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Abstract 

 

Urban land-use/land-cover classification is entering a new era with the increased 

availability of high-resolution satellite imagery and new methods such as texture analysis and 

artificial intelligence classifiers. Recent research demonstrated exciting improvements of using 

fractal dimension, lacunarity, and Moran’s I in classification but the integration of these spatial 

metrics has seldom been investigated. Also, previous research focuses more on developing new 

classifiers than improving the robust, simple, and fast maximum likelihood classifier. The goal of 

this dissertation research is to develop a new approach that utilizes a texture vector (fractal 

dimension, lacunarity, and Moran’s I), combined with a new genetic Bayesian classifier, to 

improve urban land-use/land-cover classification accuracy. Examples of different land-use/land-

covers using post-Katrina IKONOS imagery of New Orleans were demonstrated. 

Because previous geometric-step and arithmetic-step implementations of the triangular 

prism algorithm can result in significant unutilized pixels when measuring local fractal 

dimension, the divisor-step method was developed and found to yield more accurate estimation. 

In addition, a new lacunarity estimator based on the triangular prism method and the gliding-box 

algorithm was developed and found better than existing gray-scale estimators for classifying 

land-use/land-cover from IKONOS imagery.  

The accuracy of fractal dimension-aided classification was less sensitive to window size 

than lacunarity and Moran’s I. In general, the optimal window size for the texture vector-aided 

approach is 27x27 to 37x37 pixels (i.e., 108x108 to 148x148 meters). As expected, a texture 

vector-aided approach yielded 2-16% better accuracy than individual textural index-aided 

approach. Compared to the per-pixel maximum likelihood classification, the proposed genetic 

Bayesian classifier yielded 12% accuracy improvement by optimizing prior probabilities with the 



 xi

genetic algorithm; whereas the integrated approach with a texture vector and the genetic 

Bayesian classifier significantly improved classification accuracy by 17-21%. Compared to the 

neural network classifier and genetic algorithm-support vector machines, the genetic Bayesian 

classifier was slightly less accurate but more computationally efficient and required less human 

supervision. This research not only develops a new approach of integrating texture analysis with 

artificial intelligence for classification, but also reveals a promising avenue of using advanced 

texture analysis and classification methods to associate socioeconomic statuses with remote 

sensing image textures.   
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Chapter 1  
Introduction 

1.1 Urban Land-Use/Land-Cover Classification 

Accurate land-use/land-cover (LULC) classification from satellite imagery is critical to 

many environmental applications. With the consistent operation of commercial satellites such as 

Landsat-5, LULC can be periodically monitored and their changes can be easily detected at low 

cost. Recent invention of high spatial resolution sensors such as IKONOS, QuickBird, and 

WorldView-1 make ground features more clearly identifiable than ever, thus promoting LULC 

classification to a new era. In existing literature, high-resolution imagery was used in USGS 

Level II classification to separate different urban lands, such as residential, commercial, and 

industrial (Myint et al., 2006) or even further separate high canopy covered residential 

neighborhoods from those with low canopy coverage (Myint and Lam, 2005a). 

Traditionally, different LULC classes were classified purely based on the captured spectral 

information (electromagnetic reflectance) of ground features, assuming that same land cover has 

a similar signature statistically. In supervised classification scenarios, the original image is often 

classified pixel-wise by using the spectral signature of different LULC classes. This method is 

referred as the per-pixel method. This method has been used successfully in USGS Level I 

(Anderson et al. 1976) classification scenarios for a long time, using Landsat-5 TM imagery, 

with some accuracy problems identified in complex urban areas. It is well known that the low 

accuracy in urban area is caused by relatively large in-class spectral variance and between-class 

overlaps. The problem is even worse for high-resolution imagery such as IKONOS and 

QuickBird imagery. Compared to the 30-meter resolution multispectral bands and 15-meter 

panchromatic band of Landsat-5 TM imagery, IKONOS provides 4-meter resolution 

multispectral bands and 1-meter panchromatic band, while QuickBird provides 2.4-meter 
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resolution multispectral bands and sub-meter (0.6m) resolution for its panchromatic band. The 

meter-level-resolution imagery exhibits a clear view of urban area with detailed components, 

such as single-family houses, multi-family houses, parking lots, driveways, amenity grasses, and 

cars. These components exhibit sharp spectral differences but could co-exist in one land use class 

(residential area); the same component could exist in multiple land use categories. For example, 

the same construction materials could be used in residential area and commercial area.  

Regarding this complex problem, two alternative solutions have been developed in previous 

literature (e.g. Huang et al., 2002; Myint and Lam, 2005a). First, texture analysis methods were 

used to provide textural information in addition to spectral information. Myint and Lam (2005a) 

argued that, “This spatial information needs to be extracted, in addition to its individual spectral 

value, to characterize the heterogeneous nature of urban features in high-resolution images”. 

Second, alternative classifiers that utilize artificial intelligence and machine learning algorithms 

have been used to improve classification accuracy. 

However, previous research tends to investigate the performance of individual textural 

index, such as fractal dimension, lacunarity, and Moran’s I (Emerson et al., 2005; Myint and Lam, 

2005a), rather than to integrate these powerful metrics together to form a texture vector to assist 

classification. Also, previous research focuses more on alternative classifiers (Erbek et al., 2004; 

Huang et al., 2002) than improving the robust, simple, and fast maximum likelihood classifier; it 

could be promising to improve the maximum likelihood classifier by optimizing the prior 

probabilities with a fast and efficient genetic algorithm and then combine with a texture vector 

for fast and accurate land use/cover classification. 
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1.2 Texture Analysis 

The heterogeneous nature of urban environment caused by multiple materials and land 

cover integration has prompted researchers to use a texture-aided classification approach instead 

of pure per-pixel spectral-based image classification (Myint and Lam, 2005a). Generally there 

are three directions of using textural information: contextual classification, textural-layer method, 

and object-based approach. The neighborhood relationship is modeled in contextual 

classification with Markov or Gibbs random fields (Jackson and Landgrebe, 2002; Kasetkasem 

and Varshney, 2002; Solberg et al., 1996). In the textural-layer method, textural layers are 

extracted with a moving window technique (assigning local measurements to centers of moving 

windows) on original (Dong, 2000; Emerson et al., 2005) or transformed images (Carr and de 

Miranda, 1998) and then they are stacked, with or without spectral layers for classification. The 

object-based approach segments the images into objects based on both their spectral and textural 

information (Hu et al., 2005; Mitri and Gitas, 2004; Pal and Pal, 1993; Woodcock and Harward, 

1992).  

Unlike the per-pixel based classification which solely relies on the spectral information 

(visualized as color for a three bands composite), texture-aided methods utilize the neighborhood 

information around pixels to quantitatively interpret the image texture. Quantitative 

measurement of image texture is essential to various texture-aided approaches. Recent research 

demonstrated successful examples of using the following texture metrics in image 

characterization and classification: fractal dimension (Emerson et al., 1999; Lam et al., 2002; 

Zhao, 2001), lacunarity (Dong, 2000; Myint and Lam, 2005a), Moran’s I spatial autocorrelation 

(Emerson et al., 2005), Getis statistic (Wulder and Boots, 1998), semivariogram (Carr and de 

Miranda, 1998; Miranda et al., 1998), co-occurrence matrix (Jobanputra and Clausi, 2006), 
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compactness and smoothness (Hu et al., 2005; Mitri and Gitas, 2004; Yu et al., 2006), and 

geostatistical metrics like entropy, variance, fragment index, and diversity (Carr and de Miranda, 

1998; Li et al., 2004; Zhu and Yang, 1998). Improvements in texture-aided classification are 

impressive. Emerson et al. (2005) reported a 10% (67% to 77%) improvement in Landsat ETM+ 

imagery classification when a fractal layer was added to multispectral layers for classification. 

Dong and Leblon (2004) found that the lacunarity measure was useful to improve rock unit 

discrimination by 8%. Myint and Lam (2005a) reported that adding a spatial autocorrelation or 

lacunarity layer could improve land cover classification from 55% to 78% or 92%, respectively. 

With object-based classification using texture measures such as compactness and smoothness, 

Mitri and Gitas (2004) reported a high accuracy for burned area mapping with Landsat TM 

imagery: 94.59% user’s and 97.22% producer’s accuracy.  

Spatial resolution plays an important role in texture analysis. Most LULC categories are 

more uniform in LandSat-5 TM imagery than in IKONOS imagery. Given the finer resolution of 

latter imagery, textural analysis is even more critical, as heterogeneous spectral information often 

violates the normality assumption of the maximum likelihood classifier (Myint and Lam 2005a). 

Textural metrics are scale dependent and their performance varies with scale and image type. For 

example, fractal was found to be more successful on LandSat-5 TM (Emerson et al., 2005; Lam, 

2004) than IKONOS (Myint and Lam, 2005a). The need of using local window to derive 

neighborhood texture measurements makes the texture interpretation highly dependent on 

window size. Computational efficiency and classification accuracy vary across different moving 

window sizes that are utilized to generate textural layers (Emerson et al., 2005; Myint and Lam, 

2005a). Although with some performance variation, the texture-aided approach has been reported 

to improve classification in many studies (Carr and de Miranda, 1998; Mitri and Gitas, 2004). 
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Comparisons among different metrics were made by a number of studies. Emerson et al. (2005) 

found fractal dimension more effective than local variance and Moran’s I for classifying land-

use/land-cover with Landsat TM imagery. Myint and Lam (2005a) reported that lacunarity was 

more effective than fractal dimension in classification scenarios with IKONOS imagery.  

1.3 Artificial Intelligence Classifiers 

A well-known problem of the maximum likelihood classifier is that its Gaussian distribution 

assumption of the image data is often violated in complex urban land-use/land-cover 

classification. Alternative classifiers have been applied to improve classification accuracies such 

as artificial neural networks (Bagan et al., 2005; Erbek et al., 2004; Kavzoglu and Mather, 2003; 

Mills et al., 2006; Verbeke et al., 2004), decision tree (Gislason et al., 2006; McIver and Friedl, 

2002; Pal and Mather, 2003), and support vector machines (Foody and Marthur, 2004b; Huang et 

al., 2002; Pal and Mather, 2005).  

While these approaches improve the classification accuracy, some bring other issues such as 

the training efficiency and additional requirements of user supervision. For example, the artificial 

neural network approach generally has a time-consuming training process. The configuration of 

parameters in support vector machines requires a trial-and-error approach (Huang et al., 2002). 

The goals of satellite image classification should include not only accuracy, but also the 

possibility for automation to reduce human supervision, and computational efficiency. The 

maximum likelihood classifier has a robust generalized mathematical formula and is easy to 

apply. Although it has problems, the maximum likelihood classifier is still widely used because it 

is the most commercially available classifier in remote sensing and photogrammetric software 

and is easy to apply. Huang et al. (2002) stated that, “Despite limitations due to its assumption of 

normal distribution of class signature, it is perhaps one of the most widely used classifiers”. 
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1.4 Problem Statement and Research Objectives 

Due to the low accuracy of applying the traditional spectral-based land use classification 

methods in the heterogeneous urban environment, especially when using high-resolution satellite 

imagery (Chen et al., 2004; Myint and Lam, 2005a), various texture indices were introduced 

recently to characterize the image pattern, such as fractal dimension (De Cola, 1989; Emerson et 

al., 1999; Lam, 2004; Lam et al., 2002; Qiu et al., 1999; Quattrochi and Goodchild, 1997; Sun et 

al., 2006), lacunarity (Dong, 2000; Greenhill et al., 2003; Myint et al., 2006), and spatial 

autocorrelation (Cliff and Ord, 1973; Emerson et al., 2005; Lam et al., 2002). Although the 

combination of texture and spectral information have been applied in some land-use/land-cover 

classification scenarios (Emerson et al., 2005; Myint and Lam, 2005a) and the performance 

comparison between different indices has been demonstrated in some literature (Emerson et al., 

2005; Myint and Lam, 2005a), the utilization of these textural indices (fractal dimension, 

lacunarity, and Moran’s I) together as a texture vector to aid texture-spectral based classification 

has seldom been done. It is expected that a texture vector has the capability to describe multiple 

aspects of the texture pattern of heterogeneous urban area, and hence better classification results 

can be yielded. 

Fractal dimension, lacunarity, and Moran’s I are different from many other statistical 

textural indices (e.g. mean and standard deviation) in that their measurements are sensitive to the 

spatial arrangements of pixels and they can be directly applied to the original spectral bands and 

to the study area as a whole or locally. When applied locally, some problems emerge. The 

problem of applying Moran’s I locally has been reported by Lam et al. (2008). For fractal 

dimension algorithms, their local implementation could result in some pixels excluded from 

calculation. However, this problem has seldom been investigated. For lacunarity analysis of 
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remote sensing image, the performance of the existing two gray-scale estimators (Dong, 2000; 

Voss, 1986) has yet to be compared and tested.  

Another concern when dealing with texture analysis is the size of “moving window” 

(Emerson et al., 2005; Lam et al., 2002), which is used to measure the local texture pattern. 

Different window sizes for different texture indices have been compared in some literature (Chen 

et al., 2004; Emerson et al., 2005; Myint and Lam, 2005a), which clearly shows the existence of 

an “optimal window”. The term “optimal window”, as used in this dissertation research, means a 

turning point of texture pattern and is often referred to the point of maximum complexity. In 

terms of texture-aided classification, the accuracy will increase to a certain level with increasing 

window size but will decrease thereafter. As argued in some previous studies (Chen et al., 2004; 

Hodgson, 1998; Zhou, 2006), the size of “optimal window” is closely associated with the 

landscape pattern of the image being analyzed (Chen et al., 2004). Thus, there is a need to study 

the quantitative relationships between optimal window, texture measures, and LULC objects.  

Instead of improving the widely-used maximum likelihood classifier, different classifiers 

have been developed for land cover classification, such as artificial neural networks (Bagan et al., 

2005; Erbek et al., 2004; Kavzoglu and Mather, 2003; Mills et al., 2006; Verbeke et al., 2004), 

decision tree methods (DeFries et al., 1998; Galante, 1996; Gislason et al., 2006; McIver and 

Friedl, 2002; Pal and Mather, 2003), support vector machines (Foody and Mathur, 2004a; Pal, 

2006), and discriminant analysis (Myint et al., 2004). One important part of using maximum 

likelihood classifier is the prior probability, which is often assumed to be the same for all classes 

or assigned using the proportion of training samples in each class. The prior probabilities are 

rarely optimized with other methods, except in some contextual classification using 

Markov/Gibbs random field (Jackson and Landgrebe, 2002; Kasetkasem and Varshney, 2002; 
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Solberg et al., 1996). Since they are between 0 and 1, some search methods could be applied to 

find the optimal solution to achieve higher classification accuracy. Because genetic algorithms 

are quite efficient and fast in optimizing weights (Galante, 1996; Huang et al., 2004; Maniezzo, 

1994) or location search (Li and Yeh, 2005), it is promising to use genetic algorithms to optimize 

the prior parameter in maximum likelihood classification to boost its performance. 

The goal of this dissertation research is to develop more efficient and accurate methods for 

classifying urban LULC from high-resolution imagery. The ultimate goal is to reduce human 

supervision and enable automation for a variety of environmental applications. The overriding 

hypothesis for this dissertation is: integrating the texture vector-aided approach with artificial 

intelligence classifiers can improve urban LULC classification accuracy. The research will 

investigate the performance of utilizing a texture vector (fractal dimension, lacunarity, and 

Moran’s I), combined with an innovative genetic Bayesian classifier, to improve the urban land-

use/land-cover classification accuracy using high-resolution IKONOS imagery post-Katrina in 

New Orleans, Louisiana. Specifically, the objectives are: 

(1) To develop more efficient algorithms of calculating local fractal dimension;  

(2) To evaluate and determinate the best lacunarity estimators; 

(3) To determine the effects of windows size and the optimal window size for deriving local 

neighborhood textural measurements with fractal dimension, lacunarity, and Moran’s I, using the 

IKONOS imagery; 

(4) To develop a genetic Bayesian classifier to boost the classification performance of the 

traditional maximum likelihood method by optimizing the prior probabilities, and to test the 

robustness and computational efficiency of the classifier; 

(5) To determine whether combining a texture vector-aided approach (fractal dimension, 
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lacunarity, and Moran’s I) and the proposed genetic Bayesian classifier is efficient in classifying 

heterogeneous urban area and identifying different residential neighborhoods with different 

social-economic statuses. 

1.5 Expected Significance of the Research 

For the intellectual merits, this dissertation research will contribute to four aspects. First, 

more efficient algorithms will be developed for calculating local fractal dimension and lacunarity. 

The research results will provide better options for application scenarios in geographic 

information science and benefit future improvements to the estimation of fractal dimension and 

lacunarity. Second, by using a genetic algorithm, the proposed genetic Bayesian classifier will 

optimize the prior probability parameter of the maximum likelihood classifier to boost its 

performance without losing the computational efficiency or adding substantial human 

supervision. Third, this study is among the few to bring the most recent successful texture 

indices like fractal dimension, lacunarity, and Moran’s I together to build a texture vector to 

assist urban LULC classification. Although many approaches with these indices have been 

experimented, very few studies bring them together to demonstrate different aspects of the 

texture pattern of the remotely sensed image, which could lead to accurate classification. The use 

of the combined genetic Bayesian classifier and texture vector-aided approach could make 

automation and generalization to other study areas easier. Fourth, previous research about texture 

analysis with different window sizes implies the existence of the “optimal window”. The 

proposed study will identify the quantitative relationships between the effects of window size on 

fractal dimension, lacunarity, and Moran’s I when using IKONOS imagery, and discuss the 

relationship between the size of “optimal window” and the land use objects. The findings will 

increase our understanding of the nature of the moving window technique and serves as guidance 
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for the selection of appropriate window size when performing texture analysis with high-

resolution imagery. 

This dissertation research will have four broad impacts. First, the improved algorithms of 

fractal dimension and lacunarity can be applied to many other applications that use these indices. 

Second, although the proposed genetic Bayesian classifier is primarily used for one urban LULC 

classification scenario, the methodology can be applied to other classification scenarios in other 

scientific disciplines. The MATLAB modules developed in this research can be widely 

distributed (through http://www.lsu.edu/rsgis) to benefit other research. Third, the proposed 

integration of multiple texture indices may be further applied to some other classification 

methods, such as the rapidly-growing object-based classification that emphasizes the use of 

texture. Fourth, the improved classification of New Orleans will be helpful to urban structure 

analysis. The results will also be useful to government agencies for urban planning, 

environmental assessment, disaster or special event monitoring such as hurricane, earthquake, 

and vegetation health, as well as guiding the recovery. 

1.6 Chapter Organization 

The entire dissertation is organized into six journal-style chapters. Each chapter can be 

treated as a separate paper but are linked together under the central topic of the dissertation. The 

second, third, and fourth chapters focus on basic problems of textural approach, and the fifth and 

sixth chapters focus on the genetic Bayesian classifier, its integration with textural approach and 

comparison with other classification methods. 

First, based on the literature review, research problems are defined in this introduction 

chapter. A new method of calculating fractal dimension is presented in the second chapter, 

followed by a chapter discussing a new lacunarity estimator and the inconsistency problem 
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among different gray-scale lacunarity algorithms. The fourth chapter investigates the optimal 

window size issue of the three spatial-based textural indices: fractal dimension, lacunarity, and 

Moran’s I, when applied to urban LULC classification scenarios with an IKONOS image. In the 

fifth chapter, a new classifier, genetic Bayesian classifier, is presented. Fractal dimension is used 

along with lacunarity and Moran’s I for texture vector extraction. They are then combined with 

the GBC method for land-use/land-cover classification. In the sixth chapter, integration of 

texture analysis with artificial intelligence classifiers is further investigated and compared with 

other classifiers including the maximum likelihood classifier, genetic Bayesian classifier, multi-

layer perceptron neural network classifier, and genetic algorithm – support vector machines. A 

special scenario of discriminating four residential neighborhoods with different economic 

statuses and impacts by Hurricane Katrina is discussed. The seventh chapter summarizes the 

findings and significance of this dissertation research. 
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Chapter 2   
An Improved Algorithm for Computing Local Fractal Dimension 

Using the Triangular Prism Method 

2.1 Introduction  

As a promising spatial metric, the fractal dimension (Mandelbrot, 1983) has been frequently 

applied in many geoscience applications, including remote sensing image complexity 

characterization (De Cola, 1989; Lam, 2004; Liu and Cameron, 2001; Qiu et al., 1999; 

Quattrochi et al., 2001; Turner and Ruscher, 1988), land-use/land-cover classification, and 

change detection (Chust et al., 2004; Emerson et al., 2005; Myint and Lam, 2005a; Myint et al., 

2004; Read and Lam, 2002). Despite the many applications, the problem of inconsistent results 

derived from different fractal calculation algorithms remains. Algorithms such as the isarithm, 

variogram, probability, box-counting and triangular prism methods have been proposed and 

tested (Goodchild, 1980; Jaggi et al., 1993; Lam and De Cola, 1993; Sun et al., 2006; Tate, 1998; 

Voss, 1988). For complex surfaces such as remote sensing images, it was found that the modified 

triangular prism method was the most reliable estimator when compared with the isarithm and 

variogram methods (Lam et al., 2002; Zhou and Lam, 2005). This paper focuses on improving 

the triangular prism method, especially on extending its applications for local measurements.   

Originally proposed by Clarke (1986), the triangular prism method utilizes imaginary three-

dimensional prisms constructed from the image, and then compares the total prism surface area 

with the step size used to derive the prisms in a double-logarithmic regression. The slope of the 

regression is then used to estimate the fractal dimension. Specifically, a triangular prism is 

constructed by connecting four adjacent pixels and its center (Figure 2.1a). The height of each 

corner pixel is the pixel intensity value and the height of the center takes the average of the four 

corner pixels. The step size is the number of pixels on a side. Given a step size, triangular prisms  
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(a)   (b)  

Figure 2.1 A triangular prism (a) and a regression plot (b).  

are constructed across the image and the total surface area of all triangular prisms calculated. The 

procedure is repeated for each step size. A double-log regression (Figure 2.1b) between the total 

prism surface area (A) and the area of step size (S2) is estimated to derive the slope B, where 

fractal dimension D=2-B. Clarke’s original algorithm was later modified so that the length of 

step size, not step size squared, is used in the regression, because the use of step size squared led 

to underestimation of the fractal dimension (Jaggi et al., 1993). The modified triangular prism 

method was subsequently proven to be mathematically correct, as well as experimentally reliable 

(Lam et al., 2002; Zhao, 2001). It was then suggested that the modified triangular prism method 

should be used. Hence, 

  Log A = a + (2-D) Log S                 (1)  

where A is the total surface area of the prism “facets”, S is the step size, a is the intercept, and D 

is the fractal dimension. In the remainder of the paper, whenever the term “triangular prism 

method” is used, it implies the modified version. It is noted that some other variants were also 

developed by using alternative pixels other than corner pixels of the square (Sun, 2006). 
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In general, the triangular prism method is very robust in its estimation of the fractal 

dimension. The only source of estimation variation is the choice of the number of steps and the 

corresponding step sizes. How to determine these two related parameters so that the results are 

reliable is the focus of this study. In essence, this is an issue of sampling strategy, which is 

common to many fractal estimation algorithms and will affect the estimation accuracy. This 

paper introduces a new sampling strategy, called the divisor-step method, which is designed to 

overcome the weakness of the geometric-step method that has been commonly employed in the 

triangular prism method.  

2.2 Sampling Issues  

The original algorithm by Clarke (1986) uses a series of geometric steps with an increase in 

power of two until it reaches the maximum limit imposed by the algorithm. For example, for a 

33x33 image, steps 1, 2, 4, 8, and 16 can be used. The maximum step size is usually bounded by 

a value equivalent to the image size minus one and divided by half ((W-1)/2), which is 16 in this 

case. Otherwise, it will result in only one triangular prism for the largest step (S=32 for the 

example), which could lead to unstable log-log area-step regression. The use of geometric steps 

is to ensure that points are distributed uniformly on the log-log regression curve so that an 

unbiased regression can be obtained. However, if the size of an image (or local window within 

an image) is not of 2n+1 pixels (for convenience, it is called “geometric-square” image 

thereafter), a portion of the image will not be included in the calculation. This is considered 

undesirable from a theoretical point of view, as variation in some parts of the image is not 

measured. When apply the algorithm locally to a small non-geometric-square local window, the 

omitted portion could be significantly large that could lead to unreliable estimation of local 

fractal dimension. For example, if the local window size is 29x29, using geometric steps of 1, 2, 
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4, and 8, only 17x17 (i.e., 2n+1) pixels will be used, whereas the remaining 2/3 pixels within the 

window will not be included in the estimation. 

Another sampling method is to employ arithmetic steps, such as 1, 2, 3, 4, and so on. The 

arithmetic-step method has an advantage that it can yield sufficient number of area-step points 

for the log-log regression even for a very small study area. However, since it is not a geometric 

progression, a counter argument for this method is that these arithmetic points might bias the log-

log regression estimate as a result of including more samples at the lower end of the regression. 

The proposed divisor-step method is designed such that full coverage of the sampling area is 

ensured at each step.  

2.3 Comparison Using Effective Coverage Ratio 

2.3.1 The Geometric-Step Method (Fixed Coverage) 

The geometric-step method, as originally presented by Clarke (1986), requires the 

calculation to be based on a geometric-square subset of the study area. It has a fixed coverage for 

all the geometric steps. Figure 2.2a shows the geometric steps of 1, 2, and 4 for an 11 x 11 local 

window. For ease of visual comparison with other methods, the upper-left subset is used instead 

of center cut. It is apparent from Figure 2.2a that some pixels are “wasted” and will not be 

included in the calculation. As already mentioned above, this will cause two problems. First, the 

calculated fractal dimension is not a true measurement of the entire window, and second, local 

windows with different sizes may have the same measurements as they may be confined by the 

same sampling sizes for calculation. 

2.3.2 The Geometric-Step Method (Varying Coverage) 

To extend the ability of using geometric steps in the calculation of non-geometric-square 

windows, some algorithms will let the triangular prisms grow within the study area and cover as 
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Figure 2.2 A top-view demonstration of the coverage (shaded prisms) by different sampling 
methods with an 11x11 window. a1-a3: the geometric-step method (fixed coverage); b1-b3: the 
geometric-step method (varying coverage); c1-c3: the arithmetic-step method; d1-d3: the divisor-
step method. 
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many pixels as possible. The coverage of triangular prisms at each step may vary, as illustrated in 

Figure 2.2b. This method was implemented in the Image Characterization And Measurement 

System (ICAMS) software (Lam et al., 1998; Quattrochi et al., 1997). Although the coverage in 

this method is larger than that of the original algorithm, it is clear that complete coverage of the 

entire study area at all steps is not guaranteed. 

2.3.3 The Arithmetic-Step Method 

The arithmetic-step method has been used in previous research to obtain sufficient number 

of regression points when using a small window (e.g. Emerson et al., 2005). The number of 

pixels utilized in the arithmetic-step method is generally more than that of the geometric-step 

methods. Figure 2.2c presents the first three steps (1, 2, and 3) using the arithmetic-step method 

for the same 11x11 window. Similar to the geometric-step methods, however, 100% coverage of 

the entire window at all steps is not guaranteed. 

2.3.4 The Proposed Divisor-Step Method 

This new sampling method is developed in this research. To cover the entire W x W window 

(W is an odd number) by triangular prisms at any given step, the step size should be a divisor of 

(W-1). Using a set of divisor steps of (W-1) will guarantee 100% coverage of the entire window 

at all steps. For this example, the three divisible steps are 1, 2, and 5 (Figure 2.2d). By taking 

advantage of the 100% window coverage at all steps, the derived fractal dimension value is 

expected to measure more accurately the surface variation within the study area. This is 

especially critical to local fractal estimation, as excluding some pixels for calculation in a small 

window area is more likely to lead to unreliable results. 
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2.3.5 Effective Coverage Ratio and Coverage Fluctuation  

To quantify the effects of different algorithms on pixel utilization, the ratio between the 

average number of utilized pixels at each step and the total number of pixels contained in the 

local window can be used. In this study, we define this ratio as effective coverage ratio (ECR): 

 }/{}/}1*]/)1[({{
}{

2 WWniiWfloorECR
si

×+−= ∑
∈

    (2)  

where {s} is the collection of step length, W is the size of the local window,  

2}1*]/)1[({ +− iiWfloor  is the coverage (in pixels) at a given step i, n is the size of the 

collection {s}. The higher the ECR, the fewer the wasted pixels will be. For the geometric (fixed 

coverage) method, as the calculation is based on a square subset, the ECR is calculated as the 

following: 

 2
2 }/]1)(log{[ WWfloorECR +=       (3) 

Along with ECR, the standard deviation of coverage (SDC) for all steps for each method 

can be calculated. Table 2.1 lists the ECR and SDC of different methods at different window 

sizes. The divisor-step method has 100% coverage, whereas the geometric-step method (fixed 

coverage) has the largest waste of pixels (i.e., lowest ECR), hence is not considered desirable and 

will not be tested further with simulated surfaces. The arithmetic-step method and the geometric-

step (varying coverage) generally have larger ECRs than the geometric-step method (fixed 

coverage). Neither geometric-step (varying coverage) nor arithmetic-step method can guarantee 

a full coverage for all steps. The ECR and coverage fluctuation (SDC) are expected to affect the 

accuracy and robustness of subsequent fractal surface dimension estimation. 
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Table 2.1 Effective Coverage Ratios (ECR) and standard deviation of coverage (SDC) of 
different sampling methods (%) 

Geometric (fixed) Geometric (varying ) Arithmetic Divisor 
Window 

ECR SDC ECR SDC ECR SDC ECR SDC 

9x9 100 0.00 100 0.00 90.12 1.23 100 0.00 

13x13 47.93 0.00 100 0.00 95.27 0.48 100 0.00 

17x17 100 0.00 100 0.00 89.19 0.49 100 0.00 

21x21 65.53 0.00 91.38 0.17 86.21 0.47 100 0.00 

25x25 46.24 0.00 100 0.00 88.41 0.34 100 0.00 

29x29 34.36 0.00 93.58 0.13 85.13 0.30 100 0.00 

33x33 100 0.00 100 0.00 83.79 0.28 100 0.00 

37x37 79.55 0.00 91.82 0.11 87.63 0.23 100 0.00 

41x41 64.78 0.00 92.96 0.16 84.87 0.22 100 0.00 

45x45 53.78 0.00 87.36 0.20 82.15 0.20 100 0.00 

49x49 45.36 0.00 100 0.00 84.76 0.18 100 0.00 

53x53 38.77 0.00 94.19 0.08 82.87 0.16 100 0.00 

57x57 33.52 0.00 94.78 0.12 83.84 0.16 100 0.00 

61x61 29.27 0.00 90.37 0.15 84.92 0.14 100 0.00 

65x65 100 0.00 100 0.00 82.72 0.14 100 0.00 

69x69 88.74 0.00 94.37 0.06 81.49 0.13 100 0.00 
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2.4 Comparison Using Simulated Images 

2.4.1 Shear Displacement Simulation 

Because simulated self-similar fractal surfaces have frequently been used for benchmark 

testing, we will also utilize these simulated surfaces to test the performance of the different 

sampling methods (Lam et al., 2002; Zhou and Lam, 2005). The shear displacement method is 

one of the popular algorithms used to generate fractional Brownian motion (fBm) surfaces 

(Goodchild, 1980; Lam and De Cola, 1993; Mandelbrot, 1975; Mandelbrot, 1983). The 

algorithm works as follows: An image is initialized with zero values everywhere. The image is 

then randomly cut into halves and each part is randomly shifted vertically. This shear-and-

displacement process is repeated for a number of times until there are several cliffs between 

adjacent pixels. A Poisson process controls the intersection points of the break lines while the 

angles of intersections are uniformly distributed. A persistence factor H controls the magnitude 

of vertical shift and H satisfies:  

E(Zi-Zi+d)2=|d|2H       (4) 

where Zi is the pixel value and d is the pixel distance. The expected variance between two pixels 

is a function of their distance powered by 2H. Fractal dimension is 3-H.  

The shear displacement algorithm has been implemented in ICAMS (Lam et al., 1998; 

Quattrochi et al., 1997) with a batch mode available. Figure 2.3 shows a set of 45x45 fractal 

surfaces with varying levels of complexity generated using ICAMS.  

2.4.2 Comparison among Different Sampling Methods 

To compare the accuracy and robustness of different sampling methods, a set of small 

simulated surfaces with 16 sizes ranging from 9x9 to 69x69 were generated. These window sizes 

were selected because this series covers most windows used in previous image classification or 
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Figure 2.3 Fractional Brownian surfaces (45x45) generated using the shear displacement 
algorithm (3000 cuts). 
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segmentation research that uses local fractal measurements (Dejong and Burrough, 1995; 

Emerson et al., 2005; Myint and Lam, 2005a). For each window size, 50 surfaces were generated 

for each of the five theoretical dimensions (2.1, 2.3, 2.5, 2.7, and 2.9) using the same number of 

cuts (3000). The 50 surfaces were generated with the same control parameters (theoretical 

dimension, image size, number of cuts), but each time a different sequence of random numbers 

was used, hence the surfaces are different. The surfaces were generated by ICAMS based on the 

algorithm described in Lam and De Cola (1993). This resulted in a total of 4,000 surfaces used 

for this experiment. All simulated surfaces were stretched to 0-255 to provide the same basis for 

comparison. For the geometric-step (varying coverage) method, the maximum number of steps 

and step sizes were calculated according to (W-1)/2, and in this experiment, the number of steps 

ranged from 4 to 6 (except when W=9), depending on the window size. For the arithmetic-step 

method, the number of steps was (W-1)/2. The number of steps of the divisor-step method 

depended on the available divisors of (W-1), and it ranged from 4-11 (except when W=9) in this 

experiment. ICAMS was used to generate the simulated surfaces. ICAMS already has two built-

in modules for the geometric-step (varying coverage) and arithmetic-step methods. The divisor-

step method was programmed in MATLAB and was not yet available in ICAMS.  

For each window size, the average estimated fractal dimension (D) was calculated and the 

root mean square errors between the estimated and the theoretical D were computed. The grand 

average values by fractal dimension for all window sizes are presented in Table 2.2.  

Based on the average estimated D measure, the arithmetic-step method yielded an estimated 

fractal dimension much closer to the theoretical D for surfaces with low complexity (when D< 

2.5), whereas the divisor-step method yielded more accurate estimates for surfaces with high 

complexity (when D>2.5). This pattern can also be reflected by the average RMSE measure, 
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Table 2.2 Estimated fractal dimension and RMSE averaged for all 16 window sizes (from 17x17 
to 69x69) 

Geometric (varying) Arithmetic  Divisor 
D 

Avg. D Avg. RMSE Avg. D Avg. RMSE Avg. D Avg. RMSE 

2.1 2.12 0.109 2.15 0.101 2.04 0.095 

2.3 2.18 0.153 2.24 0.109 2.11 0.201 

2.5 2.45 0.129 2.53 0.111 2.39 0.141 

2.7 2.79 0.143 2.87 0.195 2.74 0.101 

2.9 2.97 0.127 3.06 0.166 2.91 0.077 

Grand Avg.   0.132   0.136   0.123 

 

where the divisor method resulted in lower RMSE for surfaces with high complexity, and the 

arithmetic-step method yielded lower RMSE for surfaces with low complexity. The geometric-

step method (varying coverage) ranks in the middle, with a grand average RMSE equals to 0.132, 

compared with 0.123 and 0.136 of the divisor-step and arithmetic-step methods, respectively.  

A closer look of the results across window sizes provides further insights. Figure 2.4 plots 

the mean estimated fractal dimension from different algorithms at different windows.  

From Figure 2.4, it can be observed that the geometric-step method (varying coverage) had 

the most unstable estimation across different window sizes and yielded the largest deviations 

from the theoretical values at most window sizes. The three peak points of the geometric-step 

method (varying coverage) corresponded to the three worst ECR and SDC in Table 2.1 (at 

windows 21x21, 45x45, and 61x61). This implies that the geometric-step (varying coverage) 

method tends to overestimate the fractal surface dimension (D=2.7, 2.9) when there is uneven or 

partial coverage among the steps. When the coverage is about the same as in the arithmetic-step  
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Figure 2.4 The mean estimated fractal dimensions derived from different methods, theoretical 
dimension shown in dashed straight line.  (a) D=2.1; (b) D=2.3; (c) D=2.5; (d) D=2.7; (e) D=2.9. 
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divisor-step methods, the geometric-step (varying coverage) method yields similar fractal 

dimension values, as expected. 

The arithmetic-step method consistently yielded higher estimated fractal dimension than the 

divisor-step method across all window sizes. The plot (Figure 2.4) further confirms that the 

arithmetic-step method is a more accurate estimator for low-complexity surfaces across all 

window sizes, whereas the divisor-method is more accurate for high-complexity surfaces. The 

estimates from the geometric-step (varying coverage) method fluctuate substantially across the 

windows, making this method far less desirable for fractal surface estimation. 

The RMSE plots across windows (Figure 2.5) also show similar patterns. For surfaces with 

high-complexity (D=2.7, 2.9), the arithmetic-step method is clearly the worst due to high RMSEs 

and overestimation. The geometric-step (varying coverage) method also yielded high RMSEs, 

especially for windows with low ECRs and high SDCs (e.g., at 21, 45, and 61). The divisor-step 

method is generally the best for most windows. For surfaces with medium-low complexity 

(D=2.3, 2.5), the arithmetic-step method generally achieves the best RMSE for most windows. 

For surfaces with D=2.1, the arithmetic-step method is close to the divisor-step method. 

Based on this experiment, we can conclude that the geometric-step method (varying 

coverage) is most unstable across different local windows and is less accurate than the others for 

most theoretical dimensions. Thus the method should be avoided in the future. The arithmetic-

step method consistently yields a higher estimate than the other methods and is generally a better 

estimator for surfaces with medium-low complexity (D=2.3, 2.5), but it seriously overestimates 

the fractal dimension of surfaces with high complexity (D=2.7, 2.9). For D=2.9, the estimation 

consistently exceeds the theoretical maximum of 3.0. The divisor-step method is generally the 

best for surfaces with high complexity (D=2.7, 2.9) and very low complexity (D=2.1), but it 
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Figure 2.5 RMSE of different methods. (a) D=2.1; (b) D=2.3; (c) D=2.5; (d) D=2.7; (e) D=2.9. 
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underestimates for surfaces of medium and low complexity (for D=2.3 and D=2.5 with few 

exceptions). 

2.5 Comparison with Real-World Data 

To illustrate the effects of different algorithms in the real-world situation, a test was made 

using an IKONOS image (Figure 2.6a). The subset (252 x 252 pixels) is the near-infrared band 

of a typical urban residential neighborhood extracted from an IKONOS image of New Orleans, 

Louisiana. The image was taken in 2005. The bit depth is 11-bit, and the spatial resolution of the 

near-infrared band is 4 meters. The residential neighborhood exhibits a fractal appearance. 

To visualize the difference among different sampling methods in generating fractal layers, a 

21x21 pixel moving-window was applied to the subset to compute local fractal dimensions using 

different sampling methods. The 21x21 window size was picked because it was one of the three 

peak points at which the performance of the geometric-step method (varying coverage) was the 

worst (Figure 2.4). The use of this window size is expected to better illustrate the problem of the 

geometric-step method (varying coverage) visually. 

The results were scaled to 0-255 for display (Figure 2.6). The overwhelming brighter 

appearance of the geometric-step (varying coverage) and arithmetic-step methods over the 

divisor-step method indicate higher estimated values, a finding similar to that of the simulated 

surface experiment. The standard deviations of the estimated local fractal dimensions were 

computed. For stretched images (Figure 2.6), the geometric-step method had the highest value 

(9.03), compared with 8.34 and 8.71 for the arithmetic-step and the divisor-step methods. Since 

the original image is quite self-similar (Figure 2.6a), it is expected local textures as reflected 

from the local fractal dimensions should be similar or stable across the image, hence the  
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(a) (b)  

(c)   (d)  

Figure 2.6 (a) An urban residential neighborhood (252x252 pixels) displayed using the near-
infrared band of an IKONOS image from New Orleans, Louisiana, and fractal layers derived 
from using 21x21 moving-windows with different sampling methods; (b) geometric-step 
(varying coverage); (c) arithmetic-step; and (d) divisor-step. For (b)-(c), brighter pixels denote 
higher local fractal dimensions. 

geometric-step method (varying coverage) can be interpreted as less reliable at this window size. 

It is noted that other factors such as variation of land cover, in addition to window size, may also 

contribute to higher standard deviation. 

To further compare the estimated local fractal dimensions, 16 local windows ranging from 

9x9 to 69x69 (in pixels) were used to derive fractal layers from the residential subset. As 
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different windows leave different edge portions uncalculated, the central 150 x 150 pixels were 

extracted from the resultant layers to provide the same basis for comparison. The average local 

fractal dimensions of each window size are listed in Table 2.3 and plotted in Figure 2.7.  

Table 2.3 Average local fractal dimension of a residential neighborhood in New Orleans, LA 

Window Geometric (varying coverage) Arithmetic Divisor 

9x9 2.52 2.67 2.52 

13x13 2.51 2.68 2.59 

17x17 2.65 2.79 2.65 

21x21 2.84 2.85 2.68 

25x25 2.64 2.87 2.72 

29x29 2.77 2.90 2.72 

33x33 2.74 2.93 2.74 

37x37 2.84 2.93 2.77 

41x41 2.87 2.95 2.76 

45x45 2.95 2.96 2.78 

49x49 2.73 2.97 2.80 

53x53 2.80 2.98 2.80 

57x57 2.82 3.00 2.79 

61x61 2.88 3.00 2.83 

65x65 2.81 3.00 2.81 

69x69 2.85 3.01 2.82 
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Figure 2.7 Average fractal dimension of an urban residential neighborhood measured from the 
near-infrared band of an IKONOS image in New Orleans, Louisiana. 

Since this is a real-world dataset that does not have a known D value to serve as a 

benchmark, comparison of different methods cannot be based on the accuracy of estimated 

fractal dimensions. However, Table 2.3 and Figure 2.7 clearly show that the geometric-step 

(varying coverage) method resulted in higher fluctuations in the average local fractal dimensions 

across windows. This result is similar to the results found in the simulated surface experiment 

and can be attributed to the problem of different coverage sizes at different sampling steps. The 

fluctuation across windows, which may be attributed largely to the sampling method, 

complicates the interpretation of window size effects. It added an algorithm effect in addition to 

the window size effect (Sun et al. 2006). Both the arithmetic-step and divisor-step methods 

yielded fractal dimension estimates that increased gradually with increasing window size while 

approaching a stable stage at larger windows. Similar to the simulated surface experiment, the 

arithmetic-step method seems to overestimate the fractal dimension for larger windows, with 

values exceeding 3.0 when window size is 57x57 and greater. Hence, from this comparison, it 
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can be suggested that the divisor method is more preferable for real-world urban remote sensing 

application. 

The above discussion has been focused on square images. In many geoscience applications, 

rectangular images are often used instead. Some other fractal dimension estimators can compute 

fractal dimensions of rectangular images easily, such as the isarithm and variogram estimators 

(Goodchild, 1980; Jaggi et al., 1993; Lam and De Cola, 1993). For the triangular prism method, 

the effects of sampling strategy on the resultant fractal estimates are expected to be greater for a 

rectangular image than for a square image. Equation 2 can also be applied to evaluate the 

effective coverage ratio of rectangular image. Consider a 151x201 image, by applying equation 2, 

the ECRs for different methods can be computed as: 54.8% for the geometric-step method (fixed 

coverage), 82.0% for the geometric-step method (varying coverage), 93.0% for the arithmetic-

step method, and 100% for the divisor-step method (using common divisors of both sides). For 

irregular shapes, the triangular prism method would not be an effective method for computing 

the fractal dimension. Alternative methods such as the isarithm method should be considered. 

2.6 Conclusions 

Fractal dimension as an index has been widely used in geosciences, even though 

inconsistent results from different fractal estimators remain. Such inconsistencies could be a 

result of different sampling strategies applied to a fractal estimator. For local measurements 

where small windows are used, the impacts of different sampling strategies on the resultant 

fractal dimensions could be high. This paper introduces a new sampling strategy, called the 

divisor-step method, which can be applied to the triangular prism method to compute the fractal 

dimension. The divisor-step method is designed to fully utilize the entire study area (window) for 

all steps for calculation, so that part of the study area will not be wasted in the calculation. 
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Using 4,000 simulated surfaces and an IKONOS subset, the divisor-step method was 

compared with the two conventional approaches: the arithmetic-step and the geometric-step 

(varying coverage) methods. It was found that the geometric-step method (varying coverage) 

was less stable and less accurate than the other two methods for most theoretical dimensions and 

windows; hence it is not recommended for use by the triangular prism method. The arithmetic-

step method consistently yielded a higher dimension than the other two methods. It performed 

better when the surfaces were of lower complexity, but for surfaces of high complexity (D=2.7, 

2.9), the arithmetic-step method overestimated the fractal dimensions and sometimes yielded a 

value exceeding 3.0. On the other hand, the divisor-step method underestimated the fractal 

dimension values for surfaces of low complexity, but performed very well for surfaces of high 

complexity such as satellite images. The overall RMSE for the divisor-step method was also the 

lowest. Based on these results, it is recommended that the divisor-step method should be 

employed in fractal surface calculation algorithms especially for complex urban remote sensing 

image characterization. The divisor-step method can be easily programmed and implemented in 

any fractal estimation algorithms. 
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Chapter 3  
Test of a New Lacunarity Estimator for Land Use Texture Analysis 

with IKONOS Imagery 

3.1 Introduction 

Because fractal dimension can measure the roughness of shape and objects, it has been 

widely used in image texture analysis (Emerson et al., 2005; Lam and De Cola, 1993; Liu and 

Cameron, 2001; Qiu et al., 1999; Turner and Ruscher, 1988). However, images that have the 

same fractal dimension may look very different. Lacunarity, a counterpart of fractal dimension, 

was proposed by Mandelbrot (1983) to describe this characteristic. Lacunarity is defined as the 

degree that a fractal deviates from transitional invariance (Gefen et al., 1984; Mandelbrot, 1983), 

and is an index of porosity. An image with higher lacunarity is more porous than an image with 

lower lacunarity (Figure 3.1). As the interpretation of transitional variance is relative to scale, 

lacunarity is a scale-dependent measurement and permits the analysis of scale effects. Recent 

applications of lacunarity in geographical and environmental studies have shown that lacunarity 

can be a promising geospatial analytic tool (Dale, 2000; Greenhill et al., 2003; Henebry and Kux, 

1995). In image classification, lacunarity was found to outperform fractal dimension (Dong, 

2000; Myint and Lam, 2005a). 

         

Figure 3.1 Demonstration of lacunarity, using the gliding-box algorithm. (b) is more porous (i.e. 
higher lacunarity) than (a) with a 1 x 2 gliding-box. 

 
 

(a) 
 
 
 
 
 
(b) 
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Several mathematical definitions and algorithms for calculating lacunarity have been 

suggested in the early literature (Gefen et al., 1984; Lin and Yang, 1986; Mandelbrot, 1983). 

Over time, more practical and efficient methods have been proposed. Voss (1986) devised a 

probabilistic modification to the box counting method (PBC) for calculating lacunarity by 

interpreting the mass as the number of points in the three-dimensional box which is positioned in 

the image intensity space. Allain and Cloitre (1991) presented a gliding-box algorithm to 

calculate lacunarity. Plotnick et al. (1996) extended the use of lacunarity to non-fractal real 

datasets with the gliding-box algorithm. Dong (2000) proposed a differential box counting (DBC) 

that uses the gliding-box algorithm, and the DBC method was found to perform better than the 

PBC method in separating selected Brodatz textures (1966). The method was later modified to 

reduce the intensity sensitivity of lacunarity measurement by Du and Yeo (2002) and used for 

SAR image segmentation. Myint et al. (2006) compared the original gliding-box approach 

(overlapping boxes) with an alternative implementation (skipping boxes) and found the 

overlapping-box approach to be more effective than the skipping-box approach for the DBC 

method in urban mapping with IKONOS imagery.  

Gray-scale lacunarity algorithms are closely related to and derived from fractal algorithms. 

Both PBC and DBC methods are based on different versions of box counting methods. As Lam 

et al. (2002) found that the triangular prism method was the best to estimate fractal dimensions; 

it is possible to derive a good lacunarity estimator based on it. In this paper, using a gliding-box 

algorithm, a new lacunarity estimation method based on the triangular prism (TP) method is 

proposed. The new method is compared to two widely-used gray-scale lacunarity estimators, 

PBC and DBC, utilizing several land-use/land-cover (LULC) textures extracted from an 

IKONOS image of New Orleans, Louisiana. The image was taken in 2005. 
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3.2 Gray-Scale Lacunarity Estimators 

3.2.1 Voss’s Probabilistic Box Counting (PBC) Method 

Voss (1986) proposed an approach that uses empirically-derived probabilistic mass 

distribution to estimate both fractal dimension and lacunarity. In his method, an image is treated 

as a set of point arrays at position (x, y) with the number of points over each pixel being the z-

value of the pixel (Figure 3.2). All points have the same probability to be the center of an r x r x 

r cube (or a sphere with radii = r) inside of the image intensity space. The mass of a cube is 

measured by the number of points included. If we let the probability of a cubic having mass m be 

Q(m,r),  

∑
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where n is the maximum mass of a cube given r. 
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Figure 3.2 Demonstration of the extruded image space, number of points equal to the z value. 
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3.2.2 Dong’s Differential Box Counting (DBC) Method 

This algorithm is based on the gliding-box algorithm (Allain and Cloitre, 1991), which is 

widely used to analyze binary images. Consider a square box of radius r which glides on a lattice; 

its center is placed over all possible points with the coverage of the box bounded by the (x,y) 

extent of the underlying lattice (Figure 3.3). Let n(m,r) denote the number of gliding-boxes with 

radius r and mass m and let N denote the total number of gliding-box. Then Q(m,r) is the 

probability of a box having a mass m, or 

NrmnrmQ /),(),( =        (3) 

The lacunarity at a given scale r can be defined as the mean-square deviation of the 

fluctuations of mass distribution probability Q(m,r) divided by its square mean (Allain and 

Cloitre, 1991): 
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Figure 3.3 Demonstration of the gliding-box algorithm. 
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Although equation (3) is slightly different from equation (2), because the difference is a 

constant -1, it does not affect the interpretation of the value. Equation (2) is used as the only 

mathematical definition for all calculations in this paper. The minimum lacunarity value is 0 

when the image exhibits an even mass distribution (uniform surface). 

Based on the gliding-box algorithm and the DBC method (Sarkar and Chaudhuri, 1992), 

Dong (2000) proposed a new interpretation of box mass. Let a gliding-box r x r glide over the 

image, and each gliding-box corresponds to a part of the image intensity space. Stack the cube r 

x r x r to fill the corresponding image intensity space. Assign numbers 1, 2, 3 … to the boxes 

from the bottom level to the top level. Let u and v represent the top box levels of the maximum 

gray scale pixel and the minimum gray scale pixel respectively. The relative height of the column 

is: 

1),( −−= vujih        (5) 

),( jih is assigned to the corresponding gliding-box (i,j) and is treated as its mass in equation 

(2). As the equation (5) may cause negative height values, Myint et al. (2006) changed it to: 

1),( +−= vujih         (6) 

3.3 The New Method 

3.3.1 Triangular Prism (TP) Method  

The triangular prism method was proposed by Clarke (1986) as a means to calculate fractal 

dimension. As documented in some benchmark tests (Lam et al., 2002; Zhou and Lam, 2005), a 

slightly modified version of the TP method was found to be more effective than the box counting 

method, Fourier spectrum, variogram method, and probabilistic method in characterizing fractal 

dimension. In the TP method, image pixels are treated as a set of elevated points floating over the 

image (x,y) plane. Starting from the upper-left corner of an image, given a step size r, a triangular 
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prism can be constructed by connecting four corner points with the center point which carries the 

average z value of the corner points (Figure 3.4a). Similarly, other prisms can be constructed all 

over the image without overlapping among the prisms (Figure 3.4b). Fractal dimension can be 

estimated from the double-log regression between the total triangular prism surface area and the 

step size (Lam et al., 2002; Zhao, 2001). 

  LogA=a +bLogS                                      (7) 

Where A is the total area of the top surfaces of triangular prisms, S is the step size, a is the 

intercept, b is the regression slope. Fractal dimension is 2-b. 

(a)                  (b)  

Figure 3.4 (a) A triangular prism; (b) Triangular prisms over the image. 

In the following implementation for lacunarity estimation, triangular prisms are placed one 

column or row next to each other such that each triangular prism corresponds to a gliding-box 

(Figure 3.3) on the image. The image roughness inside of a gliding-box can be quantified by the 

ratio of the surface area of the triangular prism to its projected area on the image (x,y) plane. This 

is in analog to the DBC method, where relative height is standardized by the edge length of the 

gliding-box. In TP method, the TP surface area is standardized by the area of the gliding-box. 

The following equation applies: 
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))/(),((),( rrjiAceiljim ×=       (8) 

This measurement can be interpreted as the number of patches (area: r x r) required to cover 

a triangular prism surface. This number of patches m(i,j) fluctuates across the image and can be 

used as a substitute to box mass in equation (2). 

3.3.2 A Worked Example 

The calculation process is illustrated in a worked example for a 5x5 4-bit image (Figure 

3.5a) with r=3.  

(a) 
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    (b) 

3 3 2 4 3

3 3 4 2 3

2 2 3 5 4

2 3 2 4 4

1 1 2 3 3
 

 
 

(c) 

3 4 4

3 4 4

2 3 4
   (d) 

6.4 14.9 8.2

11.2 10 10.9

9.5 19.8 9.5
    (e) 

2 4 3

3 3 3

3 5 3
 

 

Figure 3.5 A worked example of the new lacunarity estimator. (a) original 5x5 4-bit image; (b) 
box levels needed for each pixel using the DBC method; (c) box mass distribution matrix using 
the DBC method; (d) TP surface area of each gliding-box using the TP method; (e) box mass 
distribution matrix using the TP method. 
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For the DBC method, the first step is to stack 3x3x3 cubic, equivalent to scaling the image 

by 1/3 (Figure 3.5b). Starting from the upper-left corner, a 3x3 box glides through the image by 

moving a row or a column next to the current location. In each gliding box, the differential box 

level is calculated (Figure 3.5c). Q(m,r) is 1/9, 3/9, and 5/9 for m=2, 3, and 4 respectively, and 0 

for other m values. The lacunarity for DBC method is: 

(2x2x1/9 + 3x3x3/9 + 4x4x5/9) / (2x1/9 + 3x3/9 + 4x5/9)2 - 1 = 0.0395. 

For the calculation of the above example with TP method, the first step is to construct 

triangular prisms. Starting from the upper-left corner, a triangular prism is constructed from the 

four corner pixels of the gliding-box. With the box gliding on the image, overlapping triangular 

prisms will be constructed, consisting of four triangular facets for each triangular prism. The area 

of a triangular facet can be derived using the Heron’s formula: 

,))()(( csbsassA −−−=    s=(a+b+c)/2                  (9) 

The triangular prism surface area of each gliding-box is calculated accordingly (Figure 

3.5d). The area is then scaled by the square of the triangular step (r-1) and the box mass 

distribution is derived (Figure 3.5e). Q(m,r) is 1/9, 6/9, 1/9, and 1/9 for m=2, 3, 4, and 5 

respectively, and 0 for other m values. The lacunarity is: 

(2x2x1/9 + 3x3x6/9 + 4x4x1/9 + 5x5x1/9) / (2x1/9 + 3x6/9 + 4x1/9 + 5x1/9)2 - 1 = 0.0595. 

Detailed calculation examples of Voss’s method can be found in recent literature (Myint and 

Lam, 2005b). 

3.4 Experiments with an IKONOS Image 

To test the suitability of different lacunarity estimators in LULC research, four 252x252 

pixels land use patches extracted from the green, red, and near-infrared multispectral bands of an 

IKONOS image (taken in 2005) in New Orleans were used here. These subsets are shown in 
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Figure 3.6. IKONOS images have an 11-bit radiometric resolution and 4-meter spatial resolution 

on the multispectral bands. 

 

Figure 3.6 Land-use/land-cover extracted from an IKONOS image in New Orleans, LA. 
Clockwisely from upper left are, residential, industrial/commercial complex, water, and forest. 
Shown in the near-infrared band. Image taken on Sep. 2, 2005. 

The new method using triangular prism surface patch counting was compared to PBC (Voss, 

1986) and DBC (Dong, 2000) methods. The original gliding-box implementation (overlapping 

boxes) was used in this research as it is superior to the skipping approach (Myint et al., 2006). In 

the experiment, 3000 pattern samples (each sample is a w x w window of the land use subset) 

were randomly selected from each land cover (residential, industrial/commercial, water, or forest) 
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and lacunarity values from the three multispectral bands were calculated. A random subset 

containing 2000 samples were used to train the maximum likelihood classifier and the remaining 

1000 samples were used as test data. The three lacunarity layers computed from each of the three 

spectral bands were stacked together in each classification test. Following Myint et al. (2006), 

three window sizes were selected to extract texture samples: w=15, 19, and 23 pixels, equivalent 

to 60x60, 76x76, and 92x92 meters. As box edge length r plays an important role in measuring 

the gappiness of mass distribution, three different r, 3, 5, and 7 pixels were used. The sampling-

test process was repeated 50 times to derive mean accuracies. In addition to classification, the 

lacunarity values of different LULC categories from different algorithms were also compared.  

3.4.1 Accuracy and Robustness 

The mean overall classification accuracies are listed in Table 3.1-3.3. In most cases, the 

accuracies from PBC and DBC decreased when increasing r, and the best accuracies were 

achieved using a small r (r=3), which agreed with previous findings (Myint and Lam, 2005a). 

The new method was slightly better than DBC when r = 3. For bigger r (5 or 7), the new method 

outperformed both PBC and DBC in terms of separating different land use textures. When 

performing classification based on the composite lacunarity feature set (r=3,5,7 from three 

different bands), the relative rank according to accuracy is: TP>DBC>PBC. Kappa statistics 

results are shown in Table 3.4. It can be found that the improvement from the PBC or DBC 

method to the TP method is significant at 0.05 significance level (z=1.96), with very few 

exceptions when r=3. Accuracy generally increased along with sample window size (except 

PBC), due to better characterization of distinctive texture with a larger sample window. It should 

be noticed that the edge effects due to multi- class coverage by a window was largely eliminated 

in this research by using texture mosaics.  
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Table 3.1 Overall classification accuracies: industrial/commercial complex, urban residential, 
water, and forest. Window=15x15 pixels 

r PBC DBC TP 

3 58.5 60.3 61.7 

5 53.6 46.5 57.2 

7 51.4 39.8 60.7 

Composite 57.8 61.4 63.0 

Table 3.2 Overall classification accuracies: industrial/commercial complex, urban residential, 
water, and forest. Window=19x19 pixels 

r PBC DBC TP 

3 57.9 64.7 67.0 

5 54.5 49.3 60.8 

7 51.1 43.2 66.5 

Composite 55.4 62.0 65.5 

Table 3.3 Overall classification accuracies: industrial/commercial complex, urban residential, 
water, and forest. Window=23x23 pixels 

r PBC DBC TP 

3 56.3 70.0 70.9 

5 54.0 52.9 64.7 

7 52.9 46.2 71.8 

Composite 54.4 63.5 66.2 
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Table 3.4 Kappa Z statistics of the TP method over the PBC and DBC methods.  

TP VS PBC  TP VS DBC 
r 

w=15 w=19 w=23 w=15 w=19 w=23 

3 6.25* 10.69* 1.37 1.76 15.36* 0.73 

5 4.20* 6.75* 9.43* 8.82* 12.35* 12.71* 

7 10.62* 15.94* 20.79* 22.59* 17.47* 23.63* 

Composite 6.42* 10.19* 2.01* 4.19* 11.81* 2.77* 

*: significant at 0.05 level (Z>1.96) 

The 252x252 forest subset was used to compare the computational cost of different 

algorithms. The computational environment was a Sun Microsystems workstation equipped with 

Dual-Core AMD Opteron 280 processor (2.41GHz) and 4GB RAM. For each algorithm, the 

derivation of local lacunarity using w=15 and r=3 was run 50 times in order to achieve an 

average estimation. The average cost was 3.3 seconds for DBC, 6.0 seconds for TP, and 282 

seconds for PBC. Thus the new method, although less cost efficient than DBC, is 

computationally much more efficient than PBC.  

3.4.2 Inconsistent Lacunarity Interpretations among Different Methods 

Three box plots (Figure 3.7) demonstrate the distributions of lacunarity of different LULC 

types, when calculated by the three different methods. For each LULC category, lacunarity 

values were derived from the near-infrared band using a 15x15 pixels window and r =3. By 

observation, the three methods agreed on the tighter distributions of residential, forest, and water 

than industrial/commercial complex, but the distribution of residential land calculated by both 

the TP and DBC methods were even tighter than the one from the PBC method. The TP method 
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(a)  (b)  

(c)  

Figure 3.7 Box plots of the distribution of lacunarity. (a) PBC; (b) DBC; (c) TP. Minimum and 
maximum values are shown in bars connected by dashed lines. Center half (2nd and 3rd quarters) 
are bounded by boxes. Median values are shown in the line inside of the boxes. 

derived a bigger maximum value for industrial/commercial land than the DBC and PBC methods. 

The biggest difference among different methods is probably the ranking of these LULC 

categories per their median values. This difference is crucial for lacunarity estimation as it affects 

the interpretation of lacunarity of different images. This disagreement among different methods 

will be addressed further in the following paragraph using mean values from different bands.   

As lacunarity measures porosity, the question arises as to which LULC is more lacunar? To 

illustrate this question, the mean measurement of industrial/commercial, residential, water, and 

forest using r=3 and w=15 is demonstrated in Figure 3.8.  
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Figure 3.8 Mean lacunarity measurements of selected USGS Level I&II land-use/land-cover 
textures from the near-infrared band of an IKONOS image, w=15, r=3. (a) band4; (b) band3; (c) 
band2.  
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Both TP and DBC methods agreed on the lacunarity ranking of all land use categories, but 

the PBC method ranked them differently. For the red band and near-infrared band, while the 

industrial/commercial complex was found less lacunar than residential land based on the PBC 

method, it was more porous based on the DBC and TP methods. Similar trends can be observed 

for forest and water. The dichotic ranking is possibly due to the different utilization of pixel 

intensity. In the PBC method, boxes fill the entire image intensity space and hence the absolute 

intensity information is used. DBC is based on the relative height of boxes; TP is based on the 

top surface of triangular prisms; hence both DBC and TP utilize the relative intensity information. 

Some geographical data (interval but not ratio type) such as DEM only have relative height 

information available, thus only TP and DBC are theoretically more applicable to measure 

topographical lacunarity than PBC.  

3.5 Experiments with Computer Simulated Fractals 

As revealed by the first experiment, the lacunarity ranking of different LULC categories 

varied by measuring algorithm. To further address this inconsistency, a set of computer simulated 

fractals were tested in this experiment. 

3.5.1 Shear Displacement Algorithm 

One commonly used computer algorithm to generate the fractional Brownian motion (fBm) 

surface is the shear displacement method (Goodchild, 1980; Mandelbrot, 1975). The algorithm 

starts with a flat surface and randomly cuts and shifts the surface with the position of cut 

controlled by a random process and the magnitude of shift controlled statistically by a 

persistence factor related to fractal dimension (Zhou and Lam, 2005). The process repeats until a 

number of cuts are satisfied. Graphic interface of this algorithm is provided in Image 

Characterization And Modeling System (ICAMS, Lam et al., 1998; Quattrochi et al., 1997).  
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For this test, four 257x257 images were generated with 300, 600, 900, and 1200 cuts 

respectively, at the same theoretical fractal dimension (2.5). ICAMS automatically stretched 

these images to 0-255. As the numbers of cuts were different, they exhibited a different 

appearance (Figure 3.9) with different mass distributions. Lacunarity could quantify their 

difference. All three gray-scale lacunarity estimators were applied to the four images globally 

using r=3 and the lacunarity of each image was ranked. 

(a)   (b)  

(c)   (d)  

Figure 3.9 Computer simulated fractals with shear displacement algorithm. Theoretical fractal 
dimension is 2.5 for all images. (a) 300 cuts; (b) 600 cuts; (c) 900 cuts; (d) 1200 cuts. 
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3.5.2 Lacunarity Ranking of Fractal Set 

The average lacunarity are plotted in Figure 3.10. As different algorithms use different mass 

interpretation, the absolute lacunarity values are not comparable and focus is given to the relative 

ranking. The ranking of three different fractals were the same for TP and DBC, but different for 

PBC. Thus, the inconsistency of lacunarity interpretation among different algorithms in real-

world IKONOS remote sensing data was reproduced with computer simulated fractals. In a 

random survey of 5 people, 4 of them conceived that Figure 3.9a was more heterogeneous than 

Figure 3.9b. This is probably because more cuts could make the visual appearance transition 

across the simulated surface smoother, thus both TP and DBC methods seem to better describe 

the “gappiness” decreasing trend from less cuts to more cuts.  
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Figure 3.10 Lacunarity measurements of three different fractals with different number of cuts. 
Theoretical fractal dimension is 2.5 for all images. (a) r=3 (b) r=5 (c) r=7. 
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3.6 Conclusions 

Lacunarity reflects the degree of heterogeneity and has the capability of discriminating 

image textures. This research provides a new lacunarity estimator based on the gliding-box 

algorithm (Allain and Cloitre, 1991) and the fractal TP method (Clarke, 1986). Experiments with 

four industrial/commercial, residential, water, and forest land covers extracted from high-

resolution IKONOS imagery found that lacunarity features derived with the new method led to 

better classification accuracy than the PBC (Voss, 1986) and DBC (Dong, 2000) methods, 

partially due to the better accuracy of the TP method over other methods (Lam et al., 2002; Zhou 

and Lam, 2005). Both TP and DBC are more computationally efficient than PBC. Based on the 

advantage of accuracy and computational efficiency, the new method is more suitable to 

differentiating different LULC categories with high-resolution IKONOS imagery. 

A very intriguing problem is discovered by analyzing the lacunarity values of different 

LULC categories with different methods. While TP and DBC agree on the ranking of lacunarity 

of the four LULC categories, the PBC method provides a different result. Experiments found that 

industrial/commercial texture could be more or less heterogeneous than residential land texture, 

depending on the estimator. Similar trends can be found for forest and water. The ranking 

difference coincides with the dichotic utilization of pixel intensity information: relative or 

absolute. As it was recently found that the similar problem exists in binary lacunarity estimators 

(Pendleton et al., 2005), this work reveals the unpleasant problem in gray-scale lacunarity 

estimators: the inconsistent interpretation of “gappiness”. A further investigation with computer 

generated fractals also found the same inconsistency among different estimators. For computer 

simulated fractals, both TP and PBC methods are more likely to fit the transition trends for 

fractals with less cuts to those with more cuts. Further benchmark tests with theoretical gray-
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scale fractals with known gap distribution are needed to address the relative goodness of 

different methods and effects of spatial resolution, radiometric resolution, data type (interval 

versus ratio), as well as deriving a robust and accurate estimator. 
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Chapter 4   
Effects of Window Size on Texture-Aided Land-Use/Land-Cover 

Classification 

4.1 Introduction 

Land-use/land-cover (LULC) classification is facing great challenges with recent advances 

in high-resolution satellite sensors such as IKONOS, QuickBird, and WorldView-1. The new 

meter or sub-meter level spatial resolution provides great ability of identifying ground features 

but also complicates LULC classification by aggregating physical components with varying 

spectral responses in a single LULC category. With higher potential resolution, on one hand 

USGS level II or III classifications (Anderson et al. 1976) are made possible, on the other hand 

LULC categories now have more in-class heterogeneity and more between-class overlap. The 

traditional per-pixel maximum likelihood method has been shown to be insufficient to cope with 

this problem (Huang et al., 2002; Myint and Lam, 2005a). The problem of classifying high-

resolution imagery has been dealt extensively with using neighborhood spatial/textural analysis.  

For the texture approach, the rationale is that different land use categories can have 

distinctive textural appearance even though they may have the same per-pixel spectral responses. 

By taking this important neighborhood information into account, various textural indices can be 

applied to improve classification, such as simple statistical variance (Chen et al., 2004), fractal 

dimension (Chust et al., 2004; Emerson et al., 2005; Myint and Lam, 2005a; Qiu et al., 1999; 

Read and Lam, 2002), lacunarity (Dale, 2000; Dong and Leblon, 2004; Greenhill et al., 2003; 

Henebry and Kux, 1995; Myint et al., 2006), semivariogram (Carr and de Miranda, 1998; 

Miranda et al., 1998), spatial autocorrelation Moran’s I (Emerson et al., 2005), and compactness 

and smoothess in object-based approach (Hu et al., 2005; Mitri and Gitas, 2004; Yu et al., 2006). 

A number of statistical attributes were not only used in original bands, but also applied to 
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transformed images after texture analysis such as gray-level co-occurrence matrix (Carr and de 

Miranda, 1998; Jobanputra and Clausi, 2006) and wavelet transform (Myint et al., 2004; Zhu and 

Yang, 1998).  

For texture-aided classification, a commonly-used technique to extract texture information 

from images is to use a square moving window. The measurement inside of a local moving 

window is then assigned to its central pixel as additional feature to describe neighborhood 

environments. These extracted neighborhood measurements are stacked with spectral features to 

improve classification accuracies. The size of moving window plays a key role in this technique 

as it affects the stability of measurement and causes blurring effects and boundary effects. A 

number of previous studies have examined this problem by using different indices, different 

images, different study areas and different classification schemes. In a case study with Digital 

Orthophoto Quarter Quadrangle (DOQQ) images, Chen et al. (2004) tested simple variance with 

windows ranging from 3x3 to 11x11 for a series of images at different resolutions (4-24m), and 

found that 5x5 (20x20 meters) window was the best for the 4m- resolution image while 3x3 

(24x24 meters) window was the best for the 8m-resolution image. In a study using Landsat 

Enhanced Thematic Mapper plus (ETM+) panchromatic band, Emerson et al. (2005) 

demonstrated that a 21x21 (315x315 meters) window was most suitable for fractal dimension, 

while a 7x7 (105x105 meters) window was good for local variance. In studies with IKONOS 

imagery, Myint and Lam (2005b) found that a 29x29 (116x116 meters) moving window was 

better than 13x13 and 21x21 for lacunarity (method due to Voss, 1986) but suggested further 

investigation, while Myint et al. (2006) suggested that very minor difference existed in window 

15x15, 21x21, and 27x27 for lacunarity (method due to Dong, 2000). It can be inferred from 

these studies that an optimal window or a range could exist for a certain index and sensor. Such 
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an optimal window means a turning point of texture-aided classification, where classification 

accuracy reaches the highest level. 

Compared to simple statistical textural indices that do not reflect inside spatial distribution 

of different pixel values such as variance, standard deviation, and entropy, another category of 

textural indices including fractal dimension, lacunarity, and spatial autocorrelation indices are 

truly spatial-based textural indices. There is an increasing interest in these spatial-based textural 

indices in recent literature (Dong, 2000; Myint et al., 2006). In this paper, effects of window 

sizes on classification accuracies were tested for three spatial-based textural indices: fractal 

dimension, lacunarity, and Moran’s I. The optimal windows for different indices with different 

spectral-textural configurations were compared. The maximum likelihood classifiers was used to 

perform classification as it is one of the most commonly used and robust classifier and it is 

commonly used in previous window size effect studies (Chen et al., 2004; Myint and Lam, 

2005a). In addition to classification accuracy, the association between window size and detailed 

level LULC object size (i.e. single houses etc.) will be also analyzed to generate rules of thumb 

for selecting proper windows. 

4.2 Textural Indices 

4.2.1 Fractal Dimension 

Various methods exist for calculating the fractal dimension of a surface. As documented in 

recent benchmark tests (Lam et al., 2002; Zhou and Lam, 2005), a slightly modified version of 

the triangular prism (TP) method (Clarke, 1986; Zhao, 2001) was found to be effective than the 

box counting, Fourier spectrum, variogram, and probabilistic methods. In this method, TPs 

(Figure 4.1) are constructed by connecting the four corner pixels with the center pixel, with the 

z-position of the center point averaged from the corner pixel values. The edge length (in pixel) is  
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Figure 4.1 A triangular prism. 

the step size S. By taking a number of measurements with a series of steps, a log-log regression 

between surface area and area of step size can be derived. The slope of the regression line is used 

to derive the fractal dimension using equation (1) (Clarke, 1986). However, it was found that the 

use of square step size in log-log regression underestimated the result and thus a modified log-

log regression (equation 2) was provided (Lam et al., 2002; Zhao, 2001). 

  LogA=a+(2-D)LogS2                                      (1) 

  LogA=a+(2-D)LogS                                      (2) 

where A is the total surface area of the TP surfaces, S is the step size, a is the intercept, D is 

fractal dimension. 

When using the TP method to calculate the fractal dimension of a small neighborhood, 

especially when using the moving window technique to extract fractal feature of an image, 

proper selection of step size is important such that the constructed TPs take full coverage of the 

local window and truly reflect local characteristics. As the traditional geometric steps or 

arithmetic steps cannot guarantee a full coverage, divisors of window size (divisor steps) were 

used to construct series of steps in this research (See Chapter 3).  
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4.2.2 Lacunarity 

Lacunarity, a counterpart of fractal dimension, was proposed to describe the different 

appearance of fractals with the same dimension. Lacunarity is defined as the degree that a fractal 

deviates from transitional invariance (Gefen et al., 1984; Mandelbrot, 1983). It describes the gap 

distribution inside a fractal. Hence, it is a quantitative measurement of heterogeneity. A fractal 

with higher lacunarity is more porous than those of lower lacunarity measurements. As 

heterogeneity is a scale-dependent phenomenon, the scale used has important effects on 

lacunarity measurements. Plotnick et al. (1996) extended the use of lacunarity on non-fractal real 

datasets. Lacunarity has been applied to a number of geospatial and environmental research 

problems (Greenhill et al., 2003; Henebry and Kux, 1995; Myint and Lam, 2005a). 

Like fractal dimension, the algorithm of calculating lacunarity is not unique. There are 

several different estimators or definitions in the early literature (Gefen et al., 1984; Lin and Yang, 

1986; Mandelbrot, 1983; Voss, 1986). Voss (1986) presented a probabilistic approach to estimate 

lacunarity of gray-scale images. Dong (2000) developed an approach based on the gliding-box 

algorithm (Allain and Cloitre, 1991) and the differential box counting method (Sarkar and 

Chaudhuri, 1992). Du and Yeo (2002) provided a novel modification to Dong’s method by 

introducing the relative differential box counting method (Jin and Ong, 1995). In this window 

size effect study, we used a new estimator based on the gliding-box algorithm and the fractal 

triangular method (Clarke, 1986). 

The gliding-box algorithm was proposed by Allain and Cloitre (1991). The algorithm was 

initially defined for binary data. Consider a one- or two-dimensional lattice containing a number 

of points; place a r (or r x r) box on the top left corner of the image and count the covered points 

as the box mass. The box then glides on the lattice by moving one unit right or down. Let n(m,r) 
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denote the number of gliding-boxes having a mass of m; N denotes the total number of gliding-

boxes; let Q(m,r) to be the probability of a box with a mass m. Then 

NrmnrmQ /),(),( =        (3) 

The lacunarity at a given scale r can be defined (Voss, 1986): 
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This is the mean-square deviation of the fluctuations of mass distribution probability divided by 

its square mean. 

To estimate lacunarity, we constructed TPs similar to the original TP method. TPs are placed 

one column or row next to each other such that each TP corresponds to a gliding-box on the 

image surface. The image roughness inside of a gliding-box can be quantified by the ratio of the 

surface area of the TP to the area of basement gliding-box. 

))/(),((),( rrjiAceiljim ×=       (5) 

This measurement can be used as an alternative interpretation of box mass m in equation (4) for 

the calculation of lacunarity. 

4.2.3 Moran’s I 

Spatial autocorrelation (Cliff and Ord, 1973; Goodchild, 1986) refers to the similarity or 

dissimilarity of values between neighboring pixels. Moran’s I, a robust measure of spatial 

autocorrelation, has also been applied locally to generate additional textural layer to help 

classification (Emerson et al., 2005). These previous research demonstrates the potential of 

Moran’s I as an aid in image classification. The formula of Moran’s I is: 
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where wij is the weight at distance d, wij=1 if point j is within a certain distance d of point i, 

otherwise wij=0; W is the summation of all weights for any i≠j; z is the deviation from its mean 

value. I >0 indicates a positive autocorrelation, and I < 0 indicates a negative autocorrelation. 

When there is a random pattern, I will approach 0. 

4.3 Study Area 

An IKONOS image of Metairie, Louisiana, taken on September 2, 2005 after Hurricane 

Katrina, was used in this study (Figure 4.2). The study area covers around 4.8 x 3.6 square 

kilometers and is a highly populated area. Based on the USGS LULC classification scheme 

(Anderson et al., 1976) and previous research about the need for further detailed classification of 

residential area (Lo et al., 1997; Myint and Lam, 2005b), a classification scheme with 

commercial, residential I (single family), residential II (multiple family, usually with less than 

50% vegetation coverage), and grassland was used in this research (Figure 4.3, Table 4.1).  

The training area was selected carefully based on field survey and half-foot aerial 

photograph. These areas were distributed across the image to ensure representation. Descriptive 

statistics are listed in Table 4.2. The minimum and maximum values of different land-use/land-

cover categories indicate the between-class overlap. The in-class heterogeneity is indicated by 

the coefficient of variation (CV), as both residential lands and commercial lands express a more 

than 10% relative standard deviation, a conventional cut-off line of using the traditional pixel-

based maximum likelihood classifier (Myint et al., 2006).  
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Figure 4.2 The study area: Metairie, Louisiana. The IKONOS image was taken on September 2, 
2005. Shown in band 4, 3, 2 composition. 
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  (a)                             (b)         (c)   (d) 

Figure 4.3 A visual illustration of different land use categories. (a) residential 2; (b) commercial; 
(c) residential 1; (d) grassland. 

Table 4.1 Land-use/land-cover classification scheme description 

Category Description 

Commercial 

 

Areas used predominantly for the sale of products and services, including 

shopping centers, office buildings, warehouses, driveways, parking lots etc. 

Residential I 

 

Areas used primarily for residential purposes, occupied by single-family 

houses where vegetation coverage is above 50% 

Residential II 

 

 

Areas used primarily for residential purposes, occupied by multi-family 

apartments/townhouses, or overcrowded residential area where vegetation 

coverage is above 50% 

Grassland 

 

Areas dominated by grasses like parks or big playgrounds, excluding those 

located inside of residential or commercial lots. 

 

 

 

 



61 
 

Table 4.2 Descriptive statistics of different bands 

Band Land Use Min Max Mean St. Dev. CV 

Green Res1 334 1222 440.44 57.75 0.13 

 Res2 347 1166 479.71 86.00 0.18 

 Commercial 330 1639 596.46 150.50 0.25 

 Grassland 394 554 440.59 14.11 0.03 

Red Res1 189 1168 317.82 71.33 0.22 

 Res2 202 1064 364.44 105.57 0.29 

 Commercial 181 1603 494.17 169.06 0.34 

 Grassland 245 465 290.75 22.67 0.08 

NIR Res1 165 1151 450.61 117.08 0.26 

 Res2 133 1136 395.70 118.64 0.30 

 Commercial 123 1468 474.92 161.37 0.34 

 Grassland 360 965 665.67 88.17 0.13 

 

Figure 4.4 plots the average lacunarity values and fractal dimensions for each LULC 

category using the training samples. The measurement window is 33x33 pixels. Grassland has 

the lowest fractal dimension and the least complexity. The relative order of fractal dimension 

from high to low is residential type 1, residential type 2, commercial, and grassland. The relative 

order holds for all bands, including the first principal component. One may also observe that for 

the same land use type, the measured fractal dimension varies a bit when a different band is used, 

with the near-infrared band the highest followed by the red band and the green band. For 

lacunarity, the relative ranking order from low to high is also residential type 1, residential type 2,  
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Figure 4.4 Average fractal dimension (a), lacunarity (b), and Moran’s I (c) measurements of the 
four different land-use/land-cover categories from the green, red, near-infrared, and the principal 
component band of the training samples. 
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commercial, and grassland, with the exception of grassland measurement from the near-infrared 

band. With the exception of grassland, the lowest lacunarity value occurred in the near-infrared 

band, while the green band is higher than the red band. Thus fractal dimension and lacunarity 

exhibit a reverse ranking relationship among different land use categories and bands. For spatial 

autocorrelation measurement (with Moran’s I), considering only direct neighborhoods with 

shared edges for the weighting scheme and using the 33x33 window on average, all land use 

categories exhibit positive autocorrelation, with a high-low order of commercial, residential type 

2 and residential type 1. This trend implies that commercial land is the least varying; followed by 

residential type 2 and residential type 1, which can be supported by the sub-content size 

(building size, parking lot size, amenity grass size, etc.). Grassland, however, varies across bands. 

Although grassland has the least standard deviation (Table 4.2), it does not always have the 

smallest Moran’s I (Figure 4.4). Standard deviation does not correlate to Moran’s I measurement. 

4.4 Classification Results and Analysis 

Classifications were performed with different spectral-textural band configurations. The 

purpose is to test how additional textural information can help improve classification accuracy, 

and how window size affects the performance of textural indices. Previous research used 

multiple textural bands from corresponding multispectral bands (Emerson et al., 2005; Myint et 

al., 2006), or single textural band in addition to multiple spectral bands (Myint et al., 2006), or 

only textural bands (Myint and Lam 2005b). In addition to these different spectral-textural band 

configurations, the composite texture vector containing different textural indices (fractal 

dimension, lacunarity, Moran’s I) was also explored in this research (Table 4.3).  
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Table 4.3. Description of designed experiments 

Band configurations Experiments 

Three spectral bands (green, red, NIR) and 

their corresponding textural bands 

      Exp1.  3 spectral + 3 Fractal bands 

      Exp2.  3 spectral + 3 Lacunarity bands 

      Exp3.  3 spectral + 3 Moran’s I bands 

      Exp4.  3 spectral + 3 Texture vector 

Three spectral bands (green, red, NIR) and 

additional textural band(s) extracted from 

the first principal component band 

      Exp5.  3 spectral + 1 Fractal band 

      Exp6.  3 spectral + 1 Lacunarity band 

      Exp7.  3 spectral + 1 Moran’s I band 

      Exp8.  3 spectral + 1 Texture vector 

Textural bands extracted from the three 

spectral bands (green, red, NIR). Spectral 

bands not included. 

      Exp9.  3 Fractal bands 

      Exp10.  3 Lacunarity bands 

      Exp11.  3 Moran’s I bands 

      Exp12.  3 Texture vector 

* Each texture vector consists of three textural bands (fractal, lacunarity, and Moran’s I), 
corresponding to the same spectral layer. 

 

In addition, per-pixel classification with only three spectral bands was performed as a 

baseline for comparison. The difference among these experiments is the different emphasis of the 

textural and spectral information.  

To examine the effects of moving window size on classification accuracy, a series of 

moving windows 9x9, 13x13, 17x17, 21x21, 25x25, 29x29, 33x33, 37x37, and 41x41, were used 

to extract fractal dimension, lacunarity, and spatial autocorrelation (Moran’s I) feature layers. 
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Training sites were carefully selected by referencing aerial photographs and field survey. As 

two neighboring moving windows share a high-percentage of common pixels, neighboring local 

textural measurements correlate with each other. A random sampling process was implemented 

on the training sites to reduce this biased correlation among adjacent windows, so the final 

training set will be more representative. The final training set includes 6400 samples. The 

accuracy assessment procedure involves an on-screen check with the aid of half-foot resolution 

aerial photograph and field survey. As the area is quite big and heterogeneous, a stratified 

random sample based on land use categories was used. The test set contains 5370 points. To 

obtain a stable measurement, the classification process was repeated three times using three 

different training sets for each experiment. The mean measurement is used for the following 

accuracy comparison to address window size effects. Overall results are shown in Table 4.4. 

4.4.1 Three Spectral Bands (Green, Red, NIR) and Their Corresponding Textural Bands 

In experiment 1-4, each original spectral band was augmented equally with their textural 

bands. For the first three experiments (Exp1-3) with individual textural index, classifications 

were based on six spectral-textural bands. For the fourth experiment (Exp4) with texture vector, 

classifications were based on 12 spectral-textural layers. Results are shown in Figure 4.5. 

Compared to the baseline overall accuracy of traditional spectral-based classification (52.8%), 

supplying fractal dimension, lacunarity, or spatial autocorrelation (Moran’s I) definitely 

benefitted the classification, as shown in Figure 4.5. As expected, highest accuracy was yielded 

using a texture vector. The improvement using a texture vector is significant at the 0.05 

significance level (Z=1.96), reflected by Kappa statistics (Table 4.5). For single textural measure, 

lacunarity was the most accurate, followed by Moran’s I and fractal. 
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Table 4.4 Average overall accuracy of different experiments at different windows 

Window Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10 Exp11 Exp12 

7 58.5 61.0 57.5 64.9 55.5 59.1 54.1 60.0 44.4 53.8 39.9 56.2 

9 58.4 61.4 58.5 65.7 55.5 59.1 55.2 60.0 47.4 56.2 39.3 58.3 

11 58.4 62.8 59.2 65.7 55.7 59.5 55.7 60.2 46.7 57.7 42.6 58.8 

13 59.1 64.4 59.6 67.1 55.9 59.8 56.0 60.8 48.4 59.2 45.1 60.9 

15 59.2 64.8 60.0 68.5 56.5 60.1 56.4 61.6 50.9 60.0 47.1 62.9 

17 59.7 65.9 60.8 69.5 56.3 60.4 56.9 62.4 50.4 61.3 47.9 64.1 

19 59.8 66.7 61.6 70.2 56.9 60.9 57.9 63.3 49.8 62.1 50.2 64.8 

21 60.4 67.3 63.0 70.7 56.5 61.7 58.7 64.1 51.2 63.1 52.4 66.3 

23 59.9 68.0 63.0 71.7 56.4 62.9 59.1 65.4 51.1 63.6 55.6 67.5 

25 60.3 69.1 63.2 71.6 57.4 63.5 59.8 65.7 51.0 64.3 56.7 67.4 

27 60.4 69.3 64.2 71.5 56.7 64.0 60.0 65.8 49.3 64.5 57.8 67.4 

29 60.7 69.8 64.7 71.4 56.2 64.3 59.9 65.8 49.3 65.5 58.7 67.9 

31 60.7 69.7 65.7 71.5 56.1 64.8 60.2 66.1 50.8 66.1 59.3 68.2 

33 60.2 69.5 65.9 70.9 55.9 64.8 60.8 66.1 49.1 66.1 59.7 68.0 

35 59.9 69.8 66.1 70.9 56.0 65.2 61.3 66.6 49.8 66.7 59.5 67.4 

37 60.1 69.5 66.1 70.7 56.7 65.3 61.5 66.7 50.5 66.6 58.9 68.1 

39 59.5 69.3 66.2 70.3 55.8 65.2 61.7 66.9 47.9 66.2 59.3 67.5 

41 59.3 69.0 66.1 70.2 55.5 65.0 61.5 66.4 49.0 65.7 59.3 67.1 

* The overall accuracy of spectral-based classification is 52.8%. 

 



67 
 

55

60

65

70

75

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)

Window Size (pixels)

MS-Fractal

MS-Lacunarity

MS-Moran's I

MS-TextureVector

 

Figure 4.5 Overall accuracies across different windows for different experiments with integrated 
spectral-textural bands. Textural bands were derived from the green, red, and near-infrared multi-
spectral IKONOS bands. 
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Table 4.5 Kappa Z statistics of texture vector-aided approach over individual textural index-aided 
approach (exp 4 versus exp 1-3) 

W  TV* VS Fractal TV VS Moran’s I TV VS Lacunarity TV VS Spectral 

7  4.77 6.30 4.09 8.98 

9  5.70 6.02 4.50 9.74 

11  6.22 5.86 3.20 10.16 

13  6.43 6.32 2.87 11.29 

15  8.12 8.29 4.03 13.00 

17  9.02 8.20 4.65 14.41 

19  10.38 8.29 4.86 15.60 

21  10.71 7.61 4.75 16.38 

23  12.04 8.67 4.75 17.37 

25  12.25 8.44 3.54 17.52 

27  11.60 7.71 3.56 17.50 

29  11.56 7.24 2.70 17.60 

31  12.24 6.26 3.08 17.75 

33  12.37 5.42 2.57 17.39 

35  12.21 5.09 2.13 17.31 

37  11.92 5.05 1.88 17.16 

39  11.84 4.67 1.75 16.65 

41  12.17 4.13 1.66 16.46 

 
*TV: texture vector. 
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For the experiment of fractal dimension (three spectral bands and their corresponding fractal 

layers), the accuracy curve is quite stable with minor fluctuations among window size. The 

highest accuracy (60.7%) was yielded at window 29x29 (pixels) and accuracies were quite stable 

from window 17x17 to 37x37 with less than 1% down from the peak point. For all tested 

windows, the biggest difference was only 2.3%, implying that fractal dimension was less 

sensitive to window size. In contrast, both lacunarity and Moran’s I were more sensitive to 

window size, with 8.8% max-min difference for lacunarity and 8.7% max-min difference for 

Moran’ I. For lacunarity-aided classification, the overall accuracy started from a low point at the 

smallest window 7x7 and gradually increased to a stable level. The highest accuracy (69.8%) 

was yielded at window 29x29 and 35x35, followed by a slight downward curve. For Moran’s I 

spatial autocorrelation index, the overall accuracy started from a low point at window 7x7 and 

gradually increased to a stable level. The highest accuracy (66.2%) was achieved at window 

39x39. Furthermore, stable stages existed for both lacunarity and Moran’s I, from window 25x25 

to 41x41 for lacunarity and from window 31x31 to 41x41 for Moran’s I. Within the window span 

of the stable stage, the accuracy variation is within 1% of the peak point. For the texture vector-

aided approach with overwhelming textural information, a clear increasing-plateau-decreasing 

trend was observed. From the lowest point at window 7x7, the overall accuracy gradually 

increased to the peak point (71.7%) at window 23x23, followed by a slight decreasing trend. The 

stable stage spanned from window 21x21 to 37x37, where overall accuracies were within 1% 

difference threshold from the peak point at window 23x23.  

4.4.2 Three Spectral Bands (Green, Red, NIR) and Additional Textural Band(s) Extracted 
from the First Principal Component Band 

In experiment 5-8, the original three spectral bands were first subjected to principal 

component analysis. The first principal component accounted for 77.7% of total information and 
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was used to extract textural layers. For the first three experiments (Exp5-7) with individual 

textural index, classifications were based on four spectral-textural bands. For the fourth 

experiment (Exp8) with texture vector, classifications were based on six spectral-textural layers. 

Results were shown in Figure 4.6. Improvements over the baseline overall accuracy of traditional 

spectral-based classification (52.8%) can be observed. Comparing to experiment 1-4, each 

experiment here was based on the same spectral bands but with fewer textural bands. Thus, for 

each corresponding experiment with the same textural index(es), the overall accuracy was 

slightly lower, at roughly 3-7%. Texture vector-aided approach provided significant 

improvement to individual textural index-aided approach at the 0.05 significant level (Z=1.96), 

as reflected by the Kappa Z statistics (Table 4.6). 
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Figure 4.6 Overall accuracies across different windows for different experiments with integrated 
spectral-textural bands. Textural layers were derived from the principal component of multi-
spectral IKONOS bands. 
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Table 4.6 Kappa Z statistics of texture vector-aided approach over individual textural index-aided 
approach (exp 8 versus exp 5-7)  

W  TV* VS Fractal TV VS Moran’s I TV VS Lacunarity TV VS Spectral 

7  2.64 3.75 0.82 4.40 

9  3.12 3.25 1.39 4.82 

11  2.85 3.04 0.70 4.87 

13  3.37 3.67 1.06 5.52 

15  3.41 3.86 1.38 6.22 

17  4.64 4.34 1.92 7.10 

19  4.92 3.48 2.19 7.65 

21  6.25 3.89 2.70 8.74 

23  7.83 5.15 3.13 10.27 

25  8.00 5.03 3.35 10.93 

27  8.56 4.91 2.80 11.17 

29  9.17 5.15 2.16 10.95 

31  9.98 5.45 2.32 11.55 

33  10.00 4.75 2.28 11.62 

35  10.67 4.72 2.58 12.35 

37  10.41 5.05 2.57 12.52 

39  11.38 4.89 2.84 12.81 

41  11.48 4.42 2.44 12.33 

 
*TV: texture vector. 
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For these experiments with texture information derived from the principal component band, 

window size effects on classification accuracy were slightly different, but the entire trend 

remained. Fractal dimension was also insensitive to window size compared to the other two 

indices but carried frequent fluctuations across windows. The maximum-minimum difference for 

fractal dimension was 2.0%, with the peak point occurring at window 25x25 (57.4%). The stable 

stage was spanned from window 15x15 to window 27x27, with an additional window 37x37. 

Both lacunarity and spatial autocorrelation aided approaches exhibited similar window effects as 

previous experiments (1-4) using textural layers derived from the original multispectral bands, 

with a clear gradual increasing trend from a low point at window 7x7 to a stable stage, but the 

subsequent decreasing trend was not obvious. The peak point for lacunarity (65.3%) was at 

window 37x37 and the stable stage spanned from 29x29 to 41x41. Both the peak point and the 

range of stable stage were postponed compared to previous experiments (1-4) using textural 

layers derived from the original multispectral bands. The peak point for Moran’s I (61.7%) was 

at window 39x39 and the stable stage spanned from 33x33 to 41x41. The stable stage was also 

delayed to a larger window (33x33) compared to the 29x29 of experiments that use textural 

layers from the original multispectral bands. A texture vector-aided approach combined these 

effects and resulted in a delayed peak point and stable stage. The peak point (66.9) was at 

window 39x39 and the stable stage extended from 29x29 to 41x41.  

4.4.3 Textural Bands Extracted from the Three Spectral Bands (Green, Red, NIR). Spectral 
Bands not Included 

In experiment 9-12, each original three spectral bands were used to extract textural layers. 

Only textural layers were used for classification. For the first three experiments (Exp9-11) with 

individual textural index, classifications were based on three textural layers. For the fourth 

experiment (Exp12) with texture vector, classifications were based on nine textural bands. 
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Results are shown in Figure 4.7. Compared to experiment 1-4, for each corresponding 

experiment with the same textural index(es), the overall accuracy was lower, with roughly 2-10%. 

However, pure texture-based classification did not always outperform spectral-based 

classification (52.8%), except lacunarity and the texture vector methods, as revealed in Figure 

4.7. In some cases (w=7, 9, 11), pure textural-based approach was significantly less accurate or 

no significant difference than spectral approach at the 0.05 significance level (Table 4.7). 

However, texture vector-based approach still significantly outperformed individual textural 

index-based approach at the 0.05 significance level (Z=1.96), reflected by Kappa Z statistics 

(Table 4.7).  This further shows the need to integrate spectral and textural information. This 

series of experiments (9-12) also serve as a pure window-effect study purpose since only textural 

information was used. 
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Figure 4.7 Overall accuracies across different windows for different experiments with only 
textural bands. Textural bands were derived from the green, red, and near-infrared multi-spectral 
IKONOS bands. 
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Table 4.7 Kappa Z statistics of texture vector-aided approach over individual textural index-
based approach (exp 12 versus exp 9-11)  

W TV* VS Fractal TV VS Moran’s I TV VS Lacunarity TV VS Spectral 

7 9.90 11.77 11.82 -2.81 

9 10.13 14.11 11.66 -0.48 

11 11.62 14.30 7.97 0.82 

13 13.93 15.02 7.00 3.07 

15 14.03 15.65 7.43 5.92 

17 16.11 16.41 6.49 7.62 

19 18.62 15.36 6.37 8.91 

21 18.52 14.95 6.53 10.86 

23 20.32 13.44 6.91 12.38 

25 20.69 12.10 5.60 12.15 

27 21.86 11.06 5.71 12.57 

29 21.46 10.52 4.72 13.27 

31 23.04 10.55 4.60 14.19 

33 25.23 10.09 4.34 14.18 

35 22.80 9.51 2.70 13.43 

37 23.40 10.78 3.21 14.24 

39 24.17 9.90 2.94 13.69 

41 22.84 9.19 2.90 13.27 

 
*TV: texture vector. 
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This group of experiments with pure textural information exhibited a similar trend as 

previous experiments (1-8). Classification accuracy using fractal dimension layers did not show 

an increasing-decreasing trend similar to that of lacunarity and Moran’s I, with a maximum-

minimum difference of 6.8%, but bigger fluctuations across windows. The peak point was at 

window 21x21 and a stable stage was a short range from 21x21 to 25x25, while three additional 

windows (15x15, 31x31, 37x37) also yielded accuracies within 1% of the peak point. Both 

lacunarity and Moran’s I exhibited an increasing trend to a stable stage, followed by a slight 

downward curve. The peak point occurred at window 35x35 for lacunarity (66.7%) with the 

stable stage ranging from 31x31 to 39x39. For spatial autocorrelation, the highest accuracy 

(59.7%) was achieved at window 33x33 with a stable stage spanning from 29x29 to 41x41. A 

clear upward-downward stage was observed for the texture vector approach, with a peak point 

(68.2%) at window 31x31 and the stable stage from 23x23 to 39x39. 

4.5 Discussion: An Object-Based Analysis of Window Size Effects 

The above experiments demonstrated clear window size effects on the texture-aided 

classification approach. Since window size is closely associated with the underlying contents 

covered by the window, a further analysis of the underlying contents, i.e., objects such as houses, 

amenity grasses, parking lots, and community roads, may provide valuable information to 

explain window size effects and suggest some guidelines.  

4.5.1 Object-Based Classification 

The object-based approach draws increasing interest in the remote sensing community with 

a wide range of applications. Different from the texture-aided classification, the object-based 

approach takes a two-stage approach. The first stage is to segment the image into distinct objects 

according to a set of criteria such as color, shape, texture, etc. General segmentation techniques 
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include region-based and boundary-based approaches (Cufi et al., 2002; Haralick and Shapiro, 

1985; Pal and Pal, 1993). Each object was considered to be homogeneous according to a preset 

threshold value. It could involve top-down image segmentation or bottom-up pixel aggregation, 

or both processes. A hierarchical series of objects that consist of parent-children object 

relationship can also be constructed given a series of homogeneous criteria. The second stage is 

to use some standard classifiers to classify these objects, instead of pixels, into different 

categories. Parameters, or features, that associated with the objects, such as mean value, standard 

deviation, entropy, etc., are used. Supervised class signature training is often involved in the 

second stage. 

The object-based approach has been studied for quite some time (e.g. Ketting and 

Landgrebe, 1976). However, it is just recently getting popular in image processing community 

because of increased computing power and availability of well-developed commercial software, 

such as Definiens (formerly known as eCognition) and Feature Analyst (extensions for ArcGIS, 

Imagine, and Geomedia). In this research, Definiens was used because of its great flexibility of 

user control and independence of third party software.  

Definiens (2008) implements an excellent multiresolution segmentation algorithm, allowing 

user to control the weight of two complementary homogeneity criteria: color and shape. The 

color criterion controls the standard deviations of pixel values within an object. The shape 

criterion is comprised of two sub-criteria: a smoothness criterion that controls the smoothness of 

image borders, and a compactness criterion that controls the deviation from the ideal compact 

form. The threshold homogeneity is controlled by the user through a scale parameter. The scale 

parameter, as used by Definiens (2008), is an abstract term that controls the maximum allowed 

heterogeneity; it has no units. When a larger scale is used, larger segmented objects will result 
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from the same study area. By changing this scale parameter, a series of objects with hierarchical 

structure can be defined, forming multi-resolution objects segmentation. The appropriate scale 

parameter depends on the satisfied segmentation level, and is often decided through a trial-and-

error approach (Chubey et al., 2006).  

In Definiens (2008), a set of indices are measured for the objects, such as statistical indices 

(maximum, minimum, mean, standard deviation, etc.), shape indices (area, main direction, 

length/width, compactness, rectangular fit, roundness, density, etc.), and textural indices (e.g. 

mean, standard deviation, entropy from the Gray Level Co-occurrence Matrix (Haralick et al., 

1973). Neighborhood relationships to topological neighbors and parent-children parameters are 

also included and can be customized. By examining these indices and parameters, users can 

simply collect training samples and define signatures used for classification, and then apply the 

nearest neighborhood classifier to classify objects. One can also further define rule set and 

membership functions to use the fuzzy classifiers. If a hierarchical object structure is used, 

hierarchical classification results can also be yielded. A number of successful applications using 

Definiens have been made in recent literature (Chubey et al., 2006; Mitri and Gitas, 2004; Yu et 

al., 2006).  

To address the window size effects on LULC classification, Definiens was used to segment 

the study area into underlying objects of these categories. The segmentation scheme is set for 

single-family houses, amenity grasses (yards), amenity trees, community roads, multi-family 

houses, commercial buildings, parking lots, and grasslands (parks). The panchromatic band is 

combined with the green, red, and near-infrared band of the IKONOS image into segmentation, 

as the panchromatic band improved segmentation in some previous experiments (Chubey et al., 

2006). Due to its higher spatial resolution, the panchromatic band was set with a weight of 3.0, 
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which equaled to the summation of three same-weighted 4-m multispectral bands. Multi-family 

houses and commercial buildings are generally larger than single-family houses, so two scales 

were used after a trial-and-error process. The first scale was set to 35 for single-family houses, 

amenity grasses (yards), amenity trees, and community roads. The second scale was set to 80 for 

multi-family houses, commercial buildings, parking lots, and grasslands (parks). A segmentation 

comparison at two scales is provided in Figure 4.8.  

A trial-and-error approach was also used to select appropriate weight of the color criterion, 

compactness criterion, and smoothness criterion. Color criterion was set to 0.7 and shape 

criterion was therefore 0.3. The smoothness and compactness criteria were set equal to each other. 

A nearest neighbor classification was applied to selected training objects. With visual accuracy 

check, a trial-and-error approach was used to select the following criteria for classification: mean 

spectral values (four bands), standard deviations (four bands), compactness, and GLCM (Gray 

Level Co-occurrence Matrix) entropy. Obvious classification errors were further recoded. With 

1240 random points from stratified sampling, the overall accuracy is 84.7%. 

4.5.2 Comparative Study of Window Size Effects and Land Use Categories 

The window size used to derive neighborhood texture measurements affects classification 

accuracies, as demonstrated previously. The effects generally include three aspects: stability of 

measurements, generalization effects, and edge effects. The stability of measurement is tied to 

the algorithm requirement of a textural index, while the generalization and edge effects could be 

associated with the individual image. 
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(a)  

(b)  

(c)  

Figure 4.8 Segmentation results at different scales. (a) Original IKONOS image, shown in band 
432 false color composite; (b) Segmented objects at scale 35; (c) Segmented objects at scale 80.  
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 (1) Stability of measurements  

Measurements such as fractal dimension require a window large enough to have sufficient 

measurements for a stable regression curve. Thus, small windows such as 3x3, 5x5, 7x7 are not 

likely to be good, as they affect the stability of measurements. Also due to the coverage problem 

or sampling methods in estimation algorithm, fractal dimension measurements could fluctuate 

around the theoretical curve given different windows. This fluctuation is larger at small windows 

like 7x7 and 9x9. Lacunarity relies on the statistics of gliding boxes, and a larger window help to 

retrieve sufficient samples for a reliable measurement. Spatial autocorrelation measurements 

would also benefit from larger windows. The problem of using small windows (7x7 and 9x9) 

was reflected in Figure 4.5-4.7. 

(2) Generalization effects 

Considering a uni-class area (such as residential area, or commercial area), bigger windows 

have bigger generalization power to reflect the unique texture of this class, while smaller 

windows could eventually derive some textures that are similar to another class. Considering 

generalization, a window should be large enough to cover distinct underlying objects (houses, 

parking lots), as well as different objects. 

(3) Edge effects  

On the edge of multi-class overlapped area, a texture measurement from a window is not 

tied to any class. With bigger windows, more boundary pixels will be involved in local 

neighborhood measurements. Although the proportion of the second class could be smaller, more 

windows will include two classes and there is greater potential for a window to cover more than 

two classes. This will blur the class boundaries and reduce classification accuracy at the 

boundaries. 
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Based on the object-based image segmentation, sizes of different buildings in the study area 

are listed in Table 4.8. Common sense of choosing window size is that it should cover these key 

objects as well as some adjacent elements (grasses, roads, parking lots, etc.). It is clear that the 

desired windows with stable accuracies (minimum 15x15 pixels, equivalent of 3600 square 

meters) are well beyond the area range of the three key building objects.  

Table 4.8 Size of different buildings in the study area (square meters) 

Objects Scale Min Max Mean Median 

Single-family houses 35 64 741 279 254 

Commercial buildings 80 384 2736 1247 1152 

Multi-family houses 80 162 2869 890 694 

 

However, an important question regarding the generalization effect arises: which size would 

be sufficient to generalize the texture? To address this question, local statistics with moving 

window was applied to classified objects at each tested window in previous classification 

experiments. Five single-family residential neighborhoods and three commercial neighborhoods 

were selected in this study. Buildings dominated both residential area and commercial area with 

25% and 56% respectively. However, the percentage of different objects varied from window to 

window, as plotted in Figure 4.9. 

For residential neighborhoods, for the percentage of any object (houses, roads, trees, grass), 

the variation across different local windows will decrease as the window size increase. The 

standard deviation was used as a measurement to reflect the variation of objects composition 

among different windows. It is expected that with a smaller standard deviation, the objects 

composition are similar among different windows of the same land use category, hence textural 
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Figure 4.9 Standard deviation of the percentage of image object classes at different windows. (a) 
residential neighborhood; (b) commercial neighborhood. 
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measures based on this window size will be more stable. The gradient is in a descending trend. 

For houses, roads, grass and trees, the standard deviation decreased by half at window 17x17, 

19x19, 19x19 and 23x23, compared to the initial stage at window 7x7. The difference of 

standard deviations between these windows and the biggest window 41x41 was just 0.05.  

Similar trends can be found for two dominating elements of commercial area: buildings and 

parking lots, with standard deviations decreasing from the highest point (window 7x7) by half at 

window 27x27. The difference of standard deviations between window 27x27 and window 

41x41 was just 0.03. For the 0.05 standard deviation threshold, window size can be further traced 

back to 21x21 for buildings and 19x19 for parking lots. Closely associated to these stable stages 

of generalization effects are the stable plateau of overall classification accuracies. At these 

windows, stable measurements were satisfied from both the algorithm perspective and 

generalization effects, and the measurements more accurately reflect local texture as the member 

of certain classes. Similar classes will be better characterized. However, although the 

generalization (small standard deviation) still increases after entering this stable stage, the 

increased edge effects will increasingly cut off the accuracies along the edges and even affect 

training samples that are near the class boundaries. The result is a trade-off between these two 

reverse effects, resulting in the classification curve as a stable stage and preceded by a steadily 

increasing trend and followed by a slight decreasing trend.  

Based on this comparative study, optimal windows should be: (1) large enough to satisfy 

algorithm requirements for accurate and robust measurement; (2) large enough to cover 

underlying objects; (3) large enough to have good generalization such that variation of 

percentage of objects in each moving window is relatively small; (4) small enough to reduce 

edge effects at multi-class boundaries. 
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4.5.3 Limitations and Future Research 

In above analysis, the rule of object-based approach is to generate descriptive statistics of 

the LULC objects (houses, roads, etc.). However, there are some limitations. First, the size of the 

segmented objects is subject to scale (an abstract term used by Definiens); an actual ground 

object can possibly be segmented into several parts. Second, the accuracy of object segmentation 

and classification can potentially affect the analysis of window size effects. Due to these 

limitations, future study could investigate the association between object size and window size 

effects with artificially generated data. In addition, texture indices such as fractal dimension, 

lacunarity, Moran’s I have great potential to be integrated into object-based classification. 

4.6 Conclusions 

Window size plays an important role in texture-aided classification because of the use of 

moving window technique. This research investigated the optimal windows of three textural 

indices: fractal dimension, lacunarity, and Moran’s I. A case study was carried out with an 

IKONOS image of an urban area in the greater New Orleans, Louisiana. Twelve experiments 

were carried out with different spectral-textural layer settings: three multispectral bands (green, 

red, near-infrared) and their corresponding textural layers (fractal dimension, lacunarity, Moran’s 

I); three spectral bands and textural layers extracted from the principal component band; and 

only textural layers extracted from the three original multispectral bands. A total of 18 windows 

ranged from 7x7 to 41x41 were tested. 

Although having the lowest overall classification accuracy, fractal dimension exhibited 

more stable classification results that were less sensitive to window size, while both lacunarity 

and Moran’s I and the composite texture vector exhibited an increasing phase toward a stable 

stage and followed by a slightly decreasing phase thereafter. The texture-based approaches 



85 
 

without combination with spectral bands were discouraged based on the experimental results. 

Based on the overlapped results from two different groups of spectral-textural band combinations, 

the follow windows are recommended for spectral-textural classifications: 17x17 to 27x27 for 

fractal dimension, 29x29 to 41x41 for lacunarity, 33x33 to 41x41 for Moran’s I, and 27x27 to 

37x37 for the texture vector-aided approach. The range of recommended window size generally 

agrees with some previous research for lacunarity (Myint and Lam, 2005a; Myint and Lam, 

2005b; Myint et al., 2006); but this research further revealed an increasing trend toward a stable 

stage. In addition, this research also brought new knowledge of window size effects on fractal 

and Moran’s I with high-resolution satellite imagery.  

Optimal window size should meet the following criteria: (1) large enough to satisfy 

algorithm requirements for accurate and robust measurement; (2) large enough to cover 

underlying objects; (3) large enough to have good generalization such that variation of 

percentage of objects in each moving window is relatively small; (4) small enough to reduce 

edge effects at multi-class boundaries. 
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Chapter 5  
A Genetic Bayesian Approach for Texture-Aided 

Urban Land-Use/Land-Cover Classification 

5.1 Introduction 

Detailed urban land-use/land-cover (LULC) classification from high-resolution satellite 

imagery is increasingly needed to support a variety of applications such as population estimation, 

mass evacuation planning, and flood and damage estimation (Al-Khudhairy et al., 2005). 

However, accurate and fast classification of urban LULC remains a very difficult task due to the 

heterogeneous nature of urban environment. Traditional spectral-based classifiers are known to 

yield low classification accuracy for urban environment. Hence, new classification methods 

aiming at improving classification accuracy continue to appear (Myint and Lam, 2005a; Pal and 

Mather, 2005). 

One approach to improving classification accuracy is to utilize textural information 

computed from the image to aid classification. There is substantial progress of applying textural 

indices in urban mapping, with a number of new indices recently introduced, such as fractal 

dimension (Emerson et al., 1999; Lam, 2003; Lam and De Cola, 1993; Sun et al., 2006), 

lacunarity (Dong, 2000; Greenhill et al., 2003; Myint et al., 2006), and spatial autocorrelation 

(Cliff and Ord, 1973; Emerson et al., 2005; Lam et al., 2002). Studies that used both textural and 

spectral information in some LULC classification scenarios have also been made (Emerson et al., 

2005; Myint and Lam, 2005a). However, these indices have seldom been integrated as a vector 

to aid image classification. The motivation of using a texture vector instead of individual textural 

index is similar to the motivation of using multiple spectral bands instead of single band in 

traditional satellite image classification. Because different textural indices are likely to capture 

different aspects of texture for the same image, it is expected that a texture vector will have the 
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capability to describe multiple aspects of the texture pattern of heterogeneous urban area; hence 

better classification results can be anticipated. 

Another strategy to improving image classification accuracy is to improve the classifier itself 

by utilizing artificial intelligence. Recent research has demonstrated some successful classifiers, 

such as decision tree (Gislason et al., 2006; McIver and Friedl, 2002), support vector machines 

(Huang et al., 2002; Pal and Mather, 2005), and artificial neural network (Erbek et al., 2004; 

Huang et al., 2002). In practice, the selection of classifier is often a tradeoff between accuracy 

and efficiency. Although the traditional maximum likelihood classifier (MLC) is not the most 

accurate classifier in many cases, it is still widely used because it is simple and robust, and it can 

be carried out with minimal human-computer interaction. Hence, improving the operation of 

MLC could be promising, especially if the goal is to make the image classification process as 

easily automatable as possible for rapid monitoring applications. 

The MLC has been widely used by the remote sensing community and was made available 

through most image processing platforms. The classifier calculates posterior probabilities of a 

pixel belonging to different LULC classes, and assigns it to the class with the highest posterior 

probabilities. In most satellite image classifications, prior probabilities are often assumed to be 

the same for all classes. They are rarely optimized with other methods except in some 

contextural classification using a Markov random field (MRF, Jackson and Landgrebe, 2002; 

Solberg et al., 1996). Some research used ancillary data to estimate prior probabilities, which 

means that an additional dataset and considerable efforts are required (Maselli et al., 1995; 

Pedroni, 2003). Because prior probabilities range between 0~1, an optimization approach could 

be applied to find the optimal prior probabilities to achieve higher classification accuracy. 

Genetic algorithms (GAs) have been found to be efficient and fast in many applications 
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(Armstrong et al., 2003; Li and Yeh, 2005). Hence, it is possible to use GAs to optimize the prior 

probabilities in the Bayesian classifier. Such an implementation of the GA will improve 

identification of class boundaries, thus a boosted performance can be achieved. 

This research proposes a new method that combines the above two strategies. The method 

utilizes both a texture vector (fractal dimension, lacunarity, and Moran’s I) and a genetic 

Bayesian classifier (GBC) to increase urban LULC classification accuracy. In the following, we 

will describe the essence of the two components of the method. An example is then demonstrated 

using a high-resolution IKONOS imagery acquired from Jefferson Parish (greater New Orleans), 

Louisiana. The image was taken in 2005.  

5.2 A Texture Vector 

Fractal dimension, lacunarity, and a spatial autocorrelation measure (Moran’s I) were 

selected to be in the texture vector for this analysis because they have been shown to be effective 

in characterizing spatial patterns. Improvements to classification accuracy with these three 

indices have been reported in recent literature (Dong, 2000; Emerson et al., 2005; Myint and 

Lam, 2005a). Emerson et al. (2005) reported a 10% (67% to 77%) improvement in Landsat 

ETM+ imagery classification when a fractal layer was added to multispectral layers for 

classification. Dong and Leblon (2004) found that lacunarity measure was useful to improve rock 

unit discrimination by 8%. Myint and Lam (2005) reported that adding a spatial autocorrelation 

or lacunarity layer could improve land cover classification from 55% to 81% or 92%, 

respectively. Since the properties of fractal, lacunarity, and Moran’s I seem to complement with 

each other, and they all measure spatial arrangements of pixels within the measurement window, 

combining these three indices into a vector for this analysis is expected to help improve 

classification. Moreover, unlike some other landscape indices, these textural indices can be 



89 
 

computed directly on either classified or unclassified images. This property is considered very 

important to future automation of image classification (Lam et al., 2008). 

5.2.1 Fractal Triangular Prism Dimension  

Fractal dimension (Mandelbrot, 1983) has been utilized to measure image complexity and 

landscape pattern of different LULC categories (Chust et al., 2004; Emerson et al., 1999; Lam 

and De Cola, 1993; Qiu et al., 1999). A higher fractal dimension means a rougher image surface. 

Different algorithms have been proposed to measure image fractal dimension, and it was found 

that a modified triangular prism method yielded the most accurate estimation (Clarke, 1986; Lam 

et al., 2002; Zhou and Lam, 2005). In this method, triangular prisms are constructed by 

connecting four corner pixels with the center pixel, with the z-position of the center point 

averaged from the intensity values of corner pixels. The step size S is the edge length (in pixel). 

The image surface area A is the total top surface area of the triangular prisms constructed on this 

image. The step size will increase and the total surface area will be measured at each step size. A 

regression is conducted between the logarithms of the total prism surface area and step size to 

derive the fractal dimension D: 

LogSDaLogA )2( −+=                                    (1) 

where D will range from 2 to 3 (Lam et al., 2002). 

The traditional methods of step selection to construct triangular prisms follow either 

geometric or arithmetic progression, which do not guarantee a full coverage of the entire image. 

Some edge pixels may be out of utilization at some step sizes. This exclusion is significant when 

small window size is used in local measurements. In this paper, a newly developed divisor-step 

method (Chapter 2) was used. In this method, step sizes are determined so that they are divisible 

by the window size, thus guaranteeing the inclusion of all pixels in local window calculation. 
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5.2.2 Gray-Scale Lacunarity 

An image with the same fractal dimension can have different “gap” patterns (Mandelbrot, 

1983). As a counterpart of fractal dimension, lacunarity was suggested to measure the “gap” 

distribution in an image. Higher lacunarity generally means a more porous pattern, and vice 

versa (Mandelbrot, 1983). Lacunarity has been utilized to characterize landscape patterns (Dale, 

2000; Plotnick et al., 1993). It was applied recently to texture image analysis and was found to 

increase accuracy in urban LULC classification (Dong, 2000; Myint and Lam, 2005a; Myint et 

al., 2006). To calculate the lacunarity of a surface, a gliding cubic box (edge length: x) is usually 

used to cover through the image intensity space. Let P(m, x) denote the probability of a box mass 

m (number of points) occurring in gliding box with length x, and let n denote the maximum mass. 

Then the lacunarity for a gray-scale image is shown as (Voss, 1986): 
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5.2.3 Moran’s I 

Spatial autocorrelation refers to the similarity or dissimilarity of values between 

neighboring pixels (Cliff and Ord, 1973; Goodchild, 1986). Moran’s I, a robust measure of 

spatial autocorrelation, has been applied locally to generate additional textural layer to improve 

classification (Emerson et al., 2005; Lam et al., 2002). These previous studies demonstrate the 

potential of using Moran’s I as an aid in image classification. Moran’s I is calculated as the 

following: 
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where wij is the weight at distance d, wij=1 if point j is within a certain distance d of point i, 

otherwise wij=0; W is the summation of all weights for any i≠j; z is the deviation from its mean 
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value. I>0 indicates a positive autocorrelation, I<0 indicates a negative autocorrelation; when 

there is a random pattern, I will be approaching 0. 

5.2.4 Texture-Aided Classification and Texture Vector Method 

Textural layers are often derived by using a recursive moving window and assigning the 

local measurement to the center pixel of the moving window. The generated textural layers can 

then be combined with spectral bands for classification. The effects of window size on texture 

measurements hence become critical to the resultant textural indices (Chen et al., 2004; Hodgson, 

1998; Myint and Lam, 2005a). In addition to the above three textural indices, previous studies 

have utilized other textural techniques for image classification, such as the co-occurrence matrix 

(Carr and de Miranda, 1998), wavelet transform (Zhu and Yang, 1998), mathematical 

morphological operation (Plaza et al., 2004), and geostatistical metrics such as entropy, mean, 

variance, fragmentation index, diversity, and standard deviation (Carr and de Miranda, 1998; Zhu 

and Yang, 1998). However, with a few exceptions (Emerson et al., 2005; Myint and Lam, 2005a), 

the texture vector method has seldom been extended to combine fractal dimension, lacunarity, 

and Moran’s I with spectral vectors for land cover classification. Given this research gap and 

their potential in complementing with each others, fractal dimension, lacunarity, and Moran’s I 

were selected in this research to form a texture vector to describe more aspects of image 

“texture” and aid classification. Similar to the widely-used spectral green, red, and near-infrared 

bands, different textural layers can provide different textural perspectives, and in this case, the 

textural indices will measure the properties of complexity, gap distribution, and spatial 

autocorrelation.  

 



92 
 

5.3 Genetic Bayesian Classifier 

5.3.1 Introduction to Genetic Algorithms 

The development of GA was motivated from the evolutionary theory. GAs have been 

widely used in optimization problems (Goldberg, 1989). A simple GA can be described as 

follows. 

GAs usually start with a randomly-generated population that contains some chromosomes, 

and then the offspring are generated by combining or changing the genes of the parent 

chromosomes, known as crossover and mutation, according to predefined rates. A solution is 

defined as a chromosome which is comprised by genes and usually encoded as bit strings or real 

numbers. The goodness of a chromosome is evaluated by a fitness function. The fitness value of 

a chromosome determines its chance of being selected to reproduce offspring. The chromosomes 

with top fitness values can be kept in the next generation as elite members. The evolution 

continues until it meets the stopping criteria such as no fitness improvement after a number of 

generations.  

5.3.2 The Proposed Genetic Bayesian Classifier 

According to the Bayes theorem, given an image training data D and classification space C 

(e.g., forest, pasture, urban, etc.), let P(c) denote the prior probability of class c and P(c|D) 

denote the probability of the pixel belonging to class c given training data D. Under the 

independent assumption of the training pixels, following Mitchell (1997), we have 

)(/)()()( DPcPcdpDcP
Di

i •=∏
∈

                   (4) 

Assume that the distribution of the training data D is a multivariate Gaussian distribution and let 

u and S denote the mean vector and the covariance matrix of class c in the training sample 

respectively. By taking the natural logarithm of the above equation, we have 
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The classification c of a pixel satisfies: 
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Equation (6) is the general form of MLC. In traditional remote sensing classification, the 

prior probabilities are often assumed to be the same for each class, which neglects the 

importance of this parameter. Previous literature demonstrated the use of MRF to model prior 

probabilities in contextual classification (Jackson and Landgrebe, 2002; Solberg et al., 1996), but 

a direct optimization of prior probabilities is seldom explored. Some research used ancillary data 

to estimate the prior probabilities (Maselli et al., 1995; Pedroni, 2003), but such an approach 

requires an additional dataset and significant extra processing cost. Since GAs have been proven 

to be an efficient optimizing method (Armstrong et al., 2003; Li and Yeh, 2005), it can be used 

here to optimize the prior probabilities by fitting the goal of maximizing classification accuracy. 

The equal probability solution of traditional MLC can be included as a seed in initial population. 

For convenience, we define this method as GBC. 

If m denote the number of classes, the problem is to derive the optimal solution of {P 

|i=1,…,m} with the constraints:  
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The problem can be further simplified to search the solution of {P’|i=1…m}. Let P’  belongs to 

(0, 1); then the solution of prior probabilities is 
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The fitness function is defined as follows. Given a solution of prior probabilities for classifying 

the training set, let N denote the number of correctly classified pixels and L denote the total 

number of training pixel. Then the fitness function (using overall accuracy) is:     

    f = N / L                 (9) 

An important concern of training classifiers is to avoid overfitting. A common solution to 

this problem is cross-validation. The training data can be separated into several sets, with one set 

used for validation and the others for training. Then the fitness criterion is the weighted average 

of overall accuracies for all validation sets, and the fitness function (Equation 9) is still valid, 

with N denoting the number of correctly classified pixels from all validation sets and L denoting 

the total number of training pixels. 

In the following case study, P’  is encoded as real numbers within (0, 1) with four decimal 

places. The GA used in this paper was programmed in MATLAB according to the version 

described in Section 3.1, but with an additional procedure for checking uniqueness. This 

procedure was employed after the reproduction that removes duplicated chromosomes and 

generates replacements randomly. A worked example is shown in Appendix 1. 

5.4 Research Design 

A subset of an IKONOS image of greater New Orleans, Louisiana, was used in this study 

(Figure 5.1). The subset size was 481 x 621 pixels for multispectral bands. Based on the LULC 

categories available in the subset, a combined USGS level I and II classification scheme was 

used (Anderson et al., 1976), which included six classes: water, forest, residential, grassland, 

commercial, and industrial (Figure 5.2). 

For the classification scheme, residential class refers to areas used primarily for residential 

purposes, including houses, amenity grasses/trees, small private roads, and others. Commercial 
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Figure 5.1 IKONOS panchromatic band of the study area (Jefferson Parish, Louisiana) acquired 
on Sep. 2, 2005. Image size: 1924 by 2484 pixels. 

 

 

Figure 5.2 Selected training areas (120 by 120 pixels) shown in IKONOS panchromatic band; 
clockwise from upper left: water, forest, residential, industrial, commercial, and grassland. 
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class is used predominantly for the sale of products and services, including shopping centers, 

retail stores, office buildings and associated parking lots. Industrial class is associated with 

light/heavy manufacturing. Water, forest, and grassland refer to areas dominated by the 

corresponding land cover. Representative training areas for the six classes were carefully 

selected across the study area based on field survey and reference to half-foot (0.15meters) 

resolution aerial images taken in September 2005. Descriptive statistics of different LULC 

categories in terms of their spectral characteristics are listed in Table 5.1. It is clear from Table 

5.1 that water, forest, and grassland classes had smaller spectral variations (i.e., smaller standard 

deviations and coefficients of variation), whereas the three land use classes that are characterized 

by intensive human activities (residential, commercial, and industrial) had higher spectral 

variations with higher standard deviations and coefficients of variation.      

The 1-meter IKONOS panchromatic band (1924 by 2484 pixels) was used to extract textural 

layers of fractal dimension, lacunarity, and Moran’s I (Figure 5.3). To be compatible with the 4-

meter resolution multispectral bands, these textural layers were then downsampled and stacked 

with the three multispectral bands (red, green, and near-infrared) such that each pixel had a three-

dimensional spectral vector and a three-dimensional textural vector. This method will avoid the 

high-dimensionality problem and also take advantage of the higher spatial-resolution 

panchromatic band for reducing the blurring effects. 

For the GA, we used a common configuration with 30 population, 0.8 crossover rate, 

random point crossover/mutation, and 2 elite members. The stopping criterion was no 

improvement in 20 continuous generations. To minimize the random effects of the GA, the 

training stage was performed three times and the best results were used in subsequent analyses. A 

flow chart of the research design is shown in Figure 5.4. 
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Table 5.1 Descriptive statistics of the six LULC classes 

Band Land Use Min Max Mean SD CV 

Band4 Water 147 170 158.02 4.38 0.03 

 Forest 300 594 431.46 55.66 0.13 

 Residential 215 883 486.95 122.94 0.25 

 Grassland 567 980 740.43 73.01 0.10 

 Commercial 258 877 564.72 90.58 0.16 

 Industrial 234 1927 696.96 183.78 0.26 

Band3 Water 215 242 228.38 5.86 0.03 

 Forest 211 325 241.97 16.89 0.07 

 Residential 201 817 288.73 61.55 0.21 

 Grassland 276 363 304.07 18.12 0.06 

 Commercial 260 971 540.57 100.71 0.19 

 Industrial 262 1963 708.04 227.80 0.32 

Band2 Water 392 414 402.91 4.84 0.01 

 Forest 352 442 380.23 13.17 0.03 

 Residential 350 888 422.60 50.33 0.12 

 Grassland 440 504 463.13 13.22 0.03 

 Commercial 411 935 626.04 80.12 0.13 

 Industrial 445 1982 821.70 204.70 0.25 
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Figure 5.3 Textural layers extracted from an IKONOS image acquired on Sept. 2, 2005 of 
Jefferson Parish, Louisiana (greater New Orleans) (left to right: fractal dimension, lacunarity, 
Moran’s I). 

   

Figure 5.4 Flowchart of the Genetic Bayesian texture-aided classification process. 

The original 11-bit IKONOS image was used for textural layer extraction (Myint and Lam, 

2005). The textural layers were stretched linearly to 0-2048 such that each layer was within the 

same range. Four moving-window options, 33x33, 45x45, 55x55, and 65x65 pixels (meters), 

were used. For lacunarity layer extraction, the 3x3x3 gliding box was used; for Moran’s I layer 

extraction, only neighbored pixels (Rook’s case) were considered. 

Two strategies were applied to reduce the edge and blurring effects caused by moving-

window based texture measurements. First, because edge effects are more significant with local 

measurements, a variant of Zhou-Lam method (2008) was applied in this study to partially 

overcome the edge effects. Second, training areas were randomly sampled to minimize the 

blurring effects of moving window and high correlation among measurement in neighboring 

areas (Sun et al., 2006). The training data contained 5000 pixels. Classification accuracies were 

assessed with a common stratified sampling strategy based on the classified map. The evaluation 
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data consisted of 1716 points, and identification of their actual land cover types were made 

through reference to the half-foot (0.15meters) resolution aerial images (taken in September 

2005) and field survey. Recent literature demonstrates some alternative accuracy assessment 

methods, such as fuzzy assessment (Binaghi et al., 1999), area-based confusion matrix (Lewis 

and Brown, 2001), and multiple-resolution method (Pontius and Cheuk, 2006). These methods 

can be integrated in the fitness function and evaluation procedure in future studies. For this case 

study, we used the traditional hard-classification-based cross tabulation accuracy assessment 

method. The GBC, MLC, image classification procedure, and accuracy calculation were 

programmed and automated in MATLAB.  

In addition, to provide a better perspective of how GBC and MLC are compared with other 

classifiers, a multi-layer perceptron neural network classifier (NNC) was also tested.  For NNC, 

typically a three-layer neural network is used in LULC classification, with input and output 

neurons configured as the number of spectral and textural bands and the number of classes, 

respectively. Since there are no theoretical guidelines of configuring hidden neurons, in this 

study the neurons of hidden layer were set to one, two, or three times of input neurons. For each 

configuration, the network was run three times with different random weights and bias settings. 

Bayesian optimization was used to avoid overfitting using MATLAB Neural Network Toolbox. 

5.5 Results and Analysis 

The overall classification accuracies from different classification scenarios are shown in 

Table 5.2. Generally, by introducing additional textural information or using GBC or NNC to 

replace the MLC, overall accuracies increased. The best performance occurred in the case of 

65x65 window, with the overall accuracies boosted to 87% for MLC and about 90% for both 

GBC and NNC, using texture vector-aided approach. Classified maps are shown in Figure 5.5.  
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Table 5.2 Classification accuracy (%) among different classification approaches 

MS* MS-Fractal MS-Lacunarity MS-Moran MS-Vector Window 

(meter) MLC GBC NNC MLC GBC NNC MLC GBC NNC MLC GBC NNC MLC GBC NNC

33x33 68.5 80.6 80.5 69.2 81.1 82.2 83.2 87.0 88.2 74.0 82.9 83.6 84.3 88.0 89.0 

45x45 68.5 80.2 80.2 68.2 81.0 81.8 84.7 87.5 89.2 72.5 82.1 82.6 85.9 88.5 90.3 

55x55 68.5 80.2 81.1 69.9 82.1 83.2 85.3 88.5 88.9 71.6 81.9 82.2 86.0 88.8 90.2 

65x65 68.5 80.2 80.4 70.2 82.1 83.0 85.6 88.5 89.4 71.3 81.6 82.8 86.6 89.6 90.7 

(*MS: multispectral) 
 

 

Figure 5.5 Classified LULC maps using IKONOS multispectral band 4,3,2 and textural layers. (a) 
MS with MLC; (b) MS-vector with GBC; (c) MS-vector with NNC.  
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5.5.1 Genetic Bayesian Classifier Versus Maximum Likelihood Classifier 

The performance comparison includes two aspects: accuracy and computational efficiency. 

For accuracy, Figure 5.6 shows that the proposed GBC outperformed the traditional likelihood 

classifier in all scenarios; and such improvement was the greatest when no texture vector was 

used. In other words, using the GBC alone can increase accuracy more than 10% (Table 5.2). A 

one-to-one comparison with Kappa Z statistics was provided in Table 5.3. The Z values of GBC 

versus MLC were all greater than the 0.05 significance level (Z>1.96), implying that the 

classification accuracy of GBC was significantly higher than that of MLC. 
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Figure 5.6 Overall accuracies (%) among different texture-aided classification with different 
classifiers at window size: 65x65. 
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Table 5.3 Kappa Z statistics among classifiers for window size 65x65 

Classifier MS MS-Fractal MS-Lacunarity MS-Moran MS-Vector 

GBC vs MLC 5.260* 6.062* 2.052* 5.104* 2.747* 

NNC vs MLC 4.527* 6.337* 2.864* 5.632* 3.286* 

NNC vs GBC -0.712 0.282 0.799 0.524 0.529 

*: significant at 0.05 level (Z>1.96) 

Another important aspect of performance is computational efficiency. On a Sun 

Microsystems workstation (dual dual-core AMD Opteron processor 2.41GHz, 4GB RAM), the 

training time for different scenarios varied from 5.9 to 8.3 seconds, and the number of 

generations needed varied from 37 to 87, with an average of 6.1 seconds and 61 generations. 

Hence, the GBC is still computationally efficient. When considering both accuracy and 

computational efficiency, we may conclude that the GBC outperformed the traditional MLC. 

5.5.2 Genetic Bayesian Classifier Versus Neural Network Classifier 

In terms of classification accuracy, the NNC yielded slightly better results than the GBC 

(Figure 5.6 and Table 5.2). However, the Z statistics of NNC versus GBC were not significantly 

different, indicating similar performance between the two classifiers.   

In terms of computational efficiency, the NNC was much less efficient than the GBC. In this 

study, when the number of neurons in the hidden layer was set to twice as the number of input 

neurons, the computational time used was from 350 to 2568 seconds for this small training set 

(5000 pixels). It would be even more time consuming if multiple hidden layer configurations and 

multiple randomized weight/bias settings were used. More importantly, the NNC requires 

considerably more human-computer interaction to configure different structure settings. Some 

training algorithms may require users to interactively stop the training process. On the other hand, 
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the GBC has a fixed structure and requires no structure configurations and manual stop. The ease 

of use for GBC will be an advantage, especially after the procedure is programmed and made 

available to the end user.  

5.5.3 Texture Vector Method Versus Individual Textural Index Aided Approach 

Considering only the MLC, the improvement of texture-aided approach over the per-pixel 

spectral classification varied from individual index to index, while the composite texture vector 

approach yielded the greatest improvement (16-19%, see Table 5.2 and Figure 5.6). Among the 

three textural indices, lacunarity outperformed fractal dimension and Moran’s I at all moving-

window sizes. Fractal dimension and Moran’s I had similar performance. The composite texture 

vector outperformed individual index aided approach. For the MLC, the baseline overall 

accuracy with only three multi-spectral layers was 68.5%, while the use of a texture vector 

improved it by 6-8% to 84-86%, depending on the size of the moving window. Similar 

performance trends can be observed for other classifiers. The addition of textural information for 

image classification has increased the classification accuracy.  

5.5.4 Window Size Effects 

In general, for the four window sizes tested in this study (from 33x33 to 65x65 meters), 

their effects on classification accuracy were very small and negligible. The maximum-minimum 

accuracy difference for either individual index or texture vector was within 3% (Table 5.2). 

Nevertheless, we can observe that for the MLC, larger windows generally yielded slightly higher 

accuracies for fractal- or lacunarity-aided approaches, whereas the classification accuracy of 

using Moran’s I method decreased slightly with increasing window sizes. The combined effects 

resulted in a slight increasing trend for the texture vector-aided approach. Using the GBC or 

NNC, these trends were generally maintained but with some additional fluctuations due to the 
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stochastic nature of the techniques. Future research that uses wider range of window sizes is 

needed to derive the quantitative relationships between window size, object size, and index. 

5.5.5 Stochastic Characteristics of GBC and NNC 

Unlike the deterministic results derived from using the MLC, both the GBC and NNC 

exhibited some stochastic characters. With different initial parameter settings such as the 

randomized initial population of GA and randomized weights and biases of neural network, 

slightly different classification results could be yielded. This stochastic characteristic can be also 

observed in Table 5.2, when the same multi-spectral information was used for the four windows. 

Accuracy results were the same for the MLC but they were inconsistent for GBC and NNC. As 

discussed above, this stochastic characteristic could also slightly blur the window size effects. 

Following a common practice used by most research (Armstrong et al., 2003), both the GBC and 

NNC were run multiple times to get the best trained classifier for classification.  

5.5.6 User’s and Producer’s Accuracies of the Genetic Bayesian Classifier 

A further examination of the accuracies of individual LULC categories provided more 

valuable information of different classification approaches. Considering both producer’s 

accuracy (1 - commission error%) and user’s accuracy (1 - omission error%), the texture vector-

aided approach with the GBC outperformed the spectral-based MLC for most LULC categories, 

as did the texture vector-aided approach with the NNC (Tables 4.4-4.6). Significant 

improvements occurred in the user’s accuracies of forest, grassland, commercial and industrial 

classes, and in the producer’s accuracy of residential and industrial classes. These improvements 

were reflected on the classified map (Figure 5.5), where some residential neighborhoods were 

misclassified into forest in the MLC, but were correctly classified with the texture-aided 

GBC/NNC approaches. However, unexpectedly, the commercial class had a poorer producer’s 
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Table 5.4 Accuracy assessment of spectral-only classification with the MLC 

C* 

  R* 
Water Forest Residential Grassland Commercial Industrial 

Producer's 

(%) 

Water 116 0 2 0 0 0 98.3 

Forest 0 114 16 3 0 0 85.7 

Residential 0 226 600 40 97 22 60.9 

Grassland 0 0 25 113 9 11 71.5 

Commercial 0 0 20 3 62 10 65.3 

Industrial 0 0 2 2 53 170 74.9 

User’s(%) 100 33.5 90.2 70.2 28.1 79.8 68.5 

(R*: Reference data, C*: Classified results) 

Table 5.5 Accuracy assessment of texture vector- aided classification with the GBC 

C* 

  R* 
Water Forest Residential Grassland Commercial Industrial 

Producer's 

(%) 

Water 116 0 0 0 0 2 98.3 

Forest 0 123 10 0 0 0 92.5 

Residential 0 2 934 0 21 28 94.8 

Grassland 0 0 40 98 4 16 62.0 

Commercial 0 0 29 3 50 13 52.6 

Industrial 0 0 4 0 7 216 95.2 

User’s(%) 100 98.4 91.8 97.0 61.0 78.5 89.6 

(R*: Reference data, C*: Classified results) 
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Table 5.6 Accuracy assessment of texture vector-aided classification with the NNC 

C* 

  R* 
Water Forest Residential Grassland Commercial Industrial 

Producer's 

(%) 

Water 116 0 0 0 0 2 98.3 

Forest 0 123 9 1 0 0 92.5 

Residential 1 6 957 3 10 8 97.2 

Grassland 0 6 24 109 7 12 69.0 

Commercial 0 1 32 3 48 11 50.5 

Industrial 0 0 15 1 8 203 89.4 

User’s(%) 99.1 90.4 92.3 93.2 65.8 86.0 90.7 

(R*: Reference data, C*: Classified results) 

accuracy for both the GBC and NNC than the MLC, as some commercial lands were omitted on 

the classified map (Figure 5.5b and 4.5c).  

When comparing the GBC and NNC, the differences among individual LULC categories 

were subtle, and their small difference in overall accuracy as reflected by the insignificant Kappa 

statistic (Table 5.3). For both GBC and NNC, the user’s and producer’s accuracies of water, 

forest, and residential were more than 90%, indicating clear separation among these classes by 

these two classifiers. User’s and producer’s accuracies for the industrial class ranked second, 

followed by those of the commercial class.  Scattered houses with commercial activities in large 

residential and industrial neighborhoods made it hard to classify, thus resulted in the worst 

accuracies for commercial lands. More studies are needed to develop strategies for achieving 

better classification accuracy for the commercial class. 
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5.6 Conclusions 

Integrating artificial intelligence classifiers and texture information into the image 

classification process has proven to be fruitful in terms of improved accuracy. This paper 

presented a combined classification methodology using a texture vector method and the newly-

developed GBC. The test of an IKONOS image of an urban area in New Orleans showed a 17-

21% improvement by using the combined approach, or a more than 10% improvement by using 

the GBC alone, compared with the spectral-based MLC method. 

As expected, the texture vector method was found to outperform the individual textural 

method, regardless of the classifier used. For individual textural index-aided approach, 

Lacunarity outperformed Moran’s I and fractal dimension. The combined approach of texture 

vector with the GBC yielded a classification accuracy of 90% at window size of 65x65 meters, a 

21% improvement over the 69% accuracy obtained from using the spectral-only MLC method. 

However, despite the significant overall accuracy improvement by the new approach, the 

commercial class had no improvement and remained to be very difficult to separate, with yielded 

user’s and producer’s accuracies of only 61% and 52.6%, respectively.  

When compared with the extensively researched NNC, the GBC was found to yield 

statistically the same accuracies. However, the high computational efficiency, the ease of use, 

and the minimal requirement of human-computer interaction of the new GBC could make it an 

attractive alternative for future image classification. With further refinements and more 

experiments in the future, the GBC algorithm could be implemented into existing image 

processing software as an option provided to traditional MLC.   

This study is limited by the fact that only one study area was experimented. Similar to the 

NNC which has been tested extensively in the literature, the performance of GBC is in need of 
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future tests using images from different study areas with different LULC compositions, different 

time periods, and different sensors. Future studies on different combinations of textural indices to 

find the optimal composite texture vector are also needed to help further improve image 

classification and segmentation.  
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Chapter 6   
Integrating a Texture Vector with Artificial Intelligence in Urban 

Land-Use/Land-Cover Classification and Residential Neighborhood 
Discrimination 

6.1 Introduction 

The proposed launch of Geoeye-1 in 2008 will promote high-resolution remote sensing to a 

new era, with a 0.41-meter spatial resolution panchromatic band and 1.65m resolution 

multispectral bands. Along with QuickBird and IKONOS, commercial high-resolution satellite 

imagery from different vendors further enhances the role of remote sensing in inventorying land 

resource, monitoring environmental change, detecting and assessing hazards. Even in the public 

domain, some high-resolution imagery can be freely accessed through online mapping service 

providers such as Google, Microsoft, and MapQuest. 

Land-use/land-cover (LULC) classification and change detection is a fundamental 

application of remote sensing and remains a major scientific topic in geographic information 

science. High-resolution satellite imagery greatly challenges the traditional per-pixel 

classification method, as different land use categories may carry similar ground components 

(Emerson et al., 2005). Recent research demonstrated that the use of neighborhood spatial 

analytical indices and artificial intelligence algorithms could provide improved classification 

(Huang et al., 2002; Myint and Lam, 2005a). Texture analysis techniques provide additional 

neighborhood information ignored by traditional per-pixel classification, such that classes are 

better characterized. Such techniques include lacunarity analysis (Dale, 2000; Greenhill et al., 

2003; Myint et al., 2006), fractal modeling (Chust et al., 2004; Emerson et al., 2005; Read and 

Lam, 2002), spatial autocorrelation, and semivariogram (Carr and de Miranda, 1998; Emerson et 

al., 2005; Miranda et al., 1998). Artificial intelligence classifiers provide an alternative for 
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deriving better classification boundaries and relieve the strict restriction of parametric modeling, 

thus better accuracies can be achieved. Such methods include decision trees (DeFries et al., 1998; 

Gislason et al., 2006; McIver and Friedl, 2002; Pal and Mather, 2003), artificial neural networks 

(Erbek et al., 2004; Liu and Lathrop, 2002; Mills et al., 2006), and support vector machines (Bazi 

and Melgani, 2006; Foody and Mathur, 2004b; Huang et al., 2002; Pal, 2006).  

One growing direction of remote sensing applications is in the social sciences (Liverman et 

al., 1998; Zhou, 2006) and disaster monitoring (Kerle et al., 2003; Tralli et al., 2005). The study 

area, metropolitan New Orleans, which was inundated on August 29, 2005 by Hurricane Katrina, 

impacted different residential neighborhoods with different economic/environmental statuses. 

These neighborhoods exhibited different spectral and textural appearance, which could possibly 

be discriminated utilizing a classification approach with textural information. 

Using the maximum likelihood classifier (MLC) as a baseline, this chapter further 

investigates the performance of integrating the texture vector-aided approach (see Chapter 4 and 

5) with three different classifiers: support vector machines (SVM), artificial neural network 

classifier (NNC), or genetic Bayesian classifier (GBC). Two classification scenarios were carried 

out. First, an image mosaic with different LULC types identified from metropolitan New Orleans 

on the IKONOS image taken after Hurricane Katrina was examined. The second study examined 

four urban residential neighborhoods with different incomes and inundation statuses.  

6.2 Introduction to Neural Network Classifier and Support Vector Machines 

In this research, both a spectral-only approach and a spectral-textural approach were tested 

with the four different classifiers. The texture measures include fractal dimension, lacunarity, and 

Moran’s I, which are three distinct image textural indices with different emphases on complexity, 

heterogeneity, and auto-correlation. In previous experiments (Chapter 5), the integration of these 
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three indices successfully described more aspects of image texture, as each index measures a 

certain characteristic of spatial arrangements. The four classifiers include the traditional MLC, 

GBC, multi-layer perceptron NNC, and genetic algorithm - support vector machines classifier 

(GASVM). The algorithm of GBC can be found in a previous chapter (Chapter 5), while simple 

introductions to NNC and GASVM are to follow. 

6.2.1 Multi-Layer Perceptron Neural Network 

Artificial neural networks are a group of robust computational models inspired by the 

biological learning behavior of the human brain. A neural network model contains several layers 

of interconnected neurons (nodes). Each neuron takes a number of inputs and produces an output 

that could be the final result or the input for other neurons. Training of neural networks can be 

supervised, such as the multi-layer perceptron (MLP) network (Demuth et al., 2008; Erbek et al., 

2004), or unsupervised such as Kohonen Self-organizing Map (Ju et al., 2006; Kohonen, 1995). 

Commonly, the MLP network (Figure 6.1) is used when classifying remote sensor data (Huang et 

al., 2002). The following description of the MLP network follows the work by Demuth et al. 

(2008). 

In a MLP network, the output of each neuron in the hidden layers and output layer is a 

transformed value of the weighted summation of the inputs from previous layers plus a bias. The 

MLP network will learn its weights and biases by minimizing the difference between the 

produced output and the target output. Several different learning algorithms exist, such as 

gradient decent, conjugate gradient, Quasi-Newton, and Levenberg-Marquardt (Demuth et al., 

2008).  
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Figure 6.1 A common three layer (3-4-3) MLP network. P, Q, R corresponds to the value of input, 
hidden, and output neurons. The figure follows the demonstration in Demuth et al. (2008). 

A typical learning process is outlined as the following:  

(a) Initialize the network; 

(b) Input training instances and compute outputs and performance; both the outputs of 

hidden neurons and output neurons will be calculated. The output is: ))((
1
∑
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where piij is the value (output) from the ith neuron in the previous layer, wiij and biij corresponds to 

the weight and bias (a constant) of the ith neuron. f is the transform function (e.g. sigmoid 

function, cosine function). Qj is the output from the jth neuron. A demonstration is made in Figure 

6.1. 

A simple performance function is the sum of square error: 
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Where i is the ith input instance, j is the jth output neuron, tij and oij is the target and network 

predicted output values of ith input instance on the jth output neuron. 

(c) Adjust the weights and biases 

The gradient descent rule updates the weights and biases along the most rapid decreasing 

direction of the performance function: 
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where wk and bk are the kth state of weights and biases; and ak and gk are the learning rate 

and gradient as of the kth state.  

(d) Repeat b-c until stop criteria met or interactively stopped. 

As the learning process continues, the neural network could be trained to overfit the training 

data, which has poor generalization and will not respond well to unknown data. Several 

strategies can be used to prevent the occurrence of overfitting, such as early stopping and 

Bayesian regularization. Early stopping requires an additional validation data set to stop training 

earlier according to the performance on the validation data. Since the early stopping method 

could waste part of the training data, Bayesian regularization was suggested (Demuth et al., 

2008). For Bayesian regularization, a cost function is added to the conventional performance 

function: 

MSWMSEF ×−+×= )1( αα      (3) 

Where MSE is the mean square error between the prediction and the target outputs, and MSW is 

the means square weights. By supplying an additional cost function MSW, weights and biases are 

forced to be smaller, yielding a more stable output. MacKay (1992) provided an automated way 

of approaching optimal regularization parameters and it is implemented in the MATLAB neural 

network toolbox. A typical training process is illustrated in Figure 6.2. 
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Figure 6.2 Learning curve of a three-layer back-propagation neural network with Bayesian 
regularization. SSE and SSW stand for sum of square errors and sum of square weights, 
respectively. The figure is an MATLAB output from one experiment in this chapter. 

There are pros and cons of using neural network in classification. In contrast to MLC which 

assumes a Gaussian distribution, NNCs make no a prior assumption of data distribution. Hence, 

it could have a better fit to complex LULC classification, especially in an urban area. However, 

there are no universal guidelines for choosing network parameters. A trial-and-error approach is 

often required to determine the network structure. The training stage requires a significant 

amount of time.  
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6.2.2 Genetic Algorithm -- Support Vector Machines 

The SVM is a machine learning technique that looks for the best decision boundaries with 

least structural risk (Tan et al., 2005; Vapnik, 2000). Considering a satellite image with two 

bands, each pixel is plotted in attribute space instead of the original coordinate space (Figure 

6.3a). These pixels belong to two LULC categories represented with circles (residential) and 

squares (commercial). The SVM algorithm considers only the training pixel that lie on the class 

boundaries; as the other pixels are not necessary for class discrimination (Figure 6.3a). These 

pixels that lie on the class boundaries are so-called support vectors, as each pixel is a 2-

dimensional (2 bands) vector in the attribute space. The algorithm looks for the decision 

boundary between the two land use classes with maximum margin achieving the best 

generalization power, as represented by the solid black line in Figure 6.3a. The mathematical 

process to search for this best separating class boundary is described next by following Tan et al. 

(2005) and Vapnik (1998; 2000). 

 

Figure 6.3 Linear decision boundaries for a separable case (a) and a non-separable case (b). 
Training pixels that lie on the parallel lines are support vectors.  



116 
 

Suppose the residential and commercial land use categories are linearly separable as 

indicated in Figure 6.2a. Let Xi denote the ith training sample in two dimensional attribute space 

(band 1 and band 2) and let yi be the binary class label selected from {-1, 1} (-1 for residential 

and 1 for commercial). Let WX+b=0 denote the line of separating class boundary (there are 

many possible boundaries), where W is the normal vector of the class boundary, consisting two 

attributes and b is a bias. Then W and b must satisfy 

1≥+ bWX i , for yi=1         (4) 

1−≤+ bWX i , for yi=-1       (5) 

Combining equations (4) and (5) will result 

1)( ≥+ bWXy ii       (6) 

Under this constraint, the solution of the optimal separating boundary (the solid black line 

in Figure 6.2a) must maximize the margin, i.e. minimize the norm of w: 

2
)(

2W
WF =        (7) 

However, as there are some spectrum overlaps between the residential and commercial 

pixels, it is well-known that residential and commercial pixels are often linearly separable 

(Figure 6.3b). In this case, a slack variable ξi is introduced. The slack variable ξi indicates the 

distance of a training pixel i from the corresponding line WX+b=1 or WX+b=-1. Thus, the 

constraints of W and b in equation (6) will be changed to: 

1)( ≥+ bWXy ii - ξi        (8) 

Under this modified constraint, the solution of the optimal separating class boundary will be 

minimizing a cost function that takes both margin maximization and error minimization into 

account: 
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where c is a penalty term to penalize the training pixels that are located on the wrong sides 

of the class boundaries. By combining equation (9) and the inequality constraint function (8), the 

objective of the optimization problem is to find the saddle point of this Lagrangian: 
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The saddle point meets the following conditions: 
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By substituting equations (11), (12), and (13) into the Lagrangian (10), the optimization 

problem will be converted to a dual Lagrangian: 
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This optimization problem can be solved by quadratic programming (Vapnik, 1998; 2000). 

The decision rule for a new instance Xj is: 
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where xi = 1, 2…r are support vectors, αi is a Lagrange multiplier, sign() means +/- sign.  

Non-linear decision boundaries can be solved through a kernel trick. The input attribute 

space R is non-linearly mapped to a higher-dimensional space H through a certain function Φ(X), 

allowing the linear decision boundary to be found in the newly-mapped space H. It is not 
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necessary to know the exact form of Φ(x), so one can define a kernel function: 

)()(),( jiji XXXXK ΦΦ=      (16) 

The expensive computation in the higher-dimension space can be simplified by substituting 

the kernel function into the decision rule and computing in the attribute space: 
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The kernel function must meet Mercer’s condition (Vapnik, 2000). Commonly used kernels 

include polynomial kernels, radial basis functions (RBF), and sigmoid functions. The radial basis 

function is: 

2
),( ji XX

ji eXXK −−= γ
     (18) 

The above example is a simplified remote sensing classification. In most classification 

approaches, multiple bands and multiple classes are involved. As band-related attributes are 

represented with vectors in above equations, the above mathematical approach still applies to the 

multi-band scenarios. Many remote sensing classifications involve more than two LULC 

categories. Multi-class classification is more complex than the previous simple binary problems 

with only residential and commercial classes. Common solutions include techniques such as the 

one-against-the-rest (Vapnik, 2000) and the one-against-one approach (Knerr et al., 1990). The 

one-against-the-rest approach constructs n-1 support vector machines to separate one class from 

the rest, and the class output determined by the SVM corresponds to the maximum margin from 

the instance to the decision boundary. The one-against-one approach constructs n(n-1)/2 support 

vector machines to separate each pair of classes, and a maximum-win voting procedure from all 

support vector machines is applied to determine the predicted class. According to recent research 

(Hsu and Lin, 2002; Pal and Mather, 2005), one-against-one is more accurate and efficient.  
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Two parameters need to be determined a priori in order to use SVM (for radius basis 

kernel): c and γ. These two parameters are not demonstrated in Figure 6.3. Basically, c is a 

parameter that penalizes classification errors and γ is a parameter that controls the shape of the 

RBF kernel function. c controls the location of the classification boundary and γ controls the 

shape of the non-linear boundary. Some approaches use the grid-search algorithm to determine 

these parameters (Yang et al., 2006). The grid-search algorithm first searches a coarser grids such 

as (0, 10, 20, 30, 40, 50) for γ candidates, then focuses on the portion (suppose it is 10-20) that 

has the best classification accuracy and narrow down to a higher precision (11, 12, 13, 14, 15 …), 

until a certain level is reached or the accuracy is stable. However, the problem with this method 

is that the distribution of classification accuracy surface is not mathematically known, one cannot 

guarantee that the best γ exists in a certain portion based on a coarser resolution (in other words, 

although γ=30 is worse than γ =10 and γ=20, for a finer grid, γ =15 may not be better than γ =25). 

Usually it involves extensive trial-and-error attempts to determine the best c and γ. In this 

research, a GA is favored to search for optimized parameters. GAs have been applied in the 

optimization of SVM parameters in previous studies (Bazi and Melgani, 2006). In this study, a 

GA is configured in the following form: the search space of C and γ were limited to four integer 

places and four decimal places, i.e. c and γ were encoded in the range of [0000.0000, 9999.9999]. 

A decimal encoding was used such that crossover and mutation operations occur on one of the 16 

decimal genes. To avoid the common overfitting problem in non-linear classifiers, a threefold 

cross-validation was used. Fitness of a chromosome was determined by its cross-validation 

accuracy. As suggested in some previous research (Huang et al., 2002), one-against-one approach 

was better; therefore it is used in this research. As the lacunarity layer may have different 

minimum-maximum ranges for different spectral layers, it was scaled so that it will affect the 
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accuracy of SVMs. Fractal dimension layers and spatial autocorrelation layers are also scaled to 

have the same range as the spectral layers. The MATLAB programming interfaces of LibSVM 

(Chang and Lin, 2001) were used in this research to combine GA modules in a seamless and 

automatic way. A learning curve is presented in Figure 6.4. 

 

Figure 6.4 Training of GASVM with spectral and lacunarity bands on a small training set 
containing 800 pixles. The training time was 0.22 hour.  

6.3 Experiment 1: Classifying Urban Land-Use/Land-Cover with IKONOS Image Mosaic 

The first dataset used in this study is an image mosaic containing five land use categories 

(Figure 6.5) extracted from a post-Hurricane-Katrina IKONOS image of New Orleans: 

industrial/commercial complex (dominated by light manufacturing plants), low house density 

residential area, commercial area, flooded high house density residential area, and forest. The 

class ratio is perfect balanced and the overall size of the artificial mosaic is 175x1150 pixels.  
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Figure 6.5 IKONOS image mosaic. From left to right: Industrial/commercial complex, low house 
density residential area, commercial area, high house density residential area (flooded), and 
forest. Each subset contains 175x230 pixels. Displayed in band 4-3-2 false color composite. 
Image was taken on Sep.2, 2005, New Orleans, Louisiana.  

The 4-meter resolution near-infrared, red, and green bands were used as spectral variables. 

Rather than compress the image into 8 bit, the original 11-bit image was used, because it has a 

sharper ground feature comparison and richer information. Lacunarity, fractal dimension, and 

Moran’s I layers (Figure 6.6) were retrieved using a 33x33 (pixels) window from the principal 

component of the multi-spectral bands. Three textural bands were stacked with the three spectral 

bands such that each pixel can have a 6-dimensional spectral-textural vector. 

 

Figure 6.6 Composited textural bands (red: fractal dimension, green: Lacunarity, blue: Moran’s I) 
derived from the principal component of IKONOS multispectral bands.  

Training data was selected randomly and contained around 2000 pixels. In order to avoid a 

biased judgment based on one sample, 10 sets of training data were derived. All pixels in the 

entire image were used to calculate classification accuracy. Two sets of variables, spectral only 

and spectral-textural variables, were used as two sets of training data to compare the 

performance of supplying additional neighborhood spatial information. Different classification 

algorithms, GASVM, GBC, NNC, and MLC, were tested and compared. Considering the 

stochastic characteristics of GASVM, GBC, and NNC, each of them were run three times and the 
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best output was used in the comparison. For NNC, the number of input neurons was the number 

of bands used (3 or 6); the number of neurons in output layers was the number of classes (5); and 

the number of neurons in hidden layers ranged from one to three times as input bands (3-9 or 6-

18). Threefold cross-validation was used for GBC and GASVM to prevent overfitting the 

training set. As suggested in previous literature (Demuth et al., 2008), Bayesian regularization 

was used for NNC to prevent overfitting. 

6.3.1 Accuracy and Robustness 

As shown in Table 6.1, clearly there is advantage of utilizing neighborhood spatial 

information in classification. Using a texture vector containing lacunarity, fractal dimension, and 

Moran’s I information, in addition to the spectral reflectance information at the near-infrared, red, 

and green bands, resulted in improved overall and kappa accuracy regardless of the type of 

classifier. These improvements are significant using the Kappa statistic, reflected by the Kappa z 

values: 40.7 for TV-GBC to S-MLC, 83.0 for TV-NNC to S-MLC, and 78.6 for TV-GASVM to 

S-MLC), all exceeding the 0.05 significance level (z=1.96). 

Table 6.1 Overall and Kappa accuracies of different classification approaches 

* S denotes spectral-based approach without textural bands; TV denotes texture vector-aided 
approach with both spectral and textural bands. 

In comparison to the per-pixel MLC, using texture vector-aided classification with GBC, 

GASVM, or NNC can further increase the overall and kappa classification accuracy, as 

demonstrated in Figure 6.7.  

Accuracy S*-MLC TV*-GBC TV-NNC TV-GASVM 

Overall 80.5 85.04 89.52 90.08 

Kappa 75.24 81.27  86.81  86.26  
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Figure 6.7 Mean overall and kappa accuracy of different classification approaches. S- stands for 
spectral-based approach, TV- stands for texture vector-aided approach. S-MLC serves as a 
baseline. 

From the baseline accuracy of 80.5%, a 5% increase was determined with texture vector-

aided GBC classification and a 10% increase was determined with the texture vector-aided 

GASVM and NNC classification approach. As GBC is basically a modified MLC with prior 

parameters optimized by GAs, the decision boundary locations are restricted by the normal 

curves. Therefore GBC is not able to locate more complex and accurate decision boundaries such 

as non-parametric GASVM and NNC. Accuracy improvements made by the combination of 

texture vector and advanced classifiers are illustrated using the classified images (Figure 6.8). 

In the previous discussion, only the overall accuracy was mentioned; however, there are two 

other important accuracy measures: commission errors and omission errors. Although the use of 

probabilities with MLC may lead to better overall accuracy, it does not guarantee better accuracy 

for all classes (Zheng et al., 2005). A detailed comparison of the classifiers involved in this series 

of experiment is provided in Figure 6.9. 
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(a)  

(b)  

(c)  

(d)  

  

 Ind/Com Complex  Residential 1         Commercial          Residential 2           Forest 

Figure 6.8 Classification results from different approaches. (a) traditional spectral-based 
classification with MLC; (b) texture vector-aided classification using GBC; (c) texture vector-
aided classification using NNC; (d) texture vector-aided classification using GASVM. 
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Figure 6.9 A detailed accuracy comparison of different land use categories from different 
classification approaches. (a) user’s accuracy; (b) producer’s accuracy. S- stands for spectral-
based approach, TV- stands for texture vector-aided approach. S-MLC serves as a baseline. 
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Results shown in Figure 6.9 are from the same training data with spectral-textural 

information used for GBC, NNC, and GASVM. Results from the spectral-based MLC were also 

provided as a baseline. Using texture vector-aided approach with advanced classifiers can lead to 

an improvement for most classes as seen in Figure 6.9, compared to the baseline of spectral-

based MLC approach. In regard to the three texture vector-aided approaches, NNC and GASVM 

were better than GBC for most classes. GASVM was slightly better than NNC for the user’s 

accuracy of commercial, residential type 2, and forest, but were less accurate than NNC for the 

producer’s accuracy of these three classes.  

Based on classifications from ten different training sets, the standard deviation was 

measured for each classifier (Table 6.2). GASVM has the greatest variation. One possible reason 

could be that different c (penalization parameter) and γ (kernel parameter) parameters are 

generated by using the GA at different runs. GBC, GASVM, and NNC have better accuracies 

than MLC in each of the ten experiments with different training sets. GASVM and NNC are all 

better than GBC in the ten experiments. Meanwhile, GASVM and NNC are very similar in all 

ten scenarios without significant difference. 

Table 6.2 Standard deviation of the overall accuracies derived from ten different training sets 

 
 
 

 
* S denotes spectral-based approach without textural bands; TV denotes texture vector-aided 
approach with both spectral and textural bands. 

 

 

 

S*-MLC TV*-GBC TV-NNC TV-GASVM 

 0.60  0.56  0.35    0.66 



127 
 

6.3.2 Computational Efficiency 

(1) Efficiency of calculating lacunarity, fractal dimension, and Moran’s I layers 

In this experiment, for the 4-meter resolution 175x1150 IKONOS image, at a 33x33 pixels 

window, the computational cost on a Sun Microstation (CPU: 2.41GHz, RAM: 4GB) was 35, 77, 

and 50 seconds for lacunarity, fractal dimension, and spatial autocorrelation Moran’s I, 

respectively. For lacunarity and Moran’s I calculation, the processing time will increase when a 

larger window is used. For fractal dimension, the processing time depends more on the number 

of available steps used to construct triangular prisms. 

(2) Computational cost of different classifiers 

MLC was the least accurate but most computationally efficient method. Training MLC was 

simply done by calculating the covariance matrices for discriminant functions and can be done in 

just a few seconds, even for a large training dataset. GBC uses GAs to search for the optimized 

solution of prior parameters, and was found quite efficient because the discriminant functions 

were fixed.  

SVM (radial basis kernel) have two parameters. Derivation of support vectors varies 

dramatically when the magnitude of parameter c (penalization parameter) and γ (kernel 

parameter) are changed. As there is no common guideline for choosing appropriate values for c 

and γ; inappropriate parameters may lead to very low classification accuracy. Some search 

algorithms such as grid search (Chang and Lin, 2001; Yang et al., 2006) or GA search (Bazi and 

Melgani, 2006; Pal, 2006) are necessary. Because support vectors need to be recalculated for 

each possible solution of c and γ, even with an efficient GA, it often takes considerable time to 

train, as revealed in this research. The size of the training set also impact the training time. As the 

size increases, the training time may grow quickly. 
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Training of NNC is well-known to be a time-consuming process. Although different 

configurations or empirical rules were tried or compared in previous research (Huang et al., 2002; 

Kavzoglu and Mather, 2003; Mills et al., 2006), there is no undeniable universal solution. 

Increasing the sample size may increase the training time. Therefore, a more complex network 

structure could be rather time-consuming. 

Figure 6.10 provides an illustration of computational cost for different classifiers. For GBC 

and GASVM, same GA parameter settings and termination criteria (no accuracy change in 20 

generations) were used and the average evolved generations were both near 45. For NNC, the 

training stage involved a comparison among three different hidden layer settings: one, two, and 

three times of input variables. GBC (3.7 seconds) was much more efficient than GASVM and 

NNC. It should be noticed that the training set only contained a small amount of pixels (2000). In 

most classification scenarios, a number of selected sites are often used as the training data, which 

contain a much larger amount of pixels than this research. GASVM and NNC would be very 

time-consuming for a large training set.  
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Figure 6.10 Average training time of different classifiers. S- stands for spectral-based approach, 
TV- stands for texture vector-aided approach. S-MLC serves as a baseline. 
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6.3.3 Stochastic Characteristics of GBC, GASVM, and NNC 

The use of GBC, GASVM, and NNC require a number of initial parameters to be set 

randomly. The use of GAs to search optimal parameters of GBC and GASVM involves a 

randomized initial population, randomized crossover or mutation position, arbitrary population 

size, and crossover and mutation rates. The weight vectors and biases of NNC are often 

generated randomly, and the number of hidden layers and neurons are established by the user. 

These randomized parameters, along with some user-defined settings, could make different runs 

yield different classification accuracies. To partially correct the bias resulted from just one time 

training, three runs with different initial parameter settings may help to identify the best result, as 

proposed by Armstrong et al. (2003); this approach was taken in this research. Thus, the actual 

training time used is increased by a factor of three compared to those in Figure 6.10. 

6.4 Experiment 2: Discriminating Urban Residential Neighborhoods with Different 
Economic and Hurricane Impact Statuses 

Remote sensing data has been increasingly used in to perform socio-economic analysis. 

Yuan et al. (1997) performed multivariate regression analysis between census population and 

land cover types derived from Landsat TM data and used the result to remodel population in 

greater spatial details. Beck et al. (2000) reviewed the use of different sensors to analyze the 

spatial and temporal patterns of disease mapping. Zhou (2006) used aerial photographs to 

classify different urban residential neighborhoods with different levels of income.  

An important application of remote sensing data was also extensively used for disaster 

monitoring and analysis (Kerle et al., 2003; Tralli et al., 2005). The study area, New Orleans was 

inundated on August 29, 2005 by Hurricane Katrina. Many residential neighborhoods were 

flooded. In this experiment, four neighborhoods (River Ridge, Metairie, Hollygrove, and Algiers) 

with distinct economic/environmental statuses were selected (Figure 6.11). An IKONOS image 



130 
 

that was taken on September 2, 2005 was used to discriminate these four residential 

neighborhoods. Textural indices (fractal dimension, lacunarity and Moran’s I) were used to 

describe the textural images (Figure 6.12-6.15). Each neighborhood image covers one or more 

census blockgroups. The income and hurricane impact status of the four neighborhoods are listed 

in Table 6.3. Median income data was derived by tabulating 2000 census blockgroups.  

 

Figure 6.11 Distribution of selected urban residential neighborhoods (background polygons are 
census blockgroups). 
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Figure 6.12 The neighborhood of Algiers in Orleans Parish, Louisiana. Image is displayed using 
the IKONOS panchromatic band (Sep. 2, 2005). Size: 772x542 pixels. 

 

 

Figure 6.13 The neighborhood of Hollygrove in Orleans Parish, Louisiana. Image is displayed 
using the IKONOS panchromatic band (Sep. 2, 2005). Size: 602x542 pixels. 
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Figure 6.14 The neighborhood of River Ridge in Jefferson Parish, Louisiana. Image is displayed 
using the IKONOS panchromatic band (Sep. 2, 2005). Size: 772x542 pixels. 

 

 

Figure 6.15 Metairie neighborhood in Jefferson Parish, Louisiana. Image is displayed using the 
IKONOS panchromatic band (Sep. 2, 2005). Size: 602x542 pixels. 
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Table 6.3 Income and hurricane impact status of four residential neighborhoods 

Neighborhood Median Income ($, year 2000) Hurricane impacts Subset size (m) 

River Ridge High: 79,347 Not flooded 772x542 

Metairie High: 88,604 Flooded 602x542 

Hollygrove Low: 17,026 Severely Flooded 602x542 

Algiers Low: 25,391 Not Flooded 772x542 

Fractal dimension, lacunarity, and spatial autocorrelation texture layers were derived using 

the panchromatic band, under a 65x65 pixels (meters) window, the most appropriate window size 

determined in Chapter 5. Pixels located near the edge of each subset were processed using a 

mirror extension method (Myint et al., 2006). Spectral information from the green, red, and near-

infrared components of the IKONOS multispectral bands were used, together with three 

downsampled textural bands, for neighborhood classification. Simple mean value is used in the 

downsampling process from 1 meter to 4 meter resolution. From the stacked spectral-textural 

images, a random sample of 4,500 pixels was used for training and another random sample of 

4,612 pixels was used for accuracy assessment. Training data and assessment data did not 

overlap each other. For GBC, NNC, and GASVM, three runs were performed to select the best 

parameters for classification. 

6.4.1 Descriptive Statistics of Different Urban Residential Neighborhoods 

The descriptive statistics for the four selected residential neighborhoods are listed in Table 

6.4. It can be seen that all neighborhoods have a wide range of spectral values and overlapped 

with each other, hence it is not easy to separate them by using only spectral information. Adding 

additional textural variables would improve the results. Flood impacts are obvious in band 4, as 

water absorbs more near-infrared energy and reduce mean DN values of flooded neighborhoods. 
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Table 6.4 Descriptive statistics regarding urban residential neighborhoods with different 
economic/environmental status 

Band Neighborhood Min Max Mean SD CV 

Band4 River Ridge (HI) 217 973 494 119 0.24 

 Algiers (LI) 158 996 399 118 0.30 

 Metairie (HI, F) 120 958 317 100 0.32 

 Hollygrove (LI, F) 107 602 220 81 0.37 

Band3 River Ridge (HI) 205 674 272 52 0.19 

 Algiers (LI) 195 1040 322 80 0.25 

 Metairie (HI, F) 180 1022 228 49 0.21 

 Hollygrove (LI, F) 170 537 233 48 0.21 

Band2 River Ridge (HI) 349 699 158 41 0.26 

 Algiers (LI) 340 1124 431 70 0.16 

 Metairie (HI, F) 322 1102 486 44 0.09 

 Hollygrove (LI, F) 311 664 696 38 0.05 

HI: high income; LI: low income, F: flooded    

6.4.2 Classifying Residential Neighborhoods with Different Methods 

Classification results are listed in Table 6.5. A large increase in accuracy was resulted using 

the integrated approach, from 62.7% of per-pixel MLC to 70.8%, 76.9%, 75.6% of texture 

vector-aided approach with GBC, NNC, and GASVM respectively (Figure 6.16). These 

improvements are significant based Kappa statistic z values: 8.1 for TV-GBC to S-MLC, 14.7 for 

TV-NNC to S-MLC, and 13.4 for TV-GASVM to S-MLC); all of them exceeded the 0.05 

significance level (z=1.96). 
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Table 6.5 Overall and Kappa accuracies of different classification approaches 

* S denotes spectral-based approach without textural bands; TV denotes texture vector-aided 
approach with both spectral and textural bands. 
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Figure 6.16 Overall accuracies and kappa accuracies of different classification approaches.  

6.4.3 Detailed Analysis with Confusion Matrices 

The confusion matrices are listed in Table 6.6-6.9. Compared to the traditional per-pixel 

MLC approach, with few exceptions, both user’s and producer’s accuracies were increased with 

texture vector-aided classification and all three artificial intelligence classifiers. An improvement 

with GASVM over GBC can also be found in most neighborhoods, but with some exceptions. In 

general, the errors for River Ridge neighborhood to be misclassified into the Hollygrove 

neighborhood and vice versa were lowest, because these two neighborhoods were dramatically 

different from each other in terms of their economic/environmental statuses. 

Accuracy S*-MLC TV*-GBC TV-NNC TV-GASVM 

Overall 62.66 70.75 76.86         75.58 

Kappa 50.31 60.81 68.9         67.24 
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Table 6.6 Confusion matrix of neighborhood classification by using spectral-based maximum 
likelihood classification 

C* 

R* 

River Ridge 

(HI) 

Algiers 

(LI) 

Metairie 

(HI, F) 

Hollygrove 

(LI, F) 

Producer's 

(%) 

River Ridge 897 148 218 47 68.47 

Algiers 255 631 166 212 49.92 

Metairie 99 70 562 309 54.04 

Hollygrove 13 74 111 800 80.16 

User’s(%) 70.97 68.36 53.17 58.48 62.66 

   (R*: Reference data, C*: Classified results) 
 

Table 6.7 Confusion matrix of neighborhood classification by using texture vector- aided 
classification with the Genetic Bayesian classifier 

C* 

R* 

River Ridge 

(HI) 

Algiers 

(LI) 

Metairie 

(HI, F) 

Hollygrove 

(LI, F) 

Producer's 

(%) 

River Ridge 927 201 171 11 70.76 

Algiers 147 920 119 78 72.78 

Metairie 101 134 724 81 69.62 

Hollygrove 3 168 135 692 69.34 

User’s(%) 78.69 64.65 63.01 80.28 70.75 

  (R*: Reference data, C*: Classified results) 
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Table 6.8 Confusion matrix of neighborhood classification by using texture vector- aided 
classification with neural network classifier 

C* 

R* 

River Ridge 

(HI) 

Algiers 

(LI) 

Metairie 

(HI, F) 

Hollygrove 

(LI, F) 

Producer's 

(%) 

River Ridge 1056 191 55 8 80.61 

Algiers 163 1009 22 70 79.83 

Metairie 93 154 712 81 68.46 

Hollygrove 4 134 92 768 76.95 

User’s(%) 80.24 67.81 80.82 82.85 76.86 

  (R*: Reference data, C*: Classified results) 

 

Table 6.9 Confusion matrix of neighborhood classification by using texture vector- aided 
classification with support vector machines classifier 

C* 

R* 

River Ridge 

(HI) 

Algiers 

(LI) 

Metairie 

(HI, F) 

Hollygrove 

(LI, F) 

Producer's 

(%) 

River Ridge 1036 192 69 13 79.08 

Algiers 178 942 54 90 74.53 

Metairie 109 120 728 83 70.00 

Hollygrove 3 111 104 780 78.16 

User’s(%) 78.13 69.01 76.23 80.75 75.59 

(R*: Reference data, C*: Classified results) 
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Neighborhoods that have the same economic statuses can be merged so binary classification 

accuracy (high/low income) can be derived from the new confusion matrices. Similarly, a binary 

classification based on Hurricane Katrina impact statuses (flooded/non-flooded) can be also 

derived. The overall accuracies are listed in Table 6.10. For all classification methods, 

flooded/non-flooded classification scheme has a better accuracy than high/low income, implying 

that Hurricane Katrina impact status can be easier distinguished than economic status. 

Table 6.10 Overall and Kappa accuracies of different classification approaches. 

 

6.4.4 Limitations of This Example 

In fact, using census variables such as income can better differentiate these four different 

neighborhoods. However, the downside is that current census data is on a 10-year basis. Remote 

sensing data provide much quicker revisit to the same area, thus provide the capability of 

tracking detailed neighborhood changes. From this point of view, associating texture patterns 

with the socioeconomic statuses of residential neighborhoods could be promising. 

As observed in the above example, flooding statuses complicated the social-economic status 

discrimination. In contrast to Hurricane Katrina impact, which is only special to this research 

area and flooding status can usually be easily detected, socioeconomic status is more generic to a 

wide range of area. As demonstrated in this example, texture analysis can be well-suited to 

identify the relative social-economic status; however, the achieved accuracy is still at a low level 

(<85%), in contrast to 93% accuracy in a research with 1-foot aerial photograph by Zhou (2006). 

Binary scheme S-MLC TV-GBC TV-NNC TV-GASVM 

High/low income   75.7   82.0   84.5   83.8 

Flooded/non-flooded   80.1   83.2   88.4   87.7 
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Future research could use even higher resolution remote sensor imagery to do more detailed 

analysis, such that image texture patterns of residential neighborhoods can be quantitatively 

socialized. 

6.5 Comparison among GBC, NNC, and GASVM: Sampling Issues 

The improvement of using GAs to optimize prior parameters of MLC is due to two 

adjustments. The first one is to adjusting prior probabilities to fit class proportions of the study 

area, as was done in Chapter 5 with an urban IKONOS subset that has unbalanced land use 

proportions. Another adjustment is to further adjust class boundary through changing prior 

probabilities even with balanced class proportions, as demonstrated in this chapter. Experiments 

showed that NNC and GASVM performed better than GBC for the dataset with balanced class 

proportions (this chapter) but there was no significant difference for the dataset with unbalanced 

proportions (Chapter 5). As class boundary candidates are bounded by the rigorous discriminant 

function, GBC is unable to search every possible class boundary like NNC and GASVM. By 

searching a wide range of boundaries, NNC and GASVM could lead to better accuracies as 

shown in this chapter, but require more computation cost and human-computer interaction. 

Regarding sampling methods for remote sensing classifications, a common practice is to 

arbitrarily designate the training area with known LULC classes instead of randomly sampling 

some points and then judging classes. To achieve the best performance when using GBC, NNC, 

or GASVM, training samples should be representative in two aspects: the statistical distribution 

for each class and class proportions. For traditional MLC, only the covariance matrices are 

derived from the training data. Thus only the statistical distribution aspect is concerned. For 

GBC, NNC, and GASVM methods, not only is the statistical distribution for each class 

important, but also the class proportion, because the training performance measures such as 
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accuracy or sum of square errors are all tied to class proportions (as accuracy for each class is 

different). Another interpretation, MLC has a fixed class boundary and only takes statistical 

distribution into consideration; thus, it only requires that the training sample is statistically 

representative. GBC, NNC, and GASVM all employ training processes to better fit the training 

data and then deploy the best-fit model (training data) into the entire image, thus requiring the 

training data to be representative in terms of both statistics and class proportions. A recent 

research (Huang et al., 2002) reported that equal sample rate was a better sampling method than 

equal sample size for both NNC and SVM; which corresponds to the requirement of both class 

proportion and statistical distribution.  

6.6 Conclusions 

In this research, the performance of integrating a texture vector (fractal dimension, 

lacunarity, Moran’s I) with advanced artificial intelligence classifiers (genetic Bayesian classifier 

(GBC), neural network classifier (NNC), and genetic algorithm – support vector machines (GA-

SVM)) for classification was investigated using two experiments. The first experiment was the 

classification of an IKONOS image mosaic containing five LULC classes: commercial, 

industrial/commercial complex, residential, forest, and flooded residential area (due to Hurricane 

Katrina). The second experiment was to discriminate four different urban residential 

neighborhoods with different economic/environmental statuses: high/low income, flooded/non-

flooded following the passage of Hurricane Katrina.  

In the first experiment, textural measurements were extracted from the principal component 

band (following chapter 4) of the image mosaic. Three textural bands were stacked with three 

original multispectral bands. Training stages were then carried out with ten different random 

sample datasets. Results showed that the integration of both texture vector methods and artificial 
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intelligence classifiers significantly improved overall classification accuracy by 5-10%. With per 

pixel MLC as a reference, the texture vector-aided approach with GBC can increase accuracy to 

85.0% with a very low computational cost, while the texture vector-aided approach with 

GASVM and NNC provide more accurate classification results (90.1% and 89.5% respectively) 

but sacrifice computational efficiency greatly. In the second experiment that tested the ability to 

distinguish four urban residential neighborhoods, textural bands were derived from the 

panchromatic band (following Chapter 5) and downsampled to be compatible with the resolution 

of multispectral bands (green, red, and near-infrared). Results show that with the integration of 

texture vector and advanced classifiers, residential neighborhoods with distinct 

economic/environmental status were better discriminated: 8-14% increase compared to the 

62.6% with per-pixel MLC. The non-flooded high-income residential neighborhood and the 

flooded low-income residential neighborhoods were better classified than the rest. 

NNC and GASVM yielded better accuracies than GBC in both experiments. As the location 

of the decision boundary is bounded by the normal curves, GBC is not able to search for other 

boundaries such as NNC and GASVM. By searching a wide range of boundaries, NNC and 

GASVM could lead to better accuracies, but with increased computation cost and human-

computer interaction. 
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Chapter 7   
Summary 

High-resolution satellite imagery brings urban remote sensing to a new era by providing 

greatly improved ground feature interpretability. Urban land-use/land-cover (LULC) 

classification is facing a great challenge; on one hand to take advantage of the improved ground 

feature interpretability, and on the other hand to overcome the increased in-class heterogeneity 

and among-class overlap. This dissertation investigated two major approaches in recent literature, 

texture analysis and artificial intelligence classifiers, and demonstrated a promising avenue of 

integrating these two directions together to accomplish the goal of classifying urban LULC from 

high-resolution IKONOS imagery more efficiently and accurately. 

Specifically, the research objectives include: (1) to develop more efficient algorithms of 

calculating local fractal dimension; (2) to evaluate and determinate the best lacunarity estimator; 

(3) to determine the effects of window size for local fractal dimension, lacunarity, and Moran’s I, 

using IKONOS imagery; (4) to develop a genetic Bayesian classifier (GBC) to improve the 

classification performance of the traditional maximum likelihood classifier (MLC) by optimizing 

the prior probabilities; (5) to determine the effectiveness of integrating texture analysis and the 

proposed GBC in classifying heterogeneous urban area and identifying different residential 

neighborhoods with different economic/environmental statuses. The underlying hypothesis of 

this dissertation is: integrating the texture vector-aided approach with artificial intelligence 

classifiers can improve urban LULC accuracy. 

7.1 Summary of Findings 

(1) For Objective 1--to resolve the pixel coverage problem of local fractal triangular prism 

implementation--the divisor-step method was developed. The new method guarantees 100% 

effective coverage ratio on the local square window. It was compared with the arithmetic-step 



143 
 

and two variants of the geometric-step methods, using 4,000 computer simulated fractal surfaces 

and IKONOS images. The proposed divisor-step method was found to yield the lowest overall 

RMSE and was most accurate for highly complex surfaces (e.g. fractal dimensions of 2.7 and 

2.9). Hence, the method is more suitable for complex urban satellite image characterization.  

(2) On the research of lacunarity estimator, a new method based on the gliding-box 

algorithm and the fractal triangular prism method was developed. The new method was 

compared with two existing methods in IKONOS image classification, including the 

probabilistic box counting method and the differential box counting method. The new method 

yielded better classification accuracies and was more efficient computationally.  

(3) On the issue of window size effects on texture-aided classification approach, the results 

suggested that fractal dimension aided approach was stable across different window sizes, 

whereas lacunarity, Moran’s I, and the composite texture vector-aided approaches exhibited an 

accuracy increasing phase followed by a stable stage and a slightly decreasing phase thereafter. 

Based on the findings, the following windows for 4-m multispectral bands were recommended: 

17x17 to 27x27 pixels for fractal dimension, 29x29 to 41x41 pixels for lacunarity, 33x33 to 

41x41 pixels for Moran’s I, and 27x27 to 37x37 pixels for the texture vector-aided approach. 

Window size effects on classification accuracy were found closely related to the land use object 

size. Other factors affecting accuracy can include algorithm effects and edge effects.  

On the performance of texture-aided classification, the results showed that lacunarity was 3-

16% better than Moran’s I and fractal dimension. The texture vector-aided approach was 8-18% 

or 16-19% better than spectral-based approach, or 2-16% better than using individual textural 

index, with the same MLC. 
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(4) On the research of improving the traditional MLC method, an optimization approach 

with genetic algorithm was developed. The GBC significantly improved the overall accuracy, a 

10% increase over the traditional MLC method, by using the spectral-based approach.  

(5) On the performance of integrating texture analysis techniques with artificial intelligence 

classifiers, the proposed integrated approach greatly improved classification accuracy (17-21% 

for an urban IKONOS subset and 5-10% for an IKONOS image mosaic), compared with the 

baseline per-pixel MLC approach. The improvement was statistically significant and thus 

validated the hypothesis of the dissertation that this integrated approach can improve 

classification accuracy. In terms of classification accuracy, the GBC could achieve similar 

accuracy as neural network classifier (NNC) for a natural IKONOS subset with unequal land use 

proportion, but it was less accurate than the NNC and the genetic algorithm-support vector 

machines (GASVM) for an image mosaic with equal land use proportion. However, the GBC 

outperformed the other two artificial intelligence classifier dramatically in terms of 

computational cost.  

The performance of using the integrated approach to discriminate urban residential 

neighborhoods with different economic statuses and impacts from Hurricane Katrina was 

evaluated using four neighborhoods extracted from post-Katrina IKONOS imagery in New 

Orleans, Compared with the 62.6% overall accuracy with the per-pixel MLC, the integration of a 

texture vector and artificial intelligence classifiers led to a 8-14% increase in accuracy. 

7.2 Future Research 

In general, the research is based on different subsets of one image. To generalize the 

findings, more study images will need to be experimented in future research.  
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Specifically, for local fractal dimension algorithms, this research found that the triangular 

prism method tends to have a slight overestimation for highly complex surfaces and a slight 

underestimation for medium or low surfaces. This is in agreement with previous research (Lam 

et al., 2002; Zhou and Lam, 2005). Further improvement is needed to overcome this problem.  

For lacunarity algorithms, through both empirical IKONOS data and computer simulated 

fractals, this study found that for the same series of images, different algorithms (PBC, DBC, TP) 

disagree on the rank of “gappiness”. Pendleton et al. (2005) reported a similar problem for the 

binary lacunarity estimators. Further investigation should be made to make a best 

recommendation for both binary and gray-scale estimators.  

On the effects of window size on texture-aided approach, this dissertation only focused on 

IKONOS imagery at the 4-m multispectral, plus limited experiments on the 1-m panchromatic 

band. With only a few previous studies on the window size effects, further investigation on how 

window size effects can be related with a wide range of spatial resolutions (from high resolution 

at meter level all the way to low resolution at kilometers level) is necessary. In addition, the 

association between window size effects and land use object size can be further explored.  

There is an increasing interest in the object-based approach in remote sensing community. 

The texture indices used in this research (fractal dimension, lacunarity, spatial autocorrelation) 

have a potential to be integrated into the object-based approach (as a parameter in both 

segmentation and classification stages), and artificial intelligence classifiers can also be applied 

to the classification stage of the object-based approach. More efforts need to be made toward the 

ultimate goal of LULC classification and change detection research, which is to improve 

accuracy, enable generalization, and reduce human supervision and computational cost.  
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Appendix:  

A Worked Remote Sensing Example of the Genetic Bayesian 
Classifier 

G(0)                    G(1) 
C1. [0.1|0.2|0.5] (0.85)        [0.1|0.2|0.5] (0.85) 
C2. [0.3|0.5|0.6] (0.78)        [0.1|0.5|0.5] (0.87) 
C3. [0.2|0.8|0.3] (0.77) --      [0.3|0.2|0.6] (0.80) 
C4. [0.9|0.1|0.2] (0.76)        [0.9|0.1|0.6] (0.78) 
C5. [0.8|0.1|0.6] (0.72)        [0.8|0.1|0.2] (0.86) 
C6. [0.6|0.3|0.8] (0.68)        [0.8|0.3|0.8] (0.76) 
C7. [0.5|0.3|0.6] (0.67) --      [0.6|0.1|0.6] (0.69) 
C8. [0.6|0.6|0.8] (0.65)        [0.9|0.3|0.2] (0.71) 

 
Figure A1. Demonstration of genetic evolution 

As shown in the above figure, suppose there are three land use classes: urban, forest, and 

water. We can arbitrarily set the initial population G(0) to have 8 chromosomes; each one is 

coded with arbitrary pseudo prior probability P’(c) for each class, followed by its fitness value 

(overall classification accuracy of the training sets) in parentheses. The corresponding solution of 

prior probabilities is the normalized version of the chromosome by its genes’ summation, 

according to equation (8). We can set the elite member count to 1 and crossover rate to 0.8. The 

chromosomes are sorted according to their fitness values. 

Chromosome C1 is passed to next generation G(1) due to elitism (highest accuracy, 0.85). 

According to the crossover rate, given a total of 8 populations, there should be three pairs 

performing crossover and 1 chromosome performing mutation. The three pairs of parent 

chromosomes and the mutating chromosome are randomly selected from G(0). The chance of a 

chromosome being selected is proportional to its fitness value. Suppose C1&C2, C4&C5, 

C5&C6 are selected to perform crossover, and C8 is selected to perform mutation. C3 and C7 are 

not selected to perform reproduction. Thus the next generation G(1) is generated.  

The genetic operation continues until it reaches an optimal solution, say [0.5 0.7 0.8] (0.91). 

This one will be normalized to [0.25 0.35 0.4], which is the optimized prior probabilities. These 

probabilities are then entered into the classification function (equation 6) to classify the entire 

image. 
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