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ABSTRACT 

 

EFFECTS OF HYDROGEN SULFIDE IN HYPERHOMOCYSTEINEMIA-MEDIATED 

SKELETAL MUSCLE MYOPATHY 

 

Avisek Majumder 

 

November 20th, 2018 

 

Although hyperhomocysteinemia (HHcy) occurs due to a deficiency in 

cystathionine-β-synthase (CBS), causing skeletal muscle myopathy, it is still unclear 

whether this effect is mediated through oxidative, endoplasmic reticulum (ER) stress, 

both or something else. Cystathionine γ-lyase (CSE) and CBS are the main H2S 

producing enzymes, which produce Hydrogen sulfide (H2S) from Hcy in the 

transsulfuration reaction. H2S is an anti-oxidant compound and patients with a CBS 

deficiency cannot produce enough H2S, thus rendering them vulnerable to excess Hcy-

mediated damage.  

Both in-vitro (C2C12 cells) and in-vivo (CBS+/- mice) models were used to study 

HHcy-mediated muscle myopathy, and they were treated with sodium hydrogen sulfide 

(NaHS, an H2S donor) to mitigate the effect(s) of HHcy in skeletal muscle. To examine 

whether muscle myopathy is due to poor angiogenesis, we created a hind limb femoral 

artery ligation (FAL) in CBS+/- mouse model and treated them with GYY4137 (a long-

acting H2S donor compound).
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Results showed that oxidative stress was reversed by NaHS (H2S donor) in Hcy-

treated C2C12 cells. ER stress markers (GRP78, ATF6, and pIRE1α) were elevated both 

in-vivo and in-vitro, and NaHS mitigated these effects. JNK-phosphorylation was 

upregulated in C2C12 cells after Hcy treatment, but NaHS could not reduce this effect. 

Apoptosis was induced after Hcy treatment, and it was mitigated by the NaHS 

supplementation in C2C12 cells.  

HIF1-α, VEGF, PPAR-γ and p-eNOS expression levels were attenuated in 

skeletal muscle of CBS+/- mice after 21 days of FAL in comparison to WT mice and 

were improved via the GYY4137 (another H2S donor compound) treatment. Collateral 

vessel density and blood flow were significantly reduced in post-FAL CBS+/- mice 

compared to WT mice, and these effects were ameliorated by the GYY4137 treatment. 

Plasma nitrite levels were decreased in post-FAL CBS+/- mice compared to WT mice, 

and these were improved by GYY4137 supplementation.  

I also noticed FOXO1-mediated MuRF-1 upregulation, which further degrades 

MHC-I in CBS+/- mice compared to WT mice, and these effects were improved by NaHS 

intervention. Functional studies revealed that NaHS administration improved muscle 

fatigability in CBS+/- mice. 

This work provides evidence that H2S is beneficial in mitigating HHcy-mediated 

skeletal muscle injury incited by oxidative or ER stress responses and H2S might be 

employed as a potential therapeutic to alleviate the harmful metabolic effects of HHcy 

conditions.
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CHAPTER I  

OVERVIEW (1) 

 

Homocysteine (Hcy) has been studied extensively for over 30 years for its unique 

involvement in an increasing number of human diseases (2-4). It is generated via 

methionine cycle (MET-cycle) and its level is controlled by two processes: around 50% 

of Hcy goes to the transsulfuration pathway to produce cysteine, and the other half is re-

methylated back to methionine (MET) via the folate cycle (5-7) (Fig. 1). The normal total 

plasma Hcy concentration in the body is 5-15 μM, however, in a diseased condition, i.e., 

hyperhomocysteinemia (HHcy), total plasma Hcy levels increase (>15 μM) (8). HHcy can 

be classified as moderate (15-30 μM), intermediate (30–100 μM) and severe (>100 μM) 

(7,8). There are mainly 4 ways humans can develop HHcy: (1) methionine-rich protein 

diet (9); (2) Vitamin B12/folate deficiency (10); (3) heterozygous/homozygous for 

cystathionine-β synthase (11); and (4) obstruction of renal clearance (12).   
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Figure 1: Schematic representation of Hcy metabolism. (A) Dietary methionine is 

converted to homocysteine (Hcy) through S-adenosyl methionine (SAM) and S-adenosyl 

homocysteine (SAH) and then back to methionine (MET).  Hcy also bifurcates to the 

transsulfuration pathway where it is converted to cysteine in presence of rate-limiting 

enzymes cystathionine-β synthase (CBS) and cystathionine-γ lyase (CSE). Cysteine 

generated through transsulfuration pathway is further converted to glutathione (GSH); 

(B) Conversion of cobalamin (Vitamin B12) to methyl-B12 in the presence of methionine 

synthase reductase (MTR) is necessary for remethylation of 5-methyl- tetrahydrofolate 

(THF) to THF; (C) Dietary folic acid (Vitamin B9) enters the folate cycle after its 

conversion first to dihydrofolate (DHF) and then to THF. The 5, 10-

methyltetrahydrofolate reductase (MTHFR) is a key enzyme that converts 5, 10-

methylene-THF to 5-methyl-THF.  

 

HHcy has been associated with severe skeletal muscle dysfunction, but the precise 

mechanism(s) is still unknown (7,13-20). Children born with very high levels of Hcy, i.e., 

HHcy caused by a lack of functional CBS alleles, show severe dysfunction of the 

musculoskeletal system and die shortly after birth, but individuals that heterozygous for 

non-functional CBS mutations can survive (13). Previous studies reported that HHcy 

could cause disruption of Z-discs, fiber size, and excessive collagen deposition in 

muscle (15,20,21), but the pathways that trigger such pathological effects in skeletal 

muscles are not fully understood. Loss of skeletal muscle mass (muscle wasting) is 

mediated mainly by three processes: apoptosis, poor vasculature, and atrophy (protein 

degradation exceeds protein synthesis over time) (22,23). Therefore, identification of 

the precise molecular mechanism(s) regulating the processes underlying HHcy is 

essential to devise proper treatment strategies. Findings from our group and other 

groups determined that HHcy induces oxidative stress in endothelial cells (24), vascular 
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smooth muscle cells (25), liver tissue (26), and brain (27). Oxidative stress has been 

implicated in many diseases associated with protein misfolding and reduction of 

efficiency of protein folding pathways (28-33), but the cellular pathways that are involved 

in these stress-related conditions have not been elucidated. During severe ER-stress 

conditions, activated IRE1 recruits’ TNF receptor-associated factor 2 (TRAF2) and 

apoptosis signal-regulating kinase 1 (ASK-1), which further activates c-Jun N-terminal 

kinase (JNK) (34-36) (Fig. 2). However, whether HHcy can compromise cell survival via 

activation of JNK is not studied previously. AKT is a major survival factor promoting cell 

proliferation, and its dysregulation has been detected in muscle wasting (37-39). A 

previous study showed that activated JNK could induce inhibitory phosphorylation of 

IRS-1 at Ser307 (40). Since Ser307 phosphorylation promotes general inhibition of IRS-1 

signaling, it suggests that JNK-activation may impair PI3K/Akt axis (41). JNK controls 

cell response to the harmful extracellular stimulus (42,43). JNK/c-Jun pathway regulates 

pro-apoptotic and pro-inflammatory gene expressions (44). Whether HHcy mediates 

oxidative and ER-stress responses, and whether this further induces apoptosis in 

muscle, has not been studied previously. 

 

Figure 2: A schematic highlighting hyperhomocysteinemia mediated skeletal muscle 

dysfunction. HHcy can induce cell death via induction of ER and oxidative stress 
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responses that can lead to skeletal muscle cell death via JNK-activation and concurrent 

impairment of PI3K/AKT survival axis. 

HHcy is implicated in vascular toxicity, causing endothelial cell damage and 

dysfunction (20,45-47). Although several markers of ER-stress, including CCAAT-

enhancer-binding protein homologous protein (CHOP), have been shown to be 

increased in a model of skeletal muscle atrophy, whether HHcy mediated ER-stress can 

play a role in muscle atrophy is still unclear (48). Additionally, several models of atrophy 

showed that inhibition of PI3K/Akt signaling induces nuclear import of FOXO in 

regulating Atrogin-1 and MurF-1 expression (49,50). Some studies have already 

demonstrated that HHcy inhibits Akt activation in endothelial cells (47), but whether this 

similar mechanism can be attributed to muscle myopathy is yet to be explored (37).  

H2S is increasingly being recognized as an important signaling molecule in the 

cardiovascular and nervous systems via its ability to neutralize a variety of reactive 

oxygen species (ROS) (51-53), as well as via increased cellular glutathione (GSH) levels 

through activation/expression of -glutamylcysteine synthetase (54-61). Cystathionine γ-

lyase (CSE) and CBS are the main H2S producing enzymes, which produce H2S from 

Hcy in the transsulfuration reaction (62). CBS gene mutation leads to dysfunction in 

endogenous H2S biosynthesis (63), suggesting that patients with this mutation are more 

prone to oxidative stress-mediated damages due to malfunction in Hcy metabolism and 

inefficient H2S biosynthesis (54). CBS is a crucial enzyme in the transsulfuration 

pathway, and heterozygous CBS deficient (CBS+/-) mice show mild to severe 

endogenous elevation of circulatory Hcy levels (64-71) and lower levels of H2S in their 

blood, which lead to oxidative stress-mediated damage (72,73). Hence, it is important to 

study the mechanism of exogenous supplementation of H2S as a possible approach to 

mitigate the effects of HHcy condition in skeletal muscle myopathy.  

In this study, I examine the potential mechanisms of HHcy-mediated oxidative 
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stress, ER stress, inflammation, apoptosis, angiogenesis, and atrophy in skeletal 

muscle, and whether H2S has any beneficial role on mitigating these effects.  

 

1. Homocysteine and Hyperhomocysteinemia 

Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid that is 

produced during the metabolism of methionine (MET) via MET-cycle (2). Post 

absorption, MET is converted into S-adenosylmethionine (SAM) by ATP and catalyzed 

by methionine adenosyltransferase (MAT), leaving it with a transferrable methyl group. 

This methyl group is donated for cellular methylation requirements and becomes S-

adenosyl-homocysteine (SAH). SAH hydrolase is an enzyme that reversibly hydrolyzes 

SAH and produces Hcy (74). Hcy is present in blood in three different forms: around 1% 

as free thiol, 70–80% as a disulfide-bound to a swath of plasma proteins, and the 

remaining 20-30% as a homo/heterodimerize with other thiols (3). Upon the generation 

of Hcy via the MET-cycle, 50% goes to the transsulfuration pathway for production of 

glutathione (GSH, an antioxidant) and the rest is re-methylated back to MET via the 

folate cycle as shown in Fig. 1 (2,5,6).  

In healthy individuals, the generation and elimination of Hcy stays in balance; 

however, once this homeostasis is disturbed, it leads to HHcy (75). HHcy can be 

developed via consumption of an excess amount of MET-rich diet, vitamin B12/folate 

deficiency, the occurrence of heterozygous/homozygous CBS gene mutation, and the 

obstruction of renal clearance (12). Besides these, genetic mutations in any Hcy 

metabolism pathway-regulated genes (e.g., 677C>T and 1298A>C in the MTHFR gene) 

can also lead to HHcy (14,76-78) (Table 1). Other determinants as well, such as age, 

sex, physical activity, alcohol intake, certain medications, and even different disease 

conditions can offset the rate of MET-cycle, thereby influencing the corresponding 

increase in the total Hcy levels in the blood (79). During HHcy, the MET-cycle is 
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generally dysregulated (80). This leads to disruption of multiple signaling pathways 

because it is the only pathway that gives rise to the production of essential methyl 

groups needed for the subsequent biosynthesis of cellular compounds such as creatine, 

epinephrine, carnitine, phospholipids, proteins, and polyamines and also the 

epigenetically governed cellular processes like methylation of DNA, RNA, and histones 

that are dependent upon Hcy metabolism (7,81). Although HHcy conditions can cause 

multi-organ pathologies via oxidative and ER-stress responses (7,20,82-84), the precise 

mechanisms of multi-organ pathology due to HHcy remain elusive. 

 

Genes 

Polymorphisms/Mutations 

Condition 
Associated 

Diseases/Phenotypes 
References Nucleotide 

change 

Amino acid 

/splice site 

change 

CBS 

T833C Ile278Thr HHcy Stroke (86) 

844INS68 

produces an 

alternate splice 

site 

HHcy 
Peripheral artery occlusive 

disease 
(85) 

844INS68 

produces an 

alternate splice 

site 

HHcy Thrombosis (87) 

MTHFR 

C677T Ala223Val HHcy Retinal vein occlusion (88) 

C677T Ala223Val HHcy Stroke (89-92) 

C677T Ala223Val HHcy Venous thromboembolism (93) 

C677T Ala223Val HHcy Hypertension (94-96) 

C677T Ala223Val HHcy Alzheimer's Disease (97) 

A1298C Glu429Ala HHcy 
Cerebral venous sinus 

thrombosis 
(98-100) 

C677T Ala223Val HHcy Hyperlipidemia (101) 

C677T Ala223Val HHcy Diabetic nephropathy (102-105) 

C677T Ala223Val HHcy 
Cerebral venous 

thrombosis 
(106) 

C677T Ala223Val HHcy Parkinson's Disease (107,108) 
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Table 1. List of most prevalent genetic polymorphisms/mutations reported in HHcy and 

associated Diseases/Phenotypes. 

 

Metabolism of Hcy depends on several factors, i.e., the level of methionine in the 

diet, SAM level and the type of cells in which methionine metabolism takes place (109). 

High SAM level can act as an allosteric inhibitor for methylenetetrahydrofolate reductase 

(MTHFR). MTHFR catalyzes the conversion of 5,10-MTHF to 5-MTHF, which is a co-

substrate of Hcy in the remethylation reaction (110). Therefore, the presence of high 

SAM prevents Hcy from entering the remethylation pathway. High SAM level also acts 

as an allosteric activator CBS the transsulfuration pathway (111,112). Together it 

appears that the presence of high level of SAM favor Hcy entering to the transsulfuration 

pathway. However, only a few organs such as the liver, kidney, pancreas, brain, adipose 

tissue and small intestine express CBS (113,114). Vascular and muscle tissues don’t 

express CBS, so the high SAM lead to transient accumulation of Hcy (82). Hcy 

metabolism also depends on dietary MET load (115-117). When diet contains a basal 

methionine level, Hcy cycles through remethylation pathway about 1.5-2.0 times before 

being directed towards the transsulfuration pathway, but when dietary methionine 

content is half the basal level, the cycling of Hcy via the remethylation pathway 

increases 2-fold (118). Conversely, when the dietary MET level is high, Hcy cycling 

through the remethylation is reduced by about 1.5-fold (118). High levels of intracellular 

Hcy exported out into the circulation (119); however, the exact mechanism of Hcy export 

is not identified yet.  Although HHcy is found in ~5-7% of the general population and is 

associated with increased risk of cardiovascular disease, osteoporosis, skeletal muscle 

myopathy and other metabolic complications (7,20,82-84), the precise molecular 

pathways that lead to multi-organ dysfunction remain mostly unexplored. 
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2. Skeletal muscle structure and functions 

Skeletal muscle is the largest organ (roughly 40 to 50% of the body’s total weight 

in an average human), constitutes 50-75% of the body's total proteins (120-122). Muscle 

contains very long multinucleated cells (myocytes) that are bundled up and surrounded 

by connective tissues (123). Primary functions of skeletal muscle are: 1) production of 

contractile force that provides breathing, locomotion and postural support; and 2) 

thermogenesis during periods of cold stress (123). For force production, depending on 

the primary function of the muscle it consists of either fast twitch (type I) or slow twitch 

(type II) fibers (123). Type I fibers are used for repetitive, low-intensity functions, such as 

postural support (123). These fibers provide less force generation but are fatigue-

resistant and have a higher reliance on oxidative metabolism and therefore have more 

density of mitochondria and oxidative enzymes (123). Type II fibers are divided into two 

fiber subsets: type IIx and type IIa (123). Type IIx fibers are very glycolytic and produce 

high contractile force but are susceptible to fatigue due to a lower mitochondrial density 

(123). Type IIa fibers are an intermediate fiber type (123). They provide a moderate 

contractile force and are more fatigue-resistant than Type IIx fibers (123).  

Myocytes, unlike most other cell types, contain multiple nuclei and are striated 

because of contractile segments called sarcomeres (123). Within each muscle fiber, a 

structure called myofibril that contains the contractile protein of the muscle called actin 

and myosin (123). Actin filament consists of two additional proteins known as troponin 

and tropomyosin, which are used for contractile regulation (123). The striated regions, 

called sarcomeres, are within the myofibrils and consist of areas of myosin/actin overlap, 

as well as an area where myosin does not overlap with actin, called the H zone (123) 

(Fig. 3). Sarcomeres are divided by a wall of structural proteins, which makes up a 

region of the sarcomere called the Z line (123). Based on "sliding filament theory," during 
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contraction, the required energy comes from the de-phosphorylation of adenosine 

triphosphate (ATP), wherein myosin heads "cock" form cross-bridges with actin and then 

pivot inward towards the H zone (124), that ultimately decreases the sarcomere length 

from one Z line to another Z line (Fig. 3) (125). 

 

Figure 3: Structure of a muscle fiber, organization of myofibril, and banding pattern. 

Surrounding each myofibril is a network of channels that serve as a storage site 

for calcium, which is crucial for the regulation of muscle contraction (126). This structure 

is called the sarcoplasmic reticulum (126). The transverse tubules are another set of 

channels that pass through the muscle fiber (126). Each myocyte is connected to a 

branch of a motor neuron through a neuromuscular junction serving as the site of 

electrochemical transmission (127). Collectively, all the myocytes that are innervated by 

a single motor neuron are termed as a motor unit (127). Upon generation of an action 

potential high enough to cause contraction, the neural impulse is transmitted to the 

myocyte through the neuromuscular junction and is propagated down the transverse 

tubules to the sarcoplasmic reticulum, causing Ca++ to be released (128). Ca++ binds to 

the troponin molecule, which creates a shift in tropomyosin position (128). This allows for 
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exposure of the actin active sites and myosin-actin cross bridge formation, resulting in 

contraction (128).  

In adults, repair of degenerated muscles relies on a small population of skeletal 

muscle stem cells known as satellite cells (129). Satellite cells, a population of 

quiescent muscle precursor cells, reside beneath the basal lamina, providing the 

predominant source of additional myonuclei for muscle growth (130,131). Once 

activated, satellite cells give rise to myoblasts that proliferate, differentiate, and fuse to 

form new muscle fibers or to repair damaged muscle fibers (132,133). The availability 

of a pool of myoblasts for myogenesis is essential for the development of muscle  

(134). The decreased number of muscle fibers could be due to the reduced myoblast 

proliferation or cytotoxicity (134). Moreover, in most cases, the apoptosis of myoblasts 

serves as a physiological behavior to remove excess myoblasts during myogenesis or 

muscle regeneration, while inappropriate apoptosis will pathologically lead to 

degeneration that is associated with various muscular dystrophies and atrophies 

(135,136). Therefore, identification of the molecular mechanism(s) of how high Hcy 

induced myoblast cytotoxicity is essential in understanding skeletal muscle growth, 

disease, and regeneration during HHcy condition. 

 

3. Hyperhomocysteinemia-mediated skeletal muscle pathophysiology 

HHcy is a known risk factor for vascular diseases (137); however, several studies 

also reported that HHcy leads to skeletal muscle weakness and functional impairment 

(5,15,20,21,46,66,82). Children born with severe homocystinuria due to CBS deficiency 

exhibit reduced body weight, skeletal muscle myopathy, and die teenage years 

(7)(5,15,20,21,46,66,82). Previous studies from our group showed that genetically 

modified HHcy mice (heterozygous for CBS gene deficiency) have lower body weights 

and less fatigue resistance and produce less contractile force, contain lower muscle ATP 
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levels, low dystrophin, and mitochondrial transcription factor A (mtTFA) (82). Similarly, in 

a study, Kanwar et al. [1976] found that HHcy can cause focal fragmentation, disruption, 

and smearing of the Z‐discs and disorganization of the myofilaments in the skeletal 

muscles (15). This study also showed that HHcy could reduce cellular metabolic activity 

and induce energy imbalance in gastrocnemius rat skeletal muscle by decreasing the 

activity of pyruvate kinase, creatine kinase, and noticed increased activity of succinate 

dehydrogenase (18). Similarly, Veeranki et al. [2015] showed that Hcy affects fatty acid 

oxidation, affecting energy metabolism in skeletal muscle via PGC‐1α specific protein 

nitrotyrosylation and a concomitant reduction in association with PPAR-γ (82). On the 

other hand, many neurological disorders like amyotrophic lateral sclerosis (ALS) and 

multiple sclerosis affect muscle degeneration, and these medical conditions are also 

connected to HHcy (16). HHcy significantly lowers physical functions by deteriorating 

skeletal muscle functions in older compared to age-matched healthy subjects (138), 

which suggests that aging is one of the potential risk factors to be considered in this 

process (139). 

Disorders, such as muscular dystrophy, sarcopenia, and immobilization, have 

been extensively researched. However, there is not enough data available considering 

the effects of HHcy on these conditions. Swart et al. [2013] demonstrated that in elderly 

individuals (~75.6 years of age), plasma Hcy levels had a strong inverse correlation with 

grip strength and functional capabilities (140). High Hcy levels resulted in poor grip 

strength in men and lowered functional ability including walking, climbing stairs and 

rising from a chair (140). In heterozygous CBS-deficient mice (CBS+/-), a model of mild to 

moderate HHcy, it was observed that 28 days post-induction of hindlimb ischemia CBS+/- 

mice displayed blunted hindlimb perfusion and lower collateral blood vessel 

development when compared to WT mice (46). This study also found that CBS+/- mice 

had lower vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF1-α) 
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and peroxisome proliferator-activated receptor coactivator 1-α (PGC1-α) after 28 days of 

ischemic recovery when compared to controls (46). Below, I have summarized the 

findings relevant to oxidative/ER-stress, apoptosis, atrophy and poor angiogenesis 

caused by HHcy that might contribute to skeletal muscle dysfunction. 

 

3.1. HHcy-mediated oxidative/ER-stress responses in skeletal muscle 

During metabolic processes, a certain amount of pro-oxidative reactive oxygen 

species (ROS) are formed. The intracellular environment is predominantly a reducing 

environment due to the presence of enzymes like glutathione peroxidase (GPx), 

superoxide dismutase (SOD), and catalase (CAT), which break down ROS into water 

and oxygen.  There are also a series of built-in redox defense systems that inactivate 

ROS, which include reduced glutathione (GSH), hydrogen sulfide (H2S), nicotinamide 

adenine dinucleotide - hydrogen (reduced) (NADH), thioredoxin, and free radical 

scavengers such as Vitamins C and E (141-143). Oxidative stress occurs when there is 

an imbalance between free radical production and antioxidant capacity in a given cell. 

Previous studies revealed that Hcy contains a -SH group like other thiols (RSH) which 

can undergo oxidation to form a disulfide bond (RSSR) even at physiological pH in the 

presence of metal catalysts and molecular oxygen [O2
°] (21) (Fig. 4). Further, Hcy can 

also produce hydrogen peroxide (H2O2, a pro-oxidant molecule) during metal-catalyzed 

oxidation step and peroxynitrite (ONOO-, a potent oxidant) in the presence of nitric oxide 

(NO) and superoxide anion (.O2
-) (144). Findings from our group and others 

demonstrated HHcy effects on oxidative stress in cardiac microvascular endothelial cells 

(24), vascular smooth muscle cells (25), and the liver tissue (26). Although these 

phenomena have been studied in multiple tissue types, whether HHcy exerts its 

detrimental effects on muscle through similar mechanisms is not known. 
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Figure 4: Redox imbalance during hyperhomocysteinemia: (A) Homocysteine can 

homo/hetero-dimerize in the presence of transition metal catalysts and molecular oxygen 

to form superoxide radicals that are converted to H2O2 by superoxide dismutase (SOD) 

and which are in turn neutralized to H2O and O2 by glutathione peroxidase (GPx) and 

catalase (CAT).  

 

Several studies have reported that HHcy creates oxidative stress that promotes 

apoptosis, inflammation, insulin resistance, and dysregulation of lipid metabolism in 

different organs (5,7,145,146). Moreover, increased ROS level due to HHcy can be 

involved in lipid peroxidation, protein denaturation, and DNA damage, which ultimately 

damage cellular components; modulates gene expression, alters cell signaling 

pathways, and energy imbalance (147). Besides, Hcy can also form Hcy‐thiolactone and 

acetylates free amino groups in proteins, which further intensify the exaggerated 

oxidative stress condition (146). DiBello et al. [2010] showed that proteins (PRDX1, 

PRDX2, and HSP90AA) which are produced as a response to oxidative stress were 

significantly upregulated in the liver during HHcy (148). One study showed that 

production of ROS was ameliorated by PPAR‐γ activation in ECs (146), as reported 

previously from our laboratory indicating that PPARγ was reduced in HHcy condition 
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(148), suggesting that PPAR‐γ can be used as a potential target to mitigate oxidative 

stress during HHcy. HHcy lead to oxidative stress and that interferes with different 

cellular signaling pathways in various organs; therefore, it suggests that HHcy may have 

similar pathological effect in muscle tissue. 

Oxidative stress has been implicated in many diseases associated with protein 

misfolding pathways (28-33). Indeed, a study by Malhotra et al. [2008] showed that 

antioxidants reduce endoplasmic reticulum (ER) stress and improve protein secretion in 

Chinese hamster ovary (CHO)-H9 cells (149). Similarly, a study using differential display 

analysis in HUVECs found that GRP78 (78-kDa glucose-regulated protein) was 

upregulated in Hcy-treated HUVECs compared to controls (150). GRP78 is a chaperone 

protein belonging to the HSP70 family and predominantly resides in the lumen of the ER 

(151). HHcy can induce ER-stress (33), but which pathways get affected by this 

condition is poorly understood. It is known that after translation protein folding occurs 

inside ER, but during stress conditions, misfolded proteins accumulate inside the ER-

lumen and induce unfolded protein response (UPR) (152). UPR increases transcription 

of chaperone genes to facilitate protein folding, helps to attenuate the translation 

process, and finally, it degrades misfolded proteins accumulated in ER (153-155). In the 

mammalian system, UPR is mediated through inositol-requiring protein 1 (IRE1), PRKR-

like ER kinase (PERK), and activating transcription factor 6 (ATF6) (156). IRE1 

promotes X-box binding protein 1 (XBP1) mRNA splicing, which finally activates ER 

chaperones (e. g. BiP/GRP78, EDEM, and ERdj4). PERK phosphorylates eukaryotic 

translation initiation factor 2α (eIF2α), and that stops translation. ATF6 regulates the 

expression of chaperone genes and ER-associated degradation (ERAD) genes (157-

159). Several studies showed that HHcy could exacerbate ER-stress by reducing the 

efficiency of protein folding pathways and increasing the production of misfolded proteins 

(28). ER-stress might play a key role in mediating adverse effects during the HHcy 
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condition in muscle (160).  

 In the mammalian system, there are two isoforms of IRE1: IRE1α and IRE1. 

Both of these proteins are transmembrane proteins and contain a Ser/Thr kinase domain 

and an endoribonuclease domain (161,162). In a stress-free environment, IRE1α 

remains in an inactivated form bound with GRP78; however, in stress condition, it 

dissociates from GRP78 and gets auto-phosphorylated (163). Then the endonuclease 

activity of activated IRE1α cleaves a 26bp intron from ubiquitously expressed XBP1u 

mRNA. Removal of this intron causes a frameshift in the XBP1 coding sequence, 

resulting in the translation of XBP-1s isoform (152). XBP-1s encodes a specific basic 

leucine zipper-containing transcription factor, known as X-Box Binding Protein-1 (XBP1) 

to promote cell survival (163-165). However, during severe ER-stress conditions, IRE1α 

recruits' TNF receptor-associated factor 2 (TRAF2) and apoptosis signal-regulating 

kinase 1 (ASK-1), then activates c-Jun N-terminal kinase (JNK) and induces apoptosis 

(34-36). Although many studies also reported bidirectional regulation of ER-stress in 

apoptosis through JNK activation, and concomitant attenuation of cell proliferation and 

protein synthesis via PI3K/AKT axis (166-168), it is unknown whether HHcy exerts its 

detrimental effect in muscle through this similar mechanism pathway (Fig. 5).  
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Figure 5: HHcy-mediated cellular stress responses. (A) HHcy-mediated excessive 

production ROS impaired biogenesis, as well as protein folding process leading to ER-

stress, (B) Activation of IRE1α during ER-stress response, causes XBP1 mRNA splicing. 

During severe ER-stress condition activated IRE1α recruits’ TNF receptor-associated 

factor-2 (TRAF2) along with apoptosis signal-regulating kinase-1 (ASK1), which further 

activate c-Jun N-terminal kinase (JNK). (C) Activated JNK phosphorylates c-Jun, that 

recruit activator protein-1 (AP-1) to the promoter sequences of various pro-apoptotic and 

pro-inflammatory genes and induce cell deaths. (D) JNK is also involved in the 

phosphorylation of IRS-1 at Ser307 which in turn inhibits IRS-1 signaling thus impairing 

the PI3K/AKT axis and interfere with cell survival. 

 

3.2. HHcy-mediated cell death pathways 

Apoptosis is programmed cell death and is required for normal development; 

however, a very high amount of apoptotic cell death due to environmental stress can be 

detrimental (169). Excessive apoptosis is observed in many well-known disease states 

such as ischemic heart disease, AIDS, Alzheimer's, and Parkinson's, etc. (170-172). 



          17 

Apoptosis occurs in 2 phases; namely, the death decision phase and execution phase. 

Death decision phase is controlled by two proteins, such as pro-apoptotic (Bax and Bak) 

and anti-apoptotic proteins (BCL-XL and BCL-2). The execution phase is regulated by 

caspases (proteolytic enzymes), responsible for the execution of apoptosis after the 

death decision is confirmed (173). Unlike necrosis, apoptosis occurs at a single cell level 

(173). Studies showed that an increase in oxidative stress could lead to caspase 

activation (174-177). This oxidative stress-mediated apoptosis was further supported by 

other studies demonstrating that anti-oxidants such as N-acetylcysteine (NAC) treatment 

could block apoptosis in a similar way that caspase inhibitors do (178,179). Several 

mechanisms(s) have been proposed pointing to the fact that oxidative stress generated 

by HHcy can lead to multiorgan pathologies (5,7,145,146). This argues that stimulus no 

other than redox imbalance during HHcy is capable of inducing apoptotic cell death. 

Even though findings have suggested that HHcy could be causal in a wide range of 

disorders including skeletal muscle myopathy; however, whether Hcy mediates skeletal 

muscle myopathy via inducing different types of cell deaths (apoptotic, necrotic and 

pyroptotic) are needed to identify. 

Studies showed that Hcy induced apoptotic cell death in ECs (180,181). A 

previous finding revealed that Hcy causes apoptosis in HUVECs via activation of UPR, 

which was mediated through IRE1 activation (182). Similarly, another study suggested 

that Hcy can induce trophoblast cell death during embryonic development (183). Hcy 

was also found to induce apoptosis in bone marrow mesenchymal stem cells (BMSCs) 

via oxidative stress mediated JNK activation (184). Folate deficiency, which is one of the 

causes of HHcy found to induce apoptotic cell death in RINm5F pancreatic Islet β–cells, 

through oxidative-nitrosative stress (185)(186). Mesangial cell apoptosis via inducing 

ROS and p38-MAPK activation had also been reported (187). Hcy induces apoptosis via 

upregulation of DNA damage response in neurons; this process is mediated through 
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PARP activation, and p53 induction (188). Our lab using genetically engineered 

heterozygous CBS deficiency mouse model (CBS+/-) reported that HHcy causes cell 

death via upregulation of mitochondria-mediated cell death pathway (BAX, caspase-9, 

and caspase-3) (189). Hydrogen sulfide (H2S) is known to be involved in the modulation 

of many physiological pathways. A study found that H2S-releasing sildenafil (ACS6) 

treatment could protect HHcy-mediated apoptosis in PC12 cells (190).  

 

3.3. HHcy-mediated dysregulation of angiogenesis 

Although many studies have been conducted to identify the possible 

mechanism(s) of skeletal muscle myopathy, fewer studies have demonstrated the 

potential risk factors that inhibit skeletal muscle adaptability in response to chronic 

ischemia. Poor angiogenic capacity is known to play a vital role in skeletal muscle 

adaptability (191,192). Lack of revascularization is already reported in elderly frailty and 

in many metabolic disorders, where metabolic factors and associated signaling 

pathways are found to be involved in a variety of skeletal muscle dysfunctions (193). 

Besides these, HHcy is well-studied in the cardiovascular system where it has been 

shown to increase oxidative stress in vascular tissue and cause dysfunction of ECs 

(194,195).  

The purpose of capillaries is to serve as the interface for delivery of oxygen and 

removal of metabolites to/from tissues. Angiogenesis is a physiological process where 

new blood vessels form from the pre-existing ones (191). Angiogenesis plays a vital role 

during tissue injury/wound repair, endometrial cycle, and muscle adaptation to 

stress/exercise (196). Previous studies demonstrated that HHcy impairs angiogenesis in 

multiple tissues (197-201). During angiogenesis, the main angiogenic signal is vascular 

endothelial growth factor (VEGF). VEGF production is mainly up-regulated in a tissue 

under hypoxic conditions via inducing hypoxia inducing factor 1 (HIF1) and that plays 
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a pivotal role in angiogenesis. VEGF binds to VEGF receptor (VEGFR) on ECs’ surface 

which goes through promotes ECs’ growth and migration towards the source of VEGF 

(202). Upon VEGF binding to VEGFR, PI3K is also activated leading to activation of the 

protein kinase Akt, which in turn phosphorylates eNOS and increases NO production 

during angiogenesis as shown in Fig. 6. Akt activation can also promote endothelial 

proliferation and cell survival.  

 

Figure 6: Hypoxia mediated angiogenesis via VEGF/Akt axis. Under hypoxic condition, 

VEGF production is up-regulated in tissue under hypoxic conditions via inducing hypoxia 

inducing factor 1 (HIF1) and that plays a pivotal role in angiogenesis via activating 

multiple angiogenic signaling cascades for endothelial cell proliferation, migration, and 

survival. 

 

An early study showed that Hcy treatment on chicken embryos (embryonic day 

3.5) caused inhibition of early extraembryonic vascular development, altered 
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composition of the vascular beds, and reduced VEGF-A and VEGFR-2 expression (200). 

Similarly, when HUVEC cells were treated with Hcy, it reduced cell proliferation and 

viability, induced a G1/S arrest, and attenuated the cell migration and tube-like formation 

on Matrigel (201). This study showed that this effect is mediated through VEGF/VEGFR, 

Akt, and ERK1/2 inhibition (201) as shown in Fig. 6. Similarly, a study demonstrated that 

Hcy inhibits angiogenesis by preventing proliferation and migration of ECs in a dose-

dependent manner (199). In an in-vivo rat model, it was reported that HHcy impaired 

ischemia-induced angiogenesis and collateral vessel formation, which is partly mediated 

through the reduction in bioactivity of endogenous NO (197). Several groups showed 

that Hcy-mediated defective angiogenesis is largely due to decreased GPx expression 

and a consequent increase in oxidative stress, leading to endothelial progenitor cell 

dysfunction (203,204), reduction of the bioavailability of NO (205,206) and dysregulation 

of matrix metalloproteinases (MMPs) (207,208).  

Previous studies showed that high Hcy can be toxic to endothelial cells and can 

induce endothelium dysfunction may be via hypomethylation of specific genes (209-

212). It also noticed that Hcy affects ECs via inhibiting cyclin A (213). When they 

transduced cyclin A in ECs, the inhibitory effect of Hcy was rescued. These studies have 

been conducted in an in-vitro system; however, there is much less evidence reported for 

the in-vivo system. As Akt has been associated to involved in ECs proliferation, 

migration and survival during angiogenesis and HHcy found to inhibit Akt activation in 

ECs, however, whether these two processes potentiate muscle atrophy is not studied yet 

(37,45). 

 

3.4. HHcy-mediated skeletal muscle atrophy 

As mentioned earlier, skeletal muscle is the largest organ in our body, containing 

50-75% of the body's proteins. Loss of skeletal muscle mass is commonly referred to as 
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muscle atrophy. Several E3 ubiquitin ligases such as MuRF1, MAFBx (Atrogin-1), 

Nedd4.1, TRAF6, and MUSA1 have been identified to mediate proteolytic degradation of 

both thick and thin filament proteins in skeletal muscle atrophy (214,215).  Forkhead Box 

(FOX) proteins are a group of transcription factors with a conserved DNA binding 

domain and are responsible for regulating a number of E3-ubiquitin ligases upon a 

variety of cellular stress responses (216-219). Studies showed that in the absence of 

growth factors or in the presence of external stress (oxidative/ER-stress), PI3K/Akt 

pathway activation decreases and JNK activation increases; which promote nuclear 

localization of Foxo (216,220-223) as shown in Fig. 7. Although nuclear localization of 

FOXO stimulates MuRF-1 and Atrogin-1 expression, and that induces muscle atrophy 

(224), however, whether HHcy also causes skeletal muscle atrophy via this similar 

mechanism was not studied (Fig. 7). 

 

Figure 7: Schematic model of HHcy-induced muscle atrophy via nuclear translocation 
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of FOXO. In HHcy condition, JNK activation may be upregulated and Akt-activation 

may be downregulated, which promotes nuclear localization of FOXO and reduced 

activation of mammalian target of rapamycin (mTOR). Nuclear localization promotes 

upregulation of MuRF-1 and Atrogin-1, which finally degrade muscle proteins. 

Whereas reduced activation of mTOR reduced protein synthesis. Muscle atrophy 

causes, when protein degradation exceeds over protein synthesis over time.  

 

It has been reported that HHcy is associated with a decline in physical 

performance and skeletal muscle dysfunction in genetically engineered CBS deficient 

mice (CBS+/-) (5,20,82). Skeletal muscle dysfunction and poor physical performance 

can result from a reduction of muscle mass and/or structural and metabolic alteration 

(Fig. 7) (139,225,226). Indeed, a study found that cystathionine γ-Lyase-deficient mice 

have lethal myopathy and oxidative injury, wherein dietary cysteine supplementation 

could mitigate this effect (84). Another group reported patients with HHcy due to 

methyltetrahydrofolate reductase (MTHFR) mutations (C677T and A1298C) showed 

poor survival and muscle pain in these patients (227). Similarly, a study from our group 

concluded that vasodilation in skeletal muscle arterioles is decreased during HHcy due 

to reduced expression of gap junction proteins such as connexins 37, 40 and 43, and 

increased expression of myostatin in the skeletal muscle (228).  

 

4. Effect of hydrogen sulfide on hyperhomocysteinemia-mediated skeletal muscle 

myopathy 

Hydrogen sulfide (H2S) is increasingly being recognized as a novel endogenous 

gasotransmitter like nitric oxide (NO) and carbon monoxide (CO) (54,59,229). Being a 

potent anti-apoptotic/anti-necrotic (230,231), anti-inflammatory (232) and cytoprotective 

agent (233), H2S plays crucial roles in physiological homeostasis wherein it reduces 
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oxidative damage (51,234). As mentioned earlier, high SAM level can act as an allosteric 

inhibitor for MTHFR in the remethylation pathway (110) and allosteric activator for CBS 

in the transsulfuration pathway (111,112). Together these results suggest that the 

presence of a high level of SAM favors Hcy entering into the transsulfuration pathway; 

however, in patients with CBS mutation, a high SAM level builds up (due to MET load) 

leading to transient accumulation of Hcy and reduction of H2S levels. The endogenous 

H2S production ranges from 1–10 pmoles per second per mg protein (235). Patients with 

CBS mutation have a high amount of Hcy and tend to produce a lesser amount of H2S 

(63,236), suggesting that these patients are likely more prone to oxidative stress-

mediated damage (54). Studies revealed that endogenous H2S could modulate multiple 

signaling pathways, upregulate endogenous antioxidant systems and exert additive 

effects with known antioxidants (234), suggesting that exogenous supplementation of 

H2S could be employed as a beneficial strategy to improve redox imbalance owing to 

HHcy (Fig. 8). 
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Figure 8: Salubrious effects of H2S on cellular biochemistry. (A) Being an important 

antioxidant molecule H2S helps synthesize cysteine which gets converted into GSH via 

CBS and CSE enzymatic pathways. (B) H2S is a potent scavenger for a variety of 

reactive oxygen species (ROS). (C) H2S is known to reduce disulfide bonds in proteins 

and thereby it may reverse the homocysteinylation of proteins during HHcy conditions. 

 

4.1. The effect of Hydrogen sulfide on oxidative/ER-stress responses 

Multiple studies demonstrated the cytoprotective effects of H2S in different in-vitro 

models, all relating to its ability to neutralize a variety of reactive species (25,237,238) 

and reduction of a disulfide bond in proteins (54,239) (Fig. 8). H2S in water dissociates 

into H+, HS−, and S2− ions. HS− has a capacity to scavenge ROS. H2S itself has also 

been recognized to be a reducing agent, as it can react directly with and quench the 

superoxide anion (O2−) (240,241) and free radicals like peroxynitrite (242) as well as 
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other ROS in-vitro. Micro concentrations of H2S generated from Na2S/NaHS was found 

to neutralize free oxyradicals (243), peroxynitrite (237), hypochlorous acid (238) and 

homocysteine (25) in in-vitro condition. There is no sulfide receptor in mammalian cells 

that is responsible for the biological actions of sulfide, hence sulfide, as a thiol with 

strong reducing activities, may also be a redox-controlling molecule similar to other small 

thiols, such as cysteine and GSH (237,244). A study by Kimura et al. (2004) using 

primary cultures of neurons, found that H2S increases the cellular GSH levels by 

enhancing the activity of gamma-glutamylcysteine synthetase and up-regulating cystine 

transport (244). Similarly, another study reported that 100 μM NaHS induces glutamate 

uptake by assisting glial glutamate transporter-1 (GLT-1) and enhances cysteine 

transport and GSH synthesis (245).  In support of this effect, multiple studies 

demonstrated that H2S induces the cellular GSH in the brain (246), spinal cord (247), 

heart (248), lung (249), kidney (250), liver (249), and gastrointestinal tract (251,252). 

Moreover, recent reports suggested that H2S could attenuate cellular oxidative stress by 

improving activities of CAT (248,253-255) and GPx (256-258).  

Many studies showed that H2S attenuates ER-stress in numerous tissue types. A 

study found that H2S attenuated HHcy-induced cardiomyocytic ER-stress in rats (259). 

Whereas, Li et al. (2015) demonstrated that H2S protected against myocardial 

ischemia/reperfusion injury in rats by inhibiting ER-stress (260). Likewise, another study 

also reported that H2S exerts its protection against the neurotoxicity of formaldehyde by 

overcoming ER-stress in PC12 cells (261).  

 

4.2. The effect of Hydrogen sulfide on cell death pathways  

In addition to an anti-oxidant effect of H2S, several studies also proposed that it 

has the ability to reduces cell death in various tissue types. An in-vitro study using 

nucleus pulposus (NP) from patients with lumbar disc herniation showed that exogenous 
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H2S donor attenuated hypoxia (generated by CoCl2 treatment) induced apoptosis in 

primary NP cells (262). Similarly, a study using a rat model found that H2S mitigates 

cigarette smoke-induced apoptosis via reducing ER-stress (263). H2S was also reported 

to decrease Hcy-mediated ER-stress and apoptosis in the hippocampus of rats by 

enhancing the BDNF-TrkB pathway (264). In support of this, NaHS supplementation was 

shown to significantly inhibit hypoxia-induced neuronal apoptosis through inhibition of 

ROS (mainly H2O2)-activated Ca2+ signaling pathway in mouse hippocampal neurons 

(265). In another study, it was observed that H2S attenuated gentamicin-induced 

apoptosis via reducing ROS moiety in normal rat kidney-52E cells; they found the 

protein levels of Bax, Caspase-3, and cleaved-caspase-3 were decreased while the 

expression of Bcl-2 was increased (266). Similarly, NaHS (H2S donor) administration 

significantly inhibited the early phosphorylation of JNK and decreased the number of 

apoptotic cells, lowered cytochrome C release and enhanced Bcl‐2 expression in 

cardiomyocyte after ischemia-reperfusion (I/Re) injury (267). H2S also attenuated 1-

methyl-4-phenylpyridinium ion (MPP (+))-induced apoptosis in PC12 cells by attenuating 

an overproduction of intracellular ROS (268). Exogenous NaHS (H2S donor) also shown 

to ameliorate early brain injury after subarachnoid hemorrhage (SAH) by inhibiting 

neuronal apoptosis (268). 

 

4.3. The effects of Hydrogen sulfide on angiogenic defect 

It has been reported that H2S is also involved in vasodilation, vascular protection, 

regulation of blood pressure and many other functions (54,57-59,61). Like other 

gasotransmitters (CO and NO), H2S can rapidly travel to vascular tissues without any 

transporter exerting a host of biological responses. Two independent groups reported 

using either transformed endothelial cell line (RF/6A) or HUVECs that H2S induces 

proliferation and migration of these cells (269,270). The pro-angiogenic effect of H2S is 
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further supported by the increase in tube-like structure formation in ECs in in-

vitro Matrigel assays (269,270). H2S exerts angiogenic effects via releasing VEGF in 

both SMCs (smooth muscle cells) and ECs (271,272). Some in-vivo studies 

demonstrated that H2S induced a concentration-dependent increase in the length and 

complexity of the vascular network (269,270). When ECs were exposed to H2S donors, it 

activated multiple signaling pathways, such as PI-3K/Akt and MAPK pathways during 

neovascularization (269,270). Further evidence for H2S-mediated VEGF induction during 

angiogenesis was reported in an ex-vivo mouse aorta sprouting assay, where the VEGF-

induced angiogenesis was markedly suppressed in aortic rings of the CSE deficient mice 

(CSE-/-) (270). In an alternative pathway, exposure to H2S increased calcium levels in 

ECs, which led to eNOS activation and increased NO release during angiogenesis (273-

275).  

 

4.4. The effects of Hydrogen sulfide on muscle atrophy 

Skeletal muscles are now considered to be an endocrine organ, synthesizing 

and secreting a variety of bioactive molecules including inflammatory cytokines, growth 

factors, adipokines, carnitine and more recently H2S (276). In this context, H2S appears 

to protect against low oxygen and nutrient supply as well as ischemic injury in multiple 

organs including skeletal muscles (276-278). In agreement with this view, it was 

hypothesized that dysregulation of H2S metabolism is involved in chronic fatigue 

syndrome (CFS), also called myalgic encephalomyelitis (279). One of the cellular targets 

of H2S is potassium (KATP) channel (280,281). KATP channel activation has been 

suggested to be involved in the prevention of calcium overload and preservation of 

myofibre integrity during exercise, recovery from muscle fatigue, rather than in normal 

muscle contractility and excitability (282,283). Similarly, a significant decrease in H2S 

content in muscle fibers together with a reduction in SOD1 expression was presented in 
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a rat model of skeletal muscle ischemia-reperfusion (I‐R) injury (276). 
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CHAPTER II 

HYPOTHESIS AND SPECIFIC AIMS 

 

Key Objective 

The objective of this study was to determine the effects of 

hyperhomocysteinemia on skeletal muscle myopathy and investigate if H2S can 

attenuate these effects. 

Hypothesis 

The central hypothesis of this proposal is that HHcy causes skeletal muscle 

myopathy by inducing apoptosis, inflicting muscle atrophy and compromising 

angiogenesis via JNK-activation and concomitant impairment of PI3K/AKT axis, and H2S 

mitigates these effects (Fig. 9). 

Specific Aim#1: To determine whether HHcy induces ER-stress and apoptosis via JNK-

phosphorylation, effect(s) of H2S treatment in mitigating this induction. 

Specific Aim#2: To determine whether the Hcy-activated JNK downregulates 

angiogenic pathways via inhibiting AKT-phosphorylation and H2S treatment ameliorates 

these pathway(s). 

Specific Aim#3: To determine whether Hcy instigates muscle atrophy via up-regulation 

of E3 ubiquitin ligases through JNK/AKT axis and H2S attenuates muscle atrophy
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Figure 9: A basic model of my hypothesis 
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CHAPTER III 

HYDROGEN SULFIDE ALLEVIATES HHCY-MEDIATED OXIDATIVE AND ER-STRESS 

RESPONSES IN SKELETAL MUSCLE (284) 

 

INTRODUCTION 

Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid that is 

generated during methionine metabolism via the methionine cycle (MET-cycle) (285). In 

healthy subjects, synthesis and elimination of Hcy are balanced; however, if Hcy 

metabolism is disturbed, then its plasma levels are elevated, leading to 

hyperhomocysteinemia (HHcy) (20,82-84,286). Although children born with functional 

CBS deficiency show severe HHcy and die in their teenage years (13,15,20), the 

molecular mechanism(s) how HHcy triggers such pathological effects in skeletal muscle 

is not fully understood.  

Previous studies revealed that Hcy contains a -SH group like thiols (RSH) which 

can undergo oxidation to form a disulfide (RSSR) even at physiological pH in the 

presence of metal catalysts and molecular oxygen [O2
°] (21). Further, Hcy can also 

produce hydrogen peroxide (H2O2, a pro-oxidant molecule) during metal-catalyzed 

oxidation step and peroxynitrite (ONOO-, a powerful oxidant) in the presence of nitric 

oxide (NO) and superoxide anion (.O2
-) (144). Although these phenomena have been 

studied in multiple tissue types, whether HHcy exerts its detrimental effects on muscle 

through these mechanisms is not yet elucidated. Oxidative stress has been implicated in 

many diseases associated with protein misfolding (29-31). Likewise, studies have also 

reported that HHcy could induce ER-stress in hepatocytes as well as in vascular 
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endothelial and aortic smooth muscle cells, but the cellular pathways that are involved in 

these stress-related conditions are not adequately studied (32,33). It is well-known that 

after translation, the protein folding occurs inside the ER, but during stress conditions, 

misfolded proteins can accumulate inside ER-lumen inducing the unfolded protein 

response (UPR) (152). In mammals, there are three branches of UPR: inositol-requiring 

enzyme-1 (IRE1); PRKR-like ER kinase (PERK); and activating transcription factor-

6 (ATF6) (153,154,156). During severe ER-stress conditions, activated IRE1 recruits’ 

TNF receptor-associated factor-2 (TRAF2) and apoptosis signal-regulating kinase-1 

(ASK1), which further activate c-Jun N-terminal kinase (JNK) (34-36). Activation of JNK 

phosphorylates c-Jun at Ser63 and 73 residues in NH2-terminal (287,288). Upon 

activation, the phosphorylated JNK translocate to the nucleus where it phosphorylates c-

Jun (289,290). JNK along with c-Jun makes up the activator protein-1 (AP-1) 

transcription factor, which involved in the transcription of some pro-apoptotic and pro-

inflammatory genes (291-296). JNK also regulates maturation and activity of T cells in 

addition to the synthesis of pro-inflammatory cytokines, such as interleukin-2 (IL-2), IL-6 

and TNF-α (297-299). Whether HHcy can compromise muscle survival via JNK 

activation is not currently known.  

Chronic systemic inflammation and apoptosis are the important driver for muscle 

wasting, that can be dysregulated by HHcy condition (300). These cytokines work 

synergistically promoting muscle atrophy due to the cross-talk between inflammatory 

cells and organs, resulting in reduced protein synthesis and increased protein 

degradation, and ultimately leading to muscle loss and functional impairment. Therefore, 

identification of the precise molecular mechanism(s) as to how these cytokines are 

regulated during HHcy is essential to devise future preventive strategies.  

H2S is increasingly being recognized as an important signaling molecule in the 

cardiovascular and nervous systems via its ability to neutralize a variety of reactive 
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oxygen species (ROS) (25,237,238) and to reduce disulfide bonds (54,239). 

Cystathionine γ-lyase (CSE) and CBS can irreversibly remove Hcy by converting it into 

H2S, since patients with CBS lack H2S, making them vulnerable to oxidative stress-

mediated damages (54). Hence, the purpose of my study was to understand the effect(s) 

of HHcy-mediated oxidative and ER-stress responses in muscle and the beneficial 

effects of an H2S donor (NaHS) employing both in-vitro (C2C12 cells) and in-vivo model 

(CBS+/-) systems. My results indicate that H2S could be developed as a potential 

therapeutic target in various forms of musclulopathies wherein HHcy is linked with 

metabolic dysfunction. 

 

MATERIALS AND METHODS  

Animal maintenance and diet protocol. Male wild-type (WT, C57BL/6J) and 

CBS+/− (B6.129P2-Cbstm1Unc/J 002853) mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME) (71). All animals were ∼8-12 weeks-old and maintained in 

12:12 h light–dark cycle with regular mouse chow diet in the animal facility of the 

University of Louisville. All animal protocols and care were carried out according to 

the guidelines of National Institute of Health (NIH Pub. No. 86–23, revised 1985) and 

were approved by the Institutional Animal Care and Use Committee (IACUC) of the 

University of Louisville. Animals were divided into 4 experimental groups: (1) Wild-type 

C57BJ/L6 mice (WT); (2) CBS+/− heterozygous mice fed with methionine (CBS+Met); (3) 

NaHS-supplemented wild-type mice (WT+NaHS); (4) NaHS-supplemented CBS+/−+Met 

mice (CBS+Met+NaHS). Mice were treated with NaHS for 8 weeks (30μM/kg/day, I.P.) 

and fed with a methionine-enriched and low-folate, low Vitamin B6, and low Vitamin 

B12 diet (Cat. No. TD 97345; Harlan Teklad, Madison, WI, USA) (301-304). WT mice 

were given 0.9% normal saline (vehicle control) and fed with normal chow (Purina 

Farmer's Exchange, Framingham, MA, USA).  
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Rationale for choosing the experimental mice. Homozygous for CBS knock out (KO) 

mice (CBS-/-) mice die shortly after their birth, whereas heterozygous for CBS KO 

mice (CBS+/-) survive but they show low Hcy levels in their blood (5-10 μM, Fig. 15D). 

So, in the present study, I treated CBS+/- mice with high met diet to examine the 

effects of HHcy condition (>40 μM, Fig. 16F) on skeletal muscle (301-304). 

Genotyping analysis of the heterozygous CBS+/− mouse. After purchasing, mice were 

cross-bred, yielding around 10 % CBS−/−, 60 % CBS+/−, and 25 % CBS+/+. For 

genotyping, tail samples were collected, genotypic analysis was performed using PCR 

by targeted disruption of the CBS gene. The PCR products were run on 1.2 % agarose 

gel (prepared in TAE buffer, pH 8.4) in the presence of ethidium bromide and the images 

recorded in a gel documentation system (305). CBS+/− heterozygote gene-positive mice 

produced two bands (450 and 308 bp), while CBS+/+ (WT) mice represented only one 

band (308 bp). 

Reagents and antibodies. Dulbecco's Modified Eagle's Medium (DMEM), fetal bovine 

serum (FBS) were purchased from American Type Culture Collection (Manassas, VA, 

USA) and trypsin EDTA was from VWR (Radnor, PA, USA). ECL reagent and 

polyvinylidenedifluoride (PVDF) membrane were from Bio-Rad (Hercules, CA, USA). 

Dihydroethidium (DHE) was purchased from Thermo Fisher Scientific (Waltham, MA, 

USA). All other reagents and chemicals were ordered from Sigma–Aldrich or available 

highest grade. 

The antibodies for GRP78 (Cat. No.# sc-13968), IRE1α (Cat. No.# sc-20790), 

ATF6 (Cat. No.# sc-22799), X-box binding protein (XBP1) (Cat. No.# sc-7160), rabbit 

anti-mouse (Cat. No.# sc-358914), mouse anti-rabbit (Cat. No.# sc-2357), and mouse 

anti-goat (Cat. No.# sc-2354) were ordered from Santa Cruz Biotechnology (Dallas, TX, 

U.S.A). The antibody for GAPDH (Cat. No.# MAB374) was ordered from EMD Millipore 

(Burlington, MA, USA). Rest of the antibodies for p-IRE1α (S724) (Cat. No.# ab48187), 
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p-JNK (T183/Y185) (Cat. No.# ab4821), t-JNK (Cat. No.# ab85139), p-cJun (S73) (Cat. 

No.# ab30620), and t-cJun (Cat. No.# ab32137) were ordered from Abcam (Cambridge, 

MA, USA), and used for Western blots analysis as per the manufacturers’ protocols.   

Cell culture and treatments. The C2C12 cells (immortalized mouse myoblast cell line, 

ATCC) were cultured in Corning® T-75 flasks in ATCC-formulated DMEM (catalog No. 

30-2002) supplemented with 10% FBS, 0.1% of penicillin and streptomycin at 37 °C with 

5% CO2. The C2C12 cells were grown to 80% confluence and were plated for 4 different 

experimental groups: Group 1: CT (PBS as vehicle control); Group 2: Hcy (1mM); Group 

3: Hcy+NaHS (250 µM); and Group 4: NaHS. In this study, we used 1mM Hcy and 

250µM NaHS concentrations for the individual treatments (20,246). A stock solution of 

Hcy, NaHS were prepared by directly dissolving in basal DMEM medium (serum-free 

media). Following 24 h of treatment as mentioned earlier, cells were processed for 

qPCR, Western blot, DHE-staining, and other biochemical analysis.  

Total RNA extraction. Total RNA was extracted from muscle samples and cells using a 

Trizol method (306). In brief, first equal volume of Trizol was added in the sample and 

incubated for 10mins in 250C. Then 200μl of chloroform was added and incubated for 

10mins on ice. After that, samples were centrifuged at 12000g for 15mins at 40C and 

carefully collected the top layer in a new Eppendorf tube containing 500uL of prechilled 

isopropanol. Then samples were centrifuged at 12000g for 20mins at 40C and pellets 

were collected in DEPC water. Total RNA quality was determined by NanoDrop ND-

1000, and RNA with high purity (260/280~2.00 and 260/230~2.00) was used for q-PCR. 

Reverse transcription and real-time quantitative PCR (RT-qPCR). Reverse transcription 

was performed according to the manufacturer’s protocol using high-capacity cDNA 

reverse transcription kit from Applied Biosystems (Foster City, CA, USA) for the primer 

sequences listed in Table 2. For RT-qPCR, SYBR green-based kit was used to measure 

the relative expression of each mRNA specific primers. Briefly, 3 steps cycling protocol 
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was performed using 20 ng of cDNA template in a 20μL reaction volume under the 

following conditions: denaturation at 95 °C for 15 min followed by 40 cycles of 94 °C for 

15 s, 55 °C for 30 s, and 70 °C for 34 s in which fluorescence was acquired and detected 

by Roche LightCycler® 96 Real-Time PCR System (Roche Diagnostics, IN, USA). 

Following RT-qPCR, analysis of melt curve was performed to validate the specific 

generation of the expected PCR product. GAPDH was used as an endogenous control 

(Quanta Biosciences, Beverly, MA, USA). 

  

Genes Forward Primers Reverse Primers 

GRP78 5’-ATTGGTGGCCGTTAAGAATG-3’ 5’-CAGTGTTGTCTCGGCCAGTA-3’ 

ERN1 5’-CCCAAATGTGATCCGCTACT-3’ 5’-TTGAGAGAATGCAGGTGTGC-3’ 

ATF6 5’-GGCCAGACTGTTTTGCTCTC-3’ 5’-CCCATACTTCTGGTGGCACT-3’ 

XBP1 5’-TGAATGGCCCTTAGCATTTC-3’ 5’-CACAGAACAGGACGCTGTGT-3 

 

Table 2. List of primers used for RT-qPCR experiments for chapter IV. 

 

Western blotting. All protein expressions of both tissues and cells were assessed by 

Western blotting (307). Briefly, all protein lysates were made in RIPA buffer, which was 

supplemented with PMSF (1 mM), Na-orthovanadate (1 mM) and a protease inhibitor 

cocktail (10 μl/ml of lysis buffer). The protein samples were estimated by Bradford assay. 

Equal amounts of protein (50 μg) were resolved on SDS-PAGE (8%, 10%, 12%) and 

transferred onto a polyvinylidene difluoride (PVDF) membrane. The blots were visualized 

using ECL Luminata Forte (Millipore, Temecula, CA, USA) in a Bio-Rad ChemiDoc 

system. The band intensity was normalized to GAPDH for all the proteins and quantified 

using the Bio-Rad’s Image Lab software (Bio-Rad, Hercules, CA, USA).  
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Total Homocysteine measurement. The total tHcy levels were measured from plasma of 

experimental mice using homocysteine assay kit (Crystal Chem, IL, USA) as per 

manufacturer’s instructions.   

Intracellular ROS imaging by confocal scanning microscopy. The cell permeable 

fluorescent dye dihydroethidium (DHE) was used to detect intracellular ROS (72). In 

brief, after treatment C2C12 cells were incubated in DHE (10μM/L) for 20 minutes in a 

humidified chamber at room temperature in the dark. At the end of the incubation, cells 

were washed with PBS and fluorescence images were scanned using a laser confocal 

microscope (Olympus FluoView1000, Pittsburgh, PA, USA) (72). Fluorescent intensity 

was quantified using ImageJ software (https://imagej.nih.gov/ij/).  

Assessment of lipid peroxidation. Malondialdehyde (MDA), a metabolite of lipid 

peroxidation and an indicator of oxidative stress was measured as the previously 

described method by Okhawa et al. (308). Briefly, after treatment, the cells were washed 

with PBS, followed by sonication (5 Amps/ 5 mins) and centrifugation at 13000 rpm for 

10 minutes. To the supernatant 100 μl of 8.1% SDS, 20% acetic acid, and 0.8% 

thiobarbituric acid were added. The samples were incubated at 95°C for 60 minutes, and 

then 100μl of deionized H2O and 100μl of 1-butanol were added. After spinning at 4000 

rpm for 10 minutes, the top layer was collected in 96 wells plate and read at a 

wavelength of 532 nm. The OD values were plotted against the known standard to 

determine the intracellular malondialdehyde levels.  

Assessment of hydrogen peroxide and total ROS. H2O2 was measured from cells by 

Amplex red assay kit (Invitrogen, Cat no. A22188) according to the manufacturer 

protocol. Whereas, 2', 7'–dichlorofluorescein diacetate (2’,7’-DCFDA) assay kit (Abcam, 

Cat no.-ab113851) was used for total cellular ROS detection. In brief, after treatment 

cells were washed two times with PBS and incubated with a 10 µM DCFDA probe for 15 

mins in serum-free media. Final fluorescence intensity was measured in a microplate 

https://imagej.nih.gov/ij/
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reader (Ex, Em= 485, 535nm). 

Measurement of GSH/GSSG ratio. Assessment of GSH vs. GSSG ratio was carried out 

in all 4 treatment groups using GSH/GSSG ratio detection kit (Abcam, Cat no.-

ab138881) according to the manufacturer protocol.  

Assessment of pro-inflammatory cytokines. Multi-analyte enzyme-linked immunosorbent 

assay (ELISA) kit (Qiagen, Germantown, MD, USA) was used following the 

manufacturer’s protocol to measure all the pro-inflammatory cytokines (IL1α, IL2, IL4, 

IL6, IL12A, IFN-γ, and TNF-α). 

Cell viability assay. Cell viability was determined by MTT assay (309). In brief, after 

treatment as described above, all media was aspirated and 100 μl MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reagent solution was added in 

each well after diluting MTT reagent (5 mg/mL) in basal media. The cells were then 

incubated for 4 h at 37°C and then washed with PBS. After that, 100 μl of DMSO was 

added to each well to dissolve the cell membrane and bring formazan into the solution. 

The absorbance values were taken at 570 nm by Spectramax 3000 spectrophotometer 

(Molecular Devices, Sunnyvale, CA, USA). 

Flow cytometry. C2C12 cells were grown in 12 well plates until 70% confluence and 

treated as mentioned above. After 48 h, the cells were harvested with 150 µl trypsin-

EDTA (Corning) and 600 µl DMEM complete medium to neutralize the trypsin. The cells 

were collected in a 1.5 ml Eppendorf tube and spun at 2000 rpm for 5 minutes, and the 

supernatant was discarded. Then cells were washed 2 times with complete DMEM 

media to remove any traces of trypsin and then resuspended in 1x binding buffer (Sigma 

apoptosis kit: Cat # APOAF). The cells were then stained with Annexin V and Propidium 

Iodide (PI) according to manufacturer’s instructions and subjected to flow cytometric 

analysis (Accuri cytometers Inc. Ann Arbor, MI, USA).  

Statistics. All values are expressed as mean ± s.e.m. The overall difference between the 
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experimental groups was determined by one-way or two-way ANOVA, and a Tukey's 

post hoc analysis was run when overall statistically significant difference occurred in 

group means. Whereas, unpaired t-test was used for comparison between two groups. 

The threshold for significance was set at p<0.05, and a minimum of 3 biological 

replicates were used for each experiment. For all statistical calculation, GraphPad Prism 

(Ver 7, GraphPad Software) was used. 

 

RESULTS 

Hcy induces oxidative stress in C2C12 cells. DHE-staining results showed that Hcy 

significantly induced ROS in C2C12 cells as compared to vehicle controls (PBS treated), 

whereas, NaHS treatment mitigated the effects of Hcy (Fig. 10A). To detect intracellular 

total ROS levels, I used DCFDA fluorescent probe (an indicator for superoxide-, 

peroxide- and peroxynitrite-mediated oxidative chemistry). A similar finding was also 

observed in the levels of total ROS in Hcy treated cells compared to controls as 

measured by a fluorometric method (Fig. 10B). Hcy treatment showed significant 

induction of H2O2 production in C2C12 cells, and it was reduced by NaHS (Fig. 10C). 

Similarly, malondialdehyde levels (a marker of lipid peroxidation) was significantly 

increased upon Hcy treatment in C2C12 cells, and NaHS reversed this effect (Fig. 10D). 

Furthermore, a significant reduction in GSH/GSSG ratios in Hcy treated C2C12 cells as 

compared to controls, whereas NaHS treatment was found to successfully attenuate this 

effect (Fig. 10E). 
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Figure 10:  NaHS protects against Hcy-induced oxidative stress in C2C12 cells 

(immortalized mouse myoblast cell line). (A) 1mM Hcy treatment for 24h resulted in the 

generation of cellular oxidative stress in C2C12 cells as detected by dihydroethidium 

(DHE)-staining. Images captured using confocal microscope are on the left and their 

quantification on the right (under 60x, bar=20μm), where n=3 technical replicates; (B) 

Hcy treatment induces total ROS levels as detected by 2’,7’-H2DCFDA (2',7' –

dichlorofluorescin diacetate) probe, where n=4 technical replicates; (C) Hcy exposure 

induces H2O2 production measured by Amplex red assay kit,  n=3 technical replicates; 

(D) Hcy treatment induces lipid peroxidation measured by Malondialdehyde (MDA) 

assay, where n=3 technical replicates; (E) Hcy treatment reduces GSH vs. GSSG ratio, 

where n=3-4 technical replicates. The overall difference between the experimental 

groups was determined by one-way, and a Tukey's post hoc analysis was run when 
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overall statistically significant difference occurred in group means. Data are shown as 

means.e.m. and *p<0.05 vs. CT and #p<0.05 vs. Hcy. 

 

HHcy induces ER-stress responses in skeletal muscle. To examine whether HHcy 

induces ER-stress was via redox imbalance mechanism, I performed Western blot 

analyses on samples from both in-vitro and in-vivo models. Results showed that Hcy 

significantly induced ER-stress markers such as GRP78, ATF6 and p-IRE1α and that the 

effect was mitigated by NaHS in C2C12 cells as shown in Fig. 11A and 11B. However, I 

did not notice any significant changes in XBP1 protein levels after Hcy treatment (Fig. 

11A and 11B). In addition, the ratios of p-IRE1α/t-IRE1α were found to be significantly 

induced in C2C12 cells after Hcy treatment compared to controls, whereas NaHS 

supplementation attenuated this effect (Fig. 11C).  In the qPCR analysis, I noticed 

mRNA levels of GRP78, ATF6, IRE1α, and XBP1 were also increased significantly in 

post Hcy treatment of C2C12 cells compared with vehicle controls, these effects were 

also mitigated by NaHS (Fig. 11D). In addition, my in-vivo model revealed similar type of 

changes in Western blots and qPCR data from the protein samples collected from 

hindlimbs gastrocnemius muscle (Fig. 11E-H).
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Figure 11A-D: High Hcy mediates ER-stress response in muscle cells in-vitro. (A) 

Western blots analysis showing Hcy treatment induces ER-stress markers, such as 

GRP78, ATF6, p-IRE1α (S724), t-IREα and XBP1, whereas NaHS treatment mitigates 

this effect, where n=3 technical replicates; (B) Densitometric measurement of ER-stress 

markers from above Western blots images are shown in the bottom, where n=3 technical 

replicates; (C) Quantification of p-IRE1α/t-IREα ratio from Western blots images are 

shown on the right, where n=3 technical replicates; (D) Hcy induced expression mRNA 

levels of GRP78, ATF6, IRE1 α and XBP1 in C2C12 cells (log transformed), where n=3 

technical replicates. The overall difference between the experimental groups was 

determined by one-way or two-way ANOVA, and a Tukey's post hoc analysis was run 

when overall statistically significant difference occurred in group means. Data are shown 

as means.e.m, and *p<0.05 vs. CT and #p<0.05 vs. Hcy.



          43 

 

Figure 11E-H: High Hcy mediates ER-stress response in muscle in-vivo. (E) Western 

blots analysis showing induced expression of ER-stress markers, such as GRP78, 

ATF6, and p-IRE1α (S724), t-IREα in CBS+Met mice compared to WT mice; whereas 

NaHS treatment mitigates this effect, where mice number (n)=4 in individual group; (F) 

Densitometric quantification of Western blots of above ER-stress markers shown on the 

bottom, where mice number (n)=4 in individual group;  (G) Densitometric analysis of 

pIRE1a/t-IREa ratio from Western blots is shown on the right, where mice number (n)=4 

in individual group; (H) The q-PCR analysis shows that mRNA levels GRP78, ATF6, 

IRE1α, and XBP1 (log-transformed data) were increased in skeletal muscle of CBS+Met 

mice compared to WT mice, where mice number (n)=4 in individual group. The overall 

difference between the experimental groups was determined by one-way or two-way 

ANOVA, and a Tukey's post hoc analysis was run when overall statistically significant 
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difference occurred in group means. Data are shown as means.e.m and *p<0.05 vs. 

WT and #p<0.05 vs. CBS+Met. 

 

Hcy enhanced JNK-phosphorylation. To confirm whether high oxidative and ER-stress 

responses can induce JNK-phosphorylation during HHcy condition, I did Western 

blotting for p-JNK. I found that Hcy significantly induced phosphorylation of JNK in 

comparison with controls; however, I did not find a concomitant reduction in JNK-

phosphorylation via NaHS treatment as shown in Fig. 12A and 12B. To study whether 

JNK-phosphorylation is mediated via ER-stress mechanism(s), I also treated cells with 

tunicamycin (as a known ER-stress inducer). Results revealed that JNK-phosphorylation 

was inhibited by SP600125 (JNK-inhibitor) and induced by tunicamycin (positive control). 

Similar results were observed in phospho-c-Jun levels (a downstream target of JNK). 
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Figure 12. High Hcy induces JNK-phosphorylation in both in-vitro and in-vivo models. (A) 

Western blots data showing Hcy mediated JNK-phosphorylation and induced protein 

expression of p-cJun (S73) in C2C12 cells, where SP600125 was used as a JNK 

inhibitor, and Tunicamice was used as a positive control, where n=3 technical 

replicates; (B) Densitometric measurements of pJNK/t-JNK, and p-cJun/t-cJun ratios 

from Western blots images are shown on the right, where n=3 technical replicates. The 

interaction between multiple groups was determined by one-way or two-way ANOVA, 

including a Tukey's post hoc analysis when significant interaction occurred. Data are 

shown as means.e.m., and *p<0.05 vs. CT and #p<0.05 vs. Hcy; (C) Western blot data 

showing Hcy mediated JNK-phosphorylation and induced protein expression of p-

cJun (S73) in CBS+Met mice compared to WT mice, where mice number (n)=4 in 

individual group; (D) Densitometric measurements of pJNK/t-JNK and p-cJun/t-cJun 

ratios from Western blots images are shown on the right, where mice number (n)=4 in 

individual group. The overall difference between the experimental groups was 

determined by one-way or two-way ANOVA, and a Tukey's post hoc analysis was run 

when overall statistically significant difference occurred in group means. Data are shown 

as means.e.m. and *p<0.05 vs. WT and #p<0.05 vs. CBS+Met.  
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Similarly, I noticed JNK-phosphorylation was induced in skeletal muscle of CBS+Met 

mice compared to WT mice, and interestingly this effect was mitigated via NaHS 

supplementation (Fig. 12C and 12D). 

HHcy induced pro-inflammatory milieu in CBS+Met mice. To identify weather HHcy-

mediated oxidative and ER-stress responses could modulate pro-inflammatory cytokines 

via JNK/cJun axis, I measured levels of these cytokines in plasma samples collected 

from experimental mice. Results showed that IL1α, IL2, IL4, IL6, IL12A, IFN-γ, and TNF-

α, were elevated in CBS+Met in comparison with WT mice (Fig. 13). IL6 and TNF-α 

levels were found to be significantly induced in plasma of CBS+Met as compared to the 

WT mice.  

 

Figure 13. HHcy induced pro-inflammatory milieu in CBS+Met mice in-vivo. The levels of 

inflammatory cytokines such as IL1α, IL2, IL4, IL6, IL12A, IFN-γ, and TNF-α were 

elevated in the plasma of CBS+Met mice in comparison to WT mice. The difference 

between these two groups were determined by unpaired t-test. Data are shown as 

means.e.m. and where mice number (n)=4 in individual group and *p<0.05 vs. WT.  
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Hcy induced cell death involves apoptosis. First, to check the cell viability after Hcy 

treatment, I performed MTT assay. Results showed that Hcy significantly reduced cell 

viability after 24 h and 48 h. Although I did not find significant improvement of cell 

viability in Hcy treated C2C12 cells after 12h and 24 h of NaHS treatment, I noticed 

NaHS improved cell viability significantly after 48 h (Fig. 14A). To identify weather HHcy-

mediated oxidative and ER-stress responses could induce apoptosis via JNK/cJun axis, 

I also did flow cytometry analysis after staining with Annexin V and propidium iodide (PI). 

Similarly, I found Hcy induced apoptosis in C2C12 cells as compared to controls after 48 

h, whereas NaHS treatment substantially mitigated this effect as shown in Fig. 14B and 

14C.  
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Figure 14. NaHS protects against Hcy-induced C2C12 cells death. (A) Hcy treatment 

induces C2C12 cell death after 24 h and 48 h. Cells were treated in 4 experimental 

groups (CT, Hcy, Hcy+NaHS, and NaHS) for 12h, 24h and 48h before being subjected 

to MTT assay, where n=4 technical replicates; (C) Flow cytometry for studying C2C12 

cell death by apoptosis. Representative images of PI and Annexin V expression on 

C2C12 cells surface, where n=4 technical replicates; (D) Quantification of apoptotic cells 

were determined by total percentage of cells which were Annexin V+ and PI+, where n=4 

technical replicates. The overall difference between the experimental groups was 

determined by one-way or two-way ANOVA, and a Tukey's post hoc analysis was run 

when overall statistically significant difference occurred in group means. Data are shown 

as means.e.m., and *p<0.05 vs. CT and #p<0.05 vs. Hcy. 

  

DISCUSSION 

Previously studies reported that HHcy was detrimental to skeletal muscle (20); 

however, molecular mechanisms underlying the detrimental effects of HHcy on muscles 

were not precisely studied. To my knowledge, this is the first study elaborating the 
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mechanistic roles of Hcy during oxidative and ER-stress responses, which can 

potentiate skeletal muscle dysfunction via apoptosis, and inflammation through JNK-

phosphorylation.  

Previous findings demonstrated the effects of HHcy on oxidative stress in cardiac 

microvascular endothelial cells (145), vascular smooth muscle cells (25), and liver tissue 

(26). The results from the present study add to the growing body of evidence that HHcy 

can, in fact, induce pathological changes in muscles via inducing ROS moieties. In this 

study, I also noticed lipid peroxidation andH2O2 levels are equally elevated, and 

GSH/GSSG ratio was reduced by Hcy in C2C12 cells. NaHS treatment was found to 

improve all these conditions (Fig. 10). These results suggest that HHcy in CBS mice due 

to heterozygous CBS deficiency is equally detrimental to skeletal muscle compared to 

WT mice, which may result from higher ROS generation. 

Although oxidative stress has been implicated in many diseases encompassing 

protein misfolding and the disruption of protein folding pathways (28-31), to my 

knowledge this is the first study showing that HHcy could also induce ER-stress 

response in skeletal muscle (Fig. 11). This finding also corroborates the previous 

observations showing that HHcy mediates higher ER-stress responses in endothelial 

cells (150,310,311). A study by Malhotra et al. indicated that antioxidants reduced ER-

stress leading to improved protein secretion (149). Similarly, I also noticed that NaHS 

treatment has a beneficial effect towards mitigating ER-stress response in skeletal 

muscle (Fig. 11).  

JNK pathway is known to control cellular response to harmful extracellular stimuli 

(42,43,312). Whether Hcy-mediated oxidative and ER-stress responses can also induce 

similar effects in skeletal muscle was not studied previously. I found JNK 

phosphorylation was upregulated in C2C12 cells after Hcy treatment, but NaHS could 

not reduce this effect. Whereas, my in-vivo data showed that JNK-phosphorylation was 
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successfully mitigated via NaHS intervention. Since I only studied a single readout (24 

hrs post-HHcy treatment) in in vitro settings, I may have missed an acute Hcy-mediated 

effect on the JNK-phosphorylation. In the in-vivo CBS model, I was able to observe the 

continuous or prolonged effect of the NaHS mediated phospho-JNK status. I noticed the 

apoptosis rate was induced in C2C12 cells after Hcy treatment and it was mitigated by 

the NaHS supplementation (Fig. 14). Furthermore, reduction of apoptosis after NaHS 

treatment confirmed the ability of H2S to alleviate the effects of Hcy. Moreover, this study 

shows that HHcy-mediated upregulation of pro-inflammatory cytokines (TNF-α, IL-1, and 

IL-6) in plasma of CBS+Met mice compared to WT mice (Fig. 13). My results are also in 

agreement with inflammatory bowel disease conditions wherein JNK-upregulation plays 

a vital role (312). Oudi and colleagues reported a similar inflammatory response in acute 

coronary syndrome (ACS) patients, where tHcy, HsCRP, IL-6 and TNFα were 

significantly elevated (313). In addition to these findings, studies from other groups have 

reported that HHcy causes cardiovascular disease via increasing IL-1ra and IL-6 levels 

(314,315). Furthermore, it’s possible that during inflammation immune cells (CD8+ T 

lymphocytes) may cause myocyte degeneration (autoimmune responses) in the muscle 

(14,316).  

HHcy is known to cause hypermethylation of genes (7); however, I did not test 

the possibility of methylation status that may and may not be a factor in HHcy mediated 

apoptosis and inflammatory responses. From this study it is not still confirmed whether 

NaHS mediating its effects via oxidative stress mechanisms or something else and 

whether other antioxidants (like N-acetylcysteine) has similar effects like NaHS. Further 

work is required that might throw light to explore the possible molecular mechanism(s) of 

the actions of H2S and whether it could be developed as a potential therapeutic target for 

treating skeletal muscle dysfunction and related metabolic disorders.
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CHAPTER IV 

 

HYDROGEN SULFIDE IMPROVES POST-ISCHEMIC ANGIOGENIC DEFECT IN THE 

HINDLIMB OF CYSTATHIONINE--SYNTHASE MUTANT MICE (317) 

 

Introduction:   

Homocysteine (Hcy) has been studied extensively in the last 30 years for its 

unique involvement in an increasing number of human diseases (2-4). The Hcy level is 

controlled by two major processes: around 50% of Hcy enters the transsulfuration 

pathway to produce cysteine, and the other half is re-methylated back to methionine via 

the folate 1-carbon cycle (5,6). Normal total plasma Hcy concentration in our body 

ranges from 5-15 μM; however, in a diseased condition, such as in 

hyperhomocysteinemia (HHcy), plasma total Hcy levels are increased (>15 μM) (8). 

HHcy can be classified as moderate (15-30 μM), intermediate (30–100μM) and severe 

(>100 μM) (8). Notably, there are 4 ways people can develop HHcy: (1) consumption of 

a methionine-rich protein diet; (2) vitamin B12/folate deficiency; (3) presence of 

heterozygous/homozygous status for cystathionine-β synthase (CBS+/-/CBS-/-); and (4) 

obstruction of renal clearance (12). Apart from these factors, genetic variants in Hcy 

metabolism enzymes such as 677C>T and 1298A>C in the MTHFR gene can also lead 

to HHcy (14,76-78). There are also several other drivers like age, sex, physical activity, 

alcohol intake, certain medications and different disease conditions 
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(such as type 2-diabetes) that can also modulate the functioning methionine cycle, 

leading to an increased total Hcy concentration in the blood (79). HHcy has been 

associated with severe skeletal muscle dysfunction (7,13-20), but the precise 

mechanism(s) is still unknown. Previous studies found that HHcy causes endothelial cell 

(EC) injury (209), inhibition of EC proliferation (318), reduction of bioavailability of 

vasoregulatory mediators (such as NO and endothelin) (319), and induction of 

oxidative/ER-stress (24,33,320). How HHcy reduces neovascularization in the skeletal 

muscle is not precisely known. 

The growth of new blood vessels from the preexisting vascular network is known 

as angiogenesis. When oxygen supply is low in a tissue or organ, it activates HIF1α, 

which sends a signal to the nearest blood vessel, activating eNOS and producing NO 

needed for vasodilation. VEGF increases permeability and separates pericytes leading 

to the degradation of the basement membrane, thereby activating metalloproteases such 

as MMP-2 and 9 (321). These changes lead to EC proliferation and a concomitant 

migration in order to form new blood vessels (322). In recent years, it has been shown 

that PPAR-γ might be involved in angiogenesis via growth factors and cytokines that in 

turn stimulate migration, proliferation, and survival of these ECs (323). 

PPAR-γ belongs to the nuclear hormone receptor superfamily; when specific 

ligands bind to the ligand-binding domain of PPAR-γ, a conformational change releases 

the bound corepressors (324,325). This allows co-activators like PGC-1α and other 

coactivators to be recruited to the PPAR-γ responsive gene promoters thereby 

promoting the PPAR-γ-mediated transcription (81,326,327). HHcy reduces PPAR-γ 

expression in ECs (148). Studies have shown that PPAR-γ could regulate angiogenesis 

via upregulating VEGF (323) and that can further activate eNOS (328). Although, 

previous works showed that HHcy impaired neoangiogenic growth in muscle via 

reduction of HIF1α and VEGF levels, whether PPAR-γ plays any role in this process had 
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not been studied (46).  

H2S is increasingly being recognized as an important signaling molecule in 

cardiovascular and nervous systems via its ability to neutralize a variety of reactive 

oxygen species (ROS) (51-53), and via increased cellular GSH levels through activation 

of gamma-glutamylcysteine synthetase, and reduction of the disulfide bonds (54-

61,329). CBS and CSE are the main H2S generating enzymes, producing H2S from Hcy 

in the transsulfuration pathway (330). Patients with CBS deficiency tend to produce a 

lesser amount of H2S (63,236), suggesting that these patients are likely more prone to 

oxidative stress-mediated damages due to excessive production of Hcy (54). A study 

revealed that endogenous H2S could induce mRNA and protein expression of PPAR-γ, 

indicating that exogenous H2S supplementation could be employed as a beneficial 

strategy to improve angiogenesis defect in HHcy patients (331). Hence the purpose of 

my study was to answer the following questions: (i) Does HHcy inhibit angiogenesis via 

downregulation of angiogenic signals like HIF1α and VEGF in 21 days of post-FAL 

hindlimb of CBS+/- mice? (ii) Does HHcy inhibit PPAR-γ expression which can further 

downregulate VEGF/eNOS signaling in the post-FAL hindlimb of CBS+/- mice? And 

finally, (iii) Does GYY4137 (an H2S donor) treatment improve angiogenesis via PPAR-

γ/VEGF axis after 21 days of FAL in the hindlimb of experimental CBS+/- mice?  

CBS is one of the key enzymes in the transsulfuration pathway; heterozygous 

CBS deficiency (CBS+/-) has proved to be a useful model for analyzing the effects of mild 

to a severe endogenous elevation in the levels of Hcy (64-71). Hence, in this study, I 

used CBS+/- mouse model to identify the effect(s) of HHcy on angiogenesis in the 

skeletal muscle and evaluate whether exogenous administration of GYY4137 could 

improve this effect(s). Results indicate that H2S could be developed as a potential 

therapeutic agent to treat the neoangiogenic defects in skeletal muscle wherein HHcy is 

linked with a barrage of metabolic dysfunctions. 
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MATERIALS AND METHODS  

Animal maintenance, genotyping and diet protocol. Male WT (C57BL/6J) and 

CBS+/− (B6.129P2-Cbstm1Unc/J 002853) mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME). All animals were ∼8-10 weeks-old and maintained in 

12:12 h light-dark cycle with regular mouse chow diet in the animal facility of the 

University of Louisville. All animal protocols and care were carried out according to 

the guidelines of National Institute of Health (NIH Pub. No. 86–23, revised 1985) and 

were approved by the Institutional Animal Care and Use Committee (IACUC) of the 

University of Louisville, KY, USA.  

After purchasing, mice were cross-bred, yielding around 10 % CBS−/−, 60 % 

CBS+/−, and 25 % CBS+/+. For genotyping, tail samples were collected, and DNA was 

isolated using DNeasy Blood & Tissue Kits (Qiagen, Germantown, MD, USA). Genotypic 

analysis was performed using PCR by targeted disruption of the CBS gene 

(representative images from each group of post-FAL mice are shown in Fig. 15A and 

genotyping in Fig. 15B). CBS+/− heterozygote mice produced two bands (450 and 308 

bp), while wild-type (CBS+/+) mice represented only one band (308bp). Animals were 

divided into 4 experimental groups: (1) Wild-type C57BJ/L6 mice (WT), (2) CBS+/− 

heterozygous mice (CBS) (3) GYY4137-supplemented CBS+/− (CBS+GYY), (4) 

GYY4137-supplemented wild-type mice (WT+GYY). 0.25 mg GYY4137/kg body weight 

of mouse was applied by intraperitoneal injection every day for a total 21 days after 

femoral artery ligation (FAL) surgery, while the WT mice were given 0.9% normal 

saline (vehicle control) (72).  

Femoral artery ligation (FAL). To create a hypoxic condition femoral artery ligation 

(unilateral) was performed under intraperitoneal pentobarbital sodium (50 mg/kg) 

anesthesia (50,51). Briefly, after separation of the femoral artery from the vein and 
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nerve, it was ligated using 6-0 silk suture at proximal and distal places (keeping same 

distance in all animals). I used separate mice groups [WT, CBS, CBS+GYY, and 

WT+GYY] as sham control where I performed the full process of surgery except the 

ligation. The skin was sutured using 6-0 silk thread. After the skin closure, betadine was 

applied. After recovery, laser Doppler blood perfusion was carried out to confirm the 

induction of ischemia.  

Laser-Doppler tissue perfusion imaging and flowmetry. MoorLDI (Moor Instruments) was 

used to measure tissue perfusion intensity and blood flow rates (332). In brief, after 

anesthesia, a part of skin in hind limb was opened and blood flow measurement was 

taken for 2mins keeping same laser pointer in all experimental mice.    

Barium angiograms. To determine angiogenesis, barium sulfate angiography was 

performed in mice (333). In brief, after pentobarbital anesthesia mice were infused with 

barium sulfate (0.1 g/mL) in 50 mM Tris-buffer (pH 5.0) at a constant flow (∼1 ml/min) 

and pressure with a syringe pump through the common carotid artery. Heparin 

(20U/ml) was used along with barium sulfate to visualize the nascent angiogenesis. 

Angiograms were captured using the Carestream whole animal X-ray imaging system 

(Carestream Molecular Imaging, Woodbridge, CT) (334) and the vessel density was 

quantified using VesSeg tool (Institute for Signal Processing, University of Luebeck, 

Lübeck, Germany). 

Reagents and antibodies. All reagents and chemicals were ordered from Sigma–Aldrich 

or available highest grade. 

The antibodies for HIF1α (ab51608), VEGF (ab51745) and eNOS (ab66127) 

were ordered from Abcam (Cambridge, MA, USA). Whereas PPAR-γ (sc-7273), p-eNOS 

Ser1177 (sc-12972), rabbit anti-mouse (sc-358914), mouse anti-rabbit (sc-2357), and 

mouse anti-goat (sc-2354) were from Santa Cruz Biotechnology (Dallas, TX, USA). The 

antibody for GAPDH (MAB374) was from EMD Millipore (Burlington, MA, USA), and 
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used for Western blots analyses as per the manufacturers’ protocols.  

Western blotting. Protein expressions were assessed by Western blots (72). Briefly, at 

the time of sacrifice, gastrocnemius muscle from the ischemic leg of each mouse was 

quickly removed, snap-frozen, and stored at -80 °C until further use. Protein from 

samples was extracted by homogenizing in the ice-cold RIPA buffer (Boston 

BioProducts, Worcester, MA, USA) containing 1 mM Phenylmethylsulfonyl fluoride 

(Sigma, Saint Louis, MO, USA), 1% protease inhibitors cocktail (Sigma, Saint Louis, MO, 

USA) and then sonicated employing the Sonifier 450 (Branson Ultrasonics, Danbury, 

CT, USA) using 3 x 5 sec at setting "3". The homogenates were centrifuged 17,400 × g 

for 20 min at 4 °C, and the supernatants were quickly stored at -80 °C until further use. 

The protein contents were estimated by the Bradford assay. Equal amounts of proteins 

(50 μg) were resolved on SDS-PAGE (8%, 10%, 12%) and then transferred to 

polyvinylidene difluoride (PVDF) membranes. The respective blots were incubated with 

primary and secondary antibodies before visualizing them using the ECL Luminata Forte 

(Millipore, Temecula, CA, USA) in a Bio-Rad ChemiDoc system. The intensities of the 

bands were normalized to the housekeeping GAPDH for all the proteins examined. The 

quantification was performed using Image Lab™ Software (Bio-Rad, Hercules, CA, 

USA).  

Reverse transcription and real-time quantitative PCR. Total RNA was extracted from 

muscle samples using a Trizol method as mentioned in chapter III (306). Then RNA 

quality was determined by NanoDrop ND-1000, and RNA with high purity (260/280~2.00 

and 260/230~2.00) was used for q-PCR analysis. Reverse transcription was performed 

according to the manufacturer’s protocol using high-capacity cDNA RT kit from Applied 

Biosystems (Foster City, CA, USA) for the primer sequences listed in Table 3. For RT-

qPCR, SYBR green-based kit was used to measure the relative expression of each 

mRNA specific primers. Briefly, 3 steps cycling protocol was performed using 20 ng of 
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cDNA template in a 20 μL reaction volume under the following conditions: denaturation 

at 95 °C for 15 min followed by 40 cycles of 94 °C for 15 s, 55 °C for 30 s, and 70 °C for 

34 s in which fluorescence was acquired and detected by Roche LightCycler® 96 Real-

Time PCR System (Roche Diagnostics, Indianapolis, IN, USA). Following RT-qPCR, 

analysis of melt curve was performed to validate the specific generation of the expected 

PCR product. GAPDH was used as an endogenous control (Quanta Biosciences, 

Beverly, MA, USA). 

 

Genes Forward Primers Reverse Primers 

HIF1α 5’- TCAAGTCAGCAACGTGGAAG-3’ 5’- TATCGAGGCTGTGTCGACTG-3’ 

VEGF 5’- CAGGCTGCTGTAACGATGAA-3’ 5’- CAATTTGGCTCCTCCTACCA -3’ 

PPAR-γ 5’- TTTTCAAGGGTGCCAGTTTC-3’ 5’- AATCCTTGGCCCTCTGAGAT-3’ 

NOS3 5’- GACCCTCACCGCTACAACAT-3’ 5’- TCTGGCCTTCTGCTCATTTT -3’ 

   

Table 3. List of primers used for RT-qPCR experiments for chapter V. 

 

Total plasma Homocysteine, hydrogen sulfide, and nitrite measurement. Blood samples 

were collected in tubes containing a 1/10 volume of 3.8% sodium citrate from each 

mouse by cardiac puncture after euthanasia. Then plasma was isolated by centrifugation 

at 2500 × g for 15 mins at 4 °C.  Total plasma Hcy concentrations were measured in 

samples using the homocysteine assay kit (Crystal Chem, IL, USA) as per 

manufacturer’s instructions.  

 Plasma H2S was measured as a previously described method (208). In brief, samples 

were centrifuged at a speed of × 11,000 g for 10 minutes. 100 μl aliquots from the 

plasma were mixed separately with PBS (350 μL) and Zn(O2CCH3)2 (1% W/V, 250 μL) 
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in a micro-centrifuge tube and sealed immediately. Then, N, N-dimethyl-p-

phenylenediamine sulfate (20 mM, 133 μL) in 7.2 M HCl, and FeCl3 30 mM, 133 μL) in 

1.2 M HCl was added to the mixture, sealed and incubated at 37°C for 45 min. After that, 

Trichloroacetic acid solution (10% w/v, 250 μL) was added to the mixture to terminate 

the reaction. After centrifugation (× 2,700 g for 5 mins), 200 μL supernatant was 

transferred to a 96-well plate and the absorbance was measured at 670 nm in a 

spectrophotometer. H2S levels were calculated against a calibration curve of known 

concentrations of NaHS (0.01 - 100 μmol/L).  

 Both nitrite and nitrate from the plasma was measured by a Griess reagent as (301). 

Briefly, equal volume of Griess reagent [0.1 % N-(1-naphthyl) ethylenediamine 

dihydrochloride,1 % sulfanilamide, and 2.5 % phosphoric acid] was added to 100 μL of 

samples and controls [sodium nitrite (NaNo2)] (0.01-100ug). Then samples were 

incubated at 37 °C for 30 min and absorbance was recorded at 542 nm in a Spectra Max 

M2 plate reader. 

Statistics. All values are expressed as mean ± s.e.m. The interaction between groups 

was determined by one-way or two-way ANOVA, including a Tukey's post hoc analysis 

when significant interactions were observed. The threshold for significance was set at 

p<0.05, the total number of mice (n)= 4-5 were subjected to experimentation from each 

group. For statistical analyses, GraphPad Prism (Ver 7, GraphPad Software) was used.  

 

RESULTS 

The phenotypic feature and genotype of WT and CBS+/- mice are depicted in Fig. 

15A and 15B respectively. In this study, I noticed that CBS mice had significantly lower 

body weights in comparison to WT mice; however, I did not see any difference in body 

weights between CBS vs. WT after GYY4137 treatment for 21 days (Fig. 15C). I 
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observed CBS mice had significantly higher levels of plasma tHcy compared to WT 

mice, GYY4137 supplemented CBS mice also had similarly higher plasma tHcy levels as 

that of the CBS mice (Fig. 15D). After 21 days of GYY4137 treatment, I examined the 

plasma H2S concentrations in the experimental mice. Results showed that plasma H2S 

levels were significantly lower in the CBS mice compared to that of the WT mice as 

expected (Fig. 15E). However, after administration of GYY4137 for 21 days plasma H2S 

levels were significantly elevated in both the CBS and WT mice (Fig. 15E). 

 

Figure 15. Phenotypic and genotypic characteristics of experimental mice groups. (A) 

Hindlimb images after 21 days of GYY4137 treatments; (B) Genotyping of experimental 

mice; (C) Body weight measurements of experimental mice, where mice number (n)=4 in 

individual group; (D) tHcy measurements from the plasma of experimental mice, where 

mice number (n)=4 in individual group; (E) H2S measurements from the plasma of 
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experimental mice, where mice number (n)=4 in individual group. The overall difference 

between the experimental groups was determined by one-way or two-way ANOVA, and 

a Tukey's post hoc analysis was run when overall statistically significant difference 

occurred in group means. Data are shown as means.e.m. and statistical difference 

*p<0.05 vs. WT and #p<0.05 vs. CBS.  (tHcy=total homocysteine, FAL=femoral artery 

ligation). 

 

As a marker of a hypoxia induction in post-FAL hindlimb, I measured the HIF1α 

levels by Western blotting. I noticed that HIF1 levels were downregulated in post-FAL 

CBS mice in comparison to WT mice, GYY4137 treatment was found to mitigate this 

effect (Fig. 16A). To confirm mRNA expression of HIF1α, I did qPCR analysis, and it did 

not show any significant decrease in mRNA levels of HIF1α in post-FAL CBS mice 

compared to post-FAL WT (p=0.4824), GYY4137 treatment could not improve the 

mRNA levels in post-FAL CBS mice (p=0.9781) (Fig. 16B). I found that the protein 

expressions of VEGF and PPAR-γ were reduced in post-FAL CBS mice as compared to 

post-FAL WT mice, whereas this effect was improved after GYY4137 administration 

(Fig. 16A). Additionally, in the qPCR analysis, I found mRNA expression of VEGF was 

significantly reduced in the post-FAL CBS mice compared to post-FAL WT mice 

(p=0.0365); however, this effect was not improved upon GYY4137 administration 

(p=0.2139). I did not notice any significant change in the mRNA expression of PPAR-γ 

among the 4 experimental groups (Fig. 16B). I did not find any difference in proteins and 

mRNA levels for HIF1α and VEGF among individual groups of sham mice as shown in 

Fig 16C-D. However, I did notice that the expression of PPAR-γ was reduced in sham 

CBS mice compared to sham WT mice and that GYY4137 supplementation could not 

mitigate this effect. The observed reduction of PPAR-γ mRNA level in sham CBS mice, 
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compared to sham WT mice, was not statistically significant (p=0.7423). Similarly, I did 

not observe any significant improvement in mRNA expression for PPAR-γ in sham CBS 

mice after GYY4237 treatment (p=0.3549) (Fig. 16D). 

 

Figure 16A-B. Effect of GYY4137 on the improvement of angiogenic markers in skeletal 

muscle of post-FAL mice. (A) Western blot analysis is showing protein expressions: 

HIF1-α, VEGF, and PPAR-γ in the top panel and densitometric analysis of Western blot 

images are shown in the bottom panel, where mice number (n)=4 in individual group; (B) 

mRNA expression for HIF1-α, VEGF, and PPAR-γ (log transformed) in skeletal muscle 

of post-FAL mice, where mice number (n)=4 in individual group. The overall difference 

between the experimental groups was determined by one-way or two-way ANOVA, and 

a Tukey's post hoc analysis was run when overall statistically significant difference 

occurred in group means. Data are shown as means.e.m. and statistical difference 
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*p<0.05 vs. WT and #p<0.05 vs. CBS (FAL=femoral artery ligation).

 

Figure 16C-D. Effect of GYY4137 on angiogenic markers in skeletal muscle in sham 

mice. (C) Western blot analysis is showing protein expressions: HIF1-α, VEGF, and 

PPAR-γ in the top panel and densitometric analysis of Western blot images are shown in 

the bottom panel, where mice number (n)=4 in individual group; (D) mRNA expression 

for HIF1-α, VEGF, and PPAR-γ (log transformed), where mice number (n)=4 in individual 

group. The overall difference between the experimental groups was determined by one-

way or two-way ANOVA, and a Tukey's post hoc analysis was run when overall 

statistically significant difference occurred in group means. Data are shown as 

means.e.m., statistical difference *p<0.05 vs. WT and #p<0.05 vs. CBS. 

 

Finally, I measured the vessel density employing barium sulfate angiography 
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after 21 days of FAL surgery. It was noticed that total collateral vessel numbers were 

significantly less in the post-FAL CBS mice in comparison to post-FAL WT mice, this 

effect was further significantly improved upon GYY4137 treatment (Fig. 17A-B). Besides, 

blood flow in the hindlimb after 21 days of FAL was reduced considerably in CBS mice 

compared to WT mice, and it was improved by GYY4137 treatment as seen in Fig. 17C-

D. Although I did not notice any difference in the mRNA expression levels of NOS3, I 

observed that the p-eNOS levels were reduced in the post-FAL CBS mice as compared 

to post-FAL WT mice, interestingly, this effect was improved via GYY4137 treatment 

(Fig. 17E). The changes in the plasma nitrite levels in experimental mice were also 

monitored as the marker of nitric oxide (NO) production. Although not statistically 

significant, my findings revealed a reduction of plasma nitrite levels in post-FAL CBS 

mice as compared to post-FAL WT mice (p=0.1050), and similarly, I noticed a trend of 

improvement of this effect with the GYY4137 administration (p=0.2923) (Fig. 17F). 
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Figure 17A-D.  GYY4137 supplementation improves angiogenesis in the hindlimb 

muscle after 21 days of FAL in CBS+/- mice. (A) Barium angiogram images showing 

vascular density in the hindlimb of skeletal muscle; (B) Quantitation of collateral vessel 

numbers in hindlimb post FAL mice, where mice number (n)=4 in individual group; (C) 

Blood flow rate measurements in hindlimb post FAL mice, where mice number (n)=4 in 

individual group; (D) Laser-Doppler perfusion imaging showing the intensity of limb 

perfusion 21 days post FAL mice. The overall difference between the experimental 

groups was determined by one-way or two-way ANOVA, and a Tukey's post hoc 

analysis was run when overall statistically significant difference occurred in group 

means. Data are shown as means.e.m. and statistical difference *p<0.05 vs. WT and 

#p<0.05 vs. CBS. (FAL=femoral artery ligation). 



         65 

  

Figure 17E-F. Effect of GYY4137 supplementation on eNOS-phosphorylation and 

plasma nitrite levels in experimental mice. (E) Western blot analysis of protein 

expressions: p-eNOS and eNOS in the top panel and densitometric analysis of p-

eNOS/eNOS ratio from Western blot images are shown in the right panel, and mRNA 

expression of NOS3 is shown in bottom panel, where mice number (n)=4 in individual 

group; (F) Nitrite+Nitate levels in plasma of post-FAL mice measured by Griess assay, 

where mice number (n)=4 in individual group; The overall difference between the 

experimental groups was determined by one-way or two-way ANOVA, and a Tukey's 

post hoc analysis was run when overall statistically significant difference occurred in 

group means. Data are shown as means.e.m. and statistical difference *p<0.05 vs. WT 

and #p<0.05 vs. CBS. (FAL=femoral artery ligation) 

 

DISCUSSION 
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Earlier studies also showed that HHcy has a profound inhibitory effect on EC 

proliferation and their migration (269,270,335-337). In the present study, I examined 

whether HHcy condition could impair angiogenesis in-vivo during a chronic ischemic 

insult. Although there are many in-vivo models available to study angiogenesis, either by 

passing a flexible wire or by applying a laser or an electrical current, none of these are 

relevant to the clinical setting (338-340). In this study, I used the femoral artery ligation 

(FAL) model by employing a genetically engineered mouse model (CBS+/-) mimicking 

HHcy conditions as seen in HHcy patients with CBS mutation to study the post-ischemic 

angiogenesis phenomenon during HHcy.  My results showed that HHcy is associated 

with defective angiogenesis, and exogenous H2S supplementation has a protective role 

in mitigating this effect.  

Angiogenesis is a natural process during chronic regional ischemia, which 

requires EC proliferation, migration, differentiation, and survival to form new blood 

vessels in order to compensate for the hypoxic environment (341). VEGF is a 

prototypical angiogenic cytokine that plays a vital role in this process and has been 

widely studied (342-344). A previous report involving hindlimb ischemia in CBS+/− mice 

showed no difference in VEGF levels 7 days of post-ischemia (345). However, they did 

notice a significant reduction in capillary density in the CBS mice compared to WT mice 

after 21 days of ischemia (345). Interestingly, my results demonstrate a significant 

decrease in PPAR- and VEGF expression after 21 days of FAL, suggesting that lower 

expressions of post-ischemic PPAR- may be responsible for delayed induction of VEGF 

in CBS mice compared to that of WT mice (323). I noticed that the exogenous 

administration of GYY4137 could improve blood flow and collateral vessel density in 

skeletal muscle of CBS+/- mice (Fig. 17C). 

H2S has been studied extensively for its positive effects in the cardiovascular 
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system, demonstrating profound vasodilatation, vascular protection, homeostatic 

regulation of blood pressure and many others (54,57-59,61). A previous study using 

chicken chorioallantoic membrane model revealed that H2S increased the length and 

complexity of the vascular network (270). Likewise, in this study, I noticed that 

exogenous supplementation of GYY4137 could improve collateral vessel density after 21 

days of FAL in the CBS+/- mice. Similar to this study, Moore and colleagues were able to 

show that intraperitoneal administration of NaHS induced neovascularization in an in-

vivo mouse model using a Matrigel plug assay (269). A previous report showed that 

genetic deletion/silencing of CSE (another H2S-producing enzyme) in the endothelium 

reduced migration and sprouting of ECs in-vitro, wherein VEGF played a critical 

mediator (270). In the present study, I observed that PPAR-γ and VEGF expressions 

were significantly downregulated in CBS mice compared to WT mice. I also 

demonstrated that these effects were mitigated via GYY4137 administration. This 

suggests that most likely VEGF is regulated via the PPAR-γ dependent pathway, further 

corroborating Biscetti, et al.’s findings wherein they clearly showed that activation of 

PPAR-γ led to endothelial tube formation and induction of VEGF in ECs (323). Similarly, 

other investigators revealed that inhibiting PDE activity by H2S induces PPAR-γ protein 

and mRNA expressions (331). 

NO is also an endogenous gasotransmitter that, like H2S, is involved in 

vasorelaxation and stimulation of angiogenesis (346,347). HHcy was also found to 

quench NO (a vasodilator) by the formation of peroxynitrite anion (ONOO-) and 

uncoupling of eNOS, further reducing the bioavailability of NO (348-350). Similarly, I 

noticed nitrite levels and phosphorylation of eNOS were found to be reduced in CBS 

mice in comparison to WT mice. eNOS is known to produce NO during angiogenesis via 

VEGF axis (328); thus, it appears that impaired angiogenesis in HHcy could be due to 

the reduction of NO bioavailability. In this work, I demonstrated that nitrite levels and 
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eNOS activation were reduced in the CBS+/- mice compared to WT mice, and their levels 

could be recovered via GYY4137 treatment. These findings are also highly consistent 

with previous reports where H2S was shown to stimulate Akt in endothelial cells, leading 

to the induction of eNOS through phosphorylation of Ser1177 (activation site) and 

parallel dephosphorylation of Thr495 (inhibitory site) (351,352).  

 In conclusion, my work embodies the pro-angiogenic role of the H2S molecule 

during HHcy condition. I opine that additional pathways might be at work during 

angiogenesis (97); however, further investigation needs to be undertaken involving 

similar but not identical scenarios wherein muscle myopathy is the outcome of metabolic 

abnormalities. In brief, H2S does hold potential ramifications towards developing it as a 

clinically relevant therapeutic option for chronic conditions that are implicated in a host of 

inflammatory and cellular stress injury, including the apparent defect in angiogenesis 

(97).  
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CHAPTER V 

HYDROGEN SULFIDE MITIGATES HHCY-MEDIATED SKELETAL MUSCLE 

ATROPHY VIA JNK/FOXO1 AXIS 

 

Introduction 

Homocysteine (Hcy), a sulfur-containing non-protein amino acid is generated via one-

carbon metabolism in the methionine cycle. Dietary methionine is first converted to S-

adenosyl methionine (SAM) and then to S-adenosyl homocysteine (SAH) in methionine 

cycle. SAH is further converted to Hcy which is remethylated to methionine via folate 

cycle and the cycle continues (353). Under conditions of low cysteine or saturation of 

Hcy remethylation, Hcy is further metabolized by the transsulfuration pathway to 

cysteine (2). In the rate-limiting step of the transsulfuration pathway, Hcy is first 

converted to cystathionine through cystathionine β-synthase (CBS) where Vitamin B6 

(pyridoxine) is an essential co-factor (7). Cystathionine is further transformed to cysteine 

by cystathionine γ-lyase (CSE), which further generate GSH. The normal range of 

plasma Hcy levels for young adults (0-30 years) is 4.6 - 8.1 µM and for older adults (30 

years and above) is 4 -15 µM (354). In healthy individuals, the generation and 

elimination of Hcy remain at equilibrium. However, during hyperhomocysteinemia 

(HHcy), the plasma Hcy levels tend to increase (moderate HHcy: 15-30 µM, intermediate 

HHcy: 30–100 µM, and severe HHcy: >100 µM) (7,355). Mutations in the CBS gene 

causes Hcy accumulation in the blood circulation due to disruption of the transsulfuration 

pathway (356).  
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Skeletal muscular atrophy is a pathophysiological condition that arises due to 

HHcy (357). It causes loss of skeletal muscle mass, leading to muscle weakness, 

inactivity, and increased mortality (5,15,20,21,46,66,82). The molecular mechanism 

attributed to muscle atrophy is the upregulation of ubiquitin ligases like RING-finger 

protein-1 (MURF-1) and muscle atrophy F-box (MAFBx), also known as Atrogin-1, which 

initiates the degradation of muscular proteins and eventually cell death and muscle mass 

reduction (358,359). Indeed, several E3 ubiquitin ligases, such as muscle MuRF1, 

MAFBx, Nedd4.1, TRAF6, and MUSA1, have been identified which mediate degradation 

of both thick and thin filaments during skeletal muscle atrophy (214,215). Therefore, 

identification of the precise molecular mechanism(s) as to how these E3 ubiquitin 

ligases are regulated during HHcy is essential to devise future preventive strategies.  

Forkhead Box (FOX) proteins are a group of transcription factors with a 

conserved DNA binding domain and are responsible for regulating a number of E3-

ubiquitin ligases upon a variety of cellular stress responses (216-219). Previous studies 

showed that growth factor-activated protein kinase B (Akt) and stress-activated c-Jun N-

terminal kinase (JNK) have opposing effects on FOX class O (FOXO) (common in 

mammals): Akt inhibits FOXO activity via preventing its nuclear localization, whereas 

JNK increases FOXO activity by promoting its import in the nucleus (216,220-223). 

FOXO1 and 3 are widely expressed across all tissues, FOXO4 is primarily expressed in 

muscle and kidney tissues, and FOXO6 is expressed in developing brain and liver 

tissues (360). Post-translational modifications of FOXOs determine its regulation and 

therefore, its cellular localization (216). FOXO1 has been shown to be the primary 

transcription factor regulating MuRF1 and Atrogin-1, these two proteins were reported to 

be highly upregulated during skeletal muscular atrophy (224).  

CBS and CSE are the vital enzymes generating H2S from Hcy via the 

transsulfuration pathway (330). H2S is increasingly being recognized as an important 
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signaling molecule in the cardiovascular and nervous systems because of its ability to 

neutralize a variety of ROS moieties (63,236,329).  In fact, patients with a dysregulated 

Hcy metabolism due to CBS deficiency are likely to be more prone to oxidative stress-

mediated damages (361,362). Hence, the purpose of this study was to analyze whether 

Hcy instigates muscle atrophy via upregulation of E3 ubiquitin ligases like MURF-1 and 

Atrogin-1 through JNK/FOXO1 axis and H2S attenuates these effects. My results 

suggest that HHcy can induce muscle atrophy via upregulation of Atrogin-1 and MuRF1, 

whereas H2S could be used as a therapeutic option to restore physiological homeostasis 

in skeletal muscle during HHcy condition.  

 

Materials and methods 

Animal maintenance and diet protocol. Male wild-type (WT, C57BL/6J) and 

CBS+/− (B6.129P2-Cbstm1Unc/J 002853) mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME, USA) (71). All animals were ∼8-12 weeks-old and 

maintained in 12:12 h light–dark cycle with regular mouse chow diet in the animal 

facility of the University of Louisville. All animal protocols and care were carried out 

according to the guidelines of National Institute of Health (NIH Pub. No. 86–23, 

revised 1985) and were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Louisville (KY, USA). Animals were divided into 4 

experimental groups: (1) Wild-type C57BJ/L6 mice (WT), (2) CBS+/−heterozygous mice 

fed with methionine (CBS+Met) (3) NaHS-supplemented wild-type mice (WT+NaHS), 

and (4) NaHS-supplemented CBS+/−+Met (CBS+Met+NaHS). Mice were treated with 

NaHS for 8 weeks (30μM/kg/day, I.P.) and fed with a methionine-enriched and low-

folate, low-Vitamin B6, low-B12 diet (Cat. No. TD 97345; Harlan Teklad, Madison, WI, 

USA) (301-304), while the WT mice were given 0.9% normal saline (vehicle control) 
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and fed with normal chow (Purina Farmer's Exchange, Framingham, MA, USA).  

Body weights and physical activity monitoring and tissue collection. Body weights 

were measured at 0 week, 4 weeks and after 8 weeks intervals during NaHS 

treatment (Table 4, Appendix I). Further, the animals were routinely inspected for 

discomfort, body posture, skin integrity (injury), and fur appearance to monitor their 

physical activity. At the end of the experiment, animals were euthanized by using 2X 

tribromoethanol (TBE), and both blood and muscle samples were collected for further 

analysis. 

Genotype analysis of the heterozygous CBS+/− mouse. After purchasing, mice were 

cross-bred, yielding around 10 % CBS−/−, 60 % CBS+/−, and 25 % CBS+/+. For 

genotyping, tail samples were collected, and genotypic analysis was performed using 

PCR by targeted disruption of the CBS gene at loci, as shown in Fig. 18A. The PCR 

products were run on 1.2 % agarose gel (prepared in TAE buffer, pH 8.4) in the 

presence of ethidium bromide and the images recorded in a gel documentation system 

(305). CBS+/− heterozygote gene-positive mice produced two bands (450 and 308 bp), 

while CBS+/+ mice represented only one band (308 bp). 

Cell culture and treatments. C2C12 cells (immortalized mouse myoblast cell line, ATCC) 

were cultured in Corning® T-75 flasks in ATCC-formulated DMEM supplemented with 

10% Fetal Bovine Serum (FBS), 0.1% penicillin and streptomycin (P/S) at 37 °C with 5% 

CO2. The C2C12 cells were grown to 80% confluence and were plated for 4 different 

experimental groups: Group 1: CT (PBS as vehicle control); Group 2: Hcy (500µM); 

Group 3: Hcy+NaHS (250 µM) and Group 4: NaHS. In this study, we used 1mM Hcy and 

250µM NaHS concentrations for the individual treatments (20,246). A stock solution of 

Hcy, NaHS were prepared by directly dissolving in basal DMEM medium (serum-free 

media). Following 24 h of treatment as mentioned earlier, cells were processed for 

further biochemical analysis.  
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Reagents and antibodies. Dulbecco's Modified Eagle's Medium (DMEM), fetal bovine 

serum (FBS) were purchased from American Type Culture Collection (Manassas, VA, 

USA) and trypsin EDTA was from VWR (Radnor, PA, USA). ECL reagent and 

polyvinylidenedifluoride (PVDF) membrane were from Bio-Rad (Hercules, CA, USA). All 

other reagents and chemicals were ordered from Sigma–Aldrich or available highest 

grade. 

Primary antibodies for Western blot analysis: rabbit anti-FOXO1A (1:1000, 

Abcam, Cat # ab12161), rabbit anti-p-FOXO1A (Thr24) (1:1000, Millipore, Cat #2599), 

mouse anti-GAPDH (1:10000, Millipore, Cat # MAB374). Atrogin-1 (1:1000, Abcam Cat 

# ab92281), myosin heavy chain-I (MHC-I) (1:1000, Abcam Cat # ab11083), MuRF-1 

(1:1000, Abcam Cat # ab172479) and Laminin (1:1000, Abcam Cat # ab11575). 

Secondary antibodies for Western Blot Analysis: mouse anti-rabbit (1:2000), rabbit anti-

mouse (1:2000) were ordered from Santa Cruz Biotechnology (Dallas, TX, USA). Alexa 

Fluor 488 donkey anti-mouse (Cat # R37114), Alexa Fluor 488 donkey anti-rabbit IgG 

(H+L) (1:1000, Cat # A21206), Alexa Fluor 546 donkey anti-mouse IgG (H+L) (1:1000, 

Cat # A10036), Alexa Fluor 546 donkey anti-rabbit IgG (H+L) (1:1000, Cat # A10040) 

were ordered from Invitrogen (Eugene, OR, USA) 

Immunocytochemistry (ICC). For ICC, C2C12 cells were grown in chamber slides (Lab-

Tek II) and treated as mentioned above. After 24 h of treatment, cells were washed 2 

times with 1X phosphate buffer saline (PBS) and fixed with 4% paraformaldehyde (PFA) 

diluted in 1X PBS for 10 minutes at room temperature. The cells were permeabilized and 

blocked at the same time with a solution of 2 % bovine serum albumin (BSA) and 0.5 % 

Triton X-100 in 1X PBS for 30 minutes at room temperature. The cells incubated with 

primary antibodies diluted in 0.1% BSA and 0.5 % Triton X-100 in 1X PBS at the 

concentrations as mentioned above and kept for overnight at 40C. The next day the cells 

were washed 3 times with 1X PBS and then incubated with secondary antibody using 
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the concentrations as mentioned above for 1 h at room temperature. After washing the 

cells 5 times with 1X PBS after secondary antibody incubation, they were mounted with 

mounting media containing DAPI (Vectashield Cat # H-1200) and viewed under the 

confocal microscope (Olympus FluoView1000, Pittsburgh, PA, USA). 

Immunohistochemistry (IHC). For IHC, I used cryo-tissue sections of the gastrocnemius 

muscle (7 µm) which were labeled for immunofluorescence following the standard 

protocol. Briefly, first, the tissue sections were fixed in 4% paraformaldehyde and 

permeabilized with 0.25% Triton X-100 in PBS. Then, the sections were incubated 

overnight in primary antibodies at 4 °C, and after that, secondary antibodies labeled with 

either Alexa Fluor-488 or 594 (Invitrogen) appropriate to the primary antibody species 

were applied. Sections were cover-slipped with ProLong™ Gold Antifade Mountant. 

Stained images were visualized and analyzed for fluorescence intensity under an 

EVOS™ FL Auto Imaging System (Thermo Fisher Scientific, Waltham, MA, USA) using 

an appropriate filter. To study the cross-sectional area in the gastrocnemius muscle from 

each group, I analyzed 30-40 fields/mouse. 

Western blot analysis. First, the cells or tissues were mixed with cold RIPA lysis buffer 

with protease inhibitor cocktail, phenylmethylsulfonyl fluoride (PMSF) and phosphatase 

inhibitor (sodium orthovanadate) and then sonicated employing the Sonifier 450 

(Branson Ultrasonics, Danbury, CT, USA) using 3 x 5 sec at setting "3". After that the 

suspensions were centrifugated at 17,400 x g for 20 minutes at 40C. The supernatants 

were collected in fresh tubes and were stored at -800C until further use. Protein 

concentration was determined using Bradford assay to ensure that the proteins were 

loaded in equal concentrations. Protein lysates were subjected to 8-12% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in a tris-glycine-SDS buffer for 

proper protein separation and transferred on a polyvinylidene difluoride (PVDF) 

membrane electrophoretically overnight at 40C. The membrane was first blocked using 
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5% milk in 1X tris-buffer saline and Tween 20 (TBS-T) for 1 hr at 40C and then incubated 

with the primary antibodies at the concentrations as mentioned above for overnight at 

40C. After primary antibody incubation, the membranes were washed 3 times with 1X 

TBS-T followed by incubation with secondary antibody conjugated with HRP for 1 hr at 

room temperature. Membranes were again washed 3 times with TBS-T, then developed 

using ECL Luminata Forte reagent (Millipore, Temecula, CA, USA) and imaged using a 

Chemidoc (Bio-Rad, Hercules, California, USA). Band intensity was determined using 

densitometry analysis using Image Lab™ Software (Bio-Rad, Hercules, CA, USA). 

Total Homocysteine measurement. The total tHcy levels were measured from plasma of 

experimental mice using homocysteine assay kit (Crystal Chem, IL, USA) as per 

manufacturer’s instructions.   

Muscle fatigability tests. Muscle fatigability test was developed from recommendations 

listed in the Resource Book for the Design of Animal Exercise Protocols by the American 

Physiological Society (APS) with minor modifications. First, one mouse at a time was 

allowed to swim for 10 mins across 4 different days for acclimatization to the 

environment. I used a swimming tub with water temperature usually between 32-

36ºC.  The depth of water was maintained at a minimum of 30cm so that mice couldn’t 

touch the bottom with 10–15cm distance left from the top to prevent animals from 

climbing or jumping out. On the final day, each mouse was placed in the water to swim 

to check their maximum swimming capacity (Table 5, Appendix I). To monitor their live 

motion, I used Clever Systems (Reston, VA, USA) in the previously discussed method 

(46). If the mice discontinue swimming for 2 secs, they were gently nudged to promote 

their movement, and if they were drowning in the water, then they were immediately 

taken out as per protocol.  

To determine muscle grip strength of experimental mice, I used Rotarod 

instrument (San Diego Instruments, San Diego, CA, USA) and Grip strength test meter 
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(Bioseb, Pinellas Park, FL, USA) (364,365). Briefly, Rotarod performance was done by 

placing them on the rotarod and allowing them to run at a constant low speed (12 RPM) 

for 5 mins across 4 different days (acclimatization steps). Following acclimatization, on 

the final day mice were placed on the rotarod (12 RPM) and allow to run until they fall off 

from the apparatus (time was recorded) (Table 5, Appendix I). The grip strength of both 

forelimbs and hindlimbs were measured by using a grip strength meter. Each mouse 

was held by the base of the tail and placed in front of the grasping grid. Once the mouse 

grasped the grid, it was slowly pulled back until the pulling force overcame the mouse's 

grip strength. This process was repeated 5 times for each mouse with 15 mins gap 

between each repeat and all measurements of grip strength/body weights were recorded 

(Table 5, Appendix I).   

Statistical analysis. All values were expressed as mean ± s.e.m. One-way or two-way 

ANOVA was conducted for the statistical analyses for the different treatment groups 

using GraphPad Prism (Ver. 7) software. For all in-vivo experiments mice number (n)= 4-

5, in each group, and for all exercise capacity test, (n)=9-11 mice were used in each 

group. The significance threshold was set at p<0.05. A minimum of 3 technical replicates 

were conducted for each protein expression analysis and ICC experiment. 

 

Results 

HHcy causes skeletal muscle atrophy in CBS+Met mice. In this study, I noticed 

CBS+Met mice had significantly low body weights most likely because of excessive 

muscle wasting in comparison to WT mice (Fig. 18A and 18B). Although I didn’t observe 

any changes in tibial length between each group of experimental mice, gastrocnemius 

and quadriceps muscles weights were significantly reduced in CBS+Met compared to 

WT mice (Fig. 18C and 18D). Although not significant, I did notice a reduction of tibialis 

anterior (TA), extensor digitorium longus (EDL) and soleus muscles weights in CBS+Met 
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mice compared to WT mice. After administration of NaHS for 8 weeks, I noticed an 

improvement in overall body weights and muscle mass as shown in Fig. 18C and 18E. I 

also noticed tHcy levels in plasma were significantly increased in CBS+Met than WT 

mice and was similar in NaHS treated CBS+Met mice (Fig. 18F).  

 

Figure 18: Genotypic and phenotypic characteristics of experimental mice groups. (A) 

Genotyping of CBS+/- and WT mice; (B) morphological difference of skeletal muscle in 

hindlimbs between CBS+Met and WT mice; (C) difference in various muscle weights 

such as gastrocnemius (gastroc), quadriceps (Quad), tibialis anterior (TA), extensor 

digitorium longus (EDL) and soleus, where mice number (n)=4 in individual group; (D) 

Tibia length measurements, where mice number (n)=4 in individual group; (E) Body 

weight measurements, where mice number (n)=4 in individual group; (F) total 

homocysteine (tHcy) measurements, where mice number (n)=4 in individual group. The 
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overall difference between the experimental groups was determined by one-way or two-

way ANOVA, and a Tukey's post hoc analysis was run when overall statistically 

significant difference occurred in group means. Data are shown as means.e.m. and 

statistical difference *p<0.05 vs. WT and #p<0.05 vs. CBS+Met.    

 

NaHS treatment improves muscle fatigability in CBS+Met mice. To measure HHcy effect 

on muscle fatigability, I performed swimming capacity test for all experimental groups.  I 

noticed that CBS+Met mice moved less distance and spent less time in swimming, 

whereas NaHS supplementation improved their capacities significantly (Fig. 19A and 

19B). Similar findings were also observed for the muscle grip strength test as shown by 

less latency to fall from rotarod and grip strength/BW in CBS+Met as compared to WT 

mice. After 8 weeks of NaHS administration, these effects were substantially improved in 

CBS+Met mice (Fig. 19C and 19D).  
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Figure 19: NaHS treatment improves muscle fatigability in CBS+Met mice compared to 

WT mice. (A) Measurements of muscle fatigability was done by swimming test, in the left 

side shows total distance moved and on the right side shows total time spent during the 

swimming performance test; (B) Images captured during live recording of swim test 

(top), representative animal tracings were shown after motion performance in swimming 

test for each group (bottom); (C) Images showing results of grip strength using rotarod 

performance test (left) and grip strength test (right). (D) Images captured in rotarod (top) 

and Bioseb grip strength meter (bottom) during grip strength test. The overall difference 

between the experimental groups was determined by one-way or two-way ANOVA, and 

a Tukey's post hoc analysis was run when overall statistically significant difference 

occurred in group means. Data are shown as means.e.m. and mice number (n)=9 mice 

and *p<0.05 vs. WT and #p<0.05 vs. CBS+Met. 
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HHcy induced morphological changes in skeletal muscle in-vivo. To understand the 

effect of HHcy on morphological changes in the muscle fibers, I analyzed the cross-

sectional areas (CSAs) by laminin staining. Results of the staining showed a significant 

reduction of CSAs in gastrocnemius muscle fibers isolated from CBS+Met in comparison 

to WT mice (Figure 20A and 20B). Although not statistically significant, I observed an 

improvement of CSAs of skeletal muscle fibers in CBS+Met mice after NaHS treatment 

for 8 weeks.    

 

Figure 20: HHcy reduces cross-sectional areas (CSAs) of skeletal muscle fibers in 

CBS+Met mice compared to WT mice. (A) Laminin staining showing cross-sectional 

areas (CSAs) measurements are low in GA muscle of CBS+Met mice compared to WT 

mice (Bar=200μm); (B) Quantification of CSAs form laminin staining images are shown 

on the right. To study the CSAs of the gastrocnemius muscle fiber from each group, I 

analyzed 30-40 fields/mouse. Representative image from each group of mice is shown 

here. The overall difference between the experimental groups was determined by one-

way ANOVA, and a Tukey's post hoc analysis was run when overall statistically 

significant difference occurred in group means. Data are shown as means.e.m. and 

mice number (n)=4 and *p<0.05 vs. WT. 
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To check whether HHcy induces fibrosis in skeletal muscle fibers, I performed 

H&E and Masson trichrome staining in muscle CSAs of gastrocneous muscle. Results 

revealed a higher level of fibrosis and collagen deposition in muscle CSAs derived from 

CBS+Met as compared to WT mice. Interestingly, treatment with NaHS for 8 weeks was 

found to alleviate these effects in CBS+Met mice (Fig 21A-21C).  

 

Figure 21: HHcy-induced fibrosis and collagen deposition in skeletal muscle in-vivo. (D) 

H&E staining in cross sectional areas of gastrocnemius muscle showing morphological 

differences of muscle fibers between CBS+Met and WT mice, images are taken using 

EVOS® FL Auto Cell Imaging System where mice number (n)=4. (Bar=400μm), 

Representative areas from H&E staining images are zoomed in to show more clear view; 

(E) Quantification of regenerated muscle fibers as quantified by centrally located nuclei 

from H&E staining images; (F) Masson’s Trichrome staining in cross sectional areas 
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(CSAs) of gastrocnemius muscle showing blue color stain (white arrowheads) as 

collagen deposition in the muscle of CBS+Met mice compared to WT mice. Images are 

taken using EVOS® FL Auto Cell Imaging System where mice number (n)=4-5. 

(Bar=400μm); (G) Quantification of collagen deposition as quantified by blue color stain 

from Masson’s Trichrome staining images. The overall difference between the 

experimental groups was determined by one-way ANOVA, and a Tukey's post hoc 

analysis was run when overall statistically significant difference occurred in group 

means. Data are shown as means.e.m. and mice number (n)=4-5 and *p<0.05 vs. WT 

and #p<0.05 vs. CBS+Met. 

 

Effect of Hcy on Akt-phophorylation, and subcellular localization of FOXO1. To study the 

effect of HHcy on Akt-phosphorylation, I did Western blots analysis; the results showed 

that Hcy treatment significantly reduced Akt-phosphorylation in C2C12 cells as 

compared to vehicle controls, whereas this effect was successfully mitigated via NaHS 

administration (Fig. 22A).  

As I noticed Akt-phophorylation is downregulated and JNK-phosphorylation is 

upregulated after Hcy treatment in C2C12 cells (Figure 22A and 12),  I tested the 

subcellular localization of FOXO1 using ICC analysis. My confocal images showed that 

p-FOXO1 is primarily localized in the nucleus and FOXO1 is primarily expressed in the 

cytoplasm in the cells across all the treatment groups (Fig. 22B). However, I observed 

that the pFOXO1/FOXO1 ratio is high for Hcy treated C2C12 cells compared to controls 

and this effect was reversed via NaHS supplementation (Fig. 22B). 
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Figure 22: Hcy attenuates Akt-phosphorylation and induced nuclear localization of p-

FOXO1 in C2C12 cells. (A) Western blots analysis showing Hcy treatment reduced Akt- 

phosphorylation, whereas NaHS treatment mitigates this effect. Densitometric 

measurement of Akt-phosphorylation from above Western blots image is shown on the 

right, where n=3 technical replicates; (B) Representative images showing intracellular 

localization of p-FOXO1 and FOXO1 in the left. The p-FOXO1/FOXO1 ratio based on 

fluorescent intensity from ICC images are shown on the right, where n=3 technical 

replicates. Cells were observed and imaged under the confocal microscope at 100X 

magnification. Quantification of fluorescent intensity were shown on the right. The overall 

difference between the experimental groups was determined by one-way ANOVA, and a 

Tukey's post hoc analysis was run when overall statistically significant difference 

occurred in group means. Data are shown as means.e.m., and *p<0.05 vs. CT and 

#p<0.05 vs. Hcy. 
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Hcy enhanced Atrogin-1 and MuRF-1 expression in the skeletal muscle. I noticed the 

expression of Atrogin-1 and MuRF-1 were higher in Hcy treated C2C12 cells in 

comparison to vehicle controls, and this effect was attenuated by NaHS treatment (Fig. 

23A). Similar findings were observed in muscle collected from experimental mice (Fig. 

23B). In addition, IHC experiments confirmed higher MuRF-1 and reduced myosin heavy 

chain type-I (MHC-I) expression in skeletal muscle of CBS+Met mice as compared to 

WT mice, and this effect was alleviated by NaHS treatment (Fig. 24A-C). The Western 

blot results also confirmed a similar association as seen in IHC staining (Figure 24D and 

E). 

 

Figure 23. Hcy enhanced Atrogin-1 and MuRF-1 expressions in the skeletal muscle. (A) 

Western blots data showing expression of Atrogin-1 and MuRF-1 were elevated in 

C2C12 cells after Hcy treatment compared to controls. Densitometric measurements of 

Atrogin-1 and MuRF-1 expression from above Western blots images are shown on the 
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bottom, where n=3 technical replicates. Data are shown as means.e.m., where n=3-4 

biological replicates and *p<0.05 vs. CT and #p<0.05 vs. Hcy. (B) Western blots data 

showing expression of Atrogin-1 and MuRF-1 were elevated in the muscle of CBS+Met 

mice compared to WT mice. (H) Densitometric measurement of Atrogin-1 and MuRF-1 

expression from above Western blots images is shown on the bottom, and where mice 

number (n)=4. The overall difference between the experimental groups was determined 

by one-way or two-way ANOVA, and a Tukey's post hoc analysis was run when overall 

statistically significant difference occurred in group means. Data are shown as 

means.e.m. and *p<0.05 vs. WT and #p<0.05 vs. CBS+Met.  

 

 

Figure 24. High Hcy mediates elevated expression of MuRF1 and degradation of its 

targets protein MHC-1 in skeletal muscle of CBS mice compared of WT mice. (A) 
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Immunohistochemistry analysis showing representative images of elevated expression 

of MuRF1 and reduced expression of MHC-I in tissue cross-section of the GA muscle in 

CBS+Met mice compared to WT mice. The arrows indicate the respective expression 

levels of MuRF-1 (low) and MHC-1 (high) in the fiber content of the GA muscle 

(Bar=200μm). (B) Quantification of MHC-1 expression from IHC images is shown on the 

right and where mice number (n)=4. (C) Quantification of MuRF-1 expression from IHC 

images is shown on the right, and where mice number (n)=4. (D) Western blots data 

showing protein expression of MHC-1 and MuRF-1 in the muscle of CBS+Met mice 

compared to WT mice. (E) Densitometric measurement of MHC-I and MuRF-1 from 

above Western blots images is shown on the right, and where mice number (n)=4. The 

overall difference between the experimental groups was determined by one-way or two-

way ANOVA, and a Tukey's post hoc analysis was run when overall statistically 

significant difference occurred in group means. Data are shown as means.e.m. and 

*p<0.05 vs. WT and #p<0.05 vs. CBS+Met. 

 

Discussion 

Skeletal muscle is the largest organ in the human body and makes up almost 

40% of the body’s weight (351). Muscle atrophy can occur due to result in the reduction 

of muscle mass, structural, and metabolic alteration of intrinsic muscle cells (138). 

Although HHcy was reported to cause muscle atrophy, the precise molecular 

mechanism of this effect was not identified before. In this study, I observed a reduction 

of body weights in HHcy mice (genetically engineered heterozygous CBS deficient mice) 

compared to age matched WT mice (Fig. 18E). As I also noticed their tibia lengths were 

similar with WT mice and muscle masses in hindlimb were lower in comparison to WT 

mice (Fig. 18C), suggesting that overall reduction of body weight may be at least partly 

due to the reduction of muscle mass (351). The muscle fiber is bound to connective 
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tissues, nervous tissues and blood vessels for oxygen and nutrient supply (366,367), so 

reduction of muscle mass may impair its functional capabilities. Indeed, I noticed that 

CBS mice have significantly poor performance in swimming and grip strength test 

compared to WT mice (Fig. 19). Interestingly, I also identified that NaHS administration 

could successfully mitigate these effects. The basic unit of the muscle is the muscle 

fiber, so any structural or morphological changes in muscle fiber can play havoc with it 

functional capabilities (368). Muscle atrophy is most often associated with fibrosis in 

muscle fibers, excessive accumulation of extracellular matrix (ECM) components, 

particularly collagen (369). This study showed that HHcy could actually significantly 

reduce CSAs, and induce fibrosis and collagen deposition in muscle fibers of CBS mice 

compared to WT mice and these effects of HHcy were improved upon NaHS 

administration (Fig. 20 and 21). This study is similar to previous study by Kanwar et al. 

[1976] found that HHcy can cause focal fragmentation, disruption and smearing of the Z‐

discs, increased collagen deposition in the besal lamina and disorganization of the 

myofilaments in the skeletal muscles (14) 

To further characterize underlying molecular changes of HHcy-mediated muscle 

atrophy, I analyzed intracellular localization of p-FOXO1 and FOXO1 by ICC experiment. 

Regulation of the subcellular localization of FOXO1 is critical to its transcriptional activity 

(354-356). My findings provide a new insight into the molecular background of the effect 

of HHcy in induced nuclear translocation of p-FOXO1. I observed induction of p-FOXO1 

expression and its nuclear localization upon treatment with Hcy and mitigated upon 

NaHS treatment (Fig. 22) led us to conclude that possibly Hcy stabilizes FOXO1 in the 

nucleus and thus allows it to carry on its transcriptional activity. Recent studies indicate 

that JNK is responsible for FOXO activation under stress conditions (357,358). As I also 

found high Hcy can activate JNK (chapter IV, Fig. 12), suggesting that JNK may also 

play a role in regulating nuclear stabilization of FOXO1.  When FOXO1 is 
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phosphorylated through Akt on S256, it creates a 14-3-3 binding site (370), that masks the 

nuclear localization signal (NLS) and prevents nuclear translocation, thereby inhibiting 

the activities of FOXO1 (371-373). However, during HHcy condition, Akt is 

downregulated, hence in addition to JNK pathway, reduced Akt-phosphorylation in 

C2C12 cells after Hcy treatment can stabilize FOXO1 inside the nucleus thus allowing 

them to carry their transcriptional activity (374,375).  

 Previous results suggested the role of FOXO1 transcription factors in the 

regulation of E3-ubiquitin ligases like Atrogin-1, and MuRF1 (376-379). Similarly, my 

findings suggested that expression of both MuRF1 and Atrogin-1 were upregulated in 

both in-vitro and in-vivo models and NaHS administration mitigated these effects. 

Together these results suggest that upregulation of these E3 ubiquitin ligases may be 

mediated through the FOXO1 transcription factors, which were found to be involved in 

most forms of atrophy (377,380-384). The overall results from this study demonstrate 

that HHcy-mediated oxidative/ER-stress upregulates MuRF1 and Atrogin-1 expression 

through JNK-dependent FOXO1 activation, which may degrade some vital proteins in 

muscle, such as MHC-I and MyoD (385,386). Indeed, I noticed that expression of MHC-I 

was decreased in skeletal muscle of CBS+Met mice (Fig. 24), which indicates that 

higher expression of MuRF-1 could trigger muscle atrophy via proteasomal degradation 

of its target proteins such as MHC-I (387).  

In conclusion, I have elucidated a well-defined signaling pathway for the upregulation of 

E3 ubiquitin ligases in HHcy-mediated skeletal muscle atrophy through activation of 

FOXO1 via JNK phosphorylation. I have also provided important data regarding potential 

mechanistic role H2S in mitigation of HHcy-mediated skeletal muscle atrophy. This study 

indicates that H2S could be developed as a potential therapeutic target in various forms 

of musclulopathies wherein HHcy is linked with metabolic dysfunction.
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CHAPTER VI 

SUMMARY 

HHcy is a well-accepted risk factor for vascular diseases (136), and several 

studies reported that HHcy conditions lead to skeletal muscle weakness and functional 

impairment (14,19,20). Results from the present study demonstrate that HHcy due to 

CBS+/- deficiency displays decreased bodyweight, angiogenesis and skeletal muscle 

mass, which ultimately lead to muscle myopathy. This is similar to neurological disorders 

such as amyotrophic lateral sclerosis (ALS), and multiple sclerosis, causing muscle 

degeneration and are also associated with HHcy (15). My dissertation elucidates the 

potential molecular mechanisms as to how HHcy mediates skeletal muscle myopathy via 

induction of oxidative and ER-stress responses, apoptosis, atrophy and reduction of 

angiogenesis (Fig. 25). This study also identified the apparent beneficial effects of H2S 

on mitigation of HHcy effects on skeletal muscle dysfunction.  

In chapter IV, I explored that high Hcy can induce intracellular oxidative and ER-

stress responses in skeletal muscle. Interestingly, I found that these cellular stress 

responses were successfully mitigated via NaHS intervention. Moreover, I found that 

HHcy induced JNK phosphorylation in both in-vitro and in-vivo models, however, I did 

notice that NaHS could not mitigate JNK-phosphorylation in the in-vitro model, but it 

could reduce JNK-phosphorylation in the in-vivo model. To my best knowledge, the 

possible explanation for this observed difference is in the in-vitro settings, I only studied 

a single readout (24 h post-HHcy), unlike the in-vivo CBS+/- model wherein I was able to
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observe the continuous or prolonged effect of the NaHS mediated phospho-JNK status. 

Previous studies have revealed that JNK-phosphorylation was able to activate c-Jun 

which further regulated the expression of several pro-inflammatory and proapoptotic 

genes (283-291). Indeed, my data showed that the apoptosis rate was induced after Hcy 

treatment in C2C12 cells and it was mitigated by the NaHS supplementation. 

Furthermore, I found inflammatory cytokines IL-6 and TNF-α were higher in plasma from 

CBS+/- as compared to wild-type mice; however, this effect was not mitigated via NaHS 

administration. The overall results from this chapter established the molecular 

mechanisms of the pathophysiological effects of HHcy in skeletal muscle myopathy via 

inducing cellular stress responses.  

In chapter V, I elucidated that HHcy can inhibit angiogenesis via PPARVEGF 

axis in a hindlimb ischemia model. This study showed that HHcy reduced the HIF1, 

VEGF and p-eNOS levels in skeletal muscle after 21 days of chronic ischemia 

(generated via femoral artery ligation; FAL) in CBS+/- mice compared to WT mice. 

Additionally, I also noticed that plasma nitrite levels were low in CBS+/- mice in 

comparison to WT mice after 21 days of ischemia, suggesting that HHcy may reduce the 

bioavailability of NO during angiogenesis in CBS+/- mice compared to WT mice. 

Interestingly, I also observed GYY4137 (another donor of H2S) supplementation 

mitigates this HHcy effect in CBS+/- mice. Furthermore, I identified the collateral vessel 

densities, and blood flow rates were lower in the hindlimb of CBS+/- mice after 21 days of 

ischemia compared to WT mice, and these effects were also attenuated via GYY4137 

treatment, suggesting that exogenous supplementation of GYY4137 can improve HHcy-

mediated angiogenic defects.  PPAR-γ is known to regulate angiogenesis via 

upregulation of VEGF levels (315), and VEGF can further activate eNOS during 

angiogenesis (320). Similar to the previous work this study showed that H2S could 
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induce PPAR-γ expression (323), which suggest that H2S may improve angiogenesis 

during chronic HHcy condition via PPAR-γ/VEGF axis.  

In chapter VI, I demonstrated the beneficial effect of H2S in the mitigation of 

HHcy-mediated skeletal muscle atrophy via JNK/FOXO axis. I found a reduction of body 

weights in CBS+/- mice compared to age-matched WT mice and since their tibia lengths 

were similar, thus this effect may partly be due to the reduction of muscle mass. Then, to 

study whether this reduction of muscle mass can impair muscle function, I did whole 

animal muscle fatigability tests (by swim performance and grip strength test). The 

findings showed that HHcy induced muscle fatigability in CBS+/- mice compared to WT 

mice and it was noticed that NaHS supplementation for 8 weeks was able to improve 

this effect. I also demonstrated that HHcy induced fibrosis, collagen deposition and 

reduced CSAs of skeletal muscle fibers in the gastrocnemius muscle of CBS+/- mice 

compared to WT mice; interestingly NaHS supplementation improved this condition. I 

elucidated that actually HHcy induced muscle atrophy through upregulation of MuRF-1 

and Atrogin-1 expressions via JNK/FOXO1 axis. Previous studies showed that Akt 

inhibits FOXO1 activity via preventing its nuclear localization, whereas JNK increases 

FOXO1 activity by promoting its import into the nucleus (352,356-359). This study 

showed that Akt-phosphorylation was attenuated, and JNK-phosphorylation was induced 

after Hcy treatment in C2C12 cells compared to vehicle controls, which possibly 

stabilizes FOXO1 in the nucleus and allows it to promote the expression of Atrogin-1 and 

MuRF-1 (E3 ubiquitin ligases). Whereas the upregulation of MuRF1 and Atrogin-1 due to 

HHcy condition may degrade their target proteins in the muscle fibers as reported 

previously for being responsible for muscle atrophy (361). Indeed, in this study, I noticed 

that upregulation of MuRF-1 degraded MHC-1 in CBS+/- mice compared to WT mice and 

this effect was substantially mitigated via NaHS treatment for 8 weeks.  

The overall results from this study demonstrated that HHcy can cause skeletal 



          92 

muscle myopathy via cellular stress responses, apoptosis, inflammation, atrophy, and 

poor angiogenesis and identified a novel mechanism as to how H2S could mitigate these 

effects.  

 

Figure 25. Proposed model. Based upon the above findings, I have proposed a model 

that I firmly believe to be involved in HHcy-mediated skeletal muscle dysfunction.  

 

However, there is still a lot more left to clarify in this regard, such as (i) people 

develop HHcy due to many reasons; mutation of the CBS+/- gene is one of them. I 

studied the effects of HHcy on skeletal muscle using CBS+/- mouse model that is similar 

to the physiological conditions but not identical as observed in HHcy patients, so a 

suitable animal model is still lacking. The half-life of NaHS is short, therefore most of the 

effects of H2S vary in different studies. Moreover, delivery methods of H2S donors 

(NaHS, Na2S, GYY4137, etc.) are also a crucial factor because of changes in the 

pharmacokinetics and pharmacodynamics of these compounds. Also, there is a lot of 

hurdles to overcome with regard to identifying a proper delivery method for H2S. Skeletal 
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muscle dysfunction ranges from general muscle weakness and soreness to severe 

myopathy, muscle wasting and cachexia. Some of the complex dysfunctions do not 

necessarily originate from skeletal muscle and there are many variables and signaling 

pathways that need to be determined for devising the strategies to alleviate these 

pathological effects of HHcy on skeletal muscle myopathy. Although many studies have 

been devoted to clarifying the molecular mechanisms involved in E‐C coupling 

(excitation-contraction coupling) during skeletal muscle atrophy this was not assessed in 

my study due to limited resources and complexity associated with testing under in-vivo 

settings. I analyzed the FOXO1A localization via ICC experiment, however, I didn’t 

confirm my findings via western blot analysis using fractioned samples (nuclear and 

cytoplasmic extracts); (vi) Finally, from this study it is not still confirmed whether H2S is 

working via oxidative stress mechanisms or something else and whether other 

antioxidants (like N-acetylcysteine) has similar effects like H2S. So, future work should 

address these questions to devise potential therapeutic options. 

In brief, this work provides evidence that H2S is beneficial towards mitigating the 

HHcy-mediated skeletal injuries incited by oxidative/ER-stress responses. The findings 

from my study suggest that HHcy can inhibit angiogenesis via antagonizing the 

angiogenic signal pathways encompassing the PPAR-/VEGF axis, and H2S might be 

employed as a potential therapeutic option to alleviate the harmful metabolic effects of 

HHcy conditions. The findings from this study have been summarized in Fig. 23 

highlighting the sequential events during HHcy and its effects on skeletal muscle 

atrophy. 
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FUTURE DIRECTIONS 

 

HHcy-mediated skeletal muscle dysfunction involves a great number of 

cytokines, DNA methylation, metabolic alterations, hormonal regulation, etc. (7). The 

primary focus of this study was to determine how HHcy promotes skeletal muscle 

myopathy through induction of oxidative and ER-stress responses, apoptosis, atrophy, 

and impairment of angiogenesis, and to study whether or not H2S could mitigate the 

effects of HHcy during skeletal muscle myopathy. Although this study was able to 

demonstrate the above effects, there are many other factors and signaling pathways that 

need to be determined to devise any effective and potential treatment to improve these 

detrimental effects of HHcy in skeletal muscle dysfunction. 

As I showed that NaHS improved skeletal muscle functions via mitigation of 

cellular stress responses using CBS+/- mouse model. However, people develop HHcy 

due to various other reasons. The western diet contains high levels of methionine (such 

as in red meat), and studies showed that an excessive intake of the high methionine diet 

could elevate Hcy levels (79,246). So, to elaborate further, I wish to study and extend my 

hypothesis to in a diet-induced HHcy model. 

As ER is considered as a storehouse of Ca2+ and alterations of Ca2+ release from 

ER contributes to dysregulation of muscle's contractility.  In this study, I found HHcy 

mediated ER-stress in muscle, however, the effects of HHcy on sarcoplasmic reticulum's 

Ca2+ handling and whether that has any role in skeletal muscle fatigability remains 

unresolved. In the future, I want to study the effects of HHcy on E-C coupling, Ca2+  
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release, ATP/ADP ratios, mitochondrial biogenesis in the skeletal muscle. 

It has been known that aging is associated with a decline in skeletal muscle 

mass and strength and a slowing of muscle contraction impact the quality of life for the 

older people. Previous studies demonstrated that older people have significantly higher 

levels of Hcy compared to younger ones (387,388). It is also reported that HHcy can 

significantly lower physical functions in older people compared to age-matched healthy 

subjects (138), which suggests that aging is one of the potential risk factors to be 

considered in this process (139). In the future, I also want to study the role of Hcy in 

decline in physical function during the aging process.  

Loss of skeletal muscle mass (i.e., muscle wasting) is a major component of 

cachexia; in particular, malnutrition is considered a critical factor (389,390). Whereas 

plasma total Hcy levels are dependent on nutritional status (391), deficiency of folic acid 

and vitamins B6, B12 and B9 are also the causal factors for the induction of HHcy (391). 

Since the effect of Hcy for causation of cachexia is not studied. So, in the future, I want 

to examine my hypothesis in light of muscle cachexia.
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LIST OF ABBREVIATIONS AND SYMBOLS 

 
 

HHcy:     Hyperhomocysteinemia 

CBS:     Cystathionine--synthase 

CSE:     Cystathionine γ-lyase 

WT:     Wild-type 

Met:     Methionine 

NaHS:     Sodium hydrogen sulfide 

UPR:     Unfolded protein response 

IRE1α:    Inositol-requiring enzyme-1α 

XBP-1:    X-box binding protein-1 

PERK:    PRKR-like ER kinase 

ATF6:     Activating transcription factor-6 

TRAF2:    TNF receptor-associated factor-2 

JNK:     C-Jun N-terminal kinase 

ASK1:     Apoptosis signal-regulating kinase-1 

FOXO:    Forkhead box protein O 

MuRF1:    Muscle RING-finger protein-1 

MAFBx:    Muscle atrophy F-box 

MDA:     Malondialdehyde 

ROS:     Reactive oxygen species 

ER:     Endoplasmic reticulum 

DCFDA:    2', 7’–dichlorofluorescin diacetate 

ELISA:    Enzyme-linked immunosorbent assay 

MHC-I:    Myosin heavy chain isoform (MHC)-I 
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H2S:     Hydrogen sulfide 

FAL:     Femoral artery ligation 

HIF1α:    Hypoxia-Inducible Factor 1 α 

PPAR-γ:    Peroxisome proliferator-activated receptor-γ 

VEGF:    Vascular endothelial growth factor 

eNOS:    Endothelial nitric oxide synthase 

EC:     Endothelial cell 

DNMT:    DNA methyltransferase 

MS:     Methionine synthase 

SAH:     S-adenosyl Hcy 

THF:     Tetrahydrofolate 

GPx:     Glutathione peroxidase 

SOD:    Superoxide dismutase 

CAT:    Catalase 
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Appendix I 

Table 4. Physiological parameters of experimental mice. 

Parameters 

(mean+/-s.e.m) 
WT CBS+Met CBS+Met+NaHS WT+NaHS 

BW 0 weeks (gm) 23.614+0.7566 20.16045+0.4921 20.70098+0.7799 24.13964+0.5933 

BW 4 weeks (gm) 27.125+0.6500 22.563+0.6325 24.568+0.6852 28.214+0.7481 

BW 8 weeks (gm) 29.03981+0.4557 23.15864+0.7504 26.45705+0.5716 30.54376+0.6692 

Tibia length (mm) 15.36+1.2923 14.98+1.1214 14.59+1.1241 15.45+1.2832 

Gastroc (gm) 0.14+0.0094 0.1+0.0098 0.121+0.0094 0.142+0.0064 

Quad (gm) 0.189+0.0111 0.155+0.0111 0.162+0.0111 0.191+0.0111 

TA (gm) 0.053+0.0116 0.049+0.0094 0.05+0.0116 0.054+0.0116 

EDL (gm) 0.019+0.0013 0.017+0.0018 0.017+0.0013 0.02+0.0013 

Soleus (gm) 0.013+0.0053 0.009+0.0004 0.01+0.0054 0.006+0.0054 

Note: BW: Body weight 

 

Table 5: Results from exercise capacity test.  

Distance traveled in swimming test (m) 

Srl# WT CBS+Met CBS+Met+NaHS WT+NaHS 

1 26.28 12.36 18.33 25.36 

2 20.53 9.63 23.34 28.45 

3 30.54 17.33 19.34 19.52 

4 31.33 13.33 16.33 31.03 

5 29.36 18.35 22.33 29.37 

6 20.37 10.35 15.36 24.32 

7 27.33 13.03 29.65 26.35 

8 23.21 15.33 24.33 24.99 

9 19.85 20.64 18.63 22.75 

Mean+/-s.e.m. 25.4216+/-1.5198 14.4820+/-1.2372 20.8475+/-1.5003 25.7928+/-1.1734 

Time spent in swimming test (mins) 

 WT CBS+Met CBS+Met+NaHS WT+NaHS 

1 23.15 15.55 16.67 23.67 

2 17.52 14.10 21.79 27.17 

3 29.02 16.69 15.00 19.16 

4 22.53 13.63 17.65 28.37 

5 22.63 17.32 18.36 22.37 

6 25.36 18.36 22.30 24.30 

7 23.85 14.99 24.32 28.65 
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8 28.63 19.33 25.65 26.33 

9 22.37 12.75 27.52 23.20 

Mean+/-s.e.m. 23.90+/-1.1657 15.86+/-0.74266 21.03+/-1.44570 24.80+/-1.03671 

Latency to fall in Rolla rod grip test (Secs) 

 WT CBS+Met CBS+Met+NaHS WT+NaHS 

1 253 153 200 251 

2 263 163 210 249 

3 230 186 199 246 

4 198 210 176 198 

5 200 146 230 202 

6 263 163 156 193 

7 257 155 277 245 

8 243 187 244 168 

9 271 139 261 253 

Mean+/-s.e.m. 242.36+/-9.08560 167.21+/-7.65148 217.27+/-13.1677 223.14+/-10.7941 

Bioseb Grip strength test-strength/BW (g-force/gm) 

 WT CBS+Met CBS+Met+NaHS WT+NaHS 

1 35.10 15.15 23.10 40.42 

2 30.02 10.15 35.12 46.15 

3 40.12 21.12 31.45 30.13 

4 35.36 13.85 21.14 36.45 

5 39.37 25.36 30.30 40.52 

6 44.35 35.63 40.37 39.33 

7 36.33 19.87 33.36 33.33 

8 31.79 24.63 37.32 28.33 

9 29.32 22.32 43.33 43.27 

Mean+/-s.e.m. 35.75+/-1.65373 20.90+/-2.50639 32.83+/-2.44996 37.55+/-1.99293 
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Abstract

Higher levels of nonprotein amino acid homocysteine (Hcy), that is,

hyperhomocysteinemia (HHcy) (~5%of general population) has been associated

with severe vasculopathies in different organs; however, precise molecular

mechanism(s) as to how HHcy plays havoc with body’s vascular networks are

largely unknown. Interventional modalities have not proven beneficial to

counter multifactorial HHcy’s effects on the vascular system. An ancient Indian

form of exercise called ‘yoga’ causes transient ischemia as a result of various

body postures however the cellular mechanisms are not clear. We discuss a

novel perspective wherein we argue that application of remote ischemic

conditioning (RIC) could, in fact, deliver anticipated results to patients who are

suffering from chronic vascular dysfunction due to HHcy. RIC is the

mechanistic phenomenon whereby brief episodes of ischemia‐reperfusion

events are applied to distant tissues/organs; that could potentially offer a

powerful tool in mitigating chronic lethal ischemia in target organs during

HHcy condition via simultaneous reduction of inflammation, oxidative and

endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and

angiogenesis. We opine that during ischemic conditioning our organs cross talk

by releasing cellular messengers in the form of exosomes containing messenger

RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin,

transcription factors, small molecules, anti‐inflammatory, antiapoptotic factors,

antioxidants, and vasoactive gases. All these could help mobilize the bone

marrow–derived stem cells (having tissue healing properties) to target organs.

In that context, we argue that RIC could certainly play a savior ’s role in an

unfortunate ischemic or adverse event in people who have higher levels of the

circulating Hcy in their systems.
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ABSTRACT

In the United States, breast cancer is the second leading cause of death among 

women, and even though different therapies can treat primary breast tumors, most 

breast cancer-related deaths (> 95% ) occur due to m etastasis. A  m ajority (~70% ) 

of breast tum ors are found to express estrogen receptor, and a significant portion 

(~ 90% ) of ER-positive (ER +) breast tum ors are also androgen receptor-positive 

(AR +). A lthough ER is know n to prom ote tum origenesis, the role and underlying 

mechanism(s) of AR in these closely knit processes remain controversial. Endocrine 

therapies are the m ost com m only used treatm ent for patients w ith ER +  breast 

tumors; but, ~30%-50% of initially responsive patients develop resistance to these 

therapies. W hereas 70% –90%  of all breast tum ors are AR + and AR overexpression is 

correlated w ith endocrine resistance, but the precise m olecular m echanism (s) for this 

association is yet to be studied. M ultip le  m echanism s have been proposed to show  AR 

and ER  interactions, w hich  indicate that AR  m ay preferentially  regulate expression  of 

a subset of ER-responsive genes and that may be responsible for breast cancer and 

its progression in  affected patients. O n the other hand, m ost of the ER + breast tum ors 

fo u n d  in  p o s t -m e n o p a u s a l w o m e n  ( ~ 8 0 % ) ;  a n d  th e y  h a v e  v e ry  lo w  1 7 β -e s tra d io l a n d  

high androgen levels, but how  these horm onal changes m ake som eone m ore prone 

to  cancer phenotype has long been a  d isputed issue. In  this study, w e have discussed 

m ultip le m olecular m echanism s that w e believe are central to  the understanding of 

the overall contributions of AR in breast cancer and its m etastasis in post-m enopausal 

women.

INTRODUCTION

In the United States, breast cancer is the second 

leading cause of death among women (40,610 deaths 

and 252,710 new cancer cases are estimated in 2017) 

[1]. There are different therapies (surgery, radiotherapy, 

chemotherapy, endocrine therapies, or combination of 

these therapies) available which can treat primary tumor; 

however, most breast cancer-related deaths occur due 

to distance organ metastasis (mainly lung, brain and 

liver). Whereas, most epidemiological studies showed 

inconsistent finding in a correlation between serum 

androgen levels and breast cancer risk; but whether this 

association is consistent in post-menopausal women with 

breast cancers (who have high androgens levels and low 

17β-estradiol) is not understood [2–11]. Previous studies 

have implicated a possible role for AR in breast cancers 

[12–14], and AR is found to be predominantly expressed 

in in-situ, invasive and metastatic breast cancers (~90% 

of primary tumors and 75% of metastases) [15–18]; 

however, the precise molecular mechanism(s) for AR's 

contribution to breast cancer is largely unknown. Hence, a 
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