we will treat m and I as interchangeable labels

in the following discussion, keeping in mind that a quantization condition connects

m and I. In the presence of mode coupling the total group delay of modal energy
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that has been scattered among mode numbers mi, i = 1, ..., n can be written

tg =
n∑

i=1

Sg (mi, σ0) ∆ri, (112)

where
n∑

i=1

∆ri = r, the total range. Expanding Sg in a Taylor series, making use of

(98) and R = −2πdI/dpr, gives

tg ≈ Sg (m0, σ0) r + 2π
β (I0)

R (I0)

n∑

i=1

(Ii − I0) ∆ri. (113)

Convenient choices for I0 are the action at r = 0 or the action at the final range, and

I0 = (m0 + 1/2) /σ0 (or some generalization thereof). If ∆ri is taken to be constant

(so n∆r = r), then

δts = 2π
β (I0)

R (I0)
∆r

n∑

i=1

(Ii − I0) (114)

is the scattering-induced arrival time perturbation for acoustic energy whose forward

or reversed action history is I0, I1, ..., In. (The action history is more convenient than

the mode number history.) In (114) Ii is the action after the i-th scattering event

Ii = I0 +
i∑

j=1

δIj. (115)

Assume that δIj is a delta-correlated zero-mean random variable,

〈δIj〉 = 0, 〈δIjδIk〉 = 〈(δI)2〉δjk. (116)
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Let ∆In = In − I0. Then 〈(∆In)2〉 = n〈(δI)2〉 and, for large n, 〈
(

n∑

i=1

∆In

)2

〉 ≈

n3〈(δI)2〉/3. Thus, it follows from (114) with ∆ts = 2
√
π〈(δts)2〉1/2 that

∆ts = 4π3/2 |β (I0)|
R (I0)

(
B

3

)1/2

r3/2, (117)

where B = 〈(δI)2〉/∆r. Note also that, in terms of B, 〈(∆I (r))2〉 = Br, which can

be taken as the definition of B in the continuum limit. It is important to keep in

mind that in a scattering environment of the type considered, any wavefield contains

scattered energy corresponding to many action histories. Assuming each such action

history is independent, 〈(δts)2〉1/2 is the rms value of the corresponding distribution

of travel time perturbations at range r. The quantity ∆ts is taken to be 2
√
π times

the standard deviation of this distribution so that this quantity, like ∆f and ∆t0m, is

defined as the full width of the δts distribution at the half-amplitude points. (Recall

that 0.5 is an approximation to e−π/4 ≈ 0.456 and note that wavefield intensity is

assumed to be proportional to the action distribution.) We shall refer to (117) as the

scattering-induced contribution to a modal group time spread. It should be noted

that a formula similar to Eq. (117) was derived in a different way by Virovlyansky

[43] and by Virovlyansky et al. [44].

The assumption of delta-correlated action scattering events has been shown [45,

42] to be an excellent approximation at long-range in deep ocean environments. Using

results from the study of stochastic differential equations, scattering in the continuum

limit was treated directly in those studies. An advantage of that approach is that it

allowed the authors to correctly treat near-axial (where I is close to 0) scattering.
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The authors solved this problem by pointing out that the relevant Fokker–Planck

equation for ∆I (r) admits an exact solution for a reflecting boundary at I = 0. It is

important to emphasize that the results presented above – Eqs. (116) and (117), in

particular – are not valid for I close to zero (near-axial modes) as they fail to enforce

the condition I ≥ 0.

At the end of Sec. 4.5 an extension of Eq. (117) that accounts for modes with

turning depths close to the sound channel axis will be discussed. For this purpose it is

instructive to present another derivation of Eq. (117) with the approach used in [43].

This derivation is based on the continuous model of scattering of action I along the

propagation path. The underlying assumption of this model is that value of action I

is described by a Brownian motion (or random walk) process along the propagation

path. The statistics of this process is well-known and application of these results

allows to obtain an estimate for the scattering-induced contribution to the modal

group time spreads in the simplest case.

Let P (I, r|I0, r0) be the probability density function (pdf) of the distribution of

action as a function of range with the condition that at range r0 the value of action

was I0. Then according to [43, 46]

P (I, r|I0, r0) =
1√

2πB (r − r0)
e
− (I−I0)2

2B(r−r0) . (118)

Let x = I − I0 and assume that r0 = 0, then

P (x, r) =
1√

2πBr
e−

x2

2Br . (119)
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Consider two random processes x1 (r1) and x2 (r2) with the probability density func-

tion given by (119). The joint pdf of these two processes can be expressed as

P (x1, r1, x2, r2) = P (x1, r1)P (x2 − x1, r2 − r1) =
1

2πB
√
r1 (r2 − r1)

e
−x2

1(r2−r1)−r1(x2−x1)2

2Br1(r2−r1) .

(120)

The usefulness of the last expression is that it allows one to compute the covariance

function of the Brownian motion,

C (r1, r2) =

∫ ∞

−∞

∫ ∞

−∞
x1x2P (x1, r1, x2, r2) = Bmin (r1, r2) . (121)

The variance of this process is then simply

σI =
√
C(r, r) =

√
Br. (122)

The total group delay of modal energy can be written (recall (112))

tg =

∫ r

0

Sg (m (I (r′)) ;σ0) dr′. (123)

Making use of the Taylor series expansion, Sg (I) ≈ Sg (I0)+ 2πβ(I0,σ0)
R(I0)

x, the expression

for the group delay of modal energy is

tg ≈ tg0 +
2πβ (I0, σ0)

R (I0)

∫ r

0

x (r′) dr′. (124)

The first term in the latter expression is the average arrival time of a modal group.
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The second term, which is a correction to the modal group arrival time is recognized

as the so-called integrated Brownian motion process. A modal group time spread is

equal to the variance of the process described by the second term in the Eq. (124).

It can be shown that covariance of this integrated Brownian motion process is

C̃ (r1, r2) = B

∫ r1

0

∫ r2

0

min (r1,r2) = B

(
r2

1r2

2
− r3

1

3

)
. (125)

The variance of this process is

σt =
√
B/3r3/2, (126)

and therefore for the modal group time spread we obtain

∆ts = 2
√
π〈(δts)2〉1/2 =

2
√
π × 2π |β (I0)|
R (I0)

σt =
2
√
π × 2π |β (I0)|
R (I0)

(
B

3

)1/2

r3/2,

(127)

which is identical to the Eq. (117).

A final remark concerning Eq. (117) is that this expression is expected to be a

good approximation only when β (I0) is representative of β-values for all scattered

energy that at range r has I = I0. This condition will be satisfied if β (I) (or β (m)

in the relevant frequency band) is a slowly varying function. When this assumption

is not satisfied, an improved – relative to (117) – estimate of δts should result from

replacing (114) by

δts =
2π

R (I0)
∆r

n∑

i=1

β (I ′i) (Ii − I0) . (128)
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This comment follows from the observations that: 1) equation (113) is exact – by

the mean value theorem – if, for each term in the sum, β (I0) /R (I0) is replaced by

β (I ′i) /R (I ′i) for some I ′i between I0 and Ii; and 2) variations in R (I) are negligible

compared to variations in β (I). The value of I ′i is not known a priori, but it might

be possible to parameterize β (I ′i) in such a way that (128) can be simplified in cases

where (114) is a poor approximation.

Because ∆ts (117) is independent of the deterministic contributions, ∆tbw and ∆td,

it is natural to assume that the deterministic and stochastic contributions combine

in quadrature, so with the aid of (95) the total modal group time spread is

∆tm (r) =
√

∆t2bw + ∆t2d + ∆t2s. (129)

The assumption that the three contributions to ∆tm combine in quadrature will be

revisited below.

As was discussed above, Eqs. (116) and (117) are not valid for I close to zero

(near-axial modes). However, using results from the study of stochastic differential

equations, scattering in the continuum limit was treated directly by Virovlyansky [43]

and Virovlyansky et al. [42]. The random walk description of the scattering process

remains valid in the presence of the reflecting boundary at I = 0, however, the pdf

of I changes to

P (I, r|I0, r0) =
1√

2πB (r − r0)

{
e
− (I−I0)2

2B(r−r0) + e
− (I+I0)2

2B(r−r0)

}
. (130)
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Again we assume r0 = 0, and then the pdf becomes

P (I, r|I0, 0) =
1√

2πBr

{
e−

(I−I0)2

2Br + e−
(I+I0)2

2Br

}
. (131)

Similarly, the joint probability density function for two random processes I1 (r1) and

I2 (r2) is

P (I1, r1, I2, r2, I0) = P (I2, r2|I1, r1)P (I1, r1) , (132)

and the correlation function is

C (r1, r2) = 〈I (r1) I (r2)〉 =

∫ ∞

0

∫ ∞

0

dI1dI2I1I2P (I1, r1, I2, r2, I0) (133)

As was shown before, the second moment of the integrated random walk process

is directly related to the scattering-induced modal group time spreads. The second

moment can be written as

σ̃2
t =

∫ r

0

dr1

∫ r

0

dr2C (r1, r2) . (134)

Unfortunately, it does not seem possible to obtain any simple analytic expression

for modal group time spreads in the presence of the reflecting boundary at I = 0.

Therefore, the estimates have to be done numerically. Virovlyansky et al. [42] offered

an elegant way to avoid this problem by solving the original stochastic equations

numerically; if at some step I < 0, then I is replaced by −I.
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4.6 Sensitivity of modal group time spreads to the details
of the perturbation field and background sound speed
structure

It is useful to discuss the relative importance of the background sound speed profile

structure and of the perturbation field on modal group time spreads. For this purpose

two different sound speed perturbation fields were constructed. The first one is a

homogeneous isotropic field (HIS) which is a single-scale gaussian perturbation field.

This field is completely unrealistic in the ocean environment. Another perturbation

field is constructed with the use of internal-wave model (IW), which is a realistic

model that accounts for anisotropy, inhomogeneity and the multiple scale (power

law) spectrum. The details of this field will be discussed further in this section.

Figure 14 shows the statistics of the HIS and IW perturbation fields. These fields

were constructed in such a way that the total perturbation energy in them is the

same. The main qualitative difference between the two is that the IW field is mostly

present in the upper few hundred meters in the ocean, whether HIS perturbation field

is distributed uniformly throughout the ocean column.

Figure 15 shows modal group time spreads computed from numerically simulated

fields with two different background sound speed profiles used (C0 and C17) with two

different range-dependent fields (HIS and IW) superimposed. The transmission range

was chosen to be 2500 km and the acoustic source was placed on the sound channel

axis at 1.1 km depth. It is clear from these simulations that the scattering-induced

contribution to modal group time spreads is largely controlled by the background

sound speed structure via mode based waveguide invariant parameter β, which is
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Figure 14. Homogeneous isotropic perturbation structure (upper left panel), internal-
wave-induced perturbation structure (upper right panel), mean sound speed value in
both perturbations (lower left panel) and standard deviation of the sound speed in
both perturbations (lower right panel).

consistent with the results obtained in the prevous section (Eq. (117)), while these

diagrams show very little sensitivity to the details of the perturbation field.

4.7 Simulations of modal group time spreads for an axial
acoustic source

Now full-wave numerical simulations in an environment similar to the LOAPEX

environment are presented. The purpose of presenting these simulations is both to

test the approximate theoretical predictions that we have presented and to provide
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Figure 15. Distribution of energy among the modes obtained from PE simulations for
C0 profile (upper panels) and C17 profile (lower panels) with two different perturba-
tions superimposed: HIS (left panels) and IW (right panels).

a foundation for the interpretation of the LOAPEX measurements (which will be

presented later). The LOAPEX measurements were made at ranges between ap-

proximately 50 km and 3200 km. For this reason we emphasize in this section the

evolution in range of modal group time spreads.

Before presenting wavefield simulations we note that a simple consequence of Eq.

(129) and the observation that ∆tbw, ∆td and ∆ts grow like r0 (96), r (97), (103) or

(99) and r3/2 (117), respectively, is that plots of ∆tm (r) are of one of two types, as
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Figure 16. Schematic diagram showing ∆tbw, ∆td, ∆ts and ∆tm vs r under conditions
for which there is (left panel) and is not (right panel) a range of r values over which
∆td is the dominant term. The following parameter values, which are typical of
deep ocean conditions, were used to construct these plots: f0 = 75 Hz, m = 56,
β = −0.117, I = 0.12 s, R = 53.37 km, B = 3.3× 10−7 s2/km, large ∆f = 20 Hz (left
panel) and small ∆f = 10 Hz (right panel). The maximum range and time spread
are 1000 km and 0.7 s, respectively.

illustrated in Fig. 16. At short ranges ∆tbw is always the dominant contributor to

∆tm and at large ranges ∆ts is always the dominant contributor. There may, but

need not, be an intermediate range of r values where ∆td is the dominant contributor.

Whether this regime is present is controlled largely, but not exclusively, by ∆f : large

∆f favors small ∆tbw and large ∆td. Thus large ∆f favors the presence of ∆td-

dominant regime. A signal processing option is to reduce ∆f , but this is generally

not desirable, as reducing ∆f reduces the relative importance of the deterministic

dispersive contribution ∆td to the total time spread. The deterministic dispersive
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Figure 17. (left panel) Background sound speed profile used in the wavefield simu-
lations shown in Figs. 18-20. (right panel) Corresponding plot of β (m;σ0) with
σ0/2π = f0 = 75 Hz.

and the scattering-induced contributions depend on the environment and are mode

number dependent. Thus, it is possible that in the same wavefield both types of

behavior seen in Fig. 16 are simultaneously present for different groups of mode

numbers.

To test our theoretical prediction, and the validity of the associated approxima-

tions, wavefield simulations have been performed at many ranges in an environment

similar to the LOAPEX environment. The source center frequency was f0 = 75 Hz

and the computational bandwidth was ∆fc = 37.5 Hz, corresponding to an effective

bandwidth of ∆f = 18.75 Hz. In this section we focus on axial source transmissions,
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so the source depth used in the simulations was 800 m. The background sound speed

profile c (z) and corresponding plot of β (m, f0) are shown in Fig. 17. A fairly real-

istic internal-wave-induced sound speed perturbation δc (z, r) [47] was superimposed

on the background c (z) in the simulations. The parameters of the IW model are the

following: maximum IW mode number jmax = 30, maximum horizontal wavenumber

kmax = 2π
1.0

km−1 ≈ 6.28 km−1, and the minimum horizontal wavenumber kmin = 2π
3276.8

km−1 ≈ 2 × 10−3 km−1. The sound speed perturbation has a sharp peak at 50 m

depth where δc ≈ 2.3 m/s, and then decays rapidly to δc ≈ 0.5 m/s at 200 m depth

and δc ≈ 0.1 m/s at 1 km. The assumed strength of the internal wave field used

in the simulations shown was the nominal Garrett-Munk value, E = EGM . Figure

18 shows sample wavefields in (z, t) at three ranges, together with the corresponding

mode-processed fields in (m, t) where t = Sgr. By performing similar processing on

wavefields at many ranges, ∆tm (r) for all mode numbers can be estimated. Three

such plots for m = 17, 25 and 56 are shown in Fig. 19. For the simulations shown in

Figs. 18 and 19 the source was located on the sound channel axis.

The construction of Fig. 19 requires some explanation. Consistent with the full

width at half-amplitude criterion used earlier to define the widths of approximately

Gaussian distributions, ∆tm was estimated from wavefields of the type shown in Fig.

18 as the half-difference in time between the latest and earliest points whose intensity

is 27 dB below the peak intensity (which is equivalent to the reduction by e−π in

the amplitude relative to the peak). As noted earlier, ∆f was estimated in the same

way giving, to a good approximation ∆f = ∆fc/2. The dispersive contribution was

computed using Eq. (99). (For mode numbers 20 . m . 30 Eq. (99) is a much better
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Figure 18. Simulated wavefields with f0 = 75 Hz, ∆fc = 37.5 Hz at three ranges in
the environment shown in Fig. 17, with an internal-wave-induced sound speed per-
turbation superimposed. (upper panels) Wavefield intensity in (z, t). (lower panels)
Corresponding mode-processed fields in (m, t) where t = Sgr.

estimate of ∆td than Eq. (103). Outside of this band Eq. (103) gives essentially the

same estimate. Only for mode numbers greater than approximately 70 is the near-

surface-grazing correction discussed in Sec. 4.4 important.) The scattering-induced

contribution ∆ts was computed using Eq. (117). The parameter B in (117) was

estimated numerically using continuous wave (cw) parabolic equation simulations

using a single mode starting field. The spreading of energy in mode number (and

thus also in I, making use of Eq. (100)) was found to be well approximated by a

gaussian whose variance grew like a constant - our estimate of B - times range. These

simulations gave the estimates B = 6.7 × 10−8 s2/km for m = 17, B = 1.3 × 10−7
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Figure 19. Predicted and simulated estimates of modal group time spreads ∆tm vs
range for three values of m. The simulated estimates of ∆tm were extracted from
wavefield simulations of the type shown in Fig. 18.

s2/km for m = 25 and B = 2.7 × 10−7 s2/km for m = 56. These values are in

approximate agreement with the estimates of B reported in [42] and [48].

The agreement between simulations and theory-based estimates of ∆tm in Fig.

19 is seen to be good for m = 17 and m = 56. Agreement is not good for m = 25,

however, where the predicted estimate of ∆ts – and hence also ∆tm – is too small. The

reason for this discrepancy is that, as discussed above, for m-values near m = 25, β (I)

is not a slowly-varying function. This is clear from the β (m, f0 = 75 Hz) structure

shown in Fig. 17. In order to account for this nonuniform β-weighting, Eq. (117)



74

r=50 km

Mode number

T
im

e
sp

re
ad

[s
]

Δtbw (Eq. (96))

Δtd (Eq. (99))

Δts (Eq. (117))

Δtm (Eq. (129))

Δtm estimated from simulations

r=500 km

Mode number

r=2500 km

Mode number
0 20 40 60 750 20 40 60 750 20 40 60 75

0

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 20. Predicted and simulated estimates of modal group time spreads ∆tm vs
mode number at r = 50 km, r = 500 km and r = 2500 km. The simulated estimates
were extracted from the mode-processed wavefields shown in Fig. 18. Note that the
time axes are different in the three subplots.

must be replaced by an estimate based on (128) rather than (114), as discussed

above. Nonuniform β-weighting of scattered energy also explains why agreement

between theory and simulations in Fig. 19 is better at short range than at long

range for m = 17 and m = 25. For m = 17 scattered energy at long range has

|β| < |β (m = 17)| (see Fig. 17), so Eq. (117) predicts a value of ∆ts that is too

large. Similarly, for m = 25 scattered energy at long range has |β| > |β (m = 25)|

(see Fig. 17), so Eq. (117) predicts a value of ∆ts that is too small.

Figure 20 shows a comparison of predicted and simulation-based estimates of
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∆tm as a function of mode number at three ranges: 50 km, 500 km and 2500 km.

The corresponding wavefields are shown in Fig. 18. The theoretical prediction of

∆tm is based on Eqs. (96), (99), (117) and (129). The value of B used in Eq.

(117) was an empirical m-dependent fit to simulations of the type mentioned above:

B (m) = 0.44×(0.5 +m/10)×10−7 s2/km. Agreement between the simple theoretical

estimates and simulations is generally good. Note, however, that our estimate of ∆ts,

based on Eq. (117), is clearly too low for 20 ≤ m ≤ 30, especially at r = 500 km and

r = 2500 km. This behavior is consistent with our explanation of the error associated

with ∆ts for m = 25 in Fig. 19. Also, note that at r = 50 km theoretical estimates

of ∆tm are clearly too small for m & 40. The cause of this discrepancy is that Eqs.

(95), (96) and (99) underpredict the nonscattered energy; this is linked to the bimodal

(and highly nongaussian) distribution of energy in (m, t) (see Fig. 18 at r = 50 km).

4.8 Simulations of modal group time spreads for an off-axial
acoustic source

In this section we also present numerical simulations in an environment similar

to the LOAPEX environment. There are three main differences from the simulations

performed in the previous section: 1) The carrier frequency of the acoustic source was

f0 = 68.2 Hz and the computational bandwidth was ∆fc = 34.1 Hz, corresponding to

an effective bandwidth of ∆f = 17.05 Hz; 2) The depth of the source was 350 m which

is far from the sound channel axis; and 3) Because the range-dependent environmental

data was not available for all transmission ranges up to T3200 station, the range-

independent background sound speed profile was chosen for numerical simulations,
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Figure 21. (left panel) Background sound speed profile used in the wavefield simu-
lations shown in Figs. 22-24. (right panel) Corresponding plot of β (m;σ0) with
σ0/2π = f0 = 68.2 Hz.

which is the profile computed from the environmental data at the SVLA location.

Figure 21 shows the background sound speed profile c (z), which is the same

as shown on the left panel of Fig. 17, and corresponding plot of β (m, f0). As

was discussed above, the choice of center frequency in the asymptotic quantization

condition (100) leads only to a rescaling of the mode number axis. Note that the

structure of β (m, f0) differs slightly for f0 = 75 Hz and f0 = 68.2 Hz, because in

both cases β (m, f0) was computed from cw normal mode simulations. The same

internal-wave-induced sound speed perturbation δc (z, r) was superimposed on the
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Figure 22. Simulated wavefields with f0 = 68.2 Hz, ∆fc = 34.1 Hz at three ranges in
the environment shown in Fig. 21, with an internal-wave-induced sound speed per-
turbation superimposed. (upper panels) Wavefield intensity in (z, t). (lower panels)
Corresponding mode-processed fields in (m, t) where t = Sgr.

background c (z) in these simulations.

Figure 22 shows sample wavefields in (z, t) at three ranges, together with the cor-

responding mode-processed fields in (m, t). The main difference from Fig. 18 is that

the shallow acoustic source located far from the sound channel axis does not initially

excite modes with small mode numbers (modes with both turning depths below the

location of the source). This feature is clearly seen at all three transmission ranges

and is expressed as the absence of the strong late near-axial arrival. However, be-

cause of mode coupling along the propagation path some energy is being scattered

from large mode numbers into low mode numbers. Estimation of the modal group
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Figure 23. Predicted and simulated estimates of modal group time spreads ∆tm vs
range for three values of m. The simulated estimates of ∆tm were extracted from
wavefield simulations of the type shown in Fig. 22.

time spreads for near-axial arrivals in this situation is difficult and sometimes impos-

sible, because in practice the intensity of the signal contained in low mode numbers

may be significantly below the noise level. This issue will be discussed in more detail

in Sec. 5.4. Also it is expected that corrections to the main arrival time and modal

group time spreads discussed at the end of Sec. 4.5 are important.

By performing the mode processing on wavefields at many ranges, ∆tm (r) for all

mode numbers can be estimated. As in the Sec. 4.7, three such plots for m =17, 25

and 56 are shown in Fig. 23. The main difference from Fig. 19 is that the agreement
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Figure 24. Predicted and simulated estimates of modal group time spreads ∆tm vs
mode number at r = 50 km, r = 500 km and r = 2500 km. The simulated estimates
were extracted from the mode-processed wavefields shown in Fig. 22. Note that the
time axes are different in the three subplots.

for m = 17 between theoretical predictions and numerical simulations is not good.

The most likely explanation for the disagreement is that |β (m = 17, σ0)| has sharp

local maximum, therefore the effective value of |β| is should be significantly smaller.

Also, as in Fig. 19, the agreement is not good for m = 25. The predicted estimate of

∆ts is too small. The reason for this discrepancy is that β (I) is not a slowly-varying

function.

Figure 24 shows a comparison of predicted and simulation-based estimates of ∆tm

as a function of mode number at three ranges: 50, 500, and 2500 km. The theoretical
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prediction of ∆tm is based on Eqs. (96), (99), (117) and (129). Agreement between

theoretical estimates and simulations is generally good. The estimates of modal group

time spreads for small mode numbers are too large at short ranges. This behavior

is consistent with our explanation of the difficulty of estimating modal group time

spreads for modes that are not originally excited by the source.



5 Analysis of the LOAPEX experimental data set

In this chapter the analysis of the experimental data collected during the 2004 NPAL

experiment is presented. An attempt to reconcile the experimental data analysis

results with theoretical results from previous sections is made. Different challenges

associated with analysis of the collected data are discussed.

5.1 Experimental setup and collected data

The 2004 NPAL (North Pacific Acoustic Laboratory) long-range ocean acoustic prop-

agation experiment consists of three closely related components, or sub-experiments,

named SPICE04, LOAPEX (Long-range Ocean Acoustic Propagation EXperiment),

and BASSEX (Basin Acoustic Seamount Scattering EXperiment). In this work only

one part of the experiment, the LOAPEX part, will be considered. During the

LOAPEX phase of experiment the acoustical data was continuously recorded with

long array of hydrophones deployed in the eastern North Pacific ocean. The exper-

imental geometry is shown in Fig. 25. The location of a vertical line array (VLA)

of hydrophones that was used to record transmitted acoustic signals is shown with

a yellow dot in Fig. 25. The VLA consists of two moorings: shallow VLA (SVLA)

and deep VLA (DVLA) which were deployed approximately 5 km apart from each

other. This common set of hydrophones was used to record SPICE04 and LOAPEX

transmissions. The SVLA is 1400 m long, has 40 hydrophones on it (two segments,

upper SVLA and lower SVLA with 20 hydrophones on each segment) with 35 m

spacing between hydrophones and was deployed to cover the ocean depths from 350

81
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m to 1750 m nominally. The placement of the SVLA was chosen in such a way that

it was centered approximately on the sound channel axis and designed to optimize

the resolution of acoustic modes 1–10 at 75 Hz transmission frequency. The DVLA is

2100 m long, has 60 hydrophones on it (three segments, upper DVLA, middle DVLA

and lower DVLA with 20 hydrophones on each segment) with 35 m spacing between

hydrophones and was deployed to cover the ocean depths from 2150 m to 4270 m

nominal. The main purpose of such a placement was to sample the acoustic field near

the lower steep ray turning depths.

Signal transmissions were made using a ship suspended acoustic source. Eight

transmission stations are shown as red dots in Fig. 25 and seven of them are on

the main LOAPEX propagation path indicated by the black solid line, which was

chosen to be a geodesic line with little variations in the ocean depth. The ocean

depth was approximately 5 km along the propagation path. These seven stations

were nominally 50, 250, 500, 1000, 1600, 2300, and 3200 km away from the VLAs.

These distances provided the range dependence sought in this experiment. At each

of the seven stations, the LOAPEX acoustic source was suspended from the ship for

several hours. Two source depths were typically used at each of the seven stations:

350 m and 500 m or 800 m.

Signals of different types were transmitted; in this work we will focus only on the

analysis of the m-sequence receptions [49]. Two center frequencies were chosen: 75

Hz for 800 m source depth transmissions and 68.2 Hz for 350 m or 500 m source depth

transmissions. In both cases the digit length of the m-sequence was 1023, two cycles

of the carrier per digit were used, which lead to slightly different sequence lengths,
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Figure 25. LOAPEX assets and geometry

27.28 sec in the first case and 30 sec in the second case. The detailed description of

the signal type used can be found in [50].

LOAPEX transmissions were made in the period September 14, 2004 to October

10, 2004 covering transmission ranges from 50 km to 3200 km. The recovery cruise

on the research vessel “Thomas G. Thompson” took place from June 6, 2005 to June

26, 2005. The acoustical data was available shortly after the recovery cruise.

5.2 Experimental data deficiencies

Even before the data became available it was clear that analysis of this data would

present several challenges. First, the implementation of mode processing technique

uses orthogonality of normal modes and in practice requires a dense sampling of acous-

tic receptions at the receiver location throughout the whole water column. A very
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dense sampling means that ideally the distance between neighboring hydrophones

should be much less than the distance between adjacent zeros of the highest propa-

gating mode. If this condition is satisfied, the energy contained in each propagating

mode will not be aliased to other modes. In the scope of the experimental setup

described in the previous section and in the LOAPEX-like environment the number

of propagating modes can be roughly estimated to be around 100. This estimation

suggests that the spacing between hydrophones should be much less than 50 m in

order to capture energy correctly in all propagating modes. This sampling condition

is satisfied for low mode numbers, but not for modes with mode numbers greater than

about 20. It will be shown in Sec. 5.3 that, surprisingly, this limitation does not lead

to significant errors in the mode processing results.

A more serious shortcoming of the collected data is the presence of large gaps

in the receiving array. Unfortunately, acoustical data from the middle segment of

the DVLA was not recovered. Also data on some hydrophones is corrupted at some

transmissions. Thus, there are four large gaps in the receiving array: from the ocean

surface to the upper segment of the SVLA (0-350 m depth), between SVLA and

DVLA (1750-2150m), between upper DVLA and lower DVLA (2850-3550 m) and

near the bottom (4270 m to the bottom). These gaps lead to modal cross-talk and

introduce errors in the mode processing results. It is also argued in Sec. 5.3 that

largest errors are introduced when high intensity arrivals which usually correspond

to turning points on the arrival time front are not captured by the receiving array.

For these reasons, probably, the most significant error that is introduced in the mode

processing analysis from the VLA geometry is the absence of hydrophones in the
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upper ocean (from 0 m to 350 m in depth).

Another type of receiver array deficiency is the horizontal separation of SVLA and

DVLA. These two segments were deployed approximately 5 km apart from each other.

Therefore the transmission ranges corresponding to SVLA and DVLA receptions are

slightly different. In order to implement the direct projection mode filtering technique

it is required that the received signal is recorded at a single range. In the analysis

presented in Sec. 5.4 it is assumed that the data was recorded at the same range,

corresponding to SVLA range, at both SVLA and DVLA. The data recorded by DVLA

is shifted in time to complement the time front structure recorded by SVLA. Of course,

this shift leads to introduction of phase errors in the received signal. However, it is

demonstrated in Sec. 5.3 that only small errors are introduced by this small time

shift.

It is important to note that not only receiving array deficiencies influence the

effectiveness of mode processing. An adequate knowledge of environment is crucial

for correct interpretation of mode processing results. Although only the sound speed

structure at the receiver location is required to perform the mode processing, it is

desirable to have range-dependent sound speed structure in order to perform numer-

ical simulations. In the LOAPEX environment the range dependence is weak, but

has to be accounted for, especially at long transmission ranges. There are several

other factors that also contribute to the error in the mode processing. These include

mooring and source motion, both vertical and horizontal, lack of knowledge of exact

propagation ranges and presence of ambient noise. The contribution from ambient

noise can be reduced by coherently averaging several sequential transmissions. This
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technique improves signal to noise ratio, but because of environmental variability the

averaging time can not be too large. Additional difficulty arises from the fact that

the data was not recorded continuously, but has gaps approximately every 5 minutes.

Therefore for the data analysis that follows the averaging time was chosen to be 5

minutes.

Another important issue that needs to be addressed is an estimation of errors

of modal group time spreads computed from the LOAPEX data. The simplest ap-

proach to this problem is to analyze several independent transmissions with the same

transmission parameters and then compute means and variances of modal group time

spreads. This task will be done, but has not yet been done. The LOAPEX data set

is very extensive and much of it has not been analyzed yet.

5.3 Numerical simulations of receptions recorded by defi-
cient receiving array

Before we present analysis of the LOAPEX data transmissions it is useful to in-

vestigate how the presence of deficiencies in receiving array affects mode processing

results. One transmission range was chosen for numerical simulations that corre-

sponds approximately to a nominally 1000 km-long (hereafter T1000) transmission.

In this case the distance from the source to the SVLA receiver was 983 km and to

the DVLA was 988 km. The environmental data is available for this range so the

range-dependent sound speed profile was constructed using the actual CTD measure-

ments. It is important to note that the sound speed data used for simulations includes
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Figure 26. PE simulations for T1000 transmission range performed in the LOAPEX-
like environment. Transient wavefields with dense receiving array (upper left panel)
and sparse receiving array with gaps (upper right panel) and corresponding modal
group time spread diagrams (lower panels) are shown. Black solid lines are theoretical
estimates of modal group time spreads.

mesoscale variability but does not resolve any small scale features present, for exam-

ple, due to internal waves. The simulations shown in this section were performed

in the slowly-varying background sound speed profile without internal wave induced

structure superimposed.

Figure 26 shows the comparison between PE simulations performed with the use

of a dense receiving array (on the left) and a sparse receiving array with gaps (on

the right). Time front on the upper left subplot and corresponding modal group

time spread diagram (lower left subplot) were constructed with the assumptions that
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receivers were spaced equidistantly in depth with approximately 13.7 m spacing and

covered the entire water column. The two subplots on the right are time front and

modal group time spread diagram constructed with the use of a deficient receiving

array. In order to simulate the deficiency of LOAPEX array depth interpolation of

the received signal would be necessary, which is not desirable because it leads to

additional errors. Therefore, the spacing between hydrophones was chosen to be

approximately 27.3 m and gaps were placed approximately at the same locations as

were in the LOAPEX array. Though the deficiency of the receiving array was not as

severe as the LOAPEX array, this simulation allows one to see how the presence of

such deficiencies influence modal group time spread diagram. It is seen in the Fig. 26

that mode processing works reasonably well with the deficient array allowing one to

estimate modal group time spreads with only small errors for almost all propagating

modes. Despite significant modal cross-talk in the frequency domain, time domain

mode processing is seen to work very well. Part of the explanation for this behavior

is that the inverse Fourier transform tends to retain correct coherent contributions

while cancelling random phase errors in the frequency domain mode filtered results.

However, when high intensity arrivals are not being captured by the deficient array

(this usually happens near turning points on the time front), this energy does not

appear on the modal group time spread diagram, which leads to formation of vertical

gaps on this diagram. Also sparse spacing of hydrophones leads to aliasing of energy

from one mode number to another. The black solid curve on both modal group time

spread diagrams is the same and is the asymptotic theoretical estimate obtained using
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Figure 27. Simulated time-domain transient wavefields (upper panels) and corre-
sponding modal group time spread diagrams (lower panels) for SVLA only receiving
array (left panels) and DVLA only receiving array (right panels).

Eqs. (96), (99), (117) and (129).

Because the acoustical receptions were recorded on two separate moorings, SVLA

and DVLA, which were approximately 5 km from each other, it is useful to understand

how the mode processing results would change if only one VLA were present. The two

left panels in Fig. 27 show the time front and corresponding modal group time spread

diagram recorded on the SVLA only. This simulation shows that SVLA receiver allows

estimation of modal group time spreads for modes up to approximately 20. The two

subplots on the right in Fig. 27 are simulations with DVLA receiver only. Note the

difference in time scale between left and right subplot which corresponds to horizontal
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distance of 5 km between VLA segments. From the modal group time spread diagram

for DVLA simulation we conclude that DVLA receiver does not resolve any energy

for modes up to approximately 20, however, it provides additional information about

modal group times spreads for modes with higher mode numbers. It is possible to

perform the dynamical extrapolation of the DVLA reception in range by 5 km. In

order to do this it is necessary to compute the modal amplitude coefficients (Eq.

(92)), then multiply them by the appropriate expansion factor and then compute

new intensity field using Eq. (91). If the distance between the DVLA and the SVLA

is small compared to the propagation range, the amplitude of the signal will remain

almost unchanged; only the phase will change. Therefore, the intensity diagram of

modal group time spreads can be computed with the DVLA signal that contains

small phase errors. The validity of this assertion is demonstrated with the simulation

shown if Fig. 28. In this figure the two left panels are simulations performed with

the distance to the receiver of 983 km. The two right panels are constructed in such

a way that the signal on the SVLA is recorded at 983 km, and signal on the DVLA is

recorded at 988 km, but then DVLA signal is shifted in time by a constant in order

to approximately match the SVLA reception. Because of phase errors the time front

branches do not line up perfectly, but modal group time spread diagrams are almost

identical in both simulations. This technique will be used everywhere in the following
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Figure 28. Simulated time-domain transient wavefields for T1000 transmission (upper
panels) and corresponding modal group time spread diagrams (lower panels). Two left
panels are produced under suumption that transmission range to SVLA and DVLA
is the same. Two right panels are produced with the DVLA wavefield shifted in range
in order to approximately match SVLA receptions.

section where we present the analysis of the LOAPEX data.

5.4 Modal group time spreads in the LOAPEX experiment

This section is devoted to the analysis of the LOAPEX data set and comparison with

numerical simulations. This data set is very extensive and much of it has not been

processed yet. In this work we present several examples of transmissions performed

with the acoustic source deployed at 800 m with 75 Hz carrier frequency and trans-

mission ranges up to 1000 km and with the source deployed at 350 m with 68.2 Hz
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carrier frequency and transmission ranges up to 3200 km. There is a very important

difference between these two types of transmissions. The deep source location (800

m) corresponds approximately to the depth of the sound channel axis. Therefore,

such a source excites most acoustic modes in the given environment. The energy

in each mode is scattered into neighboring modes along the propagation path, so in

general some energy is present in all modes at the receiver location. The shallow

source location (350 m) is essentially off-axial. Such a source does not excite modes

with upper turning depths below 350 m. However, energy is scattered into modes

with low mode numbers whose excitation grows with increasing range.

Numerical simulations were performed by solving the standard parabolic equa-

tion in the transformed environment as discussed in Sec. 4.4. A realistic internal-

wave-induced sound speed perturbation δc (z, r) was superimposed on the background

sound speed profile in the simulations using the technique described in [47].

Figure 29 compares numerical simulations (left panels) with LOAPEX data (right

panels) for 75 Hz carrier frequency source deployed at 800 m and at a transmission

range corresponding to the T50 LOAPEX station. The black solid line on both modal

group time spread diagrams is the theoretical estimate of modal group time spreads

according to Eqs. (96), (99), (117) and (129). The agreement between theoretical

predictions, numerical simulations and data processing results is seen to be good.

Modal group time spreads are correctly estimated for almost all propagating modes.

Among the three contributions the reciprocal bandwidth contribution is clearly the

dominant. There are two features that need to be discussed, which are only present

at T50 transmission range. First is the presence of bottom reflected arrivals on the
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Figure 29. PE simulated time-domain transient wavefield for transmission T50 (upper
left panel) for the axial source with f0 = 75 Hz; LOAPEX time-domain data at T50
station (upper right panel); and corresponding modal group time spread diagrams
(lower panels). Black lines are theoretical estimates of modal group time spreads.

LOAPEX data diagrams. The energy that has been reflected from the bottom is

clearly visible on the data time front and was partially removed by a simple time-

gating process prior to performing mode processing. Because this bottom reflected

energy interferes with the main arrival there is no simple way to completely eliminate

this energy and therefore it is clearly present on the modal group time spread diagram.

Second, a bimodal distribution of energy in (m, t)-space is observed in the simulations,

which leads to a slight disagreement between theoretical estimates of modal group

time spreads and numerical simulations.
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Figure 30. PE simulated time-domain transient wavefield for transmission T250 (up-
per left panel) for the axial source with f0 = 75 Hz; LOAPEX time-domain data
at T250 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

Figure 30 shows similar simulations as shown in the previous figure but for T250

transmission range. In this figure the redistribution of energy in (m, t)-space is uni-

modal and the dominant contribution to the total modal group time spread is the

deterministic dispersive contribution. Modal group time spreads are seen to be pre-

dicted correctly for almost all propagating modes. The mismatch between the modal

group time spreads computed from data and theoretical prediction is probably pri-

marily due to lack of knowledge of the environment along the propagation path at

the time transmission took place. Note also, that mode processing was done with the
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Figure 31. PE simulated time-domain transient wavefield for transmission T500 (up-
per left panel) for the axial source with f0 = 75 Hz; LOAPEX time-domain data
at T500 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

use of the environment at the SVLA location which differs slightly from the range-

averaged sound speed profile along the propagation path.

Figure 31 provides the comparison between simulations and data for T500 trans-

mission range. Again, the overall agreement between theory, simulations and obser-

vations is reasonably good. Note, however, the presence of energy leakage in mode

number in the data-based modal group time spread diagram. This happens because

of modal cross-talk and, as discussed before, happens mostly at times when high

intensity arrivals are not captured by the VLA.
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Figure 32. PE simulated time-domain transient wavefield for transmission T1000 (up-
per left panel) for the axial source with f0 = 75 Hz; LOAPEX time-domain data at
T1000 station (upper right panel); and corresponding modal group time spread di-
agrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

Figure 32 shows numerical simulations and LOAPEX data at the T1000 transmis-

sion range. At approximately this range the scattering induced contribution to modal

group time spreads becomes larger than the deterministic dispersive contribution for

most mode numbers. Since ∆td ∼ r and ∆ts ∼ r3/2, it is expected that ∆ts is the

dominant contribution at longer transmission ranges.

As in Sec. 4.7 we now consider estimates of ∆tm (r) for m =17, 25 and 56.

Figure 33 is the same as Fig. 19 in Sec. 4.7, but with data-based estimates of

∆tm (r) superimposed using red dots. The agreement between theoretical predictions,
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Figure 33. Predicted, simulated and measured estimates of modal group time spreads
∆tm vs range for three values of m.

numerical simulations and data processing results is seen to be reasonably good. Also

this figure supports the prediction that scattering induced contribution dominates for

r & 1000 km.

Figure 34 is also the same as in Sec. 4.7 (Fig. 20), but with data processing

estimates superimposed at the two shorter ranges. The transmission ranges used for

data processing were 45 km and 484 km instead of 50 km and 500 km respectively.

This discrepancy leads to small errors in estimation of ∆tm (r) relative to the data.

A more significant source of errors in estimating ∆tm (r) from the data comes from
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Figure 34. Predicted simulated and measured estimates of modal group time spreads
∆tm vs mode number at r = 50 km, r = 500 km and r = 2500 km. Note that ranges
r = 50 km and r = 500 km only approximately correspond to transmission ranges
T50 and T500, and that no axial source data at ranges longer than 1000 km were
collected. Note also that the time axes are different in the three subplots.

the difficulty of obtaining robust estimates of time spreads. Modal group time spread

diagrams constructed from data are noisy, and contain energy leakage due to array

deficiencies making distributions strongly nongaussian. Note also that all modal group

time spreads diagrams are plotted in such a way that the dynamic scale on each plot is

chosen relative to the maximum intensity over all mode numbers. To estimate ∆tm (r)

from the data it is necessary to compute the width of each modal distribution relative

to its maximum intensity, which is different for each mode. Therefore, it is necessary
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to amplify the intensity of each modal arrival (or equivalently choose different maxima

of dynamic scale for each mode number) which unavoidably leads to amplification of

noise. Also, at 50 km range, numerical simulations reveal bimodal distribution of

energy in (m, t). Estimates of ∆tm (r) from the data under assumption that each

modal arrival is Gaussian are therefore not expected to be accurate.

Now we will present the results of the LOAPEX data processing for transmissions

performed with the off-axial acoustic source with 68.2 Hz carrier frequency. These

transmissions were performed at all LOAPEX ranges (50 km to 3200 km). Unfor-

tunately, no range-dependent environmental data is available beyond 1000 km range

(except at the stations T1600, T2300 and T3200). Therefore, we have chosen to

perform numerical simulations using the sound speed profile computed at the SVLA

location (this profile is also used for mode processing) on which an internal-wave-

induced perturbation [47] is superimposed. Slow variations of the background sound

speed structure were neglected.

Figure 35 shows numerical simulations and LOAPEX data at the T50 transmission

range with an off-axial acoustic source. Unlike the 75 Hz axial source transmissions,

a bimodal distribution in (m, t)-space is not seen in the wavefields corresponding to

the 68.2 Hz off-axis transmissions. This behavior can be also predicted directly form

the time-front intensity plot in (z, t)-space. In the case of axial source transmission

there are two well-separated arrivals at each depth (except the latest final arrival) and

in the case of off-axial source there is only one. This behavior causes the difference

in distributions of energy in (m, t). As discussed previously, there is no energy in

low mode numbers observed in the simulations. However, in the data relatively high
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Figure 35. PE simulated time-domain transient wavefield for transmission T50 (upper
left panel) for the off-axial source with f0 = 68.2 Hz; LOAPEX time-domain data at
T50 station (upper right panel); and corresponding modal group time spread diagrams
(lower panels). Black lines are theoretical estimates of modal group time spreads.

intensity arrivals are present almost in all mode numbers. This is almost certainly due

to the presence of bottom reflected energy that gives rise to spurious low mode number

energy. As in the 75 Hz transmission we have tried to eliminate bottom arrivals, but

because these arrivals interfere with the main arrival it is not possible to completely

eliminate bottom reflected energy. Apart from these caveats, the agreement between

simulations and data mode processed results is seen to be good.

Figure 36 represents numerical simulations and LOAPEX data for T250 transmis-

sion range. For this transmission, unlike the T50 transmissions, the reciprocal band-
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Figure 36. PE simulated time-domain transient wavefield for transmission T250 (up-
per left panel) for the off-axial source with f0 = 68.2 Hz; LOAPEX time-domain data
at T250 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

width contribution ∆tbw is not the dominant contribution. Therefore, the qualitative

structure of the modal group time spread diagram changes slightly. As predicted, the

range of 250 km is still not long enough for the energy to scatter in all low mode

numbers, therefore we do not see any energy in the lowest modes. Note that the

agreement between simulations and data for low mode numbers is much better than

for the T50 transmissions because bottom arrivals are well attenuated at this range

and do not interfere with purely refracted energy. The agrement between simulations

and data processing results is now very good; even the high intensity regions on the
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Figure 37. PE simulated time-domain transient wavefield for transmission T500 (up-
per left panel) for the off-axial source with f0 = 68.2 Hz; LOAPEX time-domain data
at T500 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

modal group time spread diagrams are approximately at the same location. There are

two regions on the data processed modal group time spread diagram that have signif-

icant modal energy leakage. One is due to the absence of near-surface hydrophones,

and another is due to the gap between SVLA and DVLA. But those regions are easily

identifiable on the diagram and except for this minor caveat the agreement is good.

Figure 37 shows numerical simulations and LOAPEX data for T500 transmission

range. At this range the deterministic dispersive contribution is still dominant. Be-

cause of the structure of the arrival time front there are several high intensity arrivals
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Figure 38. PE simulated time-domain transient wavefield for transmission T1000 (up-
per left panel) for the off-axial source with f0 = 68.2 Hz; LOAPEX time-domain data
at T1000 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

that are not being capture by VLA, which lead to significant modal energy leakage

on the modal group time spread diagram. Despite this observation, the agreement

between simulations and data processed results is still good.

Figure 38 shows numerical simulations and LOAPEX data corresponding to the

T1000 transmission range. At this transmission range there are two hydrophones on

the lower SVLA segment that recorded bad data. (There are three bad hydrophones

in 75 Hz transmission data, but the relative intensity of the noise recorded by those

hydrophones with respect to intensity of the signal is weaker. Therefore, this defect
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is more pronounced on the plot corresponding to 68.2 Hz transmission). Again there

are several regions where high intensity arrivals are not captured by VLA. Another

point to emphasize for this comparison is that there appears to be more energy in

low mode numbers in the data processed results than is predicted in the simulations.

This effect also persists at longer transmission ranges. The reason for this behavior

is not completely understood. However, there are two probable reasons. First is

the lack of knowledge of the precise background sound speed profile. Numerical

simulations were performed in two range-dependent environments with internal waves

perturbation superimposed: one using the range-independent SVLA sound speed

profile and another using the range-dependent sound speed profile that accounts for

mesoscale variability along the 1000 km path of the LOAPEX. These simulations

suggest that the absence of mesoscale variability in the background sound speed

structure could be the cause for the underestimation of scattering into low mode

numbers. Another possible explanation, as discussed in Chapter 6, is inadequate

description of the IW field, particularly the parameter µ that appears in Eq. (135).

Figure 39 compares numerical simulations and LOAPEX data for the T1600 trans-

mission range. The agreement between numerical simulations and data processing

results is seen to be good. But now we observe that theoretical predictions for modal

group time spreads computed from Eq. (129) are too large for some mode numbers.

This effect is also observed at longer transmission ranges. As discussed previously,

the problem is likely a shortcoming of an approximation made in the theory; in the

regions of rapid variations of β (m,σ0), some average value of β should be used. But

these results were constructed using the value of β corresponding to the final mode
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Figure 39. PE simulated time-domain transient wavefield for transmission T1600 (up-
per left panel) for the off-axial source with f0 = 68.2 Hz; LOAPEX time-domain data
at T1600 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

number. If the absolute value of the final β is larger than the absolute value of the

average (which is the case), the estimated values of time spread will be larger than

those observed. Since both deterministic and scattering induced contributions are

proportional to β and grow with range, this error increases with range.

Figure 40 shows numerical simulations and LOAPEX data for the T2300 trans-

mission range. At this transmission range, the data recorded at the lower section

of the SVLA is completely missing. With such a large gap in the receiving array,

mode processing techniques should not be expected to provide meaningful results.
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Figure 40. PE simulated time-domain transient wavefield for transmission T2300 (up-
per left panel) for the off-axial source with f0 = 68.2 Hz; LOAPEX time-domain data
at T2300 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

However, it is seen that even with such a big deficiency in the receiving array, the

mode processing results are fairly good.

Figure 41 shows numerical simulations and LOAPEX data for the T3200 transmis-

sion range. This is the longest transmission range that was used in the experiment.

At this range the signal to noise ratio is low. Therefore both the time front plot and

modal group time spread diagram are very noisy. As discussed earlier, the theoret-

ical predictions significantly overestimate modal group time spreads for some mode

numbers. However, the overall agreement between theory, numerical simulations and
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Figure 41. PE simulated time-domain transient wavefield for transmission T3200 (up-
per left panel) for the off-axial source with f0 = 68.2 Hz; LOAPEX time-domain data
at T3200 station (upper right panel); and corresponding modal group time spread
diagrams (lower panels). Black lines are theoretical estimates of modal group time
spreads.

data processing results is reasonably good.

We now consider the range evolution of modal group time spreads for fixed mode

numbers. Figure 42 is the same as Fig. 23 in Sec. 4.8, but now ∆tm (r) estimated from

the LOAPEX data are also plotted with red dots for m = 17, 25 and 56. Agreement

between simulated and data-based estimates of ∆tm (r) is generally quite good, but

as discussed previously, some systematic deviations between simulations and theory

are observed. Recall that the data-based estimate from T2300 transmission range is

unreliable because of the significant array deficiencies associated with that data set.
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Figure 42. Predicted, simulated and measured estimates of modal group time spreads
∆tm vs range for three values of m.

Figure 43 is also the same as Fig. 24 in Sec. 4.8, but with data processing

estimates plotted at all three ranges. Note that transmission ranges for T50, T500

and T2300 were 45 km, 484 km and 2290 km, while the simulations were performed

at ranges of 50 km, 500 km and 2500 km, respectively. This mismatch introduces

some error. At all three ranges there is a difficulty of estimating modal group time

spreads for low mode numbers due to inadequate signal to noise. Recall also that the

presence of bottom reflected energy in the T50 data led to considerable uncertainty in

the low mode number estimates of ∆tm for these receptions. In spite of these caveats,



109

r=50 km

Mode number

T
im

e
sp

re
ad

[s
]

Δtbw (Eq. (96))

Δtd (Eq. (99))

Δts (Eq. (117))

Δtm (Eq. (129))

Δtm estimated from simulations

Δtm estimated from LOAPEX data
r=500 km

Mode number

r=2500 km

Mode number
0 20 40 60 750 20 40 60 750 20 40 60 75

0

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 43. Predicted simulated and measured estimates of modal group time spreads
∆tm vs mode number at r = 50 km, r = 500 km and r = 2500 km. Note that the
time axes are different in the three subplots.

the agreement between theory, simulations and data seen in Fig. 43 is generally good.



6 Sound scattering by internal waves revisited

The work presented in this chapter was motivated by the observation that, using an

off-axial source, less energy is scattered into the low mode numbers at long range

in our simulations than in the measured LOAPEX wavefields. Figures 38-41 show

time-domain fields and modal group time spread diagrams for off-axial source trans-

missions T1000-T3200. Comparison of modal group time spread diagrams computed

for simulated data and actual LOAPEX data reveals that that the amount of en-

ergy scattered into low mode numbers as a function of range that is observed in the

LOAPEX data is greater than in simulations. We refer to this effect as “anomalous

scattering”. It is expected that bottom interactions, mixed layer processes, mesoscale

variability and other non-internal-wave mechanisms (for example, internal tides) play

only a minor role in this process. It is now generally accepted that internal-wave-

induced sound speed fluctuations is the dominant source of high frequency (with time

scales less than approximately 1 day) variability of acoustic wavefields in the ocean

[18, 51, 52]. In this chapter a possible explanation for the anomalous scattering of

energy into the region close to the sound channel axis is presented.

6.1 Internal-wave-induced sound speed fluctuations

Internal waves have been studied by many investigators [14, 19, 21, 47, 53, 54, 55, 56,

57]. In this work we are not going to describe any details of the internal-wave-induced

sound speed perturbation model. Here we only mention that the numerical model

described in [47] is used for simulation of realizations of sound speed perturbations.

110
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This model is based on the relation between sound speed perturbation δc and internal-

wave-induced vertical displacement ξ of a fluid parcel

δc =

(
∂c

∂z

)

θ

ξ ≈ c

(
µ

g

)
N2ξ, (135)

where
(
∂c
∂z

)
θ

is the potential sound-speed gradient, µ is the acoustic fluctuation

strength parameter, g = 9.8 m/s2 is the gravitational acceleration, c is sound speed,

and N is buoyancy frequency. Statistics of ξ (x, y, z, t) are described by the empirical

GM internal-wave spectrum [19, 54, 55] and depends on several parameters such as

the number of internal wave modes jmax, the maximum horizontal wavenumber in the

spectrum kmax, or equivalently, the minimum wavelength that is resolved by the model

λmin, the reference buoyancy frequency N0, the thermocline depth scale b and some

other empirical parameters. It is shown in the model [47] that internal-wave-induced

vertical displacement scales like N−1/2, i.e.

ξrms ∼
(

E

N (z)

)1/2

, (136)

where E = 6.3 × 10−5 is empirical dimensionless constant representing the strength

of the internal wavefield. The sound speed perturbation δc scales like N3/2

δc ∼ µE1/2N (z)3/2 . (137)

Thus, the sound speed perturbation is directly proportional to the acoustic fluctuation

strength parameter µ and perturbation strength parameter E1/2. Therefore, it is
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Figure 44. Single mode m = 20 starting field cw simulations in the range-independent
environment (left panel) and in the range-dependent environment with internal-wave-
induced perturbation produced with µ = 17.3, λmin = 1.0 km and jmax = 30 (right
panel).

expected that δc should be more sensitive to the variations of µ, rather than variations

in E. In Sec. 6.2 several hypotheses attempting to explain the anomalous scattering

will be tested numerically.

6.2 Numerical simulations

For numerical simulations a single mode starting field corresponding to m = 20, at

the frequency f0 = 68.2 Hz in the LOAPEX-like environment was constructed. This

mode has its upper turning depth close to 350 m and therefore it is strongly excited

by the LOAPEX off-axial source.

The first numerical test was done in a range-independent environment (Fig. 44,

left panel), which confirmed that the model correctly predicts that all energy that

was initially excited in mode m = 20 stays in the same mode at all ranges. Then

another cw computation was performed in the range-dependent environment with

internal-wave-induced sound speed perturbation superimposed on the background
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Figure 45. Single mode m = 20 starting field cw simulations in the range-dependent
environments with internal-wave-induced perturbation produced with µ = 17.3,
λmin = 1.0 km and jmax = 30 (left panel) and µ = 17.3, λmin = 1.0 km and jmax = 60
(right panel).

sound speed structure with constant µ = 17.3, the cutoff wavelength λmin = 1 km

and internal wave field composed of 30 modes (jmax = 30). The distribution of energy

as a function of range and mode number is shown in Fig. 44 on the right panel.

Figure 45 compares similar cw computations with jmax = 30 (left panel) and

jmax = 60 (right panel). It is concluded that the number of internal wave modes used

in the model almost does not affect the amount of energy being scattered provided

that the choice of parameter jmax is not too small. Figure 45 leads us to conclude

that the cause of anomalous diffusion is not our choice of too small a value of jmax.

Another numerical test was performed with two different values of the wavenum-

ber cutoff in the spectrum of internal waves model. Figure 46 shows two different

simulation results produced for two different choices of λmin, λmin = 1.0 km (left

panel) and λmin = 0.1 km (right panel). This figure suggests that this parameter also

does not affect the amount of scattered energy provided a sensible choice of λmin is

made.
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Figure 46. Single mode m = 20 starting field cw simulations in the range-dependent
environments with internal-wave-induced perturbation produced with µ = 17.3,
λmin = 1.0 km and jmax = 30 (left panel) and µ = 17.3, λmin = 0.1 km and jmax = 30
(right panel).

After these tests were performed it was decided to investigate whether our as-

sumption that µ in Eq. (135) is constant accurately approximates realistic ocean

conditions. In the work by Noble and Flatté [53] this parameter was computed for

different water masses and was shown to vary significantly from µ = 5 in the North

Pacific to µ = 34 in North Atlantic. In the North Pacific ocean, where the LOAPEX

experiment was conducted, this parameter was estimated at three different depths

and the values are µ = 19 at 275 m depth, µ = 21 at 550 m depth and µ = 7 at 850 m

depth. It was decided to compute this parameter using hydrographic data measured

along the LOAPEX track. By definition

µ = −ρ
c

∂cθ
∂ρθ

. (138)

Variations in density ρ and sound speed c are small, so to an excellent approximation,

both can be replaced by their depth averages. In order to compute the depth depen-
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Figure 47. Three different profiles µ (z) (left panel) and corresponding rms sound
speed perturbations produced by the internal-wave model (right panel). Red dots are
values of µ given by Noble and Flatté [53] for the North Pacific ocean water mass.

dence of the parameter µ, it is required to compute cθ (z) and ρθ (z). The details of

this computation are discussed in the Appendix. Many computational steps described

there can be found in Ref. [58]. The sound speed c (z) was computed using nine-term

equation for sound speed in the oceans introduced by Mackenzie [59]. Figure 47 shows

three different profiles of µ (z) and the corresponding rms sound speed perturbation

δcrms (z) produced with the internal wave model. The two choices of µ (z) = const

(blue and green lines) correspond to µ = 12.25 and µ = 17.3, respectively. The black

line corresponds to µ (z) computed from LOAPEX environmental data. Three red
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Figure 48. Single mode m = 20 starting field cw simulations in the range-independent
environment (upper left panel) and in the range-dependent environments with µ =
12.25, µ = 17.3 and depth-dependent µ (z) computed from environmental data.

dots are values given in [53]. It is seen from the right panel of Fig. 47 that δcrms (z)

differs significantly for the depth-dependent µ (z) vs constant µ. There is significantly

more energy contained in the produced sound speed perturbation field around 500 m

depth, which leads to stronger scattering of energy among modes with upper turning

depth around 500 m.

Figure 48 shows cw simulations performed with a single mode (m = 20) starting

field for four different choices of µ (z). The upper left panel is range-independent case

(which is equivalent to µ = 0); the upper right panel corresponds to µ = 12.25; the

lower left panel corresponds to µ = 17.3; and the lower right panel corresponds to

the depth-dependent µ (z). It is seen that simulation corresponding to the depth-
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Figure 49. PE simulations performed in range-dependent environments with µ =
12.25, µ = 17.3 and depth-dependent µ (z). The central frequency of the source is
f0 = 250 Hz in these simulations.

dependent µ (z) produces more scattering into mode numbers with m < 20 than the

others. Note that the total integrated energy of the perturbation field corresponding

to the depth-dependent µ (z) is equivalent to the energy corresponding to the field

computed with µ = 12.25, and the choice of µ = 17.3 produces a perturbation field

that has twice the total integrated energy as the other fields.

In order to illustrate this effect more clearly, higher frequency simulations (with a

source frequency of f0 = 250 Hz) were performed. Figure 49 shows three time-domain

acoustic fields corresponding to transmission range of 1000 km with the same three

choices of µ (z): µ = 12.25 (upper right panel); µ = 17.3 (lower left panel); and
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Figure 50. PE simulated time-domain transient wavefield for transmission T2300 (up-
per left panel) for the off-axial source with f0 = 68.2 Hz in the environment con-
structed with the use of depth-dependent µ (z), LOAPEX recorded time-domain data
at T2300 station (upper right panel) and corresponding modal group time spread di-
agrams. Black lines are theoretical estimates of modal group time spreads.

the depth-dependent µ (z) (lower right panel). The “anomalous scattering” into low

mode numbers in these plots appear as an extra time-front branch. This extra branch

is most clearly seen in the plot corresponding to the depth-dependent µ (z).

Figure 50 compares simulations performed with the depth-dependent µ (z) shown

if Fig. 47 and LOAPEX data corresponding to the T3200 station transmission range.

The amount of energy being scattered into low mode numbers shown in the simula-

tions has increased relative to the constant µ = 17.3 calculation (shown in Fig. 41).

The amount of scattered energy observed in the LOAPEX data still remains slightly



119

Time [s]

T1000 Simulations IW variable c0

Group slowness [s/km]

Time [s]

D
ep

th
[k

m
]

T1000 Simulations IW

Group slowness [s/km]

M
od

e
nu

m
be

r

L
os

s
[d

B
]

L
os

s
[d

B
]

0.672 0.674 0.676

660 662 664

0.672 0.674 0.676

660 662 664

0

10

20

30

0

10

20

30

0

20
40
60

80
100
120

−5

−4

−3

−2

−1

0

0
20

40
60
80

100
120

−5

−4

−3

−2

−1

0

Figure 51. PE simulated time-domain transient wavefields for transmission T1000
(upper panels) for the off-axial source with f0 = 68.2 Hz with range-independent
background sound speed structure (left panel), and slowly-varying background sound
speed structure computed from environmental data (right panel). Corresponding
modal group time spread diagrams are shown in two lower subplots.

larger than predicted by the simulations. In spite of this slight underprediction of

scattered energy, the simulations shown strongly suggest that correctly computing

µ (z) from hydrographic data correctly accounts for most of the “anomalous scatter-

ing” that was identified earlier.

Another scattering mechanism that may contribute to “anomalous scattering” is

the presence of mesoscale variability in the background sound speed profile. Figure

51 compares two different simulations performed with range-independent background

sound speed structure (left panels) and slowly-varying range-dependent sound speed
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computed from the environmental data along the LOAPEX track (right panels). This

figure shows that slightly more scattering into low mode numbers is observed when

the slow background sound speed structure variability is present.

The conclusion from this analysis is that the depth dependence of µ (z) is impor-

tant and should not be neglected. It was observed that at 75 Hz wavefields show

very little sensitivity to a reasonable choices of wavelength cutoff parameter λmin and

number of internal wave modes used jmax. The combination of weak mesoscale vari-

ability and internal-wave-induced sound speed fluctuations with realistic µ (z) may

account for the observed scattering in the LOAPEX data.



7 Discussion and summary

In this work a theory of modal group time spreads in weakly range-dependent deep

ocean environments has been developed. The purpose of the work described here is

to provide a theoretical framework for a mode-based interpretation of low-frequency

broadband measurements on a vertical array at multiple ranges in the deep ocean

and test obtained theoretical results and numerical simulations results against recent

measurements. It was assumed that the environment consists of a range-independent

background, on which a small-scale perturbation is superimposed. The perturba-

tion, due, for example, to internal waves, was assumed to be sufficiently weak that

mode coupling is predominantly local in mode number and can be approximately

modelled as a diffusive process. The extension to a diffusive process in the pres-

ence of a reflecting boundary which is appropriate for analysis of low mode numbers

was also briefly discussed. It has been shown that there are three contributions to

modal group time spreads: the reciprocal bandwidth ∆tbw = (∆f)−1, a deterministic

dispersive contribution ∆td ∼ I (f0,m) β (m,σ0) r∆f , and a scattering-induced con-

tribution ∆ts ∼ β (m,σ0) r3/2. It was argued, but not shown rigorously, that these

three contributions combine in quadrature; this dependence was shown to be in good

agreement with simulations. Under most experimental circumstances the transmis-

sion range is sufficiently large for the term ∆tbw to be negligible. Because both ∆td

and ∆ts are proportional to β (m,σ0) it might be difficult to experimentally distin-

guish these contributions from each other. Note, however, that ∆ts is expected to

dominate at long range, and that at any range ∆td can be reduced by reducing ∆f
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(by band-pass filtering recorded pressure time histories). The observation that both

∆td and ∆ts are proportional to β (m,σ0) is noteworthy inasmuch as these quantities

constitute two among many properties of both deterministic and scattering-induced

contributions to wavefields that are controlled by β (m,σ) or its ray counterpart α (I)

[29]. This list includes travel time dispersion [29], ray amplitudes at long-range [29],

scattered ray amplitudes / ray stability [25], both constrained and unconstrained scat-

tered ray travel time spreads [26, 30], both spatial and temporal spreads of narrow

beams with and without scattering [60], and both diffractive (Fresnel zone width) and

scattering-induced contributions to the effective width of a ray [48]. The combina-

tion of all of these results as well as simulations presented in this work shows rather

conclusively that in nearly stratified environments wavefield structure and stability is

largely controlled by β (m,σ) (or its ray counterpart α (I)).

A significant part of this work has been devoted to full-wave numerical simu-

lations. Some of these simulations were done in the canonical environment C0 or

slightly modified canonical sound speed profile C17. Those numerical results support

and illustrate the theory that has been developed. It has been shown that even simple

asymptotic modal theory can be utilized to correctly predict the modal group time

spreads produced using full-wave numerical simulations or measured experimentally.

Other numerical simulations were performed in the LOAPEX-like environment with

parameters chosen to be as similar as possible to the LOAPEX experiment. These

simulations play an important role in interpreting experimental results. Also these

simulations provide valuable information about possible limitations of the data anal-

ysis used and suggest different ways to improve this analysis.
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Experimental acoustic data was collected during the 2004 LOAPEX experiment

[11]. The data set is very extensive and much of it is still to be processed. Part of these

data were analyzed and results of the mode processing are presented in this work. Two

types of transmissions were analyzed: 1) transmissions with 75 Hz central frequency of

the acoustic source deployed at 800 m depth (near the sound channel axis) performed

for ranges up to 1000 km; and 2) transmissions with 68.2 Hz central frequency acoustic

source deployed at 350 m depth (far from sound channel axis) performed for ranges

up to 3200 km. Some fundamental differences in the receptions corresponding to

different transmission types are discussed. It is shown that mode processing applied

to the LOAPEX data allows estimation of modal group time spreads for almost all

propagating modes for all transmission ranges. These estimations are shown to be

in good agreement with theoretical predictions and estimations based on numerical

modelling.

Different challenges associated with processing of the experimental data has been

discussed in this work. Special attention has been paid to the study of the influence of

receiving array deficiencies on the effectiveness of the mode processing. A justification

for the use of a “pseudo-array”, in which the SVLA and DVLA measurements were

treated as if they were collected on the same array (after a suitable time shift is

applied), for mode processing was given. The use of both arrays together for mode

processing allows one to significantly improve the estimates for modal group time

spreads for modes which are poorly sampled by one of arrays. The influence of other

deficiencies such as sparse sampling in vertical direction has also been discussed.

In an attempt to provide an explanation for what we have described as “anomalous
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scattering” we have revisited the problem of modelling internal-wave-induced sound

speed fluctuations. It was argued that the widely used simple assumption that the

potential sound speed gradient is proportional to N (z)2 is often inadequate.

Several extensions to the results presented here will be explored in conjunction

with analysis of the LOAPEX measurements. First, the preliminary data analysis

results presented here need to be completed. More receptions need to be processed

and statistics of modal group time spread estimates need to be quantified. Second,

the dependence of the effective action diffusivity B on mode number (or action) is

worthy of a more thorough and systematic investigation than has been provided here.

The third possible extension involves simplifying the β-weighted sum (128) to get an

improved estimate of δts, and in turn ∆ts. This problem is analogous to a weighted

random walk process. In the presence of strong local variations in β (I), this task

may prove to be very difficult.

For the analysis of experimental data it is desirable to explore the use of different

mode processing techniques, other than direct projection. One of these methods is

the so-called optimal modal beamforming [61], which is based on a generalized least-

squares mode beamformer, capable of incorporating physical space–time constraints

on the propagation of sound. Another possible approach is to use a short-time Fourier

transform [12, 13] framework, which is based on separation of the signal into a set

of subbands and estimation of modal time series in each band. The results are time-

varying mode spectra that can be used to examine the frequency-dependent structure

in the signals. It is important to emphasize that our focus is on transient wavefields –

some processing algorithms are expected to be better suited to a time-domain analysis.
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It is not clear whether signal processing techniques that are optimal in some sense

for cw wavefields are also the best option for transient wavefields.

Another very important extension of the data analysis is to quantify the temporal

coherence of the LOAPEX transmissions as a function of range and attempt to de-

velop a theoretical framework to explain the observations. This is a very challenging

problem but may nevertheless be important. The LOAPEX measurements may give

important new insight into this process because measurements were made at many

ranges.



Appendix: Calculation of the acoustic fluctuations

strength parameter µ

In this Appendix it is discussed how to compute the acoustic fluctuation strength

parameter µ from CTD (conductivity–temperature–depth) data. We assume that

environmental properties of seawater are given in the form of temperature and salinity

as functions of pressure. The fractional changes in sound speed caused by internal

waves is

δc

c
=

(
1

c

∂cθ
∂z

)
ξ. (A1)

In order to express the sound speed fluctuations in terms of water mass quantities

and the buoyancy frequency, we replace the gradient in potential sound speed by a

gradient in potential density:

δc

c
=

(
ρ

c

∂cθ
∂ρθ

)(
1

ρ

∂ρθ
∂z

)
ξ. (A2)

Now the potential density gradient can be expressed in terms of the buoyancy fre-

quency:

N2 (z) = −g
ρ

∂ρθ
∂z

(A3)

Internal-wave-induced sound speed perturbations δc are proportional to internal-wave

induced vertical displacements ξ of a fluid parcel,
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δc =

(
∂cθ
∂z

)
ξ ≈ c

(
µ

g

)
N (z)2 ξ. (A4)

Here ∂cθ/∂z is the potential sound speed gradient, N2 (z) is the squared buoyancy

frequency, g = 9.8 m/s2, c is the sound speed, and µ is a dimensionless acoustic

fluctuation strength parameter, which is related to the potential density and potential

sound speed as

µ = −ρ
c

∂cθ
∂ρθ

(A5)

Because variations of ρ and c in the ocean are small these quantities in Eqs. (A4) and

(A5) can be replaced by constant average values. Most of the expressions presented

below can be found in Ref. [58]. All numerical expressions assume that temperature

is given in degrees Celsius, salinity is in parts per thousand and pressure is in decibars.

Our objective is to compute µ as a function of depth. This process can be described

in the following steps:

1) Pressure to depth conversion.

Saunders and Fofonoff [62] developed an accurate formula for pressure to depth

conversion. The hydrostatic equation is integrated in the form

∫ z

p

gdz =

(
g0 (φ) +

1

2
γz

)
z =

∫ p

0

V dp =

∫ p

0

V (0, 35, p) dp+ ∆D (A6)

where g0 (φ) is gravity at the ocean surface, a function of latitude φ, γ is the mean

vertical gradient of gravity, V is specific volume and ∆D is geopotential anomaly
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determined by

∆D =

∫ p

0

δdp (A7)

where

δ = V (T, S, p)− V (0, 35, p) (A8)

is specific anomaly.

The equation of state EOS80 [58] has the form

V (0, 35, p) = V (0, 35, 0)

(
1− p

k + Ap+Bp2

)
(A9)

which can be integrated exactly

∫ p

0

V (35, 0, p) dp = V (35, 0, 0) [p− 1

2B
(ln
(
1 + Ap/k +Bp2/k

)
+ (A10)

A

R
ln

(2Bp+ A−R) / (A−R)

(2Bp+ A+R) / (A+R)
)]

where R2 = A2−4Bk, k = 21582.27, A = 3.35941, B = 5.032×10−5 and V (0, 35, 0) =

9.72662× 10−4.

Because the exact formula is not convenient for applications, a least squares polyno-

mial of fourth order in pressure was fitted to a table of values computed from the

exact formula:
∫ p

0

V (35, 0, p) dp ≈ C1p+ C2p
2 + C3p

3 + C4p
4 (A11)

where C1 = 9.72659, C2 = −2.2512× 10−5, C3 = 2.279× 10−10, C4 = −1.82× 10−15.
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The complete formula has the form

z =
C1p+ C2p

2 + C3p
3 + C4p

4

g (φ) + 1
2
γ′p

+
∆D

9.8
(A12)

with γ′ = 2.184× 10−6 m/s2/decibar, and g (φ) = 9.780318(1.0 + 5.2788× 10−3 sin2 φ

+2.36 × 10−5 sin4 φ). It is argued in [58] that the geopotential anomaly correction

often can be neglected.

2) Sound speed computation.

Sound speed is computed using nine-term equation for sound speed in the ocean

introduced by Mackenzie [59]. The result is

c (T, S, z) = 1448.96 + 4.591T − 5.304× 10−2T 2 + 2.374× 10−4T 3

+1.340 (S − 35) + 1.630× 10−2z + 1.675× 10−7z2 (A13)

−1.025× 10−2T (S − 35)− 7.139× 10−13Tz3

where T is temperature in degrees Celsius, S is salinity in parts per thousand, and z

is depth in meters increasing downwards with z = 0 at the ocean surface.

3) Secant bulk modulus computation.

The secant bulk modulus K of seawater is given by [63]

K (T, S, p) = K (T, S, 0) + Ap+Bp2, (A14)
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where

K (T, S, 0) = Kw +
(
f0 + f1T + f2T

2 + f3T
3
)
S +

(
g0 + g1T + g2T

2
)
S3/2 (A15)

with f0 = 54.6746, f1 = −0.603459, f2 = 1.09987 × 10−2, f3 = −6.1670 × 10−5,

g0 = 7.944× 10−2, g1 = 1.6483× 10−2, g2 = −5.3009× 10−4.

A = Aw+(i0 + i1T + i2T
2)S+j0S

3/2, where i0 = 2.2838×10−3, i1 = −1.0981×10−5,

i2 = −1.6078× 10−6, j0 = 1.91075× 10−4.

B = Bw + (m0 +m1T +m2T
2)S, where m0 = −9.9348× 10−7, m1 = 2.0816× 10−8,

m2 = 9.1697× 10−10.

The pure water terms of the secant bulk modulus are given by

Kw = e0 + e1T + e2T
2 + e3T

3 + e4T
4, where e0 = 19652.21, e1 = 148.4206, e2 =

−2.327105, e3 = 1.360477× 10−2, e4 = −5.155288× 10−5.

Aw = h0 + h1T + h2T
2 + h3T

3, where h0 = 3.239908, h1 = 1.43713 × 10−3, h2 =

1.16092× 10−4, h3 = −5.77905× 10−7.

Bw = k0 + k1T + k2T
2, k0 = 8.50935, k1 = −6.12293× 10−6, k2 = 5.2787× 10−8.

4) Density of seawater computation [63].

The density of seawater as a function or temperature, salinity and pressure can

be computed using the following expression:

ρ (T, S, p) = ρ (T, S, 0) / (1− p/K (T, S, p)) , (A16)
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where

ρ (T, S, 0) = ρw +
(
b0 + b1T + b2T

2 + b3T
3 + b4T

4
)
S +

(
c0 + c1T + c2T

2
)
S3/2 + d0S

2

(A17)

with b0 = 8.24493× 10−1, b1 = −4.0899× 10−3, b2 = 7.6438× 10−5, b3 = −8.2467×

10−7, b4 = 5.3875× 10−9, c0 = −5.72466× 10−3, c1 = 1.0227× 10−4, c2 = −1.6546×

10−6, d0 = 4.8314× 10−4.

The density of reference pure water is given by [64]

ρw = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5, (A18)

where a0 = 999.842594, a1 = 6.793952×10−2, a2 = −9.095290×10−3, a3 = 1.001685×

10−4, a4 = −1.120083× 10−6, a5 = 6.536332× 10−9.

5) Adiabatic lapse rate computation [65].

The adiabatic lapse rate Γ (T, S, p) (◦C/decibar) is defined as the change of tem-

perature per unit pressure for an adiabatic change of pressure of a parcel of seawater.

It is assumed that no heat or salt is exchanged with the surroundings so that the

pressure change is both adiabatic and isentropic. From thermodynamic considera-

tions, the adiabatic lapse rate Γ, a function of temperature, salinity and pressure can

be expressed as Γ (T, S, p) = 1
Cp
T∂V/∂T , where V is specific volume (V = 1/ρ), T is

absolute temperature, ∂V/∂T (m3/(kg ◦C)) is thermal expansion and Cp (J/(kg ◦C))

is the specific heat of seawater at constant pressure. Following [65], the adiabatic
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lapse rate can be computed using the following formula:

Γ (T, S, p) = a0 + a1T + a2T
2 + a3T

3 + (b0 + b1T ) (S − 35) (A19)

+
(
c0 + c1T + c2T

2 + c3T
3 + (d0 + d1T ) (S − 35)

)
p

+
(
e0 + e1T + e2T

2
)
p2,

where a0 = 3.5803 × 10−5, a1 = 8.5258 × 10−6, a2 = −6.8360 × 10−8, a3 = 6.6228 ×

10−10, b0 = 1.8932× 10−6, b1 = −4.2393× 10−8, c0 = 1.8741× 10−8, c1 = −6.7795×

10−10, c2 = 8.7330 × 10−12, c3 = −5.4481 × 10−14, d0 = −1.1351 × 10−10, d1 =

2.7759× 10−12, e0 = −4.6206× 10−13, e1 = 1.8676× 10−14, e2 = −2.1687× 10−16.

6) Potential temperature computation [66].

Potential temperature is defined as the temperature an element of seawater would

have if it were raised adiabatically with no change of salinity to a reference pressure

pr that may be greater or less than the initial pressure p. The potential temperature

Θ can be computed from the adiabatic lapse rate Γ,

Θ (T, S, p, pr) = T +

∫ pr

p

Γ (T, S, p′) dp′ (A20)

by integration along an adiabat. The potential temperature Θ (S, T, p, pr) at reference

pressure pr can be computed with sufficient precision using a 4-th order Runge-Kutta

integration algorithm [66]. However, it has been shown [58] that to a good approxi-

mation the integration step ∆p can be chosen to be ∆p = pr−p. Then potential tem-

perature is computed using the following simple formulas: ∆Θ1 = ∆pΓ (T, S, p), Θ1 =
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T + 1
2
∆Θ1, ∆Θ2 = ∆pΓ

(
Θ1, S, p+ 1

2
∆p
)
, Θ2 = Θ1 +

(
1− 1/

√
2
)

(∆Θ2 − q1), ∆Θ3 =

∆pΓ
(
Θ2, S, p+ 1

2
∆p
)
, Θ3 = Θ2+

(
1 + 1/

√
2
)

(∆Θ3 − q2), ∆Θ4 = ∆pΓ (Θ3, S, p+ ∆p),

Θ4 = Θ3 + 1
6

(∆Θ4 − 2q3), where q1 = ∆Θ1, q2 =
(
2−
√

2
)

∆Θ2 +
(
−2 + 3/

√
2
)
q1,

q3 =
(
2 +
√

2
)

∆Θ3 +
(
−2− 3/

√
2
)
q2, and

Θ (T, S, p, pr) = Θ4. (A21)

7) Potential density and potential sound speed computation.

Now after potential temperature is computed it is straightforward to compute

potential density and potential sound speed of seawater. To compute potential density

it is necessary to replace temperature T with the potential temperature Θ and pressure

p with reference pressure pr in Eq. (A16) and the equation for potential density is

ρθ (Θ, S, pr) = ρ (Θ, S, pr) . (A22)

Similarly, the equation for potential sound speed is

cθ (Θ, S, pr) = c (Θ, S, zr) . (A23)

It is convenient to choose pr = 0 and zr = 0 that corresponds to the ocean surface

level.

After all these calculations have been done, the acoustic fluctuations strength

parameter µ is computed by substituting potential density and potential sound speed

given by Eqs. (A22) and (A23) into Eq. (A5).



References

[1] L. M. Brekhovskikh. Waves in layered media. Academic Press, New York, 1960.

[2] C. L. Pekeris. Theory of propagation of explosive sound in shallow water. Geol.
Soc. Am. Mem., 27, 1948.

[3] F. B. Jensen and M. C. Ferla. SNAP: The SACLANTCEN normal-mode acoustic
propagation model. Technical report, SACLANT Undersea Research Center, La
Spezia, Italy, 1979.

[4] M. B. Porter. The KRAKEN normal mode program. Technical report,
SACLANT Undersea Research Centre, La Spezia, Italy, 1979.

[5] E. K. Westwood, C. T. Tindle, and N. R. Chapman. A normal mode model for
acousto-elastic ocean environment. J. Acoust. Soc. Am., 100:3631–3645, 1996.

[6] A. D. Pierce. Extension of the method of normal modes to sound propagation
in an almost-stratified medium. J. Acoust. Soc. Am., 37:19–27, 1965.

[7] S. R. Rutherford and K. E. Hawker. Consistent coupled mode theory of sound
propagation for a class of nonseparable problems. J. Acoust. Soc. Am., 70:554–
564, 1981.

[8] I. J. Thompson. Mixing of normal modes in a range-dependent model ocean. J.
Acoust. Soc. Am., 69:1280–1289, 1981.

[9] R. B. Evans. A coupled mode solution for acoustic propagation in a waveguide
with stepwise depth variations of a penetrable bottom. J. Acoust. Soc. Am.,
74:188–195, 1983.

[10] L. B. Dozier and F. D. Tappert. Statistics of normal mode amplitudes in a
random ocean. i. theory. J. Acoust. Soc. Am., 63:353–365, 1978.

[11] J. A. Mercer, R. K. Andrew, B. M. Howe, and J. A. Colosi. Cruise report:
Long-range ocean acoustic propagation experiment (LOAPEX). Technical re-
port, Applied Physics Laboratory, University of Washington, 2005.

[12] K. E. Wage, A. B. Baggeroer, and J. C. Preisig. Modal analysis of broad-
band acoustic receptions at 3515-km range in the North Pacific using short-time
Fourier techniques. J. Acoust. Soc. Am., 113:801–817, 2003.

[13] K. E. Wage, M. A. Dzieciuch, P. F. Worcester, B. M. Howe, and J. A. Mercer.
Mode coherence at megameter ranges in the North Pacific Ocean. J. Acoust.
Soc. Am., 117:1565–1581, 2005.
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[18] S. Flatté, R. Dashen, W. Munk, K. Watson, and F. Zachariasen. Sound Trans-
mission Through a Fluctuating Ocean. Mechanics and Applied Mathematics.
Cambridge University, 1979.

[19] C. Garrett and W. H. Munk. Space-time scales of internal waves. Geophys. Fluid
Dyn., 2:225–264, 1972.

[20] R. Leung and H. A. DeFerrari. φ and λ computations for real and canonical
ocean. J. Acoust. Soc. Am., 67:169–176, 1980.

[21] J. A. Colosi, E. K. Scheer, S. M. Flatté, B. D. Cornuelle, M. A. Dzieciuch, W. H.
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