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InSAR has been proved to be useful for detecting large scale small surface 

motion from space. For a series of environmental phenomenon and their 

associated geomechanical processes, new insights are obtained from spatio-

temporal information provided by InSAR. However, for some applications, how to 

get reliable deformation signal, how to use these information, and how to build 

the mechanical models remain some questions. For ice mass loss estimation 

problem, it is easy to build a linear inverse model from observed deformation. 

Unfortunately, this model is highly under-determined, which means the places far 

from the ice margin are usually poorly constrained while the places close to the 

ice margin are underestimated. For present-day hydraulic fracturing problem, 

only the upper crust is sensitive to the load change. But the existing global 1-D 

earth models usually have a coarse resolution in crust. Moreover, these models 

are typically from seismic wave velocities representing the dynamic moduli 

instead of the static moduli required for the hydraulic fracturing modeling. For 

geological carbon sequestration study, there was one successful attempt based 

on InSAR in the desert in 2008 and almost no new result comes out after that. 



 

 

The main problem is that most carbon sequestration projects are located in rural 

areas where less stable reflection targets can be found. 

         In this dissertation I will try to answer the questions listed above. I will 

discuss two different methods solving the under-determined linear inverse 

problem for ice mass loss estimation in chapter 2 and 3. For the second 

question, I will discuss two different test sites and their crustal elasticity in 

chapter 4 and 5. In chapter 6 I will discuss the development of a time-series 

analysis method for retrieving small surface deformation at carbon sequestration 

injection sites in north America.



 

iii 
 

Table of Contents 

List of Figures                                                                                   vii                                                                                                                

List of Tables                                                                                     x                                                                                        

1 Introduction                                                                                                       1            

        1.1 Background……………………………………………………………………1 

        1.2 Objectives……………………………………………………………………..2                                                                                                            

        1.3 Road map……………………………………………………………………..5 

2 A method for estimating ice mass loss from relative InSAR observations: 

Application to the Vatnajökull ice cap, Iceland                                                6 

        2.1 Overview………………………………………………………………….......7 

        2.2 Background………………………………………………………………….10 

        2.3 Ice mass loss rate estimation from InSAR observations……………….13 

        2.4 InSAR data………………………………………………………………....18 

        2.5 Ice mass loss rate estimation……………………………………………..23 

        2.6 Discussion………………………………………………………………......30 

                2.6.1 Model fit……………………………………………………………..30 

                2.6.2 Effect of viscoelastic behavior…………………………………….30 

                2.6.3 Young’s modulus…………………………………………………...34 

                2.6.4 Mass loss rate……………………………………………………….35 

        2.7 Conclusions………………………………………………………………….36 

3 Another method for estimating ice mass loss from InSAR observations: 

application to the Barnes ice cap, Canada                                                      38 



 

iv 
  

         3.1 Overview ………………………………………………………………….....39 

        3.2 Background…………………………………………………………………..41 

        3.3 InSAR analysis……………………………………………………………....43 

        3.4 Results……………………………………………………………….............47 

        3.5 Modeling……………………………………………………………………...48 

                3.5.1 Methodology………………………………………………………....49 

                        3.5.1.1 Quad-tree resampling......................................................49 

                        3.5.1.2 Penalty function...............................................................51 

                        3.5.1.3 Constrained least-square................................................51 

                3.5.2 Results.......................................................................................51 

        3.6 Discussion.............................................................................................53 

        3.7 Conclusion............................................................................................54 

4 Inhomogeneous firn density distribution inferred from InSAR at 

Petermann glacier, Greenland                                                                       56 

        4.1 Overview...............................................................................................57 

        4.2 Background...........................................................................................60 

        4.3 InSAR data and analysis.......................................................................63 

                4.3.1 Data processing.........................................................................63 

                4.3.2 Results.......................................................................................64 

        4.4 Modeling and results............................................................................66 

        4.5 Discussion............................................................................................71 

                4.5.1 InSAR derived velocities...........................................................71 

                4.5.2 Effective density........................................................................72 



 

v 
  

        4.6 Conclusions..........................................................................................73 

5 InSAR observations of lake loading at Yangzhuoyong lake, Tibet: 

constraints on crustal elasticity                                                                     74 

        5.1 Overview..............................................................................................75 

        5.2 Background..........................................................................................77 

        5.3 InSAR analysis.....................................................................................79 

        5.4 Results.................................................................................................83 

        5.5 Modeling...............................................................................................85 

        5.6 Discussion............................................................................................90 

        5.7 Conclusions..........................................................................................95 

6 Ground deformation due to carbon sequestration detected using 

TerraSAR-X: a case study in Texas, United States                                       97 

        6.1 Overview..............................................................................................98 

        6.2 Study area............................................................................................99 

        6.3 Data....................................................................................................100 

        6.4 Point selection....................................................................................102 

        6.5 Interferogram denoising and absolute phase retrieving.....................103 

        6.6 Time-series inversion.........................................................................105 

        6.7 Results and discussion......................................................................109 

7 Conclusions                                                                                                 116 

        7.1 Summary of contributions...................................................................116 

        7.2 Future work.........................................................................................117 

Bibliography                                                                                                    119 



 

vi 
  

Appendix A                                                                                                      134  

Appendix B                                                                                                      136 

Appendix C                                                                                                      137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

List of Figures 

     2.1 Schematic illustration summarizing the ice mass estimation approach......9 

     2.2 Averaged 1995-2009 LOS velocities around Vatnajökull from descending 

track 281 and ascending track 316 and location map..........................................12 

     2.3 Baseline-time plot of the network of SAR acquisitions and interferograms 

used for the time-series inversion........................................................................21 

     2.4 Vertical velocity map derived from descending and ascending LOS 

velocity fields........................................................................................................22 

     2.5 InSAR-GPS comparison for vertical velocities..........................................23 

     2.6 Observations, models and residuals.........................................................25 

     2.7 Ice mass loss rate as a function of the decay distance k..........................27 

     2.8 Thinning rate model of Vatnajökull............................................................28 

     2.9 Simulated 1995-2009 vertical velocities for disk (50 km radius) unloading 

of the lithosphere along a radial profile from the disk center to 150 km distance 

for two different Earth models..............................................................................32 

    3.1 DEM of Barnes ice cap..............................................................................42 

    3.2 A typical interferogram between 20150202 and 20150226.......................44 

    3.3 Baseline plot of InSAR data.......................................................................45 

    3.4 InSAR LOS displacement map..................................................................46  

    3.5 Elevation change at Barnes ice cap between 2010 and 2014, derived from 

Cryosat-2 altimetry...............................................................................................48 

   3.6 Ice mass loss inversion simulation (disk like ice cap).................................50 

   3.7 Expected and inversed models...................................................................52 



 

viii 
 

   4.1 Illustration of effective ice density...............................................................59 

   4.2 Study area - Petermann glacier..................................................................61 

   4.3 Descending and ascending tracks velocity between 2003 and 2010.........65 

   4.4 Ice thining rate model used in this study (2003 - 2010)..............................67 

   4.5 Observations, models and residuals...........................................................68 

   5.1 Topographic relief of the study area around Yangzhuoyong Lake.............78 

   5.2 Lake level variation at Yangzhuoyong Lake (1974 - 2010).........................79  

   5.3 Baseline-time plot of the network of SAR acquisitions and interferograms 

used for the time-series inversion........................................................................80 

   5.4 APS and DEM corrections on wrapped phase............................................82 

   5.5 LOS displacement time-series relative to the first acquisition.....................84 

   5.6 Variance, sample covariance and fitted covariance function......................87 

   5.7 Observation, model and residual for prefered model..................................88 

   5.8 Models and residuals for elastic half-space and layered (seismic data 

inferred) models...................................................................................................89 

   5.9 Profile BB’ showing observation, model and residual.................................90 

   5.10 Average InSAR LOS velocities obtained using different atmospheric delay 

correction approaches.........................................................................................92 

   5.11 Earth model and parameters....................................................................94 

   6.1 Shaded relief digital elevation map of Hastings........................................100 

   6.2 Baseline plot as a function of time............................................................102 

   6.3 Variance-Bias trade off of RR...................................................................108 

   6.4 Model resolutions......................................................................................109 



 

ix 
 

   6.5 InSAR LOS velocity map from January 2012 to April 2014......................110 

   6.6 Comparison between OLS and RR at point A..........................................111 

   6.7 Final time-series after RR at four selected points.....................................112 

   6.8 Two deforming phases around point D.....................................................113 

   6.9 GPS vertical and InSAR LOS time-series.................................................114 

   6.10 InSAR-pressure comparison...................................................................115 

 

 

        

 

        

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
  

List of Tables 

     2.1 Ice mass loss rates of the Vatnajökull ice cap and whole Iceland............13 

     5.1 Earth model from seismic data.................................................................85



 

1 
 

 

Chapter 1 

Introduction 

1.1. Background 

 Developed in 1970s [Graham, 1974], repeat-pass synthetic aperture radar 

interferometry (InSAR) was a technique retrieves surface topography at large 

scale (hundreds of kilometers) and high resolution (several tens of meters). By 

subtracting an existing digital model (DEM), the differential InSAR (D-InSAR) 

technique was used to measure centimeter level surface motions such as co-

seismic deformation [Massonnet et al., 1993] and volcanic eruption [Amelung et 

al., 2000]. In early 2000s, time-series analysis analysis algorithms [Ferretti et al., 

2000; Berardino et al., 2002] significantly increased the accuracy of InSAR 

products to 1-2 cm. More developments [Hooper et al., 2006; Hong et al., 2008] 

based on these algorithms further pushed the frontier of InSAR study to detecting 

smaller geomechanical signals, and after late 2000s, the InSAR community 

started to focus on sub-centimeter surface deformation [Zhao et al., 2014] and 

time-dependent modeling [Chaussard et al., 2014].
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 Because of the unprecedented sensitivity to surface movements based on 

these techniques, new applications and models in geophysics can be potentially 

developed. In this dissertation, we discuss 5 different applications on ice mass 

balance estimation, effective firn density constraining, earth’s rheology 

constraining, and carbon sequestration (CCS) sites monitoring. In some 

applications, we make fundamental contributions by defining completely new 

models. In other applications, we modify previous methods in order to satisfy the 

local environmental and data requirements.    

 

1.2. Objectives 

 Space geodetic techniques commonly used to estimate ice mass loss are 

the GRAvity and Climate recovery Experiment (GRACE), laser and radar 

altimetry, and InSAR. The study of using bed-rock deformation measured from 

InSAR to estimate the ice loss on ice-sheets started since Liu et al. [2012], who 

use 5 years Radarsat-1 data and stacking method to generate radar line-of-sight 

(LOS) velocity. The major challenge is there is no observation on the ice sheet, 

so that the places far from the ice margin are poorly constrained represented by 

an under-determined system in the inversion. The solution suggested by Liu et 

al. [2012] is to introduce a penalty function regularizing the neighboring 

smoothness of each ice block. In my dissertation, I am going to introduce two 

different methods solving this problem. The first method is based on an 

assumption of the spatial distribution of thinning rates – we define the thinning 

rate following an exponential law as a function of distance from the ice margin. 
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The inverse problem becomes over-determined based on this assumption. The 

second method is based on a series of constraints added into the linear system. 

The first constraint is implemented by a quadtree down sampling in order to 

reduce the model complexity especially at the center of the load. The second 

constraint is a modified penalty function controlling the local smoothness of the 

ice thinning rates. The last constraint is for the variability of thinning rates and 

total ice loss inferred from altimetry and gravity products. I tested this method on 

simulation data and will apply it to Barnes ice cap, Canada. 

  Ice mass balance is combined process including dynamic ice motion, 

runoff due to melting, evaporation/sublimation, snow accumulation. The ice 

thinning rate is also affected by firn compaction, glacial isostatic adjustment 

which are uncorrelated to mass loss. All these processes lead to an effective 

density for the elevation change [Li and Zwally, 2011]. Several climate models 

are used to build the model of density, such as Box [Box, 2013; Box et al., 2013], 

MAR [Fettweis et al., 2011], RACMO2 [Ettema et al., 2009] and HIRHAM 

[Christensen et al., 2006]. And several firn models are suggested by Li and 

Zwally [2011], Zwally et al. [2011], Khan et al. [2014]. However, there is no 

existing method to validate these models.  For InSAR based ice 

loading/unloading problem, when displacement, volume change and earth model 

are fixed, the effective density of the ice /firn is the only unknown parameter. 

InSAR is thus able to validate the firn model and find large scale error if there is 

any in the firn model. 
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Accurate earth model is important for geomechanical studies, especially 

for surface loading problem, in which the error of Young’s modulus can 

proportionally propagate into the model [Zhao et al., 2014]. The global 1-D model 

(PREM) derived from seismic velocities has been available since 1980s 

[Dziewonski and Anderson, 1981]. However, for present-day surface loading 

problem, the upper crust is more sensitive to the load change, but global 1-D 

model does not provide a good resolution in the crust. For small loads, there may 

be some lateral heterogeneity at different locations of the world. Moreover, 

Elastic moduli calculated from seismic velocities are dynamic moduli, while only 

static moduli derived from stress-strain relation are useful for the problem like 

hydraulic fracturing. However, static moduli are usually not easy to be obtained in 

real world environment. When the load changes are known, geodetic techniques 

are able to measure the long-term deformation and gravity changes due to these 

changes. Thus static moduli can be constrained by these measurements. Typical 

geodetic measurements for these studies include GPS [Bevis et al., 2004], 

GRACE [Steckler et al., 2010; Fu et al., 2011] and InSAR [Cavalie et al., 2005; 

Nof et al., 2012 and Aruiac et al., 2013]. In this dissertation, I will use InSAR to 

detect surface deformation due to ice loss on Petermann glacier, Greenland and 

water level drop at Yangzhoyong lake, China, and then test the elastic 

parameters at these two sites. 

InSAR has been proved to be useful for monitoring surface deformation 

associated with geological CCS [Vasco et al., 2008]. A series of reservoir 

simulations based on the first success of InSAR in In Salah, Algeria were built 
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[Vasco et al., 2010; Rutqvist et al., 2010; Rucci et al., 2010; Tamburini et al., 

2010; Bissell et al., 2011; Shi et al., 2012; Rinaldi and Rutqvist, 2013]. The CCS 

induced surface deformation is usually at a magnitude of several millimeters, 

requiring high stability of the interferometric phase. In this dissertation I will 

discuss the usefulness of low frequency data in rural or vegetated areas because 

of its ability of keeping coherence. I will also discuss the application of new 

generation TerraSAR-X data used for CCS monitoring.  

 

1.3. Road map 

 The dissertation includes 7 chapters. The first chapter will be introduction; 

chapter 2 will describe a method for constraining ice mass loss and its 

application at Vatnajokull, Iceland; chapter 3 will be another method for ice mass 

loss estimation and its application at Barnes ice cap, Canada; chapter 4 will be 

about constraining firn density at Petermann, Greenland; chapter 5 will be about 

constraining the crustal elasticity at Yangzhuoyong lake, China; chapter 6 will be 

about detecting ground deformation due to CCS injection using InSAR in north 

America; and the last chapter will be conclusions.  
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Chapter 2 

A method for estimating ice mass 
loss from relative InSAR 
observations: Application to the 
Vatnajökull ice cap, Iceland 
 

Summary 

We present a new method for estimating ice mass loss from glaciers and ice 

sheets using Interferometric Synthetic Aperture Radar (InSAR) time-series data.  

We use a linear inversion method based on observations of nearby bedrock uplift 

and a solution for surface loading of an elastic half-space. The method assumes 

that mass loss is focused on lower elevation terminal regions of the glacier or ice 

sheet, and that there is an exponential decrease in thinning rate towards the 

higher elevation interior. We apply the method to uplift rates between 1995-2009 

near Vatnajökull, Iceland. The data reveal up to 13 mm/yr relative line-of-sight 

(LOS) velocity around the south-western edge of Vatnajökull. We find an ice 

mass loss rate of Gt/yr, in approximate agreement with other estimates.  
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2.1. Overview 

 The mass balance of ice sheets, ice caps, and glaciers is one expression 

of global climate change. Many recent studies suggest rapid acceleration of 

cryosphere melting since the late 1990s [Khan et al., 2007, 2010; Howat et al., 

2008; Wouters et al., 2008; Chen et al., 2009; Jiang et al., 2010; Sorensen et al., 

2011; Ewert et al., 2011; Shepherd et al., 2012; Lenaerts et al., 2013; Yang et al., 

2013]. Ice loss currently contributes 0.7–1.8 mm/yr to present-day global sea 

level rise [Meier et al., 2007; Gardner et al., 2013] and this is likely to increase in 

the future. 

 Space geodetic techniques commonly used to estimate ice mass balance 

include the Gravity Recovery and Climate Experiment (GRACE) [Velicogna and 

Wahr, 2006; Chen et al., 2006; Ramillien et al., 2006; Wouters et al., 2008; 

Slobbe et al., 2009] and laser and radar altimetry [Howat et al., 2008; Pritchard et 

al., 2009; Sorensen et al., 2011]. These techniques typically have limited spatial 

resolution. InSAR and speckle tracking can be used to measure ice flow 

velocities and their temporal changes [Joughin, 2002; Rignot et al., 2011b, 2013] 

from which, combined with ice thickness data and regional models, changes in 

mass balance can be inferred [Rignot et al., 2008; Osmanoglu et al., 2013]. The 

main challenge of InSAR-based ice flow measurements is poor temporal 

resolution (sampling intervals of several weeks), although this recently was 

improved with the launch of TerraSAR-X [Joughin et al., 2011]. InSAR and GPS 

have also been used to directly measure uplift at the edge of glaciers [Jiang et 
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al., 2010; Bevis et al., 2012; Liu et al., 2012; Auriac et al., 2013; Yang et al., 

2013], from which mass balance can be inferred, as described below. 

 The mass loss of a glacier results in uplift of nearby crust, due to isostasy 

and local deformation, a process known as glacial isostatic adjustment (GIA). 

Hence, uplift measurements can constrain mass balance [e.g., Jiang et al., 

2010]. However, these methods have two limitations. First, they require 

independent information (or assumptions) on load distribution in areas where no 

geodetic observations are available, for example assuming a homogenous 

unloading slab [Jiang et al., 2010]. Second, the observed ground deformation 

consists of both an instantaneous elastic and a delayed viscous component 

(Figure 1) [e.g., Peltier, 1974; Wu, 1992; Mitrovica et al., 2001]. The elastic 

deformation can be assumed to represent contemporaneous uplift in response to 

current melting. The viscous deformation may have two components, a long 

delayed component due to melting of ice sheets from Earth’s last glacial 

maximum, approximately 20,000 years ago, and a more recent component in 

response to the early phases of the current melting period. For example, in 

Iceland, the current melting period started at the end of the Little Ice Age at 

~1890 AD [Sigmundsson, 1991]. This is long enough before present that viscous 

response of the lower crust and upper mantle might contribute to the 

contemporary surface deformation field. The viscous component has a long-

wavelength signal (spatial extent larger than 40 km) because it occurs in 

response to flow in the mantle (mainly below 40 km). The interpretation of ground 
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deformation in terms of mass balance requires separation of these various 

spatial and temporal components [Jiang et al., 2010; Bevis et al., 2012]. 

 

Figure 2.1. Schematic illustration summarizing the ice mass loss estimation 

approach. Glacial isostatic adjustment (GIA) has two components, 

contemporaneous elastic response due to current melting and longer-term 

viscous response due to prior melting and early phases of current melting. 

Melting at the edge of an ice sheet results in short wavelength elastic response, 

whereas viscous response is a longer-wavelength signal. Relative InSAR 

measurements are sensitive to short but not to long wavelength signal. The 

method works only for ice loss along the ice edge where elastic response has 

much shorter wavelength than viscous response. We use an elastic half-space 

model with a Young’s modulus of 40 GPa and Poisson’s ratio of 0.25. Shrinking 

of the ice cap surface area is exaggerated. 
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 This paper presents a new approach for mass balance estimation from 

geodetic observations (Figure 1). We use InSAR, which measures relative 

displacements across a SAR scene and is sensitive to local deformation 

differences. Since ice melting occurs primarily at lower elevations near the ice 

edge, the short wavelength contemporaneous deformation (spatial extent a few 

tens of kilometers or less), is resolvable with InSAR and is dominated by the 

contemporary elastic component of deformation. 

 The chapter is organized as follows. We first describe the geological 

background (section 2.) and then introduce the theory of our ice mass loss 

estimation method (section 3.). We then present the InSAR observations and ice 

mass loss estimation for the Vatnajökull ice cap in Iceland (sections 4. and 5.), 

followed by a discussion of the sensitivity and potential error sources for the 

technique (section 6.). 

 

2.2. Background 

The Icelandic ice caps were the 7th largest contributor to global sea level 

rise between 2003 and 2010 [Jacob et al., 2012]. Vatnajökull is the largest ice 

cap in Iceland, with a mean elevation of 1215 m and a maximum ice thickness of 

950 m [Björnsson and Palsson, 2008]. The other three big Icelandic ice caps, 

Hofsjökull, Myrdalsjökull, and Langjökull, are located further west (Figure 2). The 

western part of Vatnajökull is underlain by the mid-Atlantic-ridge, which spreads 

at a half rate of about 1 cm/yr [LaFemina et al., 2005; Jonsson, 2008], and by the 

Icelandic hot spot, coincident with the ridge. GIA following the last deglaciation 
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ended at ~9000 BP [Sigmundsson, 1991], reflecting the thermal influence of the 

spreading ridge and hot spot, and the corresponding low viscosity of the 

Icelandic upper mantle. Vatnajökull started its most recent retreat at the end of 

the little ice age, ~1890 [Sigmundsson, 1991], when its surface area was ~8600 

km2 [Björnsson and Palsson, 2008]. From 1890 to 2003, Vatnajökull lost 435 

km3 ice. Its surface area in 2007 was ~8100 km2 [Pagli et al., 2007a, Arnadottir 

et al., 2009]. The corresponding average thinning rate since 1890 is 0.5 m/yr 

(Table 1). Vatnajökull’s ice loss and accumulation has varied in time, e.g., there 

was net growth from 1991 to 1994 [Björnsson and Palsson, 2008]. The ice loss 

from 1994 to 2005 was 84 km3, corresponding to an average thinning rate of 

0.84 m/yr [Björnsson and Palsson, 2008], almost half of the maximum rate 

following the last glacial maximum [2 m/yr; Pagli and Sigmundsson, 2008]. 

 

Figure 2.2. Averaged 1995–2009 LOS velocities around Vatnajökull from (a) 

descending track 281 and (b) ascending track 316 and location map. Dashed line 

marks mid-Atlantic ridge. Star marks the reference point (near GPS station 

7485). Black rectangle (east of H): area used for error estimation. A, B, G, GJ, ö, 
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T: Askja, Bardarbunga Grimsvötn, Gjalp, Oraefajökull, Torfajökull volcanoes. H, 

L, M: Hofsjökull, Langjökull and Myrdalsjökull ice caps. (c and d) LOS 

displacement time series for locations P1 and P2. Blue triangles: descending 

orbit (shifted upward 4 mm/yr for visualization). Red circles: ascending orbit. 

Arrows at lower right corners of Figures 2a and 2b indicate flight directions (F) 

and the range (R5LOS) directions. Background of Figures 2a and 2b shows DEM 

of the study area.  

 

 

    aParameter given in reference. 

    bCalculated from total thinning of 9.2 m water equivalent thickness. 

  cCalculated from the mass loss rate. Other parameters are calculated using an 

ice density of 917 kg/m3 and a surface area of Vatnajökull of 8100 km2 (post-

1990). 

 

 In this section, we have reported average ice thinning rates. In the 

following sections, we consider spatially varying thinning rates following an 

exponential model, except for special cases of uniform thinning, when we quote 

the results of Grapenthin et al. [2006], and in Table 1, where we have converted 
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the estimated mass loss rate into an average thinning rate. Throughout this 

paper ice thinning stands for ice elevation change. 

 

2.3. Ice mass loss rate estimation from InSAR 

observations 

 Crustal uplift due to ice melting is a surface unloading problem, similar to 

loading the crust by water level changes in artificial or natural lakes [Kaufmann 

and Amelung, 2000; Cavalie et al., 2007; Nof et al., 2012]. We use the solution 

for the surface displacement of an elastic half space due to a point source with a 

unit mass in cylindrical coordinates assuming axial symmetry [Sneddon, 1951; 

Pinel et al., 2007]: 

          (1) 

      (2) 

where V and U are the vertical and radial displacements, g is the gravitational 

acceleration, t is the Poisson’s ratio, E is the Young’s modulus, and r is the 

distance from the point source. We assume that the load change (mass loss rate) 

is constant with time and use velocities instead of displacements. In the 

following,  

 

we formulate a linear inverse problem to estimate the load change from surface 



14 
 

 
 

velocities. 

 Glaciers and ice sheets generally melt from the edge toward the interior 

[Sigmundsson and Einarsson, 1992; Marshall et al., 2005]. We assume that the  

 

mass loss rate decreases exponentially with distance from the ice edge and 

describe it using the thinning rate h(x), 

       (3) 

where k is the decay distance (the distance where the thinning rate reduces to 

1/e of the rate at the edge), x is the distance from the ice edge, c is the thinning 

rate at the inland portion of a glacier (x >> k), and a is the thinning rate at the ice 

edge (x50). The units of h, a, and c are m/yr (positive for thinning), and k is in 

meters. Ice accumulation far from the ice edge is represented by negative c. We 

can expand this one-dimensional model to a two-dimensional model by dividing 

the load change into a series of square blocks, calculating the displacement rate 

due to point loads with the corresponding masses for each block, and 

superposing the solutions for all blocks. The ground velocities for such a 

model are calculated as 

(4) 

(5) 
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where superscripts v, e, n represent vertical, east, and north directions, xi is the 

distance of an ice block to the ice edge, i = 1,. . ., N with N the number of blocks, 

 is the block spacing,  is the density of ice, and rli the distance between the  

 

point load representing block i and observation point l = 1,. . ., L with L the 

number of observations. 

 The ground velocity is linear with respect to parameters a and c and 

nonlinear with respect to k. InSAR measures velocities in the radar line-of-sight 

direction (LOS). For a given k, we have a linear system, 

            (6) 

where is the L × 1 vector of observations (LOS velocities) and 

the 2 × 1 vector of model parameters. We use the least-square solution 

        (7) 

with A-g the generalized inverse. The model variance is given by [Snieder and 

Trampert, 1999] 

        (8) 

where  is the model standard error of the ith ice block,  is the standard 

error of lth velocity field. The design matrix A can be written as 

        (9) 
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where A is a L  2 matrix, and each line represents the mapping relationship 

between independent variables and observation at location l. The lth line of A 

represents the mapping from mass loss rate to the lth absolute velocity field. By 

subtracting the line representing the reference point from each line, A is then a 

relative mapping matrix. The dot operator represents matrix elementary 

multiplication, and the cross operator represents matrix multiplication. 

(10) 

(11) 
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(12) 

where B and C are 2 L  3N matrices, in which the first N columns correspond to 

vertical component, the second N columns correspond to east component, and 

the third N columns correspond to north component. B contains the mapping 

parameters from three-dimensional velocities to LOS direction. C is generated 

from equations (4) and (5).  is the look angle of the radar beam and a is the 

azimuth angle representing the flight direction. D is a 3N  2 matrix for 

parameters describing the exponential unloading model. 

 We establish a series of linear inversions by searching each possible 

value of k with reasonable stepping (5000 m). For a given k, we thus solve for a 
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and c. Although the inversion problem is overdetermined, the sensitivity of the 

data for predicting the model varies spatially. In the far field (far from the ice 

edge), the data resolutions [Menke, 1989] are very poor. Low data resolution can 

bias the model predictions [Lohman and Simons, 2005; Xia et al., 2008]. We thus 

use a weighting approach according to the diagonal values of the data resolution 

matrix w = (diag(N))p, where w is the weighting vector, N is the data resolution 

matrix, diag() represents the process of retrieving the diagonal vector of N, and p 

is a amplification factor. We use p = 2 for this study. 

 The estimated mass loss rate thus should depend on k. In practice, we 

find that although a and c are sensitive to k, the estimated mass loss rate is not 

(see section 5.). We conclude that the proposed approach allows a reliable 

estimation for glaciers and ice sheets with exponential thinning from edge to 

interior. 

 

 

2.4. InSAR data 

 We use 1995–2009 C-band ERS imagery and the Small Baseline InSAR 

time-series method [Berardino et al., 2002; Fattahi and Amelung, 2013] for 

measuring the contemporaneous deformation around Vatnajökull. In Iceland, 

only summer acquisitions (late June to early October) are suitable for InSAR 

because of snow cover during other seasons; the typical temporal density is 

three images per year for each track. We combine the SAR acquisitions to form 

interferogram networks using thresholds in perpendicular spatial baseline of 300 
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m and temporal baseline of 3 years, supplemented by a few longer temporal or 

spatial baseline interferograms to ensure full network connection (110 and 43 

interferograms on descending and ascending tracks, see Figure 2.3.). We 

estimate ground velocity assuming linear deformation (neglecting seasonal 

effects although they are known to be significant) [Grapenthin et al., 2006]. We 

eliminate long-wavelength phase contributions (the signal across the two SAR 

frames) by removing quadratic surfaces in range and azimuth directions, 

estimated at each epoch of the InSAR time-series after masking out the 

deforming areas near the ice edge. The long-wavelength phase contributions are 

due to plate motion [LaFemina et al., 2006; Geirsson et al., 2012], viscous 

deformation, and possibly orbital uncertainties [Gourmelen et al., 2010]. The 

effect of stratified atmospheric delays is small because of limited topographic 

relief in the study area. InSAR measurements, in particular at high latitudes, can 

be affected by ionospheric disturbances but this effect is generally small for C-

band data [Meyer, 2011]. 

 

Figures 2a and 2b show the 1995–2009 relative LOS velocities for the 

descending and ascending tracks. The InSAR measurements are relative to a 

reference point, which is a point near GPS station 7485 of Arnadottir et al. [2009]. 

Although the relative velocities could be transferred into absolute velocities using 

the motion of this station, it is not needed, because our modeling approach uses 

relative velocities only. 

Figure 2 shows a 5–10 km wide yellow-red band around the southwestern edge 
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of Vatnajökull, corresponding to relative LOS velocities up to 13 mm/yr and a 

large area of uplift west of the ice cap. The standard error of the LOS velocity 

fields are ~0.4 mm/yr and ~0.7 mm/yr for the descending and ascending tracks, 

respectively, estimated following Gourmelen et al. [2007] in an 18  18 km2 

nondeforming area (marked by the rectangle in Figures 2a and 2b). The 

displacement histories shown for two points near the ice edge suggest almost 

constant LOS annual velocity during the observation period (Figures 2c and 2d). 

Deviations up to 3 cm are most likely due to atmospheric effects and seasonal 

loading variations. The spatial extent of uplift is clearly represented in a map of 

vertical velocity (Figure 3), obtained by combining the descending and ascending 

LOS velocities vertical and horizontal velocities. The vertical ground velocity from 

InSAR is consistent with the relative changes in GPS velocities of Arnadottir et al. 

[2009] (the root-mean-square deviation is 2.1 mm/yr, see Figure 2.4). 
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Figure 2.3. Baseline-time plot of the network of SAR acquisitions (red dots) and 

interferograms (black lines) used for the time-series inversion. 
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Figure 2.4. Vertical velocity map derived from descending and ascending LOS 

velocity fields. Dashed line: axis of mid-Atlantic-ridge. Red star : reference point. 

Black squares: GPS stations. SKRO: a continuous GPS station. Black triangles 

are volcanoes. 
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Figure 2.5. InSAR – GPS comparison for vertical velocities. The numbers mark 

the names of the GPS stations. Station 7485 is used as reference for all points. 

 

2.5. Ice mass loss rate estimation 

 We estimate the ice mass loss rate using equation (7) for thinning rate 

models with different decay distances k. To build matrices B and C, we represent 

the load change (the change of ice mass) by a series of 1.4 km2 square blocks, 

each of which is approximated by a point load. We do not consider changes in 

surface area because the associated mass change is small. We select an area 

not influenced by recent volcanic activity southwest of Vatnajökull (the rectangle 

in Figure 5, surface area ~2500 km2) and sample the velocity fields using a 
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uniform grid to obtain a data vector consisting of 478 descending and 454 

ascending LOS velocities. The fit of a model to the data is described by the Root 

Mean Square Error, , with dl is the observations, pl is 

the model predictions, and L is the number of observations. We assume unit 

variance for all data points. 
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Figure 2.6. (a and d) Observations, (b and e) models, and (c and f) residuals. 

The modeled velocities were calculated for decay distance 57.5 km. Star: 

reference point. Black triangles: areas used for modeling. (g and h) LOS 

velocities along profiles for descending and ascending track. The AA’ and BB’ 
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profiles are shifted by several mm/yr. The descending track generally fits the 

model better than the ascending track because of more interferograms generated 

on this track. B: Bardarbunga volcano, G: Grimsvötn volcano, GJ: Gjalp volcano, 

H: Hofsjökull ice cap, M: Myrdalsjökull ice cap, and V: Vatnajökull ice cap. Red 

star : reference point. 

 

 We first test an unrealistic spatially uniform thinning rate model (  in 

equation (3)). The solution suggests an ice mass loss rate of 20.8 Gt/yr 

(corresponding to an average thinning rate of 2.8 m/yr), significantly higher than 

previous mass loss rate estimates (Table 1). This model is characterized by an 

RMSE of 4.3 mm/yr, suggesting a relatively poor fit to the observations, and 

suggesting that a spatially uniform thinning rate model is not appropriate. 

 We next consider exponential thinning rate models. We conduct a grid 

search over the decay distance k, and estimate for each k the parameters a and 

c using equation (6), varying k from 1 to 30 km with a step size of 0.5 km. The 

estimated mass loss rate depending on k is 6.8–7.3 Gt/yr (Figure 6). This narrow 

range of 0.5 Gt/yr suggests that variations in k are largely compensated by 

variations of a and c. We also found that RMSE does not vary significantly with k, 

i.e., the data are not sufficient to resolve k. Björnsson and Palsson [2008] present 

a thinning rate model that can approximated by an exponential model with k = 7.5 

km, a = 5.5 m/yr, and c = 21.6 m/yr (Figure 7). We thus use k = 7.5 km and invert 

for a and c. We find a = 3.75 m/yr and c = 20.75 m/yr, similar to values calculated 

by Björnsson and Palsson [2008]. 
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Figure 2.7. Ice mass loss rate as a function of the decay distance k. The gray-

shaded area marks the uncertainties range which is calculated based on 

equation (8). Dashed line marks the preferred model at k = 7.5 km. 
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Figure 2.8. Thinning rate model of Vatnajökull. (a) Solid line: 1-D estimated 

model for k57.5 km (a = 3.75 m/yr, c = 20.75 m/yr) and dotted line : exponential 

approximation to the model form Björnsson and Palsson [2008] (k = 7.5 km, a = 
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5.5 m/yr, and c = 21.6 m/yr). (b) two-dimensional thinning rate model obtained 

using the estimated 1-D model. 

 

 Including the observation error, the estimated range of mass loss rate is 

 Gt/yr. Adding the uncertainties associated with bounds in Young’s 

modulus (40 ± 15 GPa) [Grapenthin et al., 2006], the estimated mass loss rate is 

 Gt/yr. 

 Figure 5 shows the comparison between the model with k = 7.5 km and 

the observations. In the area southwest of Vatnajökull, the model predictions 

closely resemble the observations (Figures 5c and 5f). Some areas with high 

residuals are addressed below (section 6.1). 

 For the Hofsjökull (surface area 925 km2) and Myrdalsjökull (600 km2) ice 

caps we also use exponential thinning rate models, invert for the mass loss rate 

and obtain rates of 0.9 and 1.7 Gt/yr, respectively. The estimate for Hofsjökull is 

close to that of Grapenthin et al. [2006] (their average thinning rate of 1 m/yr for 

1996–2001 corresponds to a mass loss rate of 0.85 Gt/yr), but not the estimate 

for Myrdalsjökull. Grapenthin et al. [2006] report an average thinning rate of 0.5 

m/yr which corresponds to a mass loss rate of 0.3 Gt/yr. The estimates of the 

smaller ice caps are not well constrained because of the depth variation of 

Young’s modulus (see section 6.3.). For Langjökull (950 km2), we use the 

average thinning rate of 1.3 m/yr of Grapenthin et al. [2006], which corresponds 

to a mass loss rate of 0.9 Gt/yr, 1996 – 2004. 
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2.6. Discussion 

2.6.1. Model fit 

 Here we investigate discrepancies between our model predictions and 

observations. First, there is a lack of observed uplift at the northwestern edge of 

Vatnajökull. This is an area of highest topographic elevation where melting is 

slow because of low air temperature [Björnsson and Palsson, 2008]. This is not 

represented by our simple thinning rate model. This area was also subjected to 

subsidence following the 1996 eruption of Gjalp subglacial volcano [Pagli et al., 

2007b]. Discrepancies near the Hofsjökull and Myrdalsjökull ice caps are also 

likely due to simplification of the assumed thinning rate model. For these small 

ice caps, the exponential model may not fit very well because of the large 

contribution of outlet glaciers. Third, there is an excess uplift (Figure 4) west of 

Vatnajökull, also noted by Arnadottir et al. [2009]. This area is located above and 

west of the spreading center. A possible explanation for excess uplift here is 

viscoelastic deformation related to a locally low effective elastic layer thickness. 

The data from these areas are not included in the modeling and do not affect the 

estimated ice mass loss rate. 

 

2.6.2. Effect of viscoelastic behavior 

 Our approach to mass loss estimation is based on the assumption that the 

observed relative uplift can be explained by rebound of a homogeneous elastic 

half-space. However, GIA has both elastic and viscous components due to 

viscous flow in the upper mantle and possibly in the lower crust. Modeling of 
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GPS observations suggest that Icelandic lithosphere has a high viscosity lower 

crust and a low viscosity upper mantle, with average viscosities of >1021 Pa•s 

and 1019 Pa•s, respectively, and a crustal thickness of 40 km [e.g., Arnadottir et 

al., 2009]. Auriac et al. [2013] show that this rheological structure holds for the 

larger Vatnajökull area. However, spatial variations in rheology are likely. Iceland 

is located on a mid-ocean ridge and a hot spot. The lower crust and upper mantle 

can be thermally weakened depending on location [e.g., Barnhoorn et al., 2011]. 

For the ridge area in southwestern Iceland, Jonsson [2008] finds lower crustal 

and upper mantle viscosities of 1019 Pa•s and 3–4 1018 Pa•s, respectively. 

LaFemina et al. [2005] find near Vatnajökull a stronger lower lithosphere (1019 to 

1020 Pa•s), which may reflect an increased crustal thickness. For most of Iceland, 

the seismic crustal thickness is 30–40 km; it is thickest under Vatnajökull and 

thins to 20 km in the southwest [Foulger and Natland, 2003]. 

 To assess the potential impact of these effects, we compute the effect of 

viscoelastic relaxation on the deglaciation-induced uplift using the 3D version of 

the finite element code GTecton [Govers and Wortel, 2005]. We try the effects of 

two different models—one with a 40 km elastic plate and half-space viscosity of 

1018 Pa•s (model A) and a second one with a thinner elastic layer over a 

viscoelastic half space with a higher viscosity (5 km elastic plate and half-space 

viscosity of 1019 Pa•s, model B). Model A is similar to the model of Auriac et al. 

[2013] but has a lower viscosity, simulating the effect of elevated temperature 

due to the mid-ocean ridge. Model B has a low lower crustal (5–40 km) viscosity, 

which could be the result of high water content or nonlinear rheology. We use a 
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time-variable, constant disk load to simulate a realistic deglaciation history (see 

caption of Figure 8 for details of the load). 

 

Figure 2.9. Simulated 1995–2009 vertical velocities for disk (50 km radius) 

unloading of the lithosphere along a radial profile from the disk center to 150 km 

distance for two different Earth models. (a) Model A: 40 km elastic layer and 

1018 Pa•s half-space viscosity. (b) Model B: 5 km elastic layer and 1019 Pa•s 

half-space viscosity; Deglaciation starts in 1890 with thinning rates of 25, 40, and 

84 cm/yr for 1890–1964, 1965–1994, and 1995–2009, respectively. Blue line: 

elastic response. Green line: viscoelastic response. Red dashed line: difference 

between blue and green lines. Gray region: area of InSAR observations at 50–80 

km distance from the disk center. 
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For model A, the elastic and viscoelastic responses are similar. The 

viscous component produces a constant offset of 2 mm/yr (red dashed line in 

Figure 8a) without affecting the uplift gradient. For model B, the viscous 

component decreases from 10 mm/yr at the load center to 1 mm/yr at 150 km 

distance (Figure 8b). It contributes ~2.5 mm/yr to the uplift gradient at 50–80 km 

distance. Our approach of eliminating long wavelength deformation further 

lessens the impact of possible viscous deformation because it is largely removed 

from the observations. Weighting based on data resolution further reduces the 

magnitude of these viscous effects because areas with higher viscous than 

elastic deformation (far from the ice edge) receive less weight. 

We conclude that for modeling relative uplift near the ice edge the viscous 

component can safely be neglected, except in the case of a very weak 

lithosphere and a thin elastic layer. In this case, the elastic half-space 

assumption (i.e., neglecting viscous deformation) would lead to an 

overestimation of the mass loss rate, with the actual rates being smaller than the 

estimates. In other words, except for this very special situation, relative InSAR 

observations at the ice edge are mainly sensitive to the elastic component but 

not to the viscous component of surface deformation associated with melting ice. 

Of course, InSAR can only resolve mass loss at the edge of glaciers and ice 

sheets. 

The low viscosities of Model B are unlikely to occur under Iceland for two 

reasons. First, the upper mantle is relatively dry [Barnhoorn et al., 2011] and 

there is no water that could act to reduce the viscosity. Second, for typical grain 
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sizes of mid-ocean ridge mantle rock and for relatively low deglaciation-induced 

strain rates, linear diffusion creep is likely the dominant deformation mechanism 

[Barnhoorn et al., 2011]. 

 

2.6.3. Young’s modulus 

 Our model assumes a Young’s modulus of 40 GPa. It is important to 

justify this assumption because surface displacement is proportional to the load 

and inversely proportional to Young’s modulus (equations (1) and (2)). An 

inversion with twice the value of the Young’s modulus would yield twice the mass 

loss rate. 

 This modulus was estimated from GPS observations of the vertical 

deformation associated with seasonal loading in Iceland (winter snowfall and 

summer melting) [Grapenthin et al., 2006]. It can be considered an effective 

Young’s modulus for the elastic crust sampled by the load. For smaller loads, the 

effective Young’s modulus could be smaller because the shallow crust is likely to 

be more fractured, hence weaker. For example, Pinel et al. [2007] found an 

effective Young’s modulus of 29 GPa for the smaller Myrdalsjökull ice cap, 

suggesting that also the load change due to melting is of smaller spatial extent 

than for Vatnajökull. For larger seasonal loads significantly larger effective 

Young’s moduli are found [Bevis et al., 2005; Steckler et al., 2010]. 

 For the Icelandic crust, the mean P-wave velocities of 6.0 and 6.6 km/s at 

depths of 5 and 10 km [from Yang and Yang, 2005] correspond to dynamic 

modulii of 87 and 105 GPa, respectively (using a density of 2900 kg/m3 and 
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Poisson’s ratio of 0.25). Our choice of Young’s modulus is significantly lower than 

these values and is more likely representative of conditions associated with 

relatively slow load changes induced by glacial melting compared to higher 

values estimated from the passage of seismic waves. 

 Our values is consistent with the effective Young’s modulus of 44 GPa of 

Nof et al. [2012] from modeling uplift induced by rapid decline of the Dead Sea 

water level. The Dead Sea load change (~15 km across) is similar in size to the 

Vatnajökull load change (k = 7.5 km). 

 

2.6.4. Mass loss rate 

For the 1995–2009 period, the mass loss rate of the Vatnajökull ice cap 

estimated from the InSAR data is (depending on k)  Gt/yr. Mass loss rates 

from this and previous studies are summarized in Table 1. Our estimate agrees 

with the 1994–2005 rate of 6.4 Gt/yr from Björnsson and Palsson [2008]. A 

limitation of our study is that we only use observations from the southeast edge 

of the ice cap. That our mass loss rate estimate agrees with the in situ 

observations suggests that this section is melting at the average rate of the ice 

cap. The estimated mass loss is about twice the average mass loss rate of 3.5 

Gt/yr from 1890 to 2003 [Pagli et al., 2007a]. The rather constant uplift velocity 

during 1995–2009 (Figures 2c and 2d) suggests ice loss at a constant rate, in 

contrast to Greenland where ice loss is accelerating [Jiang et al., 2010; Rignot et 

al., 2011a]. 
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 We estimate mass loss rates for the Hofsjökull and Myrdalsjökull ice caps 

of 0.9 and 1.7 Gt/yr. Together with Langjökull’s mass loss rate of 0.9 Gt/yr, the 

total loss rate for the four major Icelandic ice caps (Vatnajökull, Hofsjökull, 

Myrdalsjökull, and Langjökull) is 10.3 ± 1 Gt/yr. This is equivalent to the 11 ± 2 

Gt/yr estimated from 2003 to 2010 GRACE data [Jacob et al., 2012]. 

 

2.7. Conclusions 

 We have presented an approach to estimate ice loss from uplift 

measurements of the Earth’s crust near glaciers and ice sheets that is optimized 

for the high spatial resolution of InSAR. The linear relationship between surface 

load change and ground uplift for elastic rheology allows us to estimate the ice 

mass loss rate from the measured uplift as long as prior information on Young’s 

modulus and the spatial thinning pattern of ice is available. An exponential 

decrease in thinning rate with distance from the ice edge is applicable for many 

glaciers and ice sheets. Our InSAR-based approach resolves small wavelength, 

relative changes in uplift across a SAR frame, and is especially sensitive to 

contemporaneous load changes along the ice edge. It is presumably also 

applicable to systems dominated by ice loss near the terminus, e.g., systems 

undergoing the initial stages of rapid retreat (later stages may be dominated by 

dynamic effects and mass loss farther from the terminus). Spatial variations in ice 

loss due to variations in air temperature or precipitation and variable outlet 

glacier geometry can in principle be resolved by separately analyzing different 

sections of ice. 
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 For Vatnajökull, we find for the 1995–2009 period an average ice mass 

loss rate of  Gt/yr consistent with ground-based estimates and broadly 

consistent with GRACE estimates for the entire island. We used only 

observations from the southwestern ice edge, suggesting that mass loss in this 

area is representative of the entire ice cap. 
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Chapter 3  

Another method for estimating ice 
mass loss from InSAR observations: 
Application to the Barnes ice cap, 
Canada 
 

Summary 

We present a method for ice mass loss estimation for ice caps using synthetic 

aperture radar interferometry (InSAR) time-series data. The method is based on 

the linear elastic theory describing relation between load and associated 

deformation. To overcome the underdeterminacy of the linear system, we use 

three extra constraints which resample the model space reducing the model 

complexity, control the smoothness of the model using a penalty function, and 

control the absolute range of each model parameters using constrained least-

square. We apply this method to the surface bed-rock displacement near the 

Barnes ice cap, which reveals up to 5 cm relative line-of-sight (LOS) 

displacement between May 2012 and April 2015. We find an ice mass loss of 

32.9±4.3 Gt during the study period, comparing to another
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estimate based on the method considering the exponential relation between ice 

thinning and distance from the ice edge introduced in Zhao et al. [2014], which 

obtains an ice mass loss of 27.9±3.2 Gt. 

  

3.1. Overview 

InSAR time-series has been able to detect millimeter level small ground 

motion since late 2000s [Gourmelen et al., 2010; Vasco et al., 2010; Ferretti et 

al., 2011; Zhao et al., 2014] using multi-temporal interferograms. This technical 

advancement brings great opportunities to extend InSAR to the studies of ice 

mass loss estimation in the cryosphere. However, there was not geomechanical 

model, a simple model based on elastic theory tends to be significant under-

determined without stable solution. Lin et al. [2012] suggested to use a penalty 

function constraining the spatial smoothness of ice loss pattern, and the method 

was applied to Jackobshavn Isbrea, Greenland between 2004 and 2008, 

validated by aerial triangulation measurement (ATM, laser altimetry). Zhao et al. 

[2014] provided a solution considering the approximated exponential relation 

between ice thinning rate and distance from the ice edge, and this method was 

applied to Vatnajokull, Iceland. In this study, we further discuss several potential 

methods can be used for the InSAR based ice mass loss study on a 

mathematical perspective. First, we add a constraint on the spatial smoothness 

based on Tokhonov regularization [Lin et al., 2012]. Second, we add quad-tree 

resampling into the model to reduce the model complexity and increase data 

sensitivity at the same time. Third, we use a real range of ice thinning rate, e.g. in 
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Iceland it is reasonable to assume the thinning rate is between -3 and 3 m/yr, to 

constrain the inversion. We combine all these 3 methods, and the final model is 

constrained better than each single method.  

Barnes ice cap has been in a rapid retreat period since 2006 [Gardner et 

al., 2012]. Techniques used in previous studies include DEM differencing 

[Gardner et al., 2012], elevation postings from airborne and satellite laser 

altimetry [Krabill, 2011; Gardner et al., 2011; Gardner et al., 2012; Gardner et al., 

2013; Nilsson et al., 2015], surface mass balance model (SMB) [Gardner et al., 

2011; Gardner et al., 2012] and satellite gravimetry [Gardner et al., 2011; 

Gardner et al., 2012; Jacob et al., 2012; Gardner et al., 2013; Lenaerts et al., 

2013]. Although all techniques conclude to generally consistent results, 

uncertainties such as post-glacial rebound, extent of ice cap changes through 

time, extrapolation of elevation posting data, mean glacier density, firn density, 

uncertainty of atmospheric correction on GRACE data, are sometimes not 

negligible [Gardner et al., 2012].  

Gardner et al. [2012] concluded the ice thinning rate between 2005 and 

2011 at Barnes ice cap is ~1.2 m/yr, corresponding to the ice mass loss of 6.3 

Gt/yr. Cryosat altimetry data suggests the annual winter-winter thinning rate 

between 2010 and 2014 is 2.7 m/yr [Gray et al., 2015]. In this study, we present 

the method described above, and apply it to Barnes ice cap using Radarsat-2 

data between 2012 and 2015. Our result confirms the previous conclusions that 

the rate of mass loss in this area is accelerating in recent years. Different from 
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altimetry methods, because the InSAR derived bed-rock displacement is directly 

related to mass change, our results are independent from firn density variation. 

 

3.2. Background 

Spanning ~150 km and ~60 km northwest to southeast and from 

southwest to northeast, Barnes ice cap (70N, 73W), located at the center of 

Baffin island, Canadian Arctic Archipelago, covers an area of about 5900 km2 

[Sneed et al., 2008], exhibiting like a big ecliptic dome. It is the last remnant of 

Laurentia Ice Sheet from ~20000 BP, buried with the Canada’s oldest ice [Dyke 

et al., 1987]. The highest place on the dome is ~1000 m with ~400 m topographic 

relief to the foot (Figure 1). And the DEM of whole area is similar to a ramp with 

elevation increasing from south-west to north-east. The annual averaged melting 

days at Barnes increases from 66 days (1979-1987) to 87 days (2002-2010), and 

the present-day melting season starts at the end of May and ends at the end of 

September [Florent et al., 2012]. A net accumulation of iced firn and superposed 

ice was found on the higher parts of the ice cap in 1980s [Hooke et al., 1987], but 

in present days, this accumulation area is believed to be very limited [Gardner et 

al., 2012; Nilsson et al., 2015]. The ice thickness was ~550 m in 1960s with peak 

elevation of 1116 m at that time. Between 1970 and 1984, Barnes ice cap lost 

average of 1.7 m ice, corresponding to the thinning rate of 0.12 m /yr according 

to ground survey [Sneed et al., 2008]. Between 1984 and 2006, the retreat speed 

increases, and the total ice thinning estimated from differencing the record at 

1984 and satellite image at 2006 is ~16.8 m, corresponding to the thinning rate of 
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~0.76 m/yr, and the rate between 2004 and 2006 reaches ~1 m/yr [Sneed et al., 

2008]. Ice loss accelerated in 2005; the ice cap thinned by ~7.2 m until 2011, 

corresponding to ~1.2 m/yr annual thinning rate or 6.25 Gt/yr mass loss rate 

[Gardner et al., 2012]. This acceleration is clearly recorded in the mass loss time-

series inverted from GRACE data [Gardner et al., 2012].  

 

Figure 3.1. DEM of Barnes ice cap. The blue frame draws the coverage of 

InSAR data. 

 

The last airborne laser altimetry campaign in this area (IceBridge ATM 

mission) was in 2011 [Krabill, 2011], and the GRACE data is limited by resolution 
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so that mass loss at Barnes cannot be distinguished from other glaciers on Baffin 

Bay. In this study, we apply our ice mass loss estimation method based on 

Radarsat-2 InSAR data between May 2012 and April 2015 at Barnes. And the 

results are compared with estimation from Cryosat data between 2010 and 2014.    

 

3.3. InSAR analysis 

We use 22 Radarsat-2 wide fine beam ascending imagery between May 

2012 and April 2015 for this study. The original interferograms are processed by 

the Canada Centre for Remote Sensing with 7 and 14 looks in range and 

azimuth directions respectively, corresponding to ~33 m and ~73 m resolutions in 

the radar coordinates (a typical interferogram is shown in figure 2). Because of 

snow coverage in the winter, the maximum temporal baseline we choose is less 

than 2 repeat cycle (48 days), and for summer day we choose temporal 

baselines up to 2 years. With the threshold of 350 m for spatial baseline, we 

obtain 59 interferograms (figure 3).   
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Figure 3.2. A typical interferogram (original) between 20150202 and 20150226. 

Ice flow in spring is clearly retrieved.  
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Figure 3.3. Baseline plot of InSAR data (perpendicular baseline as a function of 

time). Information of all dates see Appendix A Table S1. 

 

We remove a second-order in range, first-order in azimuth ramp due to 

orbital uncertainty [Samsonov et al., 2014]. Next, we also remove the DEM errors 

from both wrapped [Ducret et al., 2014; Zhao et al., 2015] and unwrapped 

phases [Berardino et al., 2002; Fattahi and Amelung, 2013]. We multi-look the 

interferograms by a factor of 2 and apply an adaptive filter after the DEM error 

correction on wrapped phases in order to increase the signal-to-noise ratio, 

helping the unwrapping process. Phase unwrapping is based on the approach of 

Chen and Zebker [2000]. We retain only pixels with a spatial  
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Figure 3.4. InSAR LOS displacement map (May 24, 2012 – April 15, 2015). Solid 

square: reference point. b) and c) 2 time-series at the western flank of ice cap. 

Each tick on y-axis represents 2 months. Gray areas roughly illustrate the melting 

seasons. 
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coherence larger than 0.1 in 40 percent of the interferograms [Baker et al., 2012]. 

We reduce phase unwrapping errors of isolated areas using the nearest-neighbor 

interpolation method of Agram et al. [2009].The final time-series inversion is 

based on the small baseline (SB) InSAR approach [Berardino et al., 2002].  

 

3.4. Results 

 We show the total line-of-sight (LOS) displacement between the first (24 

May 2012) and the last (15 April 2015) SAR acquisitions of our time-series. A 

red-to-yellow fringe embraces the ice cap, inferring the uplift (rebound) due to ice 

loss in three years. Up to 5 cm uplift is detected at the ice-rock margin (figure 

3.4a). A reference point is chosen at bedrock along a water channel and far from 

the ice cap, in order to eliminate the effect of permafrost thawing and refreezing 

[Lin et al., 2012; Short et al., 2014]. Consequently, the green color represents 

stable ground (no deformation), and the blue color represents subsidence. On 

the eastern flank, the topographic relief is significant, and part of the area is 

covered by snow and proglacial lakes, indicating the potential of more residual 

phases due to decorrelation and tropospheric delays. 

  Displacement time-series of 2 points at the margin area show similar 

secular uplift trend as well seasonal fluctuations, uplift during summer (late May 

to late September) and subsidence for the rest of a year (Figure 4b, c). This 

seasonal variation also match the obervation from Cryosat altimetry (Figure 3.5., 

from [Gray et al., 2015]). Time-series at the western flank are noisier. So that 

only total displacement is used in modeling. 
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Figure 3.5. (Figure 13. in Gray et al. [2015]) Elevation change at Barnes ice cap 

between 2010 and 2014, derived from Cryosat-2 altimetry. Each dot with error 

bar represents an observation of Cryosat-2. Red dots indicate the winter-to-

winter height change calculated from the periods represented by the 4 red lines. 

 

3.5. Modeling  

 The elastic Green’s function indicates that knowing the deformation 

(strain) and elastic parameters, one can infer the amount of force (stress) 

causing the deformation. However, in 2D problems, the sensitivity of deformation 

observation not directly on the ice is considerably low and the inversion becomes 

significantly under-determined, and the result is unstable. To overcome this 

problem, we present 3 solutions each of which provide some extra constraint 
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onto the inversion, and combine them together to obtain a final estimate of ice 

mass loss. 

 

3.5.1. Methodology 

3.5.1.1. Quad-tree resampling 

 Geophysical deformation usually exhibits an exponential characteristic, 

which means the amplitude of signal decreases exponentially from source to far 

field. According to this, displacements close to the source and displacement in 

the far field are of different sensitivity to the source change (here refers to ice 

mass change). We thus resample the InSAR observation using quad-tree 

method (Figure 3.6a,c), obtaining more samples close to ice cap and less in far 

field. The implementation is based on a threshold of local standard deviation. 

However, if we choose to resample the observation directly, the obtained tree 

usually contains many small blocks in the far field in case of noise. Because of 

this, we choose to use a pre-defined model (based on the exponential law in 

Zhao et al. [2014] and forward half-space model) to implement the resampling 

(threshold equals to 1 mm) and the observation is resampled accordingly. At the 

same time, we also resample the model space (Figure 3.6b,d, threshold equals 

to 0.25 m), so that the interior of the ice cap contains less blocks to be modeled, 

in order to reduce the error caused by under-determination.  
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Figure 3.6. a) A pre-defined displacement model (ice model uses (b)). b) A 

simulated circled ice thinning rate model whose value is exponentially correlated 

to the distance from the ice edge. c) Quad-tree resampling of a). d) Quad-tree 

resampling of b). 
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3.5.1.2. Penalty function 

 Based on the quad-tree resampling, we further add the constraint that a 

thinning rate block should be “similar” comparing to its neighbors – the sum of 

squared difference between one block and its neighbors is as small as possible 

[Lin et al., 2012]. Different from Lin’s formula, because of the quad-tree 

resampling, the number of neighbors is different for each block. 

 

3.5.1.3. Constrained least-square 

 Constrained least-square is a term related to least-square and non-linear 

programming, which minimize the objective function and subjects results onto 

equality or inequality constraints. The common solution of this problem is using 

Lagrange multipliers (for equality) or Karush-Kuhn-Tucker conditions (for 

inequality) to convert the problem to be a system of linear equations, and then 

solve the problem by least-squares. [Boyd and Vandenberghe, 2004] 

 

3.5.2. Results  

  We use homogeneous elastic Green’s function [Farell, 1972; Graphenthin 

et al., 2006; Zhao et al., 2014] to build the model with the three constraints 

introduced in last section. Young’s modulus and Poisson’s ratio are chosen at 60 

GPa and 0.25 respectively. We also compare the result with a model based on 

the empirically exponential relation be ice thinning rate and distance from the ice 

edge [Zhao et al., 2014]. These 2 models are shown Figure 3.7., with a) the 

empirically exponential method, b) the constrained least-square method. The 
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total ice loss estimated from the empirically exponential method and the 

constrained least-square method are 27.9±3.2 Gt and 32.9±4.3 Gt respectively, 

corresponding to 9.3 Gt/yr and 11.0 Gt/yr ice loss rates in the 2.9 years between 

May 24, 2012 and April 15, 2015. Considering there is usually significant 

precipitation in May [Gray et al., 2015], the annual rate is likely with slight 

overestimate (less than 5%).   

 

Figure 3.7. a) Inverse model based on empirical relation between ice elevation 

change (equivalent to density at 917 kg/m3, positive means ice thinning) and 

distance from the ice edge; b) Inverse model based on combination of the three 

constraints (in 3.5.). 

 

 The pattern of ice elevation change is irregular, different from commonly 

lower thinning at center and higher at margin, with more ice thinning at the 

northern and western parts of the ice cap, and accumulation at the eastern 

margin. This is likely affected by the noises from observation. From the LOS 

displacement map (Figure 3.4a) and the model (Figure 3.7b), it is clear that the 
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areas with less uplift signals also have less ice thinning or even accumulation. 

The insight supports the general feasibility of the proposed method. However, the 

final result is biased by the low signal-to-noise ratio. 

On the other hand, the model based on exponential assumption (Figure 

3.7a) is regular. It is because of the very strong model assumption on the 

thinning rate pattern. From previous studies based on altimetry, DEM 

differencing, and gravimetry on the Canadian Arctic Archipelago [Gardner et al., 

2011; Gardner et al., 2012; Lenaerts et al., 2013], we suggest this assumption is 

generally acceptable with minor exceptions. For example, at Barnes, the thinning 

rates are higher at the western flank, and lower in east. Also for big ice-sheet, 

this assumption is limited because of higher spatial heterogeneity of climate 

conditions and thinning rates.   

  

3.6. Discussion 

The result indicates that the ice loss rate between 2012 and 2015 is about 

1.5 times of the amount between 2005 and 2011, suggesting the acceleration at 

Barnes since 2006 is still undergoing. Gray et al. [2015] suggest even higher 

winter-winter thinning rate at about 2.7 m/yr based on Cryosat-2 data. Part of the 

reason is perhaps snow-fall is absent from CryoSat-2 data [McMillan et al., 

2014]. Our results are consistent with observations of ice cap extent using optical 

images [Li et al., 2014] that Barnes is in a rapid retreating period.  

By comparing the displacement map with the ice thinning rate model 

between 1960 and 2010 [Gardner et al., 2012], we find similar pattern – high 
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uplift at the areas with high ice mass loss. The ice loss in the west of the ice cap 

is generally larger than the eastern part. This is likely due to the elevation 

difference,  the area lower than 700 m in the west is much larger than in the east, 

causing the temperature difference.   Decorrelation is the main error source in 

this study. Because of snow with wet surface, decorrelation is significant 

sometimes even on 1 repeat cycle interferogram (24 days). Summer-summer 

pairs are better but part of which are affected by thawing permafrost. 

Gardner et al. [2012] and Nilsson et al. [2015] all suggest to use a 

simplified ice density model, which assuming a constant ice density of 900 kg/m3, 

ignoring firn density and firn compaction. This assumption is valid based on the 

conclusion that summer melting dominates the ice mass balance in this area 

[Gray et al., 2015]. However, there is still certain amount snow accumulation 

between the melting seasons [Gray et al., 2015], and the effective density (the 

apparent density when the elevation change is a combination of snow and ice) is 

important for non-summer-summer (start or end time is not in summer) 

observations. Our method directly model the mass change, and thus doesn’t 

have this concern on effective density.  

 

3.7. Conclusion 

 We use SB-InSAR time-series analysis for Radarsat-2 data from May 

2012 to April 2015 to detect the crustal deformation due to ice mass loss in the 

vicinity of the Barnes ice cap. The results show up to 5 cm LOS uplift at the 

margin of the ice cap between the first and last SAR acquisitions. The uplift is 
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explained by a new model based on three additional constraints in the linear 

inversion. The model result in the estimate of ice mass loss at Barnes ice cap 

during the 2.9-year study period which is 32.9±3.2 Gt, corresponding to 11.3 

Gt/yr ice loss rate. We compare the model with a model based on an empirical 

model describing the exponential relation between ice loss and the distance from 

ice edge, and reach similar results. This ice loss rate is ~1.5 times of the previous 

estimate between 2005 and 2011. It indicates that the acceleration at Barnes 

since 2006 has not stopped. The estimate depends on the choice of half-space 

modulus and seasonality of ice mass balance. Moreover, the performance of 

modeling highly depends on the observation signal to noise ratio.  
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Chapter 4 

Inhomogeneous firn density 
distribution inferred from InSAR at 
Petermann glacier, Greenland 
 

Summary 

Altimetry derived ice volume change requires accurate density measurement for 

the conversion to mass change. While because of different snow ice distribution 

and interaction over ice sheets, this density is not constant and is usually 

significantly different from pure ice density at the margin of ice sheets, and even 

sometimes larger than ice or smaller than snow densities. In this study, we use 

InSAR to sense spatial variations of the effective density at the margin of an ice 

sheet. We use 2003-2010 Envisat imagery to generate glacial rebound map 

(LOS displacement rate) through InSAR time-series analysis. Up to 3 mm/yr LOS 

displacement is detected in the bedrock area next to Petermann Glacier. We use
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 Icesat derived ice volume change to model this displacement signal. The 

observed bedrock displacements can not be explained using homogeneous firn 

density, but are consistent with a manually modified density model. The prefered 

density model has effective density larger than one close to the upper stream of 

Petermann because of snow accumulation and ice flow. We found better fit using 

the later one as well as a more reasonable half-space Young’s modulus of 70 

GPa for Greenland ice sheet. This suggest that space-geodetic observations of 

bedrock displacement at the ice sheet margin combined with elevation change 

observations can sense spatial variations of the effective ice density at the ice 

sheet margin.   

 

4.1. Overview 

Radar/laser altimetry derived ice-sheet surface elevation changes require 

the associated density in order to obtain ice mass change. However, the 

elevation change is a combination of different processes including ice dynamics, 

firn densification, and change in accumulation rate. Ice dynamics affect the 

vertical thickness of ice which is mainly measured based on the velocity from 

synthetic aperture radar interferometry, and the density is ~900 kg/m3. Firn 

densification is a process that snow, sometimes partially melted snow, controlled 

by gravity, interacts with lower layer snow or snow ice compound to increase 

density and get compacted in elevation. Change in accumulation refers to the 

new snow.  Because the densities in these 3 processes are different, the final 
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density applied on the ice-sheet volume change is a combination of all of them, 

hereafter called “effective density” [Slobbe et al., 2009].  

The effective density sometimes varies between the densities of snow and 

ice. It also can be smaller than the snow density (e.g. thinning due to ice 

dynamics is between 1 and 2 times of snow accumulation, assuming ice density 

of 900 kg/m3 and snow density of 300 kg/m3) and larger than ice density (e.g. 

thinning due to ice dynamics is between 0 and ⅔ of snow accumulation), and the 

range of variation is possibly very wide [Li et al., 2011, Kuipers Munneke et al., 

2015]. Figure 4.1. shows 2 example effectives densities. In a), the snow 

accumulation rate is 1 m/yr, and the ice thinning rate (due to dynamics or melt) is 

2.5 m/yr. The altimetry derived elevation change is -1.5 m/yr, and the effective 

density is 1300 kg/m3. In b), the snow accumulation is 2.5 m/yr, and the ice 

thinning rate is 1 m/yr. The altimetry derived elevation change is 1.5 m/yr, and 

the effective density is -100 kg/m3. It is reasonable to assume the effective 

density is dependent on season, e.g. in the summer there is less snow and the 

effective density is close to ice; in the winter, there are more snow, so that there 

are more density variations. 

 Early studies usually used a constant between snow and ice densities 

(300 and 900 kg/m-3) to convert ice volume change to mass change. For 

example, Davis et al. [2005] used 350 kg/m-3 as the average density; Thomas et 

al. [2006] used 300 kg/m-3 for the interior of the ice sheet and 900 kg/m-3 for the 

ice margin. Wingham et al. [2006] used 350 kg/m3 and 917 kg/m3, respectively. 

However, two values for the interior and margin of ice sheets are too coarse for 
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accurate mass balance study. Figure 4.1. explains the assumption that the 

effective density is between snow and ice densities easily breaks, and the 

difference from assumed value and true value can be significantly large 

(sometimes in opposite signs, Figure 4.1.b).  

 

Figure 4.1. (Modified from Fig. 1 in Li and Zwally, 2011). Illustration of effective 

ice density (ρeff), assuming ice density (ρice) of 900 kg/m3 and snow density 

(ρsnow) of 300 kg/m3. a) ρeff= 1300 kg/m3 > ρice; b) ρeff= -100 kg/m3 < ρsnow.  

 

Physical models on firn compaction [Zwally et al., 2011; Li and Zwally, 

2011; Sorensen et al., 2011; Khan et al., 2014] were used for volume-mass 
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conversion studies, which are based on regional climate models including BOX 

[Box 2013; Box et al., 2013], MAR [Fettweis et al., 2011], RACMO2 [Ettema et 

al., 2009], HIRHAM [Christensen et al., 2006] and another model introduced by 

Hanna et al. [2011]. However, there is no feasible tool to validate these models 

[Sorensen et al., 2011].   

We present here a study using InSAR derived surface displacements and 

altimetry derived ice volume change to validate the firn density model 

constrained from Regional Climate Models (RCM). With advantage of high 

spatial resolution, InSAR derived deformation is specially sensitive to the mass 

change at the ice sheet margin, and is thus useful for the validation of different 

firn density models at Petermann glacier, Greenland, with known ice volume 

change from altimetry products. We use Envisat ASAR imagery between 2003 

and 2010. After time-series analysis, velocity maps obtained from both ascending 

and descending tracks are sensitive to the mass change at the ice sheet margin. 

We use Icesat-1 and the IceBridge mission for ice volume change estimation, 

which have proved to be high quality. 

 

4.2. Background  

Petermann glacier located in northwest Greenland (Figure 4.2). It is the 

biggest glacier in north Greenland, with the longest (70 km long and 20 km wide 

[Rignot and Steffen, 2008]) outlet tongue in the northern hemisphere, draining 

about 6% of the Greenland ice sheet area [Falkner et al., 2011]. The ice stream 

thickness is ~600 m [Rignot and Steffen, 2008] at the grounding line (about 30 
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km from beginning of outlet) [Rignot and Steffen, 2008], with a 60 m ice shelf 

[Allen et al., 2010]. Petermann’s ice front was first mapped by the British Arctic 

Expedition in 1876 [Falkner et al., 2011], and it retreated after that with several 

major calving events: 1959-1961 (~153 km2), 1991 (~168 km2), 2001 (~71 km2), 

2008 (~31 km2), and 2010 (~270 km2) [Johannessen et al., 2011]. Calving and 

basal melting are thought to be the main reason causing ice mass loss at 

Petermann [Rignot and Steffen, 2008; Johnsson et al., 2011; Johannessen et al., 

2011] 

  

Figure 4.2. Study area – Petermann glacier. Shaded relief background is 

topography at Petermann. The topography on Greenland is from a 30 m DEM 

combining ASTER, SPOT-5 DEMs and AVHRR photoclinometry [Howat et al., 
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2014]. The topography on the Ellesmere island, Canada (north-west corner of the 

map) is from ASTER global DEM v2 (30 m) [Fujisada et al., 2012]. Colored map 

represents the interpolated Icesat-1 thinning rates. Blue and orange frames 

represent the coverage of descending and ascending InSAR data, respectively.  

The ice thinning rates at Icesat footprints are shown in Appendix B. Noise 

is higher at the ice margin area than the interior ice sheet. After combining with 

ATM (laser altimetry, 2003, 2005-2010) and LVIS (laser altimetry, 2009-2010), 

and interpolation, the ice thinning rates are more continuous in spatial without big 

variations in short distance (Figure 4.2). Large amount of thinning occurs at 

several small outlet glaciers along the north-east margin of the ice stream of 

Petermann glacier. Another larger thinning is found at the western edge of 

Humboldt glacier, caused by the speeding up of ice flow. Instead, the eastern 

edge of this glacier, where ice used to move faster, slowed down in the study 

period causing a positive dynamic ice mass balance (see the dark red area in 

Figure 4.2, and Appendix B). Dynamic ice mass loss is not significant at 

Petermann glacier [Joughin et al., 2010]. And because of the dry weather in this 

area, precipitation is negligible except the area close to ice stream, and runoff is 

the dominated factor of SMB [Ettema et al., 2009]. The highest speed of 

Petermann’s ice stream is about 1000 m/yr, which has been stable since 1996 

[Rignot and Kanagaratnam, 2006; Rignot and Steffen, 2008; Joughin et al., 

2010], under the background that Greenland’s outlet glaciers are speed-up 

generally. As a result the mass loss as Petermann is dominated by surface mass 

balance (SMB). In a sub decadal scale, in the whole basin including Petermann 
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glacier, the dynamic mass loss is negative for periods 2003-2006 and 2009-

2012, and positive for period 2006-2009 [Khan et al., 2014]. SMB is relatively 

unchanged in these periods, leading to a significant mass balance difference 

before and after 2006 [Khan et al., 2014].  

 

4.3. InSAR data and analysis 

4.3.1. Data processing 

 We use 53 and 32 Envisat ASAR imagery from descending and ascending 

tracks between April 2003 and September 2010 for this study. We remove 

interferograms whose perpendicular baselines are larger than 300 m or whose 

temporal baselines are larger than 3 years, and obtain 162 and 93 interferograms 

for descending and ascending tracks.  

 We use ROI_PAC software [Rosen et al., 2000] for interferometric 

processing and small baseline InSAR [Berardino et al., 2002] technique for the 

time-series analysis. The reference topography is generated from a 30 m DEM 

combining ASTER, SPOT-5 DEMs and AVHRR photoclinometry [Howat et al., 

2014], and is removed after raw interferogram generation. Next we remove 

localized DEM errors from the wrapped interferograms following Ducret et al. 

[2014]. In this step, we include some interferograms with perpendicular baseline 

longer than 300 m, which are more sensitive to the DEM errors. Next, we take 

additional looks to obtain ~80×80 m2 pixels, apply an adaptive filter, and unwrap 

the phases based on the statistical-cost network-flow approach [Chen and 

Zebker, 2000]. To avoid influences from decorrelated pixels, we select pixels with 
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a spatial coherence larger than 0.2 in 60 percent of the interferograms [e.g. 

Baker and Amelung, 2012; Zhao et al., 2015]. We further use a nearest-neighbor 

interpolation method introduced by Agram et al. [2009] to resolve the problem of 

isolated area after pixels selection. After phase unwrapping, we implement time-

series analysis [Berardino et al., 2002] and DEM error correction [Fattahi and 

Amelung, 2013] to obtain the final results.  

 

4.3.2. Results 

InSAR LOS velocity maps are presented in Figure 4.3a,b, both of which 

show an uplift gradient from glacier (upper ice stream) to far field, with 5 mm/yr 

relative  LOS uplift at the margin area (the azimuth angle, ~45 degree, at polar 

region is larger which transfers about doubled horizontal motion into LOS. 

However, the major motion in the study area is in vertical direction, this difference 

is ignorant). Similar patterns from Descending and ascending track suggest that 

the deformation is mainly vertical, inferring that it is likely due to surface mass 

change. The results from ascending track are generally noisier than descending 

track because of less SAR acquisitions (32 images). Figure 4c show 2 InSAR 

time-series (descending and ascending) at Site SCBY, a continuous GPS station 

installed in 2007. Both time-series show about 2-3 cm LOS displacement in 6-7 

years, representing LOS velocities of 3-5 mm/yr (with ~2 cm seasonal variability). 

The absolute vertical velocity at SCBY measured by GPS is 11 mm/yr, and the 6-

8 mm/yr difference between InSAR relative and GPS absolute displacement is 

likely due to the background deformation, which can be long wavelength 
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response to the mass change for interior ice sheet, and the glacial isostatic 

adjustment (GIA) signal. The long wavelength present-day elastic uplift rate at 

the study area is about 2-3 mm/yr, and the GIA signal is about 3-4 mm/yr [Spada 

et al., 2012]. This value matches our estimate from InSAR-GPS differentiation, 

suggesting InSAR is able to retrieve much more details about red-rock 

deformation at local scale.  
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Figure 4.3. a), b) Descending and ascending tracks velocity between 2003 and 

2010 (descending track starts from 2004). Black square represents the reference 

point, SCBY stands for the location of the continuous GPS station. Arrows with 

characters F (flight) and R (range) represent the directions of flights and SAR 

LOS. c) InSAR LOS time-series at SCBY. Blue and orange triangles represent 

descending and ascending tracks respectively. Contour lines of elevation are 

shown on the ice sheet. 

 

4.4. Modeling and results 

 We use homogeneous half-space model [Farrell, 1972; Graphenthin et al., 

2006], which has been proved to be similar to layered model when load is at the 

scale of several tens of kilometers [Graphenthin et al., 2006; Nof et al., 2012; 

Zhao et al., 2014], to simulate the observed displacements. Ice volume change is 

based on interpolated Icesat data (Figure 4.4a) on UTM coordinates, and density 

is assumed to be 917 kg/m3. We assume Poisson’s ratio is insensitive to 

dominantly vertical displacements [Nof et al., 2012; Zhao et al., 2015]. We thus 

assume Poisson’s ratio of 0.25, and invert for the half-space Young’s modulus.  
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Figure 4.4. Ice thinning rate model used in this study (2003-2010), a) 

interpolated from Icesat elevation change data, b) with an extra disk (represent 

an area with effective firn density tripled to ~2700 kg/m3) at the west flank of 

Petermann, close to upstream. Dashed rectangle: the coverage of Figure 4.5. 

Positive values represent accumulation and negative values represent thinning.  

 

 The preferred model is presented in Figure 4.5, with a), b) data, c), e) 

models and g), i) residuals for the descending and ascending tracks respectively. 

We obtain a Young’s modulus of 50±8 GPa, and the standard error is calculated 

from linear error propagation. The root mean square error (RMSE) for 

descending track is 1.2 mm/yr. While the RMSE for ascending track is 1.5 mm/yr. 
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Figure 4.5. a), b): Descending and ascending InSAR LOS velocities between 

2003 and 2010. c), e): Preferred elastic half-space models for both tracks, with 

Poisson’s ratio of 0.25 and best fit Young’s modulus of 50 GPa. d), f) preferred 

models for ice thinning model with an extra disk with best fit Young’s modulus of 

70 GPa. g), i): Residuals between data and models c, e. g), i): Residuals 

between data and models d, f. The blue-red background colors on  the ice sheet 

represent the ice thinning rates, with positive representing accumulation. Areas 

“U”, “S” represent upper stream and southern areas used in later sections. 

 

The homogenous models (Fig. 4.5c,e) overpredict the displacements at 

the southern part of study area (area S in Fig. 4.5a), because from InSAR, ice 

mass loss more concentrates at the area close to the ice stream. One possible 
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explanation is that the effective density for the ice loss close to upstream is 

higher than pure ice density (because of the opposite elevation changes for firn 

accumulation and ice loss) (Figure 4.1a); or the effective density for the ice loss 

to the south of Petermann glacier is lower than ice density (Figure 4.1b); or the 

effects on both cases.  

We define 2 special areas. One area is ice stream area which includes the 

upstream of Petermann (area U in 4.5a) and surrounding glacier area within 10 

km. Another is “southern zone” which includes the southern margin of Petermann 

glacier and northern part of Humboldt glacier (area S in 4.5a). Ice flow velocities 

indicate no annual dynamic mass change at upper stream area and small 

accumulation in southern zone [Joughin et al., 2010]. SMB includes 2 main 

sources, which are runoff and precipitation. Both upper stream and southern 

areas have highest rates of runoff because they are close to the ice sheet margin 

with similar elevation. But from precipitation data, upper area has significantly 

higher accumulation rate than southern area.  

By summarizing all information above, we conclude that in upper stream 

area, there exists positive volume change due to precipitation with density close 

to pure snow (300 kg/m3) (less firn in this area because of glacier motion), and 

negative ice mass change due to runoff with density close to pure ice (900 

kg/m3). We use averaged SMB data between 1958 and 2007 to make a rough 

calculation, assuming precipitation is mainly snow (94% of the precipitation on 

the Greenland ice sheet is snow [Ettema et al., 2009]) with density of 300 kg/m3 

and runoff is mainly water with density of 1000 kg/m3. With ~0.3 m/yr 
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precipitation (snow, 300 kg/m3) and ~0.7 m/yr (ice, 900 kg/m3) runoff in ice 

stream area, we obtain the effective density at ~1500 kg/m3. Considering the 

rapid ice loss acceleration after 1990s [Ettema et al., 2009; Jiang et al., 2010; 

Bevis et al., 2012], the effective density in ice stream area can easily double the 

pure ice density (917 kg/m3). For southern area, because the accumulation rate 

is negligible, and dynamic ice loss has similar density with runoff, the effective 

density is close to the pure ice density.  

The findings in the previous paragraph infers that the effective density of 

ice volume loss close to the up stream of Petermann glacier is likely significantly 

underestimated. We thus add a 35 km radius disk with extra ice thinning rate of 1 

m/yr next to the upstream (Figure 4.4b). It is equivalent to triple the effective 

density considering the real thinning rate in this area is close to 1 m/yr.  

The preferred model is presented in Figure 4.5, with d), f) models and h), 

j) residuals for the descending and ascending tracks respectively. With fixed ice 

thinning rate, density (pure ice), and a simple half-space model, we obtain a 

Young’s modulus of 70±5 GPa, and the standard error is calculated from linear 

error propagation. The root mean square error (RMSE) for descending track is 

0.7 mm/yr. While the RMSE for ascending track is 1.1 mm/yr. According to the 

previous studies on constraining Young’s modulus from surface loading 

[Grapenthin et al., 2006; Nof et al., 2012; Zhao et al., 2014], the effective half-

space Young’s modulus is between 40 GPa and 80 GPa for the load radius 

between 40 km and 70 km. Considering the load size of Petermann glacier, the 

70 GPa half-space modulus is more realistic than 50 GPa. Moreover, we obtain 
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better fit after adding the extra disk, which supports our hypothesis that the 

effective density in ice stream area is higher than the southern zone.  

 

4.5. Discussion 

4.5.1. InSAR derived velocities 

 InSAR velocities detect up to 5 mm/yr LOS surface displacement at the 

ice-rock margin of Petermann glacier between 2003 and 2010. The ascending 

track is noisier than the descending track because of less SAR acquisitions being 

used for the time-series analysis. Although part of the seasonality can be seen 

from time-series, the currently accuracy is not enough to fully solve the response 

due to seasonal mass changes. The remaining errors include atmospheric delay, 

and decorrelation. In large scale (50-100 km) InSAR is able to retrieve the glacial 

rebound signal clearly with tremendous spatial details that cannot be found from 

coarse resolution whole Greenland elastic deformation maps [Spada et al., 2012; 

Nielsen et al., 2014]. Moreover, our preferred model suggests up to 10 mm/yr 

displacement at the ice margin. Because the present-day vertical uplift in this 

area is close to a constant within 5-6 mm/yr based on ICE5G-VM2 (ignoring 

difference between vertical and LOS), we conclude that our observation is 

dominantly elastic response inferred from the difference between absolute 

displacement from preferred model and relative displacement from InSAR. By 

averaging InSAR velocity, the amount (3-4 mm/yr) is also close to other 

predictions in this area. 

 



72 
 

 

4.5.2. Effective density 

 The theory of effective density that the ice thinning is a combination of 

snow/firn accumulation, dynamic ice motion, and ablation (runoff and 

evaporation/sublimation) has been demonstrated in Li and Zwally [2011]. 

However, at local scale (up to 200 km), the spatial variation of effective densities 

is hard to detect. This study introduces a potential tool to validate if the effective 

density varies in a certain area. 

 According to altimetry data, the ice thinning rates at ice stream area and 

southern zone of Petermann glacier are similar. But according to ice flow 

[Joughin et al., 2010] and SMB [Ettema et al., 2009] (including runoff and 

precipitation) data, these similar thinning are caused by different sources. In ice 

stream area (area U in Fig. 4.5a), the thinning is a combination of snow 

accumulation and runoff. While at southern zone (area S in Fig. 4.5a), the 

thinning is a combination of dynamic thickening and runoff. Because the density 

of accumulating snow and dynamically thickening ice are quite different, the 

effective densities in these 2 areas are thus different. We conclude that the 

effective density near Petermann glacier is close to triple of ice density (~2700 

kg/m3, inferred from historic data without accurate estimate from current 

observations), and the effective density at southern zone is likely close to ice 

density. 
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4.6. Conclusions 

 1) We use Envisat ASAR 2003-2010 InSAR data to obtain the surface 

velocities at the bed-rock area close to Petermann glacier. Up to 5 mm/yr relative 

LOS uplift is detected at the ice margin. This velocity result matches previous 

study in Greenland indicating 3-4 mm/yr averaged velocity in this area. Absolute 

displacement from model suggests there is a 5-6 mm/yr background uplift which 

matches the prediction of present-day post-glacial rebound. 

 2) A homogeneous ice density model doesn’t fit the observation very well 

in the south (area S in Fig. 4.5a) of our observed area We propose a density 

model with increased density (representing by increasing thinning rate) close the 

upstream of the glacier. The new model fits the observation better obtaining a 

reasonable half-space Young’s modulus at 70±5 GPa. The new model with 

density heterogeneity can be evidenced by dynamic ice motion and SMB data 

qualitatively. However, the accurate geometry of the density distribution is hard to 

be constrained, we don’t present a quantitative solution in this study.  
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Chapter 5  

InSAR observations of lake loading at 
Yangzhuoyong Lake, Tibet: 
constraints on crustal elasticity 
 

Summary 

We use Envisat 2003-2010 InSAR imagery over Yangzhuoyong Lake in southeastern 

Tibet to study the elastic response of the Earth’s crust to variations in lake level. The net 

lake level drop during our study period is ~3 m with seasonal variations of more than 1 

m. The time-series close to the lake center shows a high correlation with the lake level 

history. Near the lake center the unit response with respect to lake level change is 2.5 

mm/m in radar line-of-sight direction, or ~2.7 mm/yr in vertical direction, corresponding 

to a vertical response of ~4.3 mm/Gt load change. We show that the observations are 

most sensitive to the elastic properties of the crust in the 5-15 km depth range and explain 

them with a layered elastic half-space model with a Young’s modulus of 50±9 GPa 

Young’s modulus in the top 15 km of the crust and using moduli inferred from 

seismology at greater depth. The inferred Young’s modulus is  ~25% smaller than the 

seismic modulus, which we attribute to damaged rock and the presence of fluids.
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5.1. Overview 

The Young’s modulus is the elastic material property determining the 

elastic response of the Earth to surface, including seasonal, episodic and long-

term glacial loading [Graphenthin et al., 2006, Auriac et al., 2014, Zhao et al., 

2014], lake loading [Cavalie et al., 2007; Nof et al., 2012; Wahr et al., 2013, Doin 

et al., 2015], river loading [Bevis et al., 2005], ocean tide loading [Ito and Simons, 

2011] and loading by seasonal variations of terrestrial water storage  [Steckler et 

al., 2010; Fu and Freymueller, 2012; Fu et al., 2012; Chanard et al., 2014]. 

At the confining pressures in the lower crust and mantle, Young’s modulus 

can be inferred from seismic wave speed measurements [Dziewonski and 

Anderson, 1981]. At the lower confining pressures in the uppermost crust, the 

moduli at seismic frequencies could be several times higher than for seasonal or 

long-term loading, because of the presence of cracks if fluid pressure within 

cracks is not equilibrated [Ravalec and Gueguen, 1996; Fjaer et al., 2008, 

chapter 5; Wauthier et al., 2012]. Poroelastic effects contrast between drained 

and undrained response. Plastic deformation in unconsolidated terrains could 

also affect the effective elastic moduli. 

Knowledge about upper crustal elasticity parameters is important for many 

applications, including the estimating the magnitude of imparted stress by an 

earthquake on nearby faults [King et al., 1994], inferring earthquake slip 

distributions and stress drop from surface displacement observations [e.g. 

Simons et al., 2002; Sun et al., 2011], inferring the overpressure in volcanic 

magma reservoirs  [e.g. Fukushima and Cayol, 2005; Grosfils et al., 2013], and 
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inferring pressure changes related to fluid extraction and injection [e.g. Vasco et 

al., 2010, Yang et al., 2015]. Furthermore, it allows to isolate the displacement 

component in response to surface loading and to interpret the remainder in terms 

of secular and transient tectonic [Chamoli et al., 2013; Amos et al., 2014]  and/or 

volcanic processes [Grapenthin et al., 2010; Heap et al., 2014; Odbert et al., 

2015]. Lateral variations in elastic moduli have been invoked to explain 

asymmetric strain patterns due to earthquake loading [Peltzer et al., 1999]. 

Previous geodynamic studies in Tibet used upper crustal elastic 

parameters inferred from seismic wave speeds in the range of (or equivalent to) 

80 to 130 GPa for Young’s modulus  [Peltzer et al., 1999; Ryder et al., 2007; Tao 

et al., 2008; Wang et al., 2013], neglecting that the static moduli in the uppermost 

crust may be lower than the dynamic, seismic moduli.   In this study we probe the 

Young’s modulus of the Tibetan crust using InSAR observations of crustal 

response to lake loading. The lakes on the Tibetan plateau are changing in 

volume because of the changing climate [Jiao et al., 2013; Shen et al., 2014]. 

Most lakes are growing because of increased glacier melting in response to 

atmospheric warming  and increased precipitation, but some lakes are receding. 

The fastest retreating lake is Yangzhuoyong Lake [Zhang et al., 2011, 2013].  
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5.2. Background 

         Yangzhuoyong Lake, also referred to as Yamzho Yumco, is one of the 

holy lakes of Tibet, located ~100 km south of Lhasa. It is an endorheic lake 

[Zhang et al., 2011] with a surface area of ~643 km2 (east-west 130 km, north-

south 70 km) and an average water depth of 30-40 m  (maximum depth of 59 m). 

The lake is draining a ~6100 km2 basin [Chu et al., 2012a] at an average 

elevation of 4440 m. North of the lake the topography varies from 3500 m in the 

valleys to 5000 m in the mountain peaks. South of the lake the topography  

reaches up to 7000 m  (Figure 1a). The major tectonic structures in the area are 

the Yadong-Gulu rift  and the Yalu Zangbu fault zone [Sun et al., 2011] northwest 

and north of the lake, respectively.  The crustal thickness is about 70 km close to 

the Yalu Zangbu river, and gradually decreases to 40 km to the south [Institute of 

Geology and Geophysics, 1981]. A 2008 Mw 6.3 normal faulting earthquake 

indicates extension across the Yadong-Gulu rift [Sun et al., 2011]. 

Optical remote sensing shows that Yangzhuoyong Lake retreated by ~80 

km2 between 1970 and 2010 [Li et al., 2014]. A lake level  gauge [Chu et al., 

2012a] at Baidi (Figure 1a) recorded a water level decline of about 5 m since 

1970 [See Figure S1 in the supporting information], of which 3 m occurred during 

the 2003-2010 observation period of this study (gray line in Fig. 2a). The low 

stands of the lake occur between May and July and the high stands between 

September and November of each year [Chu et al., 2012b].  Satellite laser 

altimetry data also show a drop in lake level [Zhang et al., 2011].  The lake level 

decline appears to correlate with increases in air temperature and potential 
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evaporation, suggesting that these are the drivers for lake retreat [Liao et al., 

2012]. 

 

Figure 5.1. a) Topographic relief of the study area around Yangzhuoyong Lake. 

Black triangle: Baidi water level gauge; purple rectangle: SAR coverage (track 

405, frame 3015); grey shadings: lakes.  b) 2003-2010 InSAR LOS displacement 

map. Solid square: reference point; dashed rectangle: area of figure 3; small 

rectangle north of lake: area for the estimation of uncertainty of the time-series.  
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Figure 5.2. Lake level variation at Yangzhuoyong Lake (1974-2010) [Chu et al., 

2012b]. Black circles: annual average. Green circles: monthly average. Red 

dashed lines indicate the study period. 

 

5.3. InSAR analysis 

Our analysis is based on 27 Envisat ASAR images acquired between 

December 2003 and September 2010. We discard one SAR acquisition (Nov. 02, 

2004) because of strong atmospheric delays. Using spatial and temporal 

baseline thresholds of 450 m and 4 years, respectively, we are left with a network 

of 92 interferograms connecting 20 acquisitions (see Figure S2 in the supporting 

information). We don’t include the frame to the south in the analysis because four 

summer acquisitions are missing.  
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Figure 5.3. Baseline-time plot of the network of SAR acquisitions (red dots) and 

interferograms (black lines) used for the time-series inversion. 

 

For data processing we use an approach based on the ROI_PAC software 

adapted for regions with strong topographic relief [Doin et al., 2011, Grandin et 

al., 2012]. The imagery is coregistered using orbital information and offset fields. 

The topographic phase is removed using a 3 arc-second SRTM digital elevation 

model, interpolated to 1 arc-second spacing and then take 2 looks in range and 

10 looks in azimuth direction to obtain ~40×40 m2 ground pixel. Next we remove 

contributions from topography-correlated tropospheric delays and localized DEM 

errors from the wrapped interferograms to aid phase-unwrapping. The first are 

estimated using a second-order polynomial with respect to elevation [Cavalie et 

al., 2007; Nof et al., 2012, see Figure S3a,b in the supporting information for an 
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example]; the second are estimated from a set of interferograms using the 

method of Ducret et al. [2014] (see Figure S3c,d in the supporting information]. 

For this processing step we use all available SAR acquisitions, including 

interferograms with  baselines larger than 450 m.  Next, we take additional looks 

to obtain ~80×80 m2 pixels, apply an adaptive filter, and unwrap the phase using 

the approach of Chen and Zebker [2000]. We retain only pixels with a spatial 

coherence larger than 0.2 in 60 percent of the interferograms [e.g. Baker and 

Amelung, 2012]. We reduce phase unwrapping errors of isolated areas using the 

nearest-neighbor interpolation method of Agram et al. [2009]. We then add the 

tropospheric phase contributions back to the unwrapped phase. This approach of 

temporarily removing topography-correlated phase contributions, combined with 

the localized DEM correction, improves the phase unwrapping because it 

reduces the spatial standard deviation of the wrapped phase, ensuring that multi-

looking and filtering increases the SNR without blurring the signal.  
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Figure 5.4. APS and DEM corrections on wrapped phase. a) and b) 

Interferograms before and after APS correction. c) and d) interferograms before 

and after DEM correction. 

 

We then use the small baselines (SB) InSAR time-series approach to 

obtain pixelwise displacement histories [Berardino et al., 2002].  Finally, in the 

time domain we remove the topography-correlated phase due to tropospheric 
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layering from the unwrapped phase using a second-order polynomial, and correct 

for topographic residuals using the approach of Fattahi and Amelung [2013].   

 

5.4. Results 

The ground displacement field in radar line-of-sight (LOS) direction shows 

a bulge of up to 10 mm LOS displacement near the lake  (red colors, Figure 1b), 

corresponding to ~11 mm of uplift assuming that displacement is vertical (with a 

radar incidence angle on the ground of ~23o Envisat’s I2 beam is most sensitive 

to vertical deformation). To the north of the lake where the topographic relief is 

up to 2500 m, LOS variations likely represents residual tropospheric delays.  

A displacement time series for a point near the lake center (Figure 2a) 

shows the correlation between ground displacement and lake level (grey line) 

(Figure 2a).  Seasonal drops in lake level (negative lake level changes) coincide 

with LOS decreases (uplift) and seasonal rises in lake level (positive lake level 

changes) coincide with LOS increases (subsidence).  The correlation between 

the sign-reversed lake level and displacement is  0.9. 

The LOS displacement uj
i, at pixel j and epoch i, relates to the lake level, li,  

by uj
i = dj * li with dj  the LOS displacement with respect to unit lake level change 

or unit response of the system at pixel j [in mm/m or 10-3]. Both uj
i and li are 

relative to the first SAR acquisition. The least squares solution for dj is given by

(1) 
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with uj = (uj
1, uj

2, …, uj
N)T,  cj  the constant for least square fitting, and G = [(l1, l2, 

…, lN)T, (1, 1, …, 1)T]. An example for dj at point P is given in Figure 2b.  

 

 

Figure 5.5. a) LOS displacement time-series relative to the first acquisition  for 

point P  (red dots) together with the monthly lake level at the Baidi gauge relative 

to December 2003, the month of the first SAR acquisition (grey line, negative 

numbers correspond to lake level decrease). Error bars: standard deviation of 

LOS displacement at each epoch for the non-deforming area northwest of the 

lake (rectangle in Figure 1). b) LOS displacement  as a function of lake level 

change (red dots). The slope (grey line)  is the LOS displacement with respect to 

unit lake level change (dj, unit mm/m).  
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5.5. Modeling 

      We use homogeneous [Farrell, 1972; Graphenthin et al, 2006] and layered 

elastic half-space models [Cavalie et al., 2007] to simulate the observed rebound 

and estimate Young’s modulus.  In the layered model, seismic derived 

parameters do not fully explain our observation (parameters see Figure S5b,d 

and model see Table S1 in the supporting information) we estimate the modulus 

of the top layer and use at depth larger than 15 km moduli inferred from the 

seismic P-wave speed measurements of the area from Yin et al. [1990]  and 

Vp/Vs ratio and density from an area further north from Mechie et al. [2004] 

[Figure 4]. Dominantly vertical displacements in response to surface loading can’t 

resolve Poisson’s ratio because of the trade-off with Young’s modulus, as shown 

by the formulations of the Green’s functions [e.g. Grapenthin et al., 2006; Zhao et 

al., 2014].  

Depth 
(km) 

Vp 
(km/s) 

Vs 
(km/s) 

Density 
(kg/m3) 

Young’s  
modulus (GPa) 

Poisson’s 
ratio 

5 5.2 3.1 2400 56* 0.22 

15 5.7 3.36 2550 71* 0.23 

35 6.1 3.6 2700 86 0.23 

65 6.65 3.73 3000 106 0.27 

half-space 7.8 4.4 3300 162 0.27 

Table 5.1. Earth model from seismic data. Vp is from [Yin et al., 1990] covering 

Yangzhuoyong Lake, Vs and density are from [Mechie et al., 2004] based on 

INDEPTH III [Zhao et al., 2001] covering Siling Lake (~300 km north of 

Yangzhuoyong Lake). Young’s modulus and Poisson’s ratio are calculated from 
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columns 2-4. * first 2 layers are combined in inversion, assuming Poisson’s ratio 

of 0.25 and density of 2700 kg/m3. ADD EQUATIONS FOR PARAMETERS 

CONVERSION 

 

The data is the LOS displacement with respect to unit lake level change 

(unit mm/m, see Fig. 2b), calculated for each pixel from the LOS displacement 

history (Figure 3a). We use a quadtree decomposition [Jonsson et al., 2002] to 

downsample the data with quadrants selected according to the expected signal 

(using the layered model with Young’s modulus of 40 GPa, quadrant  size 1.44 

km to 11.52 km, threshold for subdividing of 0.08 mm/m, 315 data blocks; half 

and doubled Young’s modulus give nearly identical sampling).  We found that 

this sampling provided reasonable sensitivity to model variations in both the near 

and far fields. To find the best-fitting models we minimize the root mean square 

error (RMSE), defined as: 

    (3) 

where d is the observed and p the modeled LOS displacement per unit lake level 

change. d and p are M*1 vectors with M is the number of data blocks after quad-

tree decomposition, and  is the M*M variance-covariance matrix used as a 

weighting matrix, calculated from the sample semi-variogram and covariogram 

[Sudhaus and Jonsson, 2009] (see Figure S4 in the supporting information for 

the data weights). 
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Figure 5.6. a) Variance (cross at zero distance), sample covariance (dots), and 

fitted covariance function (red line). b) Variance-covariance weights [Sudhaus 

and Jonsson, 2009] calculated from a). The weight is dimensionless because the 

unit of our data is mm/m. 

 

For the layered model we conduct a grid search varying Young’s modulus 

of the top layer between  30 GPa to 150 GPa with a step size of 5 GPa. The best 

fit is found for a modulus of 50±9 GPa for the top layer (Figure 3). For the half-

space model we find a Young’s modulus of 81±12 GPa using linear inversion 
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(see Figure S5a in the supporting information). The RMSEs for both models are 

0.77 mm/m and 0.79 mm/m, respectively. We obtained the standard error for the 

layered model from 1000 bootstrap samplings [Hastie et al., 2009], and for the 

half-space model from linear error propagation of the uncertainty. The model 

predictions agree with the observations west and south of the lake but are lower 

than observed northeast of the lake. A west-east profile crossing the lake (AA’ in 

Fig. 4) shows that the layered model is characterized by higher displacement 

gradients then the half-space model because of the lower Young’s modulus in 

the top layer. 
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Figure 5.7. a) Observed LOS displacement with respect to unit load, b) 

prediction from the best-fitting layered model (top layer Young’s modulus of 50 

GPa), c) differences between observations and model predictions, d) profile 

along AA’ averaged over a width of 1.8 km (dark blue; light blue shows the upper 

and lower bounds) together with the predictions of the best-fitting layered and 

homogeneous model. Gray shading: topographic elevation along the profile. For 

profile BB’ see Figure S6 in the supporting information. The colored crosses in b) 

show the points of Fig. 4. The triangle, circle and square in c) denote the  

geometric mass center of the load at current lake level and for 100 and 200 m 

higher lake level, respectively. 

 

 

Figure 5.8. a), b) Same as Figure 3b but for the best-fitting half-space model 

(Young’s modulus of 81 GPa) and for the layered model using the seismic 
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Young’s moduli. c,d) Differences between data and model predictions. The 

RMSE of the half-space model is 0.79 mm/m and 1.03 mm/m for the seismic 

layered model. 

 

 

Figure 5.9. Same as Figure 4 but for profile BB’. 

 

5.6. Discussion 

InSAR recorded up to ~10 mm ground displacement towards the radar in 

the vicinity of Yangzhuoyong Lake during 2003-2010. The lake level dropped by 

more than 3 m during this time period, suggesting that we see rebound caused 

by the partial removal of the water load. The results were obtained using a data 

analysis approach that included the empirical estimation and removal of the 

topography-correlated phase assuming the phase was caused by atmospheric 
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delays. Using cloud free SAR acquisitions and the MEdium Resolution Imaging 

Spectrometer (MERIS)  estimates for the atmospheric delays and using the ERA-

Interim global atmospheric model for atmospheric corrections [Jolivet et al., 

2014], the obtained LOS displacement fields are more noisy but do show a signal 

in the vicinity of the lake (see Figure S7 in the supporting information), making us 

confident that this signal represents real deformation and is not a processing 

artifact. For comparison with other loading problems it is useful to express 

ground displacement in response to mass change [Bevis et al., 2004]. Given the 

surface area of the lake (621 km^2), 1.61 m of lake level change corresponds to 

a mass change of 1 Gt. The response next to the lake center (point P, 2.5 mm/m)  

thus corresponds to  4.0 mm/Gt of load change. 
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Figure 5.10. Averaged InSAR LOS velocities obtained using different 

atmospheric delay correction approaches. a) Original velocity without 

atmospheric delay correction. b) Correction using the ERA-Interim global 

atmospheric model (using the same SAR acquisitions as in Figure 1b). c) 

Correction using cloud free scenes and MERIS. d) Empirical estimation and 

removal of the topography-correlated phase. 

 

The Young’s modulus in the top layer of our preferred model is 50±9 GPa.  

This is significantly smaller than the value inferred from the regional seismic 
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model of 68-78 GPa (FIg. 4b). The seismic Young’s modulus falls outside the 2-

sigma (98%) confidence interval of the inferred modulus, reinforcing that the 

modulus controlling the response to surface loading is smaller than the modulus 

at seismic wave frequencies.  

To determine the feasibility of the top layer thickness, we conduct a 

sensitivity test on different depth of crust. A remaining question is which depth 

range of the crust is sampled by changes of the  Yangzhuoyong Lake load. To 

address this question we conduct  a depth sensitivity test following Doin et al. 

[2015]. We divide the crust into a series of 5 km thick sub-layers. Starting from 

the preferred model we reduce the Young’s modulus in each sub-layer by a 

factor of 2 and compare the vertical surface displacement with that from the 

preferred model as a function of distance  from the load’s gravity center.   Figure 

4c shows that the reduction in the elasticity parameters in the 5-10 km and 10-15 

km sublayers causes the largest increases in surface displacement  (0.1-0.3 

mm/m at 6-24 km distance with the largest increase of more than 0.3 mm/m at 6 

km distance).  Changes in the elasticity parameters in the sublayers below 40 km 

depth have little effect  (< 0.07 mm/m). This shows that in most parts of the study 

area the surface response is most sensitive to the 5-15 km depth range, 

confirming our approach of varying the elasticity parameter of the top 15 km 

layer. 
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Figure 5.11. a) Vp [Yin et al., 1990], Vs and density [Mechie et al., 2004] as a 

function of depth (dashed lines) together with layer averages (solid lines) and b) 

corresponding Young’s moduli. Red lines indicate parameters of best-fitting 

model.  The parameters of the layered model are summarized in table S1 in the 

supplementary material. c) Depth sensitivity test showing the difference in 

surface response from the original model (according to Doin et al. [2015]). Each 

dot represents the center of a sub-layer. Four colored line represent four points 

(crosses on Figure 3b) from the lake center to far field, defined by the distance 

from the current lake mass center (black triangle in Figure 3c). u_surf means the 

LOS displacement at each point in the preferred model.  

 

The response to surface loading can also be explained using a uniform 

half-space model with an effective Young’s modulus describing the averaged 

response of the sampled rock [ref]. Using this model we find a Young’s modulus 

of 81+-12 GPa. This value is between the effective Young’s modulus of ~40 GPa 

for the smaller-sized Dead Sea and Icelandic ice cap loads [Grapenthin et al., 
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2007; Nof et al., 2012;  Auriac et al., 2014] and the 130-140 GPa for the larger-

sized Amazon river [Bevis et al., 2005] and Bangladesh monsoon flooding loads 

[Steckler et al. [2010]. Chanard et al. [2014]  use a layered, spherical model to 

find a Young’s modulus between 90 and 170 GPa for the Himalaya region. These 

differences reflect that larger loads sample deeper regions of the Earth’s mantle 

characterized by higher Young’s moduli. 

Our best-fitting models underpredict the displacement response in the 

area northeast of the lake by 0.5-1 mm/m. One explanation is that this area is 

also rebounding because of a possible visco-elastic response from past 

unloading. The lake level history over the past few hundred years is not known. 

Given the topographic relief, for a 100 and 200 m higher lake level the lake’s past 

center of gravity would be located 12-20 km to the east of the current center of 

gravity (Figure 3c). Another possible explanation is that the upper crust in this 

area is weaker and a lower Young’s modulus results in localized but more 

rebound than further west. Seismic reflection studies identified relatively low 

shallow wave speed velocities  (5.2 km/s) [Yin et al., 1990] and partial melt in the 

middle crust (at 25 km depth) [Brown et al., 1996; Gu et al., 2000] but can’t 

resolve the three-dimensional structure .  

 

5.7. Conclusions 

We have documented a total of 10 mm of ground surface displacement 

towards the satellite in the vicinity of Yangzhuoyong Lake between 2003 and 

2010. We attribute this signal to crustal rebound due to lake retreat. The lake 
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level dropped ~3 m during this time period. Most of the signal can be explained 

as the elastic response to load changes of a layered half space with a Young’s 

modulus of 55+-9 GPa in the top layer (thickness of 15 km), except an area of 

0.5-1 mm/m LOS displacement per unit lake level change northeast of the lake. 

We attribute this residual signal to lateral heterogeneities in Young’s modulus, 

possibly related to partial melting, and/or a delayed response to past load 

changes but we can’t distinguish between these two possibilities. 
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Chapter 6 

Ground deformation due to carbon 
sequestration detected using 
TerraSAR-X: A case study in Texas, 
United States 
 

Summary 

Retrieving surface geomechanical responses due to CCS injection from InSAR is 

one of the most economical methods for reservoir simulations. In this study, we 

use TerraSAR-X high resolution spot light InSAR data to monitor an active CCS 

site at Hastings, Texas, between January 2012 and April 2014, at a temporal 

frequency of ~11 days. 54 SLC and 171 small baseline interferograms are used 

for the time-series analysis. A SBAS technique is developed with modified 

network building, point selection, absolute phase retrieving and time-series 

inversion functions. Based on this technique, we obtain the time-series at ~100 m 

spatial and sub-month temporal resolutions. We optimize the solution through 

ridge regression, which regularizes model variance to reduce overfitting. For 

those points with long-term velocities smaller than 1 mm/yr, InSAR can hardly
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provide the temporal details. The velocities imply that there is no significant 

surface deformation at the center of the injection zone from InSAR, after January 

2012 when production started. Large-scale background deformation likely exists 

according to the comparison between InSAR and GPS measurements. We find 

four anomalies with several millimeters LOS deformation at the surrounding 

areas. These areas are likely affected by the local salt water pumping. To verify 

these signals, more ground information is required. 

 

6.1. Overview 

Synthetic Aperture Radar Interferometry (InSAR) has been proved to be 

useful for monitoring surface deformation associated with geological carbon 

sequestration (CCS) [Vasco et al., 2008]. A series of reservoir simulations based 

on the first success of InSAR in In Salah, Algeria were built [Vasco et al., 2010; 

Rutqvist et al., 2010; Rucci et al., 2010; Tamburini et al., 2010; Bissell et al., 

2011; Shi et al., 2012; Rinaldi and Rutqvist, 2013]. The CCS induced surface 

deformation is usually at a magnitude of several millimeters, requiring high 

stability of the interferometric phase. Zhao et al. [2011] concluded on the 

advantages of low frequency data in rural or vegetated areas because of its 

ability of keeping coherence. New techniques have also been developed for the 

stable point selection [Hooper et al., 2007; Ferretti et al., 2011]. Rohmer and 

Raucoules [2012] further discussed the detectability of long-term CCS injection 

by InSAR.      
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In this study, we use TerraSAR-X (TSX) high resolution spot light data. 

The temporal sampling density of TSX data increases to three times of the 

ERS/Envisat data, and four times of the Alos data, which is 11 days providing a 

“microscope” in time. An extra advantage of this data is its ultra high spatial 

resolution – ~0.9 m, which can potentially enhance the performance of the InSAR 

technique (more details discussed in section 4).  

We develop a modified small baseline InSAR (SBAS) technique to monitor 

the surface deformation in response to geological carbon sequestration. A 2.5-

year monitoring at the Hastings oil field, Texas is discussed. In the major 

injection area, InSAR does not find significant deformation, which is also inferred 

by GPS measurements. Small deformation possibly caused by local water 

pumping is detected close to the injection site. 

 

6.2. Study area 

The Hastings oil field is located in Brazoria and Galveston Counties, 

Texas, ~30 km south-east of Houston, discovered in 1935. It ranks as one of the 

largest oil fields in the Texas Gulf Coast. The development of the field was 

completed by 1941, with the areal extent of ~23 km2, which is divided into two 

sections – Hastings West and Hastings East – by the major fault. The production 

is from the Frio formation at depths of ~1700 m, with salt water disposed at the 

same time to maintain the reservoir pressure [McWilliams, 1972]. The injection of 

CO2 started in December 2010 in northern part of Hastings West, and until 

October 2011, ~28 billion cubic feet (BCF) CO2 has been injected into the Frio 
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formation. Average reservoir pressure was increased during the injection from 

2350 pounds per square inch (psi) to 2850 psi. After the significant production 

since mid-January 2012, the pressure dropped for ~100 - 150 psi, and then was 

maintained at a stable level.   

 

6.3. Data 

  We use a 3 m Lidar DEM (Figure 1) from the national elevation dataset 

[Heidemann, 2012, URL: http://ned.usgs.gov/faq.html] to remove the topographic 

phase during the interferometry processing. The DEM is interpolated to 1 m 

using a cubic spline method in order to simulate full resolution DEM in SAR 

coordinates. The study area lacks topographic relief, with elevation ranging from 

0 m to 22 m with 90% of the area between 7 m to 15 m. The coherence map is 

calculated at full resolution as well. 

 

Figure 6.1. Shaded relief digital elevation map of Hastings. The small box at the 

upper-left corner indicates the location of the study area and the SAR data 

coverage (black frame). The Hastings formation is ~20 km to the south of the 
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Houston city, Texas. TEST1, 2, 3 indicate the location of three continuous GPS 

stations.  

We acquired TSX high resolution spot light data starting from January 27, 

2012 until April 20, 2014, nearly every 11 days. Two data gaps (55 days for 

each) occur in the summers of 2012 and 2013, which influence the continuity of 

the InSAR time-series, because coherence decreases faster in the summer due 

to denser vegetation, so that the phases of long temporal baseline interferograms 

are unstable in these periods. The ground coverage is about 12 km and 6 km in 

SAR range and azimuth directions. We combine a total 54 single look complex 

images (SLC) to 171 interferograms (Figure 2). We generate interferograms 

using hierarchical temporal and perpendicular baseline thresholds: 1) Btemp < 22 

days and Bperp < 150 m; 2) Btemp < 33 days and Bperp < 120 days 3) Btemp < 44 

days and  Bperp < 80 m; 4) Btemp < 55 days and Bperp < 40 m; 5) Btemp < 66 days 

and Bperp < 20m. Because the deformation due to injection is usually very small, 

we assume there is no deformation during the two data gaps, with two simulated 

zero deformation interferograms connecting the network (dashed lines in Figure 

2).  
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Figure 6.2. Baseline plot as a function of time. Each solid line represents an 

interferogram generated by two SLCs (red points). Dashed line represents the 

simulated zero deformation interferogram during the two data gaps. The 

hierarchical thresholds are described above. One exception is the interferogram 

between February 24, 2014 and March 18, 2014 with a long spatial baseline. 

Total number of SLC is 54 with 174 interferograms generated. 

 

6.4. Point selection  

In rural areas, the interferometric phase center is usually not stable 

through time, and there are much less persistent scatterers (PS) than in urban 

and rocky areas. After including more distributed scatterers as pseudo PS 

candidates (e.g. [Hooper et al., 2007]), the spatial masking of the PS technique is 

usually similar to SBAS. We thus use the SBAS technique [Berardino et al., 



103 
 

 
 

2002; Zhao et al., 2014] using multi-looked, filtered interferograms for the time-

series analysis.  

To select stable points, we use a temporal analysis method based on the 

full resolution coherence map. For each pixel we calculate a coherence stability, 

S, defined as:           

  (1) 

With C the number of interferograms with coherence for this pixel above a given 

threshold . N is the total number of interferograms. We use  and 

 for this study. 

 

6.5. Interferogram denoising and absolute phase 

retrieving 

Since the geomechanical responses associated with fluid injection and 

production vary smoothly in space, we reduce the noise level by applying 16 

looks in both range and azimuth directions. The resulting  spatial resolution is 

~15 m in both directions. 

The unwrapping process of InSAR usually fails and produces unexpected 

phase jumps at noisy phases. To avoid these uncertainties, techniques have 

been developed by Zhang et al. [2011] and Tiampo et al. [2013] to prevent path 

searches or network flow calculations. We follow the algorithm introduced by 

Tiampo et al. [2013] to retrieve absolute phases in this study. Considering the 
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noise in each interferogram as a 2-D random field following a Gaussian 

distribution [Agram and Simons, submitted], the zero-phase is at the mean. 

Assuming the phase due to deformation in each interferogram is between  

and  (inferred from the small deformation rate and small temporal baselines 

selected), there are no phase jumps between neighboring pixels, except where 

the absolute phase difference is larger than , comparing to the zero-phase. So 

pixels with phase jumps are corrected by adding or subtracting  respectively.  

Several factors may affect the assumption above such as SAR satellite 

orbital uncertainty, the time delay when the radar signal travels trough the 

atmosphere and the spatial correlated deformation signal. Because of the high 

orbit accuracy of TSX data, we do not consider the orbital error correction. For 

interferograms with ramps visually (~2 % of the total interferograms), we de-ramp 

them with a bi-linear model estimated on the wrapped phase by the 2-D spatial 

derivatives. The ramps are mainly in range direction, indicating that the orbital 

error is dominated. The estimated ramps are added back after phase retrieving, 

based on the conclusion in Fatahi and Amelung [2014] that the limited orbital 

error in TSX data does not play a crucial role in InSAR time-series. We do not 

find ramps in azimuth direction, indicating that the few ramps we have are due to 

orbital errors and the stratified atmospheric delay is small (also implied from the 

small topographic relief). And the small deformation rate does not affect the 

choice of zero-phase significantly. The remaining uncertainty of this phase 

retrieving process is only the atmospheric delay caused by the local turbulence. 
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However, considering the relatively small area, this effect is also not crucial. For 

the pixel where atmospheric turbulence breaks the assumption of small phases, 

the temporal inconsistency will help us to eliminate that pixel based on the 

residual of time-series inversion.  

A low pass filter is commonly applied before phase unwrapping. Because 

of the non-linearity of the wrapped phase, an adaptive filer is usually taken at this 

step to help unwrapping. Because we do not apply any phase unwrapping, and 

the phases become linear after the absolute phase retrieving, we simply apply a 

10 10 Gaussian filter (~150 m on the ground) to further increase the signal to 

noise ratio.  

 

6.6. Time-series inversion  

A pixel-wise ordinary least-square (OLS) inversion is applied to generate 

the time-series first. The deformation evolutions at the monthly or weekly scales 

are not clear, because noises increase the degree of over fitting. We thus apply a 

ridge regression (RR) [Hoerl, 1962] to regularize the model, sacrificing part of 

model variance.  

Regularizations have been applied to InSAR by Lin et al. [2010, principal 

component analysis] for the model complexity selection, by Ozawa and Ueda 

[2011, ridge like smoothing operator] for a low-pass constraint of the time-series 

analysis, and by Samsonov and d’ Oreye [2012, RR] and Zhao et al. [2014, RR] 

to obtain multi-dimensional time-series. From a Bayesian point of view, RR is 

described as minimizing the cost function below [Chapter 1, Bishop, 2009]: 
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        (2) 

                             (3) 

where d is the observation (interferometric phase), m is the model (deformation 

velocity), G is the design matrix,  is the hyperparameter,  is the maximum 

likelihood model variance (from OLS),  is the variance of a prior model.  

 

    The solution of RR is given by: 

  (4) 

where  is the model based on RR, I is an identical diagonal matrix. 

 

One of the key processes of RR is to choose a proper hyperparameter  

to constrain the maximum likelihood estimation from a biased data sampling. RR 

is a biased estimator and there is a trade-off between model variance and bias 

(Figure 3) depending on the selection of the . When  is small, regularization 

is weak, model variance is high and bias is low. In case of high noise, over fitting 

is high. When  is large, regularization is strong, model variance is low and bias 

increases. Thus the model under fitting will be dominant. Typical methods for 

optimizing the hyperparameter include Mallows and cross validation [Frank, 

1989], the Akaike information criterion [Yamaoka et al., 1978], the Bayesian 

information criterion [Weakliem, 1999] and the HKB index [Hoerl et al., 1975]. We 

select HKB index for this study. Figure 3 shows the variance-bias trade-off, and 
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the preferred hyperparameter based on HKB is 300 (definitions of model 

variance, bias and HKB index are given in equation 5-7). Figure 4 shows the 

model resolutions [Chapter 4, Menke, 1989] for OLS and RR. For OLS, because 

the inversion is over-determined, the model resolution is an identical diagonal 

matrix. For RR, because of the shrinkage, the resolution decreases. But the 

spread of the resolution [Chapter 4, Menke, 1989] still concentrates within 3 

neighboring coefficients (3 adjacent time epochs), suggesting that we still obtain 

a temporal resolution within 3 SAR cycles (33 days for TSX data) for most of the 

dates.  

 

(5) 

  (6) 

  (7) 

 is the estimated model variance of RR,  is the data variance,  is 

the measure of the estimated model, and its ratio to the OLS model indicates the 

relative shrinkage (bias) of the model,  is the HKB index, p is the number of 

unknown regression coefficients (here the number of velocities to be estimated in 

SBAS). 
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Figure 6.3. Variance-Bias trade off of RR. Horizontal axis: the ratio between the 

measure of RR model and the OLS model, indicating the relative shrinkage 

(bias). Smaller values represent being away from the OLS model, which are 

more biased. Vertical axis: Variance of the RR model represented by the trace of 

variance-covariance matrix. Both X and Y axes are normalized to [0, 1]. The 

crosses represent the selected hyperparamters. The preferred hyperparameter 

based on HKB criterion is 300 (red cross).   
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Figure 6.4. Model resolutions. a) OLS. b) RR.  

 

6.7. Results and discussion 

The final InSAR LOS deformation after RR is shown in Figure 5. We 

compare the LOS time-series at point A derived from OLS and RR (Figure 6). 

The variations between adjacent dates in OLS are higher than RR, indicating a 

larger model variance. Optimized by HKB index, RR performs the best estimates 

under the given noise level.  
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Figure 6.5. InSAR LOS velocity map from January 2012 to April 2014. Four big 

deforming areas are marked on the map (A-D). A is located at the center of the 

Hastings formation, and is the largest operation site. B is at the western boarder 

of the Hastings formation. C and D are two residential areas. The maximum LOS 

velocities at these areas are ~2 mm/yr, ~2 mm/yr, ~2 mm/yr, ~0.5 mm/yr 

respectively. The dashed frame draws the location of Figure 7.     
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Figure 6.6. Comparison between OLS and RR at point A (Figure 4). a) OLS. b) 

RR at λ = 300 based on HKB index. OLS provides a general solution of the 

deforming history and a clear uplift signal in the velocity map. However, because 

of the noise in the interferograms, the regression coefficients are likely to be over 

fitted. The time-series does not show clear deformation evolution at monthly or 

weekly scales. RR overcomes this issue, and the time-series is smoother which 

is real for geomechanical processes. By choosing a bigger hyperparamter, we 

can obtain an even smoother time-series. However, that increases the risk of 

under fitting. Thus we choose the hyperparamter based on the HKB index, and 

get the optimized value at 300. Red triangles represent the 2 data gaps. 

 

The observed velocity field includes four big anomalies (A-D in Figure5). 

We suggest that these signals are related to the local salt water pumping. 

However, more ground information is required for the verification. The biggest 
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uplift signal (point A in Figure 5) is at an obsolete operation zone in Hastings 

East. Several salt water disposal systems are close to this area [McWilliams, 

1972], which are likely the source of the deformation. The circle shaped 

deformation area is about 800 m in diameter. The total uplift since 2012 is  ~3 

mm with an annual rate of ~2 mm/yr. This signal can be divided to three phases 

(Figure 7): 1) Spring 2012 – summer 2012, the area starts uplifting with a small 

rate (~2 mm/yr); 2) Summer 2012 – Summer 2013, the uplift rate accelerates to 

~4 mm/yr; 3) After summer 2013, the area becomes relatively stable with very 

small uplift. Similar deformation is detected at point B (Figure 5). This area is 

about 500 m (the area is larger in the OLS result but noisy) in diameter with a 

linear uplift of ~4 mm since 2012, and an annual rate of ~2 mm/yr.  

 

Figure 6.7. Final time-series after RR at the four selected points (A-D). A, B, and 

C are shifted by 9 mm, 6 mm, and 3 mm respectively. The deformation at A has 

roughly three phases: spring 2012 – summer 2012 with slow uplift, summer 2012 

– summer 2013 with faster uplift, summer 2013 – April 2014 with a more stable 

behavior. The total LOS displacement is ~3 mm. The time-series B and C are 
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nearly linear with 3 and 4 mm LOS displacement respectively. The deformation 

at D includes an uplift of ~2 mm before summer 2013, and a subsidence of ~2 

mm after. Red triangles represent the 2 data gaps. 

 

Two residential areas are detected to be deforming. These two areas are 

~4 km to the north-west (C in Figure 5) and ~7 km to the east (D in Figure 5) of 

point A in Figure 4 (center of the Hastings oil field). Point C is uplifting by a rate 

of ~2 mm/yr. Velocity at point D is almost flat. But the deformation at this point 

has two phases (Figure 8). Before summer 2013, this area slowly uplifts with a 

maximum amount of ~2 mm, and after that it quickly subsides with a maximum 

amount of ~2 mm in half year.  

 

Figure 6.8. Two deforming phases around point D. a) Uplift phase, spring 2012 – 

summer 2013 with ~2 mm LOS displacement. b) Subsidence phase, summer 

2013 – April 2014 with ~2 mm LOS displacement.   

 

Three continuous GPS stations have been installed in the study area 

(TEST1, 2, 3 in Fig. 1) since October 2012. Both InSAR and GPS do not find 

significant surface deformation due to injection after summer 2012 (Figure 9). 
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However, the amplitude of InSAR derived deformation is smaller than GPS. One 

possible explanation is the existence of background deformation signal, which 

InSAR measurement is insensitive to. The vegetation in the injection zone also 

affects the accuracy of InSAR results. We also compare the InSAR derived 

deformation at TEST1 with a bore hole pressure measurement close to this site 

(Figure 10). The InSAR time-series likely retrieves the rapid pressure decrease in 

Spring 2012. However, due to the noise level, it is hard to conclude on the use of 

this sub-millimeter deformation.     

 

Figure 6.9. GPS vertical and InSAR LOS time-series. a), b), and c): GPS TEST1, 

TEST2 and TEST3. d), e) and f): InSAR points at TEST1, TEST2 and TEST3. 

Red line: smoothed time-series based on a 3-month kernel.  
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Figure 6.10. InSAR-pressure comparison. Gray dots: bore hole pressure records 

measured at a well close to TEST1. Green triangles: InSAR time-series at 

TEST1. Red line: smoothed InSAR time-series.  
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Chapter 7 

Conclusions 

 

7.1. Summary of contributions 

As more and more satellite loaded with SAR sensor being launched, we are now 

able to have very long-time InSAR time-series. Based on new techniques 

developed in time-series analysis, the effects of processing and external errors 

are minimized. Millimeter level surface deformation derived from InSAR starts to 

be commonly used by geophysical researchers. By taking this advantage and 

InSAR’s high spatial resolution, new applications and new models are potentially 

able to be designed. We discussed several attempts in this dissertation. Although 

the existing of uncertainties on the proposed works, we conclude that we have 

made contributions at least from several aspects below: 

1. We used modified SBAS method to implement InSAR time-series and 

obtain centimeter to millimeter level surface deformation at 5 different 

sites, proving the generality and quality of InSAR time-series analysis
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2. We developed a complete geophysical model for ice mass loss estimation 

with constraint on the geometric shape of thinning rates, and successfully 

applied it to Vatnajokull ice cap, Iceland. 

3. We suggested another potential strategy for ice mass loss estimation on a 

more mathematical aspect with techniques such as model space 

resampling, local smoothness constraint, and inequality constraints on 

model. And we applied this method to Barnes ice cap, Canada, updating 

its ice mass loss between 2012 and 2015. 

4. We obtained an extremely small deformation signal at Yangzhuoyong 

Lake (~1.5 mm/yr and 10 mm in 7 years) using Envisat ASAR data. We 

also provided constraint on the shallow crustal Young’s modulus based on 

InSAR observation, and compared this result with seismic derived 

parameters, demonstrating the difference between static and dynamic 

moduli. 

5. We used high resolution TSX data to monitor the crust response due to 

CCS injection and water pumping, and generated a very high temporal 

resolution InSAR time-series. 

 

7.2. Future work 

Corresponding to the 5 contributions we made, future plans potentially improve 

these works are listed below: 
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1. Investigations on different error sources such as DEM error, atmospheric 

delay and unwrapping errors can further increase the reliability of InSAR 

products.  

2. The assumption that the ice thinning rate is exponentially correlated with 

distance from the ice edge is generally valid for most small ice cap. But for 

big ice sheets like Greenland, this assumption is too arbitrary. So that 

more sophisticated model is expected in the future.  

3. Although the 3 constraints added in chapter 3 are plausible, in practice, 

the quality of products are affected by the quality of observations 

significantly. 

4. High temporal sampling of SAR acquisition is expected at Yangzhuoyong 

Lake in order to retrieve this small deformation signal in time with higher 

significance. TSX data is like suitable for this study.  

5. In rural areas at CCS injection sites, distributed InSAR may have stronger 

ability to retrieve reliable information. 
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Appendix A 
 
 

No. of 
int. 

Date 1 Date 2 Bperp 
(m) 

No. of 
int. 

Date 1 Date 2 Bperp 
(m) 

1 20120524 20120804 -16 31 20130730 20141005 59 

2 20120804 20121015 -189 32 20130823 20130916 -74 

3 20120804 20130730 -148 33 20130823 20131010 -145 

4 20120804 20130823 -137 34 20130823 20131103 79 

5 20120804 20130916 -212 35 20130823 20140911 31 

6 20120921 20121015 221 36 20130823 20141005 48 

7 20120921 20130730 262 37 20130916 20131010 -71 

8 20120921 20130823 273 38 20130916 20140911 106 

9 20120921 20130916 199 39 20130916 20141005 122 

10 20120921 20131010 127 40 20131010 20131103 224 

11 20120921 20140911 304 41 20131010 20140911 177 

12 20121015 20130119 32 42 20131103 20131221 -97 

13 20121015 20130308 -14 43 20131103 20140207 -144 

14 20121015 20130401 -23 44 20131221 20140207 -47 

15 20121015 20130730 41 45 20140911 20141005 16 

16 20121015 20130823 52 46 20140911 20141216 97 

17 20121015 20130916 -22 47 20141005 20150202 83 

18 20121015 20131010 -94 48 20141005 20150226 -15 

19 20121015 20140911 83 49 20141005 20150322 65 
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20	 20121015	 20141005	 100	 50	 20141216	 20150202	 3	

21	 20130119	 20130308	 -45	 51	 20141216	 20150226	 -95	

22	 20130119	 20130401	 -55	 52	 20141216	 20150322	 -16	

23	 20130119	 20130425	 252	 53	 20141216	 20150415	 -11	

24	 20130308	 20130401	 -9	 54	 20150202	 20150226	 -98	

25	 20130308	 20130425	 297	 55	 20150202	 20150322	 -18	

26	 20130401	 20130425	 306	 56	 20150202	 20150415	 -14	

27	 20130730	 20130823	 11	 57	 20150226	 20150322	 79	

28	 20130730	 20130916	 -63	 58	 20150226	 20150415	 84	

29	 20130730	 20131010	 -135	 59	 20150322	 20150415	 5	

30	 20130730	 20140911	 42	 	 	 	 	

 

Table S3.1. Interferogram list (each record includes 2 dates representing the 

master and slave) use for time-series analysis. Bperp represents the length of  

perpendicular baseline.
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Appendix B 

Petermann Icesat Source Data 

 

Figure 4.3. Ice thinning rate (2003 – 2010) at Petermann glacier. All points 

represent the Icesat foot prints.
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Appendix C 

Codes Developed for This 
Dissertation 
 

1. 3D InSAR Time-Series (used in chapter 2)  

 This matlab code is used for multi-dimensional InSAR time-series 

inversion (this version only works for 2 tracks case with 1 ascending and 1 

descending). The main file is interferograms2timeseries_3D.m. It calls 

Make_designMatrix_3D.m to build the design matrix of the multi-dimensional 

SBAS. CalcDateList.m calculates a datelist(in date format) and dayslist(in 

integer) of all the epochs in the data set. yymmdd2y.m changes date format time 

to a decimal year. convert_unit.m changes unit between radar phase (rad) and 

ground displacement (m, cm or mm).  

 The inputs for interferograms2timeseries_3D.m are: 1) A interferogram list 

structure with fields of data(the phase), first_x(the left longitude), first_y(the up 

latitude), x_step(longitude resolution in degree), y_step(latitude resolution in 

degree), Unit (unit of phase usually in rad); 2) look angle list structure in order of 

interferogram; 3) azimuth angle list structure in order of interferogram; 4) number 

of data on the first track (notice: the order of interferogram list should be first 
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track first); 5) days before the first overlapping date (e.g. if the first date on track1 

is Oct.1, and first date on track2 is Oct.15, this value should be 14); 6) similar to 

5, days after the last overlapping date; 7) a interferogram list structure or data 

from track1 

 The code has been tested using matlab 2010a,b, 2011b, 2012a on 

centOS cluster and mac OS. 

 

2. Glacier package (used in chapter 3 & 4) 

 This is a python class used for ice mass loss modeling based on InSAR 

data. It includes simulator or reader of a ice cap geometry (outline and area), 

simulator of loading history based on distance from the ice cap edge, reader of 

InSAR data outside of ice cap, geo-coordinate - SAR coordinate convertor, 

altimetry measurement simulator, quadtree decompositor, forward model, inverse 

model using constrained least square. 

 

3. ElasticSAR package (used in chapter 5) 

 This python code is used for layered elastic modeling from InSAR time-

series outputs. Users need to create a working directory, under working dir make 

a dir for "InSAR" and dir for "Model", then prepare a parameter text file (an 

example is included in the package). Two uitility libraries are included also -- 

Rsmas_Utilib.py and ElasticSAR.py 

 Users need to have numpy, scipy, mpi4py, matplotlib, gdal and osgeo pre-

installed with proper environment setting. 
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4. Pseudo 3D Unwrapping (used in chapter 5) 

 This python code is used for unwrapping InSAR interferogram based on a 

pre-selected spare points network. User needs to have SNAPHU installed 

because the unwrapping kernel will be still SNAPHU. The code does a masking 

on each interferogram based on the pre-defined mask file. Then it interpolates 

the interferograms using nearest-neighbor algorithm. The unwrapped 

interferogram is sent to SNAPHU after interpolation. Another making step will be 

implemented after unwrapping to take out those points generated by nearest-

neighbor interpolation.  

 Users need to setup a parameter list file specifying parameters like the 

working path, string character of interferogram(e.g. if you want to unwrap 4rlks 

interferogram), SNAPHU options and so on. An example of the parameter file is 

included in the package. Now the code supports roipac and NSBAS formats. 

User can easily extend to a new format. The code also requires a utilities library 

which has been included in the package. 

 

5. APS & Ramp Removal Wrapped (used in chapter 5) 

 This python code is used to remove elevation correlated atmospheric 

delay as well as any global 2D polynomial (first or second order) ramp within 

wrapped interferogram. To remove these noises before unwrapping, it can 

potentially improve the quality of phase unwrapping.  

 Users need to have roi_pac format flattened and multi-looked 

interferograms.  
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