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Hamelin Pool, the eastern embayment in Western Australia’s Shark Bay, hosts the
world’s largest assemblage of actively growing marine stromatolites. In 1996, UNESCO
named Shark Bay a World Heritage site. Consequently, Hamelin Pool is strictly protected
and only limited research has been approved in the area. In this thesis, I have investigated
some of the stable isotopic and geochemical signatures of Hamelin Pool basinal waters
and sediments collected during 2013 and 2014. Prior investigations show the pool is
hypersaline, with salinity values in the southern waters measuring nearly double that of
sea water. Hamelin Pool’s salinity distribution is partially mixed, with increasing values
from north to south. Similar to the salinity distribution, Hamelin Pool’s average 5'*O
value measured enriched at +3.95%o, with maximum value of +5.27%o at the southern end
of and minimum value of +3.16%o at the northern end. The mean 8°H values measured
+22.9%0 with maxima at +26.73%o0 and minima of +14.32%o, again increasing from north
to south. Sill growth and restriction directly impacts the water chemistry. Modeling
results show that nearly 50% of the basinal water evaporated each year for ~700 yrs to
reach its current 8'*0 and 8°H values. Modeling suggests impacts from Sea Level Rise
within a 70yr time period. The Sr, Mg, Ca and Cl ratios indicate that Hamelin Pool
basinal waters are evolved seawater. Heightened Sr/Ca ratios in basinal waters suggest
calcite precipitation reactions occur in Shark Bay prior to reaching Hamelin Pool. The

distribution of St/Ca ratios mirror the salinity and stable isotopic values, which implies a



high residence time of water in the southern end of the pool. Sediment minerology is
predominantly (96%) aragonite with residual amounts of High-Mg Calcite. To
complement the water samples, basinal sediments were also analyzed for their inorganic
8'°C and §'*0 values. The 8"°C values ranged +6.18 to +2.83%o, and the §'°0 values
ranged +4.07 to +2.17%o. The values increase from north to south, further supporting
high residence times in the southern end of Hamelin Pool. Finally, organic matter present
in the sediments was also analyzed for its 8'°N, 5'°C values and C:N ratios. The organic
8'°N mean value measured +0.77%o with maxima at +9.06%o and minima of -4.28%o. The
organic 8'°C mean value measured -15.38%o with maxima at -8.95 and minima of -
21.58%o. The atomic C:N ratios of the organic matter ranged from a 1.5:0.35 to 0.43:0.02
with an average of 10.1. The organic matter appeared to be sourced from a mixture of
seagrass & microbial mat decay, with an enriched source of 13C. This enrichment can be
explained by high residence times of the restricted water body. The geochemical
properties measured create a baseline for Hamelin Pool basinal water chemistry to be
evaluated over time. The predictions made in this thesis may help in the understanding of
the magnitude and pace of chemical changes in the modern environment, which may

stress the growth of marine stromatolites.
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Chapter 1: Background

1.1 Overview
Shark Bay and Hamelin Pool, situated approximately 800km North of Perth (Figure 1-1),

have been of interest since the area was described in the mid 1950’s by West Australian
Petroleum Pty Ltd (Cockbain, 1976). These marine environments are home to a unique
range of wild endangered marine species like the Dugong dugon (Manatee) and Rhincond
typus (Whale Shark) and within Hamelin Pool living fossils known as, stromatolites. The
following sections will provide a background to Hamelin Pool, the geological and
geochemical research that has already been completed, as well as the motivations for this
research.

1.2 UNESCO World Heritage Site

Shark Bay, located on the west coast of Western Australia, describes water bounded by a
‘W’-shaped double peninsula (Figure 1-1) and is home to over 300 marine species. The
lower eastern side of Shark Bay, as a result of partial isolation imposed by the formation
of the Faure Sill (FS) has formed a hyper saline embayment, Hamelin Pool. Within
Hamelin Pool (HP) is a vast accumulation of modern living stromatolites. The unique
wilderness of Shark Bay has been deemed a World Heritage Site and is heavily protected
by both national and international agencies (UNESCO, 2014). Although several
organizations such as University of Western Australia (UWA), Geological Survey of
Western Australia (GSWA), Baas Becking Geobiological Group (BBGG), Florida
International University (FIU), and the University of Miami (RSMAS) have studied
Shark Bay, Hamelin Pool is a heavily protected area, many key questions about this

environment remain unanswered.
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1.3 Geology of Shark Bay

Composed of Pleistocene and Holocene Dune deposits accumulated over Tertiary
anticlinal limestone ridges, Shark Bay (SB) is shallow marine embayment of about 5,000
square miles (Playford, 1990). This shallow area of sea in the southern Carnarvon Basin
is bounded to the west by Dirk Hartog, Dorre and Bernier Islands, and Edel land
Peninsula. Shark Bay is further divided into two arms by the Peron Peninsula (Figure
1-2). The gross modern morphology is controlled by underlying folds. Facies exposed in
Shark Bay consist of Cretaceous, Tertiary, Pleistocene and Holocene units (Playford,

1990).

The late Cretaceous Toolonga Calcilutite is the oldest genetic unit found along the
Eastern margin of SB, and is composed of white chalk, lime mudstone with calcrete
exposure surface, and contains ample chert nodules. Over lying the Toolonga Calcilutite

are Tertiary Giralia Calcarenites and Lamont Sandstones (Playford, 1990).

To the west of the Toolonga Calcilutite is the Pleistocene Peron Sandstone which is
exposed primarily at the Peron Peninsula (Figure 1-2). This is a unit of red eolian
sandstone that is overlain and interlocked with Tamala Limestone. The Tamala formation
was accumulated as large dunes on the western shoreline of the area during glacial
periods of the Pleistocene, when the area was subject to extremely strong southerly
winds. The linear unit along the Zuytdorp Cliffs is described as a Quaternary fault
(Playford, 1990). The Dampier Limestone is the oldest Pleistocene marine deposit in SB;

it consists of shelly limestone laid down under waters of normal marine salinity. The



Carbla Oolite member is found associated within the Dampier Limestone on the shores
of Hamelin Pool. The Bibra Limestone consists largely of beach-ridge deposits with some
tidal-flat and coralline deposits and contains open marine fauna. This unit is found around
shores of Hamelin Pool, suggesting that at the time (~120 kA), Hamelin Pool was not
restricted. Evaporite deposits, formed by trapped and evaporated sea water in Solar Ponds

also appear throughout these Pleistocene units (Playford, 1990).

Holocene sedimentation is composed primarily of Hamelin Coquina, a beach-ridge
deposit laid down on the shores of hypersaline waters of Hamelin Pool and Lharidon
Bight, with calcrete and beach deposit inclusions. Hamelin Coquina is composed almost
entirely of the small bivalve Fragum erugatum, which thrives under hypersaline
conditions. Finally, there are the Hamelin Pool stromatolites which are pervasive along
the coastline’s intertidal and shallow subtidal zones, and appear as both fossil and

actively growing forms (Playford, 1990)



- ot
i G""Oowa
[#]
BERMIER ISLAND CARNARVON e
FI.
B ﬁ'. a glin_.n —
2
h ‘;_n
DORAE ISLAND %

T
=)

5,

s

2

SHARK BAY “
J"'e;%
&
- \o\ DIAK HARTOG
“1 ISLAND
\ﬁgoﬂﬁMEL RIVER
MONKEY MiA
1 VARINGA
L o5 s
3 T®
HAMELIN
POOL u CARBLA

BOOLAGOORDA (HAMELIN POOL)

30 km

Paron Sandstonge a
Ungdii . Plsstncens

Lamnond I!-;iwlsmue TERTIARY

EI Gk Cabcarerite el i
Teolonga Calcilutile and _ 3 =
Undil. Tertiay - Cretaceous | CRETACEOUS

Amis ol aniscling or probable
andichng § subsuilace)

—T— PGS faull
— Sopled rond

Figure 1-2 From Playford, 1990. A generalization of the dominate facies observed at Shark Bay



1.4 Stromatolites

Stromatolites are macroscopically layered, lithified sedimentary structures formed by the
interaction of microbes and sediment (Awramik et al., 1976), Figure 1-3. Stromatolites
are found throughout ~85% of the geologic record, and as such, the presence of modern
stromatolites in Hamelin Pool suggests that this area may be an analog for ancient
environments (Awramik, 1992). Hamelin Pool is home to the most diverse and abundant
examples of living marine stromatolites the world (Jahnert and Collins, 2012; Suosaari et
al., 2016a). In Hamelin Pool, a variety of environmental pressures, including
hypersalinity and wide ranges of temperature and water level, lower competition and
predation allowing the stromatolites to thrive (Suosaari et al., 2016b). Stromatolites
discovered on the margins of Exuma Sound, Bahamas in the 1980°s were the first
example of stromatolites growing in open marine conditions (Dravis, 1983); (Dill et al.,
1986). Stromatolite growth in the Exuma Cays is associated with physical stress due to
burial by oolitic sand, which also minimizes predation (Dill et al., 1986) and competition
(Steneck et al., 1998). The differing environments of Hamelin Pool and Bahamas, which
both produce similar structures, are an indication that a variety of environmental factors
can be associated with microbialite growth. However, both examples require a
preexisting substrate; exposed bedrock or submarine hardground to provide a hard
substrate required for colonization (Jahnert and Collins, 2013). The variety of microbial
types and morphologies found in Hamelin Pool has led to several investigations by Logan
et al (1974), Playford (1990), Reid et al (2003), Janhert &Collins (2011) and Suosaari et
al 2016a,b. Many morphologies of stromatolites, including smooth, pustular, colloform,
cerebroid, pavement microbial types, have been identified and mapped across the pool

using a variety of techniques (i.e. GIS, aerial photo mapping, submarine video transects,



multi-beam survey’s as well as traditional petrology and microscopic techniques) (Jahnert
and Collins, 2012; Suosaari et al., 2016a). The existence of morphologically complex
structures with characteristic microstructures within Hamelin Pool (Hagan, 2015) and
associated with distinct geographic areas within Hamelin Pool (Suosaari et al., 2016a),
points to the possibility of temporal and spatial variation in chemical and physical

environmental factors (Awramik, 1992). Some of these factors are directly related to, or

can be highly influenced by water chemistry variability.

CENCID ]
NESQZON

PALEOZOIG
FCAMBRIAN
s FVENDIAN"
UPFER
= RIFHEAN
g NIOOLE | FREEERLEES
| FiPHER
|

LOWER
RIPHEAN

22

TIME IV BILLIONS OF YEARS
ra
=]

BRCHE AN

m rock record

4.6 Qriginet
Earth

Figure 1-3 Taken from Stromatolites (Clary and Wandersee, 2013) — An example of a lithified stromatolite,
found in the Pilbara Craton in Australia, which has been dated to be between 3.6 billion to 3.2 billion years
old.



1.5 Hamelin Pool Climate

Hamelin Pool is subtropical environment with an annual temperature maximum of ~29°C

and minimum of 15°C. The annual rainfall is about ~ 210mm and average relative

humidity is about 75% as reported by the Australian Bureau of Meteorology (ABOM).

1.6 Hamelin Pool Hydrologic Environment
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Hamelin Pool (volume =7.05km’- area=1400km?), the southeastern portion of Shark Bay
(Figure 1-4), is partially isolated by the Faure Sill (FS). In the 1970’s, Logan et al. (1970)
found that runoff influx is negligible and that the combined physical barriers of banks and
sills, as well as, an evaporation rate that exceeds precipitation have resulted in a salinity
gradient. Shark Bay was subsequently divided based on its salinity, into oceanic (36-40),

metahaline (40-56) and hypersaline (56+) (Logan and Cebulski, 1970). Hamelin Pool

waters are partially mixed vertically creating isohalines, or lines of equal salinity, which



can be drawn to show increasing salinity from the north to south. (Logan and Cebulski,

1970).

From 1980 to 1987 the Baas Becking Geobiological Laboratory launched a research
initiative to better understand the processes by which the formation of particular types of
oil accumulations and metal deposits occur. While none of these accumulations or
deposits occur in Hamelin Pool, the processes by which they form are active (i.e. the
accumulation of organic matter in sediments) and can be studied. This investigation led to
the measuring of meteoric and groundwater chemistry on the coast of Hamelin Pool
along selected transects. Burne et al., 1990 (The Baas Becking report) was unable to
produce any clear differentiation of either continental or marine ground waters but was
able to use the Nilemah transect geochemical data to create 4 distinctive zones (Figure
1-5), all of which are characteristic of mixing and are most related to topography. The
first zone lies under the Holocene beach ridges, has a low salinity, and appears to have
little marine influence but rather evaporated continental water mixing with marine salt.
Zone II waters resemble marine water with stable isotopic values of 8'*0 and §°H close
to 0.00%o, the four samples measured suggested a continental brine and seawater mix.
Sulphate values of 20.5%o in Zone II also suggest marine origin. Zone III is beneath the
lithified carbonate crust at the intertidal area. Zone III stable isotopic values also appear
to be a mixing zone between evaporated marine brine and strongly evaporated continental
water. Zone IV contains the intertidal sediments with gypsum precipitates; the water

chemistry is also a mixing zone with values being midway between seawater and



continental water beneath the beach ridges. Mixing is so pervasive that the tidal flats

appeared to be homogenous, suggesting tidal mixing (Burne et al., 1990).

2

CHAINAGE (mptres]

o L] 200 Lo 400 504
EFS .

S
HE RIS2E

(=]

; l
-
=
-
E
' |N
o
|E|
H
2 e
o II bl o
- i o -
a H oy "
> |0 a ™ i =
W Z @ =
u - = [ -]
w E
2
= = .
ra ) 3‘
=] -
= ] [ L]
L s d
= =
a5 \l‘ = z ] 2
= z =
e ®
Bieck e,
swigce abane Patchy
lifkifization
{amEl

od [ 11— 111 + I

oA

+10 1 \
32 0 o | ,_,.--""'"‘r- - r-«"ﬁ‘,"
e e
g =20 &
w ] ]
-2 1
Mo b

Figure 1-5 Reprinted from Bass Becking report 1990, the chemically defines zones within the Nilemah transect.

10



11

1.7 Hamelin Pool Sedimentary Environment
Hamelin Pool is dominated by carbonate

sediments with a salinity gradient
controlling the distribution of facies. The
restrictions imposed on the biota by
increases in salinities create a distinctive
assemblage of organisms which that can
tolerate salinity ranges from 56-70 (Logan

and Cebulski, 1970).

An example of salinity restriction on fauna
can be seen from an examination of the

foraminiferal population within Hamelin

Figure 1-6 Top, an example of the shallow Hamelin
environment with bivalve dominated sedimentation.
Bottom, Penicillus algae roots attached to debris with

living benthic foraminifera. species: Miliolinella circularis var.

Pool which contains only three common

cribostoma, Peneroplis planatus, and Spirolina hamelini (Logan and Cebulski, 1970).
The molluscan population is also affected by salinity, limited to only small bivalves and
small gastropods. The small bivalve Fragum eragatum is present in vast numbers
dominating the sublittoral platform of Hamelin Pool and is the most typical sediment
found, both articulated and inarticulate (Figure 1-6). The halo-tolerant floral population
consists of cyanobacteria which produces both coherent (stromatolitic) and incoherent
(mats) layers throughout the area, most extensive at or near the coasts. The algal

population also includes green macro algae Penicillus sp., Acetabularia peniculus and A.
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calyculus which tend to grow in shallow waters and attach themselves to shells and rock
debris(Figure 1-6) (Logan et al., 1970).

1.8 Motivation

Although there have been some important studies on Hamelin Pool, there has previously
been an absence of information on the chemistry of the waters and sediments. This thesis
will provide a basis from which to evaluate this environment in its current, modern,
context to better understand how Hamelin Pool has evolved in the past and how it may
evolve in the future. The present study uses geochemical measurements to better
understand, the water budget, chemical equilibrium, and origin of sediment within the

water body.

(1) Water Budget

A water budget was constructed using a mass balance model that combines the stable
isotopic values (5°H & 8'®0) and salinity. Results from analyses of water collected within
Hamelin Pool basin, combined with previous data collected outside of Hamelin Pool,
were used to create a realistic water budget with major and minor sources of input and
output. This model was then used to make a predictive model that can be interpreted to

predict the evolution of Hamelin Pool water.

(i1)Chemical Equilibrium

Measurements of Ca, Sr, Mg, CI and alkalinity were used to calculate the Saturation State
(Q) of Hamelin Pool waters and hence determine which areas are more likely to

precipitate carbonate minerals.



(ii1)Sedimentary Origins

Descriptions by size fraction (Dunham Classification), mineralogy (XRD) and both
organic and inorganic stable isotopes (8'°C, 8"°N, 5'*0) values of sediments were used

interpret the sediment source and organic matter origin.

13



Chapter 2: Salinity, Stable Isotopes and Modeling of Hamelin
Pool Waters

2.1 Introduction to Salinity and Stable Isotopes
Salinity, measured as conductivity, is a fundamental property of water that can indicate

water type (fresh, brackish, marine). Meteoric waters have a low amount of dissolved
solids and consequently a salinity value close to 0 (conductivity close to 0 microsiemens
(1uS)). In contrast, marine waters have a higher salinity measuring approximately 35
(conductivity of about 55,000uS) (Kendall and McDonnell, 1998). Isotope geochemistry
analyzes various elements for the natural variation of the relative abundance of isotopes.
The ratios can fingerprint physical processes and give insight into environmental
conditions such as temperature, source tracking, nutrient cycling, and other applications
(Kendall and McDonnell, 1998). Water is composed of hydrogen and oxygen; both
elements contain more than one stable isotope. The stable isotopic composition of water
can provide information on water history and source. In this chapter I review the
measurements of salinity and stable isotopes in Hamelin Pool and discuss the relationship
between the two. In addition, a water budget for Hamelin Pool has been created with
salinity and isotopic (O and H) data. This model has been used to predict past and future

water balances within Hamelin Pool.

14
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Stable isotope geochemistry: Stable isotope geochemistry uses the ratio of rare to

common stable isotopes of a given element. The stable isotopic ratio of an element is
represented below as ‘R’.

For element ‘X’ with a rare isotope of ‘n” and common isotope of ‘m’:

n(rare)X
R=—— Eqt 2.1

m(common)X

Oxygen for example has a naturally occurring distribution of '°O at 99.76% and '*O at

0.201%. In this case R would be equal to '*0O divided by '°0 expressed as:

180

R=— Eqt 2.2
160

The ‘R’ ratio is then compared the ‘R’ of a reference standard with a known isotopic

composition.

Rsample

"X = <— - 1) * 1000 Eqt2.3
Rreference

The standard for oxygen in waters is Vienna Standard Mean Ocean Water (VSMOW)
which is about zero, in this example the isotopic value of oxygen in water would be

expressed as Eqt 2.4.

sample

5180 = — 1= 1000 Eqt2.4

vsSmow
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The resultant 8"X value, expressed as 8"X%o, is equal to the difference in the '*0/'°O of
the sample water ratio compared to that of the standard. The same is true for Hydrogen,
Carbon, and any other element being analyzed for its stable isotopic ratios. These values
are useful because chemical reactions and phase changes cause these values to shift; such

a process is called fractionation.

Isotope fractionation: Isotope fractionation describes the processes that affect the relative

abundance of isotopes. Mass independent fractionation occurs when proportions of

isotopes are separated regardless of their masses.

There are two main types of mass dependent fractionation; equilibrium, and kinetic.
Equilibrium fractionation occurs during chemical equilibrium. For example, within a
sealed glass of water there is an exchange of H,O between the liquid and vapor phase in
the headspace of the container. This fractionation is due to bond forces and vibrational
energy. At normal temperature (20°C) and pressure (1atm) (NTP) the bond force of the
heavier isotope is stronger than that of the bond force of the lighter isotope. This
reduction in vibrational energy results in the heavier isotopes staying in the liquid phase
as the lighter isotope enters the vapor phase. Therefore, the liquid tends to be more
enriched in '®0 than the vapor. Equilibrium fractionation rates are temperature
dependent, leading to '*0/'°O being widely applied as a paleoclimate proxy for
temperature. Kinetic fractionation is a manner by which isotopes are separated in a one
directional process. Biological utilization of carbon dioxide by photosynthesis is an

example of kinetic fractionation. Plants will utilize the CO; molecules with lighter
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masses of carbon and oxygen at a greater rate than the molecules with heavier masses.

This process gives plant matter more negative 8'°C values than the atmosphere.

The amount of change is measured by the fractionation factor (o) (equations Eqt2.5 and
Eqt2.6). This fractionation fraction is in turn related to the isotopic difference between
two compounds (€) which have experience isotopic exchange or been produced as a

result of a chemical reaction (equations 2.7 and 2.8)

o _ @ Eqt 2.5
M 1000+6B
1 Ra
o=—=u =— Eqt 2.6
o A-B R q

€ is used for small values to express the fractionation between two substances.
SABz(“A-B'I)*IOOO Eqt 2.7

& \g=(0ts_p-1)*1000 Eqt 2.8

2.2 Objectives
This portion of the thesis uses salinity and stable isotopic data to model water sources in

Hamelin Pool. During the 2014 field season, 134 water samples were collected (Figure
2-1) and measured for their salinity and stable isotopic O and H values. At each site,
when possible, both a top (air-water interface) and bottom (water-sediment interface)
sample were collected. The coordinates of each site can be found in the appendix Table

7-4.
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Figure 2-1 Each white circle represents a water sample collection site. Note that at site each site, when possible a top
(air-water interface) and bottom (water-sediment interface) sample were collected.
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2.3 Methods
Salinity: In the field salinity was determined using a handheld YSI Multiparameter cable

and probe meter. Salinity was recorded as conductivity, uS, and converted in to practical
salinity values. Later measurements were taken at the Stable Isotope Lab (SIL) using a
handheld Leica TS Refractometer. Salinity recorded on a refractive index, is directly

measured as practical salinity values.

= Stable Oxygen and Hydrogen Isotopes: The ratios

(R) of *H/'H and '®0/'°0 of the water samples were

measured with a Picarro Cavity Ring-Down

P
Lasar Mo et 0l Lazan |

}. 4 W W

" Spectrometer (CRDS). In the implementation of a
o Buid-upysf—— Ring-Down ——3

k CRDS analysis, a single-frequency laser diode
i} s enters a cavity that is defined by three mirrors

Shiutoff

anal

SCHoT o

Figure 2-2. Schematic of a Picarro CRDS Fi

; . igure 2-2).
analyzer and graph showing which (Figu )
portion of the process is the “ring-down”
measurement.

Photodetectors measure light exiting the cavity and produce a signal that is directly
proportional to the intensity of the light within the cavity. When the photodetector signal
reaches its threshold level the continuous wave (CW) laser shuts off. The light intensity
inside the cavity steadily leaks and falls to zero logarithmically. This decay, or ring-
down, is measured in real-time by the photodetector. The amount of time it takes for the
ring down to happen in an empty cavity, determined by the reflectivity of only the
mirrors, is the baseline for light absorption. When gas molecules are present, they also
absorb the laser light. This additional absorption changes the rate of the ring-down time

when compared to an empty cavity. Since gas-phase molecules (e.g., CO,, H,O, H,S,
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and NH3) have unique infrared absorption spectrums, each molecule creates its own
unique wavelength. The concentration of any molecular species can be determined by
measuring the height of a specific absorption peak. Characteristic ring-down times and
wavelengths are used to determine isotopic values as identical molecules with differing

masses produce differing wavelengths.

For the calibration of the instrument, 2l of four standard waters with a range of 8'°0 and
8”H values were each injected six times. The first three injections were discarded to
ensure that the system has been purged of the previous sample. These standards were
calibrated using Vienna Standard Mean Ocean Water scale (VSMOW), Greenland Ice
Sheet Precipitation (GISP), and Standard Light Antarctic Precipitation (SLAP). The
average standard deviations for all three injections used was <0.1%o for 8'*O values and
<0.5%o for 5°H values

2.4 Results

Salinity: The average salinity of all the 2014 Hamelin Pool waters was 57.9 with a range
ot 40.5 to 61.6. The lower values were measured at the North end of the pool, near the
Faure Sill (FS), while the highest values were found near the Southern portion of the
embayment, Figure 2-3. The pool is separated in geographical portions Northern, Central,
and Southern the average values are listed in Table 2-1. Data points collected at or north
of latitude -26.1 are considered the Northern portion of the pool, while data point collect
at or south of latitude -26.3 are considered the Southern portion of the pool. With central
or mid-section being all the data points in between the two latitudes. All data are listed in

the appendix table 7-5.
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Stable Oxygen and Hydrogen Isotopes: The mean 5'%0 and 8°H values are +3.95%o and

+22.9%o respectfully with maxima at +5.27 and +26.73%o and minima of +3.16 to
+14.32%o. Similar to the salinity results, there is a trend in increasing values, Figure 2-4,

from the north to the south (Table2-1). All data are listed in the appendix in Table 7-5.



Figure 2-3 Results from the total salinities recorded from the Hamelin Pool basinal waters. There is a sharp and
expected trend of increasing salinity from North to South.
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2.5 Discussion
The relationships between salinity and the delta values of water (8°H and §'*0) are

plotted in Figure 2-5. The 8'*0 and 8°H values of the water in Hamelin Pool are enriched
compared to Standard Mean Ocean Water (SMOW). The values plot below The Global
Meteoric Water Line (GMWL) (Figure 2-6), with a best fit line slope of 3.9 (Craig,
1961). This relationship is best explained by an evaporative basin. If Hamelin Pool was
evolved from meteoric water, the best fit line would intersect the GMWL at a 8130 value
at about -4.0%o and a 8”H value at about -22.0%o - the average rain fall values in the area
(GNIP) (Gat and Gonfiantini, 1981). Instead, the line intersects at a §'°O value of about
-1.0%o and a 5°H value of about +5.0%o, a value much more similar to marine water than
to rain water. The light blue dots plotted on Figure 2-6 represent rain water collected at
the Hamelin Pool station. These values also plot below the GMWL, suggesting recycled
marine waters are evaporating and precipitating back into the pool. The clustering
together of data points in a high narrow salinity interval (~55 to 60) and a narrow range

of positive delta values indicates that Hamelin Pool has few water sources.
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Figure 2-5. Top: salinity & 6°H covariation. Bottom salinity & §'*0 covariation. The
intercept with zero salinity gives the isotopic composition of the zero salinity end
member.
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Figure 2-6. In black are the 5'°0 & &?H values for the Hamelin Pool 2014 basinal water samples. In dark blue is
the Global Meteoric Water Line (GMWL). Dotted in black is the best fit line for Hamelin Pool Basinal Waters.
Dotted in green is a hypothetical fit based on the GMWL’s estimation of Indian Ocean precipitation. The intercept
with the GMWL generally indicates the isotopic composition of unevaporated freshwater water. The red solid
circle is the standard for ocean water VSMOW. The light blue circles are the two meteoric water samples
collected. The deviation in slope from GMWL shows an arid climate which will result in a deuterium excess.
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2.6 Relationship Between Salinity, and the 0"%0 and 5°H Values
Evaporation increases concentrations of the heavier isotopes of O and H, the maximum

8'80 and 8°H values that can be attained is a function of several external factors,
including the relative humidity of the atmosphere, the isotopic composition of water
vapor in the atmosphere and the type and amount of salts in the evaporating solution
(Gonfiantini, 1986). Salinity effects on the O and H isotopic composition arise as a result
of changes in the activity coefficient of water, as an electrolyte dissolves and solvation
shells form. A solvation shell describes a solvent surrounding a solute in solution, when
the solvent is water a solvation shell is called a hydration shell (or sphere). The
construction of hydration spheres, is dependent the activity coefficient of the electrolyte
and can vary from single to multiple shells per ion. These shells change the activity
coefficient of the water and have a direct impact on the delta values of the remaining
evaporated waterbody as solvation shells preferentially attract the lighter fractions of
water. Water activity (ay) of a waterbody can be expressed by equation 2.9 (Gonfiantini,
1986).
aw=D*M*+E*M+G Eqt 2.9

M, ion molarity in solution (overall salinity), can be rewritten as a fraction of initial
molarity over final molarity Mo, M=f changing equation 2.9 to equation 2.10.

ay = D*f2 +E’*F-1+G Eqt 2.10
This equation relates water activity (o) as function of the remaining water fraction and
saline molarity. ‘D’ diffusion coefficient, ‘E’ electromotive force and ‘G’ Gibbs free
energy are constants which can be obtained by the fitting of experimental values with

known water activity coefficients (Gonfiantini, 1986; Robin and Stokes, 1959). With the
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addition of external conditions such as humidity, temperature and calculated fractionation
factors (o), evaporating waters can be modeled by the fraction of remaining water
(activity of the water) to that of the amount of salinity present (ion activity). Equation
2.11 below is a condensed equation where A, and B are equal to the relationship of the
above factors including water activity ay,, these equations are defined and discussed at
length in Gonfiantini, 1986. With measured values of salinity, 8'*0 and §°H a model of

maximum delta values can be constructed and validated, Figure 2-7.

A A
5:(5 ——) pz 2 Eqt2.11
07 g f B q
Isotope a € 6-€ h d-a do c
Hydrogen 1.067 0.067 12.5 0.765 -68.18 7.03 1
Oxygen 1.009 0.009 14.2 0.765 -10.12 1.42 1

Table 2-2 Input conditions used to calculate A, B, aW and the § for Figure 2-7 and Figure 2-8. For a full description of
these variables and how they are used to calculate the relationships between activity and delta values of O and H see
Gonfiantini, 1986.
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Figure 2-7. Salinity and 5'%0 as a function of remaining sea water fraction during evaporation, highlighted are the
values of salinity and 5'%0 at 50% remaining water fraction which suggest the amount of evaporation imposed on
Hamelin Pool in one years’ time. These results are from the use of equation 3 where values for humidity, temperature,
3'%0 from Hamelin Pool were input into equations from Gonfiantini, 1986.
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Figure 2-7 shows modeled salinity and 8'°0 values of Shark Bay waters (values from
Price et al, 2012) evaporating under Hamelin Pool conditions. Price et al, 2012 simple
math models and pan evaporation performed by the WA, BOM estimate that in one
years’ time up to 50% of Hamelin Pool is removed through evaporation alone. When
modeling salinity in relation to the water fraction of the remaining water body, the model
resembles behavior that would be expected of any evaporating sea water. Starting at ~35,
as the water fraction evaporates, salinity increases (Figure 2-7 (green/right) axis). The
8'%0 values rise during the initial stages of a evaporation, but as a consequence of a
continuous decrease in water activity the solvation shells break down, causing §'*0 and
8”H values to become more negative as lighter water fractions are released in the later
stages of evaporation (Figure 2-7(pink/left) axis) (Gonfiantini, 1986). Drawn on Figure
2-7 1s dotted line through the 50% water fraction remaining; the estimated amount of
evaporation Hamelin Pool waters experience annually. At the 50% water fraction mark
the 8'%0 value is approximately +4.1%o and salinity close to 60; these values agree with

the measured data.
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Figure 2-8 The trending of '%0 and 8°H during evaporation under Hamelin Pool conditions, the reversal is a
result of changes in the activity of water during the final stages of evaporation. These are the results are the
output from equation 3 where humidity, temperature, 8'*0 and 8*H from Hamelin Pool were entered into
equations from Gonfiantini, 1986.
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Furthermore, Figure 2-8 plots 8'°0 and §°H values relative to each other during
evaporation. This produces a curve that shows the possible minimum and maximum at
any given stage of evaporation. The 5°H modeled values are close to 20%o; the average

value measured was 23%eo.

In Figure 2-8, during the initial stages of evaporation both oxygen and hydrogen isotopic
values begin to increase. Then during the final stage of evaporation values decrease due
to hydration shell breakdown, ending with a final value that is lower than the initial
value. The measured and modeled salinity and delta values agree. This suggests that
modeling can accurately predict the §'*0 values of Hamelin Pool and can therefore by
proxy estimate salinity and possible ion activity. With a valid evaporative model, steady-

state modeling and evaporation modeling can be calculated over a period of time.

2.7 Steady-State and Flux Modeling Overview
A mass balance model refers to a model in which the law of conservation of mass is used

to define the amount of matter coming in to or leaving a physical system over a period of
time. While there are tidal ranges in Hamelin Pool, caused by both astronomical and
meteorological influences (Suosaari et al., 2016b), the water level over a one year period
is relatively stable; water levels in July 2013 are equal to water levels in July 2014
(Suosaari et al., 2016b). With the water volume balanced, the concentrations of other
matter can be measured and estimated. These types of models constrain either the

composition (i.e. salinity or delta values of water) of the input/output and/or the
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magnitude of the fluxes imposed on the physical system. Similar models have been
constructed for other closed basins such as the Black Sea (Swart, 1991a), and Florida Bay

(Price et al., 2012).

Mass Balance models are also useful in determining how hypothetical fluxes will affect a
physical system or in this case Hamelin Pool. This approach on a water body is more
revealing with stable isotopic values than using salinity alone (Swart, 1991b). As sea
water evaporates only H,O is removed; leaving any dissolved solute behind in either the
remaining solution or as precipitate. Consequently water vapor salinity is 0. Meteoric
waters precipitate from water vapor in the atmosphere with little or no dissolved solutes
and also have a salinity of 0. This leads to both the meteoric and evaporative fluxes
having a value of 0. However, all phases of the water cycle have isotopic values, meaning
that modeling with delta values accounts for meteoric and evaporative fluxes. With the
data sets from Shark Bay (Price et al 2012), waters on the shores of Hamelin Pool (Baas
Becking Report, 1990) and basinal waters from within Hamelin Pool (this thesis), I

estimated the time needed to alter isotopic composition.
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Steady-State and Flux Modeling Methodology

In a steady state condition, i.e. the water level of a basin is not changing over a period of
time; the inputs must equal the outputs to achieve a steady-state balance, as defined by
equation 2.12.

Liinput) = O (output) O Liinput) = O (outpur) =0 Eqt2.12
The solution of zero implies that while there are both inputs and outputs into the system,
the volume is unchanging; making the time period 1 year keeps volume of Hamelin Pool
the fixed variable in this steady-state analysis. The inputs into Hamelin Pool (Figure 2-9)
are the fluxes Qgp (over flow from Shark Bay into Hamelin Pool), Qgw (possible ground
water infiltration) and Qyw (meteoric rain fall) with the fluxes out being Qpp (return from
Hamelin Pool back in SB) and Qg (evaporation). As stated, for mass balance models, the
following equations must be satisfied, and at steady state.
Simple Math Model

IgwHIsg + Imw = O + Opp Eqt 2.13

Here the sum of fluxes from the input Igw, Isg and Iyw are equal to the sum of all output
fluxes Og, Ogp. The water balance approximation expressed as flux and is equal to
equations 2.14 and 2.15.

Qaw + Qs+ Qmw = Qr + Qnp Eqt 2.14

Rearranging this becomes

Qaw T Qs+ Qmw - Qg - Qup=0 Eqt 2.15
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Figure 2-9 Box model of the fluxes(Q) into and out of Hamline Pool and Shark Bay.

By adding salinity (Figure 2-10) the water balance is expressed as equation 2.16, as the
salinity of fresh water is essentially zero this reduces to equation 2.17.

Sew*Qaw + Ss*SQsp + Smw*Qmw - SE*QE - Sup*Qup =0 Eqt2.16

Qe*Sg Qmw*Smw
Qss*Sss > | ‘l'
Hamelin Pool
Shark Bay Qup*Sup € 1‘
Qcw*Sew

Figure 2-10 Box model of fluxes(Q) into and out of Hamelin Pool and Shark Bay with added values of salinity(S)

This reduced to,

Saw*Qaw * Ssp*Qss - Sup*Qup = 0 Eqt 2.17
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Figure 2-11 Box modeling showing the fluxes(Q) into and out of Hamelin Pool and Shark Bay with the values salinity

(S) in which both evaporation and meteoric waters become zero since they have zero salinities.

The above equation is satisfied however, both evaporative and meteoric water fluxes

have been eliminated (Figure 2-11).

Adding the §'*0 values,

daw*Qaw + 0s8™*SQsp + Omw *Qmw - O™ QE - dup™Qup =0 Eqt 2.18

Qr*5"%0g

A

Quw*d"*0Onm

>

Qsp*d'*Ogp

Shark Bay
QHP*6180H1’<

Hamelin Pool

)

A

Qw3 0cw

Figure 2-12 Box modeling showing the fluxes (Q) into and out of Hamelin Pool with added §'*0 values which cannot

be reduced further.

There is no elimination of any flux using the isotopic compositions (Figure 2-12). A

model with this equation can be made to constrain the isotopic composition as well as

extent of the fluxes.
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Steady State Evaporative Isotopic Model

(Vdd +6dV)/dt = Q1 81 — Qodo —Qrdk (Gonfiantini, 1986) Eqt 2.19
In equation 2.19, V is equal to volume, Q; refers to the amount of inflow, Q¢ refers to
outflow and Qg refers to evaporation. Similarly, &y, do, and g refer to the isotopic
composition of inflow, outflow and evaporation respectfully. This formula is used to
calculate the isotopic composition of evaporation and therefore can be used to model the
isotopic composition of a water body and solve theoretical fluxes or concentrations of
delta values (Swart, 1991b; Swart, 1991¢). Since the volume of the pool stays relatively
constant over the course of year, all results have been calculated over a 1yr time period.
In addition, all the fluxes are shown in km’, equivalent 1*10'? liters. Using the above
equations a steady state model for Hamelin Pool can be drawn as a box model shown in

Figure 2-13.

Qe*8"0g Quw*d"*0Onm

r |

Qsp*8'Ogp > | l'
Hamelin Pool

Shark Bay
QHP*5180m<

Figure 2-13 Box modeling showing the fluxes (Q) into and out of Hamelin Pool with
added 3'°0 values ground water has been removed as the flux is currently unknown.
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This is a diagrammatical representation of the equations above. Groundwater influx is
being currently studied in the Hamelin Pool area, groundwater will be calculated as
infinitesimal or undetectable, but plausible at this point in time, once more data has been

collected ground water can be entered into this model.

2.8 Steady-State Modeling Results
The steady-state model suggests that it would take about 700yrs to reach an average 3'°0

value of +3.95%o, the current measured average of Hamelin Pool. Once the water body
becomes restricted and evaporation excessive (50%), the Shark Bay 880 values, which
would be the initial Hamelin Pool values, have the potential to increase from +1.42 to
+3.28%o in just one year, assuming full mixing. The results also suggest that the order of
magnitude by which Hamelin Pool fills with water from Shark Bay, minor sources, such
as groundwater and precipitation, would be indistinguishable due to mixing. For example,
Figure 2-15, at a range of 0.1 to 0.4 km®/yr and delta value of -1.59 would have little
effect on the average §'°0 value.

2.98teady State Modeling Discussion

The model is first constructed using average inputs from measurements reported in this
study (Table 2-2), but is then refined to best represent the environment as seen in Figure
2-14. The measurements collected from the Western Australia Bureau of Meteorology
(WA, BOM), in blue, are slightly changed (0.15% humidity) to best mimic the natural

environment.
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Figure 2-14 Modeled 8'°0 values of Shark Bay waters over a 740 year period of time under
Hamelin Pool environmental conditions. In blue are the modeled values using measurements
from the WA, BOM. In red is a slightly modified humidity to best reflect the current state of
Hamelin Pool.
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Figure 2-15. Modeled 8'%0 values as function of changing fluxes from both Shark Bay and Meteoric

Water. This figure shows how quickly the Shark Bay contribution to Hamelin Pool can mask other inputs of
water into the area such as the known Meteroic Water.
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Furthermore, this modeling has also given insight into the influence of Shark Bay on
Hamelin Pool. When comparing the estimated flux of Shark Bay versus the measured
flux of meteoric rain water (WA, BOM), Figure 2-15, it can be seen that the Shark Bay
flux as the major contributor of input into Hamelin Pool has the ability to mask the rain
water flux. This pattern is echoed in Figure 2-5, where the data clustering implied few
sources of water recharge into Hamelin Pool. Mixing may also be making source

tracking difficult to measure,

The resulting model allows for insight into the evolution of Hamelin Pool waters. The sill
is known to be the major constrictor of water as well as the greatest influence on water
flow into the pool. Here (Figure 2-14) I have calculated the amount of time it would take
for marine waters from the greater Shark Bay area to fill the pool and reach the present
measured 3'°0 and 8°H values. During the initial growth of the sill there was probably
full mixing and minimal restriction, implying a low residence time of the water and
therefore no elevated 8'°0 and 6°H values. In order to find the time it would take for an
unaltered marine water to reach the average Hamelin Pool 3'*0 value of +3.95%o, the
simulation was run in reverse. The model suggests that it took about 740 years to reach a
8'%0 value of 0%o. There is a sudden decrease the 8'°0 value, at about 700 years implies

that the water in Hamelin Pool may have been trapped in the pool ~700 years ago.
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This model is also predictive and can be used to model §'*0 values from hypothetical
water fluxes. The largest vulnerability to Hamelin Pool would be the inevitable invasion
of seawater as a result of sea level rise (SLR). In order to best demonstrate how SLR will
affect the pool chemistry, first it is important to note that while there is a global SLR
there is also local SLR. Sea level rise regionally in Western Australia is estimated to be
at the lower end of that predicted for the global mean of 1.8+0 .3mm to about 1.6 mm
pre year (Church et al., 2004). Furthermore, the Indian Ocean, which provides water for
Shark Bay and eventually Hamelin Pool has a 8'*0 value of +0.5%o (LeGrande and
Schmidt, 2006). The resulting model, Figure 2-16, reveals a sharp decline in 5'*O values
dropping over 70 years to +3%o, and ~320 years to +2%o. The 8'°0 values would stabilize
over a period of 3,000 years at ~1.3%o. With the known covariance of 8'*0 values and
salinity the general conductivity of the water within the pool would be expected to
change as well, together with increased predation brought on by higher sea levels and
normal marine salinity, Hamelin Pool’s ecosystem would be subject to rapid

environmental changes, which may stress stromatolitic activity.
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Figure 2-16 Modeled §'%0 values over time as function of local Shark Bay input & Indian Ocean SLR.
In gray are the modeled current 3180 values. In blue is the resultant SLR which causes a drop 5'°0
values as the sea level rises allowing more water exchange.
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2.10 Chapter 2 Summary
Salinity and the 8'°0 and °H values of water reveal the current state of Hamelin Pool

waters and suggest not only how the water body evolved but also predict the effects of
sea level rise. Salinity, 3'*0 and 6°H values suggest isotopically positive marine waters
are the major contributor into the pool, but have only evolved to their current restricted
signatures in the last 740 years. In addition, flux modeling projects that Hamelin Pool
will most likely have extreme sensitivity to local sea level rise, even with continued
excess evaporation and sill growth. Rapid changing conditions may lead to environmental

stress on the stromatolitic activity.



Chapter 3: Chemical Equilibrium: Major, Minor, Trace
Elements and Saturation States

3.1 Introduction to Water Chemistry and Carbonate Reactions in Sea Water
Carbonates exist in nature in various polymorphs that have different element

compositions. For example, aragonite an orthorhombic form of calcium carbonate, has
high amounts of Sr (~7000-8000ppm), while high and low Magnesium Calcites (HMC
and LMC) contain less Sr and instead incorporate Mg in varying amounts. Carbonate
reactions in marine waters are driven by changes in salinity, temperatures, and biological
reactions (photosynthesis and respiration). These in turn alter pH and alkalinity, driving
variations in carbonate saturation. The precipitation or dissolution of any carbonate
species can be traced by the concentration of trace elements as defined by distribution
coefficients (D); ‘D’ is defined by equation 3.1 is equal to a trace element under
consideration (M).

Mo Eqt
_ m minera
b= M 3.1
m seawater :

When carbonate reactions take place, changes in element concentration (Sr*", Ca®", and
Mg*") occur in waters as a result of these varying distribution coefficients. These
variations lead to changes in the element ratios relative to each other and conservative
element such as Cl" (Swart and Kramer, 1998). Furthermore, using measured chemical
properties (pH, alkalinity, and available ions) saturation state (Q) with respect to calcites
(HMC and LMC) and aragonite can also be measured. The saturation state of a mineral in

water predicts how likely that mineral is to precipitate. In this chapter I will discuss the
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expected changes in the elemental ratios during carbonate reactions and what these

reactions suggest about the behavior the basinal waters.

3.2 Objectives
The water samples collected from Hamelin Pool (Chapter 2) have also been analyzed for

their concentrations of Ca, Sr, Mg and Na with the objective to use the dissolved metal
data to predict carbonate saturation (Q) and likelihood of precipitation. This is
accomplished by comparing reactive elements ratios to each other (Sr**, Ca*", Mg as
well comparing those reactive elements to the non-reactive element CI .

3.3 Methods
Alkalinity and pH: Water samples were measured in the Stable Isotope Lab (SIL,

RSMADS) for initial pH and alkalinity by titration with pH probe using a Gran titration.
Precision was determined with an internal 2.0 mM sodium bicarbonate (NaHCO3")
standard run along with samples and reported as one standard deviation from the mean.
Precision for the internal standard was + 0.30 (1o) for pH and = 0.16 (10) for alkalinity.
For comparison, reference material for oceanic CO; measurements (Scripps UCSD, batch

139) with a known alkalinity of 2.25mM, was measured to be 2.46mM + 0.19(10).

Chloride: The CI” ion concentration measurements were calculated using the ICP-OES
data for Na" as proxy. The Na' concentration was multiplied by a factor of 1/0.86

(IAPSO Sea Water) to account for the natural covariance of Na to Cl ions in sea water.
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Trace Metals: Trace metal abundances were measured using a Varian Inductively
Coupled Plasma Optical Emission Spectroscopy (ICP-OES). This type of emission
spectroscopy uses an inductively coupled plasma torch to excite atoms and ions that emit
electromagnetic radiation at wavelengths characteristic of a particular element.

Each sample is delivered to an analytical nebulizer by peristaltic pump where is it
changed into a mist and introduced to the plasma flame. The intensity of the emission is
indicative of the concentration of the elements within the sample. The machine was
calibrated using a range four IAPSO Sea Water Standards diluted in 1:100 in nitric acid.
Ratios 0f 0.06:100, 1:100, 1.3:100 and 2:100 and normalized with a natural South Florida
water. Precision was measured with an internal standard made with IAPSO standard
seawater at a dilution of 1:100. The Sr/Ca, Mg/Cl, Mg/Ca and Ca/Cl ratios we measured

to a precision of 0.074, 1.94, 0.05, 0.36 respectively.

Saturation State: Saturation state (€2) of seawater with respect to carbonates can be

defined as the product of the activities of dissolved calcium and carbonate ions in

seawater divided by their product at equilibrium.

o [CaT"[CO.] Eqt 3.2
[CaCO’]

When Q is equal to 1 then the seawater being measured would be in equilibrium or
saturation with the carbonate, meaning that no dissolution or precipitation is taking place.
Q> 1 and Q <1 correspond to supersaturated and undersaturated. The carbonate (i.e.
Calcite/Aragonite) saturation state (Q) is dependent on carbonate (CO3) available, the
concentration of Ca*", pressure, temperature and salinity. Surface waters are generally

supersaturated with respect to CaCOs; however it is rare for CaCOs to precipitate
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inorganically due to complex ion-ion interactions, which inhibit the precipitation. Cold
and fresh water promote lower CaCOj saturation states (Chierici and Fransson, 2009).
The saturation state of the basinal pool waters was calculated using geochemical
modeling software The Geochemist Workbench®. The software calculates the saturation
state using a Debye-Hueckel equation (see Larson et al, 1942) modified for high ionic
strength.

3.4 Results
Alkalinity and pH: Table 3-3 shows a summary of results; the average, minima and

maxima of the pH, alkalinity concentrations. The average pH measured was 7.82 well
within the normal range for marine waters (~8). The pH ranged between 8.36 and
6.81(Figure 3-1). The average alkalinity measured was 3.06 mM with the highest values
being 4.09mM and the lowest values being 0.73mM. The distribution of these values

shows no strong spatial relationship around the pool area (Figure 3-1).

Trace metals: The average concentrations of Sr, Ca, Mg and Cl are listed in Table 3-1.
The average ratios are found in Table 3-2 Sr/Ca and Ca/Cl values tended to be higher
than Standard Sea Water SSW (Figure 3-5). While Mg/Cl and Mg/Ca values were lower

(Figure 3-6, Figure 3-7).

Saturation state: The values are all greater than 0, which is typical in marine waters. The

Q for aragonite had an average value of 2.27 (0.16 to 6.97). The Q for calcite had an

average value of 3.31 (0.23 to 10.19). The two maps in Figure 3-2 appear to have
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matching distributions, where aragonite saturation is high so is calcite saturation. All data

for this chapter can be found in the appendix in Tables 7-6 through 7-10.

pH Alk Srumol Canmol Mg mmol Clol
North 4y, 7.80 2.93 136.23 16.49 79.02 866.93
Mid avg 7.85 311 139.39 16.76 81.38 884.13
South 4, 7.80 3.11 158.61 18.62 89.50 987.65
Mean 7.82 3.05 145.73 17.39 83.72 918.50
Max 8.36 4.09 251.08 31.06 11.42 1547.86
Min 6.81 0.73 89.99 10.74 59.13 561.37
n 117 119 117 117 117 116

Table 3-3 Summary Table of the results from the pH, Alk and trace metal results, highlighting the average
geographical units of North, Mid and South. The full list of all results can be found in Tables 7-6, 7-7, and 7-8 of the
appendix.
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3.5 Discussion
Precipitation and Dissolution

Dissolution and precipitation of calcite (HMC or LMC), aragonite and dolomite have
pronounced influences on Sr/Ca, Ca/Cl, Ca/Mg, and Mg/Cl ratios in solution. Assuming
CI ions are conservative, i.e. not reactive, increases and decreases in the Ca/Clratio arise
from dissolution (increases in solution) and precipitation (decreases in solution)
reactions. Changes in Sr**, Ca*" and Mg”" concentrations relative to CI” are indicative of
which carbonate minerals are involved in dissolution or precipitation. Ratio differences
are a result of the differing distribution coefficients of these elements (Equation 3.1)

(Swart and Kramer, 1998).

Strontium/Calcium and Calcium/Chloride

Aragonite: The precipitation (and dissolution) of aragonite, while changing the Ca/Cl
ratio of the precipitating fluid, will not change the St/Ca ratio of seawater as the
distribution coefficient for Sr into aragonite is close to unity. In other words aragonite is
removing and precipitating Sr and Ca at the same ratio as that contained in seawater.

Hence these reactions plot as a horizontal line on Figure 3-3.

Low-Mg Calcite: The precipitation of LMC on the same diagram, Figure 3-3 will

produce waters which plot diagonally, as calcite preferentially excludes Sr during
precipitation leading to elevated Sr concentration (higher Sr/Ca and lower Ca/Cl ratios).

During dissolution the reverse is true.
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High-Mg Calcite: As the distribution coefficient for Sr into HMC is intermediate between
that of aragonite and LMC, precipitation and dissolution of HMC will fall on a line with

an intermediate slope between aragonite and LMC. The Sr/Ca values increase with

calcium utilization while the Ca/Cl is dropping, Figure 3-3.

Dolomite: Precipitation or dissolution of dolomite will affect the values in a similar

manner to HMC and LMC.

s LMC Preciptation
_| HMC Preciptatio

Sr/Ca mM/M

Aragonite Dissoultion
< s

4 Aragonite Precipitation

-

<___-_..--
b‘

— LMC Dissolution HMC Dissolution
| ‘ l ' I ‘ l ‘ l ' | ' |
Ca/Cl or Mg/Cl mM/M

Figure 3-3 The expected relationships of Sr/Ca ratios compared with Ca/Cl and Mg/Cl. In pink Aragonite trends along
a horizontal line as the Sr/Ca ratio is similar to seawater, with only Ca/Cl and Mg/Cl concentration varying during
dissolution or precipitation. LMC (orange) HMC (black) trend horizontally as while Ca/Cl and Mg/Cl ratios rise during
precipitation, Sr/Ca ratios drop the opposite is true for dissolution as Ca/Cl and Mg/Cl ratios drop Sr/Ca ratios rise.
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Strontium/Calcium and Magnesium/Chloride

Aragonite: Aragonite contains very little Mg and therefore although dissolution and
precipitation will change the absolute concentration of Mg in the fluid, these changes are
likely to be within analytical error. As mentioned previously dissolution and precipitation

will not change Sr/Ca ratio.

Low-Mg Calcite: Low-Mg calcite contains small amounts of Mg and therefore

precipitation and dissolution of LMC would shift have a minor effect Mg/Cl value of the

fluid.

High-Mg Calcite: In contrast to LMC precipitation and dissolution, precipitation and/or

dissolution of HMC (or dolomite) would greatly influence the Mg/Cl ratio of the fluid

Figure 3-3.

Dolomite: Precipitation or dissolution of dolomite will behave in a similar manner to

HMC, but with greater changes in the Mg/Cl ratios to the St/Ca ratios of the fluid.
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Figure 3-4 The expected relationships of Sr/Ca ratios compared with Ca/Mg. In pink Aragonite trends along a
horizontal line as the Sr/Ca ratio is similar to sea water, with only Ca/Mg concentration varying during dissolution or
precipitation. LMC (orange) HMC (black) trend horizontally as while Mg/Ca ratios rise during precipitation so does

Sr/Ca ratios the opposite is true for dissolution as Mg/Ca ratios drop the Sr/Ca ratio also drops.
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Strontium/Calcium and Magnesium/Calcium

Aragonite: Precipitation of Aragonite does not alter the St/Ca ratio of the fluid, but
increases the Mg/Ca ratio during dissolution and decreases it during precipitation (Figure

3-4).

Low-Mg Calcite: Precipitation of LMC increases Mg/Ca and Sr/Ca ratios, while

dissolution decreases Sr/Ca and Mg/Ca ratios of the fluid (Figure 3-4).

High-Mg Calcite: The Sr/Ca and Mg/Ca ratios increase during precipitation and both

decreases during dissolution, but at a higher rate, Figure 3-4.

Dolomite: Precipitation or dissolution of 1:1 Mg/Ca ratio leaves the Mg/Ca ratios

unchanging. Sr/Ca ratios however, will increase during the precipitation of dolomite and

decreases during dissolution.

Hamelin Pool Water Trace Metal Chemistry

In order to correctly predict the nature of the minerals being precipitated or dissolved, it
is necessary to define the initial composition of the water body. Standard Sea Water
(SSW) as defined by Ocean Drilling Program (ODP) Technical Note 15(1991) has on
average Ca2+, Mg2+, Sr2+, and CI concentrations of 10.55 mM, 54mM, 87uM, and 560
mM respectively. This gives seawater a Sr/Ca ratio of 8.2 mM/M, a Mg/Cl ratio of
96.6mM/M, a Mg/Ca ratio of 5.1 M/M and a Ca/Cl ratio of 18.8 mM/M. These ratios are

shown in Figures 3-5, 3-6 and 3-7 below as a red circle. The initial values for seawater
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entering Hamelin Pool would be the water closes tot the Faure Sill, the average for the
waters collected in the northern part of the pool, the Faure Sill Water (FSW), is shown in
Figures 3-5, 3-6 and 3-7 as a yellow triangle. The values of the individual elements
measured can be found in Tables 7-7 and 7-8 of the Appendix. In order to evaluate
mixing in Hamelin Pool, water samples were collected at both the air-surface interface
(blue circles in Figures 3-5, 3-6, 3-7) as well as the water sediment interface (black
circles in Figures 3-5, 3-6, 3-7). When comparing SSW and FSW, data suggest that the
water entering the pool from Shark Bay has already been chemically altered. The
extensive seagrass beds, which are home to an abundance of calcifying organisms and

water restriction in Shark Bay, change the water chemistry before reaching Hamelin Pool.

Ratio Distributions

The data from Hamelin Pool are shown below in Figures 3-5, 3-6 and 3-7 have analytical
error plotted on one sample value to represent the overall error for all data points. In
order to describe the variation within Hamelin Pool the basin has been separated into
three regions (north, mid and south). The northern portion of the pool are all data points
on and north of latitude 26.1°S, the southern portion of the pool are all data points, on and
south of latitude 26.3°S with central or mid-section are being all the data points in

between.
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Figure 3-5 The Sr/Ca ratios compared with Ca/Cl ratios for Hamelin Pool waters, blue dots are surface

samples, black dots are bottom samples. The solid red circle is indicative of sea water standard and the
yellow triangle is Sill Water. Dotted lines show trend directions for dissolution while solid lines show

trends for precipitation (Swart and Kramer, 1998) Sr/Ca error = 0.074 Ca/Cl error = 0.36.
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Figure 3-6 The Sr/Ca ratios compared with Mg/Cl ratios of Hamelin Pool waters, blue dots are surface
samples, black dots are bottom samples. The solid red circle is indicative of sea water standard and the
yellow triangle is Sill water. Dotted lines show trend directions for dissolution while solid lines show trends
for precipitation (Swart and Kramer, 1998) Sr/Ca error = 0.074 Mg/Cl error = 1.94.
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Figure 3-7 The Sr/Ca ratios compared with Mg/Ca ratios for Hamelin Pool waters, blue dots are
surface samples, black dots are bottom samples. The solid red circle is indicative of sea water
standard and the yellow triangle is Sill water. Dotted lines show trend directions for dissolution while
solid lines show trends for precipitation (Swart and Kramer, 1998) Sr/Ca error = 0.074 Mg/Ca error =
0.05.
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The differences between the geographical regions have been compared using a two-tailed
t-test (Table 3-2) and graphically (Figures 3-8, 3-9, 3-10). The two-tailed t-test p-values
show no significant difference, in any of the ratios measured, when comparing the north
and central regions (yellow triangle and gray square Figures 3-8, 3-9, 3-10). However,
there are significant differences in the south (black upside down triangle) compared to the
north as well as the south compared to the central (mid) regions. The Sr/Ca ratios and the
in the southern region are significantly higher than in both the mid and northern regions.
The Ca/Cl ratios are significantly lower in the southern region when compared to mid and
northern regions with the St/Ca values being much more significant than the Ca/Cl. The
Mg/Cl ratios only showed a significant difference with the southern compared to the
central regions with the central region being higher. Graphically, in the north and central
the average results (yellow triangle and gray square) in suggest that the water in the
northern and central parts of the pool are chemically similar Figures 3-8, 3-9, 3-10. These
differences are due to mixing of Shark Bay Waters with Hamelin Pool waters through the
channels within the sill. The water that flows through the channels would mix in the

northern portions of the pool past the sill and continue to mix as they approach the south.
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Figure 3-8 Geographical averages of Sr/Ca and Ca/Cl ratios of northern (yellow triangle) central (gray square) and
southern (upside down black triangle) Hamelin Pool basinal waters compared with Stand Sea Water (red circle) and
Hamelin pool Sill water (yellow circle). Water in the northern portion differs from the central and southern waters,
indicating mixing in the northern portion of the pool past the sill.
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Figure 3-9 Geographical averages of Sr/Ca and Mg/Cl ratios of northern (yellow triangle) central (gray square) and
southern (upside down black triangle) Hamelin Pool basinal waters compared with Stand Sea Water (red circle) and
Hamelin pool Sill water (yellow circle). Water in the northern portion differs from the central and southern waters,
indicating mixing in the northern portion of the pool past the sill.
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Figure 3-10 Geographical averages of Mg/Ca and Ca/Cl ratios of northern (yellow triangle) central (gray square) and
southern (upside down black triangle) Hamelin Pool basinal waters compared with Stand Sea Water (red circle) and
Hamelin pool Sill water (yellow circle). Water in the northern portion differs from the central and southern waters,
indicating mixing in the northern portion of the pool past the sill.
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Figure 3-11 A) Mg/Ca ratios B) Sr/Ca ratios C Ca/Cl ratios D) Mg/Cl ratios of the Hamelin Pool Wate mples.
While there are no strong spatial relationships in these figures, they do suggest that the metal ratios can be broken down
into smaller sections for a better understanding of their distributions.
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Saturation Index

There is no significant difference in the aragonite and/or calcite saturation in the northern
compared to the central regions. The southern region is both significantly more saturated
in calcite and aragonite than the central regions and the South compared to the North is
significantly more saturated in calcite. This is likely linked to high saturation and hyper
salinity of pool waters coupled with higher residence time of water in the southern region

of the basin.

Hamelin Pool Compared to Great Bahama Bank

The elemental ratio data from this thesis has been compared with waters from Great
Bahama Bank (GBB) collected and analyzed at RSMAS. Since cyanobacterial and
microbial mats are found in both of these areas this comparison may hold a critical key to
understanding microbial environments. The absolute ratios and ranges of GBB and
Hamelin Pool vary significantly. While Hamelin Pool values differ from Standard Sea
Water (SSW) by almost double with average concentrations of Sr, Ca, Mg and CI of
145.73 £21.98,17.39 £ 2.51, 83.72 + 8.57, 918.50 + 132.84 (Table 3-1), Great Bahama
Bank is close to SSW with average amounts of Sr, Ca, Mg and CI of 84.79 = 1.75, 10.87
+0.19, 58.96 = 1.04, 545.04 + 12.10. However, when examining the metal ratios, the
inverse is true. Hamelin Pool waters have ratios much closer to SSW, Figures 3-12, 3-13,
3-14, whereas GBB is significantly different. This is likely due to Hamelin Pool water
being directly altered from restricted seawater, whereas GBB is an open marine

environment with several other hydrological processes affecting the sea water chemistry.
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Figure 3-12 Hamelin Pool (black and blue dots) and Great Bahama Bank (blue squares) Ca/Cl ratios compared with
St/Ca ratios. The error shown is the analytical error of the ICP-OES and can apply to all data points. Great Bahama
Bank waters appear to be a more evolved water from that of standard sea water (red circle), however given the error
the waters do not appear to be preferring the precipitation or dissolution of any specific carbonate mineral.
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Figure 3-13 Hamelin Pool (black and blue dots) and Great Bahama Bank (blue squares) Mg/Ca ratios compared with
Sr/Ca ratios. The error shown is the analytical error of the ICP-OES and can apply to all data points. Great Bahama
Bank waters appear to be a more evolved water from that of standard sea water (red circle), however given the error
the waters do not appear to be preferring the precipitation or dissolution of any specific carbonate mineral.
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Figure 3-14 Hamelin Pool (black and blue dots) and Great Bahama Bank (blue squares) Mg/Cl ratios compared with
St/Ca ratios. The error shown is the analytical error of the ICP-OES and can apply to all data points. Great Bahama
Bank waters appear to be a more evolved water from that of standard sea water (red circle), however given the error
the waters do not appear to be preferring the precipitation or dissolution of any specific carbonate mineral.
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Strontium and Calcium

Based on the geographical division of Sr, Ca, Mg, Cl ratios, the southern portion of the
pool has a higher Sr/Ca ratio when compared to the Northern and Central units (Table 3-
1). This is likely due to the precipitation of LMC rather than HMC considering that there
are no differences in the Mg/Ca ratios, but a significant increase in the Sr/Ca ratios of the
waters (Figure 3-8, 3-9 and 3-10). This would suggest that water in the southern portion
of the pool becomes trapped and experiences a longer residence time. This scenario is
also supported in the salinity and stable isotopic value results which suggest that the
residence time of water in the southern portion of the pool is higher. If the southern
portion of the pool had another major source of input, such as water ground water

recharge, the input is not recognized in the minor element concentrations.

Dolomite

When investigating Sr*" and Mg®" compared to Ca”" there is no evidence for
dolomitization as the concentrations of Mg®" show no major shifts from the initial waters.
Increases in the Ca®"/CI ratio of fluids can arise from the dissolution of HMC, aragonite
or dolomitization. If there was dissolution or precipitation of dolomite the Mg*" ratios
would be dramatically shifted from the initial waters as dolomite incorporates Ca*" to

Mg*" at nearly and one to one ratio.
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3.6 Chapter Summary Water Chemistry, Major, Minor, Trace Elements and Saturation
States Summary

The trace metal analysis of Hamelin Pool waters shows that basinal pool waters are
modified seawaters, specifically as it pertains to carbonate reactions, with nearly double
the amounts of Sr, Ca, Mg and Cl in solution. Although the waters of Hamelin Pool are
over saturated with respect to aragonite and HMC (and LMC), the values are not
dissimilar from modern seawater. The Sr/Ca ratios suggest that the waters in the southern
portion of Hamelin Pool have been modified further after entering the pool during the
precipitation calcite. The longer residence time of the water in the southern portion of HP
leads to an increase in the Sr/Ca ratios reflecting the precipitation of LMC. These results
fit well with data from the stable isotopes of water and salinity trends found in Chapter 2
and suggest there is no major input of water directly into the southern portion of Hamelin

Pool.



Chapter 4: Sediment Description, Distribution and Geochemical
Signatures

4.1 Introduction to Sediment Geochemistry
The sedimentary environment of Hamelin Pool has been described by Logan and

Cebulski 1970. The Pool is dominated by carbonate sediments produced by marine
organisms presently found in the pool with the distribution being controlled by the
environment and energy regime. In this chapter I will focused on basinal sediments and
their chemical properties as they relate to water chemistry.

4.2 Methods
Sediment Collection: Between 2012 and 2014, nearly 400 sediment samples were

collected around the margin and basin of Hamelin Pool. These samples are considered to
be “grab” samples as they were collected by machine (Ponar) or by hand at the water
sediment boundary. The samples were then split, one half rinsed with fresh water, the
other half bleached to remove organics, then left to dry for several hours before being

packaged.

Size Fractions: The sediment size fractions were determined by standard laboratory
sieving methods using standard sieves, sizes phi (¢) x>4 to x<-1 in whole number
intervals. A sediment fraction was weighed, and then poured through the series of sieves
in decreasing aperture. The sieves were then thoroughly shaken (30 minutes) in an
automated agitator. Each subsequent size fraction was then weighed, and a percent size
fraction calculated. The data measured from sieving was entered into GRADISTAT v 8, a
grain size analysis tool for classifying sedimentary environments, developed by Blott and

Pye (Blott and Pye, 2001).

73
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Mineralogy: Bulk and individual components of selected sediment samples were
homogenized and prepared for X-Ray powder Diffraction (XRD) Analysis. Using a
Panalytical Xpert Pro the mineralogical composition of carbonate end-members was
verified prior to analysis with a set of 5 standards which vary from 0 to 60% respectively
(Swart et al., 2003). Each mixture was homogenized in a ball mill for a period of 10min.
If it is assumed that the sediment is composed of only carbonate minerals (end members):
dolomite (D), LMC, HMC and aragonite(A), then Equation 1 is valid and can be used to

quantify mineralogical composition and concentration (Swart et al., 2003).

D+A+LMC+HMC=1 Eqt 4.1

The peak areas for each relevant mineral were determined by scanning a smear mount of
the sample between 24° and 32°2e (CuKa radiation). The ratio of the peak areas for the
appropriate peaks for aragonite, HMC, and dolomite were determined relative to LMC +

HMC and correlated to the same ratio in the weighed components of each standard.



75

Inorganics: The §"°C and §'*0O values of the carbonates were analyzed by dissolution in
phosphoric acid using the common acid bath method. The CO, produced by the reaction
of phosphoric acid and carbonate matter were then analyzed on a Finnigan MAT 251
(Thermo Fisher Scientific, Bermen, Germany) (Swart et al., 1991). In each run of 30,
there were 24 unknown samples, as well as six standards four of which are measured at
the start and two at the end. Data were then corrected for any fractionation in the
reference gas during the run and for the usual isobaric interfaces modified for a triple
collector mass spectrometer. Data are reported relative to the Vienna Pee Dee Belemnite
(VPDB) scale, defined for carbonates by §'°C values of NBS-19%o versus Pee Dee
Belemnite (PDB). The error for these analyses is <0.01%o as indicated by replicate

analyses of internal standards.

Organics: Sedimentary organic matter co-occuring with grains was analyzed following
Oehlert and Swart 2014. Organic matter was separated via dissolution in 10% HCl acid
overnight, followed by vacuum filtration onto glass microfiber filters (Whatman GF/C).
The insoluble residue (IR) on the filter was allowed to dry for at least 48 h, or until a
constant dry weight was achieved. The weights of the insoluble material were quantified
by subtracting the weight of the empty filter from the weight of the dried insoluble
material and filter after filtration. Samples of the insoluble material were scraped off of
the filters, weighed and packed into tin capsules and loaded into a Costech ECS 4010
(Costech Analytical Technologies Inc., Valencia, CA, USA), where they were
combusted. The resulting CO, gas was then delivered to a to a continuous flow isotope-

ratio mass spectrometer (Delta V Advantage, Thermo Fisher Scientific). For every run of
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36 samples, 12 internal standards were analyzed to calibrate the machine and to assess
the precision of the measurements. An analytic blank as well as 6 internal standards
preceded the first sample analysis, and two standards were run for every 10 samples
analyzed. The reproducibility of 5"°C values is £0.1%o as indicated by the s.d. of replicate
analyzes of internal standards of glycine (n=54, "°C value=—31.8%o VPDB).

All §"Corg data are reported relative to the VPDB scale, defined for organic carbon as
the 0"°C value of graphite (USGS24) =—16.05%o versus VPDB. To calculate weight
percent carbon in the IR, a calibration line was established that related the peak area
measured by the Delta V Advantage (Thermo Fisher Scientific) to the known weight of
carbon in the internal standard, glycine. The weights of the standards were chosen to
bracket the expected range of organic carbon in the samples. The s.d. of these analyses is
0.4% based upon repeated analyses of glycine (n=54). Delta V Advantage peak area
measurements for each sample was transformed to mg of organic carbon in the insoluble
residue using the equation of the calibration line. Organic carbon concentration in the
insoluble residue in mg was converted to TOC by the following equation: TOC=((Org C
in IR (mg) x total IR weight (mg))/initial weight of the sediment (mg)) x 100 (Oehlert

and Swart, 2014).
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4.3 Hamelin Pool Sediments Results

Sediment Sizes

Below (Figure 4-1) shows a generalization of Hamelin Pool sediment size fractions,
The sieving results have been averaged in order to measure the frequency of the size
fractions around the pool area. The results from the individual samples can be found in

appendix (Tables 7-11, 7-12, 7-13, 7-14 and 7-15).

Hamelin Pool basinal sediments, in general, fell between 63um to 2mm (4 to -1 phi or
coarse silt to granule sized). There was little mud collected by the grab samples; also
most of the sediments that measured to be less than -1 phi or greater 2mm were the made
of the bivalve Fragum Erugatum. The Folk and Ward mean results describes the pool as
being predominantly very coarse sand (53%), followed by very fine gravel (20%), coarse
sand (14%), medium sand (10%) and finally with fine sand & fine gravel (both at 1%).
Nearly all analyzed samples were found to be poorly sorted (85%) with very few
moderately sorted samples (19%) and very rare well-sorted samples (2%). Samples
showed various skewedness values as well as variable clustering among the mean

(kurtosis).
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Hamelin Pool Sediments Size Fraction

Frequency
30%
L 25% 23.39
E" 20%
§ 15%
E 10%
5%
0%
Granule Very Coarse Coarse Sand Medium  Fine Sand Very Fine Coarse Silt
>2mm Sand 1-0.5mm Sand0.5 - 0.25 - Sand <60um
2- Imm 0.25mm  0.125mm  0.125mm -
60pm

phi size range

Figure 4-1. Frequency chart of sediment sizes found through Hamelin Pool. This chart is a generalization of the entire
pool, done by averaging the sieved results.

Mineralogy

The carbonate mineralogy of the sediments samples consisted of aragonite and HMC
with the HMC reaching as high as 58% in some areas, Tables 7-16, 7-17, 7-18 and 7-19
(Appendix). The highest percentage of aragonite was found along the coast notably on
the southeast portion, with intermediate ranges in the basin, and the lowest amount of
aragonite and therefore the highest amount of HMC was found in the north near the sill

(Figure 4-2).

Inorganic & 12C & & 20 values

The 3"°C and 6'*0 values measured on the inorganic components of the sediments
averaged from +4.68%o and +3.19%o and varied from +6.18 to +2.83%o and +4.07 to
+2.17%o respectively, with a trend for values to increase from north toward the south

(Figure 4-3).
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Insoluble Residue values

The insoluble residue collected from Hamelin Pool sediments, Figure 4-4, consisted of
both organic insoluble residue as well as silicate eolian debris which erode from the
western Peron Peninsula. The insoluble fraction ranged from ~1% to upwards of 50%
with the larger fractions having more siliciclastic debris and being the most dominant on

the western side of the pool.

Carbon and Nitrogen weight values (C:N ratios)

Organic carbon matter ranged from <0.01 to 3.54%wt with an average of 0.33%, and
organic nitrogen matter ranging from 0.04 to 0.42%wt with an average value of 0.04%.
The C:N ratios from the Hamelin Pool organic sediments ranged from a 0.00 to 24.67
with an average of 9.72 (Figure 4-6). Higher values are found sporadically around the

margin of both the lower eastern and western sides of Hamelin Pool.

Organic & 2C & & 1N values

The 8"°N values of organic matter ranged from -4.28 to +9.06%o (Figure 4-7) with an
average value of 0.77%o. The 8'"°C values of the organic matter ranged from -21.88 to
-8.59%o (Figure 4-7) with an average value of -15.38%o. Neither contour map shows any

reasonable trending, but rather patchy distributions of heightened areas.
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Figure 4-4 Shows the distribution of insoluble fraction from the sediments collected during the 2014 field
season at Hamelin Pool, WA. These results are a combination of both insoluble silicate debris eroding of the
Peron Peninsula as well as the insoluble organic carbon and nitrogen residue. This figure show fewer data points
as only unbleached samples are appropriate for organic content analysis, many sample collected in the field were
bleached prior to this analysis and were therefore not included.
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Figure 4-6 Shows the distribution atomic C:N ratios of the sediments collected during the 2014
Hamelin Pool field season. The C:N ratios are consistent with the weight percent and show no
strong spatial relationship within the basin.
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4.4 Discussion
Sediment Size Fractions

Hamelin Pool is a carbonate dominated sedimentary environment with a salinity gradient
controlling the distribution of facies, with the most dramatic imposition being the
restrictive nature of the Faure Sill (Logan and Cebulski, 1970). The sediments in the
majority of the pool are skeletal and micritic grains that are less then 2mm (-1 phi), with
little mud. They are classified as grainstones, in Dunham classification (Dunham, 1962).
There are however, some areas that are dominated by the bivalve Fragum eragatum and

are better classified, as rudstones patches, as illustrated in Suosaari (2015).

Present in the greater then 2mm (phi<-1 interval, Table 7-1) is Fragum eragatum, a small
bivalve is which dominates the sublittoral platform of Hamelin Pool and is the most
typical grain type found, both articulated and inarticulate. Fragum eragatum is not only
abundant in Hamelin Pool, but also within the greater Shark Bay region and is the species
that comprises the majority of the sediment on Shell Beach (Figure 1-1); Fragum shells
may also have encrusted serpulids tubes on their surfaces. In addition, present in this size
class, are clumps of precipitate/micrite, which appear through the size fractions in various
dimensions. Last, the benthic foraminifera Marginopora vertebralis occurs, in both

isolated flat looking discs with thin centers, as well as twinning plates.

In the next interval 2 to 1 mm(-1> phi >0, Table 7-1) Marginopora vertebralis are
present albiet in a smaller life stage. Broken tube worms encrustations are also present

although this occurance may be due to abrasion caused by sieving. Newly found are
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gastropods, as well the stalks of Acetabularia peniculus and A. calyculus which tend to
grow in shallow waters and attach themselves to shells and rock debris (Logan et al.,
1970). Both species are present in the pool but the caylax, cup or bulbous top portions,

are readily disintegrated leaving only their stalks which are difficult to distinguish.

Table 7-2 (Appendix), displays the sediment composition for size fractions Imm to
0.5mm (0>phi>1) and 0.5mm to 0.25mm (1>phi>2). Here the players change as the
variety of foraminifera appear, Marginopora vertebralis, as well as Penerpolis planatus
and Spirolina sp.,these are most likely the most mature speicmens as they have not been

found in any larger size fraction, and juveniles can be seen in the small mixed fractions.

Table 7-3(Appendix), shows the remaining fractions 0.25mm to 0.125mm (2>phi>3) and
0.125 to 60pm (3>phi>4), <60um (4< phi) has been ommited since the photos have poor
resolution and for some samples this size fraction had an insignificant (less than 1%)
contribution to the bulk. These fractions are made up of mostly debris from the larger

fractions as well as juvenile stages of formainifera, bivalves and gastropods.
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Analysis by Province

Hamelin Pool has been separated into 7 major provinces based on the distinct
geographical characteristic of stromatolite morphologies and associated lithofacies
(Suosaari et al., 2016a)(Figure 4-8). As such, the sediments collected were divided into
their respective provinces. Figures 4-9, 4-10, 4-11 and 4-12 show the frequency charts of
Folk and Ward Descriptions (X), Sorting (c), Skewness (Sk;), and Kurtosis (Kg);
Hamelin Pool basinal sediments were grouped into their stromatolitic provinces. The
Southern tip of Hamelin Pool, the Nilemah province grain size is coarse to fine sand, the
provinces north of Nilemah; Booldah, Flagpole, Spaven & Carbla grain sizes group
together as coarse sand and finally the most Northern provinces, Nanga and Hutchinson
range from being very coarse sand to fine sand. This variation in grain size may be
attributed to the position of Faure Sill, which feeds well-sorted sediment into the more

northern providences; this can be seen in the sorting.

Sorting of carbonate sediments is an indication of the size of the organisms living in the
environment as well as calcified hardparts, with some indication of energy, rate and
duration of depositional environmental conditions (Tucker, 2003). Sorting in carbonate
sediments can be affected by the reworking of material after deposition as in bioturbation,
and activity of other organisms (Tucker, 2003). Carbonate sediment sorting is also
correlated with porosity; poorly sorted sediments tend to be less porous then well-sorted
sediments (Tucker, 2003). Hamelin Pool sediments are for the most part cohesive and not

well sorted.
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Figure 4-8. Morphological stromatolitic distribution provinces, each province has a characteristic
morphological feature. The variance in size, shape and width is likely driven by the physical and
chemical environment along the margin of the coastline.
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Inorganic 82C and §'20 values

Positive 8"°C values of the inorganic components in the sediments reflect a change in the
§'°C value of the DIC in water, which is caused by utilization *CO, by photosynthetic
bacteria, algae, macro algae etc. living in a water body. This process is particularly
evident where residence times are high. The contour map of the 8'°C values (Figure 4-3)
in Hamelin Pool show increased values in the mid and southern regions, a pattern similar
to the water isotopic values, supporting the previous conclusion (Chapter 3) of longer
residence times in the southern portion of the basin. The average 5"°C values of
unaltered marine carbonates is close to 0%o (VPDB) and typically range from -2%o to
+2%o (Sharp, 2007). The 8"°C values of carbonates in equilibrium with surface waters are
about +2 to +4%o. The lowest value seen within the southern portion of the basin is +4%o
and the highest overall just under +6%o. Whilst marine carbonates typically have low
8'3C values close to 0%o, lacustrine carbonates tend to have lower even lower values (-
5%o or less) as they incorporate CO, derived from the decay of plant material in soil.
Lower values are also associated with vital effects and diagenesis (Sharp, 2007).
Therefore, while Hamelin carbonates are forming in a restricted system, they have a
marine signature. There is an overall pattern of increasing 8'°C values from north to south
supporting the idea that the Faure Sill is a major driver of geochemical signals in the
sediments as well as the waters as discussed in Chapter 2. This pattern is also prominent
when looking at the 8'*0 values of the inorganic fraction of the sediment data contoured,
Figure 4-3. The 8'°0 values range from 2.17%o to 4.07%o. Both photosynthesis and
evaporation fractionate the dissolved inorganic oxygen in a solution and driving up the

8'%0 values of the precipitated carbonates.
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Organic Carbon and Nitrogen delta values and C:N ratios

The C:N ratio is a commonly used as tool to understand the origin of organic matter.
Marine organic matter, derived from phytoplankton & zooplankton have a C:N ratios
ranging close to 16:1 (Redfield Ratio; Rumolo et al., 2011), whereas terrestrial vascular
plants have C:N ratios that range >20 (Rumolo et al., 2011). This distinction arises from
the absence of cellulose in algae and it abundance in vascular plants (grasses, shrubs,
trees, land-rooted plants) (Meyers, 1994). The C:N ratios and 8"C values of total organic
matter retain source signatures which, despite some possible early digenetic
modifications, remains intact extended periods of time (Meyers, 1994). Organic matter in
a water body can vary from being predominantly algal to being land dominated or in

some cases a mixture of both (Meyers and Ishiwatari, 1993).

Biogeochemical processes that effect the DIC and NO;™ in solution ultimately effect the
particulate organic matter(POM) and consequently the organic 8°C and §"°N values
(Finlay and Kendall, 2007). In Figure 4-13 the 8'°N values show a consist scatter close to
zero, these values are diagnostic of nitrogen fixation which tend to cause minimal if any
fractionation of "N to "*N (Swart et al., 2014). Cyanobacteria as well other biological
communities fix nitrogen showing that the organic matter is highly affected by microbial
communities inside of Hamelin Pool. Excessive amount of evaporation known to
correlate with higher amounts of DOM (Cawley et al., 2012), are also known to drive
DIC values to be more positive. This effect can only be augmented with higher residence

times of restricted water.
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Figure 4-13 Shows the relationship between the organic §'°C and 5'°N values of sediments collected from the 2014
Hamelin Pool field season.
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It is to be expected that the Shark Bay POM contributes to Hamelin Pool POM in some
part, as water in Hamelin Pool originates from Shark Bay. The thriving seagrass
communities of Shark Bay have a significant contribution to the DOM in Shark Bay
(Cawley et al., 2012). Globally seagrasses tend to have 8'°C values ranging from -19.6%o
to -4.8%0 with an average of -10.3%o (Kennedy et al., 2010). C:N ratios of seagrasses can
vary from as low as 7 and as high as 37 (Fourqurean et al., 1992). Shark Bay was found
to have an average 8"C value of -19.3%o (Cawley et al., 2012) which is on the lower end
of 8"°C values found in Hamelin Pool. C:N ratios in Western Australia, which are slightly

higher than the C:N ratios found in Hamelin, can vary from 24 to 37 (Fourqurean et al.,

1992).

Hamelin Pool sediment organic matter C:N ratios to 8'°C values cluster just above
expected typical marine algae (Figure 4-14). The C:N ratios from the Hamelin Pool
organic sediments ranged from a 4.99 to 24.67 with an average of 9.72; in some cases
sediment has a 0 ratio or no organic matter present (Figure 4-14). The organic matter
from the Hamelin Pool stromatolites heads measured between -16.76 to -13.32%o with an
average of -14.68%o .The C:N ratios varied from 8.27 to 10.69 with an average of 9.25;

Figure 4-14 (Giusfredi, 2014).
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Figure 4-14 Shows the relationship between organic 8'3C and the atomic C:N ratios highlighting ranges of
expected sources of organic matter from Fourqurean et al, 1992, Kennedy et al., 2010 and Meyers, 1994.
The values from Hamelin Pool group within seagrass organic matter sources skewing towards marine algae.
The values of the sediments are consistent with values found form the Hamelin Pool stromatolite heads.
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The stromatolite organic matter results cluster within the organic sediment matter results
(Figure 4-14). All points plotting at a typical C:N value for marine algae but at an
elevated 5'°C, which may be the result of a higher residence time of host waters. The
organic matter in Hamelin Pool sediments therefore are derived, in part, from local

microbialite activity and debris.

The organic matter in Hamelin Pool, like the sediments, is autochthonous. Local
microbialite activity, debris, seagrass detritus (from northern Hamelin Pool and spill over
from Shark Bay), macro and micro algae growing in Hamelin Pool are all sources of
organic matter. All of these sources are subjected to high residence time in an essentially
closed system; the microbialite values fall within sediment values because they are
related by the water body in which they reside and with which they exchange ions.

4.5 Chapter 4 Summary

Hamelin Pool sediments were found to be on average skeletal and micritic grains that are
less then 2mm (-1 phi), with little mud. Most sediments are classified as grainstone with
some patches that are dominated by Fragum eragatum, classified as rudstones (Suosaari,
2015). The Nilemah province grain size is coarse to fine sand. Booldah, Flagpole, Spaven
& Carbla grain sizes group together as coarse sand and the northern provinces, Nanga
and Hutchinson range from being very coarse sand to fine sand. The inorganic fractions
of the sediment have enriched marine 8'"°C and §'*0 values (greater than 0%o), which
increase from the north to the south, in agreement with the water isotopic values. The
organic fraction of the sediments had 8'°N values that scattered close to zero, diagnostic

of nitrogen fixation, suggesting that the organic matter is highly affected by microbial
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communities inside of Hamelin Pool. Furthermore, 8"*C values when compared to C:N
ratios appear to be sourced primarily from organic mat activity and decay, but are likely

also partially sourced from sea grass matter from Shark Bay.



Chapter 5: Geochemical Conclusions
The presence of the actively growing stromatolites is exceedingly rare in the modern,

making Hamelin Pool a valuable site to study their microbialite growth. In an effort to
better understand this environment, in this thesis, [ have examined the geochemical
setting of Hamelin Pool. The goal of the study was to measure geochemical parameters
that can then be used to make a baseline for future interpretations and studies, of seasonal
and/or annual variations and predictions of water evolution.

5.1 Empirical Proofs

As hypothesized, the main source of water contributing to Hamelin Pool is derived from
the greater Shark Bay. Using the salinity (Figure 2-3), 6'°0 and &°H values (Figure 2-4) I
have shown empirically that Hamelin Pool is a partially mixed waterbody with isohalines
of increasing value southward, also implying that the highest residence time of the pool

waters is in the southern embayment.

By modeling the salinity §'*0 and 6°H values using the environmental conditions
prevalent in Hamelin Pool (relative humidity, temperature, 6'°0, §°H ) it is possible to
confirm that at least 50% of the water body is lost by evaporation per year and that there
has been an increase over time of both salinity and isotopic values (Figure 2-6). This
model also revealed that the magnitude of the influence Shark Bay waters is have on
Hamelin Pool waters can mask the input of smaller water input fluxes (Figure 2-15).
Utilization of the dissolved fraction before entering Hamelin Pool is evident in the minor
and trace metal results show a skewedness compared to standard sea water(SSW)

(Figure 3-5, Figure 3-6, Figure 3-7). Excessive amounts of water evaporation results in

101
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Hamelin Pool being an ion saturated water body, with tendency to precipitate aragonite
and HMC. The increased Sr/Ca ratio and Ca/Cl ratios in the southern portion of the pool

support no other major input of water directly into the southern portion of the pool.

Comparing the 8" C and §'*0 values of the inorganic sediment and the water §'*0 and
8°H values confirms that the southern portion of the pool has the highest residence time.

This residence time exerts a geochemical imprint upon the sediments.

5.2 Water Restriction Role on Diversity
The basinal sediment distribution is a testament to the role of heightened salinity, as a

function of water restriction, resulting in a discrete assemblage of halotolerant biota. The
majority of sediments collected (~74%) measured at or less then 2mm and showed a wide
spread distribution of the halotolerant cockle, Fragum eragatum, along with macro algae

fragments, micrite, and gastropod shells.

5.3 Geochemical Predictions
The modeling of salinity and the stable O and H isotopic composition of water have also

allowed for future water chemistry predictions of Hamelin Pool (Figure 2-16). While it
may have taken nearly 700yrs to transform Hamelin Pool into saline water body it is
today, the 6'°0 values and also 6”H values, and salinity (total dissolved metal fraction)
predictions suggest that in as little as 70 years the Sea Level Rise impacts will begin to
show its effects on Hamelin Pool. While hyper salinity is not essential for the growth of
stromatolites, there is a high chance that lowering salinity could increase grazing, leading

to the decline of stromatolites. This is not to say that other factors may not compensate
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for SLR, for example if extreme weather causes even higher levels of evaporation, or the
sill growth rate suddenly increases, but if conditions stay the same or close to it, human
intervention may need to be taken in order to preserve the stromatolites.

5.4 Sources of Organic Matter in Hamelin Pool

The results from the insoluble fraction of Hamelin Pool sediments strongly suggest
microbial mat production and decay as the main sources of organic matter (Figure 4-15).
The stable isotopic signatures showed independent “hot spots” of enriched values and
may prove to be the best tool for tracking changes in the environment. The §'"°N values,
of the organic matter (Figure 4-14), also emphasizes the importance of nitrogen fixation.
Since there is minimal fractionation during fixation of nitrogen, 5'°N values are close to
atmospheric i.e. 0%o. In interpreting and predicting basinal evolution the organic matter
C:N ratios and delta values may be the strongest points of evidence to investigate an area
thought to have been a stromatolitic reef complex.

5.5 Future Work

In order to best evaluate and certify the chemical results and predictions suggested in this
thesis, a multi-isotopic and geochemical investigation should be conducted on continuous
bases. Furthermore, sampling from around the margin amongst the stromatolites will
allow for better resolution of the coastal chemistry and how it compares to the basin.
Although this thesis is a good snap shot of the Hamelin Pool waters in 2014 this study by
no means characterizes Hamelin Pool over the course of a year; water level and salinities
are different during different time of the year (Suosaari et al., 2016b). Studies also predict
ground may be entering the pool between May and September along the margins

(Suosaari et al., 2016b). This type of study can help identify ground water flux and
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elemental contributions to the pool. For the present data set the dissolved element
fractions and mass-balance models can be broken into subsections, in doing this a mass
balance prediction can be refined as well the precision of the expected precipitations
within specific areas of Hamelin Pool. Further investigations in to the organic matter may
also prove to be a good indicator of the response to stresses that may be placed on the
pool. If coring in the area was possible a study of pore water inclusion as well as
diagenetic effects on such hypersaline precipitated carbonates may also help in
understanding how prehistoric stromatolitic reef complexes are recorded in the geologic

record and evolve.
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Tables

Miied

Table 7-1 Sediment composition for size fractions ¢<-1 and -1> ¢ >0, each grid is 1cm.
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Table 7-2. Sediment composition for size fractions 0>PHI>1and 1>PHI>2, each grid is 1cm.




111

a4

Debrisuvnile _

Debris/Juvenile ) Deris/Juveile

Table 7-3. Sediment composition for size fractions 2> ¢ >3and 3> ¢ >4, each grid is lcm.
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Code

140407 _02
140407 _04 nilemah
140407 05 FP
140407 05 NIL
140407 _06
140407 _08 Flag
140407 12 Nill
140407 14
140407 3
140407 Flag 07
140407 Nil 07
140408 02
140408 09
140408 18
140408 25
140410 05
140410 _06
140410_09
140410 14 Nanga
140410 34
140414 20

GT 13

GTH 12

GTH 16
GTH_17

P34

P36 HP March '14
Total Mean
Total Min

Total Max
Total n

Long
114.1481
114.1209
114.1371
114.1226
114.1355
114.1576
114.1296
114.2096
114.1457
114.1492
114.1226
114.2307
114.2032
1142214
114.2266
113.9260
113.9248
113.9170
113.9150
113.9150
114.2090
114.1780
114.1818
114.1607
114.1588
113.9324
113.9368

Lat
-26.4043
-26.4098
-26.3855
-26.4213
-26.3679
-26.3740
-26.4171
-26.3593
-26.3993
-26.3741
-26.4213
-26.2975
-26.3229
-26.3161
-26.3024
-26.0726
-26.0701
-26.0743
-26.1078
-26.1078
-26.2569
-26.1447
-26.1469
-26.1300
-26.1289
-26.0131
-26.0918

% Arag % HMC

0.90 0.11
0.96 0.05
0.84 0.17
0.91 0.10
0.91 0.10
0.88 0.13
0.93 0.08
0.93 0.07
0.93 0.08
0.87 0.13
0.88 0.13
0.95 0.05
0.89 0.11
0.81 0.20
0.82 0.19
0.88 0.13
0.95 0.05
0.95 0.05
0.95 0.05
0.92 0.09
0.97 0.03
0.98 0.03
0.94 0.06
0.85 0.16
0.78 0.23
0.62 0.40
0.78 0.23
0.88 0.13
0.45 0.00
1.00 0.58

147.00 147.00

Table 7-19 Mineralogic results from the 2014 Hamelin Pool sedimetns. 3/3
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Code
140317 21
140317 _T1_14
140317 T1 15
140317_T1_19
140317 _T1 7
140318 T1 13
140318 T1 2
140318 T1 3
140318 T1 5
140318 T1 7
140318 T3 3
140319 T1 1
140319 T1 4
140319 T1 5
140319 T1 6
140319 T1 9
140319 T2 4
140319 T2 5
140321 T1 1
140321 _T1 12a
140321 T1 3
140321 T1 4
140321 T1 6
140321 T1 7
140321 T1 8
140322 TI1 1
140322 T1 16
140322 T1 17
140322 T1 2
140322 T1 22
140322 T1 3
140322 T1 6
140322 T2 10
140322 T2 3
140322 T2 6
Total Mean
Total Min
Total Max

n

8C% 8" 0%

5.00
5.02
535
5.09
4.95
4.59
435
4.57
4.70
4.35
5.27
3.86
5.12
5.22
5.01
6.06
5.39
6.18
4.79
5.21
443
4.55
5.01
4.92
5.21
4.66
5.22
5.61
5.01
5.17
4.43
4.81
5.01
5.26
5.66
4.86
2.82
6.18
104.00

3.16
2.53
2.79
2.58
3.49
3.11
2.92
2.95
2.81
3.00
2.87
2.94
2.76
2.74
3.13
3.52
2.52
2.67
3.10
3.22
2.89
3.11
332
3.25
3.37
3.13
3.37
3.26
3.15
3.12
2.31
3.52
3.05
3.04
3.10)
3.17
2.23
4.05
104.00

Code

140324 T1_14
140324 T1 3
140324 T1_7
140324_T1_start
140324 T2 4
140324 T2 6
140324 t3 2 spaven
140324 T3 2b
140324 T3 5a
140324 TS5 2
140324 T5 6
140324-t1-13
140324-t3-4
140324-t4-3
140324-t5-2
140324-t5-6
140325 gth 12
140325 T1 1
140325 _t1_10
140325 T1_11
140325 T1_12
140325 T1 3
140325 t1_4
140325 T1 6
140325 T2 1
140325 t2 3
140325 T2 4
140325 t2 5
140325 T2 8
140325 t2 9
140325 T3 15
140329 _T1_Start
140330 head 42
140330_T1_03
140330_t1 1

82C% 8"0%

5.32
4.55
547
4.78
4.43
4.66
4.62
4.62
4.70
4.26
4.81
541
4.99
4.92
4.26
4.81
4.94
543
5.48
5.57
5.51
5.54
5.50
5.72
5.71
5.88
5.09
5.51
532
5.60)
5.55
5.30)
4.75
5.55
4.50

3.36
3.29
3.24
3.13
3.80
3.46
3.61
3.61
3.81
331
341
3.61
3.72
3.73
331
341
2.74
3.01
3.27
3.16
3.03
2.81
3.39
2.98
3.05
3.00,
3.25
3.23
2.98
3.07
2.83
345
3.20
3.17
3.30,

Code

140330 t1 2
140330 T1 4
140330 t1 5
140330 T1_Start
140331 T1 1
140401 _03
140401 19
140401 _3b
140406 01
140406 12
140406 13
140406 18
140406 22
140406 27
140406 Black Line
140406 t1 hutch
140407 _02
140407 05 _FP
140407_06
140407 14
140407_3
140408 02
140408 _09
140408 18
140408 25
140410 _05
140410 06
140410 09
140410 34
140414 20

GT 13

GTH 12

GTH 16
GTH_17

83C% 8"0%

4.87
5.30
4.73
4.65
2.82
3.78
428
3.46
3.79
4.07
3.76
3.57
4.07
4.34
4.02
4.68
4.45
4.79
5.05
5.88
4.83
4.84
543
535
5.15
4.11
3.63
4.09
4.58
4.52
4.63
4.07
5.09
4.64

3.55
3.46
3.91
3.13
2.74
2.98
2.55
2.51
4.05
2.23
3.28
2.84
331
3.50
3.27
3.47
3.77
3.19
3.17
2.90
2.72
3.29
3.06
3.16
3.92
3.56
3.80
3.56
3.65
4.02
2.62
2.23
2.50,
2.84

Table 7-20 Reuslts from the inorganic stable isotopes of the 2014 Hamelin Pool sediments.
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Code
140406 14
140406 _13
140410 14
140410 9
140406 _t1 _hutch
140406 _01
140410 _05
140406 12
140410 _06
140331 T5_ 15
140406 _5
140406 10
140331_t5 8
140406 09
140401_15
140401 14
140401 16
140401 _18
140401 01 18
140401_19
140401 10
140401_08
140331 t4 1
140331_t4 me
P34
140401_07
140401_06
140331 t2 start
140331 t1 1
140331 t1_start
Total Average
Total Min
Total Max

n

Latitude Longitude 5"Norg 5"”Corg % Inso %C wt %N wt C:N

114.1989
114.2100
113.9104
113.9170
114.2289
114.2289
113.9260
114.2183
113.9248
113.9104
114.2235
114.2137
113.9265
114.2158
114.1758
114.1832
114.2024
114.2126
114.2126
114.2171
114.1992
114.2004
113.9134
113.9200
113.9324
114.1338
114.1856
113.9099
113.9428
113.9076

-26.0743
-26.0739
-26.0739
-26.0726
-26.0723
-26.0701
-26.0650
-26.0631
-26.0626
-26.0618
-26.0603
-26.0565
-26.0526
-26.0520
-26.0482
-26.0482
-26.0475
-26.0346
-26.0327
-26.0325
-26.0278
-26.0131
-26.0126
-26.0103
-26.0044
-26.0006
-25.9970
-25.9958
-25.9927
-25.9890

9.06
0.90
2.59
1.09
2.65
0.66
0.42
-0.97
0.50
-2.22
1.26
-0.33
0.62
0.92
1.36
0.58
0.25
0.96
1.28
-0.26
-0.69
-0.15
0.08
0.84
0.24
0.64
0.91
0.82
0.83
-2.22
0.77
-4.28
9.06
149

-16.81
-16.82
-13.47
-16.34
-14.83
-16.41
-16.28
-15.42
-16.06
-13.16
-17.04
-14.20
-15.66
-16.51
-17.55
-13.07
-15.90
-16.55
-15.96
-15.68
-18.19
-15.65
-13.83
-17.06
-14.58
-18.62
-17.31
-14.25
-16.41
-13.16
-15.38
-21.88
-8.59
149

26.82
2.84
1.04

24.66
3.76

17.25
6.90

14.56
3.13
4.27
7.51
3.94
1.96
341
6.81
3.51

16.58
1.01
7.00

46.94
6.11

11.12
8.18
6.29

30.10

38.66
7.19

40.40

50.73

24.52
8.74

-0.31

58.03

149

0.20
0.66
0.17
0.29
0.17
0.22
0.02
0.06
0.02
0.00
0.09
0.08
0.03
0.05
0.21
0.02
0.14
0.01
0.08
0.68
0.02
0.23
0.17
0.04
0.52
0.06
0.11
0.29
0.99
0.00
0.34
0.00
3.54

149

0.03
0.07
0.03
0.03
0.03
0.03
0.00
0.01
0.00
0.00
0.01
0.01
0.00
0.01
0.03
0.00
0.02
0.00
0.01
0.08
0.00
0.02
0.02
0.00
0.06
0.01
0.01
0.02
0.11
0.00
0.04
0.00
0.42

149

6.64
11.67
7.09
9.92
7.82
8.85
7.93
8.36
8.28
0.00
9.11
10.13
9.15
10.71
9.09
9.48
9.80
8.71
8.10
9.88
6.53
10.92
10.21
10.17
10.68
8.75
10.23
16.57
10.34
0.00
9.72
0.00
24.67
149

Table 7-23 Organic 5'*N and §'"°C isotopic values, carbon to nitrogen percentage and C:N ratio results of
the organic matter from the 2014 Hamelin Pool sediments. 3/3
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