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Carbonate rocks are known to have complex and heterogeneous pore structures, which 

result from their biogenic origin and strong affinity for diagenetic processes that change 

their pore structure after burial. The combination of sheer endless variations of precursor 

biogenic material, depositional environments, and diagenetic effects results in rocks that 

are interesting to study but intricate to understand.  

Many schemes to categorize the diversity of carbonate rocks are in use today; most are 

based on the macropore structure and qualitative thin-section analysis. Many studies, 

however, acknowledge that micropores have a significant influence on the macroscopic 

petrophysical rock properties, which are essential to determine reservoir quality. 

Micropores are, by definition, smaller than the thickness of a thin-section (< 30 μm) and 

hence cannot be quantified with conventional methods. For their analysis, scanning 

electron microscopy (SEM) is the logical next step. The challenge is that mechanical 

polishing methods produce excessive surface roughness at micron scale; the resulting 

surfaces are not suited for quantification of micropores. Advances in broad-ion-beam (BIB) 

milling enable preparation of nanometer-precision 2D sections that are suited for 

quantitative analysis with the SEM. To accomplish the objective of accurate quantification 



 
 

of carbonate micropores, part one of this dissertation employs the BIB-SEM technique on 

a variety of carbonate rock samples and finds four major carbonate microporosity types: 

(1) small intercrystalline, (2) large inter- crystalline, (3) intercement, and (4) micromoldic. 

Each microporosity type shows a distinct capacity to conduct electrical charge, which 

largely controls the magnitude and range of cementation factors (m) in rocks with such 

microporosity type. The BIB-SEM method is also used on a dataset of mixed carbonate-

siliciclastic (mudrock) samples with high kerogen and pyrite content. Results show that the 

nanopore geometry here has little influence on cementation factors, and instead porosity is 

the main control on m in mudrocks.  

Cementation factors are crucial for estimates of oil-in-place and water saturation in a 

wireline application, and a slight change of (assumed) cementation factor can change the 

interpreter’s evaluation from dry hole to discovery. Therefore, accurate determination of 

cementation factors is a critical task in formation evaluation, similar to accurate estimates 

of permeability. To achieve this goal, this dissertation utilizes a new approach of using 

complex resistivity spectra (CRS) to assess the pore geometry and its resulting electrical 

and fluid flow properties. Specifically, frequency dispersion of complex resistivity in the 

kHz range is used as input for a new model to predict cementation factor and permeability 

in a wide variety of core plug samples. The underlying concept that relates CRS to flow 

properties is that both are related to pore geometry. CRS are linked to pore geometry by 

interfacial polarization effects at the fluid-rock boundary that control the phase and 

amplitude shift of an applied alternating current. Larger interfacial area results in higher 

phase shifts, but also indicates a more intricate pore structure that often results in lower 

permeability and higher cementation factors.  



 
 

The findings from this dissertation imply that (1) the CRS prediction method greatly 

improves estimates of cementation factors and permeability in carbonate, dolomite, and 

mixed siliciclastic rocks, (2) there are at least four distinct microporosity types in carbonate 

rocks, which have great impact on cementation factors and permeability, (3) nanopore 

geometry has a small impact on electrical flow properties in mudrocks where the main 

control on cementation factors is porosity, and (4) all sedimentary limestone and mixed 

carbonate-siliciclastic rocks have power law pore size distributions. 
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Chapter 1: Introduction 

Rationale 

Carbonate rocks host more than half of the world’s remaining conventional oil reserves, 

yet they often have highly complex pore structures frequently linked to abundant 

microporosity. This strongly influences their sonic, hydraulic, and electrical properties 

(Eberli et al., 2003; Weger et al., 2009; Skalinski & Kenter, 2015). Microporosity in 

particular has shown to have a strong effect on electrical resistivity, often significantly 

lowering cementation factors (Verwer et al, 2011).  On the other hand, predominantly 

microporous rocks typically are impermeable and hydrocarbon extraction requires flow 

stimulation methods like fracking. Ever rising energy demands, however, will give more 

and more significance to production from these microporous ‘tight oil’ and source rock 

unconventional plays in the future (Jackson & Smith, 2014). Formation evaluation in these 

tight intervals requires a profound understanding of how microporosity affects 

petrophysical properties in order to find producible zones in carbonates and ‘frackable 

sweet spots’ in unconventional reservoirs. For these reasons, the main goal of this 

dissertation is to accurately quantify and assess the influence of carbonate and mudrock 

microporosity for petrophysical applications.  

Previous Work  

Previous studies have documented the importance of macropore geometric parameters 

in influencing the electrical behavior of rocks (Figure 1.1; Verwer, 2011). Quantitative 

image parameters derived using Digital Image Analysis (DIA) on thin-sections suggest that 

pore network size (Dominant pore size - DOMsize) and complexity of the pore system 
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(Perimeter over Area - PoA) are the main controlling factors influencing cementation 

exponents. 

 

 

Figure 1.1: Plot from Verwer (2011), showing that small and complex pores (low 

DOMsize and high PoA) result in lower cementation factors. Data acquired with 

digital image analysis (DIA) on thin-sections (limited resolution: ~ 20 µm / pixel). 

 
However, these studies also suggest that microporosity creates favorable conditions for 

electrical flow. Verwer (2011) hypothesized that a high number of small pores create a 

high number of electrically conductive pathways with a large combined cross-sectional 

area that increases conductivity. This theory sparked the interest in microporosity and 

highlighted the need for a method to accurately quantify it. Previously used and newly 

implemented imaging methods are described below. 
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Digital Image Analysis (DIA)  

Conventional thin-section analysis is an important tool to study aspects of the 

macroporosity, but is not suitable to study microporosity. The resolution of standard thin-

section DIA as described in Weger (2006) is mainly limited by the thickness of the thin-

section itself; only pores with diameters exceeding the thickness of the thin-section (usually 

10-30 µm) can be observed. This limitation explicitly excludes microporosity, commonly 

defined as pores < 2 µm (Hulea & Nicholls, 2012) or simply as pores significantly smaller 

than those contributing to the rock’s permeability (Swanson, 1985). This fact makes thin-

section DIA insufficient to study microporosity in carbonates or the even more intricate 

mixed carbonate-siliciclastic rocks.  

Micro-Computed Tomography (μ-CT) 

Attempts to study microporosity with 3D μ-CT (computed tomography) methods have 

demonstrated that the method is also insufficient to accurately quantify microporosity. This 

is due to a lack of resolution, as the lower voxel size threshold usually is around 1 μm, but 

also due to lack of computational and storage capabilities of today’s cluster computing 

facilities (Norbisrath et al., 2011). The latter primarily affects the amount of samples that 

can be analyzed, which conflicts with the intention to find common pore geometric 

parameters in various carbonate rock types. 

Broad-Ion-Beam Scanning Electron Microscopy (BIB-SEM) 

Recent adaptation of broad-ion-beam milling (BIB) for flat surface preparation enables 

accurate 2D quantification of microporosity with scanning electron microscopy (SEM) 

(Desbois et al, 2011; Laurich et al., 2014). Micropore quantification with the SEM requires 

surfaces to be smooth at the scale of investigation, which conventional mechanical methods 



4 

cannot achieve as they leave excessive surface topography. The BIB-milling step achieves 

nanometer-precision flat surfaces (Figure 1.2).  

 

Figure 1.2. Comparison of surface roughness from mechanical polishing (top and left) 

and broad-ion-beam milling (right). At higher magnifications (bottom images), 

excessive surface roughness (high “topography”) becomes visible in mechanically 

polished surfaces (top and left). BIB-milling produces true 2D surfaces with clearly 

outlined pores, making micropores quantifiable (right). 

 
The pre-polished surface is milled down with an argon ion-beam to a roughness of ± 5 

nm. The resulting 2-dimensional surfaces are then imaged with the SEM. Large image 

rasters of several tens or hundreds of images are acquired with a modern Field Emission 

FE-SEM, stitched into mosaics, and then segmented into pore phase and solid phase. To 

reduce the SEM’s characteristic large depth of field and prevent occlusion of the smallest 

pores, low accelerating voltages (5kV) and short sputtering times (20 seconds Au/Pd 

coating) have to be implemented.  
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The BIB-SEM method was successfully applied to both a limestone and a mudrock 

dataset, and enabled the assessment of the influence of microporosity types on electrical 

behavior which improves the understanding of the relationship between resistivity and pore 

structure. This technique is not as computational intensive as 3D methods like micro-CT, 

yet several 2D sections are still able to give an accurate representation of the 3D pore 

system (Weger et al., 2009). 

Mudrock Nanoporosity 

Results from mudrock BIB-SEM analyses suggest that flow properties in mixed 

carbonate-siliciclastic rocks are governed by their absolute porosity. Higher porosity 

samples have higher cementation factors. Nanopore geometries generally show little 

influence on cementation exponents. On the other hand, kerogen (total organic carbon – 

TOC) and carbonate content (CO3) show correlation with cementation factors. Higher 

TOC samples show higher cementation factors. This can be explained by the tendency of 

kerogen to develop unconnected nano-vugs when maturity increases. Higher carbonate 

content, on the other hand, results in lower cementation factors in mudrocks. This, 

however, could also be explained by frequently found lower porosities in samples with 

higher CO3 content. High Pyrite content and elevated surface conductivity of the 

constituent clay minerals keeps cementation factors low in the mudrocks, especially at very 

low porosities as they retain some matrix conductivity. 

Carbonate Microporosity types 

Insights into the carbonate micropore structure with the BIB-SEM method suggests 

that microporosity types have a strong influence on electrical rock properties in carbonates 

(Norbisrath et al, 2015).  Results further demonstrate that microporosity in carbonates often 
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is of crystalline nature, which would explain their often low electrical resistivity. 

Crystalline pore networks tend to have higher coordination numbers as compared to non-

crystalline rocks, which results in better connectivity and hence also better conductivity 

(Kharusi, 2008). This would also explain why, at low porosities, carbonate rocks often 

show lower cementation factors than sandstones. Here, carbonates still retain their well-

connected crystalline micropore network whereas sandstones usually show increasingly 

cemented and obstructed inter-granular flow paths (Abousrafa, 2009). This leads to a 

decrease in coordination numbers and increase in resistivity in low porosity sandstones. 

Consequently, the term “cementation factor” is also more suitable for sandstones than for 

carbonate rocks. Some carbonate rock types, however, contain types of microporosity with 

poor flow characteristics. Carbonates affiliated with anorganic and bacterial precipitation 

often have un-connected fenestral micro- or nanopores (Chafetz, 2013), leading to 

extremely low coordination numbers and high resistivity in these carbonates. Nevertheless, 

microporosity can always only be partially responsible for the electric rock response in 

heterogeneous carbonate rocks that contain pores of all size classes. Therefore, micro- and 

macropore analyses have to be combined, employing results from different analytical 

methods at different scales.  

Multiscale Digital Image Analysis (MsDIA) 

MsDIA builds upon the conventional thin-section DIA established by Weger (2006), 

which is used to quantify macropore geometry. Representative areas which appear solid 

(non-porous) in thin-section are investigated with high-resolution BIB-SEM analysis 

(Figure 1.3). Resulting micropore-properties from the investigated subsections are 

assigned to the entire solid area of the associated thin-section. This simplification has to be 
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made as the BIB-SEM method is resource-intensive and the amount of sampled area is 

limited. To capture the multiscale heterogeneity of the carbonate pore space it is especially 

important to combine thin-section and BIB-section imagery, which enables quantification 

of pores that span 6 orders of magnitude in size, ranging from nanometer to millimeter 

scales. 

 

Figure 1.3: Schematic of image acquisition for Multiscale Digital Image Analysis 

(MsDIA). Combination of four optical light microscope images from mechanically 

polished thin-sections (DIA sections at micrometer resolution) and several tens or 

hundreds of scanning electron microscopy images from broad-ion-beam polished 

surfaces (BIB-SEM mosaics at nanometer resolution).  

 
Electrical Resistivity 

The main focus of this dissertation are electrical rock properties and their relation to 

the pore geometry. Electrical behavior of rocks is an integral tool during formation 

evaluation from wireline logs, as it is commonly utilized to estimate flow and storage 

properties along with water saturations using Archie’s equations. Electrical resistivity (ρ) 
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is an intrinsic rock property that specifies how strongly the rock opposes the flow of electric 

current. For a uniform specimen like a core plug with parallel end sides, resistivity can be 

defined as: 

𝜌𝜌 = 𝑅𝑅
𝐴𝐴
𝑙𝑙

 Eq. 1.1 

With: 
R = Resistance (measured in Ω) 
A = Cross-sectional area of plug end 
l = Length of plug 

 
Mode of Conduction 

Carbonate minerals themselves, e.g. calcite, aragonite, dolomite, and also anhydrite, 

are non-conductive. The normal mode of conduction is electrolytic conductivity, as the 

pore spaces of natural carbonate rock are more or less filled with saline water in the 

subsurface (Verwer et al., 2011). Therefore, the conductivity of carbonate rocks is highly 

dependent on the geometry and connectivity of the brine-filled pore space. In contrast, 

mudrocks, i.e. mixed carbonate-siliciclastic rocks are often rich in organic material (OM), 

pyrite, and clay minerals (Lasswell, 2006; Denicol & Jing, 1998). Here, the solid phase of 

the rock can significantly contribute to conductivity. This can, on the one hand, exacerbate 

estimates of their water saturation but, on the other hand, enable the use of dielectric logs 

for estimates of the constituents of the solid phase (Seleznev et al., 2011). 

Archie’s Equations and Cementation Factor m 

Archie’s empirical formula relates the porosity of a rock to its electrical response. 

Archie realized that in order to calculate the amount of hydrocarbons in a formation from 

its resistivity, it is first necessary to recognize the formation resistivity when all pores are 

filled with connate water (Sw = 100%). The empirically developed relationship between 
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porosity, electrical resistivity, and the brine saturation of the pore structure is the 

foundation for modern well-log interpretation and calculation of water and hydrocarbon 

saturations:  

𝐹𝐹𝐹𝐹 =  
𝑅𝑅𝑓𝑓
𝑅𝑅𝑤𝑤

=  𝛷𝛷−𝑚𝑚 Eq. 1.2 

With: 
FF = Formation factor 
Rf = Resistivity of formation at 100% water saturation (Sw) 
Rw = Resistivity of formation water 
Φ = Porosity 
m = Cementation factor 

 
The cementation exponent m hereby is the slope of the log-log plot of formation factor 

vs. porosity and reflects the influence of pore geometry on resistivity. In siliciclastic 

reservoirs, calculations of water and oil saturation with Archie’s (1942) equation can be 

reliably performed from porosity and resistivity, as cementation and saturation exponents 

can be assumed to be around m =  n = 2.0 (or m = 1.6 in clean sandstones). Such rocks are 

referred to as “Archie rocks”. In carbonates, on the other hand, relations between resistivity 

and pore structure are complicated due to heterogeneity and complex pore structures with 

abundant microporosity. Hence, these exponents vary drastically in carbonate rocks.  

Calculations of Water Saturations 

Cementation exponents varying between m = 1.0 – 5.5 are often observed in carbonate 

rocks. This variation drastically deviates from the commonly used value of around m = 2 

(Verwer et al., 2011; Norbisrath et al., 2015). These fluctuations impair predictions of 

permeability and water saturations from well logs in carbonates when using Archie’s 

equation:  
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𝑆𝑆𝑤𝑤 = �
𝑎𝑎
𝛷𝛷𝑚𝑚 ×

𝑅𝑅𝑤𝑤
𝑅𝑅𝑡𝑡
�

(1𝑛𝑛)

 Eq. 1.3 

With: 
a = Tortuosity factor (usually = 1) 
Φ = Porosity 
m = Cementation factor (varies in carbonates) 
n = Saturation exponent (usually = 2) 
Rw = Resistivity of formation fluid 
Rt = Observed bulk resistivity of formation 

 
It can be argued that rocks with similar pore structures will have a similar cementation 

factors; hence the type of their porosity can be estimated from their resistivity. High values 

of m are usually associated with vuggy porosity, and low m-values with microporosity. 

However, m cannot directly be measured down-hole yet. Thus, if an interval is not 

identified as being vuggy or microporous, it will lead to underestimation of water saturation 

in vuggy sections and overestimation of water saturation in microporous sections (Table 

1.1). This can result in production of water from seemingly oil-bearing intervals, or failure 

to recognize prolific hydrocarbon intervals in microporous formations. 

 
Phi (frac) Rt [Ωm] Rw [Ωm] n m Sw Rock type 

0.15 400 1.3 2 1.5 24% Microporous 
0.15 400 1.3 2 2 38% “Archie”-type 
0.15 400 1.3 2 3 98% Vuggy 

 
Table 1.1: Changes in calculated water saturations [Sw] for varying cementation 

factors m. Sw values calculated according to Equation 1.3. Using a standard 

cementation factor of m = 2 in a vuggy interval makes it appear to be  62% charged 

with hydrocarbons  (1-Sw), although in reality it is 98% water saturated.   
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Furthermore, permeability is similarly low in both vuggy and microporous intervals, 

yet they have opposing cementation factors. This leads to ambiguity in permeability 

predictions from resistivity logs, but can possibly be overcome by combination with 

velocity deviation logs (Anselmetti and Eberli, 1998). In theory, fast rocks with low 

cementation factors (no vugs) and slow rocks with high cementation factors (no 

microporosity) should have high permeability. Thus, accurate estimates of cementation 

exponents could also provide a quantitative measure to identify porosity that does not 

contribute to fluid flow (vugs and micropores) and significantly improve permeability 

predictions.  

Complex Electrical Resistivity 

Cementation factors are calculated from the amplitude change between induced and 

measured absolute resistivity values. However, electrical resistivity in a brine-saturated 

porous medium is a complex entity, as dielectric effects of the pore fluid and the fluid-rock 

interface cause phase shifts between induced and measured signal. The phase shift is the 

imaginary part of complex resistivity, and the change in amplitude is the real part. These 

can be referred to in terms of complex impedance Z, where R is the resistance (real part) 

and iX is the reactance (imaginary part) (Knight and Nur, 1987): 

 
Z = R + iX Eq. 1.4 

 
All resistivity measurements for this dissertation are performed in a true 4-electrode 

setup in log sweeps from 0.1 – 100,000 Hz on fully 35 ppt NaCl brine saturated core plugs.  

This allows not only for calculations of cementation factors from resistivity attenuation at 

720 Hz, but also for analysis of the dispersive behavior of complex resistivity at different 



12 

frequencies, which can be attributed to pore structural properties of the rock. Various 

authors have found correlations between the low-frequency phase shifts of complex 

resistivity and permeability in siliciclastic rocks (Weller & Börner, 1996; Denicol & Jing, 

1998; Cerepi, 2004; Tong & Tao, 2008). More recently there have been major advances in 

the use of high-frequency dielectric tools for formation evaluation (Seleznev, 2005; Weller 

et al., 2010; Zisser et al., 2010; Wang & Poppit, 2013). Above reasons gave incentive to 

study low-frequency dielectric rock properties and ultimately lead to the second major goal 

of this dissertation, to utilize complex resistivity spectra (CRS) for estimates of 

petrophysical rock properties on core plugs.  

Complex Resistivity Spectra (CRS) 

Analyses of kHz-range complex resistivity spectra (CRS) help to illuminate the 

interrelation of dielectric dispersion, specific surface area, and other pore geometrical and 

petrophysical properties. The fundamental idea is that low-frequency dielectric dispersion 

is related to interfacial polarization effects that depend on the amount of specific surface 

area of the rock, which is a pore-structure characteristic known to also influence 

permeability and cementation factors. Consequently, one can use CRS measurements to 

estimate permeability and cementation factors. This hypothesis is tested in this dissertation 

by quantification of the dielectric dispersion in the 0.1 – 100,000 Hz range as input for a 

model to predict several rock properties. Results show that CRS can be used to accurately 

predict permeability and cementation factors in both carbonates and mudrocks.  

The ultimate goal is to establish fundamental petrophysical relationships that could 

motivate the development of a CRS wireline tool by a wireline company. Such CRS tool 
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could be used to almost independently estimate permeability and cementation factors 

down-hole, which would be of high commercial interest in heterogeneous carbonates. 

Working Hypotheses 

This dissertation employs three main hypotheses: 

1) Carbonate microporosity is essential for electrical flow properties. 

2) Low-frequency dielectric dispersion can be used to estimate reservoir properties.  

3) Carbonate pore size distributions follow a fractal pattern. 

 
These hypotheses are tested in four separate yet adjoined studies that each address a 

certain dataset or topic but also partially complement each other when they are applied to 

a different rock type. The specific goals and approaches to reach them are listed below 

for each chapter:  

 
Chapter 2 

Goals:  

• Find a method to quantify microporosity. 

• Evaluate carbonate micropore geometry in terms of electrical flow properties. 

• Assess pore size distributions and analyze for fractal patterns. 

Approach: 

• Measure cementation exponents on a variety of carbonate core plugs.  

• Reach out to other institutions that have BIB-SEM capabilities for a collaboration. 

• Utilize broad-ion-beam milling (BIB) to achieve nanometer-precision flat surfaces 

and acquire SEM mosaics that are large enough to be representative for micropore 

structure at high resolution. 
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• Combine BIB-SEM method with thin-section DIA for Multiscale Digital Image 

Analysis (MsDIA). 

• Find pore geometric parameters that control electrical flow. 

• Qualitatively analyze the pore structure and group into micropore types according 

to flow properties. 

• Use double-logarithmic plots with increasing bin sizes to find natural fractal 

patterns in pore size distributions. 

• Use MICP methods to assess the pore throats and evaluate their importance for 

electrical and fluid flow properties. 

 
Chapter 3 

Goals:  

• Test method from Tong & Tao (2008) that utilizes CRS to estimate permeability 

on a heterogeneous dolomite dataset. 

• Test influence of dolomite crystal size on electrical properties. 

• Assess influence of pressure (overburden) on cementation factors. 

Approach: 

• Gather data from Shen (2008) and measure cementation exponents on recoverable 

plugs. 

• Reach out to NER to get code for extraction of raw measurement data in order to 

analyze CRS data. 

• Measure and plot CRS curves to find controls of CRS on petrophysical properties 

and vice versa.  
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• Find frequency range that correlates best with permeability. Quantify identified 

CRS frequency range by fitting curves in frequency range of interest.  

• Use CRS information as input for model to predict permeability and evaluate which 

parameters or aspects of the frequency dispersion show best correlation coefficients 

between input and predicted parameters (highest correlation coefficients). 

• Compare crystal size data to permeability and cementation factors. 

• Find trends for pressure dependency and hysteresis of cementation factors in 

dolomite rocks.  

• Use double-logarithmic plots with increasing bin sizes to find natural fractal 

patterns in pore size distributions. 

 
Chapter 4 

Goals:  

• Apply CRS method from chapter 3 on a heterogeneous carbonate dataset, in order 

to find fundamental relationships and universal parameters that can aid to predict 

permeability and cementation factors in carbonate reservoirs.  

• Evaluate the feasibility of a CRS wireline tool. 

• Test if fractal power-law behavior persists in all carbonate rock types. 

Approach: 

• Locate useable data (pore geometry from DIA, permeability, cementation factors) 

from previous studies. 

• Apply CRS method to each of 12 individual datasets. Find common frequency 

range that best describes flow properties (highest correlation coefficients).  
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• Use double-logarithmic plots with increasing bin sizes to find natural fractal 

patterns in pore size distributions. 

 
Chapter 5 

Goals:  

• Utilize BIB-SEM method from chapter 2 to quantify mudrock nanoporosity and 

assess influence on electrical properties.  

• Apply CRS method from chapter 3 on a mixed carbonate-siliciclastic dataset. 

• Test CRS method for predictions of mineralogy.  

• Qualitatively compare mudrock to carbonate nanoporosity. 

• Evaluate pressure dependency of cementation factors 

Approach: 

• Measure CRS on mudrock samples. 

• Acquire 10 by 5 SEM image mosaics at same magnification as in chapter 2 and 

quantify nanopore geometries.  

• Apply CRS method to mudrock dataset to predict cementation factors, but also 

evaluate if correlation to mineralogical parameters exists (TOC, CO3 content).  

• Plot and find trends for pressure dependency and hysteresis of cementation factors 

in mudrocks.  
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Chapter 2: Electrical and Fluid Flow Properties of Carbonate Microporosity Types 
from Multiscale Digital Image Analysis and Mercury Injection 
 
Summary 

Electrical and fluid flow properties of porous media are directly related to the 

morphology of pores and the connectivity of the pore network. Both are closely linked to 

the amount and type of intrinsic microporosity in carbonate rocks, which is not resolved 

by conventional techniques. Broad-ion-beam (BIB) milling produces high-quality true-

two-dimensional cross sections for scanning electron microscopy (SEM) and enables 

accurate quantification of carbonate microporosity for the first time. The combination of 

BIB-SEM mosaics with optical micrographs yields a multiscale digital image analysis 

(MsDIA) spanning six orders of magnitude. In this paper, the pore structures of 12 different 

carbonate rock samples from various rock types are quantified using MsDIA. Mercury 

injection capillary pressure measurements are used to assess pore-throat properties. The 

quantified pore- structure parameters are correlated with plug measurements of electrical 

resistivity and permeability. 

Results indicate that petrophysical properties are closely linked to the type of 

microporosity, which is distinctive for a certain rock type. Rock types with crystalline 

microporosity, such as mudstone and dolomite, generally show good connectivity, in which 

the size of the pore-network determines if the rock favors either hydraulic or electric flow. 

Rock types with intercement or micromoldic microporosity, such as bindstone and 

travertine, show variations in connectivity due to layering and moldic micro- pores of 

biological origin. Furthermore, pore-size distributions (PSD) follow a power law in all 

samples, despite their depositional and diagenetic differences. The slope of the PSD 
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correlates with the electric properties, in which samples with a steeper slope show lower 

cementation factors. The linearity of the power law distribution enables predictions of pore 

populations outside the investigated length scales. 

Introductory Remarks 

A Carbonate rocks often have very heterogeneous pore structures with large variations 

in pore size and abundant microporosity (Anselmetti et al., 1998; Arns et al., 2005; Sok et 

al., 2010; Curtis et al., 2012). Describing this heterogeneity requires a multiscale approach, 

and imaging the microporosity requires a high- resolution technique. This is particularly 

important when trying to understand electrical flow properties because they are heavily 

influenced by increased pore density and connectivity of microporous regions (Sen et al., 

1997; Cerepi et al., 2002; Wang et al., 2005; Verwer et al., 2011; Garing et al., 2014). 

Broad-ion-beam (BIB) milling coupled with scanning electron microscope (SEM) imaging 

has recently been introduced to determine pore structures of manufactured materials (Smith 

et al., 2009) and fine-grained rock samples (Desbois et al., 2009). The BIB-SEM technique 

has since been applied to shale and tight sandstone reservoir rocks, where it has brought 

about major improvements in imaging of nanoporosity (Curtis et al., 2010; Ambrose, 2011; 

Desbois et al., 2011; Hemes et al., 2013; Klaver et al., 2012; Houben et al., 2013, 2014). 

The ion-milling technique is now used to investigate microporosity types and geometries 

in carbonate rocks, attempting to understand their controls on electrical flow properties. 

This paper takes a multiscale imaging approach, combining conventional thin-section 

microscopy with BIB-SEM image mosaic acquisition. The result is a pore-structural 

investigation from plug to nanopore scale (Figure 2.1). The high resolution of the BIB-

SEM method enables accurate quantification of the two- dimensional (2-D) micropore 
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structure (Desbois et al., 2011; Hemes et al., 2013; Klaver et al., 2012; Houben et al., 2013, 

2014).  

 

Figure 2.1: Zoom into the pore structure of stromatolitic ooid bindstone. Combination 
of (A) thin-section image and (B) scanning electron microscope mosaic acquired on 
broad-ion-beam polished surface illustrates the variability of pore structure and pore 
sizes at different magnifications. Box overlay shows segmented micropores in red. These 
serve, together with segmented macropores from blue-dyed thin sections, as input for 
multiscale digital image analysis. 

 
The goal of this study is to find and quantify the 2-D pore-geometric parameters that 

are most influential for the conduction of electrical charge in order to improve 

interpretations of resistivity logs in carbonates. Log interpretations and reservoir 

calculations are based on Archie’s (1952) empirical formula: 

F =  
Rf

Rw
=  Φ−m 

Eq. 2.1 

 
where F (formation factor) relates the ratio of resistivity of the formation (Rf) to the 

resistivity of the pore fluids (Rw) the porosity (Φ), and the exponent m. Archie (1952) 

postulated that the exponent m is related to the degree of consolidation or cementation of 

the rock. Calculations of water saturation work well in clean sandstones with simple pore 
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structures because their cementation exponent m is generally approximately 2. In 

carbonates, however, the cementation factor m is known to fluctuate due to the large variety 

of textures and pore sizes (e.g., Folk, 1959; Dunham, 1962) and pore types (e.g., Choquette 

and Pray, 1970; Lucia, 1995; Ahr et al., 2005; Lønøy, 2006). In particular, microporosity 

complicates correlations of resistivity to pore structure. On the one hand, brine-saturated 

micropores in an oil reservoir promote electrical flow but prevent effective fluid flow. This 

can lead to an overestimation of permeability. On the other hand, micropores often remain 

brine saturated after the formation has been charged with hydrocarbons. This can lead to 

an overestimation of water saturation, masking possible pay zones with easily producible 

hydrocarbons stored in the macropores (Sen et al., 1997). The focus of this study, therefore, 

lies on the analysis and quantification of the microporosity. Bulk methods such as nuclear 

magnetic resonance and mercury injection capillary pressure (MICP) can only indirectly 

quantify micropores. Direct three-dimensional (3-D) methods such as micro-CT or focused 

ion beam (FIB) SEM (FIB-SEM) lack either resolution or analyzed volume to be 

representative for the pore structure of heterogeneous carbonates. Recently, direct 2-D 

quantification of micro- and nanopores with the SEM was impeded by excessive surface 

roughness from conventional mechanical polishing methods (Anselmetti et al., 1998). The 

BIB cross sectioning now produces large, flat, damage-free surfaces, which are suited for 

quantification of nanometer-scale pores (Figure 2.2). 
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Figure 2.2: 
Stromatolitic 
ooid bindstone 
with segmented 
microporosity in 
red. Bladed, 
isopachous 
cements around 
ooid grains form 
well-connected 
intercement 
microporosity 

 

Data Set 

A total of 12 carbonate core plug samples are chosen from contrasting depositional and 

diagenetic environments to capture the range in microstructures of different carbonate rock 

types. The data set consists of the following rock types: oolitic bindstone (Holocene 

stromatolite, Bahamas), wackestone (Lower Cretaceous Quintuco Formation, Argentina), 

packstone (Carboniferous, Kazakhstan), travertine (Italy), tufa (United States lakes), reefal 

packstone (Pleistocene–Pliocene, Dominican Republic), and crystalline dolomite rocks 

(Mississippian Madison Formation, United States) (Table 2.1). Porosity ranges from 3% 

to 27% and permeability from 0.01 to 320 md. Cementation factors range from m = 1.6 to 

3.4. 
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Methods 

Porosity, Permeability Measurements 

Porosity was measured with a Micromeritics AccuPyc 1330 Helium pycnometer using 

Boyle’s law, that is by determining the difference between caliper volume of the plug and 

its grain volume. Standard gas permeability measurements were per- formed by Terratek. 

Electrical Resistivity 

Laboratory electrical resistivity measurements on brine-saturated core plugs are 

performed in a four-electrode setup. Full brine saturation is achieved by submerging the 

core plugs in 35 g/L (1.2 oz/gal) NaCl brine (35,000 ppm NaCl; conductivity: 53–56 mS) 

and repeatedly pulling vacuum over the submerged plugs during a 24–48-hr period. 

Saturated samples are fit into rubber jacketing and mounted between the core holders, 

which house the electrodes and pore-pressure system. The voltage contacts on the core 

holders are recessed and isolated with polyester felt from the conductive porous silver 

membrane filters that cover the current electrodes. This setup avoids erroneous contact 

resistivity and minimizes electrode impedance, which can cause measurement bias. The 

pore-pressure lines are made of nonconductive plastic to electrically isolate the 

measurement setup from the rest of the apparatus. The complete core holder setup with the 

plug sample is placed into the oil-filled pressure vessel and locked into place with 

cloverleaf closures. At varying pressure steps, measurements of complex resistivity are 

taken in a log sweep from 0.1 to 100,000 Hz. Reported cementation factors are calculated 

from temperature-corrected resistivity amplitude values at 10 MPa (1450 psi) effective 

pressure for a frequency of 720 Hz (Arps, 1953). 
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Broad-Ion-Beam Milling with Subsequent Scanning Electron Microscopy Image 

Mosaic Acquisition 

The BIB-milling step is essential for the quantification of nanometer-scale pores 

because accurate pore segmentation requires surfaces to be smooth at the scale of 

investigation. Conventional mechanical polishing induces surface damage, leaves behind 

milling residue, and generally produces surfaces with high topography when viewed at 

high magnifications, rendering porosity segmentation impossible. BIB-milling removes 

this surface damage and sections the rock sample in a true 2-D plane with typical remaining 

topography in the range of ±5 nm (Klaver et al., 2012). In our samples, artifacts induced 

by BIB-milling are generally minor. Slight curtaining artifacts are induced by the inside 

walls of larger pores being more exposed to the ion beam, causing it to mill deeper into the 

surface. The curtaining grooves are identified and filtered out during segmentation. Edge 

and low-angle topography effects require slight manual cleaning of the BIB-SEM mosaics 

(Hemes et al., 2013). Redeposition of milled material inside pores is not observed in our 

samples. 

The BIB milling with argon ions has the advantage of producing smoother and much 

larger surfaces than FIB techniques, where high-energy gallium ions are used. The FIB 

volume dimensions are typically only about 10 × 10 × 10 μm3. The comparatively large 

BIB surfaces (up to 2 mm2) are more suitable for the quantitative study of microporosity 

because, in combination with thin-section imagery, the investigated areas are large enough 

to be representative for petrophysical core plug measurements. Recent improvements in 

milling technique might even enable polishing of entire 1 inch plug surfaces, which would 

further improve the possibilities for multiscale image analyses. 
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The areas for investigation with the new technique are selected from 3200-dpi flatbed 

scans of core-plug surfaces. To focus on microporosity and avoid overlap in pore sizes, 

areas with the least amount of visible macropores are chosen. Subsamples   (0.5 × 0.5 × 

0.5 mm3) containing the target areas are cut dry with a hand-held saw blade. The 

subsamples are mounted on stubs and prepolished to approximately ±10 μm roughness 

using silicon carbide paper. The samples are then placed in the BIB; milling time is 

approximately 7.5 hours at 6 kV and 150 μA. The cross sections are prepared in the same 

plane as the accompanying optical thin section. Polished surfaces are then sputtered with 

gold to prevent surface charging during SEM imaging. The sample surface structure is 

imaged with the secondary electron detector (SE2). The secondary electrons have a shallow 

interaction volume well suited to focus on the 2-D quantification of the pores, especially 

at low accelerating voltages. Automated acquisition of image grids containing hundreds of 

images streamlines investigation of large areas. Grids are acquired at 5000× and 15,000× 

magnifications with 20% – 30% overlap. Stitching of the image grids into coherent mosaics 

is done with a bicubic interpolation algorithm, preserving the pixel resolution (Klaver et 

al., 2012) using Autopano soft- ware. Pores are detected based on pixel gray-scale values 

in secondary electron images. The porosity is segmented with a combination of 

thresholding and sobel-edge-detection algorithms (Houben et al., 2013). Thresholds are 

chosen on a subset and then applied to the entire mosaic. The shallow depth of field of the 

secondary electron images combined with the nanometer-precision flat surfaces allows for 

very accurate differentiation between pore and solid (Figure 2.2). The resulting binarized 

mosaics are manually inspected and cleaned from remaining artifacts with standard image 

processing software (Hemes et al., 2013). 
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Multiscale Digital Image Analysis 

Multiscale digital image analysis (MsDIA) combines thin-section image analysis with 

the analysis of BIB-SEM mosaics to extract geometric parameters of pores across six 

orders of magnitude. Pore sizes identified from thin-section images range from plug-scale 

(several mm) down to the thickness of the thin section (approximately 30 μm). Pores in 

BIB-sections range from approximately 200 μm down to the practical resolution (Klaver 

et al., 2012) of 19.5 nm at 30,000× magnification. The overlap from 200 to 30 μm ensures 

a continuous analysis of the pore space, with the thin-section analysis covering the 

macropores and the BIB-section analysis covering the micropores. 

The outcome of the MsDIA is quantified pore- geometric parameters that can be related 

to the measured petrophysical flow properties of the sample in order to identify controlling 

factors. The main purpose is to advance the understanding of how the internal geometry of 

microporosity affects electrical resistivity and permeability. Correlation of petrophysical 

with quantified pore-space parameters from digital image analysis (DIA) has the advantage 

of not relying on qualitative interpretations of pore types or texture; hence, it is well suited 

to compare larger data sets or to define attributes of certain rock or pore types. 

The macropore structure is analyzed using DIA on blue epoxy-impregnated thin-

sections imaged with optical light microscopes using the methodology of Weger et al. 

(2009), where four or more thin-section images are stitched, segmented, and quantified 

with ImageJ in an automated MATLAB environment. The micropore structure assessed 

with the binarized BIB-SEM mosaics is also parameterized with ImageJ. The amount of 

micropores observed at the high resolution is then scaled up to thin-section dimensions by 

multiplying the micropores with a scaling factor depending on the size ratio of the BIB-
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SEM mosaic compared to the thin section. This can be seen as “populating” solid areas on 

thin sections with pores identified on BIB-SEM mosaics at a higher resolution. The scaling 

factors are calculated for each sample as follows: 

Scaling factor =  
AreaTS(1 − PorosityTS)

AreaBIB
 

Eq. 2.2 

 
where AreaTS is the analyzed thin-section area, PorosityTS is the area identified as porosity 

on the thin section, and AreaBIB is the area analyzed with BIB-SEM. This generalization 

has to be made due to constraints on the amount of area that can be analyzed with BIB-

SEM. However, care has been taken to select areas for BIB-SEM analysis that are 

representative of the heterogeneous microstructure, both from flatbed scans and 

subsequently SEM overview images. 

Dominant Pore Size 

Dominant pore size (DOMsize) is the upper boundary of pore sizes making up 50% of 

the porosity on a thin-section (Weger et al., 2009). The parameter describes the size of the 

pores of the sample with a single characteristic value and gives a good indication of the 

effective size of a pore network. To calculate DOMsize, pores from thin-section and BIB- 

section analysis are combined in a cumulative curve by sequential summation of pore areas 

of increasing size. The pore size on the cumulative curve at 50% is the DOMsize. Pore 

sizes are measured in area (amount of pixels) and converted to size-equivalent diameter 

(deq). Equivalent diameter is the diameter of a circle with the same areal extent as the 

identified pore: 

deq  = 2�
A
π

 
Eq. 2.3 
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Perimeter over Area 

Perimeter over area (PoA) is the ratio of the sum of the perimeter of all pores identified 

on a cross section and the sum of the area of these pores. It can be understood as a 2-D 

equivalent to specific surface that is defined as the ratio between pore volume and pore 

surface (Weger et al., 2009). To avoid bias in this shape parameter analysis, pores close in 

size to the limits of resolution are omitted (Weger, 2006). Hence, only pores that are 

composed of at least 100 pixels are incorporated. The PoA is calculated separately for each 

of the three acquired mosaics (TS = thin section; BIB5K and BIB15K = BIB-SEM mosaics 

at 5000× and 15,000× magnification, respectively) and then averaged for each plug: 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
1
3
�
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇
∑𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑇𝑇𝑇𝑇

+
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵5𝐾𝐾
∑𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵5𝐾𝐾

+
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵15𝐾𝐾
∑𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵15𝐾𝐾

� 
Eq. 2.4 

 
The parameter describes the complexity of the pore structure. It is independent of the 

total amount of porosity but dependent on the size of the pores: A smaller pore will have a 

higher PoA value than a larger pore with the same shape. 

Normalized Pore Density 

Normalized pore density (Pdnorm) is the combined amount of pores per area, which 

are identified at different magnifications (TS, BIB5K, and BIB15K), normalized by the 

total analyzed area (AreaTS) and plug porosity (Phi): 

Pdnorm =
PoresTS + PoresBIB5K + PoresBIB15K

AreaTS(Phi [%])
 Eq. 2.5 

 
Duplicate results from overlapping pore size classes from the different image 

magnifications are omitted by using pore size cutoffs selected based on the most reliable 

detection method for that size class. The PoresTS include only pores larger than 100 μm, 
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PoresBIB5K all pores between 100 and 1 μm, and PoresBIB15K the smallest pores below 

1 μm. 

Pore Body-to-Throat Ratio 

The pore body-to-throat ratio (BTR) is estimated by relating pore-body sizes extracted 

from the 2-D imagery to pore-throat sizes from MICP measurements. The BTR (sometimes 

referred to as aspect ratio) is interpreted to correlate well with the effectiveness of electrical 

flow in porous media (Jackson et al., 1993). It is the ratio of the DOMsize and critical pore-

throat size (Dc): 

BTR =
DOMsize

Dc
 

Eq. 2.6 

A large BTR value indicates that pore throats are small compared to the pore body, and 

a small BTR value implies that the throats are comparatively large. 

Pore-Size Distribution and Fractal Dimension D 

Pore-size distributions (PSDs) are analyzed by distributing all pores identified on the 

individual mosaics into nonlinear bins (always doubling bin width) according to their pore 

size (pore area). Pore- size frequencies are then normalized by total area (area of thin-

section image) and bin width (pore-size range), and results plotted against bin centers (pore 

size) on a double logarithmic scale (Hemes et al., 2013; Klaver et al., 2012; Houben et al., 

2013, 2014). This process is done for each of the three acquired mosaics of a sample (TS, 

BIB5K, and BIB15K). The smallest bin centers (pore sizes) of the individual BIB-SEM 

mosaics are omitted because they are close to the resolution limit where pore segmentation 

becomes problematic due to edge and low-angle topography effects resulting in undetected 

pores (Hemes et al., 2013). This means that pores below 256 and 64 nm equivalent side 

length are omitted in the 5000× and 15,000× mosaics, respectively.  
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Least-squares linear regression analysis is used to quantify the slope (power law 

exponent) of the PSDs of all recognized pores: 

𝐷𝐷 = −
𝑙𝑙𝑃𝑃𝑙𝑙 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃 𝑓𝑓𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓

 𝑇𝑇𝑃𝑃𝑃𝑃𝐴𝐴𝑙𝑙 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴 ∗  𝐵𝐵𝑃𝑃𝑓𝑓 𝑤𝑤𝑃𝑃𝑤𝑤𝑃𝑃ℎ�

𝑙𝑙𝑃𝑃𝑙𝑙 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃)
 

Eq. 2.7 

 
The absolute value or inverse of the slopes (D = − slope) thereby represents the fractal 

dimension D of the pore space (Mandelbrot, 1967). 

Mercury Injection Capillary Pressure: Critical Pore-Throat Diameter 

Mercury injection porosimetry is used to assess the pore network and pore throats. A 

variety of methods can be used to represent the pore-throat size distribution in a sample 

(Nelson, 2009). The Dc describes the pore throats and characterizes the connected pore 

space of a bulk sample with a single parameter. The Dc is the throat diameter at critical 

pressure when mercury first spans the sample and percolation begins (Katz and Thompson, 

1987). Pressures up to 413 MPa (60,000 psi) are applied to force mercury into pore throats 

down to 3-nm diameter. The pressure (P) is converted to pore-throat diameter (D) with 

Washburn’s equation (Washburn, 1921), assuming a tube model for the pore structure: 

D =  −4γcos
θ
P

 
Eq. 2.8 

 
where the contact angle θ is 130° and the surface tension γ = 485 dynes∕cm. Dc is calculated 

from the injection pressure at the inflection point in the rapidly rising range of the 

cumulative intrusion curve (Swanson, 1985; Urai et al., 2008). The inflection point is 

derived from a third-order polynomial model fitted to the curve. 
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Results 

BIB-SEM Mosaics 

From each of the 12 samples, two high-resolution BIB-SEM image mosaics are 

acquired; one overview at 5000× magnification and a zoom into the overview area at 

15,000× magnification (58.6 and 19.5 nm pixel side length, respectively). The mosaics 

each consist of 250 to 550 SEM images with up to 0.23 gigapixels in total. The high-

resolution mosaics reveal the diverse submicron pore structures of the different carbonate 

rock types (Figure 2.3), which can be classified into distinctive types of microporosity 

according to their geometry and flow properties. 

Types of Microporosity 

We distinguish four types of microporosity in our samples: (1) small intercrystalline, 

(2) large inter- crystalline, (3) intercement, and (4) micromoldic. Type I microporosity 

occurs in wackestones, pack- stones, and tufa; type II in dolomites; type III in the ooid 

bindstone; and type IV in travertines (Table 2.1). The flow properties of the rock are 

strongly influenced by the type of microporosity. For example, all rocks with type I 

microporosity show low permeabilities and low to intermediate cementation factors. 

Samples with type II micro- porosity have intermediate cementation factors and high 

permeability. Samples with type III or IV microporosity have high cementation factors and 

high permeability (Table 2.1). 
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Table 2.1: Qualitative and Quantitative Petrophysical and Pore-Structural Parameters 
of 12 Analyzed Carbonate Plug Samples, in Order of Ascending Cementation Factor 
m. *Pdnorm = normalized pore density; DOMsize = dominant pore size; Dc = critical 
pore-throat diameter; BTR = body-to-throat ratio; PoA = perimeter over area; D = 
slope of pore power-law pore size distribution. 

 
Microstructure in the Various Samples 

The Lower Cretaceous wackestone (sample 49b) is almost entirely composed of a 

matrix of homogeneous crystalline microspar, which is either a diagenetic product of 

recrystallized micrite (Loucks et al., 2013; Lucia and Loucks, 2013) or a primary cement 

(Melim et al., 2002). The microspar crystals measure between 1 and 4 μm in diameter and 

partially show edge roundness and anhedral crystal faces. The wackestone contains only a 

few dispersed shell fragments with intraclastic or vuggy pores where they are completely 

dissolved. The small microspar crystals form a very well-connected pore network with low 

tortuosity and high pore density (type I microporosity). 

The packstones (samples 523, 431, 1221, BC2V49, 1385) have similar well-connected 

and low-tortuous matrix microporosity as the wacke- stones (type I small intercrystalline 

microporosity). Microspar crystals are slightly larger at 2–8 μm in diameter. They contain 

more grains than the wacke- stones but the grains are heavily micritized and often entirely 

recrystallized to microspar. In the samples with low porosity, the microspar fabric often is 
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not visible due to extremely tight packing. These tight packstones also show 

microfractures. The dolomites (WR75.9, WR56.15) are characterized by a wide and 

angular intercrystalline micro- pore network (type II large intercrystalline microporosity). 

It is similar in structure to the type I microporosity, but at a larger scale, as the dolomite 

rhombs are ten to hundredfold larger than the microspar crystals. The dolomite rhombs 

measure between 10 and 150 μm across, which also result in larger pores and lower pore 

densities, increasing tortuosity. 

 
Figure 2.3: Overviews of the broad ion beam (BIB) cross-sectioned areas in four 
carbonate rock types with distinct types of microporosity, showing their different 
macropore structures. Areas of BIB-SEM (scanning electron microscopy) mosaics for 
micropore investigations (5000× and 15,000× magnification) shown as overlays. (A) 
Wackestone: dense matrix with few visible pores. (B) Dolomite: large and angular pores. 
(C) Ooid Bindstone: round and dense ooids bound by microporous cements. (D) 
Travertine: large and vuggy pores, partially following a horizontal trend. Curtaining 
artifacts from ion-milling below larger pores (radial, near-vertical surface grooves) 
visible in the dolomite sample (B). Arrows indicating zoom areas shown in Figure 2.4. 
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The ooid bindstone (sample 22) has a well- connected micropore network between 

isopachous, bladed, and fibrous cement around the ooid grains (type III intercement 

microporosity). This micropore network is well connected, but tortuosity is increased by 

the dense ooid grains blocking direct flow path- ways and relatively low pore density. The 

ooids contain only a few patches of nanoporosity, which appear largely unconnected. The 

lack of microporosity inside the ooid grains is somewhat surprising but is due to the young 

Holocene age, which means that the ooids have never been exposed to freshwater and thus 

only experienced early marine diagenesis. 

 

Figure 2.4: Four types of microporosity at 15,000× magnification from broad-ion-
beam milling coupled with scanning electron micro- scope (BIB-SEM) mosaics, 
showing their distinct microstructures at nanometer scales. (A) Type I small 
intercrystalline (wackestone): well-connected intercrystalline micropore network 
between microspar crystals (<1 μm). (B) Type II large intercrystalline (dolomite): 
comparatively large, angular micropores, forming well-connected intercrystalline pore 
network between dolomite rhombs (∼100 μm) at scales above this magnification. (C) 
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Type III intercement (ooid bindstone): well-connected micropore network between 
bladed to fibrous calcite cements around dense ooid grains. (D) Type IV micromoldic 
(travertine): unconnected and scattered fenestral micropores and nanopores in dense 
matrix. Images annotated with sample cementation factors, pore density, dominant pore 
size, and critical pore- throat diameter. Note near-vertical curtaining artifacts below 
larger pores. m = sample cementation factor; DOMsize = dominant pore size; Dc = 
critical pore-throat diameter. 

 
The travertines (samples ST12B and ST36A) have mostly scattered and moldic 

micropores (type IV microporosity). In these travertines, dense areas without visible 

porosity, even at the highest magnification, surround and isolate porous patches. The pores 

within the porous patches also are unconnected in 2-D. Most pores are fenestral-shaped 

microvugs, likely associated with the biological origin of the rock (Chafetz, 2013).  

The tufa (GCY1) is a meteogene travertine formed from ambient temperature lake 

water as opposed to the thermogene travertines (ST12B, ST36A) formed in hot springs. 

The micropore structure, however, is very different from the thermogene travertine. The 

tufa sample has a crystalline matrix microporosity that is similar to the pack- stones and 

wackestones (type I microporosity). It is partially dolomitized around the macropores, with 

type II microporosity between the larger dolomite rhombs. 

Multiscale Digital Image Analysis: Quantified Pore Geometric Parameters 

The output of the MsDIA consists of a range of statistical and geometrical parameters 

of pores ranging from around 20 nm up to 20 mm in size (Table 2.1). The most important 

parameters for this study are the DOMsize, PoA, Pdnorm, and characteristics of the PSD 

(fractal dimension D). 

The DOMsizes range from 0.8 to 90.6 μm in the samples. Samples with smaller 

DOMsize show lower electrical resistivity, but also lower permeability (Figure 2.5A). The 

travertines show the largest DOMsize in the data set but not the highest permeability 
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because they contain unconnected type IV micro- porosity of microbial origin. The 

dolomites and ooid bindstone with types II or III microporosity also have large DOMsizes, 

but a higher permeability due to better connectivity of their micropore network. Type I 

microporosities in the wackestone and packstone textures have the smallest DOMsize with 

good electrical flow properties but with negligible permeability. 

The PoA values range from 474.8 to 6036.3 mm−1. The values are generally high 

because the factor is size dependent, and MsDIA incorporates much smaller pores than 

conventional thin-section analysis (Weger et al., 2009). Intricate pore networks with high 

PoA are favorable for electrical flow, and simple pore networks are favorable for fluid flow 

(Figure 2.5B). The value of PoA is the lowest (simple pore structure) in the dolomites with 

type II micro- porosity, but also low in the ooid bindstone and travertine with types III and 

IV microporosity, respectively. The wackestone and packstone textures with small 

intercrystalline type I microporosity show the highest values for PoA. 
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Figure 2.5: Quantified pore structure parameters plotted against cementation factor, 
color-coded with permeability. Marker shape re- presents type of microporosity. 
Samples with many small and complex pores show lower cementation factors and lower 
permeability. (A) DOMsize = dominant pore size; (B) PoA = Perimeter over area; (C) 
Log of pore body to throat ratio; (D) Pore density normalized by porosity. Pores per 
square millimeter per percent porosity. 

 
Body-to-throat-ratios range from 0.5 to 1217. Large BTR values indicate small pore 

throats (Dc) compared to pore bodies (DOMsize). The BTRs show an inverse correlation 

with electrical resistivity. Samples with type I microporosity have high BTR values, low 

electrical resistivity, and low permeability (Table 2.1; Figure 2.5C). Samples with low BTR 

values like the dolomite and ooid bindstone rocks with types II and III microporosity have 

high permeability. The travertines with type IV micro- porosity can have very low and very 

high BTR values, but the sample with the low BTR has the high permeability. 

Normalized pore densities range from 1267 to 33; 905 pores∕mm2. The Pdnorm is the 

lowest in the dolomites with type II large intercrystalline microporosity and can be very 
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high in the travertine with their micromoldic type IV microporosity (Figure 2.5D). 

Generally, samples with many small and complex pores have lower values for cementation 

factors, i.e., good conductivity for a given porosity. Conversely, these are less favorable 

for fluid flow and show lower values for permeability. 

Power Law Pore-Size Distributions and Fractal Dimension D 

The multiscale pore-structure investigation reveals a power law behavior in the PSD in 

all samples across the entire range of investigation (six orders of magnitude) (Figure 2.6). 

The linear trend on a double- logarithmic plot is the characteristic signature of a power law 

distribution of pore size, indicating fractal scaling and self-similarity of the pore structure 

at different scales. The fractal dimension D is hereby given by the absolute or inverse value 

of the negative slope of the best linear fit (regression line) of the distribution. The fractal 

dimension D can be interpreted as a measure of the complexity of a system, similar to the 

PoA parameter.  

 

Figure 2.6: Pore-size distributions (PSD) of the 12 carbonate rocks. Logarithm of 
normalized pore frequencies (y-axis) as function of logarithm of pore-size bin (x-axis), 
using nonlinear binning (subsequent bin sizes doubling in size). Pore areas are 
expressed in size equivalent diameters (deq). The z-axis represents values for 
cementation factors of the sample. Different markers represent the used imaging 
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technique or resolution; PSD in all samples exhibit a linear behavior with high R2 
values, i.e., self-similarity of the pore space and predictability of distributions from 
subsets. The slope of the regression line represents the power law exponent and fractal 
dimension D of the PSD, which is a measure of the complexity of the pore system. 
Regression line slopes are steeper for the more microporous (more complex) samples to 
the left, which have lower cementation factors. 

 
Values for D range from 1.67 in samples with type II large intercrystalline micro- 

porosity to 2.15 in samples with type I small inter- crystalline microporosity (Table 2.1). 

The fractal dimension D also correlates with the flow properties of the rock. Samples with 

steeper slope (higher complexity) show lower cementation factors and lower permeability 

(Figure 2.7). The parameter D also describes how fast measurements increase or decrease 

in a sample; hence, it is a good measure of how macro- and micropores are distributed. 

Samples with many small pores (types I and IV microporosity; wackestone, packstone, and 

travertine) have steep slopes, whereas samples with few large pores (types II and III 

microporosity; dolomite, ooid bindstone) have gentle slopes. 

 

Figure 2.7: Fractal dimension D of 
pore-size distribution plotted 
against cementation factors, color 
coded with permeability. Marker 
shape represents type of 
microporosity. Samples with higher 
fractal dimension (steeper slope and 
higher complexity) show lower 
cementation factors and lower 
permeability. 

 
Mercury Injection Capillary Pressure: Critical Pore-Throat Diameter 

The Dc range from 0.01 to 160 μm in the analyzed samples where Dc shows an inverse 

correlation with electrical flow and positive correlation with permeability. A smaller 

critical diameter implies that the pore structure is interconnected with pore throats of a 

smaller diameter. Samples with small Dc have low cementation factors and low 
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permeability (Table 2.1; Figure 2.8), documenting the differences between electrical and 

fluid flow. Samples with small intercrystalline type I microporosity show the smallest 

critical diameters, and type II microporous samples show slightly larger values because of 

their larger crystal sizes; Dc is the second largest in the ooid bindstone with type III 

microporosity, which also shows the second largest cementation exponent. Travertine 

rocks with type IV microporosity can have small and large Dc values, in which the 

travertine with the smaller Dc has the lower cementation factor but also less permeability. 

The travertine with the large Dc has the highest cementation factor among the tested 

samples. The results corroborate earlier findings that an intricate micropore network with 

its inherent abundance of small pore throats has a positive impact on electrical flow 

properties (Swanson, 1985; Wang et al., 2005; Verwer et al., 2011). 

 
Figure 2.8: Normalized mercury injection capillary pressure intrusion curves, color 
coded with cementation factors. Marker shape represents type of microporosity. Red 
crosses mark critical diameters (Dc) at inflection points in rising part of curve where 
mercury spans the sample and percolation begins. Samples with larger critical diameters 
Dc (to the left) have higher cementation factors (warmer colors). 
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Discussion 

Multiscale Pore Geometries 

Heterogeneity across several length scales has been the central point for many 

petrophysical studies of carbonate rocks in the past (Eberli et al., 2003; Smith et al., 2003; 

Ahr et al., 2005; Rezende et al., 2013; Garing et al., 2014). These studies mostly focused 

on macroporosity. However, the relevant pore sizes for electrical conduction span from 

macro- pores down to nanopores because electrical flow is heavily influenced by 

microporosity (Verwer et al., 2011). To encompass the heterogeneity, this study uses 

imaging techniques with different resolutions for a MsDIA of the pore network. 

Conventional thin-section DIA is used to analyze the macropores, and the BIB-SEM 

method is used to analyze micro- and nanopores. More than 99% of the pores resolved in 

the BIB-SEM mosaics are below the resolution of conventional thin-section DIA. Inclusion 

of micro- porosity is essential as any pore large enough to accommodate a fluid or gas 

molecule is able to con- tribute to electrical or even fluid flow (water molecule size: 0.3 

nm; methane: 0.4 nm; Bustin et al., 2009). Because the resolution of the BIB-SEM method 

(18.5 nm) is just slightly larger than these molecules, the extracted pore geometries from 

the MsDIA are considered to be representative for all pores that are accommodating 

electrical and fluid flow in a plug sample. 

The size (DOMsize) and complexity (PoA) as well as the total amount of pores 

(Pdnorm) are important parameters for both electrical and fluid flow. We see clear trends 

of small and intricate pore systems with many pores being favorable for electrical flow, 

independent of rock type. Samples with small DOMsize, high PoA, and high Pdnorm show 
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good conductivity but low permeability (Figure 2.5A, B, D). This holds true especially for 

samples with the same type of microporosity. 

Outliers exist in the travertines and tufas. These microbialites can have strong 

anisotropic properties due to extensive layering. The layering can drastically increase or 

decrease the connectivity of the pore network in a given direction. The layers can contain 

large, aligned pores, which act as a fracture-type porosity with excellent flow properties 

along the alignment. Furthermore, the travertines contain type IV microporosity (Figure 

2.4D) of bacterial origin (Chafetz, 2013). This type of microporosity is unconnected and 

inaccessible for transport of charge or fluids. 

The 2-D analysis presents certain limitations for correlations with 3-D plug properties. 

Heterogeneity of a sample can greatly reduce the representative- ness of a single slice with 

respect to the whole plug. This is especially true for layered and vuggy rocks. However, 

previous experiments with micro-CT (computed tomography) volumes suggest that 2-D 

images are representative for the 3-D plug volume (Weger et al., 2009). Pore properties 

and porosity, calculated on all slices of a tomographic image series, do not deviate 

considerably from slice to slice. Each slice gives a good representation of the 2-D pore 

areas. Bloecher and Zimmermann (2008) also found from numerical modeling of isometric 

porous media that 2-D sections through modeled pore networks sufficiently represent their 

3-D geometry. The 2-D analysis cannot, however, describe the topology and connectivity 

of the pore network in 3-D. 

Types of Microporosity 

Classification into micropore types according to pore- geometric parameters and 

petrophysical properties enables the assessment of flow properties based on qualitative 
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analysis of the micropore structure, possibly simplifying evaluation of reservoir properties. 

The different types of microporosity reflect the heterogeneity of carbonate samples with 

their distinctive genetic and diagenetic variances (Figure 2.4). Despite the strong 

variability, we see a correlation of rock type with a certain type of microporosity. This 

implies that conventional rock typing and qualitative rock descriptions can be used to 

assess the type of the micropore structure, which would help to predict the inherent flow 

characteristics. Conventional rock typing definitions could be improved by incorporating 

information about their microporosity types. 

The type of microporosity strongly influences both electrical and fluid flow properties 

(Table 2.2). Samples with type I microporosity show good conductivity (low cementation 

factors) but low permeability. The low permeability is due to the complexity and tightness 

of the pore network between the small microspar crystals, which does not allow for 

effective fluid flow. The good conductivity originates from the low tortuosity of the very 

homogeneous and dense pore distribution of the crystalline microspar network. Strong 

diagenetic alteration of primary constituents into crystalline microspar leads to absence of 

solid areas within the sample, which could act as obstacles in the flow path (e.g., the ooids 

in the ooid bindstone). The result is a homogeneous, microcrystalline rock with many small 

and straight electrical connections and low electrical resistivity. 

Samples with type II microporosity show average conductivity (cementation factors 

approximately 2.0) but good permeability because their intercrystalline network between 

the large dolomite crystals is wide enough to allow for fluid flow. The increased crystal 

size and lower pore density increase tortuosity, resulting in lower conductivity than in small 

intercrystalline type I pore networks. 



43 

The sample with type III microporosity shows good permeability but low conductivity. 

The good permeability is a result of the larger pore sizes and the relatively simple pores. 

The micropore network in this sample is also well connected in itself; how- ever, it only 

forms around the dense ooid grains. The ooid grains hereby act as obstacles in the flow 

path. This drastically reduces the homogeneity of the conducting network, increasing its 

tortuosity and lowering its conductivity. 

The samples with type IV microporosity show low conductivity and moderate 

permeability. Conductivity is low due to the microporosity being moldic and unconnected. 

Conductivity and permeability are mostly attributed to the macroporosity. As a result, the 

flow path through solely the macro- pore network is highly tortuous; this impedes electrical 

flow but still allows for fluid flow. However, the petrophysical properties are often 

anisotropic because the type IV microporosity is inherent to microbial rocks (travertines), 

which show extensive layering at macropore scales. 

 
Table 2.2: Types of Microporosity and Attributes of their Pore Geometries in Relation 
to their Flow Properties (Electrical Conductivity and Gas Permeability) *PoA = 
perimeter over area; DOMsize = dominant pore size. 

 
Fractal Pore Space 

All samples show a power-law behavior in PSD across the investigated length scales. 

The power-law distribution indicates self-similarity of the pore space. Self-similarity 

implies that any part of the pore sys- tem, appropriately enlarged, looks like the whole 

(Mandelbrot, 1967; Purkis et al., 2005). It also implies that relative pore densities outside 
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the scale of investigation can be predicted, possibly up to core scale or the size of karstic 

features (Turcotte, 1993). 

This is unexpected given that carbonates usually have very heterogeneous pore 

structures, e.g., the wackestone with its dual-porosity network of leached bioclasts in a 

matrix of crystalline microspar. This would generally point towards a multifractal behavior, 

where the system cannot be described by a single power-law exponent. Nevertheless, self-

similarity is given in all samples of this study. It is also visually prominent, particularly in 

the ooid bindstone (Figure 2.9). 

 

Figure 2.9: Zoom into pore structure of ooid bindstone, demonstrating the self-
similarity of the pore space at different scales. Microporous calcite cements around 
ooid grain (left: 2500× magnification) show similar shape and distribution as nanopores 
inside the ooid (right: 35,000× magnification). 

 
Self-similarity is deemed to be the result of a single or similar physical process on all 

scales. However, there is no general model yet that would explain the occurrence of fractal 

properties in natural porous media. Katz and Thompson (1985) claim that steady-state 

crystal growth is likely to create self-similar pore geometries. Webb (2001) states that the 

physical processes that form the rock determine if it will have a fractal pore structure. 

Generally, carbon- ate rocks can be seen as a result of different physical processes. 

Carbonate grains are mostly produced by organisms whereas the cement is produced by 
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abiotic crystal growth. However, one could argue that the carbonate grains are formed by 

biotic crystal growth. This would make the entire genesis of carbonate rocks a crystalline 

process and explain their self-similarity. Furthermore, diagenesis is another physical 

process that affects carbonates across all length scales, hence could also be used to explain 

their self-similarity. 

Several other authors find similar fractal PSD in noncarbonate rocks that are not or are 

only partially of crystalline origin (Curtis et al., 2010, 2012; Ambrose, 2011; Hemes et al., 

2013; Klaver et al., 2012; Houben et al., 2013, 2014). Hemes et al. (2013) determine a 

power-law distribution of clay pore sizes over three orders of magnitude, which they 

interpret as self-similarity of the pore space. Curtis et al. (2012) and Ambrose (2011) use 

3-D imaging techniques for their investigations, underlining the validity and relevance of 

our 2-D measurements. The authors further postulate that their observations indicate the 

possibility to up-scale their results, which our present study corroborates with power-law 

PSD from BIB-SEM up to thin- section scale. Radlinski et al. (2004) find fractal 

distributions of pore sizes between 2 nm up to 50 μm, in which the results for pore sizes 

larger than 50 μm show Euclidean distribution. Krohn (1988) observes fractal distributions 

in the part of the porosity that is affected by diagenesis. She suggests that the relative 

amount of fractal porosity could be used to quantify the amount of diagenesis in sand- 

stones. This is remarkable as carbonates are usually affected by diagenesis across all length 

scales, which would explain the fact that we see a uniform fractal PSD in the entire 

investigated pore-size range. 

If the scale-invariant PSD holds up in future studies, it would help to predict micro- 

and macro- pores from DIA by reducing the necessary analytical procedures. Micropore 
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distributions could be modeled with results from simple and cost- effective DIA on thin 

sections. On the other hand, drill cuttings could be used for BIB-SEM analysis and 

estimates of the hydraulically important macro- pore distribution. The consistency of the 

logarithmic behavior of the PSD across different rock types still requires more verification. 

Yet, fractal scaling appears to be a re-occurring theme in nature, which takes place at all 

scales and in various rock types and geological settings. Sahimi (2011) states that fractals 

have to be taken into account for any realistic modeling of transport properties and 

displacement processes in porous and fractured media. The predictability of PSD could 

prove very useful for petrophysical and reservoir modeling applications, where direct 

methods of observation may be limited and modeling of the pore space is inevitable. 

Mercury Injection Capillary Pressure: Critical Pore-Throat Diameter 

The pore-throat diameter has a large effect on permeability of a sample (Webb, 2001). 

Due to the small sampling size, MICP measurements often cannot account for the 

macroscopic heterogeneities in carbonate rocks. In addition, a recent paper by Klaver et al. 

(2015) using Wood’s metal injection has shown that in some rocks, the mercury does not 

enter the pore space, and the results are erroneously interpreted as injection. Consequently, 

the MICP method does not reliably describe the porosity, which is exemplified in relatively 

low total intrusion values as com- pared to helium porosity in some samples. However, the 

excellent correlation of Dc with flow properties suggests that, at least in this data set, 

measurement errors are negligible and the matrix with the micro- porosity is the dominant 

control on both electrical and fluid flow (Figure 2.8). 

The results from throat-size analyses corroborate Verwer et al.’s (2011) assumptions 

that smaller individual pore throats (small Dc) facilitate electrical flow as the sum of the 
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many pore connections in microporous rocks add up to a large apparent cross-sectional 

area. Samples with Dc less than 2 μm mostly have very low permeabilities, similar to what 

has been proposed by Hulea and Nicholls (2012). This again highlights the differences in 

how pore geometries influence electrical and fluid flow. 

Pore Body-to-Throat Ratio 

The concept of “electrical efficiency” implies that most of the current is passing 

through the pore on a narrow path (“throat tube”) with a cross section similar to that of the 

pore throat (Herrick and Kennedy, 1994). The BTR gives an indication of how much of 

the pore space can effectively be used to transport electrical charge. High BTR indicates 

high amounts of unusable pore volume. Pore volume is considered unusable for conduction 

of electrical charge if it is not part of a direct connection between the “entrance” and “exit” 

pore throats of a pore. A higher BTR means that throats are small compared to the pore 

cavities, which results in large parts of the pore volume not contributing to conduction of 

electrical charge and as a consequence impedes electrical flow and increases the resistivity 

(Adisoemarta et al., 2001; Kazemzadeh et al., 2007; Abousrafa et al., 2009). 

Our results show the opposite trend: larger BTR, e.g., in the samples with type I small 

intercrystalline microporosity, result in lower resistivity (Figure 2.5C). It is the large 

quantity of small pores and pore throats, which combined have a large apparent cross-

sectional area, facilitating electrical flow. A dense pore network with many small pores 

also has more linear flow paths, effectively reducing its tortuosity and resistivity (Figure 

2.10). 
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Figure 2.10: Concept of tortuosity (a) 
as in deviation from a straight line 
without tortuosity (top: a = 1.0). 
Example with same porosity but larger 
pores (middle: high tortuosity) has less 
and more sinuous connections than 
sample with small pores (bottom: low 
tortuosity). 

 
Micropore networks are also often of crystalline nature such as in types I and II 

microporosity. Total recrystallization with destruction of original constituents and fabrics 

would lead to a more homogenous pore network without obstacles (e.g., in type III 

microporosity) and dead-end pores (type IV microporosity), reducing tortuosity. 

Crystalline pore net- works generally have high coordination numbers. More connections 

then lead to multiple flow paths through a single pore body, effectively compensating for 

effects of higher BTR values. However, type I small intercrystalline microporosity and its 

many small connections are counterproductive for permeability and reservoir performance, 

as recovery efficiency decreases due to earlier “snap-off” effects where the continuity of 

the nonwetting phase is disrupted (Wardlaw and Cassan, 1978; McCreesh et al., 1991). 

Dolomitization, on the other hand, is known to enhance carbonate reservoir properties also 
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due to the creation of a crystalline pore structure (type II microporosity) with flow paths 

large enough for effective permeability (type II large intercrystalline microporosity). 

Janssen et al. (2011) found high BTRs in clay- bearing samples and low ratios for clay-

free samples, as inferred from MICP drainage and imbibition curves, because increased 

clay content increases conductivity in a sample. This finding is in conformance with our 

results, in which high BTR values go along with high conductivity. However, inferring 

BTR from a bulk method such as MICP remains question- able, and MICP does not directly 

relate the size of the individual pore to the size of the throat it has been filled through; it 

only relates the fraction of filled porosity to the pore sizes that control this state during 

intrusion and extrusion (Webb, 2001). In this study, we use a combination of directly 

imaged pore-size parameters (DOMsize) and a statistical pore-throat parameter (Dc), both 

having demonstrated their significance for bulk flow properties of rocks or porous media. 

It has to be emphasized that this method does not compare the pore size of an individual 

pore to the individual throat, but only the averaged pore- network parameters. Additionally, 

pore sizes derived from 2-D images are statistically underestimating the real pore sizes. 

The 2-D sections cut the pores at various angles, rarely sectioning directly through the 

center of a pore. Advances in 3-D x-ray microscopy might enable direct assessment of 

BTRs in micro- pore networks in the near future (Merkle and Gelb, 2013). 

Permeability versus Conductivity 

The producibility of a formation is largely controlled by the permeability and water 

saturation of the rock. Permeability, similar to electrical resistivity, is mainly a function of 

pore geometry and connectivity. Hence, electrical resistivity logs are used to estimate 

permeability and calculate water saturations (Suman and Knight, 1997). The challenge in 



50 

using electrical logs for permeability estimation and reservoir flow is the disparity between 

fluid and electrical flow (Figure 2.5). This disparity is due to their different flow 

mechanisms. Permeability is dependent on the physical transport of molecules through the 

pore network, whereas ionic charge can still be conducted only along brine-wetted surfaces 

and through the smallest pore throats. As a result, electrical charge can still be transported 

in microporous rocks with low total porosity and low water saturation. This can lead to an 

overestimation of permeability or water saturation. 

Verwer et al. (2011) postulate that the main factor contributing to high conductivity in 

microporous rocks is the larger apparent cross-sectional area, which is a result of the 

increased pore density and co- ordination numbers of the intricate pore system, independent 

of the individual size of the conducting element (pore throat). Permeability, on the other 

hand, is strongly influenced by the effective pore- network size and scales well with the 

amount of pore network that is accessible through pore throats larger than 2 μm in diameter 

(Dixon and Marek, 1990; Hulea and Nicholls, 2012). In addition, the shape of the pore 

opening has little influence on the flow of electrical current, i.e., pores can have very 

narrow slit shapes. This is in contrast to permeability, which is influenced by capillary 

forces and the absolute size of a pore throat, which is the shortest axis of the throat opening 

(Beaumont and Foster, 1999). 

Also, electrical resistivity is directly related to the length of the conducting element. 

Hence, it is much more dependent on tortuosity than permeability. Electrical current always 

follows the least tortuous path, and samples are less tortuous at microscopic scales (Ehrlich 

et al., 1991). By adding microporosity between larger macropores, the flow paths become 

less sinuous and also more numerous (Figure 2.10). The more narrow nature of the flow 
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path hereby plays an insignificant role for the conduction of electrical charge, as opposed 

to permeability. As a result, microporous rocks often have excellent electrical flow 

properties but low permeabilities. 

Furthermore, flow mechanisms in micropores and nanopores are most likely different 

from mechanisms controlling flow in macropores. Darcy’s law is probably not sufficient 

to describe fluid flow at nanometer scales, where atomic bonds and other factors come into 

play (Curtis et al., 2010). High irreducible water saturations in carbonate micropores and 

increased double-layer conductivity are known to enhance electrical flow, but not 

permeability. In fact, numerical methods suggest that double-layer conductivity creates an 

electric force in reverse direction to fluid flow, further lowering permeability in micro- 

channels (Gong and Wu, 2006). All of these parameters will have to be considered to 

effectively predict electrical properties of rocks in further studies. 

Conclusion and Implications 

The microstructures of 12 carbonate rock samples of different rock types have been 

imaged in very high detail and range. Image analyses of nanometer- resolution BIB-SEM 

mosaics and micrometer- resolution thin-section images have been combined to effectively 

quantify pores from nanometers to millimeters in size to include all length scales relevant 

to petrophysical plug measurements of electrical resistivity and permeability. 

Results show that the amount and type of micro- porosity has a strong influence on 

electrical flow properties. The BIB-SEM mosaics reveal four types of microporosity in the 

analyzed samples: small intercrystalline (type I) in the packstones, wacke- stones, and tufa; 

large intercrystalline (type II) in the dolomites; intercement (type III) in the ooid bind- 

stone; and micromoldic (type IV) in the travertines. Crystalline types of microporosity 
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(types I, II, III) increase pore network connectivity whereas microbial type IV 

microporosity is micromoldic and unconnected. However, only the larger types II and III 

microporosity contribute to permeability because pore connections in type I micropore 

networks are too narrow to allow fluid flow. Information about the micropore geometry of 

the rock will improve the assessment of its reservoir properties. 

Quantified pore geometric parameters derived from MsDIA indicate that electrical and 

fluid flows behave in exactly opposite ways with regard to pore structure. Samples with a 

tight pore network, consisting of many small and complex pores with small throats, show 

better conductivity but lower permeability than samples with a large pore network, 

consisting of fewer large and simple pores with large pore throats. This behavior is 

attributed to the higher number of pore connections and lower tortuosity of most micropore 

networks that allow for effective transport of ionic charge but are too narrow for fluid flow. 

Furthermore, PSDs in all samples follow a power law, implying fractal scaling of pore 

sizes. The fractal dimension D of the power law distribution thereby is a measure of the 

complexity of a system and has been shown to correlate with flow properties. More 

complex samples with higher fractal dimension (steeper slope) show higher conductivity 

but lower permeability. The power law also enables modeling of PSD outside the range of 

observation. It allows us to predict the amount of micro- or macropores in data- scarce 

scenarios and hence enhances estimates of reservoir properties. Additionally, the power 

law could be used to develop scaling rules in reservoir models. However, uniform scaling 

rules seem to be applicable only to carbonate reservoirs because siliciclastic rocks often 

show multifractal and Euclidean PSD. This is possibly related to the dissimilar genesis of 

their constituents (transported grains versus in situ cements). The monofractal scaling in 
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carbonates, on the other hand, could be attributed to the crystalline, in situ origin of both 

their grains and cements, or to the consistent diagenetic overprint that affects all length 

scales of carbonate porosity. 
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Chapter 3: Fractal Pore Structure and Complex Resistivity Spectra (CRS) for 
Estimating Permeability in Dolomites from the Mississippian Madison Formation, 
Wyoming 
 
Summary 

Dolomite rocks constitute many important reservoirs units due to the porosity-

preserving and connectivity-enhancing effects of dolomitization. This study explores the 

correlation between resistivity and pore structure in dolomite rocks from the Mississippian 

Madison Formation in Wyoming and proposes a novel approach of predicting permeability 

from complex resistivity spectra (CRS).  

Digital image analysis (DIA) on thin-sections is used to quantify the pore structure and 

obtain pore size distributions of 54 sucrosic dolomite samples. The non-linear binning and 

plotting on log-log scale reveals a power law in the pore size distribution in all samples, 

indicating fractal scaling of pore geometries in these dolomite rocks. Pore-structure 

parameters derived from DIA are correlated to resistivity values of each plug and show that 

larger and simpler pore networks result in higher cementation factors. Crystal size, on the 

other hand, appears to have a minor impact on the flow properties in these sucrosic 

dolomites.  

Analyzes of complex resistivity spectra (CRS) are performed on brine-saturated core 

plugs in a log sweep from 0.1 – 100,000 Hz with a four-electrode setup at varying confining 

pressures. Results show that the frequency dispersion of CRS between 100 – 100,000 Hz 

is directly related to the porosity in these dolomites. The phase shift of CRS shows high 

variance in both low and high porosity samples with a characteristic slope β for frequencies 

between 100 – 2,000 Hz. Modifying an empirical model of Tong & Tao (2008) to include 
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the slope β together with porosity   and cementation factor m can predict permeability with 

a correlation coefficient of R2 = 0.82. 

Introductory Remarks 

Previous studies on electrical properties in carbonate rocks (Verwer et al., 2011; 

Norbisrath et al., in press) demonstrate the favorability of intricate pore networks for 

electrical flow. Microporous rocks with many small pores generally showed lower 

cementation exponents than samples with large and simple pores. The data sets used in 

these earlier studies are all containing a wide spectrum of carbonates, both limestones and 

dolomites, with highly variable pore sizes and shapes. This data set is concentrating on 

dolomites that are known to be good reservoirs to great depth. Dolomitization has increased 

the ability of the rock to retain porosity with depth and reduced the occurring pore types to 

intercrystalline and moldic pores. 

In this paper dolomite samples from the Mississippian Madison Formation in Wyoming 

are used for two investigations. First the correlations between pore geometries and 

petrophysical properties (permeability, resistivity, and acoustic) are assessed.  Second, we 

expand the assessment of the electrical properties from the cementation exponents to the 

analysis of complex resistivity at varying frequencies. Commonly, the cementation 

exponent is calculated from the amplitude of resistivity at a single frequency around 1 kHz. 

Analysis of complex resistivity spectra (CRS), however, includes measurements of both 

amplitude and phase shift of resistivity in a frequency range from 0.1 – 100,000 Hz. The 

benefit of CRS analysis of brine-saturated core plugs is the assessment of the low-

frequency interfacial polarization effects that are believed to be controlled by the geometry 

of the fluid-filled pore structure, which enables to relate resistivity to flow properties.  
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The motivation for the analysis of CRS in the sucrosic dolomites is previous work by 

Tong & Tao (2008), who found a strong correlation of the slope of the phase shift of 

complex resistivity in the 100 – 2,000 Hz range with permeability in shaly sandstone 

samples. The goal is to improve the understanding of the connection between the frequency 

dependency of resistivity and the dolomite pore structure. The outcome is intended to 

improve inversion of dolomite reservoir properties like porosity and permeability from 

resistivity data. 

Complex electrical properties of porous media 

Resistivity in brine-saturated rocks is a complex entity as the current signal that is 

measured to calculate the resistivity is shifted in phase compared to the applied 

voltage/input signal. Hence, resistivity cannot be described solely by the change in 

amplitude, but has to include information about the phase shift. This description can only 

be achieved with a complex number, consisting of a real part (amplitude), and an imaginary 

part. The imaginary part can be described by the phase shift, dielectric constant, or relative 

permittivity of the sample, which are different measures for the same effect. Relative 

permittivity (or dielectric constant) relates to a rock’s ability to transmit or permit an 

electric field between two charges; it is the factor by which the electric field is decreased 

or increased relative to vacuum. However, only the phase shifts can be measured directly 

and do not have to be derived (Anderson et al., 2008). The phase shift is caused by 

polarization effects that cause the rock to store energy between alternating cycles. Inherent 

polarizability is the characteristic feature of a dielectric material. 

This dielectric effect is frequency dependent, as it is controlled by different effects, 

namely electronic polarization, oriental polarization, and interfacial polarization (Bean et 
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al., 2013; Fig. 1). As these effects work at different scales, namely atomic, molecular, and 

ionic (inter-molecular), their relative influence changes in significance for different 

frequency ranges. It takes much longer for an ion to shift its physical position within a pore 

than for an atom to shift the charge center of its electron cloud. Hence, the amount of phase 

shift of a current signal traveling through the rock is strongly frequency dependent. 

Numerous studies have been conducted to study and utilize the complex electrical 

properties of sedimentary rocks in the past. Many studies focus on the dielectric constant 

at low frequencies, where rocks with high values of dielectric constant are linked to high 

clay content and its strong interfacial polarizability (Sen, 1981; Garrouch & Sharma, 1992). 

Other authors have linked dielectric properties to grain size distributions (De Lima & 

Sharma, 1991; Raythatha & Sen, 1986).  

Zisser et al. (2010) report strong correlations between the relaxation time of spectral 

induced polarization (SIP) core-plug measurements and the effective hydraulic length 

scale, enabling assessment of permeability with low frequency (0.01 – 100 Hz) SIP 

methods. Slater et al. (2006) found similar correlations between interfacial polarization and 

specific surface area for measurements between 0.1 – 10,000 Hz on synthetic samples. 

They also cite other authors who found similar relationships at higher frequency 

measurements (Knight and Nur, 1987), and suggest that common mechanisms may control 

electrical properties across a wide frequency range. However, complex electrical properties 

in sedimentary rocks (name it relaxation times, phase shifts, dielectric constants, or relative 

permittivity) show high variability at different frequency ranges, which is also referred to 

as ‘electromagnetic dispersion’ (Wang & Poppit, 2013). This variability is due to the above 
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mentioned different polarization effects, working at different scales and hence “resonating” 

at different wavelengths (frequencies). 

Complex resistivity spectra (CRS) 

Rock petrophysical properties, such as specific surface area and permeability, can be 

estimated from phase shifts in the low-frequency range (Weller & Börner, 1996; Denicol 

& Jing, 1998; Cerepi, 2004). The relationship between pore structural and electrical 

properties is a result of the low-frequency phase shifts being directly correlated to the 

amount of electrical double layer (EDL), which increases with increasing surface area of 

the sample.  Typically, electrical double layer effects are mainly associated with clays that 

are postulated to form this polarizable layer at the interface with an electrolytic solution 

due to their excess surface charge, resulting in phase shifts of an applied alternating current. 

However, studies of carbonate rocks also suggest that these rocks carry excess surface 

charges that are mostly associated with crystal defects, either because of structural defects 

or adsorption of foreign ions (Moulin & Roques, 2003). Moreover, results from the study 

presented here show that dolomite rocks exhibit distinct phase shifts in the low-frequency 

range where interfacial polarization is the main control on phase shifts. Hence, it can be 

assumed that dolomites also form an electrical double layer at the grain-brine interface.  

Methods 

General methods 

Porosity is measured by comparing bulk density to skeletal density from Helium 

pycnometry utilizing Boyle’s law. Fluid permeability is determined from Klinkenberg-

corrected gas permeability measurements by an external service provider. The average 
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crystal size is determined through point counting on thin-sections by measuring 50 crystals 

in a sample and averaging the length of their longest axis. 

Digital image analysis (DIA) of accompanying thin-sections, following the 

methodology described by Weger et al. (2009), is used to extract pore geometry parameters 

DOMsize (dominant pore size) and PoA (perimeter over area).  DOMsize is the minimum 

size of pores needed to occupy half of the porosity on a given thin-section and is a good 

indicator of the effective pore size in a sample. PoA is the perimeter of all pores over the 

area of all pores that are identified on a thin-section. It is a good indicator of the complexity 

of a pore network. To analyze pore size distributions, all identified pores from DIA are 

plotted on a histogram in log-log scale using non-linear binning, i.e. subsequent pore bins 

doubling in size.  

The DIA method works well for samples with more than 10% porosity. Samples with 

less than 10 % porosity often have very few pores that can be identified on a thin-section, 

which makes the quantification of their pore geometries statistically questionable. Higher-

resolution imaging techniques would include smaller pores and lower the porosity 

threshold below 10%, but the importance of the macropores would constrain a multiscale 

analysis (Desbois et al., 2011; Norbisrath et al., in press). 

Spectral analysis of complex resistivity 

1-inch core plug samples are saturated with 35 ppt NaCl brine by repeatedly pulling a 

vacuum over submerged samples during a 24-48 hour period. The dispersive behavior of 

complex resistivity at different frequencies is measured in the saturated samples. 

Amplitude and phase shift of complex resistivity are captured in a log sweep of 15 

frequency steps from 0.1 – 100,000 Hz. The pore pressure is kept constant at 2 MPa and 
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the confining pressure of the surrounding oil is varied up to 22 MPa to enable 

measurements in a range of effective pressures (EP) up to 20 MPa. The purpose of the 

varying pressures is to simulate reservoir conditions in order to test if the resistivity of the 

core plug samples varies with increasing overburden (burial depth). 

For the study of complex resistivity spectra, only measurements with an effective 

pressure of 20 MPa are used. For compliance with existing datasets, calculations of 

cementation exponent m are made from resistivity amplitude measurements at 10 MPa 

effective pressure for a frequency of 720 MHz (1 kHz requested frequency). 

Resistivity measurements are performed with a NER Autolab 1000 system where 

electrical properties of core plug samples can be analyzed as a function of frequency, stress, 

and temperature. The system allows for true four electrode resistivity measurements in 

order to avoid erroneous contact resistance at the voltage contacts. Pore fluid conductivities 

are corrected for changes in temperature (Arps, 1953). Voltages are measured across a 

reference resistor and the sample. A digital oscilloscope records the signals, and the 

amplitude ratio and phase shift between the two signals is used to measure the complex 

electrical resistivity of the sample.  

Complex electrical impedance can be described either in Cartesian or in polar form: In 

Cartesian form with a real (R-signal; ρ') and imaginary (X-signal; ρ”) part, or in polar form 

with a magnitude |ρ| = (ρ’2+ρ”2)1/2 [ohm meters] and a phase shift or lead Φ = tan-1(ρ''/ 

ρ') [milliradians]. In this study, we measure the complex resistivity in Cartesian form but 

use the terminology of the polar form, as the term “phase shift” is more descriptive than 

the “imaginary part of electrical resistivity”.  
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Dataset 

This study uses 54 dolomite samples from the Mississippian Madison Formation in 

Wyoming that have undergone complete dolomitization based on X-ray diffraction (XRD) 

analysis (>95% dolomite) (Westphal et al. 2004, Smith et al., 2004). Dolomitization is 

known to preserve and enhance reservoir properties because the re-crystallization often 

homogenizes the pore structure and the crystalline rock also better withstands compaction  

 
Figure 3.1: Stitched photomicrographs of two blue epoxy impregnated dolomite 
samples from the Madison Formation with significantly different crystal sizes but 
similar petrophysical properties. Left: Laminated fine-crystalline dolostone with 
intercrystalline microporosity. Right: Coarse-crystalline dolostone with mixed 
intercrystalline and connected moldic porosity. Bottom images show close up of the pore 
structure of both samples. The intercrystalline pores in the fine-crystalline sample on the 
left are invisible at 1x magnification. Intercrystalline and moldic pores visible in coarse-
crystalline sample on the right. 
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to retain porosity with depth (Lucia, 1995). The dolomitization mostly destroyed the 

original fabric with remaining pore types being intercrystalline and moldic pores (Figure 

3.1). 

Results 

Pore Structure  

This part will show the pore structure properties of the samples gathered from thin-

section analysis. These properties include crystal size from point counting and DOMsize, 

PoA, and pore size distribution from digital image analysis (DIA). 

Crystal size 

Average crystal (grain) sizes of the individual samples range from 28 – 298 μm in this 

dataset. Results show that the crystal size of a sample has little influence on its 

petrophysical properties (Figure 3.2). Samples with small crystal sizes can have high 

permeabilities, high velocities, and high resistivities. In contrast, samples with large crystal 

sizes can have low permeabilities and low resistivities, however they do not have low 

velocities. 
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Figure 3.2: Three dolomite samples with different crystal sizes. Zoom at 10x 
magnification shows individual dolomite crystals. Petrophysical properties appear 
unrelated to crystal size.  

 
DOMsize and PoA 

DOMsize (dominant pore size) ranges from 18 – 622 μm and PoA (perimeter over area) 

from 28 – 240 mm-1 in the dolomite samples. Out of the samples with more than 10% 

porosity, those with large and simple pores generally show higher cementation factors 
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(Figure 3.3). Large and simple pore structures are characterized by high DOMsizes and 

low PoA that are identified by DIA of thin-section images. 

 

Figure 3.3: Plot of PoA vs DOMsize for samples with more than 10% porosity, color-
coded with cementation factors. Samples with more intricate (higher PoA) and smaller 
pores (lower DOMsize) show lower cementation factors (blue color). Three 
representative samples illustrated on the right. 

 
Power law pore size distribution 

All samples show power law distributions of pore sizes across the investigated length 

scales (6 μm resolution limit up to thin-section size ~ 2.54 cm) as indicated by the good fit 

(average R2 = 0.95) of a log-log linear regression curve to the data points (Figure 3.4).  
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Figure 3.4: Pore size distributions of 54 dolomite samples acquired with digital image 
analysis on thin-sections, plotted on log-log scale using non-linear binning 
(subsequent bin sizes doubling in size). Z-axis: Slope D, or fractal dimension, varies 
between 1.35 and 2.2 in this dolomite dataset.   

 
The slope D of the power law distribution is the fractal dimension of the sample (Pape 

et al., 1999). Values for the slope range from 1.35 to 2.2. A steeper slope D, similar to 

higher PoA, is indicative of a more intricate pore structure with lower cementation factors 

(Figure 3.5; left) and permeabilities (Figure 3.5; right), although the permeability trend is 

much weaker.  

  
Figure 3.5: Two plots, both color-coded with slope D of power law PSD. Left: Porosity-
formation factor cross-plot. Solid curves indicate lines of equal cementation factors from 
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1 to 4. In samples with more than 10% porosity steeper slope D results in a lower 
cementation factor around m = 2. Right: Porosity-permeability cross-plot for samples 
with more than 10 % porosity. Slight trend of higher permeability with  lower slope D. 

 
Porosity-permeability 

Porosities in the samples range from 2 - 29% and permeabilities from 0.002 – 100 mD. 

Thin-section analysis identifies the samples as mostly sucrosic dolomites with well-

connected intercrystalline pores and few vuggy pores (Westphal et al., 2004). As a result, 

the 54 dolomite samples have a strong correlation of porosity with permeability 

(correlation coefficient: R2 = 0.60; Figure 3.6; left).  The strong porosity-permeability 

relationship is not correlated to crystal size. There are no trends of larger crystal size 

resulting in higher permeability, as other studies have postulated for purely crystalline 

dolomites (Lucia, 1995). In contrast, samples with the smallest crystal sizes have the 

highest porosities and permeabilities (Figure 3.6; left).   

  
Figure 3.6:  Left:  Porosity-permeability cross-plot for 54 dolomite samples from the 
Madison Fm, showing good correlation of porosity with permeability (R2 = 0.60). 
Right: Porosity-velocity cross-plot demonstrating strong correlation of porosity with 
velocity (R2 = 0.73).  Color-coding with crystal size reveals that crystal size has little 
influence on permeability or sonic velocities for a given porosity.  

 
Acoustic velocity 

Acoustic velocities in the samples are highly variable and range from 4,100 – 6,900 

m/s. Acoustic velocity is strongly controlled by the total porosity of the sample. In general, 
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the measured velocities show an inverse correlation with porosity, but departures from the 

general trends of correlation can be as high as 1500m/s. These deviations can be explained 

by the occurrence of different pore types, crystal shapes, and rock types. The crystal size 

does not explain variations in velocity for a given porosity (Figure 3.6; right), except that 

samples with large crystal sizes do not show low velocities, instead pore type and crystal 

shape influence acoustic velocity. Rocks with texture combinations of moldic and anhedral 

crystals have relatively high, whereas rocks with intercrystalline pore types and mostly 

euhedral crystal shapes have relative low velocities. In addition, rock texture influence 

velocity. Generally, grainstones have relative high velocities, whereas mudstones have 

relative low velocities. Breccias have the lowest velocities as a result of micro-fractures 

and fracture fillings of calcite and quartz (Shen et al., 2000). Vp/Vs ratios vary between 

about 1.61 and 1.97. There is a very weak correlation between the Vp/Vs ratio and the 

porosity as the ratio decreases with increasing porosity but some rules are seen. Rocks with 

combination of intercrystalline porosity and euhedral crystal shape have a relative low 

Vp/Vs ratio, whereas the breccias and rocks with moldic porosity (higher DOMsize) and 

anhedral crystal shape have a relative high ratio (Figure 3.7). 

 

Figure 3.7: Porosity-Vp/Vs ratio cross-
plot for 54 dolomite samples from the 
Madison Formation, color-coded with 
dominant pore size. Samples with 
larger DOMsize and more moldic 
porosity show higher ratios.  
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Cementation factor m 

The cementation factors of the measured dolomites range from 1.8 to 3.3 (average: 

2.4). This range is smaller than reported from other carbonate data sets that include 

limestones of variable textures (Lucia, 1983, Verwer et al., 2011). The measured 

cementation factors do not correlate to the permeability variations at a given porosity 

(Figure 3.8). This is in contrast to the carbonate data set measured by Verwer et al. (2011) 

that displayed a trend of higher permeability with higher cementation factors.  

 

Figure 3.8:  Porosity-permeability cross-
plot. Color-coding with cementation 
factors shows no link between 
permeability to cementation factor. 

 
Pressure dependency of resistivity 

Resistivity only increases minimally with increasing pressure (Figure 3.9). The mean 

increase in cementation factor for measurements at 5 and at 20 MPA effective pressure is 

3.2% ± 2.2%. The lack of pressure dependence of resistivity in these rocks documents how 

pressure resistant these dolomites are and how they can retain their porosity and 

permeability to great depths.  
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Figure 3.9: Plot of confining pressure vs cementation factor m demonstrates the minor 
effect of increasing pressure and overburden on electrical properties and pore 
structure. Increasing pressure leg color-coded with porosity. Decreasing pressure leg 
shown as black, dashed line.  

 
Furthermore, the measured samples show little hysteresis effects when pressure is 

lowered. The average change in cementation factor at 5 MPa before and after being 

pressurized to 20 MPA is +0.52% ± 1.1%. The small hysteresis effect also implies that the 

micropore structure of the plug samples can remain intact after being retrieved from great 

depths, and that measurements of cementation exponents in the lab can be representative 

for subsurface formations. 
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Complex resistivity spectra (CRS) 

Analysis of complex resistivity spectra shows that the dispersive behavior of resistivity 

between 100 – 100,000 Hz is directly related to the porosity and also the permeability in 

sucrosic dolomites. The amplitude of resistivity stays relatively constant across the 

frequency spectrum for the samples with high porosity, which have generally low 

resistivities. For low-porosity samples the amplitude is generally high but drops at 

frequencies above 1,000 Hz (Figure 3.10; top). The phase shift shows more variance in 

both low and high porosity samples with a characteristic slope between 100 – 2,000 Hz 

(Figure 3.10; bottom). Similar to the amplitude, phase shifts are generally larger in low-

porosity samples. Phase shifts peak at a certain frequency directly related to the porosity 

of the sample. This peak in resistivity phase shift appears to coincide with a decline in 

resistivity amplitudes, and occurs at a lower frequency in the lower porosity samples. The 

peak in the high porosity samples is actually not recorded as the measurement setup only 

allows for frequencies up to 100,000 Hz, but can be inferred to occur below the MHz range 

from the shape of the other phase shift curves. 

 

Figure 3.10: Top: 
Amplitude of 
resistivity as function 
of frequency of 54 
dolomite samples at 
20 MPa effective 
pressure, color-
coded with porosity. 
Higher porosity 
samples show lower 
amplitudes. Bottom: 
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Phase shift of 
resistivity as function 
of frequency. Higher 
porosity samples 
show lower phase 
shifts. The 
characteristic 
dispersion of 
resistivity phase shift 
occurs between 100 – 
2,000 Hz (frequency 
range indicated by 
vertical red lines). 

 
The variations in the phase shift measurements is generally large at low frequencies 

<10 Hz. This could either be a real effect of the pore structure, or, more likely, due to 

effects of electrode polarization and other parasitic impedances from the measurement 

setup.  

 

Figure 3.11: Top: 
Amplitude of 
resistivity as 
function of 
frequency of 54 
dolomite samples at 
20 MPa effective 
pressure, color-
coded with 
permeability. 
Higher permeability 
samples show lower 

log Frequency [Hz]

lo
g 

R
es

is
tiv

ity
 P

ha
se

 [o
hm

m
]

 

 
100 2000

0.1 1 10 100 1000 10000 100000
-3

-2

-1

0

1

2

3

4

Po
ro

si
ty

 [f
ra

c]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

10 100 1,000 10,000 100,000
0

0.5

1

1.5

2

2.5

3

3.5

4

log Frequency [Hz]

lo
g 

R
es

is
tiv

ity
 A

m
pl

itu
de

 [o
hm

m
]

 

 

Pe
rm

ea
bi

lit
y 

[m
D

]

0.001

0.01

0.1

1

10

100

1,000

10,000

100,000



72 

 

amplitudes. Bottom: 
Phase shift of 
resistivity as 
function of 
frequency. Higher 
permeability 
samples show lower 
phase shifts. 
Frequency range 
<10 Hz omitted. 

 
The 100 – 2,000 Hz range of the phase shift produces a reliable record of the dispersion 

and thus is hitherto used for the correlation between resistivity and other physical properties 

(Figure 3.10; bottom). In this frequency range there is a strong correlation of the mean 

slope β of the phase shift dispersion with the porosity and also permeability of the sample 

(Figure 3.11; bottom). 

Tong and Tao (2008) found a similar trend for shaly sandstones and used the phase 

shift to estimate permeability. Here, their empirical model is modified to include the slope 

β together with porosity   and cementation factor m for permeability predictions:  

Kestimated = aΦbβ
phase

c md Eq. 3.1 

Unconstrained nonlinear optimization for constants a, b, c, and d of (Eq. 3.1) yields: 

Kestimated = 436Φ2.45β
phase

−0.63m2.05 Eq. 3.2 

We use above equation (Eq. 3.2) to estimate plug permeability with a correlation 

coefficient of R2 = 0.82 between plug-measured and predicted permeability (Figure 3.12). 

The high correlation coefficient positively emphasizes the strong correlation between low-

frequency phase shift phenomena and the effective hydraulic length scale of the sample 

(Zisser et al., 2010). 
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Figure 3.12: Cross-plot of measured 
permeability vs. estimated 
permeability from the model (Eq. 
3.2). Slope of phase shift dispersion β 
in color. Lower slope β observed in 
higher permeability samples. The 
solid line is the identity function 
Kmeasured = Kestimated. 

 
Discussion 

Crystal size and Pore Structure 

Previous authors (Lucia, 1995; Braithwaite et al., 2004) often assumed that crystal size 

controls petrophysical properties in dolomites, similar to grain size does in siliciclastics. 

Our dataset however shows no such trends. Neither permeability nor acoustic properties of 

the samples correlate with crystal size, but are mostly controlled by the total porosity 

(Figure 3.6). The exception being that samples with large crystal sizes do not show low 

velocities. The general lack of influence of crystal size on sonic properties can be explained 

by the anhedral crystal shapes in many samples. Partial dissolution and re-precipitation 

forms strong connections between crystals, making the rock stiffer and faster without 

increasing the crystal size. Often the crystals even decrease in size and show rounded edges. 

The lack of correlation of crystal size with permeability in this data set is most likely the 

result of the dolomitization mostly affecting the rock matrix microporosity without altering 

the larger scale macropore structure that controls permeability. Hence, permeability is still 

mostly controlled by the heterogeneous, pre-dolomitization carbonate pore structure. 

However, the weak link of pore geometries to flow properties in low-porosity samples 

suggests a cut-off for the thin-section DIA method at 10% porosity. This also emphasizes 
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that future pore structural analyses in tight samples have to incorporate higher resolution 

imaging techniques.  

Cementation factor m and pressure dependency 

In carbonates, higher cementation factors are related to larger and simpler pore 

structures with higher permeability (Verwer et al., 2011). In siliciclastics, cementation 

factors truly are a measure of cementation of the pore structure, and higher cementation 

means lower permeability. In our dataset, cementation factors do not show a correlation 

with permeability (Figure 3.7). This sets them apart from both, other carbonates and 

siliciclastics, and makes the electrical resistivity behavior of these dolomites quite unique. 

This behavior could be the result of the dolomites having a hybrid pore structure with traits 

from both carbonates and siliciclastics. They mostly consist of grains (crystals) like 

siliciclastics, and pore structures are generally simpler than in carbonates due to the 

crystalline overprint. However, they are prone to diagenetic effects, altering and occluding 

the pore space like in heterogeneous carbonates. 

Cementation factors in this dolomite dataset are on average 2.4. Obviously crystalline, 

dolomite micro-structures are not as favorable for conduction of electrical charge as 

similarly crystalline mudstones that consist of microspar crystals (Loucks et al., 2013). 

This is most likely due to the larger crystal size and the more angular crystal shape of the 

dolomites. The larger size results in less pore connections and more dead-end pore space 

between impinging dolomite rhombs. The dead-end pore space does not contribute to the 

transport of electrical charge between entrance- and exit-throat of the pore. Mudstones, on 

the other hand, consist of smaller microspar crystals that are more equant and cubic. The 

smaller, more cubic shape of their crystals leaves more of the pore space for effective 
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electric conduction and also provides more pore connections, resulting in higher apparent 

cross-sectional area (Adisoemarta et al., 2001) and lower cementation factors.  

Furthermore, the dolomitization caused the samples to be very pressure-resistant and 

retain their micropore network even at high effective pressures up to 20 MPa 

(approximately equivalent to 1 km overburden). This is the reason why dolomites often are 

excellent reservoir rocks until great burial depth. It is especially important for this dataset 

as the Madison Formation reservoirs in Wyoming are incredibly deep – up to 7.5 km 

(25,000 feet). The small hysteresis effects encountered in this dataset further underline the 

usability of core plug resistivity measurements for well log calibration in dolomite rocks. 

Complex resistivity spectra (CRS) 

Frequency dependent complex resistivity measurements are a powerful tool since the 

measured spectra are sensitive to surface chemical and pore geometrical properties of a 

medium. Since the analyzed samples are all dolomites, effects of differing surface 

chemistry can be precluded, leaving the pore geometry as the main influencing factor. 

A porous medium exposed to an alternating current acts as a dielectric and will show a 

phase shift in the voltage signal measured across it when compared to the input current 

signal that it is exposed to. The magnitude in the phase shift is a result of the magnitude of 

polarization. 

In this dataset it is apparent that the more resistive the medium and the lower its 

porosity, the greater is the magnitude of polarization. This manifests itself in larger and 

earlier phase shifts between the induced voltage and resulting current signals (Figure 3.9; 

bottom). However, the phase shifts peak at a certain frequency, which is dependent on the 

porosity of the sample, and start declining. This peak in resistivity phase shift appears to 
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coincide with a decline in resistivity amplitudes, which show little variations at lower 

frequencies (Figure 3.9; top). It seems that at higher frequencies the increase in 

conductivity (lower resistivity) goes along with an increase in permittivity (lower phase 

shifts).  

Well-logging applications 

The direct link between the spectral behavior of the phase shift of complex resistivity 

and the porosity of the sample indicates that spectral induced complex resistivity 

measurements could enhance down-hole porosity and also permeability estimates. 

Development of a new tool that measures low-frequency phase shift spectra as part of a 

logging suite could greatly enhance reservoir characterization. 

Currently there is a new dielectric logging tool being deployed that measures at 

multiple frequencies (Hizem et al., 2008). The new dielectric dispersion logging tool 

improves on older versions by being mounted on an articulating pad that can account for 

borehole rugosity, which enables more accurate, salinity-independent estimates of 

formation mineralogy and water salinity, content, and movability (Hizem et al., 2008; 

Mosse et al., 2009; Seleznev et al., 2011; Bean et al., 2013). However, the tool measures 

only in the high-frequency range of 20 MHz to 1 GHz, where molecular and electronic 

polarization effects dominate the dielectric permittivity response, hence the new tool is 

insensitive to interfacial polarization effects. 

In the low-frequency range, where induction logs operate, there is no current logging 

tool that measures at multiple (more than two) frequencies. Chemali et al. (1995) first 

report the dispersion phenomenon from logging tools by analyzing differences of resistivity 

measurements from wireline induction and LWD propagation tools operating at 
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frequencies of 20 kHz and 2 MHz, respectively. Anderson et al. (2008) show a new method 

of logging inversion that links high dielectric constants from induction logs at 26 kHz and 

52 kHz to elevated pyrite and graphite content in gas shales. Wang & Poppitt (2013) show 

a combination of existing wireline tools operating at different frequencies to analyze the 

broadband electromagnetic dispersion in shales. 

Given the direct relationship of permeability with CRS from core plug measurements 

in this and previous studies (e.g. Tong & Tao, 2008; Weller et al., 2010) and the general 

higher susceptibility of dielectric permittivity on interfacial polarization at low frequencies 

(Bean et al., 2013, Fig.1), the development of a low-frequency wireline tool that can 

measure dielectric permittivity spectra (CRS) at frequencies between 100 and 100,000 Hz 

would permit a better assessment of permeability from resistivity. The development is an 

engineering challenge as it would require implementation of multiple transmitter-receiver 

spacings in order to measure resistivity at different frequencies for the same depth of 

investigation.  

Field tests performed in small boreholes demonstrate the general applicability of the 

low-frequency complex electrical resistivity measurements in a well logging scenario 

(Weller & Börner, 1996). The general idea is that low permittivity and its dispersion is 

caused by increased polarization effects resulting from higher specific surface area, which 

are directly negatively correlated to permeability. Hence, a tool measuring CRS could be 

used to estimate permeability, which is a major problem in heterogeneous carbonates with 

their complex relationships of electrical, sonic, and pore structural parameters (Weger et 

al., 2009; Verwer et al., 2011; Norbisrath et al., 2014). 
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Conclusions and Implications 

A dataset of 54 dolomite core plugs from the Mississippian Madison Formation has 

been investigated on relationships of their low-frequency complex electrical resistivity 

spectra with their petrophysical and their pore structural properties, quantified with digital 

image analysis on thin-sections.  

Pore structural parameters PoA and DOMsize and the slope D of the fractal pore size 

distribution indicate that in dolomites like in other carbonates, smaller and more intricate 

pore networks enhance electrical flow.  

There is a minimal influence of pressure to resistivity. This small pressure dependency 

and hysteresis effects of measured cementation exponents underlines the applicability of 

core plug measurements for well log calibration in dolomite rocks. 

The fractal scaling of the pore space potentially helps to upscale or populate a reservoir 

model with pore geometries that have been acquired at different scales, e.g. from core plugs 

to seismic surveys. It also has to be considered when modeling pore geometries in flow 

simulations. Future work regarding pore size distributions should include a multiscale 

analysis, possibly from plug-scale over core-scale to log-scale, in order to establish scaling 

parameters across different measures. This would also clarify if the pore size distributions 

could universally be modeled from their fractal dimension measured at a certain scale. 

Furthermore, complex electrical resistivity spectra between 0.1 - 100,000 Hz show a 

strong frequency dispersion.  This frequency dispersion, together with porosity, has been 

used to model permeability with a correlation coefficient of R2 = 0.82. However, porosity 

alone already shows good correlation with permeability in the investigated dolomite 

dataset. Nevertheless, the dispersive behavior of resistivity between 100 – 100,000 Hz in 
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sucrosic dolomites is directly related to the porosity of the sample. If above relationship of 

permeability with low-frequency complex resistivity dispersion holds true in 

heterogeneous carbonates (work in progress), it would be logical to use the new insights in 

a wireline application. As current tools already incorporate multiple receiver and 

transmitter spacing for invasion profiling, it might even be possible to modify existing 

wireline resistivity tools. If these tools could be modified to measure resistivity at different 

frequencies for the same depth of investigation, it could establish an alternative method for 

down-hole porosity and permeability estimates. 
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Chapter 4: Complex Resistivity Spectra and Pore Geometry for Predictions of 
Reservoir Properties in Carbonate Rocks 
 
Summary 

Measurements of complex resistivity spectra (CRS) are performed on core plugs from 

a wide variety of carbonates in a log sweep from 0.1 – 100,000 Hz inside a pressurized 

chamber at varying effective pressures up to 20 MPa. We quantify the CRS curves by 

extracting the slope of both real and imaginary part of complex resistivity in the 10,000 – 

100,000 Hz range. Pore geometries are quantified with thin-section digital image analysis 

(DIA) from optical light microscopy. The dataset includes 330 carbonate core plug samples 

from twelve different study areas and hence includes a highly diverse range of carbonate 

rock types. This should make our results applicable to most carbonate rocks. 

Pore geometry parameters derived from DIA, such as Dominant Pore Size (DOMsize) 

and Perimeter over Area (PoA), correlate well with petrophysical properties such as 

cementation factor and permeability. However, when modeling those properties, higher 

correlation coefficients are achieved with CRS than with DIA parameters. Using CRS and 

model constants tuned to the sub-datasets, cementation exponents are predicted with R2 = 

0.91 and permeability with R2 = 0.84. The correlation coefficient of a universal equation 

for all 330 samples is still high for cementation factors with R2 = 0.80, but less for 

permeability with R2 = 0.48. 

The results show that CRS in carbonates are directly related to permeability and 

formation factors, and greatly improve reservoir property estimates. This study also 

highlights the usability of low-frequency CRS data as a measure of flow and storage 

properties in carbonate rocks. The transfer of this methodology to wireline applications 
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would result in more accurate and continuous permeability and cementation factor 

predictions from well logs.  

Introductory Remarks 

Carbonate reservoirs contain up to 60 % of conventional oil resources, but the 

production from these reservoirs is often complicated due to heterogeneity of pore structure 

and related flow properties (Garing et al., 2014; Skalinski & Kenter, 2015). Classifying the 

pore structure in conjunction with grain/crystal size or texture is a common approach when 

relating carbonates to petrophysical properties (Choquette and Pray, 1970; Lucia, 1995; 

Ahr et al., 2005; Lonoy, 2006). Attempts to relate quantitative pore shape parameters, 

derived from digital image analysis (DIA), to physical properties produced new insights 

into how pore structure influences these properties (Anselmetti et al. 1998; Weger, 2006). 

For example, Weger et al., (2009) show how large pores and simple pore networks result 

in higher velocities, while Verwer et al. (2011) document how simple and large pores result 

in higher cementation exponents in carbonates and how a large number of small pores can 

reduce resistivity. Likewise, microporosity has a large influence on velocity (Baechle et 

al., 2008) and electrical properties show distinct relationships depending on the amount 

and type of microporosity (Dixon & Marek, 1990; Ahr et al., 2005; Norbisrath et al., 2015).  

Complex electrical resistivity has a long history of use in the mineral exploration 

industry, but failed to get the attention it deserves in the petroleum industry (Snyder et al., 

1977). Worthington & Collar (1984) show the relationship between polarization and 

permeability and shaliness in reservoir rocks. Chemali et al. (1995) report the frequency 

dispersion of different frequency measurements of resistivity from wireline and logging-

while-drilling (LWD) tools. 
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This study describes an approach to predict core plug permeability and cementation 

exponents from either resistivity or porosity and complex resistivity spectra (CRS). For 

comparison we show predictions where CRS parameters are interchanged with pore 

geometry parameters DOMsize and PoA from DIA. The new approach to estimate flow 

and storage properties of core plugs from CRS described in this paper is based on a previous 

model by Tong & Tao (2008). The approach has proven its application within a rather 

homogeneous dolomite dataset (Norbisrath et al., in press).  Here we are testing it on a 

wide variety of very heterogeneous carbonate rocks from multiple datasets. To encompass 

carbonate heterogeneity we investigate samples from twelve independent and highly 

diverse datasets from both outcrop and subsurface, including several modern microbialites.  

When measuring complex resistivity, different polarization effects result in phase and 

amplitude shifts between input voltage and output current signal. In this study, we measure 

the low-frequency phase shift and amplitude spectra that are mostly induced by pore 

structure. Shape parameters of these complex resistivity spectra (CRS) are then used to 

predict measured petrophysical parameters. The goal is to find fundamental relationships 

between petrophysical, pore structural, and dielectric properties that can be used in future 

applications. Since this study contains a large variety of rock types, the results should be 

universally applicable to most carbonate rocks. 

Complex electrical resistivity and dielectric dispersion 

Insulators often show dielectric properties, where the application of a voltage separates 

charge centers and charge is stored in an electric dipole. The insulators in this study are 

brine-saturated carbonate core plug samples. Carbonate minerals like calcite, aragonite, 

and dolomite by themselves can be seen as perfect electrical insulators, as they do not 
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conduct electrical charge. It is the brine in the pore system of natural carbonate rocks that 

allows for polarization effects to occur. These dielectric phenomena show a strong 

variation with the frequency of the applied voltage, i.e. a frequency dispersion of the 

strength of the charge separation based on how fast the AC electric field is reversed (Figure 

4.1).  

 
This frequency-dependency is related to the ability of the polarizing mechanism to keep 

up with the alternating field direction. All motions, including dipole motions, have a certain 

inertia. Additionally, different electric dipoles (atomic, molecular, and interfacial) have 

different relaxation frequencies. Above a certain frequency the oscillatory motion of the 

dipole in the alternating electric field is damped. It is evident that small-scale movements 

like the shift of an electron cloud (atomic polarization) require less time than the physical 

shift of cations from one pore wall to the opposing pore wall within the pore system 

(interfacial polarization). Hence, the different mechanisms are only effective at certain 

frequency ranges, where their charge movement can keep up with the change of the applied 

 

Figure 4.1: Polarization effects at 
different frequency ranges and length 
scales (modified from Ellis & Singer, 
2007). Interfacial polarization controls 
low-frequency range (kHz) dispersion 
effects on a pore scale. These effects are 
exploited in this study. 
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electric field. Mechanisms with high inertia (molecular and interfacial) will not be active 

above a certain frequency threshold. 

At high frequencies (THz range), the charge separation is induced by atomic 

polarization (i.e. preferential orientation of the electron cloud of an atom). At intermediate 

frequencies (GHz to MHz range), molecular polarization is the driving force (e.g. the 

orientation of water molecules in the pore system). At low frequencies (kHz range), the 

charge separation is mostly due to interfacial polarization at the fluid-grain interface that 

consists of preferential spatial accumulation of charged cations within the confinements of 

the pore structure. This interfacial polarization is also known as the Maxwell-Wagner effect 

(Wagner, 1914). It is a strong function of the pore structure of the rock, including texture, 

connectivity, and clay content in shale (Wang & Poppitt, 2013).  

Methods 

Porosity and permeability 

All measurements are performed on 1-inch or 1.5-inch diameter core plugs. Plug 

porosity is measured with helium pycnometry utilizing Boyle’s law by subtracting the true 

pycnometer grain volume from the bulk volume determined by caliper measurements of 

the outside dimensions of the plug. Plug permeability is determined externally with 

industry-standard Klinkenberg-corrected gas permeability measurements.  

Pore geometry (PoA, DOMsize, Slope D) 

Analysis and quantification of pore geometry is performed on blue epoxy dyed thin-

sections. Thin-section images are stitched, segmented, and parameterized in an automated 

Matlab environment with the digital image analysis (DIA) methodology from Weger et al. 

(2006, 2009). Main output variables are Dominant Pore Size (DOMsize) and Perimeter 
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over Area (PoA). DOMsize is the upper boundary of pore sizes of which 50% of the 

porosity on a thin section is composed. The parameter gives a good indication of the overall 

pore network size. PoA is the ratio of the sum of the perimeter of all pores identified on a 

cross-section and the sum of the area of these pores. The parameter describes the 

complexity of the pore network. Both parameters describe important aspects of the pore 

geometry of a sample with a single number, which allows large datasets to be compared 

and trends to be recognized. 

Pore size distributions are analyzed by distributing all pores identified from DIA into 

non-linear bins according to their pore size. Consequent bins always double in bin width. 

Pore size frequencies are then normalized by analyzed area and bin width, and results 

plotted against bin centers on a double logarithmic scale (Klaver et al., 2012; Houben et 

al., 2013; Hemes et al., 2015). Least square linear regression analysis is used to quantify 

the power law exponent or slope of the pore size distributions: 

Slope D = −
log� Pore size frequency

 Analyzed area∗ Bin width�

log (Pore size)
  

Eq. 4.1 

The negative value of the slope (D = - slope) thereby represents the fractal dimension 

of the pore space (Mandelbrot, 1967); it is referred to as Slope D hereafter. 

Complex resistivity spectra 

Resistivity measurements are performed in a log sweep from 0.1 – 100,000 Hz on 35 

ppt NaCl brine-saturated core plugs inside a pressure chamber to simulate subsurface 

conditions. The pore pressure (PP) is held at a constant 3 MPa while confining pressures 

(CP) are varied from 5 to 23 MPa for effective pressures (EP) of 2 – 20 MPa (EP = CP – 

PP). Some more fragile samples have only been measured at up to 10 MPa EP or broke at 

higher EP. For consistency, 10 MPa measurements of pore fluid temperature corrected 
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(Arps, 1953) resistivity amplitude values at 720 Hz are used for calculations of cementation 

exponents in all samples with Archie’s (1942) empirical formula: 

FF =  Rf
Rw

=  Φ−m  Eq. 4.2 

where FF is the formation factor, Rf is the measured resistivity at 720 Hz and 100% 

water saturation, Rw is the resistivity of the saturating fluid, φ is the porosity, and m is the 

cementation exponent. 

Plug-diameter silver membrane filters ensure contact between plug and current 

electrodes of the core plug holder while still allowing fluid flow. Silver filters are used as 

they have shown the least electrode impedance. A true 4-electrode setup is achieved by 

separating the voltage contacts from the current electrode silver filters with polyester felt. 

This way, voltage measurements can be made without the influence of electrochemical 

reactions at the current electrodes. The four-electrode measurement technique also has the 

advantage of eliminating contact impedances due to the small current drawn by the 

voltmeter (Garrouch & Sharma, 1992). In our measurement setup, the reference resistor is 

in series with the sample. Two input amplifiers measure the voltage across the reference 

resistor and across the sample, and a digital oscilloscope records these signals. The phase 

shift and amplitude ratio between the two signals is used to measure the complex electrical 

impedance (Z*) of the sample, 

Z∗ = R − iX Eq. 4.3 

where R is the resistance and iX the reactance (Knight & Nur, 1987). To analyze the 

frequency dispersion of complex resistivity, amplitude and phase shift are measured across 

the frequency range from 0.1 – 100,000 Hz. The resulting CRS curves show most reliable 

data and highest variability in amplitude and phase shift between 10,000 – 100,000 Hz. 
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Therefore, we use this range to define the frequency dispersion of the individual samples 

by fitting a linear equation to both amplitude and phase shift dispersion curves (Figure 4.2).  

 

Figure 4.2: Example of amplitude and phase 
shift curves of complex resistivity for a single 
sample. Vertical dotted lines at 10,000 and 
100,000 Hz indicate fitting range for extraction of 
slopes βamplitude and βphase. 

 
The fitting is performed for each individual measurement at all pressure steps 

experienced by a sample. Resulting slopes are subsequently averaged to minimize potential 

bias of individual measurements.  For quality control of CRS, 113 samples with standard 

deviation of more than 0.1 between slopes at individual pressure steps are excluded (217 

samples left). Since slopes can show errors and high variance even when their average is 

around zero, no quality control approach based on percentages could be chosen. The 

averaged slopes βamplitude and βphase of the CRS curves are then used as input for predictions 

of reservoir properties like permeability and cementation exponents. 

Parameter predictions 

Based on a previous model by Tong & Tao (2008): 
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K = aΦBβphase
c  Eq. 4.4 

 we show a new approach to predict 1) permeability (K) from CRS slopes and 

resistivity, and 2) cementation exponent (m) from CRS slopes and porosity. For 

comparison we show predictions where CRS are interchanged with pore geometry 

parameters from digital image analysis. The constants a, b, c, and d in these new models 

are determined with unconstrained nonlinear optimization (Nelder & Mead, 1965). In this 

optimization no boundary conditions are set when trying to minimize the error between 

input and output value.  

The error minimization is first performed on each of the twelve datasets individually, 

whereby the constants abcd can be tuned to each dataset, and the output is combined 

afterwards. This involves twelve different sets of abcd parameters. Consequently, a 

relatively high correlation coefficient between input and estimated output values is 

expected. In a second step, error minimization is done for the entire dataset, where 

constants abcd have to account for the heterogeneity of the entire dataset. This involves 

only one set of abcd parameters. Thus, a lesser correlation is expected. The equations are 

shown in the individual results sections for predictions from DIA and CRS, respectively. 

It has to be emphasized that the constants abcd are different for each of these equations 

and also within each individual dataset. Due to space restrictions we do not show all 52 

equations.  

Dataset 

The dataset includes 330 carbonate core plug samples from the data base of the CSL – 

Center for Carbonate Research at the University of Miami. Samples are from twelve 

separate studies and study areas and include a very diverse range of carbonate rock types. 
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Sample rock types cover the entire Dunham (1962) spectrum in texture (mudstone, 

wackestone, packstone, grainstone, boundstone, and crystalline dolomite) and pore types 

(Choquette and Pray, 1970) and include a wide variety of microbialite boundstones like 

stromatolite, tufa, and travertine. Microbialite reservoirs can often be found at great burial 

depths and below thick salt layers, which makes development of such fields even more 

challenging (Machado et al., 2011; Rezende et al., 2013). Consequently, efficient 

production from these deep formations requires as much information as possible about their 

reservoir quality, preferably without the need for expensive coring. The large variety of 

samples encompasses most carbonate pore types and ensures the applicability of the results 

from this study to a wide range of carbonate rocks. 

Results 

Porosity, permeability, and cementation factor m 

Porosity ranges from 1.1 – 49.2 % and permeability from 0.001 – 47,598 md in our 

dataset (Figure 4.3; left). This extreme range in both porosity and permeability reflects the 

wide variety of carbonates in the dataset. The weak correlation between porosity and 

permeability of R2 = 0.39 illustrates the issues when trying to predict permeability from 

porosity, and emphasizes the discrepancy between flow and storage properties in carbonate 

rocks.  
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Figure 4.3. Cross-plots of porosity vs flow 
properties for 330 carbonate core plug 
samples that are color-coded according to 
individual datasets. Left: Porosity-
permeability cross-plot. Right: Porosity-
cementation factor cross-plot.  The 
correlation coefficient is low in both 
situations. 

 
Cementation factors range from m = 1.03 – 5.27 (Figure 4.3; right). This wide range of 

the cementation exponent m is characteristic for carbonate rocks (Glover, 2009; Verwer et 

al., 2011). The weak correlation of R2 = 0.15 between porosity and cementation exponents 

illustrates the difficulty relating porosity alone to other petrophysical properties in 

carbonates.  

There is a large variability in porosity within most sub-datasets. Reefal grainstones and 

stromatolites show the highest porosity values, mudstones and wackestones the lowest. 

Travertines, dolomites, and Cretaceous rudist wackestones and grainstones can also show 

very low porosities. 
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Permeability values are highest in stromatolites, tufas, and Cretaceous reefal 

grainstones. While most datasets contain low-permeability samples (< 0.01 md), 

stromatolite datasets do not contain samples with permeability lower than 17 md (Figure 

4.3).  

Cementation factors again show high variability within each sub-set. Highest m-values 

can be found in travertines and reefal grainstones; the lowest in mudstones, wackestones, 

and, surprisingly, Mallorca stromatolites. 

PoA and DOMsize 

The pore structure is assessed with DIA following the protocol described by Weger 

(2006). The quantitative pore structure parameter Perimeter of Area (PoA) is a measure of 

how complicated/intricate the pore system is, while the Dominant Pore Size (DOMsize) 

describes the size of the pores (Weger et al., 2009). PoA ranges from 8 - 328 mm-1 and the 

DOMsize from 8 - 3099 μm in the entire dataset. The wide spread of these parameters 

underlines the variety of pore types in carbonates. The individual sub-sets display less 

variability of pore structure, as they tend to plot in a certain area of the PoA-DOMsize 

cross-plot (Figure 4.4). This reduced variability within the individual sub-datasets will be 

important when modeling reservoir properties. 
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Figure 4.4: Scatterplot of Perimeter over Area 
(PoA) versus Dominant Pore Size (DOMsize) 
for the individual datasets that have been 
combined for this study. Plot illustrates the 
extreme variability of pore geometry in the 
combined dataset, with individual datasets being 
less variable. 

 
Stromatolites, travertines, and tufas show the highest pore sizes and least complex 

pores (high DOMsize, low PoA), while wackestones, packstones, and mudstones show the 

smallest pore sizes with highest complexity (low DOMsize, high PoA).  

When looking at the dataset as a whole, it is apparent that pore geometry parameters 

DOMsize and PoA are closely linked to both permeability (Figure 4.5; left) and 

cementation exponents (Figure 4.5; right).  
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Figure 4.5: Cross-plots of Perimeter over Area (PoA) vs. Dominant Pore Size 
(DOMsize), color-coded with permeability (left) and cementation factor m (right). Both 
permeability and cementation exponents are higher in the samples with higher DOMsize 
and lower PoA (large and simple pores). 

 
As a general trend large and simple pore structures (high DOMsize, low PoA) result in 

higher values of both permeability and cementation exponents. However, there are 

significant outliers with low permeability or low cementation factors and large and simple 

pore structures. This can be attributed to samples with unconnected, vuggy pores (e.g. 

rudist limestones) or layered pore structures (e.g. travertines and tufas), which are 

characterized by anisotropy in pore structure and resulting petrophysical properties. 

Slope D 

All 330 carbonate samples show power law distributions of pore sizes across the 

investigated length scales (30 μm thin-section thickness up to thin-section size ~ 2.5 cm2) 

as indicated by the good fit of a log-log linear regression curve to the data points. The 

fractal dimension of the sample is the Slope D of its power law distribution. A shallow 

Slope D is produced by simple pore geometries and hence higher permeabilities (Figure 

4.6; top). Similar trends can be seen when relating pore size distributions to cementation 
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factors. Shallower Slope D and less complex pore structure results in higher cementation 

factors (Figure 4.6; bottom). 

 

 

 

Figure 4.6: Pore size distributions of 330 carbonate samples acquired with digital 
image analysis on thin-sections, plotted on log-log scale using non-linear binning in 
order of their Slope D. Log-log linear distribution indicates a power law distribution 
and fractal scaling. Color-coding displays the correlation between Slope D and 
permeability (top) and cementation factor (bottom). 

 
Similar to PoA, Slope D values are highest in mudstones and lower in stromatolites, 

travertines, and tufas. Dolomites show high Slope D values, but also the lowest of the entire 

dataset, indicating a wide range from very simple to relatively complex pore structures in 

dolomites, possibly related to the precursor rock and extent of dolomitization. 
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Table 4.1 gives an overview of the ranges of petrophysical and pore geometry 

parameters within the individual datasets, as well as general information about locality, 

age, rock type, and the associated study: 

 

Table 4.1: Information about locality, age, rock type, petrophysical parameters porosity, 
permeability, and cementation factor, and pore geometry parameters DOMsize 
(Dominant Pore Size), PoA (Perimeter over Area), and Slope D (slope of log-log power 
law pore size distribution) for the individual sub-datasets. 

 
Predictions from DIA 

DIA parameters DOMsize and PoA describe two aspects of the pore geometry that, in 

addition to porosity, are known to influence the petrophysical properties in carbonate rocks 

(Anselmetti et al., 1998; Eberli et al., 2003; Weger et al., 2009; Verwer et al., 2011; 

Norbisrath et al., 2015). Thus, predictions using these parameters should yield high 

correlation coefficients between measured and estimated values.  

Age Rock type Study Phi [%] K [md] Cementation factor m DOMsize [μm] PoA [mm-1] Slope D

Holocene Stromatolite (Hamelin 
Pool)

Karaca, 2015 16.4 - 35.7 577.69 - 8990.65 2.13 - 3.43 419.5 - 3099.4 9.3 - 54.3 1.5 - 1.8

Miocene Stromatolite Eberli et al. ,2014 18.7 - 38.8 17.18 - 396.03 1.03 - 2.75 42.3 - 1435.1 22.3 - 148.1 1.5 - 2.1

Holocene Travertine Eberli et al. ,2014 2.6 - 23.6 0.005 - 47598.00 1.90 - 5.26 139.1 - 2178.1 8.1 - 89.9 1.4 - 1.9

Holocene Tufa Eberli et al. ,2014 8.5 - 24.8 0.18 - 12859.46 2.17 - 3.64 76.4 - 1889.4 13.9 - 108.4 1.5 - 1.9

Holocene Stromatolite 
(Bahamas)

Eberli et al. ,2015 12.8 - 32.2 70.04 - 1694.77 2.08 - 2.62 180.3 - 448.1 32.1 - 82.3 1.5 - 1.9

Mississippian Crystalline Dolomite Smith et al. 2004; Westphal et al., 
2004; Norbisrath et al, in press

2.2 - 29.4 0.002 - 319.25 1.79 - 3.64 7.9 - 591.5 27.3 - 272.5 1.2 - 2.3

Miocene Reefal Framestone and 
Grainstone

Ditya, 2012 9.0 - 49.2 0.01 - 19376.03 2.11 - 5.27 27.6 - 982.1 24.9 - 252.9 1.5 - 2.2

Cretaceous Rudist Wackestone to 
Grainstone

Anselmetti et al., 1993 1.1 - 24.7 0.001 - 94.34 1.59 - 3.20 15.5 - 399.4 53.7 - 327.9 1.5 - 2.3

Permian Oolithic  Packstone and 
Grainstone

16.1 - 28.7 0.001 - 0.31 2.64 - 3.19 177.5 - 412.4 22.7 - 72.5 1.6 - 1.8

Carboniferous Wackestone / 
Packstone

2.1 - 11.6 0.002 - 3.27 1.74 - 2.40 14.5 - 458.6 23.8 - 278.3 1.5 - 2.5

Cretaceous Rudist Limestone, all 
textures

Weger et al., 2009 10.6 - 30.4 0.06 - 290.54 1.71 - 2.53 39.1 - 570.4 41.3 - 167.1 1.7 - 2.2

Tithonian-
Berriasian

Mudstone to Oolithic 
Packstone

Zeller et al., 2013 1.9 - 11.0 0.001 - 0.78 1.34 - 2.32 13.7 - 36.2 159.2 - 295.5 2.1 - 2.8
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Permeability (K) is predicted using Equation 4.5 from both resistivity (Ω) and DIA 

parameters (DOMsize and PoA): 

Kestimated = aΩbDOMsizecPoAd Eq. 4.5 

The constants abcd are first defined for each individual sub-dataset and subsequently 

for the entire data set. When constants abcd are tuned to sub-datasets, the correlation 

coefficient for permeability predictions from DIA is R2 = 0.75 (Figure 4.7; left), and when 

constants abcd are tuned to the entire dataset it is R2 = 0.53 (Figure 4.7; right).  

  

 

Figure 4.7: Permeability predictions from 
resistivity and DIA (Eq. 4.5) for entire 
dataset with constants abcd defined for 
individual sub-datasets (left) and with 
constants abcd defined for entire dataset 
(right). 

 
Cementation factor (m) is predicted using Equation 4.6 from both porosity (φ) and DIA 

parameters (DOMsize and PoA). 
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mestimated = aφbDOMsizecPoAd Eq. 4.6 

When constants abcd are tuned to the individual sub-datasets, the correlation 

coefficient for cementation factor predictions from DIA is R2 = 0.70 (Figure 4.8; left). 

When abcd are tuned to the entire dataset, the correlation coefficient is R2 = 0.33 (Figure 

4.8; right). 

  

 

Figure 4.8: Cementation factor m 
predictions from porosity and DIA (Eq. 
4.6)  for entire dataset with constants abcd 
defined for individual sub-datasets (left) 
and with constants abcd defined for entire 
dataset (right). 

 
Although for simplicity not further discussed here, the parameter Slope D can be used 

interchangeably for DOMsize or PoA in Equations 4.5 and 4.6, and achieves similar or 

better correlation coefficients (permeability predictions using Equation 4.5 with Slope D 

instead of PoA: R2 = 0.80; cementation factor predictions using Equation 4.6 with Slope D 

instead of PoA: R2 = 0.71). 

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

m measured

m
 e

st
im

at
ed

 

 

Constants defined for individual sub-datasets
Input:   Porosity & DIA
QC:     Off

R2 : 0.7

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

m measured

m
 e

st
im

at
ed

 

 

Constants defined for entire dataset
Input:   Porosity & DIA
QC:     Off

R2 : 0.33

 

 

 

 Modern Stromatolite (Hamelin Pool)
Miocene Stromatolite
Holocene Travertine
Holocene Tufa
Modern Stromatolite (Bahamas)
Mississippian Dolomite
Miocene Reefal Framestone/Grainstone
Cretaceous Rudist Packstone/Grainstone
Permian Oolithic Packstone/Grainstone
Carboniferous  Wackestone/Packstone
Cretaceous Rudist Limestone
Tithonian/Berriasian Mudstone-Oolithic Packstone



98 

Complex Resistivity Spectrum 

The CRS show distinct behavior for samples with different permeability and formation 

factors (Figure 4.9). Generally, amplitude signals are often flat across the measurement 

range with drops above a certain frequency, whereas phase shift spectra show more 

variability. Most samples show distinct peaks or lows in the 100 – 10,000 Hz range. 

Samples with a flat amplitude signal (over the entire 10-100,000Hz range) and low phase 

shifts (log iX < 0) display higher permeabilities (> 100 md) (Figure 4.9; left), indicating 

that a change in frequency influences the CRS less in samples with higher permeability. 

The characteristic CRS shapes allow the low- and high-permeability samples to be 

differentiated using frequency-dependent electrical measurements that ultimately enable 

our permeability predictions. 

  

  

Figure 4.9: Complex resistivity amplitude (top) and phase spectra (bottom) of 330 
carbonate plug samples, color-coded with permeability (left) and formation factors 
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(right). The amplitude curves (top) display less spikes and thus are more robust than the 
phase shift curves (bottom). Left: Samples with lower permeability show earlier drops 
in amplitude that coincide with phase shifts peaks. Right: Formation factors show 
excellent correlation with CRS curves. Samples with lower formation factors show flat 
amplitude curves and increase in phase shift towards higher frequencies. 

 
Similar yet better defined trends exist for formation factors FF (Figure 4.9; right). The 

FF is the ratio of measured resistivity of the plug sample at 100 % water saturation over 

the resistivity of the saturating brine and is used to calculate cementation factors. Samples 

with a drop in amplitude signal (above 100 Hz) and high phase shifts (log iX > 0) display 

higher formation factors (FF) over log FF = 2.5. Hereby, drops in amplitude signal coincide 

with characteristic phase shift peaks at similar frequencies. The nearly perfect zonation of 

colors according to the FF illustrates the high correlation between CRS and FF, and 

explains the excellent fit when estimating cementation factors with CRS as input.  

CRS vs. DIA 

CRS parameters show a direct link to permeability and formation factor (Figure 4.9), 

similar to pore geometry parameters DOMsize and PoA (Figure 4.5). Hence it is to be 

expected that they will also correlate to each other. Indeed, samples with simple pore 

structures (high DOMsize, low PoA) show generally more negative slopes of βamplitude and 

βamplitude (Figure 4.10). Since CRS and pore geometry are interconnected, CRS shape 

parameters are expected to achieve similar high correlation coefficients for reservoir 

property predictions. 



100 

  

Figure 4.10:  Cross-plots of Perimeter over Area (PoA) vs. Dominant Pore Size 
(DOMsize), color-coded with βamplitude (left) and βphase (right), illustrating link of 
CRS parameters to pore geometry. Samples with more negative βamplitude slopes tend 
to have large and simple pore structures (high DOMsize, low PoA), similar to samples 
with negative βphase slopes.  

 
Predictions from CRS 

Predictions of petrophysical parameters from CRS shape parameters show generally 

higher correlation coefficients than predictions from DIA parameters DOMsize and PoA. 

This underlines the strong connection between low-frequency complex resistivity 

dispersion and pore geometry-controlled petrophysical parameters. 

Permeability can be predicted from resistivity (Ω) and CRS (βphase and βamplitude) using 

Equation 4.7 despite the high variability in each data subset.  

Kestimated = aΩbβphase
c βamplitude

d  Eq. 4.7 
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Figure 4.11: Permeability predictions 
from resistivity and CRS (Eq. 4.7) for 
entire dataset with constants abcd defined 
for individual subsets (left) and with 
constants abcd defined for entire dataset 
(right). R-squares without quality control 
(QC): 0.81 (left) and 0.43 (right). 

 
Combining results from individual predictions, i.e. tuning the constants abcd to the 

individual data subsets, the method achieves a correlation coefficient of R2 = 0.84 (Figure 

4.11; left). This is significantly better than the outcome from predictions based on DIA 

parameters with R2 = 0.75 (Figure 4.7). 

However, the prediction of permeability with constants abcd determined for the entire 

dataset lowers the correlation coefficient to R2 = 0.48 (Figure 11; right), which is less than 

with digital image analysis (DIA: R2 = 0.53). A diminished correlation is to be expected, 

as the combined dataset contains extreme sample heterogeneity that is unlikely to occur in 

a given well or even within one oil field.  
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Predictions of cementation exponents (m) from porosity (φ) and CRS (βphase and 

βamplitude) using Equation 4.8 generally have higher correlation coefficients than predictions 

of permeability.  

mestimated = aΦBβphase
c βamplitude

d  Eq. 4.8 

When constants abcd are tuned to the individual sub-sets, correlation coefficients for 

cementation factor predictions from CRS are excellent with R2 = 0.91 for the combined 

results (Figure 4.12; left). Furthermore, even the prediction of cementation factors from 

CRS with constants abcd determined on the entire, extremely heterogeneous dataset show 

a very high correlation coefficient of R2 = 0.80 (Figure 4.12; right). The correlations are 

substantially better than what is achieved with DIA input parameters (R2 = 0.7 and 0.33, 

respectively). 
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Figure 4.12: Cementation factor m 
predictions from porosity and CRS (Eq. 
4.8)  for entire dataset with constants 
abcd defined for individual sub-sets (left) 
and with constants abcd defined for 
entire dataset (right). R-squares without 
quality control (QC): 0.87 (left) and 0.74 
(right). 

 
The high correlation coefficient of R2 = 0.80 includes all samples from twelve 

extremely diverse carbonate datasets, indicating that a single equation can be used to 

estimate cementation exponents from CRS and porosity in carbonate rocks: 

mestimated = = 1.25 Φ0.4 βphase
−0.012βamplitude

0.111   Eq. 4.9 

In this equation, the constants abcd are determined by unconstrained nonlinear 

optimization using the entire dataset of 330 diverse carbonate rock samples.  

Discussion  

Pore geometry 

This study emphasizes the extreme variability of pore geometry in carbonate rocks, 

which results in a large scatter between porosity and both permeability (Figure 4.2) and 

cementation factors (Figure 4.3). Thin-section digital image analysis (DIA) parameters 

illustrate the heterogeneity of the analyzed dataset with a broad spectrum of pore sizes 

(DOMsize) and pore network complexity (PoA) (Figure 4.4). These parameters have a 

close relationship to flow properties, where large and simple pore structures generally 

result in both high permeability (Figure 4.5; left) and high cementation factors (Figure 4.5; 

right). These findings corroborate previous studies on smaller datasets of carbonates 

(Weger et al., 2009; Verwer et al., 2011). 
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Fractal pore area distributions  

Pore size distributions show a power-law distribution when plotted on double-

logarithmic scale using non-linear binning (Figure 4.6). Fractals seem to be a re-occurring 

phenomenon in many natural systems (Mandelbrot, 1967; Turcotte & Brown, 1993). The 

Slope D of the pore size distribution also relates to flow properties of a sample, confirming 

that the Slope D is the fractal dimension and a measure of the complexity of a system, 

which in our case is the pore structure of individual samples. As a consequence, higher 

Slope D and higher complexity results in lower permeability (Figure 4.6; left) and lower 

cementation factors (Figure 4.6; right).  

The fractal scaling of pore sizes could prove useful when available data about pore size 

distributions or pore geometries is scarce in certain scenarios. Under the assumption of 

scale-invariance of a pore system, statistics gathered at a certain scale can be used to 

determine pore distributions at smaller or larger scales (Purkis et al., 2015). Scaling rules 

are also valuable when building reservoir models and populating such models with pore 

parameters. Broad-ion-beam SEM (BIB-SEM) studies show that the fractal scaling in 

carbonates extends downwards from macropores into the micro- and nanopore range 

(Norbisrath et al., 2015). It has still to be tested if fractal scaling rules exist upwards of 

thin-section macropore scales. Such studies would have to include full-core scans or image 

logs. Several studies show that the fractal scaling is not only applicable to carbonates, but 

scale-invariant pore size distributions also occur in clays and mixed carbonate-siliciclastic 

rocks (Desbois et al., 2011; Curtis et al., 2012; Klaver et al., 2012; Houben et al., 2013; 

Hemes et al., 2015; Norbisrath et al., in press). 
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Predictions from pore geometry 

Since pore geometries have deep ties with flow properties, they can be used for 

predictions of such properties. Taking pore geometry parameters DOMsize and PoA from 

DIA together with resistivity as input for permeability models, correlation coefficients of 

up to R2 = 0.75 are achieved (Figure 4.7; left). The good correlation implies that DIA 

parameters can accurately describe the efficiency of the pore structure to allow fluid flow. 

Furthermore, predictions of cementation factors from DIA and porosity also show good 

correlation coefficients of R2 = 0.70 (Figure 4.8; left).  The extraction of pore geometric 

parameters, however, requires extensive and expensive special core analysis and digital 

image analysis of thin-sections. Although the measurements of electrical properties are also 

laborious, predictions from CRS parameters yield higher correlation coefficients. This 

advantage could partially be due to the inherent 3-dimensionality of an electrical 

measurement as compared to a 2-dimensional thin-section analysis, which may be a less 

adequate representation of the entire plug volume. 

Complex resistivity spectra 

In carbonate reservoirs flow properties are often hard to predict because of the 

complexity of the pore network. Mercury injection capillary pressure or a combination of 

NMR and borehole image logs are common techniques to tackle this “carbonate 

conundrum” (Ahr et al., 2005; Machado et al., 2011; Hulea & Nicholls, 2012). Exploiting 

the frequency dispersion of kHz-range complex resistivity presented in this study offers a 

new approach for this longstanding challenge. The feasibility of this approach is indicated 

by the excellent correlations between the frequency dispersion of kHz-range complex 

resistivity spectra (CRS) and petrophysical flow properties in a wide range of carbonate 
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core plug samples. Below we discuss this potential and how the fundamental relationships 

between low-frequency resistivity spectra and flow properties might be implemented in 

wire-line logging. 

Chemali et al. (1995) observed little influence of polarization on low-frequency (20 

kHz) wireline induction logging resistivity measurements. This agrees with our results, 

where this frequency represents a threshold above which the resistivity amplitude in most 

samples is severely affected by polarization effects. However, samples with low 

permeability and formation factors already show significant polarization effects even 

below 20 kHz (Figure 4.9). 

Seleznev et al. (2011) show that MHz- to GHz-range dielectric logging is a fast and 

convenient way to determine kerogen content and salinity in oil shales. Bean et al. (2013) 

also confirm the use of these high-frequency dielectrics for estimates of water-filled 

porosity in wells drilled with oil-based mud. Anderson et al (2008) describe a technique of 

processing existing data from induction logs operating at lower frequencies to assess the 

dielectric permittivity for the identification of gas-producing shales. These workers use 

inversion to calculate dielectric constants from the 26 kHz and 52 kHz induction logs. The 

dielectric inversion results show dispersion effects, especially in low-resistivity rocks. 

They calibrate the results by laboratory core measurements and provide a means for 

identifying different rock types directly from resistivity logs, in shales and shale-bearing 

rocks. The results presented in this paper corroborate their assumption and expand them 

into carbonates, where dielectric dispersion allows us to estimate flow properties in a 

petrophysical rock typing approach. In a similar approach, Wang & Poppit (2013) 

demonstrate the use of several existing logging tools to study the frequency dispersion in 
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a gas shale formation, including wireline induction (26 kHz), LWD propagation (1MHz 

and 2 MHz), and wireline dielectric tools (4 frequencies from 20 MHz to 1 GHz). They 

show that dielectric dispersion is a function of clay volume and directly related to electrical 

double layer (EDL) polarization effects and the cation exchange capacity (CEC) in clays 

(Han et al., 2012). 

Carbonates also display significant dielectric properties, possibly due to prevalence of 

extensive amounts of microporosity in carbonate rocks (Smith et al., 2003; Ahr, 2005; 

Verwer et al., 2011; Hulea & Nicholls, 2012; Lucia & Loucks, 2013; Harland et al., 2015). 

In addition, the dielectric dispersion is directly related to the formation factor (Figure 4.9; 

right) and to permeability (Figure 4.9; left), which are measures of the connectivity and 

openness of a pore system and are related to its specific surface area (the amount of pore 

wall area per volume). This corroborates the concept of low-frequency polarization effects, 

where interfacial polarization effects control low-frequency dielectric dispersion (Figure 

4.1; Ellis & Singer, 2007). 

Predictions from CRS 

In our carbonate dataset, permeability can be estimated with great accuracy (R2 = 0.84) 

just using electrical resistivity and CRS, if the model constants abcd are determined for the 

individual datasets (Figure 4.8; left). In a dolomite dataset from the Mississippian Madison 

Formation in Wyoming, for example, the method achieves a correlation coefficient of R2 

= 0.82 for permeability predictions (Norbisrath et al., in press). This shows that 

permeability predictions are feasible within a well or a field only with knowledge about 

the general rock type from geological models or, if unavailable, with a few core plug 

samples to determine the constants. Furthermore, cementation exponents can be predicted 
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with high certainty (R2 = 0.80) from porosity and CRS in our entire dataset with a universal 

equation (Figure 4.12; right). Since this model was defined from a comprehensive dataset, 

it could be used as a universal tool to predict cementation exponents in carbonate rocks 

(Eq. 4.9). This implies that cementation factors, which vary widely in carbonates (from 

1.03 – 5.27 in our data set), potentially can be predicted in carbonates without core analysis 

or a knowledge of lithology.  The variations of the cementation exponent m, when not 

identified, alter the assessment of water and oil saturation, and can drastically influence the 

assessment of a prospect reservoir unit in terms of producibility.  

CRS frequency range 

The high accuracy of our prediction indicates that low-frequency CRS are susceptible 

to aspects of the pore structure in a similar way as the predicted parameters, permeability 

and cementation factors. CRS curves show most variation in the 10,000 – 100,000 Hz 

frequency range (Figure 4.9). Pore structures and resulting CRS curves can, however, vary 

drastically, and studies on dolomites (Norbisrath et al., in press) and on shaly sands (Tong 

& Tao, 2008) show that permeability predictions in those rocks work best when using the 

100 – 2,000 Hz range. Amplitude spectra are generally more consistent across the entire 

frequency range, while phase shift measurements often show spikes at low frequencies 

<100 Hz. This is probably due to electrode polarization of the measurement setup, although 

proper care was taken when mounting the sample. It appears that CRS measurements below 

100 Hz are not useful and can be omitted in further studies or in possible wireline 

applications. Furthermore, measurements in the low-frequency range require more time, 

as, for example, alternating the applied electric field once (one complete AC cycle) for the 

0.1 Hz measurement already takes up 20 seconds. This could become problematic during 
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well-logging where logging speeds are crucial, and hence it would be preferable if near-

DC measurements could be omitted. It has to be seen, however, if logging tools would 

profit from inclusion of low-frequency dispersion data, as these could possibly be related 

to larger-scale features like karsts or fractures. 

Challenges 

Since we assume that the silver membranes used in our measurement setup establish 

good contact over the entire surface of both plug ends, our complex resistivity 

measurements are inherently 3-dimensional, and the resulting amplitude and phase shifts 

are a result of a combination of all features of the rock volume and its pore structure. This 

implies that CRS curves contain the most reliable information for more homogeneous plug 

samples. However, homogeneity is often not given for carbonate core plug samples, which 

complicates accurate permeability and cementation factor predictions. This is especially 

true for datasets with rocks that show extensive anisotropy due to layering (travertines, 

tufas, some mudstones), fractures, and vuggy porosity (reefal framestones). These features 

seem to go undetected by dielectric measurements. This plug-scale heterogeneity 

underlines the often-discussed issues of upscaling results from core plugs into reservoir 

models, as the small core plug cannot be used to represent large-scale, heterogeneous flow 

units. However, a continuous dielectric measurement from a wireline tool, could 

potentially give a much more accurate depiction of the pore structure in a reservoir unit 

than could otherwise be obtained from plug measurements because the logging tool 

integrates the low-frequency resistivity measurement over a larger unit.  
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Technology for wireline applications 

The fundamental relationships between low-frequency resistivity spectra and flow 

properties could be tested in a well-logging scenario. However, CRS frequencies used in 

this study for flow predictions are not covered by existing logging tools. Dielectric 

dispersion properties are to date mostly used to estimate water saturations and salinity with 

tools operating at a much higher frequency range (20 MHz to 1 GHz) (Hizem et al., 2008). 

Since there are currently no tools measuring low-frequency CRS, testing our findings 

obviously necessitates the development of a new low-frequency dielectric tool.  

Laterolog and induction resistivity logging tools with multiple transmitter-receiver 

spacings are already common, but mostly used for invasion profiling and skin-effect 

correction. Hypothetically, their measurement frequencies could be changed so that they 

would measure at different frequencies but at the same investigation depth. Furthermore, 

it might be possible to process the signal of existing induction logging tools to analyze 

dielectric dispersion effects after Anderson et al. (2008). This approach, however, is limited 

to the measurement frequencies of these tools. The concept for a wireline tool that measures 

complex resistivity with variable length arrays is shown by Sternberg et al. (1987) and at 

variable frequencies by Scott & Olhoeft (1980). 

Our permeability and cementation factor prediction models use CRS and resistivity or 

porosity input data (Eq. 4.7 and 4.8), respectively. In a well-logging scenario, resistivity 

data for permeability predictions can be acquired from conventional deep resistivity tools. 

Porosity data as input for cementation factor predictions can come from conventional 

density-neutron porosity logs. To acquire CRS data, a new low-frequency complex 
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resistivity wireline tool would have to be developed. Based on our results, target frequency 

range for this tool would be 100 – 100,000 Hz (Figure 4.9; bottom). 

Since the prediction method includes constants that change for different rock types, a 

general idea of the lithology down-hole would be required. Sidewall core could be used to 

calibrate the tool with plug measurements. For the prediction of cementation exponents, on 

the other hand, one could potentially use the universal parameters put forward in this study, 

which have been shown to produce reliable estimates in all analyzed samples across a broad 

range of carbonate rock types (Eq. 4.9). However, a new tool would have to be calibrated 

with and compared to CRS and flow parameters from core plug measurements. 

A calibrated low-frequency dielectric wireline tool could greatly enhance the down-

hole assessment of pore geometry and the intrinsic reservoir properties of a reservoir unit, 

especially in heterogeneous carbonate rocks. Specifically, the continuous measurement this 

tool could provide has great advantages over solitary core plug measurements or well tests 

at certain depths. Continuous permeability and cementation exponent curves would be of 

high value in both exploration and production phase, to determine perforation intervals and 

later understand the dynamic flow of the reservoir model. Additional usage scenarios for a 

potential low-frequency dielectric wireline tool could be both for conventional and 

unconventional reservoirs, as low-frequency CRS may contain many more undiscovered 

relationships between important reservoir parameters.  

Future work: temperature, salinity, and water saturation effects on dielectric 

properties 

There are three main uncertainties in the CRS prediction method. Firstly, the effects of 

changing water salinity should be studied. This study only uses samples saturated with 35 
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ppt NaCl brine. Weller et al. (2011) show that changing salinity mainly affects the overall 

value, but not the shape of their complex conductivity curves in three sandstone samples.  

Secondly, the effects of changing temperature on low-frequency dielectric properties 

in natural rocks have not been sufficiently assessed yet. All measurements in this study 

were performed at room temperature. It is well known, however, that high temperatures 

generally disturb the alignment of dipoles in an outer field, resulting in a decrease of the 

dielectric constant with temperature. It has yet to be seen if this decrease in dielectric 

constant follows a uniform pattern solely related to the pore structure, or if more 

complicated effects occur.  

Thirdly, the effects of changing water saturation or wettability have to be determined. 

All samples in this study are measured at 100% water saturation. Since dielectric properties 

in the low-frequency range are mostly attributed to the rock-fluid interface, wettability 

could have a great impact on the measured CRS. On the other hand, water saturation might 

not affect CRS much, as long as a continuous water film along the surface area of the rock 

is maintained, which would enable direct predictions of cementation exponents and 

permeability in at least partially hydrocarbon-saturated intervals, as well. Based on the 

CRS curves (Figure 4.9), peaks in phase shift especially in high-permeability samples often 

seem to occur above our measurement range of up to 100,000 Hz. Since our analyses and 

predictions involve slope data closely related to these peaks, further studies should include 

measurements possibly up to several hundred kHz.  

Conclusion 

Thin-section digital image analyses (DIA) corroborate previous findings of strong ties 

between pore structure and flow properties in carbonate rocks, where a large and simple 
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pore structure results in higher values of both permeability and cementation exponents. The 

pore size distribution in all 330 samples follows a power law that indicates fractal scaling 

of pore sizes in carbonate rocks. The power law implies predictability of the pore space, 

and could prove useful in data-scarce scenarios and in reservoir modeling. Fractal scaling 

of pore space potentially helps in the assessment of pore properties outside the scale of 

acquired data for a certain project or well. Similarly, it could help to upscale and populate 

a reservoir model with pore size information. 

Results from electrical measurements show that complex resistivity spectra (CRS) in 

carbonates are directly related to plug permeability and formation factors, and can be used 

to predict reservoir properties. Our prediction models include constants that are defined 

with unconstrained non-linear optimization between measured input and output 

parameters. When constants are defined on the twelve individual sub-datasets, the method 

achieves overall correlation coefficients of R2 = 0.84 and R2 = 0.91 for permeability and 

cementation factor predictions, respectively. When constants are defined on the entire 

extremely heterogeneous dataset, correlations are lower for permeability with R2 = 0.48, 

but still high for the cementation factor with R2 = 0.80. The high accuracy of predictions 

using CRS shape parameters leads us to propose the following universal equation to 

determine cementation factors from complex resistivity spectra: 

mestimated = = 1.25 φ0.4 βphase
−0.012βamplitude

0.111   Eq. 4.9 

All measurements are performed on core plugs in the laboratory, but the found 

relationships should also be applicable to wireline measurements. However, no low-

frequency dielectric wireline tool currently exists to measure CRS down-hole. Yet, it 

appears simple enough to engineer such a tool by modifying existing tools that measure 
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resistivity profiles. These tools use several transmitter-receiver spacings to achieve 

different depths of investigation but could theoretically be modified to measure at the same 

depth but different frequencies. Additionally, existing multi-array induction logs could be 

processed to gather information about low-frequency dielectric dispersion and establish an 

alternative method for assessment of reservoir properties down-hole. Such an endeavor 

would be especially advantageous in heterogeneous carbonate rocks where permeability 

and cementation factors are hard to assess. A continuous measurement of water saturation, 

and especially permeability, would greatly enhance reservoir models and reservoir 

estimates. Since CRS are mainly controlled by the pore geometry, these measurements 

could theoretically also be independent of water saturation or salinity. 
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Chapter 5: Nanopore Imaging in Vaca Muerta Mudrocks to Evaluate Controls on 
Complex Resistivity Spectra in Unconventional Reservoirs 
 
Summary 
 

Nanopore geometry and mineralogy are key parameters for hydrocarbon exploration 

and production in unconventional reservoirs. This study describes an approach to find 

relations between low-frequency complex resistivity spectra (CRS), nanopore geometry, 

and mineralogy in order to use CRS for estimates of reservoir parameters concerning flow, 

storage, and producibility.  

For this purpose, the frequency dispersion of CRS is analyzed in 56 mudrock core plugs 

from the Vaca Muerta Formation in Argentina, along with cementation factors (m), 

carbonate content (CO3) and total organic carbon (TOC). To quantify the nanoporosity, a 

subset of 23 samples are milled with broad-ion-beam (BIB and imaged with scanning 

electron microscopy (SEM); the image rasters of these samples are stitched together into 

high-resolution BIB-SEM mosaics and investigated with digital image analysis techniques. 

Furthermore, humidity-drying is used to study the relations between irreducible water 

saturation (Swirr) and electrical properties on a subset of 13 samples. 

In regards to controlling factors, porosity is the dominant control on electrical 

properties in these mudrocks.  The mudrocks have a more complicated pore geometry at 

nano scales when compared to the ISA2D in coarser-grained carbonates (see chapter IV). 

Yet no conclusive evidence that pore geometry influenced the electrical properties in the 

mudrocks is found. Pore geometry parameters Dominant pore size (DOMsize), Perimeter 

over Area (PoA), and the slope of the power-law pore size distribution (Slope D) do not 

correlate with cementation factors or CRS. Instead, mineralogy plays a decisive role in 

determining electrical properties. Cementation exponents are generally higher in rocks 
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with high TOC and low CO3 content, but predictability from CRS is limited with 

correlation coefficients of R2 = 0.47 and R2 = 0.49, respectively. CRS can be used to 

estimate porosity and cementation factors with high correlation coefficients of R2 = 0.71 

and R2 = 0.94, respectively. Estimates of the 2-dimensional Interfacial Surface Area 

(ISA2D), which is a function of both pore geometry and porosity, achieve an R2 = 0.59. 

The results of this study suggest that low-frequency dielectric rock properties, if 

measured down-hole, could be useful to find sweet spots in unconventional reservoirs, and 

to accurately determine cementation factors independent of formation fluids and porosity. 

Introductory Remarks 
 

Nano- and micropores are the dominant pore types in unconventional reservoirs but the 

controls of pore structure on petrophysical properties in unconventional rocks are poorly 

understood. This is mostly due to the small size of pores associated with clay minerals, 

which has prevented their accurate quantification for a long time (Bustin et al., 2009). 

Therefore, most researchers focus on indirect methods like mercury injection capillary 

pressure (MICP) (Nelson, 2009), nuclear magnetic resonance (NMR) (Clennell et al., 

2006), or gas adsorption (Clarkson et al., 2011, 2013) to assess the pore geometry and 

relations to flow and storage properties in fine-grained rocks. TOC-rich intervals invoke 

further difficulties, as they often show increased variability of pore types due to secondary 

porosity in mature organic matter (Passey et al., 2010; Pommer & Milliken, 2015). 

Recently, broad-ion-beam milling scanning electron microscopy (BIB-SEM) has been 

developed to create high-quality cross-sections in natural rocks that enables quantification 

of their micro- and nanoporosity (Loucks et al., 2009; Desbois et al., 2011; Laurich et al., 

2014; Klaver et al., 2015a, 2015b; Norbisrath et al., 2015). This pore-scale imaging method 
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is used here to assess the influence of nanopore geometry on dielectric rock properties. 

Specifically, it is also used to quantify the 2-dimensional Interfacial Surface Area (ISA2D), 

which represents the rock-fluid interface of a sample, and is supposed to have a strong 

influence on low-frequency dielectric rock properties.  

The BIB-SEM analysis also enables a unique quantitative and qualitative comparison 

of clay- and kerogen-dominated porosity in mudrocks with carbonate microporosity from 

a previous BIB-SEM study (Norbisrath et al., 2015). The assessment of electrical flow 

properties in samples with different mineralogy should further clarify if there are universal 

nanopore geometric factors controlling electrical resistivity, or if mineralogy plays a 

decisive role such as hydroxyl layers in swelling clays, increased double-layer surface 

conductivity in clays, and pyrite associated with clays. Furthermore, it is largely unknown 

how carbonate content and total organic carbon (CO3 and TOC) influence complex 

resistivity spectra and cementation factors, hence the goal is to find fundamental 

relationships between these parameters that can be useful in well-log inversion and 

interpretation. Additionally, we analyze the pressure-dependency of compacted mudrocks 

by varying the confining pressure in the measurement chamber from 2 MPa to 50 MPa 

effective pressure.  

Electrical charges in mudrocks 

Electrical phenomena at the rock-fluid interface in a clay-rich mudrock are linked to 

the electrical double layer (EDL) that occurs on the surface of clay minerals (Waxman & 

Smits, 1968; Passey et al., 2010; Revil, 2012). The key feature of the EDL are the contained 

free cations which are able to move when alternating current (AC) is applied. Preferential 

spatial accumulation of these movable cations within the pore structure results in temporary 
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charge storage and so-called interfacial polarization of a porous medium. Given the 

relatively large inertia of this process that involves physical movement of cations, 

interfacial polarization at the rock-fluid interface occurs only at lower frequencies (Figure 

5.1). Therefore, it is deemed to be the main control on low-frequency dielectric rock 

properties, or complex resistivity spectra (CRS) (Cerepi, 2004; Hizem et al., 2008). Simply 

put, the low-frequency dispersion of CRS, which is measured in this study, is hypothesized 

to be mainly a result of the pore structure. This is the underlying concept that enables a 

new modeling approach that uses CRS to estimate reservoir properties. The approach has 

shown to work in shaly sandstones (Tong & Tao, 2008) and carbonate rocks (Norbisrath 

et al., in press) [chapter 4]. In this study, it is applied to a subsurface core plug dataset of 

fine-grained and kerogen-rich mixed carbonate-siliciclastic mudrock samples from the 

Vaca Muerta Formation in Argentina.  

 

Figure 5.1: Span of polarization mechanisms in the frequency domain after Hizem et 
al. (2008). Interfacial polarization at rock-fluid boundary plays important role in low-
frequency dielectrics. Frequency range of measurements in this study shown on top (0.1 
– 100,000 Hz).  
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Dataset 

The dataset of this study is comprised of 56 subsurface mudrock core plug samples 

from two wells drilled in the Vaca Muerta Formation (VMF) of the Neuquén Basin in 

Argentina (Mitchum and Uliana, 1985; Spalletti et al., 2000; Howell et al., 2005; 

Kietzmann et al., 2011; Leanza et al., 2011). The VMF is Late Jurassic to Early Cretaceous 

in age and constitutes the main hydrocarbon source rock in the basin (Uliana & Legarreta, 

1993; Zeller et al., 2013) but has more recently been targeted as an unconventional 

reservoir (Garcia et al., 2013; Crousse et al., 2015). The samples are from depth intervals 

where the VMF is approximated to be in the oil window (Legarreta & Villar, 2011), which 

is corroborated by the thermally mature appearance of the organic matter in the BIB-SEM 

mosaics (Figure 5.2).   

Methods 
 

All 56 core plug samples are analyzed on porosity, carbonate content (CO3), total 

organic carbon (TOC), cementation factors, and complex resistivity spectra (CRS). 

Nanopore geometry and 2-dimensional Interfacial Surface Area (ISA2D) are quantified in 

23 samples, and the irreducible water content (Swirr) is measured in 13 samples. 

Acid washing, elemental analysis, and humidity drying 

Crushed material from cut-offs of the core plugs is used to study the mineralogy of the 

samples. The carbonate content (CO3) is determined by cold acid washing with 10 % HCl 

and subsequent weighing of remaining sample material. An elemental analyzer, utilizing a 

process of combustion and infrared spectroscopy, is used to assess the percentage of total 

organic carbon (TOC) contained in the samples. Porosity is measured by comparing caliper 

bulk plug volume to true skeletal volume from Helium pycnometry utilizing Boyle’s law. 
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A subset of 13 samples is also analyzed on the amount of irreducible water saturation 

(Swirr) by humidity drying and comparison of the weight to fully dried samples (Bush & 

Jenkins, 1970).  

BIB-SEM and pore geometries 

In order to determine the importance of nanopore geometry and 2-dimensional 

Interfacial Surface Area (ISA2D) for frequency dispersion of the CRS, a subset of 23 

samples is imaged in high detail with the broad-ion-beam milling scanning electron 

microscopy (BIB-SEM) method.  

The BIB-SEM method enables direct quantification of the amount of ISA2D in the 

sample, as the milling removes any surface roughness and produces a nanometer-precision 

flat surface that can be accurately segmented into pore and solid phase (Figure 5.2).  

 
Figure 5.2: Example of un-cropped broad-ion-beam milling scanning electron 
microscopy (BIB-SEM) mosaic of sample P27_2a at 15,000x magnification, 
consisting of 50 SEM images. Irregularities at right edge are result of un-guided 
manual image raster acquisition. Dispersed round pyrite framboids in matrix of 
carbonate (44 % CO3) and darker appearing organic matter (4.4 % TOC). Most porosity 
is within organic matter. Left edge: large, bubbly pores in mature organic matter. 
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The process involves several steps. First, rectangular subsamples (10 x 9 x 3 mm) are 

prepared with a high-precision diamond saw. The samples are cut in a way to produce two 

parallel long edges with one orthogonal short edge. Orthogonality ensures that the milling 

surface is parallel to the ion beam and the rock is milled down evenly. The short edge is 

then placed for ~8 hours at 5kV accelerating voltage in a JEOL IB-19500 CP ion mill. 

Polished samples are sputtered with AU/Pd (gold/palladium) for 20 seconds. SEM analyses 

are performed with a FEI Quanta 600 F field emission scanning electron microscope (FE-

SEM). For each sample, several low- and high-magnification images are taken that focus 

on special features and the overall pore geometry of the milled surface. Then, an area that 

appears representative for the entire milled area is chosen to capture the image raster that 

will be stitched and quantified.  SEM mosaics are acquired in a 10 by 5 image raster for a 

total of 50 images per mosaic (Figure 5.2). Individual images are taken at 15,000x 

magnification at 2048 by 1768 resolution at a scanning speed of 10 μs per pixel, resulting 

in pixel size (side length) of 9.56 nm.  Low accelerating voltage of 10 kV ensures shallow 

penetration depth of electron beam to focus on 2D surface geometry.  

Broad-ion-beam (BIB) milled areas are approximately 0.8 - 1 mm2 in size (Figure 5.3). 

All 23 stitched BIB-SEM mosaics consist of 50 images each and average around 17,000 * 

8,000 pixels (165 * 75 μm) in size. This translates to total mosaic areas of around 12,400 

μm2 (0.012 mm2). 
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Figure 5.3: Broad-ion-beam (BIB) milled area with scanning electron microscopy 
images at increasing magnification from left to right, illustrating low surface 
roughness and quantifiable mudrock pore structure. (a) Overview of v-shaped, milled 
area. Red box indicates BIB-SEM mosaic area in this sample. (b) Distribution of smectite 
in milled area as indicated by lighter appearance due to high porosity and lower density. 
(c) Close-up of smectite nanopore structure. mag = magnification; HV = high voltage; 
spot = electron spot size in nanometers; WD = working distance; det = detector; ETD 
= Everhart-Thornley detector. 

 
Image processing  

Images are acquired with an overlap of around 25% to ensure successful automatic 

stitching into mosaics with Kolor Autopano Giga photo-panorama software. The mosaics 

are segmented into solid phase and pore phase with a combination of thresholding and 

sobel-edge-detection algorithms (Houben et al., 2013). The pore structure of the 

segmented, binary mosaics is quantified with open-source ImageJ software for digital 

image analysis (DIA) to extract pore geometry parameters.  

DOMsize and PoA 

Dominant pore size (DOMsize) and Perimeter over Area (PoA) are the main output 

variables of DIA (Weger et al., 2009). DOMsize is the maximum pore size needed to 

comprise 50 % of the porosity on a thin-section (from a cumulative addition starting with 

the smallest pores). The parameter gives a good indication of the overall pore network size. 

It is converted from area (pixel count) to size equivalent diameter. PoA is assessed by 



123 

relating the sum of the perimeter of all pores to the sum of the area of these pores. The 

parameter describes the complexity of the pore network. For calculations of both DOMsize 

and PoA, only pores consisting of at least 100 pixels are used, i.e. only pores that are larger 

than 960 nm2 are considered for the DIA.  

Interfacial Surface Area (2D) 

The 2-dimensional Interfacial Surface Area (ISA2D) is the ratio of the sum of the 

outlines of all pores identified on a mosaic over the total size of the mosaic, or simply the 

amount of pore perimeter per cross-sectional area:  

ISA2D =  
∑Perimeter
AreaMosaic

 
Eq. 5.1 

 

The parameter ISA2D increases both with increasing amount of porosity and increasing 

complexity of the pore system. This separates it from the PoA parameter, which only 

increases with complexity and is indifferent to the amount of porosity, hence a purely 

geometric parameter.  

Slope D 

Pore area distributions are analyzed by sorting all pores identified from DIA into pore 

size bins, where subsequent bins always double in bin width. The amount of pores per bin 

is normalized by mosaic size (analyzed area) and bin width (pore size range), and results 

plotted against bin centers (pore size) on a double logarithmic scale (Klaver et al., 2012; 

Houben et al., 2013; Hemes et al., 2015). Least square linear regression analysis is used to 

quantify the power law exponent that defines the slope of the pore size distributions: 

Slope D = −
log � Pore area frequency

 Mosaic size ∗  Bin width�

log (Pore area)
 

Eq. 5.2 
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The negative of the slope (D = - slope) thereby represents the fractal dimension of the 

pore space (Mandelbrot, 1967), in the following referred to as Slope D. 

Cementation factors 

Electrical resistivity is measured in a true four-electrode setup in a log sweep of 15 

discrete frequencies from 0.1 – 100,000 Hz and at varying pressure steps up to 50 MPa 

effective pressure on fully 35ppt NaCl brine-saturated core plug samples. Steps include 2, 

5, 10, 15, 20, 25, 30, 40, 50, 40, 30, 25, 20, 15, 10, 5, and 2 MPa effective pressure 

(confining minus pore pressure). The varying pressure conditions are used to assess the 

influence of overburden on electrical properties.  The log sweep of measurements takes 

around two minutes at each pressure step. This means that one pressure cycle takes around 

30 minutes.  For a more detailed description of the measurements and setup see Norbisrath 

et al. (2015) [chapter 2].  

For calculations of cementation exponents, pore fluid temperature-corrected (Arps, 

1953) measurements of resistivity amplitude (Rf) at 50 MPa effective pressure and 720 Hz 

are used as input for Archie’s (1942) empirical formula, 

FF =  Rf
Rw

=  Φ−m  Eq. 5.3 

 

where FF is the Formation Factor, Rf is the measured resistivity at 100% water 

saturation, Rw is the resistivity of the saturating fluid, φ is the porosity, and m is the 

cementation exponent.  
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Complex resistivity spectra (CRS) 

Complex resistivity is measured across the sample and across a reference resistor 

connected in series with the sample. The amplitude ratio and phase shift between the two 

signals is used to measure the complex electrical impedance (Z*) of the sample, 

Z∗ = R − iX Eq. 5.4 

 
where R is the resistance and iX the reactance (Knight & Nur, 1987). The frequency 

dispersion in the 10,000 – 100,000 Hz range is quantified by fitting a curve to the CRS of 

both amplitude (resistance R) and phase shifts (reactance iX). The extracted CRS slopes of 

both amplitude and phase shift (βamplitude and βphase) are used to estimate reservoir 

properties.  

Predictions of reservoir properties 

We use a modified model from Tong & Tao (2008) for estimates of various reservoir 

and other properties, 

Xestimated = a𝑌𝑌𝑏𝑏𝑍𝑍1𝑐𝑐𝑍𝑍2𝑑𝑑 Eq. 5.5 

  
where X is the parameter to be estimated (cementation factor, porosity, Interfacial 

surface area, carbonate content, total organic carbon, or irreducible water saturation), Y is 

either porosity (φ) or resistivity amplitude (Rf), and Z1 and Z2 are either are the CRS slopes 

in the 10 – 100 kHz range (βamplitude and βphase) or pore geometry parameters from BIB-

SEM mosaics (DOMsize and PoA). The constants abcd are determined with unconstrained 

non-linear optimization (Nelder & Mead, 1965).  
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Results 

TOC and CO3 content 

Total organic carbon (TOC) values range from 0.06 – 10.15 % TOC and carbonate 

content (CO3) values from 7.09 – 92.98 % CO3 in the dataset. Plotted against each other, 

there is a very weak trend of lower TOC with higher CO3 content (Figure 5.4). 

 

Figure 5.4: Cross-plot of TOC and CO3 of 56 mudrock 
samples from the Vaca Muerta Formation, indicating a 
trend of lower organic carbon at higher levels of carbonate 
content. 

 
Cementation factor m and porosity 

Cementation factors (m) at 50 MPa effective pressure range between 1.27 - 3.2 and 

porosity between 0.2 - 17.5 %. Cementation factors have a positive correlation to porosity 

(R2 = 0.73) (Figure 5.5; top) and TOC content (R2 = 0.39) (Figure 5.5; middle). Samples 

with more than 7.5 % porosity only show cementation factors above m = 2.0, and more 

than 8.0 % TOC results in cementation factors only above m = 2.5. A slight trend of lower 

cementation factors with increasing carbonate content (R2 = 0.19) exists, but samples with 
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varying CO3 content can have high (> m =2.5) or low (< m =1.5) cementation factors 

(Figure 5.5; bottom). 

 

Figure 5.5: 
Cementation factors of 
56 Vaca Muerta 
mudrocks vs. porosity 
(top), total organic 
carbon (TOC; middle), 
and carbonate content 
(CO3; bottom). Higher 
porosity and higher TOC 
result in higher 
cementation factor m, 
whereas increased 
carbonate content tends 
to lower m. 
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Table 5.1: Mineralogy parameters porosity, carbonate content (%CO3), total organic 
carbon (%TOC), and cementation factors at 5 and 53 MPa confining pressure. 
 

Sample Phi [%] %CO3 %TOC (EA) m @ 5 MPa m @ 53 MPa 
1 8.54 21.80 6.51 2.49 2.75 
2 8.04 22.49 3.27 2.19 2.28 
3 5.09 41.54 1.88 1.92 1.99 
4 7.34 7.09 0.62 2.08 2.14 
5 9.52 22.95 6.53 2.44 2.50 
6 3.67 39.16 5.13 1.90 1.99 
7 2.29 28.60 5.03 1.68 1.80 
8 0.35 66.90 2.27 1.20 1.27 
9 5.44 49.73 3.80 2.10 2.20 
10 3.79 50.74 4.98 1.91 2.08 
11 7.77 59.95 0.56 2.08 2.16 
12 2.18 55.22 4.03 1.73 1.83 
13 8.08 35.95 7.13 2.32 2.54 
14 9.05 34.40 3.72 2.23 2.38 
15 12.78 32.21 2.99 2.64 2.90 
16 0.78 15.05 0.59 1.45 1.48 
17 12.18 25.68 3.80 2.65 2.88 
18 7.85 53.63 0.62 2.01 2.12 
19 13.10 30.14 4.61 2.40 2.55 
20 13.54 23.54 3.33 2.31 2.44 
21 8.19 11.42 7.37 2.31 2.55 
22 12.31 17.66 3.76 2.19 2.35 
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23 8.23 27.94 3.58 2.31 2.48 
24 5.16 55.84 3.22 1.97 2.07 
25 8.04 45.72 4.19 2.14 2.27 
26 6.45 31.65 5.05 2.10 2.34 
27 4.29 48.38 3.31 1.72 1.84 
28 4.27 23.81 0.72 2.10 2.13 
29 3.65 73.64 1.34 2.11 2.19 
30 4.35 61.25 4.17 2.07 2.25 
31 1.53 39.23 5.79 1.45 1.59 
32 7.04 41.02 5.78 2.44 2.59 
33 2.55 78.77 0.06 1.70 1.75 
34 1.08 81.82 1.39 1.55 1.66 
35 7.22 41.09 4.39 2.15 2.33 
36 0.20 87.16 0.85 1.40 1.43 
37 10.76 42.71 6.07 2.54 2.75 
38 9.85 32.35 4.45 2.23 2.36 
39 17.47 29.48 4.61 2.35 2.55 
40 9.94 18.94 5.19 2.39 2.50 
41 11.68 49.44 3.88 2.42 2.60 
42 2.35 90.13 2.19 1.95 2.10 
43 12.05 92.98 0.73 2.60 2.80 
44 13.36 23.00 10.15 2.84 3.15 
45 8.73 25.21 9.29 2.47 2.72 
46 12.78 32.74 7.16 2.61 2.89 
47 11.77 26.66 7.44 2.52 2.61 
48 11.69 29.23 6.62 2.58 2.79 
49 10.06 37.17 7.17 2.56 2.76 
50 12.57 25.36 7.49 2.67 2.87 
51 13.33 24.97 8.58 2.93 3.14 
52 9.76 44.17 6.40 2.55 2.74 
53 14.68 20.00 4.80 2.66 2.84 
54 3.66 65.36 4.00 2.11 2.24 
55 17.49 28.22 4.89 2.40 2.59 
56 6.81 48.04 4.17 1.95 1.97 

 
 
Pressure dependency of m 

The analyzed mudrock samples show an increase of cementation exponent (m) with 

increase in confining pressure (CP). The mean change in cementation exponent between 5 
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and 53 MPa CP measurements is 12.6 ± 5.1 % (Figure 5.6). The pressure dependency is 

also related to the amount of porosity whereby higher porosity samples show higher 

absolute increase of m (Figure 5.7). 

 

Figure 5.6. Cross-plot of cementation factors m measured at 5 MPa vs 53 
MPa confining pressure, grayscale indicates porosity.  Plot demonstrates 
increase of m with increasing pressure. Higher porosity samples hereby 
show higher absolute increase of m. Dashed line is the unity function. 
Equation of linear regression plotted next to solid regression line. 

 
Samples also show an overall small hysteresis effects for measurements at 5 MPa CP 

before and after the pressure sweep up to 53 MPa CP. After experiencing the higher 

pressures, subsequent 5 MPa measurements show higher m-values. The mean hysteresis in 

cementation exponent is 3.6 ± 2.1 % (Figure 5.7).  
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Figure 5.7: Plot of confining pressure vs cementation factor m. The increasing 
pressure leg is color-coded with porosity, while the decreasing pressure leg is 
plotted as black, dashed line. All samples show hysteresis effects, i.e. a different 
cementation factor at 5 MPa before and after being pressurized to 53 MPa.  

 
The samples with higher cementation factors (> m = 2.0) generally show higher 

percental increase (> 10 %) of cementation factors between measurements at 2 and 50 MPa 

effective pressure (EP = CP – pore pressure of 3 MPa) (Figure 5.8; top), and more 

hysteresis effects (> 5 %) (Figure 5.8; bottom). These samples also generally have a higher 

porosity.  
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Figure 5.8: Effective pressure (EP) vs cementation factor for increasing and 
decreasing pressure leg (2 MPa - 50 MPa - 2 MPa), color-coded with percental 
increase in cementation factor (top) and amount of hysteresis after pressure cycle 
(bottom). Samples with higher cementation factors show higher percental changes for 
both analyses.  
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Irreducible water saturation (Swirr) 

Humidity-drying on a subset of 13 mudrock samples reveals irreducible water 

saturations (Swirr) between 24.2 – 100 %. Samples with higher carbonate content (CO3) 

show higher Swirr (Figure 5.9; left). The samples with higher Swirr content also generally 

have less porosity, which increases the effect of a small amount of irreducible water on the 

percentage of Swirr. Because porosity exceeds a strong control on cementation exponents 

and higher Swirr   means lower porosity, an increasing amount of Swirr results in lower 

cementation exponents (m) (Figure 5.9; right).  

 

  

Figure 5.9: Left: Cross-plot of irreducible water saturation (Swirr) and carbonate 
content (CO3), color-coded with percentage of porosity. Higher carbonate content 
means higher percentage of irreducible water saturation of the total pore volume, but 
also lower porosity. Right: Cross-plot of Swirr and cementation factor m, color-coded 
with porosity. Samples with higher fractions of Swirr have lower cementation factors 
because they are less porous. 

 
BIB-SEM  

The 23 mudrock samples analyzed with BIB-SEM are clay-rich mixed carbonate-

siliciclastic rocks that contain between 0.06 – 10.15 % TOC and between 7.1 – 90.1 % CO3 
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pyrite, and organic matter (OM); this composition is in line with findings from X-ray 

diffraction (XRD) studies of the Vaca Muerta Formation (Vittore et al., 2014). Some 

examples of pyrite, kaolinite, smectite, and OM are displayed in Figure 5.10. 

 
Figure 5.10: Examples of minerals and organic matter (OM) in Vaca Muerta 
mudrocks in broad-ion-beam milling scanning electron microscopy (BIB-SEM) 
images at 50,000x magnification. (a) Pyrite framboid with intercrystalline porosity. (b) 
Porous region in platy, sheet-like structure of kaolinite. (c) Highly porous flaky structure 
of smectite. (d) Mature OM associated with loosely packed pyrite framboid. (e) ) Woody 
OM between carbonate grains.  (f) Highly mature OM with bubbly porosity, associated 
with smectite. mag = magnification; HV = high voltage; spot = electron spot size in 
nanometers; WD = working distance; det = detector; ETD = Everhart-Thornley 
detector. 

 
Pore structure analysis 

In order to study the pore geometries, mosaics are segmented into pore and solid phase 

so that the pore geometries can be quantified. The quantification is performed on all 23 

samples, and the resulting pore geometric parameters are then related to other 

mineralogical and petrophysical properties (Figure 5.11). 
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Figure 5.11: Two broad-ion-beam milling SEM mosaics consisting of 50 images each 
at 15,000x magnification and 9.6 nm pixel side length. The left side of the images shows 
segmented microporosity in red. Inserts show petrophysical and mineralogical data and 
zoom into clay nanoporosity at 50,000x magnification and 2.9 nm pixel side length.  
Near-vertical grooves are milling artifacts. Top (P03_1a): Kaolinite and large pores in 
probably clastic matrix. Bottom (P08_3b): Smectite matrix around large, non-porous 
carbonate clasts. Top and bottom samples have significantly different nanopore 
geometries and carbonate content, yet an equal cementation factor m. mag = 
magnification; HV = high voltage; spot = electron spot size in nanometers; WD = 
working distance; det = detector; ETD = Everhart-Thornley detector. 

 
Pore geometry parameters 

The two pore geometry parameters Dominant pore size (DOMsize) and Perimeter over 

Area (PoA) are measured from segmented BIB-SEM mosaics. They range from 98 - 719 

nm and 0.013 – 0.043 nm-1, respectively. Both pore structure parameters show no 

correlation with cementation exponents (Figure 5.12; left). Samples with high or low 
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cementation factors can have both complex and simple nanopore geometry. Notably, two 

samples with the same cementation factor of around m = 2.0 (turquoise dots) plot in 

opposite ends of the spectrum; one has the highest DOMsize (> 700 nm) and lowest PoA, 

the other has low DOMsize but the most complex pore structure (PoA > 0.04 nm-1). 

  
Figure 5.12: Left: Cross-plot of Perimeter over Area (PoA) and Dominant pore size 
(DOMsize), color-coded with cementation exponent m. Scattered colors illustrate lack 
of influence of nanopore geometry on cementation factors. Right: Plug porosity vs 
optical porosity for the mudrock samples, color-coded with cementation factors at 53 
MPa. Discrepancy between optical and plug porosity explains why the analyzed 
nanopore geometry does not correlate with cementation factors. 

 
The inconsistency between pore parameters and m is most likely due to the fact that not 

all porosity has been included in the pore shape analysis, i.e. the mosaics are not 

representative for the plug sample. The resolved and quantified image porosity (Phiopt) is 

not equal to plug porosity, which is used to determine cementation factors (Figure 5.12; 

right). 

2-dimensional Interfacial Surface Area (ISA2D)  

Values for the 2-dimensional Interfacial Surface Area (ISA2D) calculated with Equation 

5.1 range from 4.0e-5 – 1.6e-3 nm-1. The parameter shows only a slight association with 

cementation exponents, whereby samples with higher interfacial surface tend to show 

higher cementation factors. However, the controlling factor behind this relationship 
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appears to be the inherent higher porosity in samples with higher ISA2D (Figure 5.13; top). 

The significantly lower correlation coefficient of ISA2D with m (R2 = 0.10) as compared to 

porosity with m (R2 = 0.72; Figure 5.5; top) underlines this assumption. DOMsize and PoA 

show no correlation with cementation factor (Figure 5.13; middle and bottom). 
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Figure 5.13: Cross-plots of cementation factor m 
vs pore geometry on y-axis, color-coded with 
porosity. Top: 2-dimensional Interfacial Surface 
Area (ISA2D), demonstrating the slight correlation 
of ISA2D with m. Middle and bottom: DOMsize and 
PoA show lesser correlation with m than ISA2D, 
which incorporates porosity. 

 
Fractal analysis 

All samples show fractal pore size distributions across the investigated length scales 

(9.56 nm pixel size up to mosaic size ~ 0.012 mm2) as indicated by the excellent fit of a 

log-log linear regression curve to the data points (Figure 5.14). The values for the fractal 

dimension or Slope D, extracted from this linear regression, range from Slope D = 1.55 – 

2.19.  

The fractal dimension is a measure of the complexity of the pore space and hence 

correlates well with PoA, which defines complexity by relating the pore perimeter of all 

pores to the combined pore area (Figure 5.14; top).  However, the complexity of the 

nanopores does not seem to control cementation factors (Figure 5.14; bottom). 
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Figure 5.14: Double-logarithmic plot of pore size bin centers vs normalized pore 
density per bin, indicating a power-law pore size distribution. Slope D of power-law 
distribution or fractal dimension of pore space on Z-axis. Top color-coded with 
Perimeter over Area (PoA) and bottom with cementation factor m. A steeper Slope D 
indicates higher complexity of the pore system, which is corroborated by higher PoA-
values in these samples (top). No definite trend is visible between pore structure and 
cementation factor (bottom). 

 
Table 5.2. Pore geometry parameters Dominant pore size (DOMsize), Perimeter over 
Area (PoA), Interfacial Surface Area (ISA2D), and slope of pore size distribution (Slope 
D) in order of ascending cementation factor (m). The pore geometry appears to have 
little impact on m. 

 
Sample m DOMsize [nm] PoA [nm-1] ISA2D [nm-1] Slope D 

06_2a 1.27 175 0.031 4.3E-04 1.94 
28_2a 1.43 317 0.021 4.0E-05 1.55 
11_2a 1.48 156 0.039 2.8E-04 2.11 
26_2a 1.66 232 0.021 4.4E-04 1.89 
24_2b 1.75 98 0.039 1.0E-03 2.06 
05_2ab 1.80 145 0.025 6.6E-04 1.99 

A8a 1.97 142 0.029 1.0E-03 2.09 
05_2a 1.99 139 0.026 8.0E-04 1.99 
31_2a 2.10 144 0.043 3.1E-04 2.19 
03_1a 2.14 719 0.013 7.1E-04 1.65 
08_3b 2.16 102 0.033 1.6E-03 2.01 
20_2a 2.19 105 0.037 7.7E-04 2.10 

A10_2a 2.24 257 0.027 3.1E-04 1.80 
22_2a 2.25 108 0.035 3.4E-04 2.11 
27_2a 2.33 143 0.025 7.4E-04 2.00 
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15_1b 2.35 171 0.027 8.4E-04 1.98 
29_2a 2.36 127 0.030 4.7E-04 1.94 
16_2a 2.48 203 0.022 6.8E-04 1.88 
30_2a 2.50 254 0.019 7.3E-04 1.82 
10_1a 2.54 177 0.028 5.8E-04 2.03 
13_1b 2.55 125 0.035 1.4E-03 2.04 
11_1b 2.90 203 0.019 6.2E-04 1.79 
38_1a 3.15 141 0.036 8.4E-04 2.03 

 
Discussion of cementation factors, mineralogy, and pore geometry 

We will first discuss the influence of different petrophysical, physical, and 

mineralogical parameters on cementation exponents, and then discuss nanopore geometries 

as extracted from BIB-SEM mosaics.  

Cementation factors 

TOC & CO3 

Kerogen (TOC) content is arguably the most important factor in unconventional 

reservoirs, as an interval can only be considered a reservoir rock if it is rich in 

hydrocarbons. This study finds a positive correlation between cementation factor m and 

TOC content, i.e. a higher TOC content results in higher m (Figure 5.5; middle). This 

indicates that the OM (organic matter) in our samples is not mature enough to be 

conductive, unlike graphite and other highly mature OM minerals which are contributing 

to conductivity (Kethireddy et al., 2014; Firdaus & Heidari, 2015). Nevertheless, our 

samples show clear indications of maturity, e.g. bubbly porosity within the OM (Figure 

5.10), and the well location where the samples are from also places the Vaca Muerta 

Formation in the oil window (Legarreta & Villar, 2011). Theoretically, the bubbly porosity 

in the OM shows geometric similarity to vuggy porosity in carbonates (Jackson et al., 1993; 

Verwer et al., 2011). Vuggy porosity does not contribute to electrical conductivity and 

would explain an increased cementation exponent. 
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Samples with high carbonate content (CO3) and low amount of clay show low 

cementation factors (Figure 5.5; bottom). In the VMF dataset, high carbonate content is 

usually accompanied by low porosity (Figure 5.9; left). Low porosity in samples with high 

carbonate content has been reported in other shale reservoir rocks (Bustin et al., 2008). 

This observation contradicts the notion that only clays reduce cementation exponents due 

to favorable conductivity of their electrical double layer (EDL) and higher cation exchange 

capacity (CEC; Waxman & Smits, 1968). The low porosity is likely a more important 

reducer of cementation exponents (Figure 5.5 top). It indicates that a large fraction of the 

porosity is related to the OM, which is a common theme in mature unconventional 

reservoirs where the organic portion develops pores when hydrocarbons are extracted 

during and after maturation (Passey et al., 2010; Driskill et al., 2013; Crousse et al., 2015). 

Consequently, intervals with low cementation factors would indicate higher carbonate 

content and higher brittleness suitable for fracking-stimulated hydrocarbon extraction. 

However, higher carbonate content also indicates less organic matter and hence less 

extractable hydrocarbons (Figure 5.4).  

Porosity 

Porosity is high in the analyzed mudrocks with values up to 17 %, so the results may 

not be representative for all shale and unconventional reservoirs. Our results indicate that 

porosity is the dominant control on cementation factors in mudrocks because samples with 

higher porosity show higher cementation factors (Figure 5.5; top). This might be a result 

of increased rock solid phase conductivity in mudrocks due to clay and pyrite content, 

which both contribute to conductivity. Important factors hereby include hydroxyl layers in 

swelling clay minerals and increased double-layer (EDL) surface conductivity in all clay 
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minerals. Pyrite is a metal and itself highly conductive. Since the rock is already conductive 

at near-zero porosity, adding porosity consequently just increases the cementation 

exponent according to Archie’s equation (Eq. 5.3). This is especially true since most 

porosity is in the OM, and appears largely unconnected (Figure 5.10d, f). 

Cementation factors and pyrite 

Some low-porosity samples show very low cementation exponents close to the 

theoretically lowest possible value of m = 1, which is the value for a straight tube filled 

with conductive brine. The extremely low values are probably the result of the high pyrite 

content in these samples (Figure 5.2; Figure 5.10d, e, and f). Both pyrite and the brine that 

fills the pore space are conductive, hence the volume of pyrite would have to be added to 

the porosity term in Archie’s equation in order to get a reasonable result for the cementation 

factor (Eq. 5.3). Disregarding the pyrite volume leads to an underestimation of the 

conductive portion and cementation factors (Clennell et al., 2010; Passey et al., 2010; 

Kethireddy et al., 2014). 

Pressure dependency of cementation factors 

All measured mudrock samples show pressure dependency of electrical conductivity 

and resulting cementation factors (Figure 5.6). This is due to the compression of the plug 

in a higher stress regime. With increasing pressure, micro- and nanopores of the intricate 

mudrock pore system would narrow down or close completely, which leads to a decrease 

in conductivity. Even if the pore network connectivity was not affected, a compression of 

the plug samples would lead to lower porosity values than those measured on the core plugs 

beforehand and used as input for the calculation of the cementation exponents with Archie's 

equation (Eq. 5.3).  
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The high compressibility of the mudrock samples, which contain clays and organic 

material, might be due to the swelling of clay minerals during saturation with brine (Garcia 

et al., 2013). This would allow for compression during pressurization, as swollen clays are 

comparatively easy to dehydrate and re-compact. Thus, the log calibration in mudrocks 

requires the adjustment of plug confining and pore pressure to reservoir conditions, i.e. the 

right pressure according to the depth the sample was taken from.  

All samples show a hysteresis effect at 5 MPa in cementation factor measurements 

before and after the 50 MPa pressure sweep (Figure 5.7, 5.8). This "memory effect" implies 

that either the porosity of the sample or the internal pore geometry and connectivity has 

been changed permanently. However, in the experiment the rocks are given little time to 

relax after the pressure sweep, hence it is not clear if the change is more temporarily than 

permanent. A permanent change in porosity is unlikely because the plug samples are from 

more than 2,500 meters depth, so their porosity should not be permanently altered by 50 

MPa measurements (roughly equivalent to 2,000 m overburden). It is more likely that the 

pore connectivity has been changed, as the micro- and nanopores tend to have miniscule 

pore throats that get occluded or closed easily. However, blocked pore connections also 

would lead to a small decrease in overall porosity, so the hysteresis effect is most likely a 

combination of both change in porosity and pore connectivity. The porosity is not measured 

during the pressure increase, as only the length but not the circumference of the plug can 

be monitored.   

Micropores and Swirr 

Humidity-drying methods on 13 samples enables assessment of the amount of 

microporosity, also referred to as ineffective porosity in terms of hydrocarbon 
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producibility. Electrical conduction is favored by a small and intricate pore system with a 

large number of pores (Verwer et al., 2011; Norbisrath et al., 2015). Thus, if a higher 

percentage of the brine is contained in micropores, it will add substantially to electrical 

conduction and hence lower cementation factors. Consequently, the finding that samples 

with higher Swirr show lower cementation factors (Figure 5.9; right) implies an intricate 

pore network that is well connected at the micropore scale. This corroborates previous 

work and the theory of electrical efficiency, where surface conductivity plays a large role 

and most of the macropore volume is considered to be electrically dead volume (Herrick 

& Kennedy, 1994; Abousrafa et al., 2009). A higher Swirr would indicate less macropore 

volume and more effective surface conduction. 

Another interesting finding is that samples with the highest irreducible water saturation 

(Swirr) also had the highest amount of carbonate content (Figure 5.9; left). This is 

counterintuitive as clays are usually considered to contain most of the irreducible water, 

either as part of their hydrated mineral structure or in ionic bonds with their electric double 

layer (EDL) (Passey et al., 2010). The EDL is related to the high Interfacial Surface Area 

(ISA2D) of clay microporosity (Figure 5.15, 5.17). However, samples with highest 

carbonate content also showed the least amount of overall porosity, which increases the 

effect of a small amount of irreducible water on Swirr.  

Swirr and CRS 

Samples with high Swirr show high reactance values (Figure 5.22; bottom right). This 

is in accordance with the notion that interfacial polarization leads to phase shifts in the low-

frequency spectrum (Cerepi, 2004; Hizem et al., 2008). Higher Swirr indicates larger 

Interfacial Surface Area and hence higher interfacial polarization effects due to higher 
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retention of adsorbed water on clay surfaces (Bush & Jenkins, 1970). However, the 

findings related to the irreducible water saturation are limited by the small number of 

analyzed samples, and further work is required to establish the reliability of the results and 

effects of Swirr on CRS. 

BIB-SEM 

Broad-ion-beam milling scanning electron microscopy (BIB-SEM; Figure 5.3) allows 

to image and quantify micro- and nanopore structures in mudrocks (Figure 5.11). We have 

applied the BIB-SEM method to 23 mudrock samples in this study, where the findings add 

to a growing body of literature on nanopore geometries in unconventional rocks (Curtis et 

al., 2010; Desbois et al., 2011; Driskill et al., 2013; Hemes et al., 2015; Klaver et al., 

2015a,2015b). In addition, an attempt is made to identify their effects on flow and storage 

in unconventional rocks (Figure 5.12, 5.13, 5.14, and 5.15). 

Nanopore geometry 

One key outcome of this study is that the nanopore geometry does not exert a strong 

control on electrical rock properties like cementation factor (Figure 5.12; left) or complex 

resistivity spectra (Figure 5.21; middle and right). For example, the DIA-derived pore 

geometry parameters DOMsize and PoA show no correlation with CRS. Instead, the 

amount of plug porosity determines the cementation exponent in mudrocks (Figure 4; top) 

and controls the resistivity spectra (Figure 5.20; left). The 2-dimensional Interfacial 

Surface Area (ISA2D), which is deemed to be the primary control on low-frequency 

dielectric rock properties, appears to be only a secondary control on CRS (Figure 5.21; 

left). 
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Fractals 

A common theme in all natural rocks is the power-law distribution of pore sizes; not 

only for shales (Clarkson et al., 2013; Hemes et al., 2015; Klaver et al., 2015b) but also in 

siliciclastic (Katz & Thompson, 1985; Krohn, 1988; Pape et al., 1999) and carbonate rocks 

(Mazzullo et al., 1996; Norbisrath et al., 2015; Purkis et al., 2015).   

This mudrock study finds a power-law distribution of pore sizes across the investigated 

scales, indicating a fractal scaling of pore sizes, which implies self-similarity of the pore 

space and predictability of pore sizes outside the investigated length scales. However, the 

magnitude of scales and the resolution pose some challenges.  For example, for the 

extremely small pore sizes there are apparent kinks in the distribution that deviate from a 

log-log linear behavior (Figure 5.14). These kinks are likely the result of the resolution 

limit that fails to properly resolve the size of pores that approximate 1-4 pixels. Previous 

multiscale analyses further strengthen this assumption, as they found similar kinks in 

results from lower-resolution BIB-SEM mosaics, yet results from overlapping, higher-

magnification mosaics still showed the power law in place. In rocks with both macro and 

microporosity a multiscale approach conforms a powerlaw distribution (Norbisrath et al., 

2015). In mudrocks, the multiscale approach is not possible because they mostly contain 

nanoporosity. On the other hand, mudrock pore structure can accurately be represented by 

single-magnification BIB-SEM mosaics, although the analyzed area and covered pore sizes 

are relatively small. 

Mudrock vs. carbonate nanoporosity 

Comparing mudrocks to carbonates in a cross-plot of the amount of interfacial surface 

(ISA2D) per percent of optical porosity (Phiopt), it is apparent that mudrocks have by far 

more complex nanopores than previously analyzed carbonates (Figure 5.15; Norbisrath et 
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al., 2015). With increasing optical porosity, the amount of interfacial surface in the 

mudrocks increases faster than in the carbonates, which implies that their pores are more 

complex.  

 
Figure 5.15: Cross-plot of optical porosity (Phiopt) from BIB-SEM 
mosaics vs 2-dimensional Interfacial Surface Area (ISA2D) 
indicating the higher complexity of nanoporosity in mudrocks as 
compared to carbonates. Mudrocks have more Interfacial surface per 
percent porosity. Linear equations (y=mx+b) shown for individual 
datasets. 

 
The difference in nanopore geometry can also be seen when plotting both carbonate 

and mudrock datasets on a single PoA-DOMsize plot (Figure 5.16). There is no significant 

trend between nanopore complexity and cementation factors. Samples with higher m in 

warmer colors can have both small and complex or large and simple pores.  
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Figure 5.16: Cross-plot of Perimeter over 
Area (PoA) vs Dominant pore size 
(DOMsize) for both carbonates and 
mudrocks with color-coded m.  Cementation 
factor m is from 5 MPa measurements.  

 
It is well known that mudrocks contain a very intricate pore system (Curtis et al., 2010; 

Desbois et al., 2011). The increased complexity of the pore space in mudrocks is illustrated 

by a comparison of a typical microporous region in a carbonate and a mudrock (Figure 

5.17). The mudrock consists of more numerous and intricate nanopores, mostly associated 

with clays and organics, whereas the carbonate shows few, mostly intergranular pores. 

Mudrocks show a much higher amount of ISA2D per percent of porosity (Figure 5.15), and 

also much lower DOMsize and higher PoA than the carbonate rocks (Figure 5.16).  

 

0.01 0.02 0.03 0.04

1000

2000

3000

4000

5000

PoA (nm-1]

D
O

M
si

ze
 [n

m
]

 

 

Mudrocks
Carbonates

m
 @

 5
 M

Pa

1.1 

1.7 

2.3 

2.9 

3.4 



149 

 

Figure 5.17: Comparison of pore geometry in a (a) mudrock and (b) carbonate sample 
with equal helium porosity of ~3.6 %, illustrating the increased nanopore complexity 
of a typical mudrock.  

 
One theory is that the nanopores in clays and their increased surface area has great 

impact on low-frequency electrical flow properties (Cerepi, 2004; Hizem et al., 2008; Bean 

et al., 2013). The results of this study, however, indicate that the nanopore geometry cannot 

fully explain the electrical behavior of a rock (Figure 5.16; Figure 5.21; middle and right; 

Figure 5.25; middle). Mineralogy in mudrocks (Figure 5.10) has great impact on 

cementation factor and CRS (Figure 5.5).  

Limitations in the pore geometry analysis on BIB-SEM images  

In the presented analysis the measurements of complex resistivity from relatively large 

1-inch core plug are correlated to pore structural parameters gathered from miniscule BIB-

SEM mosaic areas averaging 0.012 mm2 (about 12,000 μm2) in size. Although the 

mudrocks are fairly homogeneous, these small areas are potentially not representative for 

the entire plug. However, the fact that correlations exist between CRS and ISA2D that is 
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also determined form the BIB-SEM mosaic areas indicates the existence of a fundamental 

relationship.  

Complex resistivity spectra (CRS) 

Dispersion phenomena of amplitude and phase shifts (CRS) of low-frequency 

alternating electric current applied to a rock sample reflect on the internal geometry of the 

sample, as they are mostly influenced by electrical double layer effects that occur on the 

surface of the pore system, i.e. the interface between pore fluid and solid phase. Thus, 

interfacial polarization at the rock-fluid boundary is deemed to be the controlling factor on 

low-frequency dispersion (Slater et al., 2006; Ellis & Singer, 2009; Wang & Poppit, 2013) 

(Figure 5.1). CRS in the mudrocks show a distinct frequency dispersion that can be 

correlated to various petrophysical, pore geometrical, and mineralogical parameters. 

Frequency range and slopes 

We find the most diversity of frequency dispersion and hence discriminability between 

samples in the 10 – 100 kHz range (Figure 5.18). Therefore, we use this range to fit linear 

equations (dashed lines) for extraction of the slope parameters βamplitude and βphase, which 

are also used for predictions of various parameters. The frequency dispersion is most likely 

not a result of the interfacial polarization alone, however, it enables predictions of pore 

geometry related parameters with high correlation coefficients. 
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Figure 5.18: Plot of frequency vs resistivity amplitude (resistance R; top) and 
resistivity phase (reactance iX; bottom). Vertical thick lines indicate 10 – 100 kHz fitting 
range for extraction of CRS slope parameters. Dashed lines are fitted curves of βamplitude 
(top) and βphase (bottom). 

 

The extracted slope parameters βamplitude and βphase of the 10 – 100 kHz range show a 

distinct correlation between each other (Figure 5.19). A sample that has higher βamplitude 

also has higher βphase. The sample with lowest βamplitude (< -1.0) has also the lowest βphase 

(< -0.5). This sample (28_2a) corresponds to the topmost dashed line (most negative slope) 

in Figure 5.18; top and bottom. It has a very high carbonate content of 87.2 % and very 

low cementation factor of m = 1.43. 
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Figure 5.19: Correlation between the slope of 
phase and amplitude frequency dispersion of 
56 mudrock samples in 10 – 100 kHz range 
(βamplitude and βphase).  

 
CRS slopes vs porosity and Formation Factor 

The best correlation found between CRS and other petrophysical parameters is with 

porosity and Formation Factor (FF). Color-coding CRS curves with porosity reveals that 

higher porosity samples (> 12 %) have lower and less variable resistance curves (R; Figure 

5.20; top left), and show a distinct increase in reactance in the 10 – 100 kHz range (iX; 

Figure 5.20; bottom left). Samples with high Formation Factors FF (> log FF = 3), on the 

other hand, show a significant decrease in resistance (R; Figure 5.20; top right) and high 

reactance (iX; Figure 5.20; bottom right). 
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Figure 5.20: Complex resistivity spectra (top: resistance R; bottom: reactance iX) in 
the 10 – 100 kHz range, color-coded with porosity (left) and Formation Factor (right). 
Higher porosity results in lower resistivity and distinct increase in reactance, while 
samples with higher Formation Factor show distinct decrease in resistance and 
reactance. 

 
CRS slopes vs ISA2D, DOMsize, and PoA 

Color-coding the CRS with the amount of Interfacial Surface Area (ISA2D) shows a 

similar yet weaker trend than with porosity (Figure 5.20; left).  
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Figure 5.21: Complex resistivity spectra (top: resistance R; bottom: reactance iX) in 
the 10 – 100 kHz range, color-coded with amount of Interfacial Surface Area (ISA2D; 
left), Dominant pore size (DOMsize; middle), and Perimeter over Area (PoA; right). 
DOMsize and PoA show little correlation with CRS, but ISA2D shows trend of higher 
resistance (R) and reactance (iX) with less surface area.  

 
Samples with higher ISA2D, similar to samples with higher porosity, generally show less 

pronounced CRS dispersion in the 10 – 100 kHz range. ISA2D > 3.0 nm-1 results in flat 

resistance curves (R; Figure 5.21; left top) and lower reactance (iX; Figure 5.21; left 

bottom). Purely pore-geometric parameters DOMsize and PoA, on the other hand, display 

little correlation with CRS as no clear zonation according to DOMsize or PoA is visible 

(Figure 5.21; middle and right). 

4 4.5 5
1

1.5

2

2.5

3

Frequency [Hz]

lo
g 

 R
 [ Ω

m
]

 

 
log ISA [nm-1]

-4.4

-4.1

-3.9

-3.6

-3.3

-3.1

-2.8

4 4.5 5
1

1.5

2

2.5

3

Frequency [Hz]

lo
g 

 R
 [ Ω

m
]

 

 
DOMsize [nm]

98  

201 

305 

408 

512 

615 

719 

4 4.5 5
1

1.5

2

2.5

3

Frequency [Hz]

lo
g 

 R
 [ Ω

m
]

 

 
PoA [nm-1]

0   

0   

0   

0   

0   

0   

0   

4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3

log Frequency [Hz]

lo
g 

 iX
 [ Ω

m
]

 

 
log ISA [nm-1]

-4.4

-4.1

-3.9

-3.6

-3.3

-3.1

-2.8

4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3

log Frequency [Hz]

lo
g 

 iX
 [ Ω

m
]

 

 
DOMsize [nm]

98  

201 

305 

408 

512 

615 

719 

4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3

log Frequency [Hz]
lo

g 
 iX

 [ Ω
m

]

 

 
PoA [nm-1]

0   

0   

0   

0   

0   

0   

0   



155 

CRS slopes vs TOC, CO3, and Swirr 

Color-coding CRS slopes with mineralogy parameters produces mixed results. Total 

organic carbon (TOC) has the least visible correlation with CRS. Samples with highest 

TOC values (> 7 % TOC) plot in the middle of both resistance and reactance spectra (Figure 

5.22; left). Carbonate content (CO3) and irreducible water (Swirr), on the other hand, show 

clear trends; samples with higher values (> 60 % CO3 & > 80 % Swirr) have higher 

resistance and reactance (Figure 5.22; middle and right).  

   

   
Figure 5.22: Complex resistivity spectra (top: resistance R; bottom: reactance iX) in 
the 10 – 100 kHz range, color-coded with amount of total organic carbon (TOC; left), 
carbonate content (CO3; middle), and irreducible water saturation on a subset of 13 
samples (Swirr; right). 
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Predictions of TOC, CO3, Swirr 

In this section the results are shown from prediction models for total organic carbon 

(TOC), carbonate content (CO3), and irreducible water saturation (Swirr) that use either 

just CRS slope parameters as input, or models that further incorporate porosity. 

Results for predictions from a simplified model (Equation 5.6) that uses only CRS 

slopes βamplitude and βphase as input (Figure 5.23; top row) are presented first: 

Xestimated= aβ
phase

𝑏𝑏 β
amplitude

𝑐𝑐  Eq. 5.6 

 
Results from Equation 5.6 are then compared to predictions of TOC, CO3, and Swirr 

using Equation 5.7 with porosity (Φ) as additional input parameter (Figure 5.23; bottom 

row). 

Xestimated = aΦ𝑏𝑏β
phase

𝑐𝑐 β
amplitude

𝑑𝑑  Eq. 5.7 

 
Using Equation 5.7, the method achieves a high correlation coefficient of R2 = 0.79 

when predicting the irreducible water saturation Swirr in 13 humidity-dried samples (Figure 

5.23; bottom right). However, this is only slightly better than predictions from CRS alone 

with R2 = 0.73 using Equation 5.6 (Figure 5.23; top right). Similarly, predictions of 

carbonate content (CO3; Figure 5.23; middle) are not greatly enhanced by inclusion of 

porosity, from R2 = 0.46 to and R2 = 0.49. 
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Figure 5.23: Predictions of total organic carbon (TOC; top), carbonate content (CO3; 
middle), and irreducible water saturation (Swirr; bottom) from CRS parameters 
βamplitude and βphase alone using Equation 5.6 (left) and including porosity using 
Equation 5.7 (right). All predictions gain in accuracy from inclusion of CRS parameters. 
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On the other hand, predictions of total organic carbon (TOC; Figure 5.23; left) are 

improved by inclusion of porosity data using Equation 5.7, from R2 = 0.07 to R2 = 0.39. 

TOC apparently does not correlate with CRS parameters. 

Predictions of porosity and ISA2D 

In this section we show the results from prediction models of porosity and 2-

dimensional Interfacial Surface Area (ISA2D) on a subset of 23 samples that were analyzed 

with the BIB-SEM method. A simplified model that only use resistivity (Rf) as input 

parameter (Figure 5.24; top) in Equation 5.8  

Xestimated= aRf
b Eq. 5.8 

 
shows lesser correlation coefficients than predictions that incorporate CRS slope 

parameters βamplitud e and βphase (Figure 5.24; bottom) using Equation 5.9  

Xestimated = aRf
bβ

phase

b β
amplitude

d  Eq. 5.9 

 
Correlation coefficients are better for predictions of porosity (R2 = 0.71) than for 

predictions of ISA2D (R2 = 0.59; Figure 5.24). This is probably related to the fact that ISA2D 

is partially controlled by the complexity of the pore space. The good correlation 

coefficients that CRS parameters achieve for predictions of porosity leads to the conclusion 

that porosity is the main control on frequency dispersion of CRS in the frequency range 

from 10 – 100 kHz.  
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Figure 5.24: Predictions of 2-dimensional Interfacial Surface Area (ISA2D; left) and 
porosity (right) from resistivity alone using Equation 5.8 (top) and including CRS 
parameters βamplitude and βphase using Equation 5.9 (bottom). Both predictions gain in 
accuracy from inclusion of CRS parameters. 

 
Predictions of cementation factors 
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analyzed with the BIB-SEM method. We use three different equations (5.10, 5.11, and 

5.12) that use different input parameters. The first one uses only porosity as input (Equation 

5.10): 

mestimated = aφ𝑏𝑏 Eq. 5.10 

 
The second uses nanopore geometry parameters DOMsize and PoA from BIB-SEM 

analysis as additional input (Equation 5.11): 

mestimated = aφbDOMsize𝑐𝑐PoA𝑑𝑑 Eq. 5.11 
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For the third equation, we replace DIA parameters DOMsize and PoA with βamplitude 

and βphase from CRS measurements (Equation 5.12): 

mestimated = aφbβ
phase

c β
amplitude

d  Eq. 5.12 

 
The comparison of results from models with DIA or CRS input parameters (Eq. 5.11 

and Eq. 5.12) is done to test the applicability of CRS as a parameter that can describe the 

pore geometry and electrical flow properties. 

Porosity as sole input parameter (Eq. 5.10) already enables predictions of cementation 

exponents with R2 = 0.81 (Figure 5.25; top left). Incorporating nanopore geometry 

parameters from BIB-SEM DIA into the predictions using Equation 5.11 does not 

significantly improve estimates with R2 = 0.82 (Figure 5.25; top middle). However, 

incorporating CRS information gives significantly better results with a correlation 

coefficient of R2 = 0.94 (Figure 5.25; top right). Predictions from DIA parameters alone 

(Equation 5.13): 

mestimated = a𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 Eq. 5.13 

 
show weak correlation coefficients of R2 = 0.053 (Figure 5.25; bottom left). Predictions 

from CRS parameters alone (Equation 5.14)  

mestimated = aβ
phase

b β
amplitude

c  Eq. 5.14 

 
show better correlation coefficients of R2 = 0.35 (Figure 5.25; bottom right). 
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Figure 5.25: Predictions of cementation factor m from porosity using Equation 5.10 
(top left), porosity and DIA parameters using Equation 5.11  (top middle), and from 
porosity and CRS slopes using Equation 5.12  (top right). The plot demonstrates that 
nanopore geometry has little influence on cementation factors, while CRS parameters 
evidently are highly related to m. Bottom row shows prediction just from DIA parameters 
(bottom left) using Equation 5.13 and predictions just from CRS parameters (bottom 
right) using Equation 5.14.  

 
This underlines the strong connections between the frequency dispersion of CRS and 

Formation Factors in this dataset (Figure 5.20; right), which allows for predictions of 

cementation factors in mudrocks with a universal equation (Equation 5.15): 

mestimated = 1.71φ0.31β
phase

−0.20β
amplitude

0.10  Eq. 5.15 

 
Similarly, predictions of cementation factors on the entire dataset of 56 core plugs using 

Equations 5.10 and 5.12 show significant gain in correlation from inclusion of CRS 

parameters (Figure 5.26). Using only porosity as input, the method achieves a correlation 

coefficient of R2 = 0.76, but including CRS parameters improves it to R2 = 0.95. Using 

Equation 5.15, with the constants abcd determined on the smaller BIB-SEM dataset, the 

method still achieves a correlation coefficient of R2 = 0.94. The high correlation coefficient 

underlines the general applicability of Equation 5.15 for predictions of cementation factors 

in mudrocks. 
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Figure 5.26: Predictions of cementation factor m in 56 mudrock core plug samples 
from porosity using Equation 5.10 (left), from porosity and CRS slopes using Equation 
5.12  (middle), and using Equation 5.15 that was defined on a smaller subset of 23 
BIB-SEM samples (right). Inclusion of CRS parameters drastically improve predictions 
of cementation exponents, even with a model that has been defined on a smaller subset.  

 
For the subset of 23 BIB-SEM samples, the predictions of cementation exponents from 

CRS and porosity achieve R2 = 0.94 (Figure 5.25; right). This is a significant improvement 

over predictions from a model that uses only porosity as input with an R2 = 0.81 (Figure 

5.25; left), or a model that uses pore geometry parameters DOMsize and PoA and porosity 

(Figure 5.25; middle). For the entire dataset of 56 core plugs, correlation coefficients for 

predictions of cementation exponents from porosity alone achieve R2 = 0.76 (Figure 5.26; 

left) and with CRS parameters R2 = 0.95 (Figure 5.26; middle). 
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study, we assess specific surface parameters from direct nanopore imaging of 2-

dimensional BIB-SEM mosaics. Hereby, Sm is comparable to ISA2D (amount of pore wall 
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pore wall surface per pore area). Our results indicate that the ISA2D is the more important 

factor for the dielectric behavior in the 0.1- 100,000 Hz range, as it shows good correlation 

with CRS curves (Figure 5.21; left). The PoA parameter (Spor), which effectively factors 

out the porosity and is purely geometric, on the other hand, does not correlate well with 

CRS (Figure 5.21; right). Nevertheless, the frequency dispersion of CRS generally is 

mostly controlled by total porosity (Figure 5.20; left). 

Formation Factor & Cementation factor m 

Formation factors (FF) show the best correlation with CRS in this mudrock dataset, as 

indicated by the near-perfect color zonation of the CRS curve according to FF (Figure 5.20; 

right). This explains the high correlation coefficients for predictions of m from CRS. The 

underlying principle for CRS predictions becomes evident when plotting porosity against 

FF and color-coding the plot with our CRS input parameters. The slopes of both real 

(Figure 5.27; left) and imaginary (Figure 5.27; right) part of complex resistivity (βamplitude 

and βphase) hereby show clear horizontal zonation, i.e. their values do not follow the lines 

of equal cementation factors. This implies that the slopes βamplitude and βphase can be used to 

assess Formation Factors independent of plug porosity. Porosity and FF are the input for 

calculations of cementation exponents with Archie’s equation (Eq. 5.3).  

  
Figure 5.27: Cross-plots of porosity and Formation Factor, grayscale-coded with real 
slope of CRS (βamplitude; left) and imaginary slope of CRS (βphase; right) at 50 MPa 
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effective pressure. Strong horizontal zonation of colors indicates that both slopes are 
sensitive to the absolute value of Formation Factor independent of the porosity.  

 
Noteworthy is that we could calibrate model parameters abcd on a subset of 23 BIB-

SEM samples and apply this Equation 5.15 to the entire core plug dataset of 56 samples, 

yet still get a correlation coefficient of R2 = 0.94 (Figure 5.26; right). This shows that one 

can calibrate the constants on subsets and then apply the constants to larger intervals or 

even the entire formation. It is even possible that a universal equation is adequate to 

estimate cementation factors in all mudrock and also carbonate rocks, as predictions with 

a model calibrated on a carbonate dataset from a previous study (Norbisrath et al., in press) 

still yields very high correlation coefficients of R2 = 0.94, even if a bit (Figure 5.28). 

 
Figure 5.28: Predictions of cementation factor m on the entire 
mudrock dataset, using constants defined on smaller subset of 23 
BIB-SEM samples (circles) and on a very heterogeneous 
carbonate dataset from a previous study (filled diamonds; 
Norbisrath et al., in press). 
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Wireline application 

Due to the connection of CRS to pore geometry and surface-chemical processes, 

complex resistivity spectra have the potential to be used as direct estimators of cementation 

factor, porosity, and also mineralogy in laboratory and possible future wireline 

applications. Good correlations achieved in the lab on core material are especially 

encouraging since plugs have been dried and re-saturated, which usually reduces the 

accuracy of petrophysical core plug measurements (Bust et al., 2013). Development of a 

CRS wireline tool could help establish an alternative method to estimate important 

reservoir parameters, both in conventional and unconventional rocks. 

Conclusion 

This core plug study of mudrocks from the Vaca Muerta Formation in Argentina had 

two goals. 1) to assess the controlling factor on the resistivity on these mudrocks and  2) to 

predict physical properties using broad-ion-beam milling scanning electron microscopy 

(BIB-SEM) and measurements of complex resistivity spectra (CRS).  

The most important finding is that cementation exponents show a strong positive 

correlation with porosity (R2 = 0.72) in the dataset. Mineralogical results show that 

cementation factors increase with increasing TOC content, and decrease with increasing 

CO3. This information can aid in interpretation and well-log inversion of important 

reservoir properties in unconventional reservoirs. 

Stitched BIB-SEM mosaics are used for quantification of the nanopore structure. BIB-

SEM result show that the pore size distribution follows a power law in all samples, 

indicating that fractal scaling governs the pore space. Fractal scaling of the pore space 

enables predictions of pore size distributions and can also be used as a scaling rule in 

reservoir modeling. 



166 

The nanopore structure and the 2-dimensional Interfacial Surface Area (ISA2D) are 

deemed to be a major controls on the frequency dispersion of CRS through interfacial 

polarization effects. However, connected helium plug porosity is the primary control on 

CRS, which is in turn directly related to formation factors. ISA2D is only a secondary factor, 

while PoA or DOMsize, solely describing nanopore complexity, have no influence on CRS 

or cementation factors. The relationship between porosity and CRS is the underlying 

concept that enables the use of CRS for estimates of reservoir properties. Using a modified 

model from Tong & Tao (2008) with CRS input parameters, the method predicts 

cementation exponents with a correlation coefficient of R2 = 0.94. The model further 

proves its general applicability to mudrock samples, as it is tested on a larger dataset of 56 

samples and achieved R2 = 0.95. Hence, a universal equation is put forward that is 

applicable to most tight mixed carbonate-siliciclastic reservoir rocks to predict cementation 

exponents from CRS: 

mestimated = 1.71φ0.31β
phase

−0.20β
amplitude

0.10  Eq. 5.15 

 
The CRS prediction method has proven to be applicable to core plug measurements 

and now has to be tested in a wireline scenario. A successful technology transfer to well-

logging would establish a new way to assess mineralogical and petrophysical properties 

down-hole, without the need for expensive coring and lab work.  
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Chapter 6: Summary 

Rationale 

This dissertation addresses the multiscale variability in carbonate pore structure and its 

effects on electrical resistivity, fluid flow, and low-frequency dielectric dispersion. The 

prevalence of heterogeneity presents a great challenge for reservoir evaluation and 

development in carbonates, which contain over 50 % of the world’s remaining 

conventional oil in place. The goal is to improve inversion of well log data by improving 

the understanding of how measured data can be translated into usable parameters.  

The pore geometry of a reservoir rock is the characteristic that regulates its hydrocarbon 

storage capacity and producibility. Carbonate rocks show highly variable pore structures 

due to the wide range in size and shape of their biogenic components, the often in-situ and 

unsorted deposition, and their strong diagenetic affinity. This heterogeneity leads to very 

complex petrophysical behavior, especially for the conduction of electrical charge where 

the fundamental controlling factors on cementation exponents have yet to be found. 

As a result, inversion of petrophysical properties from wireline logs in carbonate rocks 

is still a challenge. This is especially true for estimates of water saturation, as cementation 

exponents in carbonates have been reported between m = 1.0 – 5.5 (Verwer et al., 2011; 

Ditya et al., 2013; Eberli et al., 2014; Norbisrath et al., 2015). Due to the exponential nature 

of m, a slightly different value can change the well assessment from a discovery to a dry 

hole. Hence, it is of utmost importance to achieve good estimates of cementation factor in 

carbonate rock formations.  
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Outcome 

In this dissertation I present a new way to determine electrical and fluid flow properties 

from complex resistivity spectra (CRS).  The phase shift of CRS is related to the dielectric 

properties of the sample and often shows a characteristic dispersion, i.e. a change of 

strength with frequency. This is attributed to polarization effects at the brine-rock interface 

and directly related to the amount of specific surface area, which controls permeability and 

cementation factors. This is the underlying connection that allows the use of CRS 

measurements for estimates of reservoir properties. The CRS method is applied to several 

datasets of dolomites, carbonates, and mudrocks and shown in chapter 3, 4, and 5, 

respectively, where it achieves very good correlation coefficients.  

Further problems arise when trying to upscale results to a reservoir scale, as 

heterogeneity persists at all scales of carbonate pore space. This issue has been addressed 

in chapter 2 by combining quantitative pore structure parameters from analyses at different 

length scales into a multiscale analysis (Multiscale Digital Image Analysis – MsDIA). This 

method encompasses 6 orders of magnitude in pore sizes, from nanometer to millimeter 

scales. It explicitly includes carbonate microporosity, which has proven its influence on 

macroscopic and economically important flow and storage properties in reservoir rocks. 

Implications 

The combined results of this dissertation are meant to aid the inversion of carbonate 

pore structure from resistivity log data and thereby refine calculations of water and oil 

saturation in formation evaluation of carbonate reservoirs. A better understanding of 

micropore architecture and distribution together with knowledge about the inherent flow 

characteristics will aid in exploration and production from microporous formations.  
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Conclusion 

This research effort has contributed three main insights into aspects of the 

heterogeneous carbonate pore structure and its petrophysical properties that can be useful 

in reservoir characterization of carbonate rocks: 

1) Carbonate rocks contain at least four microporosity types, each of which has 

distinct electrical and fluid flow characteristics. 

2) Complex resistivity spectra can be used to accurately estimate fluid and electrical 

flow properties. 

3) Fractal scaling rules of pore sizes exist in all sedimentary rocks, expressed by log-

log linear power law pore size distributions. 

Chapter 1: Introduction 

In chapter one gives an introduction into the purpose of the research and also introduces 

the two main new methodologies which are presented in this dissertation: (1) the use of 

broad-ion-beam milling (BIB) for effective quantification of carbonate microporosity 

types, and (2) the use of complex resistivity spectra (CRS) for estimates of pore structure 

and flow properties. The main work is presented in four chapters that each addresses a 

specific topic or dataset, and each chapter has been submitted to a suitable journal in order 

to make the result accessible to a broad audience: 

Chapter 2: Electrical and Fluid Flow Properties of Carbonate Microporosity Types 

from Multiscale Digital Image Analysis and Mercury Injection 

• Published in AAPG Bulletin 

The purpose of chapter two was to better understand how microporosity influences 

electrical flow properties in carbonate rocks. Direct imaging and quantification of 
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microporosity has recently become possible with the adaption of the broad-ion-beam (BIB) 

milling method for flat surface preparation designed for SEM imaging (BIB-SEM). We 

utilized BIB-SEM and MICP methods, and main results are: 

• The type of microporosity plays a crucial role for the electrical properties of a 

carbonate rock. 

• Power-law pore size distributions is in place across all investigated length scales, 

from nanometer to millimeter scale. 

• Smaller pore throats result in lower cementation factors. 

Chapter 3: Fractal Pore Structure and Complex Resistivity Spectra (CRS) for 

Estimating Permeability in Dolomites from the Mississippian Madison Formation, 

Wyoming 

• Submitted to SPWLA Petrophysics 

Chapter three was an experiment to test if complex resistivity spectra could be used to 

estimate fluid flow properties in a homogeneous dolomite dataset consisting of 56 samples. 

This chapter builds on a previous dataset by Shen et al. that studied the influence of 

dolomite crystals shape and its results on petrophysical properties. Main results are: 

• Crystal size has no influence on permeability or cementation factors in sucrosic 

dolomites 

• Complex resistivity spectra can be used to estimate permeability in a homogeneous 

dolomite dataset. 

Chapter 4: Complex Resistivity Spectra and Pore Geometry for Predictions of 

Reservoir Properties in Carbonate Rocks 

• Submitted to AAPG Bulletin 
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In chapter four, the methodology of chapter three is applied on a heterogeneous 

carbonate dataset in order to estimate fluid and electrical flow properties. The dataset 

consists of 330 samples and various carbonate rock types from 12 separate studies (sub-

datasets). The fundamental idea is that the pore geometry has a decisive effect on complex 

electrical resistivity spectra which consequently can be used to estimate other pore-

geometry related petrophysical properties. Main results are: 

• CRS can be used to reliably estimate permeability within a certain sub-dataset, and 

cementation factors within all measured samples with a single equation. 

• Power-law pore size distributions are in place in all carbonate rock types. 

Chapter 5: Nanopore Imaging in Vaca Muerta Mudrocks to Evaluate Controls on 

Complex Resistivity Spectra in Unconventional Reservoirs 

• In preparation to be submitted to SPE Reservoir Engineering: Formation 

Evaluation 

Chapter five applies the complex resistivity technique to estimate nanopore geometries 

and electrical flow properties in a mudrock dataset. Utilizing BIB-SEM and CRS methods, 

main results are: 

• Nanopore geometry does not control electrical properties like CRS or cementation 

factors. Instead, porosity is the main control.  

• CRS can be used to reliably estimate cementation factors in mixed carbonate-

siliciclastic mudrocks, but also to estimate TOC, CO3 and specific surface area. 

• Power-law pore size distributions are in place in mudrocks. 
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