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Abstract 

The empirical study of business responses to disasters is relatively scarce, despite that 

they are a fundamental part of the cities, providing services, jobs and, taxes that are essential 

for urban sustainability. This dissertation develops an agent-based simulation model to 

represent and understand the businesses reopening process in a dynamic environment in New 

Orleans after Hurricane Katrina. The objectives are two-fold: 1) To identify the main 

reopening predictors involved and estimate their relative importance through time, using an 

empirical data set collected from another study; 2) To represent the business reopening 

process through a computer simulation model, using the parameters derived from the first 

objective.  

The results show that businesses located in flooded areas had lower reopening 

probabilities, however the effect was significant only in the first nine months after the 

disaster. Larger businesses had better reopening probabilities than smaller ones, although this 

variable stopped being significant after six months. Variables associated with higher social 

vulnerability, such as percent non-white population and percent population under 18, had a 

negative effect on the business reopening probabilities at different points of time. The 

influence of neighboring firms using 1-km buffer was found significantly positive only 

immediately after the disaster; it became significantly negative one year after the disaster.  

The simulation model developed proved to mimic the reopening process at a suitable 

level. The model was used to simulate two scenarios: 1) First, the flood depth was reduced by 

1 meter as a way to represent the implementation of measures designed to increase the 

buildings and infrastructure resistance to floods. The simulation results indicate that there are 

specific areas that would obtain greater benefit from these measures, however ten months 
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after the disaster the effect of the measures tends to diminish. 2) Second, the spatial effects of 

aids were simulated by making a limited number of businesses in specific locations totally 

resilient to the disaster. The results indicate that the beneficial effect is influenced by variables 

such as business density and socio-economic conditions of the area. The positive effect is 

perceivable until four months after the disaster, after this point it diminishes. 
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Chapter 1 : Introduction 

1.1 Problem Statement 

Most cities have proven through the history to be extremely resilient to natural 

disasters (Vale and Campanella 2005). However policies designed to make the post disaster 

recovery sustainable still need further study. Cities are complex environments in which 

multiple variables and components influence each other. Understanding the complex 

environmental system dynamics, the cause-and-effect relationship, and the interactions 

between human and natural components is critical to the design of policies aimed to ensuring 

sustainable development of cities and regions, especially when they are faced with the threats 

of both long-term climate change and short-term large-scale disturbance (Lam et al. 2009).  

This research studies the effects of Hurricane Katrina in the business community of 

New Orleans. Hurricanes are the costliest disasters in the United States and in recent years 

their costs have increased dramatically (Pielke and Landsea 1998). The total cost of 

hurricanes in the 1990s was higher than the 1970s and 1980s combined. The higher cost is 

explained by the increased vulnerability.  The population density in coastal areas has seen a 

steadily increase in the last decades (Rappaport and Sachs 2003). More people and 

infrastructure are located in areas threaten by hurricanes than before, making the disaster 

costlier when they occur.  

Until recently most of the research in the field of post-disaster recovery has been 

focused on households or whole communities (Webb, et al. 2002). Businesses are a 

fundamental part of the cities. They provide services, jobs and taxes essential for urban 

sustainability; however, the empirical study of business responses to disasters is scarce (Lam 

et al.2007; Lam et al. 2009b). 
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Any long-term recovery policy must address the economic aspect of community 

recovery.   In order to design better recovery policies, it is necessary to identify the significant 

recovery predictors and evaluate how they affect the return of businesses after a disaster. Most 

of the previous literature that focuses on business recovery indicates that businesses’ 

responses to disasters are not random. There are statistically significant recovery predictors 

associated with a positive or negative outcome. The recovery process is a dynamic one. 

However, few studies were able to develop empirical models that used data collected almost 

immediately after the disaster. Most of the previous studies were based on surveys carried out 

several months, if not years, after the event, losing important temporal information. Moreover, 

as far as we know, there has not been any study that uses a dynamic simulation approach to 

examine the business recovery process. To understand the business recovery process, it is 

important to study the dynamics of the process using empirically derived parameters. 

As in most human systems the business recovery process is an open one. There are 

many uncertainties that can not be fully addressed. The purpose of this research is to 

understand decision making under uncertainties by businesses and provide decision makers 

with information and tools to design better recovery policies. This study identifies relevant 

recovery predictors and provides tools to test “what if” scenarios to test recovery policies. 

1.2 Objectives 

This research develops an agent-based simulation model to represent and understand 

the businesses reopening process in a dynamic environment in New Orleans after Hurricane 

Katrina. The business post-disaster recovery is a complex phenomenon. Businesses are 

heterogeneous in nature, size, economic activity, and others. Based on their locations, a 

disaster also affects them in different forms. Agent-based models are particularly well suited 
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for modeling business recovery because they represent each business as an independent 

component with its own characteristics, allowing the representation of complex interactions 

between businesses themselves as well as with their geographic environments. A model is a 

simplified representation of reality that helps researchers to understand a real world process. 

An agent-based simulation model will allow researchers to conduct experiments that 

otherwise would be too expensive or difficult to conduct in the real world (Gilbert 2008). The 

reopening simulation model will not only provide understanding of the process, but also help 

planners design and test recovery policies so that resources can be better allocated. 

 The objectives of this dissertation research are two-fold. The first is to understand the 

business reopening process, in order to estimate rules and parameters to be used in the 

simulation model, making it as realistic as possible. We will identify the main reopening 

predictors involved and estimate their relative importance through time. We will use the 

business survey and related GIS data collected by previous studies in this study area (Lam et 

al. 2007, Lam et al. 2009). The study variables will include characteristics of the business, 

socio-economic characteristics of the residents in the business vicinity, and the influence of 

neighboring establishments on the reopening decision process. The second objective is to 

represent the business reopening process through a computer simulation model. The 

simulation model will assume each business as an independent agent. The business agents 

will estimate at discrete points of time its reopening probabilities based on its internal 

characteristics as well as the influence of neighboring business agents. The influence of 

neighboring business agents is determined using a neighborhood function, such as an inverse 

distance-weighting function, that will assign more weights to closest neighbors. The 

simulation result will be visualized using an interface programmed in JAVA. 
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Once the simulation model is calibrated and validated, the effects of a business 

opening in one location on the reopening probabilities of neighboring businesses, and how 

such effects propagate through time, can be estimated and visualized by the simulation model. 

The scenarios generated by the empirically based model to be developed in this research will 

help increase our understanding of how city recovers in a complex environment and what 

planning or aid strategies would be the best to help speed up recovery. 

1.3 Significance 

This research contributes to geography and spatial sciences with a special focus on 

post-disaster economic recovery and dynamic modeling. This research is innovative in three 

aspects: First, there is no previous research on the simulation of post-disaster business 

reopening process. The use of simulation will help understand the complex recovery process 

and how the reopening of one business in a given location at a given time will affect the 

business reopening probabilities in other locations in later time periods. Second, the use of 

empirical data for model calibration and validation for an agent-based model is also 

innovative. A validated simulation model that is supported by real data will allow researchers 

to design and test recovery policies so that resources can be better allocated. Third, this study 

will estimate how the status of neighboring firms influence the business reopening decision 

process.  

Although the simulation model is based on post-Katrina New Orleans data, it can also 

be applied to other locations affected by disasters of the same nature. The simulation and 

visualization program will be made available to the open source community to allow their use, 

modification and improvement.  
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A better understanding of how human systems respond to disaster events will allow 

policy makers to improve disaster preparedness plans. The reopening probabilities and the 

model results will be useful to planners for evaluating alternative recovery aid strategies. The 

simulation model will be a valuable tool not only for planning purposes, but also for 

hypothesis testing purposes. 

1.4 Dissertation Outline 

  Chapter 2 is a literature review of the New Orleans landscape, hazards, disasters and 

previous relevant research on the impact of Hurricane Katrina on the business community in 

New Orleans. Chapter 3 describes the procedure employed to estimate the businesses 

reopening probabilities. Chapter 4 describes agent-based models, the approach employed in 

this research. Chapter 5 describes in detail the agent-based simulation model developed. 

Chapter 6 contains the conclusions and suggestions for further research. 
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Chapter 2 : Business Community in New Orleans after Hurricane Katrina 

2.1 New Orleans and Its Environment 

New Orleans is located next to the Mississippi river close to its mouth. It is one of 

America’s leading cargo ports, and is the only deepwater port in the country served by six 

railroads of category one. In addition to the railroads, it has access to the highway system 

through the Clarence Henry Truckway. Its railroad and highway connections give the port a 

privileged access to the whole country. In 2004 a study conducted by Martin Associates 

indicated that the port activity originated 160,498 jobs, $8 billion in earnings, $17 billion in 

spending and $800 million in taxes only in the state of Louisiana (Port of New Orleans 2011). 

The city of New Orleans extends between the Mississippi river and Lake Pontchartrain 

(See Figure 2-1). The older parts of the city are located next to the river. This is explained by 

the economic importance of the river as well as by the city’s unique topography.  The lands 

adjacent to the Mississippi river are higher than all other natural features in the delta area. The 

French settlers named these areas as levées, which means “raised up”. The elevation of the 

levees is due to the river sediments deposits over thousands of years. The natural levees have 

an elevation of 8 to 15 feet above sea level. On top of the natural levees, artificial ones have 

been built since 1719. After the Civil War, the levee system became the responsibility of the 

federal government, which increased the elevation of the levees in between 15 to 25 feet (See 

Figure 2-2) (Campanella 2006).  

Until the beginning of the 20th century, the city of New Orleans was limited to the 

immediate surroundings of the river levees. The area suitable for urban development extended 

less than two miles from the river shore close to the current location of Clairborne Avenue 

(Kelman 2003). The rest of the land, between this point and the Lake Pontchatrain shore was  
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Figure 2-1 : Orleans Parish location map (map created by the author).  

 

Figure 2-2 : Orleans Parish Digital Elevation Model using National Elevation Dataset from 
United States Geological Survey (map created by the author). 
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a marsh crossed by some bayou ridges, with an average elevation at or below sea level. 

Around 1895 sanitary engineers developed a system consisting of miles of canals and electric 

pumps. The goal of the system was the remove the water from the city. In 1914 the system 

was composed by almost seventy miles of canals and seven pumping stations. The system 

transforms the marshes next to the lake into dry land. The new reclaimed areas began to be 

rapidly urbanized around 1910. In 1890 the city imposed taxes on 132 million dollars in 

property, by 1914 the amount of property was almost twice the amount registered in 1890 

(Kelman 2003). 

Today second to the river levees, the Lake Pontchatrain shores are the areas with the 

highest elevation in New Orleans (See Figure 2-2). But it was not always like this. The newly 

developed land required some protection from hurricane surge coming from the lake that 

could flood the city. A system of levees was built around 1900 in this area, although this 

system had serious faults. A better defense mechanism was created based on a plan designed 

by W.H. Bell 50 years earlier. The idea was to create a levee half a mile into the lake and 

pump sediments from the bottom of the lake into the space created between the original shore 

and the new levee. This newly created area would protect the city from the lake. The project 

was completed in 1934. The new land was elevated 4 to 6 feet above the lake level, and more 

than 10 feet above the adjacent lowlands (Campanella 2006).  

Because of its location and particular topography, New Orleans is threatened by floods 

because of hurricane surges and river high-water. Throughout its three centuries of history 

New Orleans has suffered 27 floods due to either of those causes.  After each of these events 

the city has improved its defense mechanisms, rebuilding and raising its levee system (Kates 

et al. 2006).  
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Before Hurricane Katrina, in the 20th century, the city sustained severe damage in 

multiple occasions. On September 29th of 1915 a category 4 hurricane landed near Grand 

Isle, Louisiana. Due to the hurricane surge more than 25,000 buildings near the Lake 

Pontchartrain shore were flooded (Kates et al. 2006).  Parts of the Mid-city district were 

flooded because of a failure in the pumping system due to damages in the power 

infrastructure.  

The year of 1927 was especially difficult for the states in the Mississippi basin. Heavy 

rains starting in the summer of 1926 increased the river to unusual levels. Floods affected 

Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, Texas, Oklahoma 

and Kansas.  On April 15th of 1927 a power failure caused the pumping system ceased to 

work in New Orleans, and it could not be in a worse moment. That day New Orleans 

sustained 14 inches of rain. Because of the particular topography of the city and in the 

absence of the pumping system, water had nowhere to go and flooded the low elevation parts 

of the Big Easy (Kelman 2003). By the end of April, the river was full, it had broken levees at 

Mound Landing, Mississippi and the population in New Orleans was in the brink of panic. A 

controversial plan was proposed in an attempt to reduce the pressure in the river levees. The 

plan consisted in creating a breach, with explosives, downstream from New Orleans, allowing 

the water to flow to the sea alleviating the pressure.  The plan was carried out on April 29th 

saving New Orleans from flooding. However the breach flooded St. Bernard and Plaquemines 

parishes effectively destroying them (Kates et al. 2006, Kelman 2003).  

The night of September 9th of 1965, a category 3 Hurricane named Betsy landed in 

the southeastern Louisiana coast. The hurricane surge puts pressure in the levee system of the 

city eventually leading to the failure of the Industrial Canal and the Intracoastal waterway 
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levees which caused the flooding of the low areas of New Orleans, west of Industrial Canal 

and north of Gentilly Ridge (Goudeau and Conner 1968). Betsy destroyed more than 27,000 

houses, causing the displacement of more than 300,000 residents. After Hurricane Betsy, the 

levee system was upgraded by the U.S. Army Corps of Engineers only to be tested again in 

2005 with Hurricane Katrina (Kates et al. 2006) . 

2.2 Hurricane Katrina 

  On August of 2005 the tropical depression Katrina formed on the Atlantic, on August 

23rd it became Tropical Storm Katrina. It moved erratically westward over the Bahamas and 

became a category 1 hurricane, 15 miles northeast of Fort Lauderdale on August 25th. It made 

its first landfall the same day causing substantial damage and the lost of 14 lives. During the 

night of August 25th it moved westward over the Florida peninsula, reaching the Gulf of 

Mexico the next day. An upper anticyclone over the Gulf and warm sea surface temperature 

caused the intensification of Hurricane Katrina, which became a category 5 hurricane on 

August 28th. On August 29th Hurricane Katrina made its second landfall in southeast 

Louisiana as a category 3 hurricane (See Figure 2-3) (Graumann et al. 2005). The hurricane 

surge caused by Katrina increased the pressure on the levee system that protect navigation and 

drainage canals in New Orleans. The levee system eventually failed in several points causing 

torrents of salt water into adjacent neighborhoods which flooded up to 12 feet in some cases 

(See Figure 2-4). The death toll in New Orleans alone was over 1,600. 

  Four-fifths of New Orleans urban area was flooded. Over 107,000 housing units were 

damaged by flood, while more than 27,000 units sustained damages caused by wind. By 

September extensive areas of Orleans, St. Bernard, and Plaquemines parishes were without 

population or any economic activity (Campanella 2008). By New Year 140,000 out of 
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450,000 people returned to New Orleans. Services such as electricity, gas and potable water 

returned to unflooded areas though mid Autumn, however flooded areas had to wait several 

months, until 2006 for their services to return (Campanella 2006).     

  The idea of shrinking the city was proposed by some urban planners, however the idea 

was rejected by social activists who considered it as ethnic and class cleansing. Eventually the 

authorities gave a green light for the return to all areas in New Orleans, initiating a process 

that is still on course (Campanella 2008; Lam et al. 2009). 

  The current limited understanding of decision making after catastrophic events make 

this topic a relevant one for research. However, the nature of the events and their aftermath 

make them hard to study. The opportunities for systematic study and empirical observation 

are limited (Lam et al. 2009). Furthermore, until recently most of the research in the field of 

post-disaster recovery has been focused on households or whole communities and not in 

businesses (Pielke 1997; Webb, et al. 2002). 

2.3 Business Decisions after a Disaster 

  Research on business recovery after natural disasters is still scarce (Dahlhamer and 

Tierney 1998, Waugh and Smith 2006). Some of this research uses aggregated units of 

analysis which obscure the conclusions of the research. Businesses are very heterogeneous, 

therefore it is necessary to conduct this kind of research at the micro-scale level (Zhang et al. 

2009). Previous research at the microscopic level has identified certain business 

characteristics that could predict to a certain degree the recovery probabilities of a firm after a 

disaster. These are: the direct disaster impact at the business location, the business size, the 

business economic activity and lifelines interruption (Alesch et al. 2001; Dahlhamer and 

Tierney 1998; Webb, et al. 2002). 
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Figure 2-3 : Hurricane Katrina approaching New Orleans (source: CIMSS 2011) 

 

Figure 2-4: Levee breaches in New Orleans after Hurricane Katrina (source: MSNBC 2011) 
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  A significant predictor is the measure of the impact of the disaster at the business 

location. In the case of businesses after the Northridge earthquake, a division of the affected 

area according to the earthquake shaking intensity was identified as a significant recovery 

predictor. Earthquake shaking intensity is not only associated with the damage on the business 

itself but also with the damage the disaster has caused on neighboring businesses and 

residents (Dahlhamer and Tierney 1998). Businesses face more recovery challenges when 

their customer base is concentrated in areas deeply affected by the disaster. After a disaster 

customers might have to relocate due to residential damage or spend their income in repairs, 

restricting other expenditures on local businesses (Alesch et al. 2001). 

  Since 1993, the Disaster Research Center at the University of Delaware has conducted 

a number of post-disaster business surveys at different locations in the United States. The 

results of the surveys indicate that larger organizations are more prepared than smaller ones 

(Webb et al. 2000). After a disaster it is more difficult for smaller firms to recover. In the case 

of larger firms it is possible to have employees specifically dedicated to make pre-disaster 

preparations which is not the case for smaller firms. In the event of a disaster these 

preparations work and larger firms rebound faster (Yoshida and Deyle 2005; Kroll et al. 

1991). Research conducted after the Northridge earthquake by Dahlhamer and Tierney (1998) 

concluded that larger organizations have better survival chances than smaller ones. A larger 

organization is more likely to have its infrastructure spread over a larger geographic area, in a 

disaster event, it is more likely that at least part of its infrastructure has not been damaged, 

allowing the organization to return to business faster. Smaller businesses tend to depend on 

local neighborhood customers, making them more susceptible to the negative effects of 

population displacements (Alesch et al. 2001; Dahlhamer and Tierney 1998). 
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  Previous research suggests that the business economic activity has a strong influence 

on the type of preparedness firms have in case of disasters (Dahlhamer and D'Souza 1997). 

Studies conducted after the Northridge earthquake and in Memphis/Shelby county found that 

firms in the finance, insurance and real state (f.i.r.e) sectors were better prepared for disasters 

that businesses involved in other activities. This might be a result of a stricter regulation. The 

same research suggests that businesses in wholesale, retail and services tended to be less 

prepared (Webb et al. 2002). 

2.4 Previous Research on Business Return Post Hurricane Katrina in New Orleans 

  In order to study the factors that affect business decision after a disaster, Lam et al. 

(2009) conducted a research on New Orleans business community after Hurricane Katrina. 

The purpose of the research was to identify the spatial and temporal dynamics of factors 

considered important by businesses for their decision making. The information obtained 

would enable researchers to model and predict the reopenings over time and space.  

  The research conducted by Lam et al. (2009) used the August 2005 Louisiana 

Department of Labor Micro File for Economic Development.  This file contains 45 variables 

for each business in New Orleans. Among the most relevant are: NAICS code (North 

American Industry Classification System), physical address, telephone, contact person, 

longitude, latitude, zip code, census tract, census block, parish location, number of employees 

and aggregated wages. Using this information Lam et al. (2009) conducted three telephone 

surveys on December 2005, June 2006 and October 2007, with the purpose of studying the 

business return process on the short, intermediate and long term. The telephone surveys were 

conducted by the Louisiana State University Public Policy Research Laboratory. The 
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questionnaires were similar in order to compare them, although the third survey included 

more questions.  

  In order to analyze the telephone surveys, Lam et al. (2009) made the following 

assumptions: 1) Businesses that did not answer the telephone calls, after five or more 

attempts, and businesses with disconnected telephones were considered closed. 2) Businesses 

that did answer the telephone calls but refused to participate in the surveys were considered 

open. Under these assumptions less than 26% of the businesses reopened in the first four 

months after Katrina, by the time of the second survey the reopening rate increased to 39%, 

the rate increased to 66% by the time of the third survey (See Table 2-1). 

  Figure 2-5B depicts the business density in Orleans Parish before Hurricane Katrina. 

Figures 2-5C, 2-5D and 2-5E depict the business density based on the first, second and third 

survey respectively. 

  Lam et al. (2009) assumed the “disconnected” status of the telephones as indicating a 

short-term decision to not reopen, while the “no answer” was assumed as a sign of 

uncertainty, a “wait and see” approach to the crisis. Using these assumptions the telephone 

surveys indicate in the first four months, 15% of the businesses decided not to reopen anytime 

soon (disconnected), while 59% of the businesses took a “wait and see” approach indicating a 

high degree of uncertainty by this time. The second survey was performed 10 months after the 

disaster. It indicates that 28% of the businesses had their telephones disconnected, indicating a 

not to reopen decision, while businesses in the “no answer” category diminished to 32%. The 

results indicate a reduction in the number of firms with a “wait and see” attitude. The third 

telephone survey, taken two years after the disaster, indicates that only 5% of the businesses 

had their telephones disconnected, whereas 29% of the businesses were in the “no answer”  
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Table 2-1 : Survey statistics of the three surveys (source Lam et al. 2009) 

 
Dec-05 Jun-06 Oct-07 

Total Sample 9132 9139 6155 
Total attempted 8574 8808 5837 
Others 359 439 2294 
Revised (Attempted-Others) 8215 8369 3543 
Completed survey 975(12%) 1418(17%) 1232(35%) 
Assumed open 1173(14%) 1867(22%) 1101(31%) 
Disconnected 1259(15%) 2376(28%) 170(5%) 
No answer 4808(59%) 2708(32%) 1040(29%) 

	
  
Note: The percentage values were computed using ‘‘Revised’’ (Total attempted minus 
Others) as denominator. (Note: ‘‘Others’’ include ‘‘no eligible respondent’’, ‘‘incorrect 
business’’, and ‘‘not a business.’’; whereas ‘‘Assumed open’’ include ‘‘hard or soft refusal’’, 
‘‘busy’’, ‘‘call back’’, ‘‘fax’’, ‘‘already taken survey’’, ‘‘partially completed’’, and ‘‘mail 
back’’.)  

  

category, indicating a reduction of uncertainty.  

  Lam et al. (2009) classified the businesses in seven groups based on their economic 

activity as stated in the firms’ NAICS code (North American Industry Classification System). 

The purpose of the classification was to create groups conformed by businesses of similar 

economic function in order to analyze the reopening rates for each group (see Tables 2-2 and 

2-3). 

  The reopening rates for each business group are depicted in table 2-3. The results 

indicate that the highest reopening rate was 33% by the time of the first survey to Group  7 

(professional, scientific and technical services). The lowest reopening rate in the first survey 

was 17%, which is Group 4 (educational, health care, social assistance, and public 

administration). By the time of the second survey Group 7 was still the one with the highest 

return rate (48%) while Group 4 was still the lowest return rate (32%). By the time of the third 

survey, the reopening rate differences between groups diminished. Two years after the  
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Figure 2-5: Flood depth and kernel density maps of businesses reopened by the three time 
periods (source: Lam et al. 2009). 
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Table 2-2: Business classification according to their NAICS code (source Lam et al. 2009) 

Group NAICS code Description 

1 11,21,22,23,31,32,33 
Mining, utilities, construction, manufacturing, agriculture, 
forestry, fishing, and hunting 

2 42,44,45 Wholesale and retail 
3 51,52,53 Information, finance, insurance, and real estate 

4 61,62,92 
Educational, health care, social assistance, and public 
administration 

5 71,72 
Arts, entertainment, recreation, accommodation, and food 
services 

6 48,49,55,56,81 
Management of companies, waste management, 
transportation, warehousing, and other services 

7 54 Professional, scientific, and technical services 
  

Table 2-3 : Business opening ratio by type at the three time periods (source Lam et al. 2009) 

 
Dec-05 Dec-05 Dec-05 Jun-06 Jun-06 Jun-06 Oct-07 Oct-07 Oct-07 

Group Total Open % Open Total Open % Open Total Open % Open 
1 601 128 21 627 234 37 279 178 64 
2 1533 368 24 1589 593 37 681 464 68 
3 880 233 26 882 361 41 367 237 65 
4 975 166 17 1007 322 32 414 252 61 
5 1034 266 26 1072 397 37 481 305 63 
6 1750 390 22 1746 601 34 681 429 63 
7 1401 464 33 1423 676 48 598 397 66 

Sum/Ave 8174 2015 25 8346 3184 38 3501 2262 65 
 
Note: The ‘‘Total’’ column is the sum of ‘‘Completed survey’’, ‘‘Disconnect’’, ‘‘No 
answer’’, and ‘‘Assumed open’’ in Table 1. The ‘‘% open’’ figures were derived by assuming 
‘‘Disconnect’’ and ‘‘No answer’’ as businesses closed. Note that within the ‘‘Completed 
survey’’ category, a small portion of businesses remained closed even though they 
participated in the survey. 
 

disaster the average reopening rate for all groups was close to 65%.   

  The businesses surveyed by Lam et al. (2009) were asked to rate a list of problems 

considered barriers to businesses reopenings, using a scale from 1 (less important) to 5 (most 

important). In the first survey, the most important barrier was the levee protection with an 

average score of 3.19, the second most important barrier was the lack of customers with an 
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average sore of 2.89. In the second survey, the levee protection was still the main barrier with 

an average score of 3.20. The second and third most important barriers were utilities and 

communications with scores of 3.15 and 3.18. In the 

third telephone survey crime, was considered the most important barrier with an average score 

of 2.94 while the second most important barrier was levee protection with an average score of 

2.87 (See Table 2-4). 

  The results indicate that immediately after the disaster, levees were considered the 

main concern for business owners. By the time of the second survey levees were still 

important, however other problems became almost equally relevant: utilities and 

communications. By the time of the third survey day to day concerns, such as crime, became 

more relevant. 

  The results of Lam et al. (2009) coincide with previous research. Firms related to 

scientific and technical services had a faster return rate than firms in other economic 

activities, while firms in the fields of health care, social assistance and public administration 

showed a lower return rate in the first survey. By the time of the third survey the differences 

between the reopening rates of the different business groups diminished. The average 

businesses reopening rate by October 2007 was 65% a figure very close to the jobs return rate 

(67%) estimated by the Brookings Institute during the second quarter of 2007 (The Brookings 

Institute 2008). The high scores given to utilities and communications coincide with previous 

research by Dahlhamer and Tierney (1998) regarding the importance of these elements for 

business recovery. 

  The multiple surveys allowed Lam et al. (2009) to study the attitude change among 

business owners through time after the disaster. It is interesting that 59% of the businesses by  
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Table 2-4: Average ranks of barriers and prospect for all businesses surveyed (source: Lam et 
al. 2009) 

Problem Dec-05 Jun-06 Oct-07 
Damage 2.64 3.02 2.41 
Insurance 2.66 2.64 2.58 
Employee 2.73 2.97 2.69 
Customer 2.89 2.76 2.68 
Crime - 2.41 2.94 
Levee 3.19 3.20 2.87 
Utilities 2.58 3.15 2.33 
Communication 2.72 3.18 1.99 
Environmental 2.23 2.42 1.82 
Governmental 2.66 2.47 2.34 
Financing 2.47 2.31 2.41 
Prospect 2.54 2.31 2.30 
Recovery progress - 2.41 2.68 

	
  
Note: Except for the ‘‘recovery progress’’ variable, scores range from 1 to 5 and 
the higher the score, the more important the problem. 

 

the time of the first survey took a wait and see approach. These firms kept their telephone 

service, but waited to reopen until certain conditions were fulfilled. The surveys indicate that 

the main concerns by this point were the status of critical infrastructure: levees, utilities and  

communications. An emergency plan that considers a quick restoration of water, power, 

roads, public transportation, and telecommunications most likely would eliminate major 

concerns among business owners. Ten months after the disaster, infrastructure was still 

among the main concerns among business owners; indicating that these problems were not 

adequately solved by this time.  

  In summary the results of the surveys indicate that the business return is a dynamic 

process. The attitudes of business owners changed through time, indicating an uncertainty 

reduction and change about the main concerns for their business decisions.    
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  In this study we are interested in predicting the reopening status of firms in New 

Orleans. A common approach in statistics is to try to predict the value of one variable based 

on the combinatory effect of a set of possible predictive variables. The reopening status of the 

businesses can only have two possible values, open/closed. The study of binary dependent 

variables requires special manipulation and statistical models such as logit and probit 

regression models that will be described in the next chapter.  
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Chapter 3 : Estimation of the Temporal Dynamics of Business Reopening 
Predictors 

3.1 Introduction 

It is often the case in scientific studies that researchers want to predict the value of a 

variable based on a combination of a set of predictors. A common approach is the use of 

linear models, which are a basic statistical tool. The purpose of linear models is to try to 

predict the value of a continuous variable of interest based on a linear combination of a set of 

explanatory variables.  

A linear model can be represented as: 

!(!) = ! = !! + ! (1) 

In this model we are trying to predict the values of a dependent variable ! whose expected 

values are represented by  ! !  or !  . A vector of size n x 1 containing the set of explanatory 

variables is represented by ! while ! is the associated set of parameters for the explanatory 

variables and ! is the model disturbance. 

The continuous nature of the dependent variable represents a shortcoming for the use 

of these models in social sciences. In many cases the dependent variables in social sciences 

are categorical, ordinal, or binary that represent attitudes, behaviors, characteristics or 

decisions, which cannot be predicted by common linear models due to their non-continuous 

nature. To handle these type of analysis statisticians have designed the generalized 

probabilistic models (Liao 1994).  

3.2 Generalized Linear Models 

A generalized linear model uses a function to link the linear combination of 

explanatory variables with the dependent one. The goal of the generalized probabilistic 
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models is to establish the probabilities of an event, how likely a decision is to be made, or the 

belonging to a certain group, etc, using a set of continuous or categorical predictors. 

To create a generalized model we introduce the variable !, which is the result of the 

linear combination of !!. However the relation between ! and ! is not necessarily linear and 

can be defined by a linking function. A linear model results when the linking function is 

identity. 

! = !" + !  (2) 

! = !(!)  (3) 

There are two common approaches to study dependent variables with a binary 

distribution, binary logistic (logit) and probit regression models. Binary logistic regression 

models started being used in the early 1980’s when they become available in statistic 

software. The main reason for their use was the limitations of ordinary least squares 

regression when dealing with binary dependent variables (Peng and So 2002). The 

coefficients in this type of models are estimated using the maximum likelihood. Binary 

logistic models follow the form: 

!!"# ! = 1 =
1

(1+ !!  !) 
(4) 

A binary regression model is meaningful if the explanatory variables used in the 

model manage to explain the dependent variable better than the intercept only. The most 

common measure for this goal is the likelihood ratio statistic, which approximately follows 

the chi-square distribution. Only if the model has a significant !! it is possible to interpret its 

parameters. However because of the existence of the link function the interpretation task is 

not straightforward. In general we can interpret the model coefficients by analyzing the sign 

of the parameters and their statistical significance. If a variable coefficient is significant, a 
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positive sign would indicate that an increase on its value would increase the likelihood of the 

dependent variable, assuming that all other independent variables are kept constant. The 

logistic coefficients are not standardized. It is not possible to make comparisons between 

variables unless they have the same measurement units. There is not a truly equivalent to the 

standardized betas that one can expect from an ordinary least squares regression.  

Another way to interpret the results is through the analysis of the marginal effects.   A 

marginal effect is the estimation of how much the probabilities of the event would change if 

there is a change in one unit value of an independent variable (Liao 1994, Aldrich and Nelson 

1984). In a binary logistic regression model it is possible to estimate the marginal effects by 

transforming the variable coefficients into odds. An odd is the ratio between the probabilities 

of occurrence of an event against the probabilities of non occurrence of the event (See 

Formulae 5). Odds and probabilities are not the same, although it is possible to transform one 

into the other (see Formulae 6).  

!""# =
!"#$(!"!#$)

1− !"#$(!"!#$)
 

(5) 

!"#$(!"!#$) =
!""#

1+ !""# (6) 

The results of a binary logistic regression model will indicate how much the odds of an event 

would change if there is an increase in one unit of any of the independent variables. An odds 

value of 1 would indicate no relationship. A value greater than 1 would indicate a positive 

relationship, while a value smaller than 1 would indicate an odds decreases with decreasing 

value of the independent variable (Spicer 2005, Norusis 2003, Peng and So 2002). 
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Probit regression models started being known in the field of econometrics in the early 

60’s (Liao 1994) . These models involve the modeling of the response variable with the 

normal cumulative distribution function. A probit model follows the form: 

!"#$ ! = 1 = !(  !) (7) 

!"#$ ! = 1 = !(  !" + !  ) (8) 

where !  is the normal cumulative distribution function (CDF) of the standard normal 

distribution, ! is a linear regression of the z score of the probabilities of the event. A z score is 

the measure in standard deviations from the mean. For example let’s assume we are using a 

probit regression model to estimate the probabilities of an event, using a set of explanatory 

variables X. We have ! = !" + !, where  ! is the result of the linear combination from the 

explanatory variables. In order to transform ! into probabilities we use it as if it was a z score 

in a standard normal probabilities curve. If the value of ! = −1.76, then ! (-1.76) = 0.0392 ,  

which would indicate that 3.92% of the area of the probability curve is below this value, 

which is the probability of the event occurrence. In the case when ! = 0.58, then ! (0.58)= 

0.719, which would indicate that 71.9% of the area of the probability curve is below a z score 

of 0.58, then the probability of the event occurrence is 71.9% (See Figure 3-1). 

When using probit models it is necessary to interpret the model coefficients with care 

because of the link function. A change in the value of the predictors does not have a direct 

effect on the event probabilities. The linear effect of the variation on the variables affects the 

probit (!), which needs to be processed by the function  ! in order to be translated as a 

change in the event probabilities.   

Like in the case of the binary logistic regression models, variable coefficients that are 

found significant would affect the dependent variable according to their sign. Positive  
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Figure 3-1: Probabilities estimation using a probit function. 

 

coefficients would indicate that in increase in the variable value is associated with higher 

likelihood of occurrence of the dependent variable, while a negative sign would indicate the 

opposite, assuming all the other independent variables are constant. It is also possible to 

analyze the probit model results using the marginal effects. 

In most cases binary logistic and probit models will provide very similar results. The 

resulting probabilities from both models are almost identical.  It has been reported that when 

probit and binary logistic models are applied to the same dataset, the difference between the 

coefficients is a constant factor believed to be approximately 1.8 (Sharif, Zaharim and Sopian 

2009), where 

 Probit coefficients x constant = Binary logistic model coefficients 

Shaded area=0.719 

0.58 z 

-1.76 

Shaded area=0.0392 

-1.76 
z 

A 

 

B 
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although some researchers have proposed the factor to be 1.6 based on series of trial and error 

(Liao 1994).  

3.3 Spatio-temporal Dependence 

Classic statistical analysis considers each member of the sample as independent, not 

being affected by other members of the sample. In the case of businesses decisions, this seems 

unrealistic. The reopening decision of one business would certainly affect the decisions of its 

neighbors. A model that takes in account the influence of neighboring elements is introduced 

by LeSage and Pace (2009) and called the SAR model (Spatial Autoregressive Regression 

model). 

! = !!" + !! + !  (9) 

where ! is the status of a firm, W is a spatial weight matrix that represents the indirect 

influence of neighbors on y. 

 In LeSage et al. (2011) the authors studied the business reopening decisions after 

Hurricane Katrina in New Orleans. They introduced a modified version of Formula 9: 

!∗ = !!!∗ + !! + !    (10) 

In this version, !∗ represents the latent unobservable utility/profit associated with the 

closed/open status of the firms. LeSage et al. (2011) defined W as a spatial matrix of size nxn 

where n is the number of firms. W contains either 1/m or 0, where m is a fixed number of 

selected closest neighbors for each business.  

To estimate the reopening probabilities LeSage et al. (2011) used probit regression 

models. They used a sample comprised of 673 stores distributed in three major New Orleans 

commercial corridors, St. Claude Avenue, from Poland Avenue to Faubourg Treme, the entire 

Magazine Street, and South and North Carrollton avenues. The purpose of the study was to 
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explore variables that influenced the firm’s reopening decision. The explanatory variables in 

the analysis were: flood depth, (logged) median income for the census block group in which 

the firm is located, the business size, the socioeconomic class of the clientele, and store 

ownership. LeSage et al. (2011) found that at the first three month horizon the significant 

reopening variables were flood depth, logged (median income), store size, proprietorship, and 

the spatial spillovers. The flood depth had a negative impact. Stores located in flooded areas 

had lower reopening chances. The logged median income of the resident population had a 

positive effect, stores located in wealthier areas had better reopening chances. Small stores 

had lower reopening probabilities than medium size ones. Sole proprietorships stores had 

higher reopening probabilities compared to regionally owned chains. In this time horizon the 

spatial spillovers had a positive effect. At the six month horizon the significant predictors 

were flood depth, customer status, proprietorship and the spatial spillovers. Flood depth still 

had a negative effect like in the previous time horizon. Stores with low status customers had 

lower reopening chances than stores with medium status clientele. As in the previous time 

horizon the sole proprietorship had better reopening chances than regionally owned chains. At 

the twelve month horizon the significant variables were flood depth, logged median income, 

the clientele status, and the spatial spillovers. Flood depth was still a significant variable 

negatively affecting the reopening chances, like in previous time horizons. The logged median 

income behaved in a manner similar to that of previous time horizons, having a positive 

effect. Stores with low status customers had lower reopening chances than stores with 

medium status customers. In all the time horizons the spatial spillovers had a positive 

reopening effect. 
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In this dissertation we estimate the reopening probabilities every three months. The 

purpose and methods of this research are similar to those of LeSage et al. (2011), but they 

differ in two aspects: the sample used for the analysis and the estimation of the spatial 

spillovers. While the samples used by LeSage et al. (2011) are located along three main 

avenues in Orleans Parish, the samples used in this research comprise 1358 businesses 

selected randomly from the total set of businesses included in the August 2005 Louisiana 

Department of Labor Micro File for Economic Development in the Greater New Orleans 

Area. The spatial distribution of the sampled businesses is not even, it follows the spatial 

trends of the actual business distribution with some areas having high business concentration 

and other areas having scarce businesses presence (See Figure 3-2). 

Using the notation specified by Liao (1994), the method employed by LeSage and 

Pace (2009) would be represented as: 

!∗ =   !(!) (11) 

where: 

! = !"!∗ + !" + ! (12) 

Using the same notation, the probit model employed in this study would be represented as: 

!!∗ = !(!!)      (13) 

!! = !!!!(!!!) + !!! + ! (14) 

 

while a binary logistic model would have the same !! and follow the form described in 

Equation 4. 

  Although both studies use probit regression models and some common variables, this 

study handles the spatial spillovers differently in several ways:  First we consider that  
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Figure 3-2 : Business density for firms included in Survey 3  A) Before Katrina, B) Right 
after Katrina, C) By September 30th 2005, D) By December 30th 2005, E) By March 31st 
2006, F) By June 30th 2006, G) By September30th 2006, H) By October 2007. 

 A B 

C D 

E F 

G H 
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the spatial spillovers have a temporal dimension. LeSage et al. (2011) considers that a change 

in the value of the variables of one firm would instantly affect its neighbors, whereas we 

consider that a change of this nature would affect the firm neighbors in a later point of time. 

!!(!!!) represents the status of the firm’s neighbors in time (t-1), which is used as the input 

for the estimation of the reopening probabilities for businesses in time t. 

A second difference is that in our study, the spatial spillovers are based on the actual 

reopening status of neighboring firms (!") and not on the return probabilities (!!∗). Our 

spatial spillovers do not consider the indirect effect that a change in a predictive variable 

would have on neighbor firms. A change on the spatial spillovers is only given by a change in 

the status of a neighbor firm from closed to open.  

A third difference is in the approach used to calculate the spatial spillovers. In LeSage 

et al. (2011) the authors use a fixed number of the closest neighbors; assigning all of them the 

same weight. In this study we consider all the firms located within a given radius of influence 

as neighbors. Because of the heterogeneous spatial distribution, the number of neighbors 

changes depending on the location. The amount of influence assigned to each neighbor is not 

the same, it is based on an inverse distance weight function, the closer the neighbor the 

stronger the influence. The formula used to estimate the neighbor influence is:  

!! =
!!!!!

!!!

!!!
!!!

 
(15) 

and 

!! =
1

!(!,!!)!
 (16) 

where for each observation y we have N neighbors, kv is the status of neighbor k  (either 0 or 

1), while kC is the inverse distance function value between observation y and its neighbor ky , 
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power by p . Higher values of p would increase the importance of the closest neighbors 

(Longley et al. 2005, Dubin 2009). 

A fourth difference is the removal of opened firms from the analysis. In this study the 

dependent variable is the status of the businesses every three months. We assumed that once a 

business decides to reopen it remains reopened for the rest of the study period. Estimating the 

reopening probabilities in time “t+n” of a business that has already reopened in time “t” 

would only dilute the effects of the variables in time “t+n”.  In this study we remove from 

our sample businesses that have already reopened in a previous time period. However 

neighbors that have reopened in previous time points are still considered when estimating the 

spatial spillovers. 

  The approach used to define the spatial spillovers can be better understood with an 

example: Let’s assume we have six businesses, as represented in Figure 3-3. The distances 

between the businesses are indicated next to the line that links them, for instance the distance 

between business 2 and business 1 equals 9, while the distance between businesses 1 and 5 

equals 6. In this example we are going to estimate the influence of neighboring firms on 

business 1. 

  In the previous time step businesses 3 and 5 were open, while businesses 2,4 and 6 

were still closed. Table 3-1 contains the required operations to estimate the neighbor influence 

using equations 15 and 16.   

  In this study we estimate the businesses reopening probabilities for several periods of 

time. Businesses that had reopened in a given point of time were removed from the sample in 

subsequent time periods. For example, firms that reopened between October and December 

2005 were excluded from the probit analysis for the period of January to March 2006.  
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Figure 3-3: Estimation of neighbor influence on business 1 

 

Table 3-1: Neighbor influence estimation for business 1 using p =2 

  !! !(!, !!) !! !!!! 
business 2 0 9 0.01 0.00 
business 3 1 6 0.03 0.03 
business 4 0 4.5 0.05 0.00 
business 5 1 6 0.03 0.03 
business 6 0 9.5 0.01 0.00 

   
0.13 0.06 

 

Table 3-2 : Reopening counts by time period 

Time Period Open Closed Total 
August 30th - September 30th 2005 268 917 1185 
October 1st 2005 – December 31st 2005 452 465 917 
January 1st 2006 -  March  31st 2006 129 336 465 
April 1st 2006 - June 30th  2006  50 286 336 
July 1st 2006 – September 30th  2006 55 231 286 
October 1st 2006 – October 2007 63 168 231 
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However, firms that reopened before January 2006 were still considered for the neighborhood 

influence estimation. 

3.4 Analysis of the Third Telephone Survey 

3.4.1 Data 

The data for this research were obtained through three telephone surveys carried out in 

December 2005, June 2006, and October 2007, as described in Lam et al. (2009) and in 

Chapter 2.    

  Dependent Variable: For this study the dependent variable is the status of a set of 

businesses in Orleans Parish after Hurricane Katrina, open or closed. The information source 

is the third telephone survey carried out in October 2007. This survey asked the respondents:  

Q1a. Did your business close following the 2005 Hurricanes? Y/N 

Q1b. If yes, how long was it closed? _____ months. 

Using the answers to this question it is possible to reconstruct the business return process at a 

monthly interval. In this research we assumed businesses that had their telephones 

disconnected were still closed.  The number of open businesses is not cumulative. For 

instance, between October 1st  and December 31st 2005 452 businesses reopened out of 917. 

In the period between January 1st and March 31st 2006, 129 firms out of the remaining 465 

decided to reopen. The analysis for the first quarter of 2006 does not consider businesses that 

reopened before January 1st 2006. Including in the sample businesses that had already 

reopened in previous time periods may dilute the effects of the predictors and bias the results.  

Independent variables: The independent variables considered for the analysis can be 

divided in three groups: 

1) Business characteristics: (a) Business size: We used as a proxy the natural 

logarithm of the total wages of each business. (b) Disaster damage: To estimate the disaster 
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damage we estimated the flood depth at the business location as a proxy. The flood depth in 

meters data was obtained from the Katrina & Rita clearing house cooperative, managed by 

Louisiana State University  (L.S.U. 2005). 

2) Social vulnerability: The social vulnerability of the residents of an area has been 

previously studied. Our selection of variables was derived from the study by Cutter et al. 

(2004), which includes the following: population density (population by square kilometer), % 

non white population, % population with age under 18, % population with age over 65, 

median household income, % renter occupied houses, and % female population. These 

variables were obtained at the census block group level from the Census 2000. Our study area 

includes 485 census block groups. 

3) Spatial spillovers:  Classic statistical analysis considers each member of the sample 

as independent, not being affected by other members of the sample. In the case of businesses 

decisions, this seems unrealistic. The reopening decision of one business would certainly 

affect the decisions of its neighbors. In this research the spatial spillovers were estimated by 

assigning a binary value to the status of the firms to indicate open/close (1 or 0). Then we 

calculated the inverse distance weighting value of the neighbors reopening status within a 

distance threshold of the business of interest as a variable to indicate the spatial spillover 

effect. We considered only firms located within 1000 meters of the business of interest. 

3.4.2 Methods 

 In this research we estimate the reopening probabilities for the businesses in Orleans 

Parish using both probit and binary logistic regression methods. This study compares the 

results of both approaches and identifies the significant predictors.  
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To perform any spatial analysis it is necessary to represent the businesses as spatial 

features. Our dataset includes the address of each business. To transform the address into 

coordinates we used the Geocode tool of ArcGIS. The final result is a set of points, projected 

in UTM coordinates (zone 15). Each point represents a business. 

 Data for the socio-economic variables of the residents in the vicinity of the businesses 

were obtained from the Census Bureau for Orleans Parish in Census 2000 at the census block 

group level. To associate the business locations with the census block groups we performed a 

spatial join in ArcGIS (point in polygon operation). The flood depth information obtained for 

Orleans Parish was associated with the businesses location using a point in raster operation in 

ArcGIS.  

The spatial spillovers were calculated using a Java program specifically designed for 

that task by the author. The businesses were assigned a value based on its status, close=0, 

open=1. The Java program estimated the inverse distance weight value for each business 

based on the status value of its neighbors within 1000 meters. 

Using the previously described predictors we estimated the reopening probabilities for 

the businesses included in the third survey, for the following periods: 1) August 30th - 

September 30th 2005, 2) October 1st 2005 – December 31st 2005, 3) January 1st 2006 -  March  

31st 2006, 4) April 1st 2006 - June 30th  2006, 5) July 1st 2006 – September 30th  2006, 6) 

October 1st 2006 – October 2007.   

We used two statistical methods to calculate the reopening probabilities of the 

businesses: probit analysis, using the software SAS,  and binary logistic regression, using the 

software SPSS. Both methods although different, provide similar results as it will be further 

discussed in the next sections.  
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3.4.3 Results 

Table 3-3 shows the descriptive statistics of the variables used in this analysis. Previous 

research suggests that probit and binary logistic regression models have in most cases similar 

results (Liao 1994). The results of this research seem to confirm this conclusion. We created 

six models for each type of regression. The models predict the reopening probabilities of 

businesses that reopened in six time points as described in Table 3.2. The significant 

predictors identified in each type of regression models are the same. The significance of the 

variables is not the same through time. The coefficients for the binary logistic models and 

their marginal effects can be seen in Table 3-4. In the case of the probit analysis, the model 

coefficients and their marginal effects are depicted in Table 3-5. 

3.4.3.1 Binary Logistic Regression Model Results 

The results of the binary logistic regression models for each time period are depicted in Table 

3-4. A !! measure indicates how much of the variability of the predicted variable is explained 

by the model. Binary logistic regression models do not provide a direct equivalent to the !! 

that results from an Ordinary Least Squares regression. Alternatives are pseudo !! like 

Nagelkerke’s. However these measures usually have very low values and should not be 

interpreted in the same way as the !! resulting from a OLS regression.  

An alternative measure for the model fitness is the percentage of correctly predicted 

values. The model constructed for the period between August 30th and September 30th 2005 

can correctly predict the values of 77.4% of the sample. For the second study period between 

October 1st and December 31st 2005 the model can correctly predict the values of 62.9% of 

the sample. For the period between January 1st and March 31st the model can correctly predict  

72.3% of the status of the firms. The model corresponding to the period between April 1st and  
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Table 3-3 : Descriptive statistics of the variables for each analysis 

  

Ln 
(wages) 

Flood 
depth 

Pop 
dens 

% non 
white 

%pop 
<18 

%pop 
>65 

Ln 
(mhhi) 

%  
renter 

% 
female 

pop ni 

Aug-05 Min 0.00 0.00 0.13 0.65 0.00 0.00 8.32 0.00 27.85 0.00 

Sep-05 Max 17.24 2.79 91.72 100.00 55.06 33.31 12.21 98.63 78.61 1.00 

(n=1187) 
Std 
dev 2.63 0.59 17.92 32.39 12.90 8.08 0.60 18.38 8.57 0.15 

  Mean 9.76 0.40 25.47 46.78 16.67 13.23 10.14 53.84 48.01 0.14 

Oct-05 Min 0.00 0.00 0.13 0.65 0.00 0.00 8.32 0.00 27.85 0.00 

Dec-05 Max 17.24 2.79 91.72 100.00 55.06 33.31 12.21 98.63 78.61 1.00 

(n=917) 
Std 
dev 2.74 0.60 17.83 32.77 12.93 8.02 0.60 18.62 8.57 0.21 

  Mean 9.64 0.43 25.61 47.32 17.14 13.26 10.14 53.33 48.15 0.32 

Jan-06 Min 0.00 0.00 0.13 0.89 0.00 0.00 8.65 1.45 27.85 0.00 

Mar-06 Max 17.24 2.73 84.96 100.00 55.06 33.31 11.89 89.72 78.61 1.00 

(n=465) 
Std 
dev 2.79 0.64 18.21 33.58 12.89 7.79 0.59 19.12 8.41 0.25 

  Mean 9.45 0.57 25.62 54.49 19.61 12.80 10.10 53.48 49.06 0.61 

Apr-06 Min 0.00 0.00 0.13 0.89 0.00 0.00 8.81 1.45 27.85 0.00 

Jun-06 Max 17.24 2.73 77.23 100.00 55.06 32.33 11.89 89.72 78.61 1.00 

(n=336) 
Std 
dev 2.98 0.67 18.16 34.36 12.70 7.31 0.59 19.35 8.07 0.24 

  Mean 9.38 0.63 25.81 55.78 20.83 12.40 10.12 52.41 49.39 0.70 

Jul-06 Min 0.00 0.00 0.13 0.89 0.00 0.00 8.81 2.67 27.85 0.00 

Sep-06 Max 17.24 2.73 77.23 100.00 55.06 32.33 11.89 89.72 78.61 1.00 

(n=286) 
Std 
dev 3.12 0.68 18.23 34.46 12.78 7.20 0.59 19.31 7.91 0.24 

  Mean 9.28 0.65 26.30 55.41 20.84 12.40 10.14 52.50 49.65 0.73 

Oct-06 Min 0.00 0.00 0.13 0.89 0.00 0.00 8.81 2.67 27.85 0.00 

Oct-07 Max 17.24 2.72 77.23 100.00 55.06 32.33 11.89 89.72 78.61 1.00 

(n=231) 
Std 
dev 3.28 0.67 18.84 34.64 13.08 7.52 0.58 19.37 8.02 0.22 

  Mean 9.21 0.61 26.08 54.13 20.26 12.28 10.12 53.72 48.76 0.80 
 

June 30th can predict 85% of the status of the businesses. The model for the period between 

July 1st and September 30th can correctly predict the status of 80.1% of the firms in the 

sample. The model representing the period between October 1st 2006 and October 2007 can 

predict 73.2% of the sample status. 

The results of the binary logistic regression provide us with the coefficients required to 

estimate the reopening probabilities as well as a measure of the marginal effect of a change of  
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Table 3-4 : Binary logistic regression model results (significant coefficient * sig<0.05) 

 Period: 
Aug 
30th 

Sep 
30th 

Oct 
1st 

Dec 
31st 

Jan 
1st 

Mar 
31st 

Apr 
1st 

Jun 
30th 

Jul 
1st 

Sep 
30th 

Oct 
1st 

2006 

Oct 
2007 

Nagelkerke !! 0.04  0.18  0.08  0.07  0.16  0.05  

% Correctly Classified 77.4  62.9  72.3  85.1  80.1  73.2  

 B Exp(b) B Exp(b) B Exp(b) B Exp(b) B Exp(b) B Exp(b) 

ln(wages) * 0.08 1.09 * 0.09 1.09 0.03 1.03 0.08 1.08 0.08 1.08 0.03 1.03 

flood depth * -0.07 0.93 * -0.17 0.84 * -0.11 0.90 -0.08 0.92 -0.01 0.99 0.00 1.00 

pop dens 0.00 1.00 0.00 1.00 0.00 1.00 -0.01 0.99 0.00 1.00 0.01 1.01 

% non white 0.00 1.00 * -0.01 0.99 0.01 1.01 0.00 1.00 0.00 1.00 0.01 1.01 

% pop <18 -0.01 0.99 0.00 1.00 * -0.04 0.96 0.02 1.02 -0.03 0.97 0.00 1.00 

% pop >65 0.00 1.00 0.01 1.01 0.02 1.02 0.00 1.00 -0.01 0.99 -0.01 0.99 

ln(mhhi) 0.27 1.30 -0.04 0.96 0.18 1.19 -0.61 0.54 0.16 1.17 0.35 1.42 

% renters 0.01 1.01 0.00 1.00 0.01 1.01 -0.02 0.98 -0.02 0.98 0.00 1.00 

% fem pop 0.01 1.01 0.01 1.01 0.02 1.02 -0.04 0.96 * 0.11 1.12 -0.05 0.95 

ni * 0.72 2.05 0.00 1.00 0.33 1.39 -0.26 0.77 * -1.46 0.23 -0.75 0.47 

Constant -5.61 0.00 -0.12 0.89 -4.26 0.01 7.02 1121.08 -6.86 0.00 -2.33 0.10 

 

one unit in any of the variables. The marginal effect is denoted by Exp(B), which is the odds 

ratio.  

The odds is the ratio between the reopening probabilities and the probabilities of not 

reopening (see Equation 5). If we add one unit in any of the variables while the others remain 

constant, we will have new odds and new reopening probabilities where: 

!"# ! =
!"#  !""#

!"#$%&'(  !""# 
(17) 

The results of the binary logistic regression provide us with an Exp(B) estimation for each of 

the variables. This would indicate how much the odds value would be affected when there is a  

change of one unit in the variable. Odds are different from probabilities, although it is 

possible to calculate the reopening probabilities based on the odds using Equation 6. If the 

variable coefficient is positive, the odds ratio is greater than 1, an increase of value in this 
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variable would positively affect the probabilities. If the coefficient of the variable is negative, 

its odds ratio would be lower than 1, and an increase of it would decrease the probabilities.  

  The results of the binary logistic regression models indicate that business size is a 

significant positive predictor in the first and second periods (see Table 3-4). Larger businesses 

had better reopening probabilities than smaller ones in the first months after the disaster, until 

December 2005. After this point the size variable ceased being significant. In the first time 

period, between August 29th and September 31st 2005, an increase in 1 unit of the natural log 

of the wages would represent an odds ratio of 1.09. 

In the second time period, between October 1st and December 31st of 2005 an 

increase in one unit in this variable would represent an odds ratio of 1.09, same s the first time 

period. To estimate the business size we used ln(total wages) as proxy, therefore it is 

necessary to be cautious when translating a change of one unit of this variable into dollars. 

There is no straight way to translate the odds ratio into a change or probabilities. We 

can calculate the odds for any reopening probability. By adding one unit in a variable and 

keeping constant of the rest, we are modifying the probabilities and therefore the odds. The 

odds ratio is the relationship between the new and the previous calculated odds. The effect of 

an increase in ln(wages) on the odds ratio and the reopening probabilities can be better 

explained with an example. Consider a business Y with a reopening probability of 0.45.  

Using Equation 5 we can calculate its reopening odds: [0.45/(1-0.45)]=0.818 . The results of 

the logistic regression indicate that for the first time period an increase in one unit of 

ln(wages) would result in an odds ratio of 1.09 (see Table 3.4). We can calculate the resulting 

new odds using Equation 17 (new odds=odds ratio x previous odds). In this case the new 

odds is 0.892.  Using Equation 6 we can calculate the new reopening probabilities: 



 
 

41 

0.47=[0.892/(1+0.892)]. An increase of one unit in the value of ln(wages) would affect the 

reopening probability of Y, increasing it by 0.021 (0.471-0.45). 

The results of the analysis suggest that flood depth is a significant variable in the first 

three time periods, negatively affecting the reopening probabilities. The results indicate that 

businesses located in flooded areas had lower reopening probabilities than their peers 

established in not-flooded locations. In the first period an increase in one meter of flood depth 

would represent an odds ratio of 0.93. In the second time period, this variable had a negative 

effect on the reopening probabilities. However its importance changed through time. An 

increase in one meter of flood depth would represent an odds ratio of 0.84. In the third time 

period, between January 1st and March 31st of 2006, an increase in one meter of flood depth 

would represent an odds ratio of 0.9. 

For example, in the case of the previously introduced business Y, it had a reopening 

probability of 0.45. Its reopening odds was 0.818. In the case of the first period, an increase in 

one meter of flood depth would represent an odds ratio of 0.93. Using Equation 17, the new 

reopening odds was 0.761. The calculated reopening probabilities for this odds value was 

0.432. An increase in one meter of flood depth would result in a decrease in the reopening 

probability of 0.0178 (-1.79%). 

The percentage of non white population is a significant negative predictor only in the 

second time period. An increase in one percent non white population would represent an odds 

ratio of 0.99.  

Let’s return to the previously introduced business Y. Let’s say it has a reopening 

probability of 0.45 in the second time period, which would mean it has a reopening odds of 

0.818. An increase in one unit of the  % non white population would represent an odds ratio 
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of 0.99. Using Equation 17, we calculate the new reopening odds associated with the new 

values for the predictors. The new reopening odds is 0.810, then the reopening probability is 

0.448. An increase in 1% of non white population in the vicinity of business Y in the second 

period would result in the decrease in its reopening probability of 0.0025 (-0.25%). 

The percentage of population with age under 18 was a significant predictor only in the 

third time period (January – March 2006). The variable negatively affects the reopening 

probabilities. An increase in 1% of this variable would mean an odds ratio of 0.96. 

Using the example of business Y with a reopening probability of 0.45, we have that in 

the third period, an increase in 1% of the percentage of population with age under 18 would 

result in a new odds ratio of 0.96. The new reopening odds value is 0.785, hence the new 

reopening probability for business would equal to 0.44. An increase in 1% of the population 

with age under 18 would mean a decrease of the reopening probability of 0.01 (-1.01%). 

The percentage of female population was only significant in the fifth time period. An 

increase in one unit of this variable would mean an odds ratio of 1.12.  Consider an example 

of business Y with a reopening probability of 0.45. The odds of business Y is 0.818. The odds 

ratio is 1.12, which indicates that an increase in 1% of the female population of the census 

block where the business is located would result in a new reopening odds of 0.916 (Using 

Equation 17: 0.916=0.818x1.12), which would indicate a new reopening probability of 0.478. 

An increase in 1% of the female population positively affects the reopening probability by 

increasing it by 0.028 or 2.82%. 

The neighbor influence was significant only in the first and fifth time periods. In the 

first time period it affected the reopening probabilities in a negative form, while in the later 

time period the neighbor variable worked in the opposite way. In the first time period an 
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increase of 1 in the neighbor influence would represent an odds ratio of 2.05, where in the 

fifth time period the same increase would represent an odds ratio of 0.23. 

The variable neighbor influence has a range between 0 and 1. The value 0 would 

indicate all the neighboring businesses are closed. Value 1 would mean the opposite. Using 

the example of business Y, it has a reopening probability of 0.45 and an odds value of 0.818. 

In the first period the odds ratio is 2.05. An increase in one unit of the neighbor influence 

meaning all the neighbors are open, would result in a new odds of 1.677 (using Equation 17), 

and a new reopening probability of 0.626 (according to Equation 6). An increase in one unit 

of the neighbor influence would represent an increase of 0.1765 in the reopening probability 

or 17.65%. 

3.4.3.2 Probit Regression Model Results 

The results of the probit and binary regression models are the same in terms of identifying the 

same significant predictors for the same time periods (See Table 3-5).  Business size was 

identified as a significant positive predictor for the first two time periods. Larger businesses 

had better reopening probabilities than smaller ones. In the first time period an increase in one 

unit of the natural logarithm of the wages would increase the reopening probabilities by 0.014 

(1.411%), while in the second time period it would increase the reopening probabilities by 

0.0192 (1.92%). 

Flood depth was a significant negative predictor in the three first time periods. 

Businesses located in flooded areas had lower reopening chances than their unflooded  

peers. In the first time period an increase of one meter in flood depth would represent a 

decrease by 0.0118 (-1.18%) in the reopening probabilities. In the second period it would  
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Table 3-5: Probit regression models, coefficients (B) and marginal effects (Meff) (* Sig<0.05) 

 

Aug 
30th 

Sep 
30th 

Oct 
1st 

Dec 
31st 

Jan 
1st 

Mar 
31st 

Apr 
1st 

Jun 
30th 

Jul 
1st 

Sep 
30th 

Oct 
1st 

2006 
Oct 

2007 

 
B Meff B Meff B Meff B Meff B Meff B Meff 

ln(wages)  *0.05 0.01 *0.05 0.02 0.02 0.01 0.05 0.01 0.04 0.01 0.02 0.01 
flood depth *-0.04 -0.01 *-0.10 -0.04 *-0.06 -0.02 -0.05 -0.01 0.00 0.00 0.00 0.00 
pop dens 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.01 0.00 
% non white 0.00 0.00 *-0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
% pop <18 -0.01 0.00 0.00 0.00 *-0.02 -0.01 0.01 0.00 -0.02 0.00 0.00 0.00 
% pop >65 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.01 0.00 -0.01 0.00 
ln(mhhi) 0.15 0.04 -0.02 -0.01 0.12 0.04 -0.37 -0.08 0.10 0.02 0.19 0.06 
% renters 0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 
% fem pop 0.00 0.00 0.00 0.00 0.01 0.00 -0.02 -0.01 *0.06 0.01 -0.03 -0.01 
ni *0.43 0.13 0.00 0.00 0.19 0.06 -0.17 -0.04 *-0.87 -0.20 -0.45 -0.14 
Constant -3.26   -0.13   -2.71   4.11   -4.08   -1.29   

 

represent a decrease of 0.038 (-3.8%). Finally in the third time period the same increase in 

flood depth would affect negatively the reopening probabilities by 0.021 (-2.1%). 

The percentage of white population was identified as a significant predictor only in the second 

time period. An increase in one percent of the non white population would reduce the 

reopening probabilities by 0.003 (-0.3%). 

  The percentage of population under 18 was identified as a negative significant 

predictor only for the third time period. An increase in one percent of this segment of the 

population would reduce the reopening probabilities by 0.008 (-0.8%). 

The percentage of female population was identified as a significant positive predictor 

only in the fifth time period. An increase in one unit of the percentage of female population 

would increase the reopening probabilities by 0.015 (1.5%).  

 The neighbor influence was identified as a significant predictor only in the first and 

the fifth time periods. In the first time period an increase in 1 unit of this variable would 
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increase the reopening probabilities by 0.13 (13%). In the fifth time period the same increase 

would represent a decrease in the reopening probabilities by 0.20 (-20.0%). 

3.5 Discussion 

Our results indicate that smaller businesses had lower reopening chances than larger 

ones. However this was only true until December 2005. After this point this variable stops 

being statistically significant. It is necessary to mention that we are using a linearized variable 

ln(wages), therefore an increase of one unit of the linearized variable would mean differently 

in real world dollars, depending on the value of the original variable. For instance, consider a 

business Y, which has a total wage equivalent to $10,000, then ln(wages)=9.21 . An increase 

in one unit of the variable ln(wages) would mean a new ln(wages) equal 10.21, which would 

be equivalent to $27,183. The difference is $17,183. However, an increase in one unit of 

ln(wages) from 10.21 to 11.21 would represent an increase of $46,708. Policies designed to 

help small businesses should consider the temporal dimension. The help is most needed 

immediately after the disaster, especially in the case of small firms.  

As it would be expected, businesses located in flooded areas had lower probabilities to 

reopen, although the temporal window for flood depth is bigger. By the end of March 2006 

the flood depth stopped being a significant reopening predictor. Policy designed to help 

flooded firms should focus on this time frame. 

A major disaster causes massive population displacements, and in many cases the 

population remains mobile for several months. Detailed and accurate return population 

estimates become difficult to obtain in this context (Plyer et al. 2010) . After a disaster, 

businesses are affected by the reduced purchasing power of their clients or by their 

displacement (Alesch et al. 2001). In the case of New Orleans, population displacement is 

hard to study at the micro level due to the lack of data. The 2006 American Community 
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Survey (ACS) conducted by the U.S. Census Bureau provides statistically reliable data 

comparable with the Census 2000, at the county level. The results of this survey were 

analyzed by Frey et al. (2007).  The authors concluded that the return of young people and 

families with children to New Orleans was lower compared to other segments of the 

population, while the returning population was disproportionally composed of white, childless 

and better educated population.  

In our analysis we used as independent variables socio-economic indicators describing 

the resident population at the census block group level, using Census 2000 data. Our results 

indicate that the percentage of non white population and the percentage of population with 

age under 18 were negative predictors by December 2005 and March 2006.  Frey et al. (2007) 

identified the population with low return as having similar characteristics as our negative 

reopening predictors. Census block groups that had more non white population and more 

population with age under 18 were the ones with lower population return, hence impacting 

negatively the businesses reopening, which could be due to a reduced clientele for businesses 

that rely on local customers. Previous research in other geographic areas agrees with this 

finding (Alesch et al. 2001; Dahlhamer and Tierney 1998). Policies designed to improve the 

business return should also take into consideration the resident return. Businesses are 

connected with the residents as they are both customers and labors.  

3.6 Conclusions 

The New Orleans business community is heterogeneous, composed of elements with 

different characteristics that were affected by the flood caused by Hurricane Katrina in an 

uneven manner. The reopening process is dynamic and not linear. The reopening rate is not 

constant through time. The variables with significant influence in the reopening decision are 

not the same at different points in time. 
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Both the binary logistic regression and the probit regression analyses identified the 

same significant reopening predictors, which were: ln(wages), flood depth, % non white 

population, % population with age under 18, % of female population, and the neighbor 

influence. The neighbor influence was identified as a significant predictor, which indicates 

that the status of neighboring firms affects the reopening decision. There is a level of 

interaction between the businesses; they influence each other. 

Both regression procedures indicate that the significance of the reopening predictors 

fluctuates through time. Most of the significant variables appeared in the first three periods 

until March 31st  2006.  

A comparison of binary logistic regression and probit analysis indicates that both 

results are very similar. Although it is much easier to estimate the reopening probabilities on 

the fly using a logistic function than a probit one. 

The business community in New Orleans is heterogeneous in multiple aspects. 

Important characteristics that influence the business reopening decisions could have a wide 

range of values for any specific firm. The recovery process post Hurricane Katrina is a 

dynamic phenomenon. The relevance of certain factors is not the same through time. Science 

has developed several simulation approaches to mimic dynamic processes. However most of 

these approaches consider the average values of the system only, the detailed differences 

among components are not modeled. In the next chapter we will describe an agent-based 

modeling approach that considers the various characteristics of the business community at a 

detailed level. 
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Chapter 4 : Agent-based Models and Simulation in Geo-information 
Science 

4.1 Models and Simulation 

  A model is a simplified representation of the real world, where significant, relevant 

elements of it are depicted while others are ignored. Simulation is one of the many purposes 

for developing models. A simulation model is an attempt to represent a dynamic system of the 

real world. Possible uses of a simulation can be to: 1) perform experiments to obtain better 

understanding of how the system works, 2) reproduce the dynamics of the system and predict 

future outcomes, 3) develop capabilities to substitute human elements (Gilbert and Troitzsch 

2005). 

The use of computer simulation models is relatively new in science. The first models 

started being used in the 1960s, they became common in the 1990s, mainly because of greater 

computer processing availability. Computer simulation models are constructed as computer 

programs with inputs and outputs. Due to their nature, they require the modeler to be precise 

in defining the model parameters. Computer models in social sciences allow their creators to 

perform experiments. A common approach to experimentation is to compare the outcomes 

resulting from applying certain treatment with the outcomes of not applying it. Applying this 

approach in social sciences is difficult. Computer models when well validated allow social 

scientists to perform experiments without affecting humans (Gilbert 2008). Another 

advantage of using simulation models is that they allow scientists and researchers to 

experiment with ideas, especially when the phenomenon is too complex to be handled by 

simple equations. 

Computer models used to represent how cities function can be static or dynamic (Batty 

2006). Cities are complex systems with heterogeneous components that interact between them  
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(Torrens 2000). Critics of traditional urban models claim that they are centralized, deal poorly 

with dynamic phenomena, do not use detailed information, are not flexible, and lack realism. 

Currently, detailed information as well as increased computer power have allowed developers 

to model urban systems even at the individual level. New models in urban geography are 

heavily influenced by geographic information science, artificial intelligence, complexity 

studies, and simulation in social and natural sciences (Torrens 2001). Models of this kind use 

as their basic unit elements called automata. An automaton is a piece of software capable of 

receiving information from outside itself, process it, and proceed logically based on a set of 

instructions programmed within itself (Torrens 2001; Gilbert 2008).  The main advantage of 

simulation models of this kind over traditional static approaches is a better representation of 

the dynamics of heterogeneous discrete elements that compose an urban system. The most 

common uses of automata in modeling spatial phenomena are: cellular automata and multi 

agent systems (Benenson and Torrens 2004; Torrens and Benenson 2005; Dietzel and Clarke 

2004). 

A business community is a complex system with diverse interactions, and is composed 

of heterogeneous members that influence each other. Agents have been proposed as a way to 

model systems of this type by previous researchers (An et al. 2005; Batty 2007; Miller and 

Page 2007; Epstein 2006).  According to Benenson et al. (2005) and North and Macal (2007), 

object oriented programming is the most natural way of implementing large-scale automata 

based models. Using this approach it is possible to create an abstract class “agent” with a 

given number of attributes and methods and then construct specific members of this class, 

each with different attribute values. An important part of the model is the storage and display 

of automata states. Saving the states of the model at different run time points allow 
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researchers to examine the process outside the simulation for calibration and validation 

purposes. 

4.2 Alternative Modeling Approaches 

There is a significant amount of literature regarding dynamic models in social 

sciences. These models have different characteristics which affect their suitability under 

different circumstances. The most common of these modes are mathematical models, 

microsimulation, queuing models, and cellular automata (Gilbert and Troitzsch 2005). 

4.2.1 Mathematical Models and System Dynamics 

A common approach to represent dynamic systems has been through the use of 

mathematical equations. A classic example is the Malthusian growth model, presented in “An 

Essay on the Principle of Population” by Reverend Thomas Robert Malthus (1798), one of the 

most influential books on population. The Malthusian model is: 

! ! = !!    !!" (1) 

where !!     is the initial population, ! is the growth rate and ! is time. This model considers the 

population as a whole and does not allow the study of elements or groups within the 

population.  

Another classic example, although more complicated, is the one presented by Lotka 

and Volterra in 1911. Their model used differential equations to represent the continual 

change in an evolving system. This model incorporated the interactions between two or more 

species as well as age, structure and other characteristics of individuals (Webb 2008) 

(Volterra 1926).  The basic Lotka-Volterra model can be represented by a pair of equations: 

!"
!" = ! ! − !"  

(2) 
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!"
!" = −! ! − !"  

(3) 

Where ! is the number of predators,  ! is the number of preys, and !"
!"

 and !"
!"

 represent the 

growth rate of the two populations through time. 

System dynamics evolved from models based on difference and differential equations. 

Using this technique a system is modeled as a whole without considering the heterogeneity of 

the parts that compose it. An important difference between system dynamics and differential 

equations is that the first one uses discrete time steps as an approximation of continuous time. 

A second difference is the possible use of non continuous functions in system dynamics 

(Gilbert and Troitzsch 2005). The first language designed for system dynamic models was 

DYNAMO, although there are other well known tools, with additional features such as 

graphic interfaces such as STELLA, PowerSim and VenSim (Ventana Systems inc 2010). 

Using a system dynamics approach, Fiddaman (2002) developed an interesting model to test 

policies regarding climate change. This model includes elements of economy, energy, 

population, climate, and !!! emissions (Fiddaman 2002). The model was used to test tax and 

emissions permits policies following the Kyoto Protocol. The results of the model indicate 

that all policies have a positive result, however, tax policies outperform emission permits. 

4.2.2 Microsimulation 

A major limitation of differential equations and system dynamics models is that they 

do not take into account the different individuals, groups, and subclasses that comprise a 

population. In differential equations or system dynamics models the characteristics of the 

individuals are averaged and it is impossible to distinguish particular elements of the whole. 

The microsimulation modeling approach to this problem is to represent individuals with their 

particular characteristics and different transition probabilities. Models of this type are 
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stochastic while system dynamic models are deterministic. Microsimulation models consist of 

at least two levels: the level of individuals and the aggregated level. Microsimulation models 

are more data demanding than differential equations or system dynamics models, it is not 

uncommon that models of this type contain non aggregated data for several thousand 

individuals. Because of their high storage and processing requirements, there were few 

examples in the 70’s and 80’s. However, with the increase of computer power availability, 

they are becoming more popular in recent years (Gilbert and Troitzsch 2005).  

An interesting example of microsimulation was developed by Liang (2009). In this 

research two models were integrated to simulate the evacuation of the population of New 

Orleans due to hurricanes. The first model represents the residents of each of the blocks in 

New Orleans as an agent in an agent-based model. At a coarser level a microsimulation model 

developed in VisSim simulates the flow of the residents through the highway system of the 

area (Liang 2009). The calibration of the model was done by running the model with different 

sets of values and identifying the ones that better match real traffic count data under normal 

conditions. The model was successfully validated after being compared to Hurricane Katrina 

evacuation traffic count data from August 27th 12.00 am to August 29 12:00 am in two 

locations: Fluker on I-55 and Slidell on I-10. The unit of analysis of this study was the census 

block. The model compared three evacuation strategies, 1) a simultaneous evacuation in 

which all census blocks of New Orleans started evacuating at the same time, 2) a staged 

evacuation based on social vulnerability; the most vulnerable census blocks based on social 

variables evacuate first, and 3) a staged spatial vulnerability based evacuation, where census 

blocks more vulnerable based on spatial factors evacuate first. The results indicate that both 

staged evacuations reduced the road network clearance time. The most effective in terms of 
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time was identified as the staged spatial vulnerability evacuation strategy, saving 3.6 hours 

compared to the simultaneous evacuation (Liang 2009). 

 4.2.3 Queuing Models 

These are stochastic models, in which the temporal dimension is not continuous nor is 

it represented as regular time steps. In queuing models the temporal dimension is represented 

by events scheduled in an agenda. The result of a given event can generate new events that are 

inserted into the agenda, modifying it. In a queuing model there are four types of objects: the 

agenda, servers, customers, and queues (Gilbert and Troitzsch 2005).  

A seminal work in the use of queuing models in geography is Hypercube Queuing 

Model, a computer program developed by Richard Larson under a grant from the National 

Science Foundation in 1974 (Larson 1975). The model is designed to be used by police 

departments, fire departments, and emergency medical services. The purpose of the model is 

to help planners to find the best mobile unit and service area configuration. The model allows 

the simulation of the increment/reduction of units and the redrawing the unit’s service area. 

The output of the model consists in performance measures in terms of unit’s workload and 

travel times. Using the model the planner can select the configuration with the best response 

time of mobile units, and the most suitable partition of the service area. The model requires 

the study area to be divided in reporting area, an expected number of emergencies per hour for 

each reporting area, and the average duration of travel for the units. The model is best suited 

for situations where at least 10% of the mobile units are busy at any point of time. It 

specifically takes into account that mobile units might have been dispatched to other 

emergencies. Under those circumstances the model assigns the emergency to other unit 

available in the district or calls from a unit of a neighboring district (Chaiken 1975) .  
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4.2.4 Cellular Automata 

Cellular automata models represent a dynamic system using a regular lattice of 

identical cells. Each cell has a finite set of possible states determined by a set of transition 

rules (O'Sullivan and Torrens 2000). According to Gilbert and Troitzsch (2005), the main 

characteristics of a cellular automata model are: (1) It has a set of identical cells arranged in a 

regular grid of 1, 2, or 3 dimensions. (2) It has a set of finite possible states for the cells. (3) 

The model advances in discrete steps, in each step the cell can change its state. (4) The state 

change rules consider the neighbors’ states to determine the cell’s state. Because of this 

characteristic cellular automata models are better for modeling local interactions. 

Because of the spatial representation of cellular automata models, they have become 

very attractive for geographers. Their regular space representation facilitates the use of data 

obtained from remote sensing imagery as data input. Due to their nature, modelers are able to 

examine dynamic processes at different time scales. An interesting example of the use of 

cellular automata in geography was presented by Dietzel and Clarke (2004). In their research 

they evaluate the capabilities of SLEUTH to predict the land use change in the area of San 

Joaquin in California. SLEUTH is an acronym for the spatial data layers required in the 

model: Slope, Land use, Exclusion, Urban extent over time, Transportation, and Hill-shaded 

backdrop (Clarke 2008). SLEUTH software was originally developed by Clarke in 1992 

under the sponsorship of the United States Geological Survey’s Urban Dynamics program. Its 

development continued under the NSF funded Urban Research Initiative (NASA 2007). The 

model has two main components, the urban growth model and a land use dynamics 

component called Deltatron (Dietzel and Clarke 2004).  The model requires as input data 

raster files containing information regarding: slope, hillshade (for visualization purposes), 
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land use at two different time periods, an exclusion layer (indicating urban growth constrains), 

four different temporal layers with urban extent, and finally a transportation layer. Using the 

input data the model is able to estimate the value for five parameters, each with a value 

between 0 and 100: 1) Diffusion (how much urban growth is likely to disperse locally), 2) 

Breed coefficient: it defines the likelihood of new detached settlements, 3) Spread coefficient: 

it determines how likely is the diffusion from existing  urban areas, 4) Slope resistant factor: it 

determines how likely is the development on steep slopes, 5) Road gravity factor: it 

determines the likelihood of new settlements along roads.  The model evaluates values of 1, 

25, 50, 75, and 100 for each of the parameters. From the 3125 possible combinations the 

model selects the one that gives more accurate results when compared to the reality. The 

model is tested in the area of San Joaquin in California with data from 1988 and 1996. The 

results indicate that SLEUTH can accurately replicate 93%, 77%, and 72% using 5, 10, and 

15 land use classes, respectively (Dietzel and Clarke 2004). 

4.3 Agent-based Models 

Traditional modeling techniques for dynamic processes in Geography are based on 

differential or difference equations. When applied to geography these techniques usually 

divide the study area into administrative units, the available information of individuals is then 

aggregated at these unit levels (Benenson et al. 2002). The processes at the unit level are 

represented by equations that assume that all the individuals included in an areal unit have the 

same behavior. Inferences about individuals using the aggregated data lead to what is known 

as ecological fallacy. This is the assumption that members of a group have the average 

characteristics of the group as a whole (Longley et al. 2005). A circumvent solution to the 

ecological fallacy is the representation of heterogeneous individuals. In order to create models 
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of these characteristics, in recent years tools such as automata have been introduced in the 

field of Geoinformation Science. An automaton is a piece of software capable of autonomous 

actions based on its perceptions of the surrounding environment. Using automata it is possible 

to model at a very high detail level complex systems by representing its individual parts each 

with an automaton (Torrens and Benenson 2005).  

An agent is a kind of automaton; its exact definition is still an open debate in the fields 

of computer science and artificial intelligence. Most of the researchers in the field would 

agree that an agent is a piece of software capable of autonomous actions in order to reach a 

goal (O'Sullivan 2008). Agents should also be able to perceive their environment and be able 

to react to it according to a set of rules of behavior. The rules can be complex, deterministic or 

stochastic, fixed or adaptive (Billari et al. 2006). While the environment can be synthetic like 

in a computational model or the real world. An agent-based model is a computational method 

in which agents represent real world actors interacting within a synthetic representation of 

reality (O'Sullivan 2008).  Agent-based models have become attractive to social scientists 

because they allow them to explicitly describe relations between individual, heterogeneous 

entities as well as relations between entities and their environment (Gilbert 2008).   

A model is a simplified representation of the real world where the scientist specifies 

how it is believed the reality operates. Models are in many cases used to perform experiments. 

An experiment consists of applying certain treatment to an isolated system and comparing the 

result to a system where no treatment has been applied. Doing this in social sciences and in 

the real world is difficult. A major attractiveness of  agent-based models is that when well 

validated, a model of this kind can be used to perform social experiments without affecting 

real humans (Gilbert 2008).    
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According to Gilbert and Troitzsch (2005), agents typically have certain properties 

(although depending on the model, the degree of implementation of each of them varies): 1) 

Autonomy: An agent is able to perform actions without the intervention of a human user or a 

central control. 2) Social ability: Agents are able to communicate with other agents. 3) 

Reactivity: An agent should be able to perceive its environment and take actions based on that 

information. 4) Proactivity: Agents should be able not only to react to their environment but 

to take action in order to reach a certain goal. 

4.3.1 Model Verification and Validation 

Both users and developers of a model are concerned about the accuracy of a model, 

i.e., how accurate a model is in depicting reality. The evaluation of the model accuracy 

consists of  two processes: verification and validation (Sargent 1998).  

4.3.1.1 Verification 

When coding a computer program it is common at the initial stages to find bugs. Bugs 

are segments of code that do something different from the modeler intended. In the 

verification process the developers of the model look for possible bugs in the computer 

program, ensuring that the program works as planned (Sargent 1998). There are some 

techniques suggested in order to reduce the possible coding bugs (Gilbert 2008): 

• Code elegantly: The code should be written in a careful way, avoiding shortcuts, and 

using meaningful variable names. 

• Include lots of output and diagnostics: The final output of the model is not sufficient 

to identify bugs. It is necessary to generate intermediate outputs of the different 

processes that compose the model, in this manner it is possible to identify units of 

code with problems. 
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• Observe the simulation step by step: 

• Add assertions: Most of the variables have a designed range of values, the code should 

alert the developer when one of the variable has a value outside this range. 

• Add a debugging switch: The assertions and diagnostics will make the model run 

slower. By using a debugging switch it is possible to control how much of the 

diagnostics or assertions code is executed in the model, allowing the user to set 

different testing levels. 

• Add comments and keep them up to date: Computer programs allow the programmers 

to write text that is not executed by the model. This text is used to describe the 

functionality of the code.  

• Use corner testing: This technique consists of running the model using extreme values 

for the parameters. The analysis of the outcomes would indicate possible bugs.  

4.3.1.2 Validation  

In this process the model is tested to determine if it has an acceptable level of accuracy 

for the intended purpose of use. There are two types of validation: conceptual and operational. 

A conceptual validation tests if the model is based on valid theories and assumptions. A 

second part of a conceptual validation is the evaluation of the model’s logic and structure. An 

operational validation tests the accuracy of the outputs of the model by comparing them to the 

reality. This comparison should take into account the intended purpose of use of the model. 

An operational validation can be subjective or objective. A subjective validation can be done 

by examining the graphic outputs of the model or by using a variable-sensitivity analysis. An 

objective validation uses statistical techniques to compare the outputs of the model with 

reality (Sargent 1998). Verification and validation processes are required for any model 
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intended to have a practical use. However in the field of agent-based modeling, in many cases 

due to the scarcity of data, or the complexity of the system, it is not unusual to see examples 

where verification and validation have not been fully implemented, as it will be explained in a 

later section. 

4.3.2 Trends in Agent-based Models 

Heath et al. (2009) surveyed published works on agent-based models. To be included 

in the survey the work had to be published in a peer-reviewed outlet during the period 

between January 1998 and July 2008. Using these criteria the authors compiled a sample of 

279 works from 92 publication outlets. The survey indicates that there is an increasing trend 

in the amount of research using agent-based model. The authors found 52 studies in 2007 and 

only 4 in 1999. In the survey the authors found 34 studies for the year 2008, however they 

only considered works published until July 20th 2008. The four main fields of the models were 

economics (29%), social science (24%), biology (14%) and military (13%).  

Heath et al. (2009) indicate that there is not a predominant tool or computer language 

among the ones used to develop the models. Although the results indicate that the most 

popular tools are the ones that are of public domain.  

Agent-based models can be programmed using conventional programming languages 

or using libraries or simulation frameworks. The most popular modeling frameworks as 

described by Gilbert (2008) are: Swarm, Repast, Mason, NetLogo. All of them are open 

source except for NetLogo, which also has better documentation. The documentation of the 

other software libraries is limited. Their user base is increasing except for Swarm that is 

becoming less popular. The development languages for all of them is Java, except for 
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NetLogo which has a proprietary language. Only Repast and Mason have limited support for 

geographic information systems.  

The disadvantage of using libraries is that because of their complexity it could take 

months for a user to take full advantage of their capabilities (Gilbert 2008). According to 

Heath et al. (2009), the two most popular computer languages used to develop agent-based 

simulation models are C++ and Java. Both of them are object oriented languages and have 

some syntax similarities. Java’s development was strongly influenced by C++, and most of its 

syntax derives from it, although it is simpler and has fewer low level capabilities. Java was 

designed to be portable and architecture neutral. It runs on a java virtual machine (JVM), 

which makes it slightly slower than C++ which interacts directly with the operating system 

(Horstmann 1999). Both languages can handle spatial data and perform spatial operations 

using external libraries. Among the most known open source libraries are FDO,GDAL/OGR, 

GEOS, GeoTools, MetaCRS, OSSIM and PostGIS (OSGeo 2011). Developing an agent-

based model using a conventional programming language has the disadvantage of having to 

start from scratch. However the advantage is more flexibility (Gilbert 2008).  

As mentioned above, two types of validation are needed: conceptual and operational 

(Heath et al. 2009). The conceptual validation certifies that the model is based on sound 

theories and assumptions, while the operational validation compares the output of the model 

with the outputs of the real system. Heath et al. (2009) considers two types of operational 

validation: statistical and non-statistical. The statistical validation relies on formal statistical 

hypothesis tests to check the validity and significance of the simulation outputs when 

compared to the outputs of the real system. The non-statistical validation relies on qualitative 

assessments of the outputs, for example an expert opinion.  
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The survey of the published works gives interesting results regarding validation. The 

results indicate that 29% of the models were not conceptually nor operationally validated, 

17% had only conceptual validation, 19% had only operational validation and 35% had both 

conceptual and operational validation. For the models that were both operationally and 

conceptually validated, 95.0% used only non-statistical validation, 0.5% used only statistical 

validation, while 4.5% used a combination of both validation techniques.  

4.3.3 Applications of Agent-based Models in Geography 

4.3.3.1 Abstract Models 

In this type of models the researchers do not attempt to represent the real world. The 

purpose of the model is to explore the implications of assumptions about agent behavior. In 

geography a classic example is Schelling’s segregation model (O'Sullivan 2008). In this 

model, agents of two different classes are initially distributed in a grid space randomly. 

Agents are designed to prefer the vicinity of neighbors of their same class. In the model the 

agents move looking for a suitable combination of neighbors. The findings indicated that even 

with relatively tolerant agents, highly segregated patterns would emerge (Schelling 1971).  

4.3.3.2 Regionally or Locally Specific Models 

Most of the examples of this type are in the fields of Land use/land cover change 

(LUCC), pedestrian flow, and recreational behavior simulation for park management support 

(O'Sullivan 2008).   

An interesting example in the field of LUCC is the one developed by Schreinemachers 

(2006). In this research the author uses an agent-based model to analyze the effects of soil 

fertility decline, population growth, and market structures on poverty and productivity. The 

study area is located in southeastern Uganda, it has an area of 12   !"!, containing 520 
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households approximately. The data for this model was collected through household surveys 

and field observations.  Each farm is represented as an agent. The decision model for the 

agents takes into account three factors: investment, production, and consumption. The 

decision rules were created using mathematical programming economic models 

(Schreinemachers and Berger 2006). The study concluded that trends in land and labor 

productivity were more strongly associated with population dynamics than with soil fertility 

decline. Another conclusion of this research is that improved access to innovations plus 

access to credit improves food security. 

A well known study that uses agent-based models to represent pedestrian movement in 

real scenarios is by Batty et al. (2003). In this research the authors model the route of the 

Notting Hill Carnival. This is an annual 2-day event that gathers over 1 million people in an 

area of 3.5  !"! in west central London. The peak time of the carnival is in the second day 

between 4pm and 6pm when there are around 260,000 visitors in the area. Because of the 

large crowd it is considered a major public safety concern. The purpose of the simulation is to 

test different parade routes to identify the safer one.   In this model the authors create three 

types of agents, walkers (visitors to the parade), paraders (moving vehicles) and bands (fixed 

sound systems). The streets are considered a fourth type of agents and are used to direct the 

flow of the crowds. The data used to model the agent behavior was collected in the Carnival 

2001. It came from video footage from police helicopters, data on entry and exit volumes at 

the subway station from surveys by London Underground Ltd., and bus volumes in entry 

points. The model has limitations due to software constrains. The maximum number of agents 

that can be represented is 16,000. However the authors were working to expand this limit and 

represent full size populations. The resulting model is suitable for simulating crowd control, 
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using the street agents to regulate the density of the crowd in specific areas of the carnival. An 

interesting characteristic of this model is that not only it allows researchers to simulate a real 

process but also intervene in it. Batty et al. (2003) concluded that the safest scenarios were the 

ones with longer parade routes. In these scenarios the public is spread in a larger area 

reducing the crowd density. For each of these scenarios a new traffic exclusion zone needs to 

be determined, as well as public entry points. The conclusions of this study are accepted by 

the Carnival Review Group and should be implemented in the future.  

An interesting work in the field of recreational areas management support models is 

by Anwar et al. (2007). In this research the goal is to represent the interactions between 

whale-watching boats and whales in the Saguenay St. Lawrence Marine Park. The study area 

covers 1200  !"! and includes several ports. The model considers two types of agents, the 

boat agents and the whale agents. The synthetic environment of the model is represented in 

raster format and contains information regarding the features in the area: land, water, reefs, 

ports and bathymetric information. The agent behavior for the boats was constructed based on 

GPS point samples collected from 341 excursions, scientific reports, and personal 

observation. In the model the authors consider two strategies for the whale-watching boats, 

cooperative and non-cooperative. The cooperative strategy stipulates that the boat agents 

share information regarding the whale location.  

The results of the model indicate that a cooperative strategy for the boats largely 

increases the time of whale observation, however it also increases the risk or collision 

between boats and whales as well as increases the disturbance to marine mammals 

environment. The authors of this research plan to improve the whale behavior rules to better 
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represent the real movements of the marine mammals, taking into consideration of age, and 

species among other variables. For this model the researchers used Repast and Java. 

4.3.3.3 Highly Detailed Urban Realistic Simulations 

  Models of this type attempt to recreate urban environments at a very detailed scale. 

There are previous examples of urban models using a cellular automata approach. However 

such approach has its share of criticism. Cellular automata represent the space with a regular 

grid. When representing urban environments the limitations of this form of representation 

became evident. It is difficult to represent network elements and spatial relationships of 

elements of different sizes. Benenson et al. (2005) propose the development of urban models 

using discrete objects that directly represent real world entities with fixed positions. They also 

propose the use of multi agent-based systems on top of the fixed entities to represent mobile 

elements of the model. The result of this approach is an environment called OBEUS (Object-

Based Environment for Urban Simulation). Some of the ideas in OBEUS were first reported 

in Benenson et al. (2002). In the 2002 study, the authors represented the dynamics of ethnic 

residential distribution in the area of Yaffo in Tel Aviv between 1955 and 1995. In this model 

each householder is represented as an agent. The attributes for each agent are income, origin 

and religious affiliation. The synthetic environment for the agents is composed of entities 

representing the streets and buildings in the Yaffo area. The attributes for the streets are 

width, type, and street name. The attributes of the buildings are type (dwelling, business, 

public, etc), architecture style and number of floors. The householders decision rules 

regarding their residential location preferences are based on the surrounding environment and 

the neighborhood householders. For the parameter estimation, the results from a previous 

study carried out by one of the authors were used  (Omer 1999). The results of the model were 
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successfully compared to Israeli’s Population Census of 1995.  The results of the model 

indicate that the most significant model variables to represent the population dynamics were 

the relation between householders and their neighbors and the relation between householders 

and the architectural style of the dwelling building.  

4.4 Conclusions 

Agent-based models and cellular automata have some similarities although they have 

two differences. The first is the space representation. Cellular automata represent space using 

a grid of 1, 2, or 3 dimensions, while agents can also be represented as 0 dimensional features. 

The second difference is that cellular automata have fixed locations while agents can change 

their location, allowing the representation of dynamic spatial relationships.  

In this study we represent the businesses reopening process in New Orleans after 

Hurricane Katrina using primarily an agent-based modeling approach. The location of each 

business is determined by its address. There are businesses that share the same address, 

therefore in a 2 dimensional environment, those businesses are represented by 0 dimensional 

features with the same location.  

Although the location of the businesses is fixed, their characteristics and spatial 

representation make them more suitable to be represented as agents. The businesses reopening 

process in New Orleans after Hurricane Katrina is dynamic. The components of the 

businesses community are heterogeneous.  Each business is autonomous; it decides by itself 

when to reopen based on internal variables and its environment. There is communication 

between businesses. Each business perceives the reopening status of its neighbors. The final 

reopening decision takes into account this influence. Although the location of the businesses 
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do not change, the status of the businesses, open or closed, change through time, making the 

neighbor influence a dynamic process. 

Although agent-based modeling has been applied with many examples in geography, 

the number of these models calibrated and validated using real world data is scarce. 

Furthermore the number of models validated using some statistical procedures is even fewer 

(Heath et al. 2009). One of the goals of this study is to develop a model for designing and 

testing of post-disaster recovery policies. A model of this nature needs to be correctly 

validated in order to be useful, using objective and subjective approaches. The subjective 

approaches could be in the form of expert opinion, whereas the objective approach requires a 

statistical measurement.  

The businesses reopening process in New Orleans is located in an urban area that 

requires to be represented at a detailed scale. The simulation model requires that each 

business be represented independently as a discrete object. A suitable approach for a model of 

this type was proposed by Benenson et al. (2005). Although OBEUS is no longer in 

development (Benenson 2009), it is possible to implement some of its ideas using a computer 

programming environment. 

 A preliminary survey suggested that Repast or Mason could be the best tools for 

model development, because of their GIS capabilities. However the limited documentation of 

both simulation frameworks makes them difficult to use. An alternative development strategy 

would involve the use of a conventional computer programming language.  The two most 

popular languages Java and C++ have similar capabilities. Both can access open source 

libraries with spatial capabilities like FDO,GDAL/OGR, GEOS, GeoTools, MetaCRS, 

OSSIM or PostGIS (OSGeo 2011). An important difference between Java and C++ is that the 
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former was designed to be conceptually simpler (Horstmann 1999), which makes it easier to 

use. 
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Chapter 5 : Development of an Agent-based Model for Simulating Business 
Reopening in New Orleans Post Hurricane Katrina 

 
5.1 Introduction 

Hurricane Katrina, with an estimated cost in damages around $80 billion, is 

considered the most costly natural disaster in U.S. history (Stringfield 2010). It caused large 

population displacements, disrupting the economic life of the largest city in Louisiana. The 

post-disaster recovery is still an ongoing process several months after the disaster. A city 

affected by a disaster needs its businesses for a sustainable recovery. Studies on the post-

disaster business recovery have been previously described in Chapter 2 and Chapter 3. A 

business post-disaster recovery process is dynamic and it is composed of heterogeneous parts 

that interact among them. These characteristics make it ideal to represent as an agent-based 

model. The use of this type of models in the field of post-disaster recovery is scarce (Oh et al. 

2006). To our best knowledge there is no other attempt to model the recovery process of a 

business community after a disaster using an agent-based approach. A validated model of this 

kind would allow the simulation of diverse scenarios which could help decision makers to 

develop better policies. 

The third survey data analysis, described in Chapter 3, comprised 1,185 businesses in 

total (see Table 3.2). Based on these results we propose the development of a model able to 

predict the reopening status for all the businesses in Orleans Parish. The simulation will 

include all the Orleans Parish businesses contained in the August 2005 Louisiana Department 

of Labor Micro File for Economic Development in the greater New Orleans Area. The total 

number of businesses is 10,169. The information in this dataset was used in Chapter 3 to 

estimate the reopening probabilities using binary logistic and probit regression models. The 
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sample used in the third survey (October 2007) is different from the first and second surveys 

(December 2005 and June 2006), allowing the use of the third survey results for calibration 

purposes and the first and second ones for validation procedures (See Figure 5-1). 

5.2 Study Area and Data Requirements 

The study area is Orleans Parish. Information regarding the business reopening status 

was obtained through three telephone surveys carried out in December 2005, June 2006 and 

October 2007. The surveys comprised all the businesses in Orleans Parish included in the 

August 2005 Louisiana Department of Labor Micro File for Economic Development in the 

greater New Orleans Area (the list includes businesses in Orleans, Jefferson and St. Tammany 

parishes) (Lam et al. 2009). Using this data source it was possible to estimate the business 

size using the natural logarithm of the total wages of the firm. The file also included the 

address of the business. Using this information and combining it with the flood estimation 

data for Orleans Parish after Hurricane Katrina (L.S.U. 2005), it was also possible to estimate 

the flood depth at the business location. One of the goals of this research is to study the 

relationship between the business reopening process and socio-economic characteristics of the 

residents in the study area. Information for the socio-economic variables was obtained from 

the Census 2000 at the block group level. 

The socio-economic variables included in the simulation model were selected based on 

previous research by Cutter (2004). They were obtained at the census block group level, from 

the Census 2000. The selected socio-economic variables considered for the model were: 

population density, % non white population, % population with age under 18, % population 

with age over 65, median household income, % renter occupied houses, and % female 

population. Previous research carried out by Cutter (2004) identified these variables as  
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Figure 5-1: Calibration and Validation points 

 

indicators of segments of society particularly vulnerable to disasters. After Hurricane Katrina, 

severe displacements of vulnerable population were recorded (Gutmann and Field 2010). 

5.3 Model Conceptual Design  

In this simulation model each business is considered as an agent. Each agent will 

estimate at discrete points in time its own reopening probability and decide to reopen or not, 

based on its internal characteristics as well as the input from its neighbors. In Chapter 3 we 

estimated the reopening probabilities using probit and binary logistic regression models. The 

simulation model uses the logistic regression functions instead of probit models to estimate 

the reopening probabilities. This model was chosen because it is easier to calculate on the fly.  

The probability estimation functions have the following form: 

!"#$!   ! = 1 =
1

(1 + !!!!   )
 

!! = !!!!(!!!) + !!! + ! 

!"  !"#$! > !ℎ!"#ℎ!"#   ⇒ !"#$%&##  !"#"$! = !"#$ 
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where  !"#$!   ! = 1     is the reopening probability of a business, !! is the spatial dependence 

coefficient, !!(!!!) is the spatial influence from neighboring firms, estimated using an 

inverse distance-weighting function, ! is a set of variables describing business characteristics 

and socio-economic characteristics of the residents in the firm proximity, and !! is the set of 

coefficients for the selected variables at a given point in time. Using this information it is 

possible to determine the reopening probability for each business for each period. 

5.4 Model Operational Design 

The businesses reopening process in New Orleans requires a very detailed or micro 

representation of an urban environment, where each business should be treated as an 

individual object. The approach proposed by Benenson et al. (2005) fulfills these 

requirements. OBEUS, the software introduced by Benenson et al. (2005) is not available and 

it is no longer in development  (Benenson 2009). To implement the ideas proposed in 

OBEUS, we surveyed the most common approaches used to implement agent-based models. 

Most of the previous studies use either a simulation framework or a conventional computer 

programming language. From the most popular simulation frameworks, only Repast and 

Mason provide support for GIS. A survey of these frameworks suggests that their 

documentations are limited. An alternative is the development of the model using a 

conventional computer programming language and external libraries for spatial analysis. The 

two most popular programming languages for agent-based modeling, according to Heath et al. 

(2009), are Java and C++. In this study we decided to use Java because of its simpler 

concepts. There are many libraries that enable Java to handle geographic information and 

perform spatial analysis. The most well known open source libraries are FDO, GDAL/OGR, 

GEOS, GeoTools, MetaCRS, OSSIM, and PostGIS (OSGeo 2011). For personal preferences 
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it was decided to use GeoTools and PostGIS for the analysis of raster and vector data. The 

selected tools are of public domain, with each of them having a large base of users and good 

documentation.  

The model uses information stored in raster as well as vector format.  The vector 

information includes businesses’ locations as well as census block groups boundaries for the 

study area. The raster information includes the flood depth estimation for Orleans Parish 

(L.S.U. 2005). 

The vector information is stored in a database in a PostgreSQL system. This is an 

enterprise open source object-relational database management system (ORDBMS). 

PostgreSQL is capable of handling spatial information with PostGIS, a special add-on 

specifically designed for this purpose. The geometric features and methods supported by 

PostGIS are defined by the OpenGIS “Simple Features for SQL” specification (Ramsey 2011; 

Worsley and Drake 2002).  

A flow diagram of the simulation model is depicted in Figure 5.2A. The model has an 

initialization phase in which it performs tasks that are needed only once. After this phase the 

model iterates until the number of time steps required is fulfilled.  

The initialization phase has 5 steps: (1) First, the model reads an XML file that 

contains the coefficients required for the equations used to estimate the business reopening 

probabilities (See Figure 5-2). (2) Second, the model iterates along a user defined business list 

and instantiates the abstract business class with the attributes of each business. (3) Third, the 

model estimates the flood depth at the business location. The information regarding the 

business flood depth is obtained through a point in raster operation. For this operation the 

model uses Geotools, a free, open source Java geospatial toolkit released under GNU Lesser  
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Figure 5-2: A) Model Flow chart, B)UML (Unified Modeling Language) design diagram of 
the business agent class 
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General Public License by the Open Source Geospatial Foundation (OSGeo 2011). (4) Fourth, 

the model obtains the socio-economic characteristics of the census block group where the 

business is located. This operation is a point in polygon operation. The spatial operation is 

performed using PostGIS commands in the form of an extension of standard SQL. (5) Fifth, 

the model identifies for each business its neighboring firms within 1000 meters. To estimate 

the influence of neighboring firms it is necessary to establish the distances between firms. 

One alternative is to do this task every time the model runs. A second alternative is to 

estimate the spatial relationships between all the businesses in the dataset and store these 

relationships in a database table. Every time it is necessary to determine the neighbor firms 

for a given business, we can simply query the relationships table without having to perform 

any distance calculation. The second alternative was selected because of its higher efficiency. 

Once all the variables have been obtained, the model calculates the reopening 

probabilities for each business using the logistic regression coefficients loaded from an XML 

file in the initialization phase. At the first time step, it is not necessary to estimate the 

neighbor influence )0( =ρ , in subsequent steps the neighbors are identified using the 

relationships table. Once the model has identified the neighboring businesses for each firm, it 

queries about their status (open/close), and using this information plus the distances, the 

model calculates the neighbor influence using an inverse distance-weighting function (see 

Equations 15 and 16) . 

The reopening probabilities are compared against a threshold, which determines if the 

business opens or remains closed. The statuses of the businesses are then updated in the 

database. The simulation model is iterative, once the process reaches the last time step (6) the 
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simulation stops. The results of the model run for each time step are stored in a table in a 

PostgreSQL database and can be retrieved for later examination.  

Following an object-oriented approach we designed an abstract business agent class. 

In the simulation model each business agent will be implemented as an instance of this class. 

The class bundles together attributes and methods common to all businesses. Figure 5.2B 

depicts a Unified Modeling Language (UML) design diagram of the business agent class. 

5.5 Model Calibration 

An analysis of the results of the third telephone survey carried out in October 2007 

allowed us to construct logistic functions to estimate the reopening probabilities for the 

businesses in the sample (See table 5-1). The reopening probabilities are continuous between 

0 an 1. The status of the business is a binary variable, with values of 0 for closed and 1 for 

open business. To determine if a business is open or closed we compare the probabilities 

against a threshold. If the probabilities are higher than the threshold we assume the business 

status is open (1) otherwise the business is close (0).  

To estimate the value of the threshold we estimated the reopening probabilities for the 

businesses that reopened in each time period. The reopening probabilities were calculated 

using the logistic regression coefficients derived in Chapter 3 (see Table 3-4) using SPSS. We 

observed that the reopening probabilities for the businesses that indeed reopened for the 

selected time periods vary through time. A summary of the statistics for the reopening 

probabilities for these businesses is depicted in table 5-2.  

The average reopening probabilities for businesses that did not close after Hurricane 

Katrina was 0.17. Firms that reopened in the period between August and September 2005 had 

an average reopening probabilities of 0.24. While firms that reopened in the period between  

September and December 2005 had an average reopening probability of 0.54. As we can see  
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Table 5-1: Equations for the reopening probability estimation for each period. 

Did not close 

after Katrina 

!!!! 0.01(ln wages) -0.043(flood depth) -0.016(pop dens) -0.002(% non white) 

-0.006(%pop<18) -0.006(%pop>65) +0.243(ln mhhi) +0.005(%renters) 

+0.031(%female pop) -5.336 

August 30th – 

September 30th 

2005 

!!!! 0.084(ln wages) -0.72(flood depth) -0.001(pop dens) +0.003(% non white) 

-0.012(%pop<18) -0.002(%pop>65) +0.266(ln mhhi) +0.009(%renters) 

+0.008(%female pop) +0.719(ni) -5.609 

October 1st – 

December 31st 

2005 

!!!! 0.087(ln wages) -0.714(flood depth) +0.002(pop dens) -0.012(% non white) 

+0.004(%pop<18) +0.007(%pop>65) -0.041(ln mhhi) -0.001(%renters) 

+0.008(%female pop) – 0.004(ni) -0.118 

January 1st – 

March 31st 2006 

!!!! 0.029(ln wages) -0.105(flood depth) +0.002(pop dens) +0.010(% non white) 

-0.037(%pop<18) +0.015(%pop>65) +0.176(ln mhhi) +0.008(%renters) 

+0.016(%female pop) +0.326(ni) -4.264 

April 1st – June 

30th 2006 

!!!! 0.081(ln wages) -0.083(flood depth) -0.011(pop dens) +0.00(% non white) 

+0.023(%pop<18) -0.002(%pop>65) -0.614(ln mhhi) -0.020(%renters) 

-0.044(%female pop) –0.257(ni) +7.022 

July 1st – 

September 30th 

2006 

!!!! 0.077(ln wages) -0.009(flood depth) +0.004(pop dens) -0.001(% non white) 

-0.030(%pop<18) -0.014(%pop>65) +0.159(ln mhhi) -0.018(%renters) 

+0.114(%female pop) –1.456 (ni) -6.864 

October 1st 

2006 – October 

1st 2007 

!!!! 0.029(ln wages) -0.002(flood depth) +0.014(pop dens) +0.01(% non white) 

-0.001(%pop<18) -0.009(%pop>65) +0.351(ln mhhi) -0.005(%renters) 

-0.050(%female pop) –0.751(ni) -2.333 

 

the reopening probabilities for the firms varies from period to period. In order to increase the 

similarity between the simulation model results and reality it was decided to have a different 

threshold for each time period. 
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  We selected a list of possible thresholds and proceeded to compare the reopening 

probabilities against them. To evaluate which threshold value performed better, we estimated 

the overall accuracy of the statuses of the businesses resulting from comparing their 

probabilities with the different thresholds at each time period using the following equation. 

!"#$%&&  !""#$!"% =
!"##$!%&'  !"#$$%&%'(  !"#$ +   (!"##$!%&!  !"#$$%&%'(  !"#$%)

(!"!#$  !"#$%&  !"  !"#$%&##&#)  

Initially the comparison was done using thresholds values: 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 

0.5. The thresholds, which resulted in the highest overall accuracy for each time period were 

selected as the parameters to be used in the simulation model. In certain cases the tests using 

certain thresholds would result in complete misclassification of open or closed businesses. In 

those cases the threshold values were not considered and the overall accuracies were not 

estimated. The selected thresholds are highlighted in Table 5-3. 

5.6 Model Validation 

The main purpose of the validation is to prove that the simulation model accurately 

represents the real world system. A validated model can then be used in “what if” 

computational experiments. A common approach for model validation is to test the model 

against a set of real world cases and see if the model is capable of reproducing them (North 

and Macal 2007). In this research the actual status of the businesses, as recorded by the first 

and second telephone surveys, carried out in December 2005 and June 2006 respectively are 

compared against the corresponding partial results from the simulation model. The overall 

accuracy assessment indicates that the model can correctly predict almost 64% and 64.7% of 

the status of the businesses by December 2005 and June 2006, respectively. 

To analyze the similarities and differences between the simulation model outputs and 
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Table 5-2: Probabilities of opening using the logistic functions. 

 

Did not 
close  
After  
Katrina 

August 
Sep.  
2005 

Oct.- 
Dec. 
2005 

Jan-
March  
2006 

April- 
June  
2006 

July- 
Sep. 
2006 

more 
than 
one year  
after the 
disaster 

Min 0.06 0.07 0.05 0.09 0.05 0.08 0.10 
Max 0.27 0.45 0.76 0.50 0.34 0.66 0.50 
Average 0.17 0.24 0.54 0.32 0.18 0.27 0.30 
Count 173 268 452 129 50 55 63 

 

Table 5-3:Overall accuracy for each threshold (NA: not available, *:complete 
misclassification of one class) 

Threshold 
values 

Did not Aug - Oct.- Jan.- April- July- 
more 
than 

close Sept Dec. Jun June Sept. one year 
after 2005 2005 2006 2006 2006 after the 

Katrina 	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   disaster 
0.15 55.15 NA NA NA NA NA NA 

0.2 80.19 65.73 52.89 46.23 74.1 65.73 42.42 
0.25 84.97 NA NA NA NA NA NA 

0.3 * 76.92 56.05 62.15 82.44 76.92 60.6 
0.35 * NA 59.11 68.39 84.22 NA NA 

0.4 * 79.72 62.92 72.47 84.82 79.72 71.86 
0.45 * 80.16 62.38 72.9 * 80.07 73.16 

0.5 * 80.77 62.92 72.26 * 80.77 73.16 
0.55 * 80.25 62.35 NA * 81.47 * 

 

the survey results we estimated the business density of open businesses according to both 

datasets. In order to facilitate the description of the results we decided to use the names of the 

neighborhoods in the study area (See Figure 5-3).  

  Figures 5.4A and 5.4B depict the business status by December 2005, according to the 

telephone survey and to the simulation model respectively. The business status by June 2006 

is represented in Figures 5.5A and 5.5B. In the first case, the map represents the actual 
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business status based on the telephone survey, while in the second it represents the simulation 

model results by the same point of time. 

The similarities between the two datasets are obvious. However, for a more detailed 

analysis we estimated the differences between the kernel density surfaces corresponding to 

actual values and the simulation results: 

[Difference]= [Density from actual values] – [Density from simulation results] 

  Ideally the values of the difference should be 0. Areas where the model has 

overestimated the reopening probabilities of firms have negative values, while areas in which 

the model has underestimated the probabilities have positive values. 

Figure 5-4C depicts the differences between the actual vales and the simulation results 

by December 2005. In this case the model has underestimated the reopening probabilities of 

firms located in the Central Business District. The model has also overestimated the 

reopening probabilities in the boundaries between West End, Lakeview and Lakeshore Lake 

Vista. 

Figure 5-5C depicts the differences between the actual values and the simulation 

results by June 2006. In this case the main model underestimation areas are located in Gert 

Town, Tulane/Gravier and in the Central Business District, while  secondary smaller clusters 

is located in Freret, East Riverside and Irish Channel. The main clusters of overestimated 

probabilities are located in the French Quarter, between Mid City and City Park and between 

LakeView and West End and Lakeshore Vista. 

In general the differences between the predicted and the actual business status are 

located in specific areas, while for the rest of the study area the differences are minimum or  

none. The most noticeable underestimations occur in the Central Business District, while the  
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Figure 5-3: New Orleans neighborhoods (digitized from a PDF map from the Greater New 
Orleans Community Data Center website) 

 

overestimation occurs in Mid City, Lake View and West End and Lakeshore Lake Vista. 

The most obvious difference between the Central Business District and other areas of 

New Orleans is the business density. This area has a higher concentration of firms, and its 

density is comparable only to the French Quarter, its neighbor. The second obvious difference 

is the type of buildings in the area. Many of the businesses that operate in the Central 

Business District are located in high rise buildings. In the event of a flood the only businesses 

directly affected would be the ones operating at the ground level. The others would be mostly 

unaffected and could return to operate as soon as the minimum business requirements are 

provided. 
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Figure 5-4: Model evaluation  by December 2005, A) Business density according to first 
survey (December 2005), B)Business density based on model results by December 2005, C) 
Differences between model and survey data (negative values indicate overestimated predicted 
results, positive values indicate underestimated model results). 
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Figure 5-5: Model Evaluation by June 2006 A) Business density according to first survey 
(June 2006), B)Business density based on model results by June 2006, C) Differences 
between model and survey data (negative values indicate overestimated predicted results, 
positive values indicate underestimated model results). 
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The overestimation of the reopening probabilities mostly occurred in the Mid City, 

Lake View, and West End, neighborhoods and in a less degree in the French Quarter. Lake 

View and West End were severely flooded. That the residents return rate could affect the 

businesses reopening decision. There is not an exact detailed count on the return of evacuees 

to New Orleans in the months after Katrina. Postal delivery counts have been proposed as a 

proxy to estimate the population return after the disaster (Plyer et al. 2010; Plyer and Hodges 

2008) . The United States Postal Service submits to the Department of Housing and Urban 

Development quarterly reports at the census tract level with counts of the number of addresses 

actively receiving mail. However due to the havoc created by Katrina, the USPS was not able 

to deliver accurate counts in first several months after the disaster (Plyer and Hodges 2008) . 

The quarterly report corresponding to June 2006 indicates the percentage of active addresses 

at that time  and is mapped in Figure 5-6. 

A traditional interpretation of the variable household income is that high income 

households are less vulnerable to disasters (Cutter and Emrich 2006).  Lake View and West 

End are neighborhoods populated by high income households. The average household income 

in these neighborhoods is approximately $51,020 (there is not a perfect match between the 

neighborhoods and the census block groups boundaries, therefore this is an approximation), 

while the mean household income for Orleans Parish is $25,590. However the population 

return for these neighborhoods at the time of the survey was very low (See Figure 5-6). Elliot 

(2006) reported that the evacuee return likelihood is higher among low income homeowners, 

mostly because they can not afford to relocate for long periods. High income households on 

the other hand have the option of staying out from their homes for longer time. This fact is 

reflected on the low population return for Lake View, and West End, which might have  
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June 2006 

 
September 2006 

 
December 2006 

 
September 2007 

 
Figure 5-6: Percentage of addresses actively receiving mail at the census tract level ((total  
addresses-(vacant-no stat))/total addresses). 

 

negatively affected the businesses reopening. 

Overall, the simulation model can correctly predict the reopening status of between 

64% and 65% of the businesses included in the evaluation. The evaluation of the results 

indicates that the model is suitable to be used for simulating alternative scenarios. 

5.7 Disaster Scenarios 

We created three scenarios to analyze the reopening process with the simulation 

model. In the first scenario we extrapolated the results from the sample used to estimate the 

binary logistic functions to all the business population in Orleans Parish. In the second 
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scenario we evaluated the reopening process with flood conditions different from the actual 

one. And finally in the third scenario we tested the effects of post-disaster policies that could 

encourage certain businesses to remain open after a severe flood. 

We estimated the coefficients of the binary logistic functions using all the businesses 

included in the third survey (October 2007 ), which represent a subset of all the businesses 

listed in the August 2005 Louisiana Department of Labor Micro File for Economic 

Development in the Greater New Orleans Area.  

5.7.1 Scenario 1 

  In our first scenario we extrapolated the results from the sample to the whole business 

population.  The evolution of the density of the reopened businesses as predicted by Scenario 

1 can be seen in Figures 5-7 and 5-8. The reopening trends follow the findings of Chapter 3, 

indicating an increase of the recovery rate until December 2005 (See Figures 5-7A, 5-7B, and 

5-7C). After this point the recovery rate decreases. The number of returning businesses still 

increases but at a much lower pace. After June 2006 the business return rate is minimal, 

indicating a much stable phase of the process (See figure 5-8B and 5-8C). 

5.7.2 Scenario 2 

For the second scenario we considered a fictitiously less severe flood for Orleans 

Parish. The goal is to study how the businesses would react to a disaster of different 

magnitude. The scenario can be understood as an evaluation of the return process if certain 

measures designed to increase the business resilience are implemented. The original flood 

depth data were obtained from the Louisiana State University GIS Information Clearinghouse. 

This information is in raster format with a spatial resolution of 25 meters. For the less severe 

flood scenario, we created a new raster with the same spatial resolution, although with flood  



 
 

86 

 

 

 
Figure 5-7: Business density for Scenario 1: A)By August 30th 2005, B)By September 30th 

2005, C) By December 31st 2005 
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Figure 5-8: Business density for Scenario 1 (cont.): A) By March 31st 2006, B) By June 30th 
2006, C) By September 30th 2006. 
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depth values lower by 1 meter. To accomplish this task we used Erdas Imagine. 

The results for Scenario 2 indicate that less flood generates better reopening 

probabilities as it would be expected. To visualize the differences between Scenario 2 and 

Scenario 1, we calculated the differences in the reopened business density at different points 

of time. 

Differences = Business density for scenario 2 – Business density for scenario 1 

The differences between Scenarios 2 and 1 are very small from immediately after the disaster 

until the end of September 2005 (See Figure 5-9A). A reduced flood damage would increase 

reopening in: Fairgrounds, Leonidas, Lakewood, Lakeshore Lake Vista and Lake Terrace. 

Although these reopenings are small in number in the period between October 2005 and 

December 2005, less flood damage has a stronger effect. The most significant differences 

between scenarios 2 and 1 occurred in the Central Business District and in Mid City  (See 

Figure 5-9B).  The differences between both scenarios remain more or less constant until June 

2006. In the period between June and September 2006 the differences between both scenarios 

began to fade as can be seen in Figure 5-9D. The major differences occurred in Central 

Business District and Mid City and in a lower degree in Tulane/Gravier. 

The positive effects of reducing the flood depth can also be observed in Treme/Lafitte, Bayou 

St. John, Fairgrounds and part of the Seventh Ward, although in a lesser degree. All these 

neighborhoods were actually affected by the flood. In the less severe flood scenario, 

businesses located in these areas show in general higher reopening probabilities compared to 

the first scenario especially starting in the last quarter of 2005. After June 2006 Scenarios 1 

and 2 show more similar reopening results, indicating that the effect of flood damage 

decreases. 
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Figure 5-9: Businesses density for scenario 2 and density difference between scenario 1 and 
scenario 2 : A) Immediately after Katrina, B) By December 2005, C)By June 2006, D)By 
September 2006. 
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5.7.3 Scenario 3 

For the third scenario we simulated that certain businesses would remain open after a 

disaster, due to a given policy designed for this purpose. The goal of Scenario 3 is to observe 

the effect of reopened businesses on their neighbors. In Scenario 3 we encouraged 50% of the 

businesses to remain reopen after the disaster in selected locations, and observed the effect 

this would have on the rest of the firms. The selected locations suffered a significant amount 

of flood and did not rebound immediately after the disaster.  

The first test area is located in Mid City, it is composed of census block groups 

220710050001 and 220710054003 (See Figure 5-10). Its boundaries are: Canal St, N. 

Hennessey St, Orleans Av., and N. Rendon St. This area had on average 1.03 meters of flood, 

44.7% of its population was non white, while the median household income was  $35,627. 

The second test area is located in West Lake Forest. It comprises census block groups 

220710017361 and 220710017362 (See Figure 5-8). It is bordered by the I-10 highway, Read 

Blvd., Dwyer Rd. and Crowder Blvd. On average it suffered 1.4 meters of flood.  Most of its 

population was non white (97.9%) with an average household income of $22,057. 

We encouraged 50% of the businesses located in our selected areas to remain open 

after the disaster so that we can see the effect of adding more reopened businesses on 

neighboring firms. The selection of the businesses that remain open was random.  

The simulation results for Scenario 3 are depicted in Figure 5-11. Similar to the 

procedure employed in Scenario 2, we estimated the differences between the results of 

Scenario 3 with the results obtained from Scenario 1. 

Differences = Business density for Scenario 3 – Business density for Scenario 1 

The results show that although the neighbor influence was a statistical significant 
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Figure 5-10: Selected census block groups for test areas 

 

predictor for the period between August 30th and September 30th, it is hard to distinguish any 

impact on the businesses located in the proximities to test area-1 in this period. The major 

difference was in the next period between October and December 2005. Starting in this period 

we can observe an increase in the reopening rates to the east of test area-1. This effect occurs 

until the period June-September 2006. In this period Scenario 3 starts reaching similar 

reopening rates to Scenario 1. 

  In test area-2 it is not possible to see any effect on the neighboring firms outside the 

selected block groups. The density of the businesses in the proximity to this test area is lower 

compared to Mid City, hence the effect that the neighbor influence might have is reduced. The 

analysis of the third survey indicates that this area began to see some business return, only 

after June 2006.  The results suggest that the conditions of the vicinity of test area 2 nullify 

any benefit resulting from forcing some business to reopen. 

Test area 1 

Test area 2 
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Figure 5-11: Business density for Scenario 3, and density differences between scenario 1 and 
scenario 3: A)By August 30th 2005, B) By September 30th 2005 , B) By December 31st 
2005, D) By September 2006. 

 

The results indicate that the effects of the forced reopened businesses start fading after 

June 2006, when both scenarios start generating similar outputs. 
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Chapter 6 : Conclusions 

6.1 Summary 

The business reopening process in New Orleans is dynamic. The reopening rate is not 

constant through time. This is due to the fact that the disaster did not affect all businesses in 

the same way. To study this process we used three telephone surveys carried out in December 

2005, June 2006 and October 2007 as described in Lam et al. (2009). Using the information 

obtained in the third survey we studied the reopening probabilities for businesses in New 

Orleans after the flood caused by Hurricane Katrina. In the second part of this study we 

modeled the reopening process using an agent-based technique. 

The results of the statistical analysis of the third survey data indicate that the factors 

that had an effect on the business reopening probabilities were: business size, flood depth, 

socio-economic characteristics of the residents living in the vicinity such as population 

density (population by square kilometer), % non white population, % population with age 

under 18, % population with age over 65, median household income, % renter occupied 

houses, and % female population, and the influence of neighbor firms. 

We used the ln(total wages) as a proxy for business size. Our results suggest that 

larger businesses were less affected by the disaster than smaller firms. Larger business 

showed better reopening probabilities than their smaller peers. According to our analysis this 

variable was significant until December 2005. After this point business size was no longer a 

significant predictor.  

As expected, flood depth at the business location was found to have a negative effect 

on the reopening probabilities. Businesses located in non flooded areas had better reopening 

chances than firms located in flooded areas. This predictor was significant until March 2006. 



 
 

94 

Certain socio-economic characteristics of the residents in the vicinity of the business 

were identified as significant predictors. Our analysis indicates that the percentage of non 

white population and the percentage of population with age under 18 negatively affected the 

business reopening probabilities. The significance of percentage of non white population was 

limited to the period between October  1st and December 31st , 2005. The percentage of 

population with age under 18 was significant in the period between January 1st and March 

31st, 2006.   

Our results indicate that businesses were positively affected by the percentage of 

female population in their respective block groups between July 1st and September 30th of 

2006 at a significant level. In other words, businesses located in census block groups with 

higher percentage of female population had higher reopening chances in this period. 

Our results also indicate that businesses influence each other. There was a positive 

influence of neighboring firms reopening until September 30th 2005. Then this variable was 

not found significant until the period between July 1st and September 30th 2006, when it 

became a negative predictor. It is possible that after some time with more businesses 

returning, the competition for suitable locations made it difficult of later returnees to reopen.  

The heterogeneity of the businesses community as well as the interactions between 

firms and the dynamic nature of the reopening process demand a special type of modeling 

technique. These requirements are fulfilled by the use of an agent-based modeling approach. 

Based on a literature review it was decided to create a model using Java and open source 

libraries with spatial capabilities like GeoTools and PostGIS. The model developed in this 

study represents each business as an individual entity with the business characteristics 

(business size, location). It also considers the characteristics of the residents living in the 
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vicinity of the firm, as well as the flood depth at the business location. The model considers 

the spatial influence of neighboring firms using an inverse distance-weighting function. To 

estimate the reopening probabilities it was necessary to choose between logistic and probit 

functions. We used a logistic function to estimate the businesses reopening probabilities in the 

simulation model because it is easier to calculate on the fly. 

The model was calibrated and validated using real data. The model works at a 

reasonable level. It was able to predict around 65% of the reopening of the businesses at the 

validation points. The model validation was based on the empirical survey data, allowing its 

use for more realistic simulated scenarios. 

Three scenarios with simulated conditions were evaluated. In Scenario 1 we included 

in the simulation all the businesses in Orleans Parish. In Scenario 2 we assumed that the flood 

suffered was of lower magnitude, representing the implementation of measures designed to 

make buildings and infrastructure more resistant to floods, like the raise in elevation of 

buildings or better levee/pumping infrastructure. The scenario used a reduced flood depth of 1 

meter to simulate the improvements in the city. The results show that a reduced flood depth 

increases the reopening probabilities. The effect of this change is observable from October 

2005 until September 2006. The areas that benefit most from a reduced flood depth would be 

the Central Business District, Tulane Gravier, and Mid City. The benefit was lower for 

Treme/Lafitte, Bayou St. John, Fairgrounds, and part of the Seventh Ward. After June 2006 

the scenario with reduced flood depth became more similar to the scenario in which no 

conditions were changed. 

In Scenario 3 we evaluated the effect of an aid strategy that would make certain 

businesses totally resilient to the flood. This increase in resilience was implemented in the 
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model by making their status to “open” immediately after the disaster. The purpose of this 

simulation was to observe the spatial effect that opened businesses had on their neighbors. For 

this scenario we selected two areas in the study area in which we randomly selected a number 

of businesses that would benefit from the “increase resilience policy”. In the first selected 

area, the policy had a positive impact in the period between October and December 2005. 

After this period the effect tends to stabilize until June 2006, when the impact of the 

artificially reopened businesses began to decrease. In the second site the increase of reopened 

businesses had no impact. The results suggest that the effect of making more business to open 

was compromised by the business density and the socio-economic conditions of the area. 

The agent-based model allows the evaluation of the business reopening process using 

simulating conditions different from reality. It also allows the study of the spatial effect 

resulting from changing the values of any relevant variable at any specific location. In 

Scenario 3 we increased the resilience of a certain group of businesses to the disaster. In a 

similar fashion it is possible to evaluate the effect of socio-economic changes in the 

characteristics of the resident population in specific parts of the study area. The microscopic 

nature of this type of models makes them extremely attractive for simulation in urban systems 

with environments composed by heterogeneous components, specially nowadays when 

detailed information is becoming more available. 

6.2 Contributions 

This research contributes to the fields of dynamic spatial modeling and disaster and 

vulnerability science. This research is innovative in four aspects. 

1) Although there is some research where an agent-based approach has been used to 

study of post-disaster recovery processes (Oh et al. 2006), the simulation of the business 
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reopening process using businesses as agents is novel. To our best knowledge there is no 

previous research on simulating the business recovery process using agents to represent 

businesses in an agent-based simulation model. The model architecture allows researchers to 

represent with high detail very heterogeneous populations such as the business community in 

a city. 

2) This research is also innovative in the use of real data for the calibration and 

validation procedures. The validation and calibration process make this model reliable. 

Although its use in other applications would require additional calibration, the simulation 

model as an architecture can be easily adapted to other spatial locations and disasters of 

different nature.  

3) This research considers the spatial effect of the decisions of neighboring firms on a 

business reopening decision. The distance was considered as a weighting factor where closer 

firms have a stronger influence than farther neighbors. By considering the spatial dimension 

of the businesses decisions, the realism of this model increases. 

4) The model uses XML initialization files, which provide the model with great 

flexibility. The model can be easily modified to simulate diverse scenarios, allowing the 

researchers to modify specific variables without having to change the simulation model as a 

whole.  

6.3 Future Research 

This research demonstrates the feasibility of an agent-based approach for the 

simulation of the post-disaster business reopening process. This model has been calibrated 

and validated. However the model can be improved by including other variables. The results 

of the logit and probit regression analysis indicate that the resident return influences the 
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businesses reopening probabilities. After a disaster, population return is difficult to estimate, 

but future research should consider proxies such as mail delivery and school enrollment 

among others (Plyer et al. 2010). 

In our validation process we found that the model inaccuracies were located mostly in 

small areas. Although we suggested some reasons for which these areas might behave 

differently than the rest of the study area, further research is required. Future studies could 

consider other variables, such as the building type from which the business operates and the 

economic relationships between businesses. In addition, distance scales other than the 1-km 

criterion used in this study may need to be experimented to explore the scale effects on 

modeling business reopening. 

The calibration of this model was done with data from the third telephone survey 

carried out in October 2007. Previous telephone surveys (December 2005 and June 2006) did 

not gather information about the number of weeks the businesses were closed after the 

disaster. Future surveys in this field should obtain temporal information for a better statistical 

analysis.  
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