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Multiple scattering effects from bubble clouds are investigated in this study. A high 

performance, general purpose numerical tool for multiple scattering calculations is 

developed. This numerical tool is applied in three computational scenarios in this study. 

The total scattering cross section of a bubble cloud is investigated. Numerical results 

indicate that the resonant frequency of the bubble cloud is much lower than that of a 

single bubble. The variation of resonant frequency of multiple scattering is also studied. 

It is found that the resonant frequency decreases as the number of bubbles increases, 

or as the void fraction of the bubble cloud decreases. Phase distributions of bubble 

oscillations in various multiple scattering scenarios are presented. It is found that, at 

resonance, the bubbles synchronize to the same phase, which is indicative of the lowest 

mode of collective oscillation. At wave localization, half of the bubbles oscillate at phase 

0 while the other half oscillate at phase π. An intuitive interpretation of this behavior is 

given. 
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Chapter 1 Introduction 

Due to the great difference in acoustic impedance between air and water, bubbles, 

as highly effective scatterers, have received a lot of attention in the study of underwater 

acoustics, ultrasound imaging, etc. 

The behavior of a single bubble in the sound field is well understood. As early as 

1933, Minnaert (Minnaert, 1933) proposed his equation for the bubble’s natural 

frequency: 

   𝜔𝜔0 =
1
𝑎𝑎
�

3𝛾𝛾𝑝𝑝0

𝜌𝜌𝑤𝑤
  . (1)  

Here, a is the radius of the bubble and p0 is the static pressure at the equilibrium state; 

ρw is the density of water; and γ is the polytropic index of the gas inside the bubble. The 

derivation of this equation basically treats the bubble in analogy to a spring. Damping 

effects can also be incorporated to determine the natural frequency (Leighton, 1994). 

Detailed linear bubble dynamics will be discussed in later chapters. Typically, with p0 = 

105 Pa, ρ = 103kg/m3, and γ = 1.4, bubbles with a radius of 7 mm would resonate at the 

frequency of 500 Hz; bubbles of 1 mm radius would resonate at 3.3 kHz. 

In most scenarios of interest, we are usually dealing with collections of bubbles, i.e. 

bubble clouds, rather than a single bubble. For example, in ultrasound imaging, contrast 

agents are used to produce masses of micro bubbles in certain areas (organs), so that 

more backscattering can be achieved to distinguish them from normal tissues. Also, in 
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ocean acoustics, the surface layer contains of large amount of bubbles, which might be 

generated by breaking waves, surface turbulence, and water drop impact (Prosperetti 

A. , 1988). 

In some of the cases mentioned above, there is no need to account for the multiple 

scattering effects from bubbles. For example, in ultrasound imaging, when the 

concentration of the micro bubbles is relatively low, the scattered field can simply be 

computed by adding up all the scattering waves from each bubble. This can be argued to 

be reasonable when concentration is low and the bubbles are far away from each other; 

then the interaction between bubbles does not play an important role. 

However, as concentrations go up, the distances between bubbles become small, so 

more interaction can be expected and multiple scattering effects cannot be ignored any 

more. This view is supported by much research done in the past decades. For example, 

in a series of experiments conducted by Hughes et al (Hughes, Klibanov, Marsh, Miller, 

& Brandenburger, 2000) to measure the attenuation and phase velocity parameters on 

Albunex® (one of the contrast agents widely used in ultrasound imaging) suspensions , it 

was found that when the concentration of Albunex®  exceeds 107 particles/ml, the peak 

attenuation would shift towards higher frequencies. Also, Zhang et al (Zhang, Gong, Liu, 

Shao, Li, & Zhang, 2000) reported an unusual increase in non-linear parameter as the 

concentration of contrast agent particles go up, which was ascribed to the multiple 

scattering effects. 
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Moreover, it is also well known that bubbles play an important role in oceanic 

ambient noise (Wenz, 1962). As mentioned ealier, bubbles are abundant on the surface 

layer of the ocean. They are created in various ways, like by biological activities, by drop 

impacts such as rain, spays, and most importantly by breaking waves. Different 

mechanisms contribute to different frequency ranges (Prosperetti A. , 1988). For 

example, amplification of water turbulence by bubbles is believed to be responsible for 

the frequency range from a few Hz to 100-200 Hz; individual freely oscillating bubbles, 

on the other hand, contributes to the range from 1 to 10 kHz. However, it is found that 

the ambient noise spectra exhibits a broad maximum at frequencies around 500 Hz, 

which could not be explained by scattering from individual bubbles. The formula we 

presented earlier demonstrates it very well. In order to produce a natural frequency of 

500 Hz, bubbles need to have a radius of 7 mm. It is unlikely that such large bubbles 

could have been generated in large amounts in the ocean under any conditions. 

The frequency range around 500 Hz, on the other hand, can be well predicted by the 

mechanism of multiple scattering. Prosperetti (Prosperetti A. , 1988) estimated that the 

collective modes of bubbles can easily go down to several hundred Hz. S. W. Yoon et al 

(Yoon, Crum, Prosperetti, & Lu, 1991) also experimentally demonstrated the existence 

of collective modes at a few hundred Hertz.  

In summary, multiple scattering effects play an important role in many research 

areas. Better understanding toward the mechanism of multiple scattering will help us 

interpret many phenomena that cannot be explained otherwise. 
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Various theories have been proposed to account for the multiple scattering effects 

(Foldy, 1945) (Twersky, 1962). Among them, the most widely used is Foldy’s effective 

medium theory. In Foldy’s pioneering paper (Foldy, 1945), he proposed that the whole 

bubble cloud can be treated as a single scattering object, with uniform acoustic 

properties, i.e., wave number, sound speed, etc. According to Foldy’s self-consistent 

theory, the well-known dispersion relationship is derived: 

 𝑘𝑘𝑒𝑒
2 = 𝑘𝑘2 + 4𝜋𝜋𝜋𝜋𝑓𝑓𝑠𝑠  , (2)  

where ke is the effective wave number, n is the volume density of the scatterers, and fs 

is the scattering amplitude of a single scatterer. Foldy’s effective medium theory has 

been experimentally verified to hold in most cases except at frequencies near the 

bubble’s resonance frequency (Commande & Prosperetti, 1989). Hahn’s work (Hahn, 

2007), which used the effective medium theory to compute low frequency sound 

scattering from spherical assemblages of bubbles, also confirmed the validity of Foldy’s 

theory -- analytical results are found to agree very well with that produced from first-

principle numerical computations. It should be noted that higher order corrections are 

also proposed by Ye and Ding (Ye & Ding, 1995), Henyey (Henyey, 1999) to incorporate 

more complicated scattering processes. 

In the framework of Foldy’s effective medium theory, many interesting topics have 

been explored. Hahn (Hahn, 2007) noted that the peak frequency for the cross section 

of the bubble assemblage would shift to lower frequencies as the assemblage becomes 

denser. But no further insight is provided regarding the relationship among the peak 
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frequency, the number of bubbles, and the density of the bubbles. What would the 

relationship be? Are they strongly related to each other?  

Another interesting topic also arises in the work of Ye, Hsu & Hoskinson (Ye, Hsu, & 

Hoskinson, 2000). In that paper, it is shown by numerical simulation that all scatterers 

tend to synchronize their phases when an acoustic “localization” phenomenon is 

observed. The term “localization” is in analogy to the famous “electron localization” 

effect first found by Anderson in 1958 (Anderson P. W., 1958), since in both cases, the 

phenomenon that energy is trapped locally by the random scatterers, either impurities 

or bubbles, is observed. Though the research is done in 2D, it certainly provides us a 

new perspective to understand the physics involved in multiple scattering processes. 

What happens in the 3D problem? What about the phases at other special 

circumstances, like resonance? Why would the phases synchronize? All these questions 

remain open questions. 

While analytical methods are very difficult to apply for the physics of multiple 

scattering problems, numerical calculation, using effective medium theory, becomes a 

very powerful tool to predict the scattered field around the assemblage. Hahn employed 

effective medium theory to numerically calculate the scattering cross section around a 

spherical assemblage  (Hahn, 2007). Hoskinson & Ye also used numerical simulation to 

investigate phase transitions in a 2D assemblage (Hoskinson & Ye, 1999). However, they 

were able to handle only small numbers of scatterers, due to the limitations in  

computational resources and inefficient numerical algorithms. 
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The objective of my research is to develop a high performance numerical program 

for multiple scattering problems, which could be used for general purpose calculations, 

regardless of assemblage shape, number of scatterers, positions of the scatterers being 

periodic, fixed, or even random, cross section or phase distribution or other quantities 

to be calculated. The numerical calculation would basically follow Foldy’s self-consistent 

effective medium theory. Moreover, it will follow the very first principles of the multiple 

scattering process, and thus reveal some of the facts that are hidden in the effective 

medium theory, like the states of each oscillating bubble inside the assemblage. We 

would use this model to provide some new insights on topics including: cross section of 

assemblage with large number of bubbles; resonance frequency shift due to variance in 

volume fraction and number of bubbles in the cloud; phase state distribution of the 

bubbles in special circumstances, such as resonance, localization, etc. We are hoping 

that this numerical model would be of good help in enhancing our understanding of 

multiple scattering problems. 

In the following chapters, we will first cover the background theories of this work in 

Chapter 2, introducing Foldy’s effective medium theory and corrections to it. In chapter 

3, we will talk about the methods that have been used, for example, how the numerical 

calculation method is derived, what is the scattering function of a single bubble, and 

also the optimizations that are used in the code. Chapter 4 will deal with 3 specific 

computation scenarios. Computation results are given in plots and interpretation of the 

results is also provided. Chapter 5 summarizes the work presented and gives 

conclusions based on the earlier chapters.
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Chapter 2 Background 

In this chapter, we present the background theories that lay the foundation for the 

later computations. We will mainly cover Foldy’s effective medium theory. 

As early as 1945, Foldy proposed a way to treat the multiple scattering problems 

involving an assemblage of scatterers (Foldy, 1945), the effective medium theory. His 

pioneering work has been widely used in many areas where multiple scattering process 

is involved. 

Foldy’s effective medium theory is basically a statistical treatment of the problem. In 

Foldy’s theory, for a cloud of scatterers randomly distributed in space, one is not 

interested in the values of physical quantities for a specific configuration, but rather in 

the average value of these quantities being taken over all possible configurations, i.e. 

the configurational average: 

 〈𝑓𝑓〉 = �…��𝑓𝑓�𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 � 𝑃𝑃�𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 �𝑑𝑑𝑠𝑠1𝑑𝑑𝑠𝑠2 …𝑑𝑑𝑠𝑠𝑁𝑁𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2 …𝑑𝑑𝑟𝑟𝑁𝑁  (3)  

Here f is the physical quantity to be averaged, P(rj,sj) is the probability distribution 

function so that 𝑃𝑃�𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 �𝑑𝑑𝑠𝑠1𝑑𝑑𝑠𝑠2 …𝑑𝑑𝑠𝑠𝑁𝑁𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2 …𝑑𝑑𝑟𝑟𝑁𝑁  represents the probability of 

finding the scatterer 1 in the space range of dr1 around the point r1 and has a scattering 

parameter lying between s1 and s1+ds1; scatterer 2 in the space range of dr2 around the 

point r2 and has a scattering parameter lying between s2 and s2+ds2, etc. 
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For a particular configuration of scatterers, the acoustic pressure at position r, 

denoted as 𝜓𝜓(𝑟𝑟) satisfies the wave equation 

 𝛻𝛻2𝜓𝜓 + 𝑘𝑘2𝜓𝜓 = 0, (4)  

where k is the wave number and k = ω/c (c is the phase velocity and ω is the frequency). 

𝜓𝜓(𝑟𝑟) can be treated as a sum of incoming wave field and the scattering field by the 

assemblage, written as 

 𝜓𝜓(𝑟𝑟) = 𝜓𝜓0(𝑟𝑟) + �𝑓𝑓𝑗𝑗𝜓𝜓𝑗𝑗 �𝑟𝑟𝑗𝑗 �𝐺𝐺(𝑟𝑟, 𝑟𝑟𝑗𝑗 )
𝑗𝑗

, (5)  

 𝜓𝜓𝑗𝑗 �𝑟𝑟𝑗𝑗 � = 𝜓𝜓0�𝑟𝑟𝑗𝑗 � + �𝑓𝑓𝑖𝑖𝜓𝜓𝑖𝑖(𝑟𝑟𝑖𝑖)𝐺𝐺�𝑟𝑟𝑗𝑗 , 𝑟𝑟𝑖𝑖�.
𝑖𝑖≠𝑗𝑗

 (6)  

Here, 𝜓𝜓0 is the incoming wave function, 𝑓𝑓𝑗𝑗  is the scattering coefficient for the jth 

scatterer, and 𝐺𝐺(𝑟𝑟, 𝑟𝑟𝑗𝑗 ) is the free space Green’s function. 𝜓𝜓𝑖𝑖(𝑟𝑟𝑖𝑖) is defined as the 

external field acting on the jth scatterer, which is also decomposed into the incoming 

wave field at 𝑟𝑟𝑗𝑗  and the scattering field at 𝑟𝑟𝑗𝑗  from all the other scatterers. 

Now Let us compute the configurational average of 𝜓𝜓(𝑟𝑟). Averaging both sides of 

equation (5), we have  

 〈𝜓𝜓(𝑟𝑟)〉 = 〈𝜓𝜓0(𝑟𝑟)〉 + ��𝑓𝑓𝑗𝑗 〈𝜓𝜓𝑗𝑗 �𝑟𝑟𝑗𝑗 �〉𝐺𝐺�𝑟𝑟, 𝑟𝑟𝑗𝑗 �
𝑗𝑗

𝑃𝑃�𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 �𝑑𝑑𝑟𝑟𝑗𝑗 𝑠𝑠𝑗𝑗 . (7)  

 

According to the definition, 〈𝜓𝜓𝑗𝑗 �𝑟𝑟𝑗𝑗 �〉 represents the external field acting on the jth 

scatterer. Since the difference between 〈𝜓𝜓𝑗𝑗 �𝑟𝑟𝑗𝑗 �〉 and the configurational average of the 
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actual field at 𝑟𝑟𝑗𝑗 , denoted as 〈𝜓𝜓�𝑟𝑟𝑗𝑗 �〉, is just a term of order 1/N, when N is large enough, 

the difference could be omitted and we may replace 〈𝜓𝜓𝑗𝑗 �𝑟𝑟𝑗𝑗 �〉 in equation (7) with 

〈𝜓𝜓�𝑟𝑟𝑗𝑗 �〉.  Also, notice that the configurational average of 𝜓𝜓0(𝑟𝑟) is just 𝜓𝜓0(𝑟𝑟) itself, and 

the probability distribution function 𝑃𝑃�𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 � is defined as 

 𝑃𝑃�𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 � =
𝜋𝜋(𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 )
𝑁𝑁

, (8)  

where 𝜋𝜋(𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 ) is defined as the average number of scatterers in the neighborhood of 𝑟𝑟𝑗𝑗  

having scattering parameters 𝑠𝑠𝑗𝑗 . So equation (7) can now be rewritten as 

 

〈𝜓𝜓(𝑟𝑟)〉 = 𝜓𝜓0(𝑟𝑟) + ��𝑓𝑓𝑗𝑗 〈𝜓𝜓𝑗𝑗 �𝑟𝑟𝑗𝑗 �〉𝐺𝐺�𝑟𝑟, 𝑟𝑟𝑗𝑗 �
𝑗𝑗

𝜋𝜋�𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗 �
𝑁𝑁

𝑑𝑑𝑟𝑟𝑗𝑗 𝑠𝑠𝑗𝑗  

                = 𝜓𝜓0(𝑟𝑟) + ∑ ∬𝑓𝑓𝑗𝑗 〈𝜓𝜓�𝑟𝑟𝑗𝑗 �〉𝐺𝐺�𝑟𝑟, 𝑟𝑟𝑗𝑗 �𝑗𝑗
𝜋𝜋�𝑟𝑟𝑗𝑗 ,𝑠𝑠𝑗𝑗 �

𝑁𝑁
𝑑𝑑𝑟𝑟𝑗𝑗 𝑠𝑠𝑗𝑗       

                = 𝜓𝜓0(𝑟𝑟) + ∫𝐹𝐹(𝑟𝑟′) 〈𝜓𝜓(𝑟𝑟′)〉𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝑑𝑑𝑟𝑟′ , 

(9)  

where 𝐹𝐹(𝑟𝑟) is defined as 

 𝐹𝐹(𝑟𝑟) = �𝑓𝑓𝑗𝑗𝜋𝜋(𝑟𝑟, 𝑠𝑠)𝑑𝑑𝑠𝑠. (10)  

To derive the wave equation for the configurational averaged quantity of 〈𝜓𝜓(𝑟𝑟)〉, we 

now apply the operator 𝛻𝛻2 + 𝑘𝑘2 on both sides of equation (9) 

 
   (𝛻𝛻2 + 𝑘𝑘2)〈𝜓𝜓(𝑟𝑟)〉 = (𝛻𝛻2 + 𝑘𝑘2)𝜓𝜓0(𝑟𝑟) 

                                        +(𝛻𝛻2 + 𝑘𝑘2)∫𝐹𝐹(𝑟𝑟′) 〈𝜓𝜓(𝑟𝑟′)〉𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝑑𝑑𝑟𝑟′  
(11)  

On the left side, the first term (𝛻𝛻2 + 𝑘𝑘2)𝜓𝜓0(𝑟𝑟) is 0, since the incoming wave 𝜓𝜓0(𝑟𝑟) 

should satisfy the wave equation. For the second term, according to the definition of 

free space Green’s function,  
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 (𝛻𝛻2 + 𝑘𝑘2)𝐺𝐺�𝑟𝑟, 𝑟𝑟𝑗𝑗 � = −4𝜋𝜋𝜋𝜋�𝑟𝑟, 𝑟𝑟𝑗𝑗 �. (12)  

So now we can write equation (11) as  

 (𝛻𝛻2 + 𝑘𝑘2)〈𝜓𝜓(𝑟𝑟)〉 = −4𝜋𝜋𝐹𝐹(𝑟𝑟)〈𝜓𝜓(𝑟𝑟)〉. (13)  

We may rewrite equation (13) in wave equation form:  

 �𝛻𝛻2 + 𝑘𝑘𝑒𝑒
2�〈𝜓𝜓(𝑟𝑟)〉 = 0, (14)  

where  

 𝑘𝑘𝑒𝑒
2 = 𝑘𝑘2 + 4𝜋𝜋𝐹𝐹(𝑟𝑟). (15)  

If the N isotropic scatterers are randomly distributed, 𝐹𝐹(𝑟𝑟) = 𝑁𝑁𝑓𝑓𝑠𝑠. So the effective wave 

number ke could be obtained as  

 𝑘𝑘𝑒𝑒
2 = 𝑘𝑘2 + 4𝜋𝜋𝑁𝑁𝑓𝑓𝑠𝑠 . (16)  

Here fs is the scattering amplitude of a single scatterer. Equation (16)  is the famous 

Foldy effective wave number that is widely used in many applications.
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Chapter 3 Methods and Numerical Computation 

In this chapter, we will present the theoretical basis for the approach used in our 

numerical algorithm. We start from linear bubble dynamics, and then consider the 

scattered field of a single bubble. Finally we will discuss our numerical computation 

approach for multiple scattering problems. 

3.1 Linear bubble dynamics 

The understanding of bubble dynamics is essential in multiple scattering problems. 

For simplicity, we are concerned with the linear, rather than nonlinear, bubble dynamics 

in this research. 

The classic approach used in linear bubble dynamics is the mass spring model. 

Consider the pulsating bubble as a vibrating spring with certain mass and stiffness. Of 

course, there are different ways to define parameters like mass and stiffness, due to 

different definitions of driving force and displacement. For example, the driving force 

could be defined either as acoustic pressure or as the force exerted on the surface; the 

displacement could also be defined either as the volume contraction/expansion or the 

radius away from the equilibrium state. In this article, we will consistently define the 

physical parameters regarding acoustic pressure as driving force and the changing 

volume as displacement. The equation of motion for a single bubble can be written as:  

 𝑚𝑚�̈�𝑢 + 𝑏𝑏�̇�𝑢 + 𝜅𝜅𝑢𝑢 = 𝑝𝑝0𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖 . (17)  
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Here u is the expansion/extraction volume from the equilibrium state; m is the effective 

mass of the bubble, m=ρ/4πa; b describes the damping effects of the bubble, which 

includes radiation damping, thermal damping, and viscous damping; κ is the stiffness 

factor, κ=3γp0/4πa3; p0 and ω are the amplitude and frequency of the incoming wave 

pressure. 

From equation (17), we can easily derive the Minnaert’s resonant frequency:  

   𝜔𝜔0 = �
𝜅𝜅
𝑚𝑚

=
1
𝑎𝑎
�

3𝛾𝛾𝑝𝑝0

𝜌𝜌𝑤𝑤
 . (18)  

The solution to that equation is immediately derived: 

 𝑢𝑢 =
𝑝𝑝0/𝜔𝜔2𝑚𝑚

�𝜔𝜔0
2

𝜔𝜔2 − 1� + 𝑖𝑖 𝑏𝑏
𝑚𝑚𝜔𝜔

 . (19)  

The imaginary part  
𝑏𝑏
𝑚𝑚𝜔𝜔

  in the denominator is interpreted as the damping factor, 

and can be attributed to three major damping mechanisms: re-radiation damping, 

thermal damping, and viscous damping.  

 
𝜋𝜋 =

𝑏𝑏
𝑚𝑚𝜔𝜔

= 𝜋𝜋𝑟𝑟𝑎𝑎𝑑𝑑 + 𝜋𝜋𝑣𝑣𝑖𝑖𝑠𝑠𝑣𝑣 + 𝜋𝜋𝑖𝑖ℎ  

          = 𝑘𝑘𝑎𝑎 + 4𝜇𝜇
𝜌𝜌𝜔𝜔 𝑎𝑎2 + 𝑃𝑃0

𝜌𝜌𝜔𝜔2𝑎𝑎2 𝐼𝐼𝑚𝑚(𝜙𝜙) . 
(20)  

Generally speaking, the re-radiation part is responsible for the energy re-radiated by the 

bubble as a vibrating source; the viscous damping is responsible for the energy 

dissipated by viscosity around the bubble; and the thermal damping is responsible for 

the loss of heat to the medium in the process of expansion and contraction. 



13 
 

3.2 Scattering function of the bubble  

Bubbles are very effective scatterers in the ocean due to the high contrast of ρc 

between air and water (ρcw/ρcair = 5000). The scattering function is relatively easy to 

obtain because of bubble’s spherical shape. 

The wavelength for a 500 Hz wave in the ocean is about 3 m, while the radius of a 

bubble is typically 0.01 m. We can safely treat the bubble as a spherically symmetric 

scatterer in the sound field. As the bubble oscillates, the wave is radiated out like a 

monopole source. How do we determine the scattering amplitude if we know the 

incoming wave amplitude, i.e. what is the scattering function of the bubble? 

 

 

 

 

Fig. 1 Pressure in and out of the bubble. 

As shown in Fig. 2, the pressure in and out of the bubble should be equal: 

 pin = pout = pi + ps . (21)  

Since the scattering wave ps is originated from the oscillation of the bubble surface, the 

radial component of the particle speed at the surface can be related to the pressure of 

the scattering wave ps:  

pin pout = pi + ps 

R = a 
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 𝑢𝑢𝑟𝑟=𝑎𝑎 = −𝑖𝑖
𝑃𝑃𝑠𝑠

𝜌𝜌𝑤𝑤𝑣𝑣𝑘𝑘𝑎𝑎2 𝑒𝑒
𝑖𝑖𝜔𝜔𝑖𝑖 . (22)  

Ps is the amplitude of the scattering wave ps. 

Also, assuming the gas inside the bubble is ideal and no heat is exchanged, we have 

 𝑃𝑃𝑉𝑉𝛾𝛾 = 𝑣𝑣𝑐𝑐𝜋𝜋𝑠𝑠𝑖𝑖 , (23)  

where P is composed of two parts, the static pressure p0 and the deviation pressure pin. 

Differentiating volume V with respect to time t in equation (23) gives 

 
𝑑𝑑𝑉𝑉
𝑑𝑑𝑖𝑖

= −
𝑖𝑖𝜔𝜔𝑝𝑝𝑖𝑖𝜋𝜋𝑉𝑉
𝛾𝛾𝑝𝑝0

 . (24)  

Using  dV/dt = 4πa2ur = a, we again get another expression of ur = a in terms of pin 

 𝑢𝑢𝑟𝑟=𝑎𝑎 = −𝑖𝑖
𝜔𝜔𝑎𝑎𝑃𝑃𝑖𝑖𝜋𝜋
3𝛾𝛾𝑝𝑝0

𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖  . (25)  

After combining equation (22) and equation (25), and inserting equation (18) for the 

natural frequency of the bubble, we get the relationship between pin and Ps 

 
𝑃𝑃𝑖𝑖𝜋𝜋
𝑃𝑃𝑠𝑠

=
3𝛾𝛾𝑃𝑃0

𝜌𝜌𝑤𝑤𝑣𝑣2𝑘𝑘2𝑎𝑎3 =
1
𝑎𝑎
�
𝜔𝜔0

𝜔𝜔
�

2
. (26)  

At the surface, the scattering wave ps can be expanded using Taylor’s expansion 

 𝑝𝑝𝑠𝑠 =
𝑃𝑃𝑠𝑠
𝑎𝑎
𝑒𝑒𝑖𝑖𝑘𝑘𝑎𝑎 𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖 =

𝑃𝑃𝑠𝑠
𝑎𝑎

(1 − 𝑖𝑖𝑘𝑘𝑎𝑎)𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖 . (27)  

Later we will see that the –ika term contribute to the damping effect, the so called 

radiated damping. 

Inserting equation (26) and (27) into equation (21) gives 
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 𝑃𝑃𝑠𝑠 =
−𝑎𝑎

[�𝜔𝜔0
𝜔𝜔 �

2
− 1] + 𝑖𝑖𝜋𝜋

𝑃𝑃𝑖𝑖  . (28)  

Here δ is the damping term. In our derivation, only radiation term is taken into 

consideration, δ = -ka. See Clay & Medwin’s book (Clay & Medwin, 1977) for a more 

complete discussion. 

 The scattering function now can be written as  

 𝑝𝑝𝑠𝑠 = 𝑓𝑓𝑠𝑠𝐺𝐺(𝑘𝑘, 𝑟𝑟)𝑝𝑝𝑖𝑖 , (29)  

where  

 𝑓𝑓𝑠𝑠 =
−𝑎𝑎

[�𝜔𝜔0
𝜔𝜔 �

2
− 1] + 𝑖𝑖𝜋𝜋

 . (30)  

Note that when we use the free space Green’s function, an implicit assumption is the far 

field approximation. In our computation, we assume that the distance between bubbles 

are large compared with the radius of the bubble. 

According to the above equations, the scattering cross section is  

 σs =
4𝜋𝜋𝑎𝑎2

[�𝜔𝜔0
𝜔𝜔 �

2
− 1]2 + 𝜋𝜋2

 . (31)  

Notice that the cross section that we computed in this research is the total scattering 

cross section, which incorporates both scattering cross section and extinction cross 

section. The extinction cross section describes the energy dissipation due to the 

scattering process. 
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3.3 Numerical computation approach 

In this section, we derive the computational approach that we used to numerically 

solve the multiple scattering problems. The derivation basically follows Foldy’s effective 

medium theory. Moreover, it follows the first principles of the multiple scattering 

process, so that we are able to monitor the amplitude and phase of each scatterer as 

they oscillate. 

Let us first define the problem. 

As mentioned in the introduction, our numerical program could be applied in various 

configurations, like periodic units, different shapes of assemblages, also the positions of 

the scatterers could either be fixed or random. For demonstration purposes, in the 

following discussion, we will work on a spherical assemblage with N bubbles randomly 

distributed inside, a configuration shown in Fig. 2.  

 

Fig. 2 Geometry of the multiple scattering problem. 
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For simplicity, all N bubbles are assumed to be the same. The position of the ith 

bubble is denoted as ri, i=1, 2… N. The incident wave is set to be a plane wave,    

 𝑝𝑝𝑖𝑖𝜋𝜋𝑣𝑣 (𝒓𝒓) = 𝑝𝑝𝑖𝑖0𝑒𝑒𝑖𝑖(𝜔𝜔𝑖𝑖−𝑘𝑘𝒓𝒓). (32)  

The receivers are placed far away, a distance 10 times the assemblage radius, making 

sure that we are calculating the far field. 

 The total field at the receiver r is given by: 

 𝑝𝑝(𝒓𝒓) =pinc (r) +ps (r), (33)  

which is composed of the incoming field pi (r) and scattering field ps (r). The scattering 

field ps (r) is the main problem to tackle. In calculating ps (r), rather than treating the 

assemblage as a uniform effective medium, we instead follow the first principles of the 

multiple scattering process among bubbles, which is explained below.  

Basically, this method deals with the behavior of each of the N bubbles, rather than 

the endless transmission ray path among bubbles. Just as Foldy derived in his effective 

medium theory, the scattering field of the whole assemblage is the sum of scattering 

field from all the bubbles in the assemblage:  

 𝑝𝑝𝑠𝑠  (𝒓𝒓) = ∑ 𝑝𝑝𝑠𝑠𝑖𝑖𝑁𝑁
𝑖𝑖=1 (𝒓𝒓) . (34)  

psi(r) here denotes the scattering field from the nth bubble at r. Since we already know 

the scattering coefficient of a single bubble, it only remains to find the incoming wave 

on each bubble in order to determine psi. 
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Assuming that the wave scattered by the jth (j = 1, 2 … N) bubble would not be 

scattered back to itself by other bubbles in the future, we can basically divide the 

incoming wave pj(rj) on the jth bubble into two parts: 

 

p1(r1) = pinc (r1) + ∑ 𝑓𝑓𝑠𝑠𝑝𝑝𝑖𝑖(𝒓𝒓𝒊𝒊)𝑁𝑁
𝑖𝑖=2 𝐺𝐺(𝑘𝑘; 𝒓𝒓𝟏𝟏 − 𝒓𝒓𝒊𝒊) 

p2(r2) = pinc (r2) + ∑ 𝑓𝑓𝑠𝑠𝑝𝑝𝑖𝑖(𝒓𝒓𝒊𝒊)𝑁𝑁
𝑖𝑖=1
𝑖𝑖≠2

𝐺𝐺(𝑘𝑘; 𝒓𝒓𝟐𝟐 − 𝒓𝒓𝒊𝒊) 

… 

p j(rj) = pinc(rj) + ∑ 𝑓𝑓𝑠𝑠𝑝𝑝𝑖𝑖(𝒓𝒓𝒊𝒊)𝑁𝑁
𝑖𝑖=1
𝑖𝑖≠𝑗𝑗

𝐺𝐺(𝑘𝑘; 𝒓𝒓𝒋𝒋 − 𝒓𝒓𝒊𝒊) 

(35)  

rj denotes the position of the jth bubble.The first part pinc(rj) is the direct incoming wave 

field at position rj; the second part, on the other hand, is the sum of scattering waves 

from all the other bubbles (i = 1, 2, … N;   i ≠ j) at position ri, denoted as pi(ri). 

The second part here is the key point in our computation. Another way to interpret 

it is to take the jth bubble out of the assemblage, as if it was not there. This way we can 

deduce the incoming wave on the the jth bubble, by summing the direct incoming wave 

part pi(rj) and all the scattered waves from the rest of the bubbles.  

We now have N linear equations and also N unknowns pj(rj), j = 1, 2 …, N. These 

equations can be written in matrix form: 

 pj = pinc(rj) + fs 𝑮𝑮 
𝑘𝑘  pj (36)  

The matrix 𝐺𝐺𝑖𝑖 ,𝑗𝑗  
𝑘𝑘  is defined as a N×N matrix:  

 𝐺𝐺𝑖𝑖 ,𝑗𝑗  
𝑘𝑘 = �𝐺𝐺�𝑘𝑘; 𝒓𝒓𝑖𝑖 − 𝑟𝑟𝑗𝑗 �,    𝑖𝑖 ≠ 𝑗𝑗 

0,                       𝑖𝑖 = 𝑗𝑗
� . (37)  
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According to the definition, 𝐺𝐺𝑖𝑖 ,𝑗𝑗  
𝑘𝑘  is a complex symmetric matrix, since the source  and 

the receiver 𝒓𝒓𝑗𝑗  in the free space Green’s function can be interchanged, or more 

generally by reciprocity. Complex symmetry is an important feature of 𝐺𝐺𝑖𝑖 ,𝑗𝑗  
𝑘𝑘 , which will 

simplify the computational task of computing its inverse. Note that when we use the 

free space Green’s function, an implicit assumption is the far field approximation. If 

𝒓𝒓𝑖𝑖and 𝒓𝒓𝑗𝑗 are too close to each other, the free space Green’s function cannot be applied 

any more. Here we assume that 𝒓𝒓𝑖𝑖and 𝒓𝒓𝑗𝑗  are far away from each other, compared with 

the radius of the bubble. In typical computation, the radius of the bubble is 0.01 m, 

while the average distance between bubbles is 0.15 m.  

The matrix form equation can be easily solved with matrix inversion, 

 pj(rj) = (I - fs 𝑮𝑮 
𝑘𝑘)-1 pinc(rj) . (38)  

The total scattering field ps(r) is given by 

 𝑝𝑝𝑠𝑠(𝒓𝒓) = �𝑓𝑓𝑠𝑠𝑝𝑝𝑖𝑖(𝒓𝒓𝒊𝒊)
𝑁𝑁

𝑖𝑖=1

𝐺𝐺(𝑘𝑘; 𝒓𝒓 − 𝒓𝒓𝒊𝒊) (39)  

Insert equation (34) into equation (35) and (38), and change the summation 

operation into matrix multiplication. Now we have the solution to the coupled 

scattering field problem: 

 
                       𝑝𝑝(𝒓𝒓) = pinc(r) +ps(r) 

                   = pinc(r) + fs [(I - fs𝑮𝑮 
𝑘𝑘 )-1 pi(r)]T∙ 𝑮𝑮k(r). 

(40)  

The vector 𝑮𝑮k(r) is defined as 
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 𝑮𝑮k(ri) = G(k; r - ri) . (41)  

Now with the help of equation (40), we can numerically calculate many quantities of 

interest. 

3.4 Optimization of code 

In order to calculate as many scatterers as possible, we have used an LAPACK 

subroutine to solve the matrix equation; we have also written a parallel version of our 

code so that it could be run on multiple processors at the same time. 

3.4.1 LAPACK Subroutine 

The most time consuming part of the simulation is the matrix inverse operation in 

equation (38).  

Initially, we tried the standard Gaussian elimination solver, provided in Numerical 

Recipes in C (Press, Teukolsky, Vetterling, & Flannery, 1992). It does the job, but not fast 

enough. For example, for a cloud of 1000 bubbles, it takes 97 hours to finish 300 

configurations on a single processor from Kronos cluster. 

Since the matrix to be inversed, I - fs𝑮𝑮𝑖𝑖 ,𝑗𝑗  
𝑘𝑘 , is complex and symmetric, we decided to 

switch to another matrix solver zsysv, which is included in the LAPACK. 

LAPACK is the Linear Algebra PACKage that “provides routines for solving systems of 

simultaneous linear equations, least-squares solutions of linear systems of equations, 

eigenvalue problems, and singular value problems”  (Anderson, et al., 1999). It is 
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extremely efficient in dealing with matrix operations. The subroutine zsysv that we 

adopted is used to solve complex linear equations: 

“ZSYSV computes the solution to a complex system of linear equations A * X = B, where A is 

an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method 

is used to factor A as A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U 

(or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric 

and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used 

to solve the system of equations A * X = B.”  (Anderson, et al., 1999)  

By using the zsysv LAPACK subroutine, the time to complete the same computation was 

reduced to 18 minutes. 

3.4.2 MPI Parallelization 

To gain as much performance as possible for the code, not only do we use the 

LAPACK subroutine instead of the numerical recipe subroutine, we also make use of MPI 

to run our code on clusters. 

MPI, short for message passing interface, is actually a library specification for 

message-passing between processors. It was developed for high performance on 

parallel machines or workstation clusters. (Gropp, Lusk, & Skjellum, 1994) 

In our model, many loops could be paralleled on, for example, the configuration 

loop, the angle loop, etc. We decided to parallel on the frequency loop, because we 

believe this way the model will run more efficiently without too much inter-processor 

message passing. 
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For a cloud of 3000 bubbles, it takes 48 minutes to compute one iteration on a single 

processor. After parallelization, it only takes 7 minutes to compete the same calculation 

on a node of 8 processors. The advantage of parallelization would be more obvious 

when we have even more bubbles, say 10,000, in a future simulation.
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Chapter 4 Computation Scenarios 

In this chapter, we apply the numerical model that we have developed to compute 

the cross section for a large number of bubbles, the corresponding resonant frequency 

shift, and phase distribution. 

4.1 Scattering cross section for large number of bubbles 

In scattering problems, the cross section is an important parameter which measures 

how much energy is scattered by the object. It is defined as: 

 𝜎𝜎 =  �𝐼𝐼 ∙ 𝑟𝑟2𝑑𝑑𝑑𝑑 . (42)  

I is the intensity at radius r, Ω is the solid angle around the scatterer. According to the 

definition, the larger σ, the more energy the object scatters away, and the more 

effective as a scatterer the object is. 

Here we calculate the cross section of the geometry outlined in Fig. 2, a spherical 

assemblage of N randomly distributed bubbles. The hard sphere assumption is applied 

in the problem, meaning that the minimum distance between any two bubbles should 

be larger than two times of the bubble radius.  
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Fig. 3 Total scattering cross section of an assemblage consisting of 3000 bubbles. 

The void fraction β is 1‰. The radius of the bubble is 0.0096 m, corresponding 

to a resonant frequency of 478 Hz. The radius of the assemblage is 0.34 m. The 

receivers are placed 4 m away from the assemblage. 

Fig. 3 shows the total scattering cross section as a function of frequency ranging 

from 0 to 2500 Hz. Generally, the assemblage scatters more energy at lower frequencies, 

around 100 Hz, than higher frequencies. Moreover, the peak frequency of the total 

cross section is found near 100 Hz, which is much lower than 478 Hz the natural 

frequency of the bubble. This also supports the theory that the peak of ocean ambient 

noise spectrum around 500 Hz might be well connected to the multiple scattering 

effects from the surface bubble layer. 
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Fig. 4 Directivity of |p|2 at 100 Hz (resonant frequency of the assemblage), 

478 Hz (resonant frequency of a single bubble), 1000 Hz, and 2000 Hz.  

Fig. 4 shows the scattering directivity of the spherical assemblage. 0 degree is the 

forward direction, and 180 degree is the backscattering direction. At low frequencies 

around 100 Hz, the directivity is quite uniform around all angles. However, as frequency 

increases, more energy is shifted from the backscattering direction to the forward 

direction. Meanwhile, since the total energy is constant, the amplitude in the forward 

direction also increases. 
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4.2 Resonant frequency shift 

The resonant peak frequency of the total scattering cross section is an important 

parameter characterizing the multiple scattering effects of a bubble assemblage. As we 

have seen in Fig. 3, the resonant peak frequency for an assemblage of 3000 bubbles 

with void fraction of 1‰ is 98 Hz. The difference between the resonant frequency of an 

assemblage and the natural frequency of an individual bubble is believed to arise from 

the interaction between bubbles, i.e. the collective oscillations. To illustrate this point, 

consider a spring mass system. For a single spring, the natural frequency is�𝑘𝑘
𝑚𝑚

/2𝜋𝜋; for 

N springs in parallel, the natural frequency of the system is � 𝑘𝑘
𝑚𝑚𝑁𝑁

/2𝜋𝜋. The interaction 

among bubbles is more difficult to express quantitatively. So in this section, we will 

numerically simulate how the resonant frequency of an assemblage of bubbles varies 

with the number of bubbles N and the void fraction β. 

The lowest collective mode of a bubble assemblage is considered to be the most 

important one. For an assemblage of N bubbles, the lowest mode of collective mode 

oscillation can be estimated with dimensional analysis (Commande & Prosperetti, 1989). 

First note that the approximate sound speed of the assemblage is given by the famous 

Wood’s equation (Wood, 1964): 

 𝑣𝑣𝑒𝑒2  =  
𝑃𝑃0

𝜌𝜌𝑤𝑤𝛽𝛽
. (43)  
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Here β is the void fraction of the assemblage, 𝛽𝛽 =
4
3𝜋𝜋𝑁𝑁𝑎𝑎

3

𝐿𝐿3 , and L denotes the size of the 

assemblage. The lowest mode of the assemblage ωe then can be estimated using the 

approximate formula 𝜔𝜔𝑒𝑒~𝑣𝑣𝑒𝑒/𝐿𝐿. Combining the above equations and inserting the 

Minnaert’s equation for the natural frequency gives 

 
𝜔𝜔𝑒𝑒
𝜔𝜔0

~
1

𝛽𝛽1/6𝑁𝑁1/3. (44)  

According to the equation, the lowest collective mode of the assemblage decreases as 

the number of bubbles increases and the void fraction increases. 

But in practical situations, the lowest mode of collective oscillation is not always the 

resonant peak of the cross section, especially in situations in which the density of the 

assemblage is high enough for multiple scattering effects to be taken into account, but 

not high enough for the collective modes to be the most prominent. In Hahn’s paper, it 

is pointed out that at relatively high density of bubbles assemblages, the resonant 

frequency of total cross section might well be regarded as the lowest mode of collective 
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oscillation of the bubbles  (Hahn, 2007). 

 

Fig. 5 Total scattering cross section for an assemblage of 500 bubbles. 

From left to right, the void fraction goes from 7.3‰ to 0.2‰. 

Fig. 5 shows the total scattering cross section for an assemblage of 500 bubbles. 

From left to right, the void fraction decreases from 7.3‰ to 0.2‰. From the figure, one 

sees that as the assemblage become dilute, the lower frequency resonance is inhibited 

and a second peak starts to emerge and grows rapidly. A steep jump in resonant 

frequency in Fig. 4 reflects such a transition of peak resonance. 
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Fig. 6 shows the relationship between resonant frequency and void fraction for 

different numbers of scatterers. This figure shows that as the void fraction increases, i.e. 

the cloud becomes more dense, the resonant frequency decreases. 

 

Fig. 6 Resonant frequency of assemblages of different void fraction 

values. Different numbers of scatterers are considered. The natural 

frequency of an individual bubble is 478 Hz.  

When the assemblage is dilute enough (void fraction is less than 10-5), the resonant 

frequency is approximately the natural frequency of a single bubble. This suggests that 

when void fraction is of order 10-5, multiple scattering effects can be ignored. Otherwise, 

it needs to be taken into consideration. Also, it is shown in the figure that for 

assemblages of larger number of bubbles, void fraction is less as the resonant frequency 
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begins to reach the bubble’s natural frequency. This can be interpreted that for even the 

same void fraction value, if the assemblage contains more bubbles or scatterers, more 

influence from the multiple scattering effects can be expected. 

Also, though we are not sure if the resonant peaks at high void fractions (10-3 to 10-2) 

in the figure are the lowest modes of the collective oscillation, an estimate from the 

data we have leads to the relationship that: 

 𝜔𝜔𝑒𝑒~
1

𝛽𝛽0.13𝑁𝑁0.29 . (45)  

This is a very good approximation to the result from dimensional analysis. 

To summerize this section, the resonant frequency of an assemblage of bubbles is 

sensitive to the interaction between bubbles. The more interaction between bubbles, i.e. 

the more numbers of scatterers or the closer the scatterers become, the lower the 

resonant frequency. When the interaction among bubbles is strong enough, the 

resonant frequency appears at the lowest collective mode of the assemblage. On the 

other hand, if the assemblage is dilute enough, the resonant frequency would appear at 

the natural frequency of an individual bubble. 

4.3 Phase distribution 

One of the most important features of this numerical tool is that it follows some first 

principles of physics, so that we can calculate the sound field by rigorously solving a 

system of equations instead of approximating effective parameters for the assemblage. 

This way we are able to see what is going on inside the assemblage. For example, we 
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may investigate the phase states of each bubble as they oscillate, which cannot be 

achieved otherwise. 

The phase information of each bubble can be easily extracted from the derivation 

we presented in section 3.3. As we solve the matrix equation (38) to get the scattering 

field of the assemblage, one byproduct of the solution is the sum of scattering waves 

from all the other bubbles (i = 1, 2 … N;   i ≠ j) on bubble j, denoted as pi(ri). p
i(ri) is  

complex valued and thus contains both amplitude and phase information. Now we can 

extract the phase information of the oscillating bubble j from pi(ri). 

 

Fig. 7 Total scattering cross section as a function of ka. 

Fig. 7 shows a typical plot for total scattering cross section as a function of ka, as 

discussed in section 4.1. Two resonant peaks can be easily recognized in the plot. From 

our numerical simulation, we were able to monitor the oscillation phase of each bubble 
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at these two resonant peaks. Fig. 8 shows the phase distributions for the two peaks. In 

the first peak, we can see that almost all bubbles synchronize their phases to the same 

value, about 1.5 rad, while the phase of the incoming wave at x = 0 is set to 0 rad. This 

result supports the claim that the first peak might be the lowest collective mode of the 

assemblage. In the second peak, phase synchronization is not present. But we do see 

that the phases of most bubbles are distributed nearby two states, 0 and 3 rad. 

  

Fig. 8 Phase distribution of 3000 bubbles at two resonant peaks shown in Fig. 7 

The preceding discussion considers only the scattered field.  We may also take a look 

at the total field around the assemblage. 

In the total field problem, the same geometry with previous problems is applied: 

there are 3,000 bubbles randomly distributed inside the assemblage; the void fraction is 

1‰. The only difference here is that we use a different source in this problem. Since in 
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the far field, the incoming plane wave hardly attenuates while the scattered wave 

attenuates with distance, we may use a point source at the center of the assemblage 

instead of a plane wave source. The point source would emit a monochromatic wave of 

angular frequency ω from inside the assemblage.  

 

Fig. 9 Total field intensity level (compensated by distance, which is r2*I), at 

different frequencies. 

Fig. 9 is a plot of the total field intensity level far away from the assemblage. Special 

points of interest a to f are marked out in the plot. The peaks might correspond to 

different collective modes of the assemblage. Also notice that there is sharp decrease in 
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intensity level around ka=0.0235. The intensity level drops very quickly from 40 dB to -

120 dB, which is almost undetectable.  

Hoskinson & Ye (Hoskinson & Ye, 1999) reported similar results in their paper for a 

2D case. They regard the sharp decrease as wave localization, which is analogous to the 

famous “electron localization” effect first found by Anderson in 1958 (Anderson P. W., 

1958). When wave localization takes place, energy is basically trapped in one region 

until dissipated. Localization is thought to be associated with the process of multiple 

scattering. 

 

Fig. 10 Phase state distribution of the bubbles at frequencies marked out in Fig. 9. 
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Fig. 10 gives out the phase distributions at the frequencies marked out in Fig. 4, from 

a to f. Case a basically corresponds to the first resonant peak in the previous plot; 

almost all bubbles synchronize their phase to π/2. In case b, half of the bubbles’ phases 

are near 3π/2, while the rest is evenly distributed from π/2 to 3π/2. In case c, though we 

do see a resonant peak in the plot, the phase states of the bubbles distribute randomly 

from 0 to 2π.  

The most interesting phase distribution is case d, where wave localization is 

assumed to take place. As we can see, all the bubbles are split into 2 parts, half of them 

oscillate at phase 0 and the other half oscillate at phase π. In this situation, the two 

halves of bubbles are acting like 2 large bubbles oscillating π out of phase with each 

other, which can be regarded as a dipole. 

An intuitive interpretation on the phase distributions can be given regarding 

resonant peaks and wave localization phenomena. In case (a), the phase states of 

almost all the bubbles tend to synchronized at π/2, which means that almost all the 

bubbles in the assemblage contract and expand at the same phase. So as a whole, the 

assemblage emits energy very efficiently. However, in case (d), half of the bubbles 

oscillate π out of phase with the rest half. In this case, as half of bubbles expand, the 

other half contract. Basically, the water mass stays inside the assemblage and thus 

little energy is transmitted out. Of course, this is just a tentative explanation of the 

numerical result. The real story happening inside the assemblage might be much 

more complicated than we think. 
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Chapter 5 Summary 

In this study, we have developed an efficient numerical model for general purpose 

calculations of multiple scattering effects in large number of scatterers. We applied our 

code in 3 scenarios: 

1. Computing total coherent cross section for large number of bubbles. In this 

computation, we investigated the relationship between total coherent cross section and 

frequency. Several resonant peaks were recognized in the plot, which might be the 

collective modes of the bubble assemblage. The directivity of the scattering field is also 

studied. According to the data we obtained from the simulation, it was found that as the 

frequency increases, more energy is focused in the forward transmission direction. 

2. Investigating the variation of resonant frequency shift. We computed the total 

coherent cross sections with different values of void fraction β and different numbers of 

scatterers N. It was found that as void fraction β increases, i.e. the assemblage becomes 

denser, the resonant peak frequency shifts down. A plot was given to quantitatively 

describe relationship between resonant frequency, void fraction, and the number of 

scatterers. It was also suggested from the plot that when the void fraction is below 

approximately 10-5, multiple scattering effects do not play an important role. 

3. Investigating the phase states of the oscillating bubbles in multiple scattering. 

With the help of our code, we can easily determine the phase states of each bubble in 

the assemblage. It is found that at some resonant peaks, all the bubbles seem to 
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synchronize to the same phase, which might suggest the lowest mode of collective 

oscillation. The phase states corresponding to the wave localization phenomenon was 

also investigated, and the results indicate that in this situation, half of the bubbles 

oscillate at phase 0 while the other half oscillate at phase π. An intuitive interpretation 

of this behavior was given.
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