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ABSTRACT 

FUNCTIONAL AND STRUCTURAL IMPACT OF THE LOSS OF THE LEUCINE-RICH REPEAT 
PROTEIN LRIT1 IN THE MOUSE RETINA 

 
Catherine Ann Cobb 

April 4, 2018 

 Mutations in genes encoding the leucine-rich repeat (LRR) proteins nyctalopin and LRIT3 lead to 

complete congenital stationary night blindness because they are critical to depolarizing bipolar cell function 

in the retina. LRIT3 has two closely related family members, LRIT1 and LRIT2. In silico analyses of 

publicly available RNA-Seq data showed that Lrit1 was highly expressed in the retina. Here I describe the 

expression pattern and impact of loss of LRIT1 on retinal function. To enable these studies, we used 

CRISPR/Cas9 technology to create an Lrit1-/- mouse line. Retinal morphology and morphometry analyses 

showed no gross changes in retinal structure or retinal layer thickness. Immunohistochemistry (IHC) shows 

photoreceptor, ON bipolar cell, and horizontal cell proteins localize normally in the absence of LRIT1. 

These data suggest LRIT1 is unnecessary for normal retinal and synaptic development. IHC also reveals 

LRIT1 localizes to the OPL with punctate staining similar to proteins expressed in invaginating horizontal 

cells at rod spherules but does not co-localize with ON or OFF bipolar cell proteins. RNA in situ 

hybridization shows Lrit1 expression in the ONL and INL, suggesting LRIT1 may also be expressed in 

photoreceptors. We used electroretinogram analyses to assess retinal function in Lrit1-/- mice and 

demonstrate that the a- and b-waves are decreased in amplitude under both scotopic and photopic 

conditions. Multi-electrode array recordings of Lrit1-/- retinal ganglion cells demonstrated abnormal 

ganglion cell responses and rhythmic oscillations. Taken together, our data localize LRIT1 to the OPL of 

the mouse retina where the loss of LRIT1 results in abnormal outer and inner retinal function without 

altering retinal structure. Thus, LRIT1 is critical for normal retinal signaling.  
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CHAPTER 1 

INTRODUCTION 

 

Vision provides organisms a unique perspective through visual imagery that originates from and 

depends on tiny packets of discrete light called photons. Our visual system can even detect a single photon 

(1). We must gather, focus, and channel light from our surroundings onto our retinas via the cornea and 

lens to capture and transform photonic energy into biologically encoded information our brains can 

interpret (Fig. 1) (2). 

The ability to visually assess and relate to our environment helps us in many ways such as balance 

control and mobility. Moreover, the integration of vision with other informative inputs such as hearing or 

taste guide behavior. Imagine you did not possess the ability to see: you would miss reflections in a mirror, 

the smile the stranger gives you when you walk into a room, or the brake lights on the car that slams to a 

stop in front of you. Without normal vision, daily activities can become more challenging. The National 

Federation of the Blind estimates there are 1.3 million legally blind Americans and another 8.7 million 

Americans who are visually impaired (3). Further, studies suggest a doubling of these numbers in the next 

30 years due to aging (3). Several diseases such as macular degeneration, diabetic retinopathy, cataracts, 

and glaucoma (4) represent some of the major contributors. Achromatopsia, Bardet-Biedl syndrome, 

congenital stationary night blindness, and retinitis pigmentosa (5) represent some of the rarer contributors 

to the visually impaired or blind populations. Thus, to help these growing populations of visually impaired 

or blind people by developing prophylactics and treatments, it is important to fully elucidate and 

understand the visual circuits through research. 
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Retinal Layer Organization 

The eye gathers, focuses, and converts light into an electrochemical signal sent to the brain for 

visual processing. But how does the mammalian eye perform these functions? At the eye’s posterior is the

retina, the tissue responsible for transmitting the information from incident light to the brain. The retina is a 

seven-layered structure essential for the first steps of vision. Between the posterior-most retinal pigment 

epithelium and the anterior-most optic nerve fiber layer are seven retinal layers containing (1) the 

photoreceptor outer segments (OS), (2) the photoreceptor inner segments (IS), (3) the outer nuclear layer 

(ONL), (4) the outer plexiform layer (OPL), (5) the inner nuclear layer (INL), (6) the inner plexiform layer 

(IPL), and (7) the ganglion cell layer (GCL) (Fig. 2).  
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To add to this complexity, there are cell types specific to each retinal layer. The photoreceptors, or 

rods and cones, comprise the OS, IS, and ONL. The OS consists of membranous stacks called discs with 

visual pigment proteins and is the site of phototransduction. The IS contains the mitochondria, ribosomes, 

and membranes needed for producing and packaging molecules and proteins for later transport to the OS. 

The photoreceptor nuclei reside in the ONL. The OPL contains synaptic contacts between pre-synaptic 

photoreceptor axons and both post-synaptic bipolar cell dendrites and horizontal cell dendrites and axons. 

The INL is composed of bipolar, horizontal, and amacrine cell bodies. The IPL contains the synaptic 

contacts between bipolar cell axons and ganglion cell dendrites and synaptic contacts between amacrine 

cells and either bipolar, ganglion, or other amacrine cells. The GCL is the final nuclear layer containing the 

retinal ganglion cell bodies and displaced amacrine cells. In sum, photoreceptor, bipolar, and ganglion cells 

are the primary, secondary, and tertiary neurons, respectively, of the vertical pathways in retina whereas 

horizontal and amacrine cells function in lateral inhibitory pathways to regulate signaling in the outer and 
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inner retinas, respectively. By post-natal week four, the structure of the mouse retina is built (Fig. 3) (6). 

The conserved developmental patterns and final structure of the retinas in all jawed vertebrates (superclass 

or subphylum Gnathostomata) suggest a common origin, and points of difference likely result from 

necessary adaptations for survival or enhanced fitness (7).  

 

 

 

 

Photoreceptors 

Hundreds of millions of years ago our early ancestors developed cells skilled in primitive 

phototransduction. During the Cambrian explosion when animal body plans underwent major changes such 

as the introduction of a skull in animals known as craniates, they also evolved eyes and visual systems (6). 

Microvillar and ciliary photoreceptors are the two early types of photoreceptors that are expressed in 

separate animal groups (8). Microvillar photoreceptors result from OS plasma membrane microvillar 

evaginations. Ciliary photoreceptors develop from OS plasma membrane ciliary invaginations. Humans and 
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mice express ciliary photoreceptors to receive and transduce light-dependent information. This occurs via 

initiation of a G-protein-mediated light response culminating in hyperpolarization and graded potentials. 

Graded potentials differ from action potentials in that they are not restricted to an all-or-none response (Fig. 

4). Graded potentials can yield a response based on the degree (or grade) of pre-synaptic input. The 

changes in photoreceptor membrane potential modulate glutamate release into the synapse that transmits a 

graded potential to post-synaptic bipolar and horizontal cells (6,7). Several differences between rods and 

cones arise from their specialized contributions to dim light and daylight vision, respectively.  

 

 

 

 

Rods 

Rods exhibit an OS structure consisting of individual discs that contain one type of visual pigment 

called an opsin with a peak sensitivity around 496 nm (Fig. 5). Rods are also more abundant than cones (7). 

Human retinas are 95% rods and 5% cones. This proportion is more exaggerated in laboratory rodents who 
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are nocturnal and consequently have a greater proportion of rods to cones in their rod-dominant retinas. 

This limits the research applications for cone studies in rodents. In contrast, most birds and some diurnal 

animals display a greater proportion of cones to rods and have what are referred to as cone-dominant 

retinas (9).  

 

 

 

Cones 

Cones exhibit an OS structure of an interconnected sequence of discs that contain one or more of 

several opsins (Fig. 5). Cone opsins each have distinct absorption maxima that provide animals with 

discriminate color vision (1). Cone-dependent color vision in animals forms distinct profiles: humans and 

related non-human primates are trichromats, most other mammals including mice are dichromats, and birds 

and fishes are tetrachromats (1,9). In trichromats, cones exist in three types: L, M, and S, which are 

characterized based on the wavelength to which each type optimally responds. L, M, and S cones respond 
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to long-, middle-, and short-frequency wavelengths, respectively. In humans, L cones occur twice as often 

as M cones. L and M cones exist all over the retina but are the only photoreceptors in a small, centralized 

region of high visual acuity known as the fovea. S cones comprise ~10% of cones and typically exist in the 

peripheral retina (7). In the dichromatic mouse retina there are only two expressed opsins: S-opsin and L-

opsin, sensitive to short and middle-to-long wavelengths, respectively (10). Subtle changes in the opsin 

proteins among species can cause concurrent changes in opsin sensitivities such that mouse S-opsin has an 

absorption maximum in the ultraviolet range (10). The pigmented mouse retina displays a non-homogenous 

cone distribution where the ventral retina has a higher density of S-opsin expressing cones that are rare in 

the dorsal retina. L-opsin expressing cones exhibit an even distribution. In dichromats like mice, cones can 

either be genuine or dual. Genuine cones express only one type of opsin whereas dual cones express both. 

The bulk of the cones in the mouse retina are dual cones co-expressing both opsins. It is important to note 

that opsin co-expression in dual cones does not hinder color discrimination. All mouse cones can be 

visualized by staining with peanut agglutinin (PNA) or by co-staining for both genuine cone markers using 

anti-S or anti-L opsin antibodies (10). Cone opsins exhibit similar photosensitivities to rhodopsin based on 

their extinction coefficients and quantum yields, which does not account for the difference in rod to cone 

sensitivity. This difference may instead be due to the faster cone opsin regeneration rate and cone recovery 

of circulating dark current after photobleaching that matches the function of cone-mediated vision under 

daylight conditions (1,11,12).  

 

Photoreceptor Synaptic Ribbons 

Photoreceptor terminal active zones, or vesicular release zones, contain voltage-dependent calcium 

channels and sites for vesicular fusion-dependent glutamate exocytosis. Rod terminals are called spherules, 

and cone terminals are called pedicles. At the photoreceptor glutamate release site, there is an electron-

dense structure referred to as a synaptic ribbon (Fig. 6). This is the origin of the term ribbon synapse, which 

is marked by the well-established photoreceptor ribbon protein RIBEYE (13). The photoreceptor synaptic 

ribbons are where rod spherules and cone pedicles contact horizontal and ON bipolar cells. When 

horizontal and ON bipolar cells contact the photoreceptor terminal at one ribbon, they form a triad. In 



8 
 

addition to synaptic ribbon contacts, cone pedicles also make flat contacts to OFF bipolar cells, distinct 

from the invaginating ribbon synapses. 

The synaptic ribbon is critical to highly efficient signal transmission (14). In light increments, the 

ribbon is charged with vesicles. The rate at which ribbons release vesicles is a function of light intensity 

such that as light intensity increases, less vesicles are released. At light decrements, photoreceptors 

depolarize and open calcium channels so that calcium ions can flow into the cell to raise and maintain 

locally high intracellular calcium levels. This stimulates calcium-dependent vesicular fusion and glutamate 

exocytosis occurs. This releases the excitatory neurotransmitter glutamate into the synaptic cleft (14).  
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Photoreceptor Signaling and Regenerating Signaling Molecules 

Rhodopsin is a G-protein coupled receptor whose composition provides its photosensitivity. 

Rhodopsin’s vitamin A-derived chromophore 11-cis-retinal absorbs photons in the visible light spectrum. 

Absorbed photons excite 11-cis-retinal’s electrons and cause its isomerization into all-trans-retinal (1). The 

cis to trans isomerization can also occur stochastically or result from a change in thermal energy. These 

alternate ways to induce cis to trans isomerization introduce noise into the system (1). Rods demonstrate a 

low spontaneous thermal isomerization that lowers background noise and provides them with the ability to 

detect low levels of light. Cone opsins exhibit a much higher rate of spontaneous thermal isomerization 

compared to rods, therefore making cones less sensitive than rods (11). To regenerate 11-cis-retinal in rods, 

all-trans-retinal must be transported to the retinal pigment epithelium where it is reduced, esterified, 

isomerized, oxidized, and recycled into 11-cis-retinal and diffuses back into the photoreceptor OS to 

conjugate to a new opsin (15). 

Incident light enters the retina and traverses to the photoreceptor OS. Membrane-embedded 

rhodopsin in rod OS and opsins in cone OS absorb photons of light, which causes their activation into 

metarhodopsin II (rods) and meta-II (cones) (Fig. 7A). Metarhodopsin II activates its G-protein transducin 

(Gt), which binds to and activates phosphodiesterase 6 (PDE6). Active PDE6 hydrolyzes cyclic GMP 

(cGMP) into 5’-GMP. The decline of cGMP closes cGMP-gated sodium (CNG) channels, hyperpolarizing 

the cell. In the dark, CNG channels are open. The cation influx through CNG channels generates what is 

referred to as the circulating dark current (Fig. 7B). Light increments minimize the dark current and its 

influx of cations, leading to photoreceptor hyperpolarization. Photoreceptor hyperpolarization is sensed by 

voltage-gated calcium channels that close, decreasing calcium ion influx at the axon terminal, and thus 

reducing vesicular glutamate release.  

Ca2+ and Gtα-GTP hydrolysis are involved in restoring the high intracellular OS Ca2+ levels in the 

photoreceptor resting state at light decrements. Declining Ca2+ levels in photoreceptors during light 

increments cause OS Ca2+ to dissociate from guanylate cyclase-activating protein so that low [Ca2+] 

activates guanylyl cyclase. Active guanylyl cyclase synthesizes and increases cGMP production (Fig. 7A). 

This reestablishes cGMP levels, reopens CNG sodium channels, restores the dark current, depolarizes 

photoreceptors, opens voltage-gated Ca2+ channels and Ca2+ influx, and increases Ca2+-dependent glutamate 
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release. Declining calcium levels in photoreceptors also cause the Ca2+-dependent protein recoverin to 

derepress or activate rhodopsin kinase activity. Rhodopsin kinase phosphorylates metarhodopsin II (16), 

which causes arrestin binding and inactivation of metarhodopsin II. RGS9 is a GTPase-activating protein 

that induces Gtα GTP hydrolysis. GDP-Gtα cannot interact with PDE6, inactivating PDE6.  
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Bipolar Cell Signaling 

Rods contact a single type of ON bipolar cell. Cones contact 7 types of cone ON bipolar cells and 

5 types of cone OFF bipolar cells (Fig. 8). ON/depolarizing bipolar cells (DBCs) express the metabotropic 

G-protein coupled glutamate receptor mGluR6 to sense changes in glutamate. Metabotropic receptors are 

indirectly coupled to distinct ion channels through signal transduction typically involving G-protein 

signaling. OFF/hyperpolarizing bipolar cells (HBCs) express ionotropic glutamate receptors to sense 

changes in glutamate. Ionotropic receptors are non-selective, ligand-gated transmembrane ion channels. 

The two ionotropic receptors in OFF bipolar cells are AMPA and kainate receptors, which are activated by 

α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and kainic acid (kainate), respectively. 

Like photoreceptors, bipolar cells also use a ribbon synapse for glutamate release (13).  

 

 

 

In ON bipolar cells, glutamate binds to mGluR6 and closes the cation channel TRPM1, which 

hyperpolarizes the cell (17). The fact that photoreceptor depolarization, which results in glutamate release, 

leads to ON bipolar cell hyperpolarization is an example of a sign-inverting synapse. At light increments, 

photoreceptors hyperpolarize, decreasing synaptic glutamate. This inactivates mGluR6, opens TRPM1, and 

depolarizes the cell. In direct contrast, glutamate opens OFF bipolar cell ionotropic receptors, and they 

depolarize. The fact that photoreceptor depolarization leads to OFF bipolar cell depolarization is an 

example of a sign-conserving synapse. At light increments, the lack of glutamate closes ionotropic 
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receptors and hyperpolarizes OFF bipolar cells (17). Thus, light decrements hyperpolarize ON bipolar cells 

and depolarize OFF bipolar cells whereas light increments depolarize ON bipolar cells and hyperpolarize 

OFF bipolar cells (Fig. 9). Bipolar cells then transmit these excitatory signals to retinal ganglion cells for 

downstream signal processing. 
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In darkness, rods release glutamate that binds to and activates mGluR6. Active mGluR6 regulates 

the TRPM1 cation channel through a G-protein complex signaling cascade dependent on the intermediary 

trimeric G-protein complex comprised of Gαoβ3γ13 subunits. This also involves a GAP complex consisting 

of the 2 regulators of G-protein signaling (RGS) protein complexes, RGS7 and RGS11, and the 2 adaptor 

protein membrane anchor subunits, the RGS anchor protein R9AP and the orphan receptor GPR179 (Fig. 

10). The GAP complex greatly enhances the slow kinetics of Gαo’s spontaneous GTP hydrolysis (18). The 

RGS7/RGS11 double knockout (19,20), GPR179 knockout (21), and Gβ5 knockout (22) mouse models all 

exhibit a lack of ON bipolar cell function to light, demonstrating the importance of the GAP complex in 

mGluR6-mediated signaling. The current model proposes that RGS11 exclusively interacts with R9AP, and 

R9AP also directly interacts with GPR179 (23). GPR179 also interacts with Gβ5 and RGS7 (24). These 

proteins are responsible for converting GTP to GDP on Gα0 (21). The mechanism of TRPM1 gating is still 

debated. One model proposes that active mGluR6 activates Gαo to bind and close TRPM1. A second model 

proposes that mGluR6 directly regulates TRPM1’s state independent of Gαo (25). It is also possible that 

TRPM1 gating may require nyctalopin.  
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TRPM1 knockout mice exhibited a lack of ON bipolar cell function evidenced by a no b-wave 

(nob) electroretinogram (ERG) phenotype (26-28), illustrating TRPM1 is indispensable for ON bipolar cell 

responses. Discovered in D. melanogaster, TRPM1 belongs to the transient receptor potential (TRP) family 

of proteins and was the first member of the TRP melanoma-related subfamily (TRPM) (29). TRPM1 is one 

of eight TRPM proteins identified in humans and mice. It had also been suggested that TRPV1 might be the 

cation channel in ON bipolar cells. However, this hypothesis was found to be incorrect in a 2009 study by 

Shen et al. that demonstrates normal b-waves in TRPV1 knockout mice ERGs (27). Because TRPM1 

knockout mice exhibited the nob ERG phenotype, Li et al. screened CSNB patients and identified one 

recessive TRPM1 mutation (IVS16+2T>C) and four likely disease-causing TRPM1 mutations (c.412delG 

p.G138fs, c.3105T>A p.Y1035X, c.220C>T p.R74C, and c.3004A>T p.I1002F) (30). Additionally, a 

recent study identified fourteen missense, splice-site, deletion, or nonsense mutations in TRPM1 for 10 

unrelated patients (70+ TRPM1: c.31C>T p.Gln11X, c.215A>G p.Tyr72Cys, c.296T>C p.Leu99Pro, c.428-

3C>G p.splice defect, c.1197G>A p.Pro399Pro splice defect, c.1418G>C p.Arg473Pro, c.1622T>A 

p.Met541Lys, c.2322T>A p.Tyr774X, c.2567G>A p.Trp856X, c.2634+1G>A p.splice defect, c.3094G>T 

p.Glu1032X, c.3491delA p.Gln1164ArgfsX31, c.3834C>T p.Asn1278Asn; 92+ TRPM1: c.40C>T 

p.Arg14Trp) (31). A second study identified 2 deletions (chr15:31355203-31391647del and c.83delA 

p.Asn28MetfsX62), 3 substitutions (c.220C>T p.Arg74Cys, c.296T>C p.Lys99Pro, c.1091T>G 

p.Leu364Arg), 2 missense (c.1600G>A p.Gly534Arg and c.1832C>T p.Pro611His), and 2 splice-site 

(c.3061+1G>A and c.3142G>A) mutations in TRPM1 for 6 patients some of whom exhibited heterozygous 

compound mutations (32). A third study identified 2 splice-site (IVS2-3C>G and IVS8+3_6delAAGT), 1 

nonsense (c.2645C>A p.S882X), and 2 missense (c.1870C>T p.R624C and c.3224T>C p.F1075S) 

mutations in TRPM1 of 5 patients (33).  

 

Horizontal Cells 

When photoreceptors hyperpolarize, horizontal cells also hyperpolarize. Thus, horizontal cell 

interneurons receive light-evoked glutamatergic input from photoreceptors in a sign-conserving synapse. 

Hyperpolarized horizontal cells provide photoreceptor feedback and bipolar cell feedforward inhibition. 

The mechanism underlying this lateral inhibition is currently controversial. Rods contact horizontal cell 
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axons whereas cones contact horizontal cell dendrites. Horizontal cells receive input from several 

photoreceptors and other horizontal cells (34). The input field is referred to as a receptive field (Fig. 10A). 

Horizontal cells have a large receptive field because of connexin57-dependent gap junctions forming 

electrically coupled horizontal cell networks. The ability to receive this wide field of input and negatively 

feedback onto photoreceptors in the horizontal cell receptive field surround allows them to directly create 

the center-surround properties of bipolar cells (Fig. 11A). When photoreceptor hyperpolarization triggers 

horizontal cell hyperpolarization, the photoreceptor calcium current activation curve undergoes a left shift 

to a more hyperpolarized potential, increasing glutamate release. Three hypotheses are currently debated 

concerning the underlying mechanism(s) of photoreceptor feedback: the ephaptic, pH, and GABA 

hypotheses (Fig.11B-C) (9,35).  

 

 

 



18 
 

The ephaptic hypothesis proposes that horizontal cell connexins form large ion hemi channels 

between cells to create an interconnected network (34). During hyperpolarization when horizontal cells 

experience a local reduction in membrane potential at their hemichannels, the local synapse becomes 

slightly more negative than the surrounding extracellular space. Photoreceptor calcium channels sense this 

local negative potential, which shifts their calcium current activation curve leftward (35). This leftward 

shift activates voltage-dependent calcium channels, resulting in photoreceptor depolarization. Although the 

ephaptic mechanism has been shown to shift the calcium activation currents in turtles (36), newts (37), 

salamanders (38), goldfish (39), zebrafish (40,41), and mice (42), it is unclear if it alone can explain the 

changes in cone activating calcium currents (43). 

The pH hypothesis proposes that horizontal cells modulate the photoreceptor calcium current 

activation curves by changes in proton concentration. In light decrements, depolarized horizontal cells 

increase the synaptic proton concentration beyond the extracellular buffering capacity. Protons accumulate 

in and acidify the synapse, which shifts the calcium current activation curve rightward in cones. In light 

increments, protons are depleted from and alkalize the synapse (34). Synaptic alkalization, like the ephaptic 

potential difference, shifts the calcium current activation curve leftward to stimulate photoreceptor 

depolarization (9,35). The protons have been hypothesized to come from several sources not limited to 

ATP hydrolysis, proton pumps, proton/bicarbonate permeable channels, and protons released with 

photoreceptor glutamate (43,44). No study to date has clearly identified the proton source(s) (43).  

The GABA hypothesis suggests that photoreceptor hyperpolarization stimulates horizontal cell 

GABA release into the synaptic space whereby photoreceptors undergo a net depolarization and are 

inhibited. Data examining this hypothesis demonstrate that GABA-dependent feedback is slow compared to 

ephaptic and pH-mediated feedback (45,46). The GABA hypothesis has been shown to modulate horizontal 

cell feedback in newts (37) and salamanders (47) but exhibits no consistent effects in the macaque retina 

(48). In mice this mechanism is thought to act indirectly through ephaptic or pH-mediated feedback 

because GABAA receptors are not found in mouse cones (46). While experimental data support the GABA 

hypothesis, there are stronger data implicating the ephaptic and pH mechanisms (9,35). It is still possible 

that the GABA mechanism is a modulator for the ephaptic and pH mechanisms (44,45). 
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The horizontal to bipolar cell feedforward inhibitory mechanism is much less studied than its 

feedback inhibition. Hyperpolarized horizontal cells are thought to release GABA sensed by GABA 

receptors on bipolar cell dendrites. Salamander studies show that GABA receptor antagonists do not 

prevent horizontal cell surround inhibition (49), but they do in mice (50). This suggests that the GABA 

hypothesis may be species-specific. Horizontal cell hyperpolarization-induced GABA release is also 

thought to disrupt the differential bipolar cell chloride gradients that would hyperpolarize ON but 

depolarize OFF bipolar cells (51). Each bipolar cell type expresses different chloride transporters where 

ON bipolar cell chloride equilibrium potentials are more depolarized (51).  

 

Amacrine Cells 

 Amacrine cells are retinal interneurons that provide lateral inhibition within the IPL. More than 

half of the cells in the mouse retina are amacrine cells (52). Amacrine cells act on bipolar, ganglion, and 

other amacrine cells. Amacrine cells are the most diverse retinal cell type, and more than 40 types have 

been identified in the mouse retina (9,53). Amacrine cells modulate their presynaptic glutamatergic bipolar 

cell input to provide inhibition. Amacrine cells deliver feedback inhibition to bipolar cells and feedforward 

inhibition to ganglion cells. Amacrine cells can also laterally inhibit other amacrine cells. Amacrine cell 

feedback is modulated by release of the inhibitory neurotransmitters GABA or glycine. These inhibitory 

mechanisms together shape the spatiotemporal features of inner retinal neurons. Amacrine cell types are not 

restricted to connect to only one type of ganglion cell. A study done by Helmstaedter et al. reconstructed 

the mouse IPL, and the resulting connectivity matrix demonstrated that several amacrine cell types connect 

to many different amacrine and ganglion cell types (54). Some amacrine cells uphold the convention that 

neurons release one fast and one modulatory neurotransmitter (55). A specific amacrine cell, the starburst 

amacrine cell, defies the convention because it releases two fast neurotransmitters, inhibitory GABA and 

excitatory acetylcholine (56).  

 

Retinal Ganglion Cells 

 Bipolar and amacrine cells are pre-synaptic to retinal ganglion cells, which are the output neurons 

of the retina. Ganglion cell axons converge at the optic nerve head and transmit their signals to the brain. 
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There are reports with up to 32 ganglion cell types in mice of which at least 18 can be morphologically 

distinguished (57,58). It is likely that combinations of expressed molecular markers and structural 

information will be required to discriminate all ganglion cell types (53).  

All bipolar cell glutamatergic input to retinal ganglion cells at the IPL are examples of sign-

conserving synapses. When a retinal ganglion cell depolarizes beyond its threshold, it generates an all-or-

none action potential known as a spike. ON ganglion cells depolarize in response to ON bipolar cell input. 

Likewise, OFF ganglion cells depolarize in response to OFF bipolar cell input. ON/OFF ganglion cells 

depolarize in response to the combination of ON and OFF bipolar cell input. Thus, ganglion cells are 

divided into ON, OFF, and ON/OFF functional classes. These common functional classes are differentiated 

by their center surround responses specifically being named for their responses at center stimuli. ON 

ganglion cells respond to a light increment presented to their centers but are inhibited to a center light 

decrement (Fig. 12C). This is similar to the way an ON bipolar cell responds to light increments. Thus, ON 

cells respond to center “light on” stimuli. Similarly, OFF ganglion cells are inhibited when light is 

presented to their centers but instead exhibit a center response to a light decrement. This is akin to OFF 

bipolar cell responses. OFF cells respond to center “light off” stimuli. ON/OFF ganglion cells respond to 

both light increments and decrements presented to their centers.  

Retinal ganglion cell responses to stimuli presented to their surrounds are typically the opposite of 

their center responses (Fig. 12A-B). For example, ON ganglion cells are hyperpolarized/inhibited by light 

increments presented to their surrounds, but OFF ganglion cells are depolarized/excited by light increments 

presented to their surrounds. The center surround response organization of ganglion cells functions to 

emphasize edges.  
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Within functional classes there are transient and sustained types, which describes the duration of 

the response. Transient responses exhibit a prominent, sharp peak that decays quickly to baseline. Sustained 

responses exhibit a sharp peak that declines slightly and plateaus until the stimulus changes. 

These functional classes are also differentiated by the IPL sublamina into which their dendrites 

extend. ON ganglion cells receive input from ON bipolar cells in the ON sublamina of the IPL. OFF 

ganglion cells receive input from OFF bipolar cells in the OFF sublamina of the IPL. ON/OFF cells are 

bistratified cells, meaning their dendritic arbors extend into both IPL sublamina. Ganglion cells can further 
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be classified according to their responses to contrast, frequency, receptive field size, response latency (the 

time from stimulus to response onset) (59), and motion sensitivity. Each ganglion cell type contributes a 

specific visual feature in their signal transmission to the brain. 

 

Multiple Vertical Signaling Pathways Arise from Parallel Channels in Interneuron Cell Wiring 

Photoreceptor wiring to post-synaptic neurons has been shown to result in the formation of the 

primary, secondary, and tertiary pathways. The primary visual pathway is the rod to rod ON bipolar cell to 

amacrine AII cell to cone ON and OFF bipolar cell to ganglion cell pathway where amacrine AII cells 

provide sign-conserving and -inverting input to cone ON and OFF bipolar cells, respectively. The 

secondary visual pathway is the rod to cone to cone ON bipolar cell to ganglion cell pathway that functions 

via connexin36-dependent rod-cone gap junctions that activate cones downstream of light-induced rod 

activation. An additional tertiary visual pathway is defined as the rod to cone OFF bipolar cell to ganglion 

cell pathway (60). These parallel pathways create multiple avenues of signaling for the incident photons.  

 

Retinal Support Neurons 

Neurons are supported by three types of supporting cells: two macroglial cell populations, Müller 

glia and astrocytes, and microglia. First identified by Heinrich Müller, Müller glia are the most abundant 

and span the entire retina with their cell bodies localized to the INL (61). Müller glia maintain the retinal 

physiological environment by regulating the extracellular milieu and impacting processes such as glutamate 

uptake and insulation of the electrochemical signals from retinal neurons. Astrocytes cover blood vessels in 

the INL along with Müller glia where together they form the retinal blood barrier. The majority of 

astrocytes reside in the nerve fiber layer (61). Astrocytes also help preserve the delicate ion balance of the 

retina, which is critical to retinal signal transmission. Microglia are support cells that secrete neurotrophic 

factors and can be activated into neuron-specific macrophages with neurotrophic or neurotoxic functions 

(62).  

 

Mutations in Critical Retinal Proteins Cause Congenital Stationary Night Blindness  
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Mutations in genes encoding proteins critical for visual signaling can lead to a disease state. 

Congenital stationary night blindness (CSNB) refers to a group of clinically and genetically variable, non-

progressive (stationary) disorders of the retina (63). The phenotypic effects of the disorder typically but not 

always include decreased visual acuity, impaired visual adaptation in the dark, refractive error seen as 

myopia (or rarely, hyperopia), nystagmus, strabismus (misalignment of the eyes), and normal fundus 

morphology. Diagnosis is assessed by ERG, family history, and genetic screening for all known CSNB-

causing mutations. CSNB exhibits near complete penetrance although its frequency is unknown.  

CSNB can be subcategorized into two types by the noninvasive standard flash ERG, which 

measures alterations in the measured a- and b-waves corresponding to photoreceptor hyperpolarization and 

ON bipolar cell depolarization, respectively (Fig. 13) (64).  
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The first of these two CSNB types is Riggs, which is defined by the reduction or absence of the 

dark adapted a-wave, indicating rod dysfunction. Riggs type CSNB patients also exhibit a comparatively 

reduced dark-adapted b-wave. Riggs type CSNB is seen with mutations in the guanine nucleotide binding 

protein, alpha transducin 1 gene encoding GNAT1 (65,66). It is also seen in patients with mutations in Rho, 

Pde6b, and Slc24A1 (64,67).  

A second type is Schubert-Bornstein, which is defined by the absence or reduction of both the 

dark- and light-adapted b-wave (no b-wave [nob]) and a normal a-wave. The Schubert-Bornstein phenotype 

indicates abnormal synaptic function and is subgrouped into complete/type I (cCSNB) or incomplete 

CSNB/type II (iCSNB).   

iCSNB is defined by a normal a-wave but partial b-wave in the scotopic ERG and markedly 

reduced b-waves in the photopic ERG. This is due to the impairment of both rod and cone signaling 

because of defective pre-synaptic function. iCSNB patients have some degree of scotopic rod function 

present (64). Because iCSNB affects rod and cone signaling, there is typically a greater loss in visual 

acuity, causing increased visual restrictions compared to those with cCSNB. iCSNB is known to exhibit an 

autosomal recessive (Cabp4, Cacna2d4) or x-linked recessive (Cacna1f) mode of inheritance (68,69).  

cCSNB is characterized by the complete absence of the ERG b-wave. This is caused by absence of 

a functional ON bipolar cell signaling cascade resulting in defective post-synaptic responses. The known 

modes of inheritance for cCSNB are x-linked (Nyx) and autosomal recessive (Grm6, Trpm1, Gpr179, Lrit3) 

(25,30-32,63,70-87).  

 

Leucine-Rich Repeat Proteins Are Critical to Retinal Function  

Mutations in three leucine-rich repeat (LRR) proteins, NYX, ELFN1, and LRIT3, are known to 

cause CSNB. The nyx gene encodes the protein nyctalopin, which was the first LRR protein identified for 

its critical role in the retina (72,88). Pardue et al. identified a spontaneously occurring nob mouse mutant 

(89). Gregg et al. later showed that the underlying cause of the nob ERG resulted from an 85bp deletion in 

the Nyx gene (72) located on the X chromosome (88). Together, these data suggest NYX is required for 

synaptic transmission from photoreceptors to ON bipolar cells. This was confirmed in a later study where 
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exogenous addition of glutamate to nob ON bipolar cells did not elicit a response whereas nob OFF bipolar 

cells responded normally (63). In situ hybridization experiments localized Nyx expression to the INL in the 

human and mouse (71,72). Early efforts to characterize the function of NYX determined that comparison of 

normal and nob mice demonstrated no alteration in rod bipolar cell morphology and no changes in the 

localization of known pre- and post-synaptic retinal markers mGluR6, Gα0, bassoon, PSD95, CACNA1F, 

trkB, β-dystrophin, and dystroglycan (90). This suggests NYX is not required for normal localization of 

these proteins. After TRPM1 was identified as the cation channel required for light-evoked ON bipolar cell 

response in the retina (27,28,91), experimental data from Pearring et al. revealed a direct interaction 

between NYX and TRPM1. Pearring et al. also showed the absence of NYX expression in the nob mouse 

results in a loss of TRPM1 expression at ON bipolar cell dendritic tips (73). Bojang et al. performed a 

topological analysis and found that murine NYX does not dimerize when expressed in yeast, its LRR 

domain is exclusively extracellular, and has one transmembrane domain in contrast to GPI-anchored human 

NYX (92,93). These findings suggest that NYX’s mechanism of anchoring to the membrane is unimportant 

but implicates its LRR structure may be directly involved in the formation of the ON bipolar cell signaling 

complex. 

A later study revealed the abnormal spontaneous activity and light-evoked responses in nob 

ganglion cells compared to normal ganglion cells and confirmed the normal retinal morphology in the nob 

mouse (63). This suggests the loss of NYX affects synaptic signaling but not synaptic assembly. By 

creating a transgenic bipolar cell-specific EYFP-nyctalopin mouse model, Gregg et al. were able to 

completely rescue the nob phenotype to restore normal outer and inner retinal function while confirming 

the ON bipolar cell-specific expression pattern of NYX (63).  

Pearring et al. noted that murine NYX contains only 3 intracellular amino acids and human Nyx is 

wholly extracellular from which they hypothesized the requirement for an additional transmembrane 

protein involved in the intracellular scaffolding of the NYX/TRPM1 complex (73). A later whole exome 

sequencing study in cCSNB patients who did not exhibit known cCSNB mutations identified a novel 

candidate that may provide a scaffold for the NYX/TRPM1 interaction: leucine-rich repeat, 

immunoglobulin-like, and transmembrane domain 3, or LRIT3 (79). Follow-up studies localized LRIT3 

expression to the OPL in normal mice and showed the nob ERG phenotype in Lrit3nob6 mutant mice. They 
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showed the loss of LRIT3 and TRPM1 in all Lrit3nob6 bipolar cells, suggesting LRIT3 is involved in the 

localization of TRPM1 like NYX (78). These studies also showed the loss of mGluR6, GPR179, RGS7, 

RGS11, Gβ5, and PNA staining in cone bipolar cells (77). At the ganglion cell level, the Lrit3nob6 mutation 

abolishes the ON ganglion cell response and confers a delayed OFF ganglion cell response. However, their 

data show only 2-3 Lrit3nob6 OFF ganglion cells with a response latency of greater than 0.5 seconds. These 

studies determined the importance for LRIT3 in the retina.  

A third LRR protein extracellular leucine rich repeat and fibronectin type III domain containing 1 

(ELFN1) was identified as a novel mGluR6 interactor in a proteomics screen. ELFN1 was shown to be 

necessary for synaptic assembly of rod to rod ON bipolar cells (94). mGluR6 and ELFN1 were singly 

transfected but co-cultured in HEK293T cells and formed a trans complex, suggesting a direct interaction 

(94). The ELFN1 knockout mouse ERGs showed preserved scotopic and photopic a-waves and photopic b-

wave while ablating the scotopic b-wave. This suggests that ELFN1 contributes to rod-selective synaptic 

signaling (94). Electron microscopy revealed a distinct absence of rod ON bipolar cell dendrites at rod 

synapses and disruption of horizontal cell contacts with rods in the ELFN1 knockout mice. These data 

suggest that rather than ELFN1 affecting synaptic signaling, ELFN1 affects rod to rod ON bipolar cell 

synaptic assembly, which when disrupted would lead to measurable signaling deficits (94).  

Together these previous studies establish the functional importance for the LRR proteins in the 

retina: NYX and LRIT3 in photoreceptor to ON bipolar cell synaptic signaling and ELFN1 in rod to rod 

ON bipolar cell synaptic assembly.  

 

The Leucine-Rich Repeat Domain 

The LRR domain with concave and convex faces consists of anywhere from 2-45 tandem LRR 

motifs. Each motif contains a 20-30 amino acid stretch with a highly conserved N-terminal 

LxxLxLxxN/CxL sequence first identified in the human α2-glycoprotein (92). In these motifs leucine and 

asparagine residues can be replaced with hydrophobic residues. Further, the N-terminus forms the β strand 

and looping region where each motif contributes one β strand to the LRR domain’s parallel β sheet region 

on the concave, or inner, face (92). The concave face of LRR domains has been shown to provide a large 
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inner binding surface for ligands, which was demonstrated and confirmed in crystallographic studies (95-

97).  

In comparison with the LRR motif’s N-terminus, the helical C-terminus of each motif is more 

highly varied in its secondary structure. The C-termini of each LRR form the convex, or outer face, of the 

domain. Because of the alternating β strands with helical regions, LRR domains form a non-globular classic 

arc or horseshoe-shaped structure also known as a solenoid structure (Fig. 14). The length and number of 

LRR motifs within the LRR domain dictate the length and angle of curvature of the specifically formed arc 

structure of any LRR protein. Variation in LRR length and curvature contributes to its ability to bind a 

variety of ligands in LRR protein/protein interactions.  

 

 

 

 

Leucine-Rich Repeat Immunoglobulin-like Transmembrane Domain Protein 1 (LRIT1) 

The LRR protein family in humans contains 375 members exhibiting diverse structures and 

functions in the development and differentiation of the mammalian nervous system (98-100). Ng et al. used 

a semiautomated method to cluster LRR proteins based on LRR classes using hidden Markov models 

combined with pattern-matching algorithms to predict secondary structures and irregular LRRs to yield a 

within-class LRR sequence similarity (99). They found 7 distinct classes: bacterial (S), ribonuclease 

inhibitor-like (RI), cysteine-containing (CC), SDS22, plant-specific (PS), typical (T), and Treponema 

pallidum (Tp). This model shows NYX, ELFN1, and LRIT3 all belong to the extracellular/transmembrane 
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cluster. LRIT3’s closest relatives are LRIT1 and LRIT2 (Fig. 15). Murine LRIT1 is a 624 residue 

membrane-embedded protein containing an N-terminal LRR domain, 5 internal LRR domains, a C-terminal 

LRR domain, an immunoglobulin G-like domain, a fibronectin type III domain, and a transmembrane 

domain with an intracellular C-terminus. Murine Lrit1 also encodes a signal sequence that yields a single 

pass type I transmembrane protein.  

In the only published paper specifically addressing LRIT1, Gomi et al. showed increasing Lrit1 

expression via in situ hybridization in the developing rat retina and LRIT1 expression in the rat 

photoreceptor OS using immunofluorescence microscopy and immunogold particle-labeled electron 

microscopy (101). Importantly, Lrit1 was not expressed in ten other assayed tissues, indicating it is retinal-

specific. Gomi et al. did not attempt to characterize the function of LRIT1 in the retina (101). Taken 

together, these data suggest LRIT1 may play an important role in retinal function and/or structure.  

The goal of my dissertation project is to characterize the impact of the loss of LRIT1 on mouse 

retinal structure and function. To achieve this, we created an Lrit1-/- mouse model using the CRISPR/Cas9 

system. I characterized the functional phenotypes using electroretinography and multi-electrode array 

experiments. The expression pattern of LRIT1 was assessed using RNA in situ hybridization and protein 

immunohistochemistry. The role of LRIT1 in retinal structure was examined using retinal morphology and 

morphometry.  
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Using CRISPR/Cas9 to Generate Genetically Modified Mouse Models 

CRISPR stands for clustered regularly interspaced short palindromic repeats. These arose first in 

Archae and later in bacteria for defense of viral infection or invasion. CRISPR comes from tandem 

repetitive sequences with short spacer sequences like memory devices for the sequences of past pathogens 

(102,103). To use CRISPR for gene editing, the system is assembled by first generating a fusion RNA: 

components of this are the protospacer element (also referred to as a single guide RNA or sgRNA), crRNA, 

linker loop, and tracrRNA. The protospacer element is a 20-nucleotide RNA complementary to one’s target 

of interest; the crRNA is comprised of both the protospacer element and a downstream region 

complementary to the tracrRNA that allows for RNA secondary structure formation; the linker loop is the 

region between the crRNA and the tracrRNA that is not complementary to either; and the tracrRNA 

hybridizes to the crRNA with complementarity but also binds to the Cas9 nuclease resulting in nuclease 
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activation and introduction of double-strand breaks in the DNA at the sites targeted by the protospacer 

element (Fig. 16) (102,103). An additional requirement in the genomic DNA sequence for Cas9 binding is 

the protospacer adjacent motif (PAM) that must be present immediately downstream of the targeted site of 

interest. 
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Following induced double-strand breaks, the cell undergoes double-strand break repair, which can 

take one of two paths. These are homologous directed recombination (HR) and non-homologous end 

joining (NHEJ) (102,103). CRISPR/Cas9 induced DNA double-strand breaks undergoing HR can be used 

to yield knock-in models. However, when DNA double-strand breaks are repaired using NHEJ, CRISPR 

can induce a point mutation, insertion, or deletion, potentially resulting in a knockout model. Interestingly, 

NHEJ occurs at least an order of magnitude faster than HR as well as being active throughout the cell cycle 

with a higher capacity for DNA break repair. In NHEJ, the broken DNA ends are repaired without a 

homologous template, which is prone to generating mutations and critical for creating a knockout model.  

The general steps in NHEJ are DNA end-binding, processing of the terminal end, and DNA 

ligation (104). The heterodimeric protein Ku70/80 recognizes broken DNA and binds to the ends. Ku70/80 

is the scaffolding element for the DNA-dependent protein kinase and surrounds the DNA in a ring to add 

structural support to the broken DNA ends and prevent further degradation. This also protects other 

proteins from binding to the DNA before repair can be completed. Ku70/80 binding recruits the DNA-

PKcs, which phosphorylates and binds to the Artemis protein. The DNA-PKcs/Artemis complex along with 

accessory proteins hold the DNA in a paired-end complex. Then the XRCC4/DNA ligase IV ligation 

complex can bind. DNA ligase IV ligates the DNA together in an XRCC4-dependent manner. XCCR4 is 

required to stabilize the DNA, enhance ligase activity, and direct ligase placement to the location of the 

DNA breaks during this process. Resulting mutations induced by the CRISPR/Cas9 system can be 

examined using DNA sequencing technologies combined with agarose gel electrophoresis if the mutation 

induces a resolvable insertion or deletion. 

 

RNA in situ hybridization 

RNAScope® in situ hybridization uses a complementary oligonucleotide target probe to bind a 

transcript of interest (105). The target probe is comprised of 20 double Z target probe pairs designed to 

specifically hybridize to one’s gene of interest, but not to non-targeted molecules. The double Z target 

probes are synthesized such that two independent probes (from where the double Z arises) have to 

hybridize to the target sequence in tandem to result in signal amplification. Each target probe consists of 3 

parts: a bottom 18-25 bp sequence complementary to the target mRNA, an oligonucleotide spacer region, 
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and a top 14 base tail sequence. When two of the Z probes hybridize in tandem, they form a 28bp sequence, 

all of which is required to bind the first preamplifier probe. Amplifiers then bind to different binding 

regions of the preamplifier probe. To achieve signal amplification specific to the mRNA target, it requires a 

minimum of 3 double Z probes and a maximum of all 20 pairs to bind. It is highly unlikely that two 

independent probes will hybridize to a non-specific target right next to each other, thus the selective 

amplification of target-specific signals can be ensured (105).  

 

Electroretinography 

Electroretinography (ERG) is a non-invasive assessment of the light-induced electrical response of 

the retina. ERGs provide an objective, quantitative measure of rod, cone, and ON bipolar cell function 

(106). To measure global retinal electrical activity, pupils of the examined eyes must be dilated to 

maximize the recorded responses and reduce the background noise to signal ratio. Further, the solution used 

to connect the corneal electrodes should contain methylcellulose to afford fluid viscosity and ensure better 

electrode connectivity in comparison to the less viscous and ion-rich saline solution. ERG recordings yield 

waveforms from which specific waveform components can be identified. The first, negative-going corneal 

a-wave corresponds to photoreceptor hyperpolarization, or closure of the OS CNG channels and 

minimization of the dark current, as discussed earlier in the introduction (Fig. 12). In animal models 

lacking an ERG b-wave, the a-wave is no longer pulled upward by the corneal positive b-wave leading the 

a-wave to become more negative with a deeper trough. Thus, comparisons of a-wave measurements in 

wild-type and nob mice can lead to the inaccurate conclusion that the a-wave is changed. Although the a-

wave is often measured from baseline to the trough of the wave (106), it is more directly monitored by 

measuring it from baseline to the amplitude at a fixed time such as 15ms after the flash if the experimental 

models exhibit an ablated b-wave (107). The second, positive-going corneal b-wave corresponds to ON 

bipolar cell depolarization, or opening of the TRPM1 cation channels allowing cation influx into the cell. 

The b-wave is measured from the trough of the a-wave to the peak of the b-wave (106). Variation in these 

waves has been well established in specific strains of mice like the C57Bl/6J wherein the ERG b-wave 

mean responses ± standard deviations are 258 ± 110µV (scotopic) and 95.7 ± 35.8μV (photopic), 

respectively (108). Smaller reductions to the photoreceptor dark current measured as photoreceptor 
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hyperpolarization and reduced ON bipolar cell depolarization result in decreases to the ERG a- or b-waves, 

respectively. Several characteristic ERG phenotypes have been studied. The nob phenotype diagnostic of 

cCSNB exhibits an intact a-wave but no b-wave, indicating a lack of signal transmission through ON 

bipolar cells that converge on the TRPM1 cation channel (89). Retinitis Pigmentosa yields an ERG 

phenotype that has a decreased a-wave, indicating retinal degeneration (109). Because more than 40 visual 

diseases can be distinguished using the ERG alone or in conjunction with other tests, signs, and symptoms, 

the ERG is an invaluable, non-invasive tool by which retinal function can be examined (110,111). 

 

Multi-electrode Arrays  

 Multi-electrode arrays (MEA) are a highly beneficial tool used in retinal neuroscience that affords 

researchers a way to perform one experiment to simultaneously capture information on the function of 

several ganglion cells. This information includes single cell spiking activity, spatio-temporal connectivity, 

and functional class type (112). The major drawback is that the sources of recorded spikes are not 

identified. One must sort all spikes in a principal component analysis to identify single cells. In contrast to 

the upstream photoreceptor and bipolar cell neurons that operate on graded potentials, ganglion cells 

respond via action potentials following the all-or-none principle: once the stimulus or input exceeds the 

cell’s activating threshold, the cell will respond. A spike is the measured signal from the generated action 

potential commonly measured as voltage above threshold levels. In our experiments, retinal pieces are 

provided ten 5s light flash stimuli at each flash intensity to determine the mean ganglion cell response. 

Ganglion cells on an MEA may respond to either light on- or offset, which manifest as spiking and are 

referred to as ON or OFF responses, respectively. When a ganglion cell responds to both light on- and 

offset, it is called an ON/OFF cell whereas a ganglion cell that responds to neither is categorized as non-

responsive. Additionally, ganglion cells may exhibit a specific absence of response phenotype 

characterized by a light-evoked absence of ganglion cell activity within the response time window 

compared to its spontaneous, or non-stimulus-evoked, activity. These ganglion cells are characterized as 

suppressed cells. The ganglion cell action potentials are transformed across the multi-electrode array 

components toward the recorded signal. The temporal aspect of ganglion cell responses is also relevant 

whereby normal, healthy ganglion cells respond within a short period of time if, in fact, those cells are 
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responsive to the applied stimulus. If ganglion cells do not respond within the time window threshold, those 

cells are considered to exhibit a delayed response. The choice of stimulus for an MEA experiment depends 

on the question being asked. One can test the spatial tuning of ganglion cells by presenting stimuli of 

varying spatial frequencies, which is like the visualization of sound waves of different frequencies but 

instead using black and white to correspond to the sound wave’s peaks and troughs. One can also examine 

contrast tuning and center-surround receptive fields of ganglion cells by presenting stimuli of varying 

contrasts from white to gray to black and of various dot sizes where one can additionally vary the colors of 

the dots versus the colors of the surrounds.  

 

Adeno-associated Viruses Drive Cell-Specific Retinal Gene Expression 

Much of the research performed by retinal researchers requires in vivo approaches because of the 

three-dimensional complexity of the retina whereby in vitro models are difficult to use to recapitulate the 

structure and function of the retina. As a result, recently established molecular tools are revolutionizing the 

field of visual research like the work by Scalabrino et al. and Lu et al. infecting mouse retinas with ON 

bipolar cell-specific adeno-associated viruses (AAV) (76,113). Scalabrino et al. incorporated the novel 

human mini-promoter Ple155 to induce bipolar cell-specific transgene expression in mice (76). They show 

that intravitreal injection of their AAV2(quadY-F+T-V)-Ple155-YFP_Nyx into nob mice at P2 resulted in 

partial restoration of the ERG b-wave and at the cellular level, full restoration of light-evoked ON bipolar 

cell responses for cells successfully expressing the transgene (76). By incorporating the Grm6 promoter 

with the 7m8 viral capsid variant containing a Y444F mutation in an AAV, Lu et al. maximized 

transfection efficiency while preserving the cell specificity of viral infection in vivo. They observed 

decreased transduction in off-target cell types in the retina compared to the previously used SV40 

promoter. Taken together, the use of AAV-mediated genetic engineering will increase our overall 

understanding of normal retinal physiology and its dysfunction in vision diseases and disorders.  
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CHAPTER II 

MATERIALS AND METHODS 

 

Mice 

All protocols involving animals were approved by the University of Louisville Institutional 

Animal Use and Care (IACUC) committee. CD-1 mice were from Envigo (Indianapolis, IN). FVB mice 

were from Jackson labs (Sacramento, CA). Swiss Webster mice were from Charles River (Wilmington, 

MA). Lrit1-/- mice were created in house as described below. Lrit2, Lrit3, Nyx, Grm6, and Trpm1 mice were 

maintained in the University of Louisville mouse colony. Animals of both sexes were used in all 

experiments.  

 

CRISPR/Cas9 Generation of LRIT1 Knockout Mice 

We employed the CRISPR/Cas9 gene editing system to create our novel Lrit1-/- mouse lines. For 

this, we designed 2 sgRNAs, one targeted to exon 2 (5’- UAGAGAGAACCGCCAUUCGC) and the other 

to exon 4 (5’ – GUGACGGCUCAAGUUGGACU) of the Lrit1 mouse gene. We injected both sgRNAs 

(200ng/µL each), the Cas9 nuclease mRNA (500ng/µL), and injection buffer (cat. MR-095-F, Millipore, 

Burlington, MA) into mouse embryos derived from female CD-1 and male FVB mice and then implanted 

them into pseudopregnant Swiss Webster mice. Tail biopsies were obtained from the resulting G0 

generation and DNA isolated for genotyping. Crude DNA was prepared using DirectPCR (cat. 102-T, 

Viagen, Los Angeles, CA) and proteinase K (1µg/mL). The sgRNA target regions were PCR amplified and 

the resulting PCR product sequenced. Primer sequences for exon 2 (Lrit1-7, Lrit1-02) and exon 4 (Lrit1-03, 

Lrit1-4) are given in Table 1. PCR conditions are described below. We identified 3 founder animals with 

heterozygous mutations and named these lines Lrit1 A, B, and C (Fig. 1). We crossed all founder mice to 

C57Bl/6J mice. Offspring were genotyped as described above. These mice are the N1 generation. We 
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crossed N1 heterozygous littermates to yield the N1F1 mice, and identified those homozygous for each of 

the mutant alleles by DNA sequencing (Fig. 17).  

To efficiently genotype Lrit1 A offspring, we performed allele-specific PCRs using either one of 

two forward primers LRIT1-15 (wild-type [WT] allele) or LRIT1-20 (mutant allele) with reverse primer 

LRIT1-19, or multiplexing of all three primers (Table 1). Together, these PCRs show one 122bp band for 

WT mice, 122 and 115bp for Lrit1+/- mice, and one 115bp band for Lrit1-/- mice. If low intensity bands 

showed up in either PCR compared to higher intensity positive control and sample bands, we used 

additional PCRs with alternate forward primers LRIT1-16 and LRIT1-17 in lieu of LRIT1-15 and LRIT1-

20, respectively, or sequencing to clarify the ambiguous results (Table 1). To efficiently genotype Lrit1 B 

and C offspring, we used PCR primers Lrit1-03 and Lrit1-4 (Table 1). We restriction enzyme-digested PCR 

products using Tsp45I (New England BioLabs, Ipswich, MA) that differentially cleaves WT and mutant 

Lrit1 alleles. WT, Lrit1+/-, and Lrit1-/- mice yield 3, 4, and 2 bands, respectively, of distinguishable size. 

This prevented the need to sequence all offspring for genotyping. We additionally screened all Lrit1 mice 

for the rd1 mutation, which causes early onset severe retinal degeneration, with primers Rd-f and Rd-r 

followed by restriction enzyme digest with DdeI (Promega, Madison, WI) to yield a 300bp WT or 150bp 

mutant allele DNA fragment (Table 1). In all later experiments we characterized Lrit1 B mice using WT 

littermate controls. 
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Polymerase Chain Reaction (PCR) 

We set up 20µL PCR reactions with the following: 4µLbuffer (either 5X Phire II buffer for tail 

PCRs [cat. F-524, Thermo Fisher Scientific, Waltham, MA] or 5X Phusion HF buffer [cat. F518, Thermo 

Fisher Scientific] for PCRs whose fragments were used for cloning), 0.4µL of 10 mM deoxynucleotide 

triphosphates (dNTPs, cat. U151B, Promega), 0.5µL of 20μM primers of forward and reverse primers, 

0.4µL of DNA polymerase (Phire Taq [cat. F122L, Thermo Fisher Scientific] or Phusion DNA Polymerase 

[cat. F-549L, Thermo Fisher Scientific]), template DNA, and nuclease-free water. Added volumes of 

template DNA and water varied for each reaction. We performed all PCRs using the following thermal 

cycling protocol: (1) 98°C, 30s; (2) 98°C, 5s; (3) variable temperatures, 5s; (4) 72°C, 5s; (5) repeat steps 2-

4 32 times; (6) 72°C, 300s; (7) 10°C, infinite hold. Annealing temperatures (step 3) were optimized for each 

primer pair. 

 

Agarose Gel Electrophoresis 

We made agarose solutions in TBE (10.8g/L Tris base, 5.5g/L boric acid, 0.75g/L 

ethylenediaminetetraacetic acid [EDTA], in water) and then microwaved the solution in 30 second 

increments until dissolved. Ethidium bromide (0.5µg/mL) was added to allow DNA visualization under UV 

light. Gels were cast and allowed to solidify for at least 45 minutes. We ran all gels at 160V for varied 

times as indicated in figure legends. We loaded 5μL each for all samples, controls, and blanks with 6X 

loading dye (cat. 50655, Lonza, Walkersville, MD) and added 7μL DNA ladder in a separate lane (cat. 

BN2050, BioNexus, Inc., Oakland, CA). After the appropriate time DNA was visualized and photographed 

under UV light.  

 

Lrit1 Cloning and Antibody Generation 

We inserted a full-length cDNA PCR fragment from Lrit1 into the SacII (Promega) restriction 

enzyme site of a phosphoglycerate kinase promoter (PGK)-myc-entry plasmid using InFusion cloning (Fig. 

2). The PGK-myc-entry plasmid was made in our lab. Two PCR primers LRIT1InfFw2 and LRIT1InfRv 

with 15bp extensions matching the plasmid cloning site with 5’ complementarity (Fig. 18; Table 1) were 

used to amplify the full–length Lrit1 cDNA fragment using cDNA derived from total mouse retinal RNA. 
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This yielded a PCR product containing the murine Lrit1 coding sequence (NCBI database, Accession 

#BC032270.1) but excluded the last three nucleotides encoding the stop codon. We cloned the PCR product 

into the linearized PGK-myc-entry plasmid using InFusion cloning (In-Fusion HD EcoDry™ Cloning Kit, 

ClonTech, Mountain View, CA) and transformed the reaction mix into Stellar competent cells (ClonTech). 

Transformed cells were plated on CircleGro agar plates containing ampicillin (100μg/mL) and incubated 

overnight at 37°C. Isolated clones were inoculated using toothpicks into 3mL of CircleGro media 

containing ampicillin (100μg/mL), and grown overnight at 37°C with shaking. Plasmid DNA was isolated 

from the overnight growths using a Wizard® Plus SV Miniprep DNA Purification System (Promega). We 

restriction enzyme-digested all mini-prep DNA with XbaI (Promega), which cuts the Lrit1 plasmid twice, 

once in the Lrit1 cDNA and once in the vector. This digest indicated if the plasmid contained the Lrit1 

cDNA. For all positive clones, we sequenced mini-prep DNA to confirm the mouse Lrit1 reference 

sequence using the following sequencing primers: LRIT1InfFw2, LRIT1InfRv, and all LRIT1SeqEx2F, 

LRIT1SeqEx2R, LRIT1SeqEx4F, and LRIT1SeqEx4R primers (Table 1).  

We used the validated sequence to select a peptide for production of a rabbit polyclonal anti-

LRIT1 antibody. The peptide sequence used was from LRIT1’s C-terminal residues 607-624 (NCBI 

database, Accession #AAH32270.2): DSQVLGVRGGRRINEYFC. The antibody was produced and 

affinity purified by Pierce Custom Antibodies, ThermoScientific (Waltham, MA).  
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Adeno-associated Viral Vector Generation 

We constructed a vector to express a tagged Lrit1 cDNA. From AAV2/9-RHO-GFP and clones 

containing the desired regions in the lab, the plasmid was constructed to contain a rhodopsin (RHO) 

promoter, the nyctalopin (Nyc) signal sequence, N-terminal MYC and FLAG tags, and the Lrit1 coding 

sequence without its N-terminal signal sequence or C-terminal stop codon (Fig. 19) (114). We used a 

Gibson assembly approach to insert the Nyc signal sequence, MYC and FLAG tags, and Lrit1 cDNA into a 

AAV2/9-RHO-GFP vector (114), replacing eGFP with our insert. Briefly, the AAV2/9-RHO-GFP plasmid 

was digested with HindIII and NotI (Promega) in separate reactions because their optimal buffers were 

incompatible. We digested first with HindIII because it required the lower salt concentration (100mM 

NaCl), then added 1uL of 1M NaCl (nuclease-free water) to generate a 150mM NaCl reaction buffer and 

NotI. We used the BamHI (Promega)-digested AAV-Lrit3 plasmid that contains the Nyc signal sequence 

and MYC/FLAG with primers Rho-NycF1 and Rho-NycR1 (Table 1). We amplified the coding region of 

Lrit1 from our PGK-Lrit1 plasmid containing the Lrit1 coding region using primers Nyc-Lrit1F1 and Lrit1-

RhoR1 (Fig. 19; Table 1). The two PCR fragments were purified using a QIAquick PCR purification kit 

(cat. 28104, Qiagen, Germantown, MD), and the resulting DNA concentrations determined using a 

NanoDrop ND-1000 (NanoDrop Technologies, Wilmington, DE). The PCR products were cloned into 

HindIII/NotI digested AAV2/9-RHO-GFP plasmid using the In-Fusion HD EcoDry™ Cloning Kit 

(ClonTech). Two infusion reactions were set up with the (1) digested vector and fragments containing (2) 

the Nyc signal sequence with MYC/FLAG and (3) Lrit1 in ratios of 150:57:27.2ng of DNA and 

150:114.1:27.2ng of DNA, respectively, in a final volume of 10µL. After the infusion reaction was 

complete as per the manufacturer, Stellar competent cells (ClonTech) were transformed and plated on 

CircleGro agar containing ampicillin (100μg/mL). After overnight incubation at 37°C, toothpicks were 

used to transfer single colonies to 3mL of CircleGro media containing ampicillin (100μg/mL). Bacteria 

were incubated at 37°C overnight with shaking, and plasmid DNA from each colony was isolated using 

DNA Wizard® Plus SV Minipreps DNA Purification System (Promega). The presence of the correct 

inserts was assessed by restriction enzyme double-digest of DNA with SphI and SpeI (Promega), and 

analyses of fragment size on agarose gels. Confirmation of the correct clone was done by sequencing the 

entire coding region using primers LRIT1-AAV F1-6 and LRIT1-AAV R1-6 (Table 1) and the RHO 
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promoter with LRIT1-AAV Rho F1 and LRIT1-AAV Rho R1 (Table 1). Sequencing identified 3 

differences, two deletions (4bp and 1bp) and a 1bp insertion in the RHO promoter when compared to the 

reference sequence sent to us from Dr. J. G. Flannery’s lab (Helen Wills Neuroscience Institute, Berkeley, 

CA). The RHO promoter in the AAV2/9-RHO-GFP plasmid has been used by us and others, and shows 

strong and specific expression in photoreceptors (unpublished data and (114)). Therefore, the identified 

mutations did not impact the desired function. To obtain sufficient plasmid for viral production, mini-prep 

DNA was used to transform cells, new clones isolated, and 3ml cultures grown and used to inoculate 

350mL of Circlegro media. Plasmid DNA was isolated using endo-free maxi prep kits (cat. 12362, Qiagen). 

The sequence was confirmed as described above and the DNA used for virus production. 
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Retinal dissections 

We euthanized animals by CO2 exposure followed by cervical dislocation as per AVMA 

guidelines. The eyes were enucleated and placed in ice-cold 1X PBS (3mM KCl, 2mM KH2PO4, 137mM 

NaCl, 8mM Na2HPO4). I punctured eyes directly posterior to the ora serrata with a 30g needle, cut along 

the vertical axis to separate the anterior and posterior parts of the eye, and removed the anterior portion of 

the eye leaving the lens intact and attached to the eyecup. I removed the lens and the vitreous humor, gently 

separated the retinal pigment epithelium (RPE) from the retina using forceps, and clipped the RPE at the 

optic nerve that exits from the center of the retina. The dissected retinas were washed in fresh, cold 1X PBS 

and fixed in 4% paraformaldehyde in PB (0.1M phosphate buffer, pH 7.2) for 24h for in situ experiments 

and 15m for immunohistochemistry. Immediately following fixation, the retinas were washed 4 times for 

10 minutes each in 1X PBS at room temperature, incubated retinas serially for 1 hour each in 5%, 10%, and 

15% sucrose in PB at room temperature followed by an overnight incubation in 20% sucrose in PB at 4°C, 

and finally incubated in 20% sucrose/OCT (1:2) for 1 hour at room temperature. The retinas were 

embedded in 20% sucrose/OCT (1:2) by freezing slowly on a 2-methylbutane bath cooled in liquid 

nitrogen. The embedded retinas were stored at -80°C. Prior to cryo-sectioning, tissue blocks were incubated 

in the cryostat (Leica CM 1850, Leica Biosystems, Richmond, IL) for 1 hour. 18μm transverse retinal 

sections were cut and transferred onto Superfrost Plus glass slides (Thermo Fisher Scientific) and stored at 

-80°C. Retinal integrity was validated via light microscopy.  

 

Immunohistochemistry  

Slides were removed from the -80°C freezer and warmed for 1 hour at 37°C. The embedding 

media was removed by washing in 1X PBS for 5 minutes, followed by washing in 1X PBS containing 0.5% 

Triton-X 100 (PBX) for 5 minutes. The retinal sections were circled with an Immedge oil pen (Vector 

Laboratories, Burlingame, CA) and incubated in blocking media [5% normal donkey serum (NDS) in PBX] 

at room temperature for 1 hour. Blocking media was replaced with primary antibodies at the appropriate 

dilution (Table 2) in blocking media, and incubated overnight at room temperature. The following morning, 

the sections were washed 3 times for 5 minutes each in PBX followed by one wash in 1X PBS for 5 

minutes, all done at room temperature. Secondary antibodies were diluted in blocking media, added to the 
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slides, and the slides incubated at room temperature for 1 hour. Sections were washed 3 times for 5 minutes 

each in PBX followed by one wash in 1X PBS for 5 minutes all done at room temperature, coverslipped 

using VectaShield mounting media plus DAPI (Vector Laboratories), and sealed with clear nail polish to 

prevent tissue dehydration. Tissue sections were imaged using confocal microscopy at the appropriate 

wavelengths on an Olympus FV1000 microscope (Olympus, Center Valley, PA). Sequential scanning was 

employed to prevent bleed-through when multiple secondary antibodies are used. Objectives used were a 

40x water (numerical aperture [NA]=1.15), 60x oil (NA=1.42) and 100x oil (NA=1.45) as appropriate.  
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Western Blotting 

Retinas were homogenized in a solution containing NP-40 (50mM Tris, 150mM NaCl, 2mM 

EDTA, and 1% Nonidet P40, pH 8.0) and 1X protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) 

by pipetting several times and rotating for 1 hour at 4°C. Cell debris was removed by centrifugation at 

17,000×g for 20 minutes at 4°C. The supernatant was collected and protein quantified using the Bradford 

reagent (Bio-Rad, Hercules, CA). Either 16 or 31µg total protein lysate was loaded per lane onto 4–12% 

NuPAGE gels (Invitrogen, Thermo Fisher Scientific) and electrophoresed at 190V for 1 hour. Proteins 

were transferred to polyvinylidene difluoride (PVDF) membranes using a BioRad electroblotter. The 

membranes were incubated in Odyssey Blocking Buffer (LI-COR, Lincoln, NE) for 2 hours, followed by 

incubation in primary antibodies diluted in Odyssey Blocking buffer. Antibody dilutions were rabbit anti-

LRIT1, 1:100 and 1:1000; mouse anti-β-actin, 1:50,000. Membranes were washed four times with TBS 

(50mM Tris-Cl, pH 7.6; 150mM NaCl) containing 0.1% Tween-20 (TBS-T). The membranes were 

incubated with IRDye800 CW and IRDye680 CW-conjugated secondary antibodies (1:25,000) diluted in 

Odyssey Blocking Buffer for 45 minutes, then washed three times in TBS-T and once in TBS. Protein 

bands were visualized by scanning the membranes in the Odyssey Infrared Imaging System (LI-COR) 

using both 700 and 800nm channels. 

 

RNA in situ hybridization  

RNAScope® (ACDBio, Newark, CA) in situ hybridization was used to visualize target transcripts 

in fixed retinal sections. The standard protocol was used with slight modification (105). Slides were baked 

overnight at 60°C to ensure tissue remained attached, and slides were incubated in pre-treatment buffer 2 

for 4 minutes at the temperature range of 90-105°C. The solution could not be actively boiling during this 

incubation as the tissue would detach from the slides. Pre-treatment buffer 3 was applied for 12 minutes. I 

added 50μL per slide for the FastRed incubation step. The positive and negative control probes are Polr2a 

(RNA polymerase II subunit A) and DapB (a bacterial gene). Target probes were synthesized (ACDBio) 

for transcripts encoded by the following genes: Lrit1 (NCBI NM_146245.2, 488-1365bp), Lrit2 (NCBI 

NM_173418.3, 675-1592bp), Lrit3 (NCBI NM_001287224.1, 212-1111bp), and Grm6 (NCBI 

NM_173372.2, 1001-2020bp). Slides were coverslipped, mounted, and sealed as described above for 
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immunohistochemistry. Tissue sections were imaged at the necessary wavelengths on an Olympus FV1000 

microscope (Olympus).  

 

Electroretinography 

Electroretinography (ERG) is used to assess the light-induced electrical response of the retina 

through direct attachment of corneal electrodes to mouse eyes in vivo. 8-12 week old adult mice of either 

sex were used. ERG recordings were done in a dark room. Mice were dark-adapted overnight prior to 

beginning recordings. All manipulations were done under in dim red light. Mice were anesthetized with 

80mg/kg ketamine/16mg/kg xylazine (AKORN Animal Health, Lake Forest, IL) in saline and their pupils 

were dilated (1% tropicamide in saline). After trimming nasal whiskers to prevent electrode disruption, 

mice are placed on a heating pad to maintain a normal body temperature. The heating pad rests on a stage 

that pushes into the LKC UTAS light box (LKC Technologies, Gaithersburg, MD) during assessment. 

Subcutaneous needles functioned as ground (tail) and reference (nasal bridge) electrodes. Corneal 

electrodes were connected using GONAK (2.5% hypromellose) to ensure good electrode connectivity. 

Upon a stable baseline, mice were inserted into the LKC UTAS light box for a 5-minute dark adaptation 

after which scotopic ERGs were performed. These were followed by a 5-minute light adaptation after 

which photopic ERGs were performed. Photopic ERGs were performed with a constant rod-saturating 

background (1.48 log cd sec/m2). Electrical responses were recorded using 5ms full-field stimuli produced 

by a Ganzfeld (Phoenix Research Labs, Pleasanton, CA) at the following intensities in log cd sec/m2: 

scotopic, -3.6, -3, -2.4, -1.8, -1.2, -0.6, 0.0, 0.6, 1.4, and 2.1; photopic, -0.8, -0.4, 0.0, 0.4, 0.9, 1.4, and 1.9. 

The average responses at each flash intensity were determined. ERG recordings are reported for individual 

animals as an average of the response from both eyes. The a-wave was measured from baseline to the 

trough, and the b-wave from the trough of the a-wave to the peak of the b-wave using a custom MATLAB 

program (MathWorks, Framingham, MA).  

 

Morphometric Analysis of the Retina 

Eyes were enucleated and prepared for morphological analysis by immediate immersion in 

fixative (2% paraformaldehyde/2% glutaraldehyde in 0.1M PB pH 7.2). Plastic sections were prepared as 
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previously described (115). Briefly, eyes were bisected from the cornea through the optic nerve such that 

each hemisphere contained retinal tissue from the ora serrata to the optic nerve. Hemispheres were 

dehydrated in ascending ethanol concentrations (50, 75, 80, 90, 95, 100%), infiltrated, and embedded in JB-

4 Plus resin (Ted Pella, Redding, CA). Sections 4µm thick were cut on a Leica EMUC6 Ultramicrotome 

(Leica Microsystems, Buffalo Grove, IL), mounted on slides, dried, and stained with 1% cresyl violet 

(Sigma-Aldrich). Sections were examined at 40 or 100X using a NIKON EFD-3 Episcopic-Fluorescence 

microscope (Nikon Inc., Melville, NY). Photomicrographs were taken on a Moticam 2500 high-resolution 

camera (Motic) and digitally processed using Adobe Photoshop (Adobe Systems) to adjust brightness and 

contrast. Overall retina thickness and retinal lamina thickness were measured 200µm from the ora serrata 

and 200µm from the peripheral margin of the optic disc. A vertical line was drawn across the entire retinal 

section and then across each stratum for individual thickness measurements using Moticam Image Plus 2.0 

(Motic China Group Co., Ltd., Xiamen, China) in 5 sections per location/eye and the mean was calculated 

for each location. A trained masked observer (Dr. Patrick Scott, Department of Ophthalmology and Visual 

Sciences, Louisville, KY) performed the retinal morphometry without knowledge of the genotype. 

 

Multi-electrode Arrays  

Multi-electrode array (MEA) recordings were obtained from ex vivo isolated flat mounted retinas. 

Mice were euthanized using an intraperitoneal injection of ketamine (60mg/mL) and xylazine (8mg/mL) 

followed by cervical dislocation. Eyes were enucleated, and retinas dissected from the eye cup under dim 

red light at room temperature in a solution of Ringer’s (110mM NaCl, 2.5mM KCl, 1mM CaCl2, 1.6mM 

MgCl2, 10mM D-glucose, and 22mM NaHCO3 [pH 7.4]) with collagenase (241 units/mL) and 

hyaluronidase (34.5nM) oxygenated with 95% O2 and 5% CO2 for 10 minutes. Dissected retinas were 

transferred to a solution containing only Ringer’s that is oxygenated with 95% O2 and 5% CO2 for the 

duration of the recordings. Under dark conditions, ten 5s full-field light flashes were presented per light 

intensity to each piece of mouse retina at each of the following light intensities: scotopic -2.3, -1.5, and 0.2; 

and photopic 0.5, 1.2, and 2.5 in log cd sec/m2. Light stimuli were presented using a custom MATLAB 

program where stimulus intensity, duration, and number of repetitions are entered. A light adapting 

background of -0.3 log cd sec/m2 was presented between 0.2 and 0.5 log cd sec/m2 to demarcate dark-
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adapted scotopic and light-adapted photopic flashes. Signals were band-pass filtered (80-3,000 Hz) and 

digitized at 25kHz (MCRack software; Multi Channel Systems). Any signals less than -40µV are not 

collected. Spiking activity of retinal ganglion cells was recorded using a 60-channel MEA recording system 

(MultiChannel Systems, Reutlingen, Germany). All recordings were done by Dr. Gobinda Pangeni 

(Department of Ophthalmology and Visual Sciences, Louisville, KY). Spikes were recorded on individual 

electrodes, and if spikes reflected responses from more than one retinal ganglion cell, they were sorted into 

individual cells using principal component analysis (Offline Sorter; Plexon, Dallas, TX). Sorted units were 

exported for analysis of their spontaneous and visually evoked responses with NeuroExplorer software 

(Nex Technologies, Madison, AL). Average post-stimulus time histograms (PSTHs) were calculated for all 

retinal ganglion cells to 10 presentations for each of the 6 full-field luminance levels. The WT data set has 

been previously published (116). Excitatory responses were defined by responses to light onset or offset 

when the response exceeded 10 times the spontaneous activity standard error of the mean over 80% of 

trials. From the average PSTH, we calculated the time to peak response defined as the time from stimulus 

onset or offset to the retinal ganglion cell peak response amplitude. We classified the response of each 

retinal ganglion cell at each light intensity as ON (excitation at light onset), OFF (excitation at light offset), 

or ON/OFF (excitation at stimulus onset and offset). Time to peak thresholds were set from 0.1-0.5 

seconds. Any response satisfying the spontaneous activity threshold and occurred after 0.5s for the light 

increment or decrement was classified as delayed. The percent responsive cells were characterized by 

calculating the sum of cells that responded in any functional class (ON, dON, OFF, dOFF, dON/OFF, 

ON/dOFF, and dON/dOFF) to the total number of cells including non-responsive (NR) cells and expressed 

as a percentage. The spontaneous activity, distribution of retinal ganglion cell functional classes, peak 

firing rate, and time to peak were all examined. Rhythmicity was analyzed using a power spectral density 

analysis (NeuroExplorer) with the following parameters: 20Hz maximum frequency, 4096 frequency 

values, raw PSD normalization, displayed frequencies of 0-5Hz, and smoothed with a Gaussian filter of 20 

bins.  

 

Statistical Analysis 
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A repeated measures ANOVA with the Bonferroni’s post-hoc correction for multiple comparisons 

was used to analyze ERGs. A two-way ANOVA with factors for genotype and retinal layer was used to 

analyze retinal morphometry data. MEA time to peak and peak amplitude responses were analyzed with a 

Kruskal-Wallis test using a Dunn’s post-hoc correction for multiple comparisons. The Kruskal-Wallis test 

is a non-parametric test that does not assume normality or equal variance among groups. All statistical 

analyses were performed using GraphPad Prism software (La Jolla, CA). 
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CHAPTER III 

RESULTS 

 

Lrit1 is Expressed in Mouse Photoreceptors 

At the transcript level, Lrit1 is expressed in the mouse retina. More detailed analyses of this RNA-

Seq data set (117) in collaboration with Dr. TA  Ray (Department of Neurobiology, Duke University, 

Durham, NC) illustrated high expression of Lrit1 in rods and cones peaking at and after day 10 (Fig. 20). 

Importantly, the increase in Lrit1 expression follows the timeline for photoreceptor development and the 

initiation of vision in mice. 
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Generating the Lrit1-/- Mouse Model 

To investigate the function of LRIT1 in the mouse retina, we generated genetically modified mice 

in which its expression was deleted. We anticipated that this mouse would be viable based on the previous 

studies in rat tissue indicating Lrit1 expression is limited to the retina (101). We designed two sgRNAs, one 

targeted to exon 2 and to exon 4 of Lrit1. The sgRNAs were combined with mRNA for CRISPR/Cas9 and 

injected into 160 one-cell mouse embryos, of which 78 survived. A total of 26 embryos were implanted 

into each of 3 pseudopregnant mice. Thirty-one offspring were produced. We refer to these founders as the 

G0 generation. The sgRNA target region for each G0 mouse was sequenced, and 3 mice were identified 

with Lrit1 mutations. These mutations were a 7bp deletion in exon 2 (line A), a 1bp insertion in exon 4 

(line B), and a 3bp deletion in exon 4 (line C) (Fig. 21A-B). These heterozygous G0 mice were crossed to 

wild-type (WT) C57Bl/6J mice. The resulting N1 heterozygous littermates were intercrossed to generate 

the N1F1 generation, and Lrit1-/- mice for study. Sequencing confirmed homozygosity in Lrit1mut/mut mice 

(Fig.21C). Line A was not characterized further. The official names of the other lines are Line B: 

Lrit1em1Rgg; and Line C: Lrit1em2Rgg.  
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Allele-Specific Reactions for Genotyping Lrit1-/- Mice 

For genotyping of Lrit1 litters, we designed custom assays (Fig. 22). For line B we used restriction 

fragment length polymorphism (RFLP) analyses. To genotype offspring from Lrit1-/-, a fragment 

encompassing the mutation in exon 4 was amplified (primers Lrit1-03 and Lrit1-4 [Table 3]). We 

restriction enzyme-digested the PCR products using Tsp45I, which cuts the WT allele but not the mutant 

allele and cuts once outside of the mutation of interest. This yields more fragments from the WT alleles 

than from the mutant allele (Fig. 21D). G0 mice were a hybrid between CD-1 and FVB, the latter of which 

carries the Rd1 allele. We screened all offspring for the Rd1 mutation, which causes early onset severe 

retinal degeneration and would interfere with our studies (Fig. 23).  
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The Lrit1-/- Mutation is Predicted to be Deleterious 

With respect to line B, the 1bp insertion causes a frameshift and premature stop codon in exon 4. 

Transcripts with premature stop codons have been shown to activate nonsense-mediated decay of the 

transcript, causing no expression of the protein product (118) (Fig. 24A). Even if the Lrit1 B exon 4 

frameshift mutation did not lead to nonsense-mediated decay of the Lrit1 B transcript, the translated LRIT1 

protein would contain a truncated immunoglobulin-like domain and lack the fibronectin type III domain, 

the sixth LRR, and transmembrane domains (Fig. 24B). Without a transmembrane domain, LRIT1 would 

not properly localize to the membrane.  
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To assess the phenotypic impact of the mutations on LRIT1 protein function, we analyzed each 

predicted protein using the Protein Variation Effect Analyzer (Provean, http://provean.jcvi.org/index.php). 

The analyses predicted that all 3 mutations would be deleterious (Table 4). In all our studies we used Line 

B and hereafter refer to it as Lrit1-/-. We then performed electroretinograms (ERGs) on Lrit1-/- mice to 

determine the functional impact of the loss of LRIT1 in the mouse retina. 

 

 

 

 

 

Abnormal Electroretinograms (ERGs) in N1F1 Lrit1-/- mice 

To examine retinal function of Lrit1-/- mice, we performed an ERG analysis. The ERGs record a 

gross electrical potential generated from the light-induced electrical response of the retina’s photoreceptors 

and ON bipolar cells. Initially, we screened three Lrit1 mice. ERGs revealed an abnormal no-cone photopic 

ERG in one Lrit1+/+ mouse and one Lrit1-/- mouse (Fig. 25). The third Lrit1+/+ mouse demonstrated a 

normal ERG (Fig. 25). Because these findings were discordant with our Lrit1 genotyping, we hypothesized 

the presence of an additional mutation. One known cause of a no-cone photopic ERG is a diagnosis of 

achromatopsia (119,120). Mutations in genes known to cause a no-cone ERG are Cnga3, Cngb3, Gnat2, 

Pde6c, and Pde6h. We performed PCRs for Gnat2 and found a known homozygous mutation in Gnat2 

referred to as Gnat2cpfl3 (119) in Lrit1+/+ and Lrit1-/- mice with the no-cone ERG phenotype. Gnat2cpfl3 
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causes deficits in cone-dependent a-wave ERG responses as early as 3 weeks of age and is completely 

absent by 9 weeks of age, leading to a diagnosis of achromatopsia 4 (119). Gnat2cpfl3 is a single-base 

substitution c.598G>A in exon 6, which causes a missense p.D200N mutation in α–cone transducin that 

was first described in the ALS/LtJ mouse strain (119). We acquired additional CD-1 mice from Envigo and 

demonstrated the presence of the Gnat2cpfl3 mutation in this strain. Mice homozygous for the 

Gnat2cpfl3cexhibited a no-cone ERG as predicted. Therefore, investigators using this strain for retina or 

vision studies should genotype all mice before conclusions are made. 
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LRIT1 Loss Causes Reduced ERG a- and b-waves 

The Gnat2cpfl3 mutation directly interfered with our studies. Thus, we screened all Lrit1 mice for 

the Gnat2cpfl3 mutation and eliminated it from our Lrit1 breeding colony. We performed an ERG analysis 

on young adult Lrit1+/+, Lrit1+/-, and Lrit1-/- littermates (n = 5-7 per group, 10-14 retinas per group) to 

determine if loss of LRIT1 affects retinal function (Fig. 26). On the leading edge of the scotopic ERG b-

wave are a series of rhythmic, low amplitude superimposed oscillatory potentials (OPs) (63). OPs are 

hypothesized to reflect inner retinal function involving some combination of bipolar, amacrine, and 

ganglion cells, although from which cell types OPs specifically arise is unknown (63,121,122). We 

observed what appears to be abnormal OPs from Lrit1+/- and Lrit1-/- mice compared to OPs from Lrit1+/+ 

mice (Fig. 26A). This suggests that loss of LRIT1 may interfere with inner retinal function.  

Analysis of the scotopic a- and b-waves showed both were decreased in Lrit1-/- mice compared to 

Lrit1+/+ and Lrit1+/- mice (Fig. 26Ci, Di). Lrit1-/- mice also show reduced photopic a- and b-waves compared 

to Lrit1+/+ and Lrit1+/- mice (Fig. 26Cii, Dii) (Table 5). For data analyses, I performed a repeated measures 

ANOVA with a Bonferroni’s post-hoc correction for multiple comparisons. These data suggest LRIT1 

affects photoreceptor hyperpolarization (decreased a-waves), which is transduced to and affects ON bipolar 

cell depolarization (decreased b-waves). Overall, the ERG data suggest two possible roles for LRIT1: 1) 

abnormal OPs in heterozygous and homozygous Lrit1 mutants suggest altered inner retinal function and 2) 

homozygous loss of LRIT1 significantly alters rod and cone hyperpolarization and downstream ON bipolar 

cell depolarization.  
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Loss of LRIT1 Does Not Affect Retinal Morphology 

Changes in retinal function can arise from alterations in retinal structure like the disrupted synapse 

assembly seen in ELFN1 knockout retinas (94) or decreased a- and b-waves in mice with retinal 

degeneration (123). To determine if Lrit1 impacts retinal structure, we performed a double-blinded 

experiment to examine retinal morphology and morphometry. Retinal morphology can be altered in 

specific retinal regions, so we analyzed morphology in both central and peripheral retinal regions (124). 

Lrit1+/- and Lrit1-/- retinas (n=5 mice, 5 retinas per group) were embedded in plastic, stained with cresyl 

violet, and sectioned. Our images demonstrate no gross morphological changes in the central or peripheral 
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retinal regions of Lrit1-/- retinas compared to Lrit1+/- mice (Fig. 27). These sections also were used to 

determine the thickness of each retinal layer (Table 6). A trained masked observer measured all individual 

retinal layers (OS, IS, ONL, OPL, INL, IPL, and GCL) and the total retinal thickness from the OS to the 

GCL. Welch’s unpaired t-test was used to compare total retinal thickness between genotypes (Lrit1+/- and 

Lrit1-/-) and found no statistical differences (Table 6). I also tested whether the thickness of the retinal 

layers was different between genotypes using a two-way ANOVA with factors for genotype and retinal 

layer. These results demonstrate there was no significant difference (p = 0.2858) in retinal layer thickness 

between Lrit1+/- and Lrit1-/- mice (Table 6). These data suggest that the Lrit1-/- retinas are morphologically 

normal.  
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RNA in situ hybridization localizes Lrit1 mRNA to the ONL and INL  

A previous in situ hybridization study showed Lrit1 expression in the rat retina, specifically the 

photoreceptor cell bodies in the ONL (101). However, our ERG results suggesting a possible role for Lrit1 

in the inner retina led us to hypothesize that Lrit1 may also be expressed in additional retinal cell types in 

the mouse. To localize Lrit1 expression in the mouse retina, I performed RNA in situ hybridization on 

transverse retinal sections. RNA in situ hybridization utilizes a complementary oligonucleotide probe to 

bind its target RNA and visualize the transcript of interest. The positive control probe Polr2a encodes the 

RNA Polymerase II subunit A. Polr2a exhibited ubiquitous expression in all retinal nuclear layers (ONL, 

INL, GCL) (Fig. 28A). The negative control probe DapB encodes an E. coli enzyme, DapB, and was not 

expressed in any nuclear layers in the mouse retina (Fig. 28B).  
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We investigated the gene expression patterns for four mRNA targets: Lrit1, Lrit2, Lrit3, and 

Grm6. Our positive control for ON bipolar cells was Grm6 (Fig. 28Ci, Cii). Previous RNA-Seq data 

suggested that Lrit1, Lrit2, and Lrit3 are expressed in the mouse retina (Fig. 1) (117). Our data showed 

Lrit1 was expressed in the ONL and INL (Fig. 28Di, Dii). Lrit1 expression in the INL was similar to but 

distinct from Grm6, suggesting Lrit1 may be expressed in ON bipolar cells but may also be expressed in 

horizontal, amacrine, or cone OFF bipolar cells. These data confirm our hypothesis that Lrit1 expression is 

not limited to the OS as shown in the rat retina and may therefore contribute to inner retinal function (101). 

Transcriptional expression at any isolated time point is a balance of transcript synthesis and degradation. It 

is possible that although the transcript may be produced in Lrit1-/- mice, the transcript is also degraded 

before translation occurs. To examine this, I did in situ hybridization experiments using Lrit1+/+, Lrit1+/-, 

and Lrit1-/- mice (Fig. 29). These data showed Lrit1 is expressed in the ONL and INL in all Lrit1-/- mice.  

LRIT2 is a close relative of LRIT1 and LRIT3 (99). Our results showed Lrit2 is expressed in the 

ONL and INL (Fig. 28Ei-Eii). The function for LRIT2 has not yet been elucidated.  

Because LRIT3 has previously been shown to co-localize with ON bipolar cells and the Lrit3nob6 

mouse had a no b-wave ERG, we speculated that LRIT3 is expressed in ON bipolar cells. Our results 

showed the Lrit3 expression pattern in the INL is distinct from Grm6 (Fig. 28Fi-Fii). Much to our surprise, 

our data also demonstrated Lrit3 is expressed in the ONL. This suggests photoreceptors express Lrit3 and is 

supported by our analysis of previous RNA-Seq data (Fig. 20). 
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LRIT1 is Expressed at the OPL  

To examine the expression pattern of the LRIT1 protein, we needed to generate an anti-LRIT1 

antibody. I cloned full-length murine Lrit1 cDNA into a PGK-myc-entry plasmid and confirmed the Lrit1 

sequence. This cDNA sequence matched that in the NCBI database, Accession #BC032270.1. We 

generated a rabbit anti-LRIT1 polyclonal antibody (Pierce Custom Antibody Service, Thermo Fisher 

Scientific) to a peptide on the C-terminal end of LRIT1. We used immunohistochemistry (IHC) to examine 

LRIT1 protein expression in transverse retinal sections. These data show that LRIT1 is expressed in a 

punctate pattern in the OPL of Lrit1+/+ retinas and is absent in Lrit1-/- retinas, validating our antibody’s 

specificity. The LRIT1 expression pattern shows both isolated and clustered puncta suggestive of rod and 

cone synapses, respectively (Fig. 30). Surprisingly, there was no staining in the photoreceptor OS as had 

been reported for rat (101).  
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Our attempts to visualize LRIT1 via western blot were unsuccessful. The antibody did yield 

bands, but we deemed this as non-specific expression because they were present in the Lrit1-/- retina lysates 

(Fig. 31).  
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Known Retinal Markers Localize Correctly in Lrit1-/- Mouse Retinas 

Because of the reduced dark- and light-adapted ERG a- and b-waves in Lrit1-/- mice and its 

punctate localization in the OPL, we next hypothesized that LRIT1 may affect the expression of proteins 

previously shown to be critical for retinal function and with a similar expression pattern. We used IHC to 

examine the expression pattern of photoreceptor (pikachurin, PNA, RIBEYE, PSD95), ON bipolar cell 

(mGluR6, GPR179, LRIT3, RGS11, TRPM1, PKCα), and horizontal cell (calbindin) proteins in Lrit1+/+ 

and Lrit1-/- mice. Staining showed that all tested markers localized normally in Lrit1-/- mice (Fig. 32-34). 

These data suggest that loss of LRIT1 does not affect localization of known photoreceptor, bipolar, or 

horizontal cell markers. 
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LRIT1 Expression is Unchanged in nob Mouse Models 

To determine if LRIT1 protein expression was dependent on nyctalopin, mGluR6, or TRPM1, I 

examined is localization in Nyxnob, Grm6-/-, and Trpm1-/- mouse models (Fig. 35). These data show that 

LRIT1 expression pattern is not different in these mutants than in retinas from WT mice. This shows that 

the absence of these critical ON bipolar cell proteins does not affect LRIT1 expression.  
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LRIT1 Expression Localizes to OPL Synapses 

Because LRIT1 staining localized to the OPL as puncta similar to mGluR6 and other ON Bipolar 

cell markers, I determined if it colocalized with these other synaptic proteins. I examined the colocalization 

of LRIT1 and PNA, a cone synaptic marker that binds to an as yet unidentified glycosylated protein (Fig. 

36). These data show that LRIT1 localizes distal to PNA in the middle of the OPL. We next examined the 

colocalization of LRIT1 and RIBEYE, which marks the photoreceptor synaptic ribbons. LRIT1 does not 

localize with RIBEYE but resides within its arcs (Fig. 37). These data suggest that LRIT1 is present at 

horizontal cells, bipolar cell dendrites, or photoreceptor terminals.  
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To determine if LRIT1 was localized to ON bipolar cells, I co-labelled for mGluR6 (Fig. 38-39). 

These data show that the two do not colocalize. Rather LRIT1 is localized in doublets distal to mGluR6 

doublets, the latter of which mark the tips of the two rod ON bipolar cells that invaginate each rod spherule. 

This would suggest that the LRIT1 staining may be on horizontal cell axon terminals. We also co-labelled 

for LRIT1 and the ON bipolar cell protein GPR179 (Figs. 40-41). These data show that the two do not 

colocalize at rod spherules. Rather LRIT1 is localized distal to GPR179 puncta that mark the tips of the two 

rod ON bipolar cells that invaginate each rod spherule. LRIT1 does not colocalize with mGluR6 or 

GPR179 at cone pedicles. We observed mGluR6 colocalizes with PNA consistent with previous studies 
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(78) (Fig. 38). At cone pedicles LRIT1 localizes distally to PNA, mGluR6, and GPR179. These data 

suggest that LRIT1 is expressed in horizontal cells. 
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We examined the colocalization of LRIT1 with cone OFF bipolar cell type specific proteins HCN4 

(type 3a) and PKAIIβ (type 3b). LRIT1 does not colocalize with either (Fig. 42). These data support our 

hypothesis that LRIT1 is not expressed in cone OFF bipolar cells. 

Together, these data support the hypothesis that LRIT1 is expressed in horizontal cells, but not in 

ON or cone OFF bipolar cells.  
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LRIT1 Loss Does Not Affect Overall Ganglion Cell Responsiveness  

After observing the reduced a- and b- wave ERGs in Lrit1-/- mice and apparent abnormal OPs in 

Lrit1+/- and Lrit1-/- mice, we wanted to examine if and how the loss of LRIT1 affects retinal ganglion cell 

(RGC) function. We used multi-electrode arrays to record light-evoked electrical responses from Lrit1+/- 

and Lrit1-/- ganglion cells and compared them to a database of WT recordings (116). We tested light-

evoked electrical responses at 3 dark-adapted and 3 light-adapted levels to assess responses from rods and 

cones, respectively. In WT mice there are three general functional classes of responsive retinal ganglion 

cells, ON, OFF, and ON/OFF. The ON cells respond at light onset, OFF cells respond at light offset, and 

ON/OFF cells respond at light on- and offset (Fig. 43A). There are a large number of non-responsive cells 

at the lowest stimulus intensity, -2.3 log cd sec/m2 (Fig. 43E). There also are a small number of non-

responsive cells at all other tested stimulus intensities (-1.5, 0.2, 0.5, 1.2, and 2.5 log cd sec/m2) (Fig. 44). 

The proportions of responsive and non-responsive cells in WT, Lrit1+/-, Lrit1-/- are similar at all stimulus 

intensities (Fig. 43B-C).  
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LRIT1 Loss Leads to Prolonged Ganglion Cell Response Latencies 

Although there were no observed differences in the proportions of responsive cells, the nature of 

the responses was different. For each cell two key parameters are measured, response latency to reach the 

peak response and peak response amplitude measured as spikes/second. All WT cells have response 

latencies <0.5 seconds. In contrast, we observed prolonged response latencies of >0.5 seconds in large 

numbers of Lrit1+/- and Lrit1-/- cells at all tested stimulus intensities. The responses in Lrit1+/- and Lrit1-/- 

cells yielded nine different functionally distinct classes: four normal (NR, ON, OFF, ON/OFF) and five 

abnormal with prolonged latency (dON, dOFF, dON/OFF, ON/dOFF, and dON/dOFF) (Fig. 44). This 

response delay is most pronounced at the lowest stimulus intensities, -2.3 and -1.5 log cd sec/m2 (Fig. 43D, 

44A-B). Further, Lrit1-/- ganglion cells have even greater numbers of delayed cells compared to Lrit1+/- 

cells. Frequency distributions plotting the time to peak (bin = 0.1s) are shown for Lrit1+/- (gray) and Lrit1-/- 

(red). For these two genotypes the distribution is right skewed much more than WT (black) (Fig. 45-48; 

Tables 7-10). These distributions are summarized as box and whiskers plots (Fig. 49-50) and show the 

skewed distributions for Lrit1+/- (gray) and Lrit1-/- (red) compared to WT (black). The observed delays were 

consistent among trials, suggesting the delay did not arise from abnormal adaptation to successive light 

flashes (see raster plots in Fig. 43A) (59).  
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LRIT1 Loss Leads to Increased Light-Evoked responses 

We next examined how the loss of LRIT1 affects the peak amplitude of the ganglion cell response. 

Pre-synaptic input above the ganglion cell threshold causes an individual ganglion cell to generate an action 

potential. Each action potential is called a spike. The peak amplitude reflects the cell’s spiking rate over 

time. Frequency distributions plotting the peak amplitude (bin = 10 spikes/sec) are shown for Lrit1+/- (gray) 

and Lrit1-/- (red). For these two genotypes the distribution is right skewed compared to WT (black) (Fig. 

51-54; Tables 11-14). These distributions are summarized as box and whiskers plots (Fig. 55-56) and show 

the skewed distributions for Lrit1+/- (gray) and Lrit1-/- (red) compared to WT (black). 
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LRIT1 Loss Leads to Increased Ganglion Cell Spontaneous Activity and Sensitivity 

We compared the spontaneous activities of Lrit1+/-, Lrit1-/-, and WT ganglion cells. These data 

demonstrated increased spontaneous activity in Lrit1+/- and Lrit1-/- ganglion cells (Fig. 57). These data 

show that Lrit1+/- and Lrit1-/- ganglion cells have higher spontaneous activity than WT cells.  

We observed a noticeable change in the functional class composition of Lrit1+/- and Lrit1-/- 

ganglion cells at the lowest flash intensity -2.3 log cd sec/m2 compared to WT cells: all normal and delayed 

retinal ganglion cell functional classes are represented in the Lrit1+/- and Lrit1-/- ganglion cells, but only two 

functional classes (NR and OFF) are present in WT retinas (Fig. 43E, 44A). Responses belonging to all 

normal functional classes do not arise until higher scotopic flash intensities, -1.5 and 0.2 log cd sec/m2, in 

WT cells (Fig. 44B-C). This suggests that loss of LRIT1 increases ganglion cell sensitivity or the 

sensitivity of pre-synaptic cells that provide input to ganglion cells.  
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LRIT1 Loss Leads to Rhythmic Oscillations in Ganglion Cell Responses 

Previous reports have demonstrated spontaneous rhythmic oscillations of up to 10Hz in rd1 mice, 

which exhibit early onset severe retinal degeneration (125). Retinal oscillations also occur in the Nyxnob 

mouse retinas (63,126). To examine this, we used fast Fourier transform (FFT) in a power spectral density 

to determine if there was rhythmicity to the spontaneous activity. WT retinas lack oscillating ganglion cells. 

This analysis reveals two distinct subgroups of cells in Lrit1+/- and Lrit1-/- retinas: those that display 

rhythmic bursting at ~1 or ~5 Hz (Fig. 58). Approximately 19% of retinal ganglion cells in both of the 

Lrit1+/- and Lrit1-/- retinas exhibited rhythmic spontaneous activity (Fig. 58B). The raster plots and PSTHs 

are shown for four examples (Fig 58A). These cells are indicated with arrows on Fig. 58B. These data 

support the hypothesis that the loss of LRIT1 induces abnormal rhythmicity as a component of their 

spontaneous activity.  
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CHAPTER IV 

DISCUSSION 

 

To determine the function of LRIT1 we created a mouse model that resulted in Lrit1 deletion. We 

utilized the CRISPR/Cas9 system to generate 3 lines and fully characterized one that was predicted to have 

a frameshift, and likely null allele. We confirmed loss of the LRIT1 protein with immunohistochemistry 

(IHC).  

Retinal morphometry of Lrit1+/- and Lrit1-/- mouse retinas revealed no gross morphological 

abnormalities in Lrit1-/- mice, or alterations in the thickness of retinal lamina (OS, IS, ONL, OPL, INL, 

IPL, and GCL). These data suggest LRIT1 is not required for development and formation of normal retinal 

structure in the mouse, similar to the close family member LRIT3 (77,78,127).  

Immunohistochemical analyses localizes LRIT1 to the OPL, in a punctate pattern similar to that 

seen for many ON bipolar cell proteins (mGluR6, GPR179, TRPM1) (25,73,78,128). Surprisingly, we did 

not observe LRIT1 immunohistochemical staining in the OS as reported previously for the rat (101). This 

incongruity may be due to a bona fide lack of LRIT1 expression in the OS. Another explanation is that 

LRIT1 expression at the OPL is much greater than its OS expression. Due to the quality of our LRIT1 

antibody, we may not be able to detect diffuse low-intensity signals at the OS. We observed isolated LRIT1 

puncta marking the rod to rod ON bipolar and horizontal cell synapses and clustered LRIT1 puncta 

marking cone terminals of the cone to cone bipolar and horizontal cell synapses. These puncta are absent in 

the Lrit1-/- mouse. IHC also shows that photoreceptor (pikachurin, PNA, RIBEYE, PSD95), ON bipolar cell 

(mGluR6, GPR179, LRIT3, RGS11, TRPM1, PKCα), and horizontal cell (calbindin) proteins localized 

normally in the absence of LRIT1.  

We next wanted to examine if LRIT1 expression depends on the retinal proteins NYX, mGluR6, 

and TRPM1 in Nyxnob, Grm6-/-, and Trpm1-/- mouse models, respectively. IHC data showed LRIT1 localizes 

normally in the absence of NYX, mGluR6, and TRPM1, which have all been shown to be critical for ON
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 bipolar cell function (28,63,71,73,81,128,129). Together these data suggest that LRIT1 expression 

localizes normally in the examined nob mouse models.  

To determine the synaptic location of LRIT1, we double-labeled with several well characterized 

synaptic proteins. LRIT1 does not colocalize with the photoreceptor synaptic ribbon marker RIBEYE, but 

LRIT1 does reside within RIBEYE’s crescents that mark rod terminals. Prior work has shown that the ON 

bipolar cell markers LRIT3 (78), NYX (63,73), mGluR6 (130), and TRPM1 (131) show a similar 

localization. Previous studies also showed that the horizontal cell markers calbindin and syntaxin-4 localize 

adjacent to piccolino or RIBEYE crescents, respectively (132,133). Piccolino is another synaptic ribbon 

marker shown to colocalize with RIBEYE (134,135). This suggests LRIT1 may be expressed on ON 

bipolar cell dendritic tips, horizontal cell axons and dendrites, photoreceptor terminals, or some 

combination of these.  

Additional IHC colocalization experiments with ON bipolar cell markers mGluR6 and GPR179 

showed LRIT1 did not colocalize with either protein. This provides further evidence that LRIT1 is not 

expressed in ON bipolar cells. LRIT1 puncta lie distal to mGluR6 and GPR179 at rod synapses.  

At cone terminals LRIT1 localizes distal to PNA, GPR179, and mGluR6. The exact synaptic 

location of PNA is unknown, but it is thought to be on the base of the cone terminal. Our observation that 

mGluR6 and PNA colocalize is consistent with previous studies (130). Prior studies have shown that 

GPR179 also colocalizes with PNA (25). Because LRIT1 did not colocalize with GPR179, mGluR6, or 

PNA, this suggests that LRIT1 is not expressed in ON bipolar cell dendrites. To rule out the possibility that 

LRIT1 is expressed in cone OFF bipolar cells at cone terminals, IHC data showed LRIT1 does not 

colocalize with proteins marking cone OFF bipolar cell type 3a (HCN4) and type3b (PKAIIβ). These data 

suggest LRIT1 is likely not expressed in cone OFF bipolar cells. Previous work has shown that the 

horizontal cell markers calbindin, syntaxin-4, and GluA2 all localize distal to PNA, which is similar to our 

data for LRIT1 and PNA (133,136), suggesting LRIT1 may be localized on the horizontal cell invaginating 

contacts at cone terminals. Our observed LRIT1 staining pattern with mGluR6 and GPR179 is consistent 

with previously shown staining patterns for the horizontal cell marker calbindin with LRIT3 (78), NYX 

(63), or TRPM1 (unpublished data). mGluR6, GPR179, LRIT3, NYX, and TRPM1 have all been shown to 
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colocalize in the OPL (25,63,73,78,83). Together, these data are consistent with our hypothesis that LRIT1 

is expressed in horizontal cells.  

Analysis of a previously published RNA-Seq dataset demonstrated Lrit1 expression in the mouse 

retina, specifically in rods and cones (Fig. 20). To examine if Lrit1 may also be expressed in horizontal 

cells, I performed RNA in situ hybridization experiments and showed that Lrit1 is expressed in the ONL 

and INL. Lrit1 ONL expression was robust, suggesting its expression in rods because rods comprise up to 

97% of mouse retinal photoreceptors in the ONL. Our in situ data cannot discount that Lrit1 may also be 

expressed in cones. Gomi et al. showed that Lrit1 was expressed only in the rat ONL (101). However, they 

neglect to show a positive control for their in situ experiment, and the only negative control is the lack of 

Lrit1-positive signals in the immature rat retina at P1 (101). Lrit1 INL expression was exclusively limited 

to the upper INL sublamina and is similar to but distinct from the ON bipolar cell marker Grm6 and Lrit3 

expression. It is possible Lrit1 is expressed in ON bipolar cells from the in situ results alone, but in 

conjunction with our IHC data, LRIT1 at the OPL is unlikely to originate from ON bipolar cell expression. 

Because amacrine and cone OFF bipolar cell nuclei typically reside in the lower INL sublamina of the INL, 

this suggests Lrit1 may also be expressed in horizontal cells. Overall, our in situ results suggest that Lrit1 is 

expressed in rods, possibly cones, and is consistent with our hypothesis that Lrit1 is additionally expressed 

in horizontal cells. 

 

LRIT1 and Retinal Function 

To assess the impact of the loss of LRIT1 on retinal function, we performed ERGs. These data 

found Lrit1-/- mice have reduced dark- and light-adapted ERG a-waves. The reduction in the a-wave is 

transduced to ON bipolar cells, which displayed proportionally reduced dark- and light-adapted ERG b-

waves. Lrit1+/- mice were comparable to wild-type (WT) littermates. These data suggest a recessive loss of 

function. To our knowledge, no other mouse model demonstrates a similar ERG phenotype that is not also 

accompanied by associated retinal degeneration or abnormal retinal morphology.  

Our ERG data support our in situ findings that demonstrate Lrit1 is expressed in the ONL. 

However, these data are inconsistent with IHC data showing LRIT1 expression limited to the OPL. This led 

us to question the source of our observed reduction in the ERG dark- and light-adapted a-waves. 
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Photoreceptor hyperpolarization is responsible for the negative corneal a-wave and is generated by closure 

of the dark current. The reduced a-waves in Lrit1-/- mice suggest a phototransduction deficit that may occur 

upstream to or at the closure of the circulating dark current in either the OS or IS. Thus, LRIT1 is necessary 

but not sufficient for the normal closure or regulation of the circulating dark current.  

We hypothesized that LRIT1 through its LRR may directly interact with an LRR in a Na+ channel 

in the OS or Na+ pump in the IS known to be involved in the dark current in the mouse retina. The OS Na+ 

channels include the cyclic nucleotide-gated (CNG) channels comprised of CNGA1 and CNGB1 in rods 

and CNGA3 and CNGB3 in cones. The Na+/K+ pump proteins in the IS are currently unknown, and there is 

likely to be more than one. For the loss of LRIT1 to affect dark- and light-adapted a-waves, LRIT1 would 

need to affect at least one CNG subunit in rods and cones or IS Na+/K+ pump protein. To determine if any 

of the CNG channel proteins contains an LRR, I entered their amino acid sequences into an LRR finder 

database (http://smart.embl-heidelberg.de/smart/set_mode.cgi?NORMAL=1#). None contained LRRs. 

Because the IS pumps have not been identified, I could not search their amino acid sequences. It is still 

possible that LRIT1 interacts with one or more of the aforementioned proteins through an LRR domain that 

was not predicted, through another LRIT1 domain, or through an indirect interaction involving a protein 

complex. Because we saw only reduced rather than ablated dark and light-adapted ERG a-waves, it is likely 

that LRIT1 directly or indirectly interacts with one or more but not all of the OS CNG or IS pump proteins. 

OS and IS proteins are synthesized and processed in the cell nucleus and IS where they must traffic 

appropriately to their destinations of function. So it may also be true that LRIT1 is important for the 

localization of one or more of these proteins. This is an unlikely mechanism because most known proteins 

involved in phototransduction when mutated do not reach their destinations and cause retinal degeneration 

(123,137-147), which does not occur with loss of LRIT1. 

Dark- and light-adapted ERGs also demonstrated possibly abnormal OPs of Lrit1+/- and Lrit1-/- 

mice. OPs are hypothesized to reflect inner retinal potential possibly involving some combination of 

bipolar, amacrine, and ganglion cells, although the exact cellular source(s) is unknown (63,121,122). In 

contrast to the reduced a- and b-waves seen specifically in Lrit1-/- mice, abnormal OPs are present in both 

Lrit1+/- and Lrit1-/- mutants. These data suggest that the Lrit1-/- mutation has a dominant negative loss of 
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function where loss of a single WT copy disrupts inner retinal function without affecting outer retinal 

function.  

Our observed effects on outer and inner retinal function upon the loss of LRIT1 led us to ask if 

retinal ganglion cells in these mice respond normally. Further, if they respond abnormally, in what way(s) 

are they abnormal? Sonntag et al. generated the first mouse model selectively removing horizontal cells 

from the adult retina using diphtheria toxin and its receptor to create Cx57+/DTR mice (148). They 

illustrated significantly reduced ERG a- and b-waves in scotopic conditions and a significantly reduced b-

wave in photopic conditions. They provided no quantification of the photopic a-wave. Additionally, they 

demonstrated delayed responses in ON and the ON component of ON/OFF Cx57+/DTR ganglion cells that 

was not seen in OFF or the OFF component of ON/OFF Cx57+/DTR ganglion cells. They attributed the 

reduced ERG b-waves and altered ganglion cell function to the lack of horizontal cell inhibition. However, 

they also demonstrated that rod number was significantly decreased and most remaining rods had retracted 

their terminals. This showed horizontal cells were critical for rod synapse formation. Even though cone 

number is unchanged in Cx57+/DTR mice, cones were unevenly distributed throughout mutant retinas 

compared to WT control retinas. Retinas in Cx57+/DTR mice exhibited rod degeneration and synaptic 

disruption. Thus, they cannot claim any role for horizontal cell regulation of retinal function because of the 

many structural defects in this model.  

A recent study by Ströh et al. describes a second horizontal cell mouse model where the glutamate 

receptors GluA2 and -4 are selectively deleted in horizontal cells (35). Horizontal cell-specific GluA2/4 

deletion yields development and formation of normal synaptic triads. They use these mice to examine the 

ganglion cell effects of ablating glutamatergic horizontal cell input. Their GluA2/4-deficient mice received 

no photoreceptor input and thus could not provide any lateral feedback to visual circuits. They examined 

the effects on only one type of ganglion cell, the transient OFF α ganglion cells (tαOFFs). They found a 

decreased dynamic range in their tαOFFs with marked changes in temporal and contrast tuning responses 

but no change in spatial tuning responses when horizontal cell glutamatergic input is absent. Overall, their 

work demonstrates that changes in horizontal cell signaling can extensively alter inner retina ganglion cell 

function without measurably impacting retinal structure at the OPL. If our hypothesis that LRIT1 is 
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expressed and functional in photoreceptors and horizontal cells is correct, we would expect to see marked 

changes in the ganglion cell responses of Lrit1+/- and Lrit1-/- mice.  

We performed multi-electrode arrays to assess light-evoked ganglion cell response. Our results 

first establish there is no loss of responsive cells. Similar proportions of non-responsive and responsive 

cells indicate that LRIT1 likely does not contribute to whether or not ganglion cells respond. We observed 

the early appearance of all functional classes in Lrit1+/- and Lrit1-/- cells compared to WT cells. WT cells at 

the lowest intensity flash are limited to being non-responsive with some cells in the OFF functional class. 

WT ganglion cells do not exhibit responses belonging to all functional classes until the -1.5 log cd sec/m2 

intensity flash. In contrast, we observed Lrit1+/- and Lrit1-/- ganglion cells belonging to all functional classes 

at the lowest intensity flash. This suggests LRIT1 is involved in shaping how a ganglion cell responds and 

that the loss of LRIT1 provides increased ganglion cell sensitivity. Results also demonstrated increased 

spontaneous activity of Lrit1+/- and Lrit1-/-ganglion cells. This suggests that loss of LRIT1 increases 

spontaneous ganglion cell activity. Our results additionally showed increased peak amplitudes in Lrit1+/- 

and Lrit1-/- ganglion cells compared to WT cells. This suggests that the loss of LRIT1 results in a more 

robust ganglion cell response.  

The absence of horizontal cell hyperpolarization cannot feedback inhibit photoreceptors by 

shifting photoreceptor calcium current activation curves, leading to increased photoreceptor 

hyperpolarization and ON bipolar cell depolarization (149). This amplifies both ON bipolar cell glutamate 

release and connected ganglion cell responses. Thus, we hypothesize that the loss of LRIT1 reduces 

horizontal cell-mediated lateral inhibition. This decreases light-evoked horizontal cell hyperpolarization 

and increases ON bipolar cell depolarization and OFF bipolar cell hyperpolarization. This leads to 

increased pre-synaptic input to Lrit1+/- and Lrit1-/- ganglion cells. Thus, Lrit1 mutant ganglion cells generate 

action potentials at lower intensity flashes. They also exhibit stronger ganglion cell responses at all 

stimulus intensities.  

Increased ganglion cell input can arise from several sources: either increased excitatory input, 

decreased inhibitory input, or a combination of both. Excitatory and inhibitory ganglion cell input arise 

from pre-synaptic bipolar and amacrine cells, respectively. But it is not that simple. Horizontal cells 

feedback and inhibit photoreceptor input to bipolar cells. Horizontal cells also feedforward and inhibit 
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bipolar cell output. Amacrine cells receive this horizontal cell-modulated output from bipolar cells. 

Amacrine cells then directly provide two forms of inhibition. First, amacrine cells feedback and inhibit 

bipolar cells, which indirectly modulates the excitatory input to post-synaptic ganglion cells. Second, 

amacrine cells feedforward and inhibit ganglion cells, which directly modulates ganglion cell ability to 

reach and surpass the threshold for action potential generation. From our experimental results, we cannot 

therefore completely discount an amacrine cell contribution. This is because amacrine cell function is 

shaped by horizontal cell-mediated bipolar cell input. We propose that the loss of LRIT1 decreases 

horizontal cell lateral inhibition, leads to increased ON bipolar cell depolarization, OFF bipolar cell 

hyperpolarization, increased excitatory input to post-synaptic ganglion cells, and ultimately causes more 

sensitive and robust ganglion cell activity. 

We also demonstrated increased response latencies in Lrit1+/- and Lrit1-/- ON, OFF, and ON/OFF 

cells. Further, Lrit1-/- ganglion cells appear to have double the proportion of delayed cells compared to 

Lrit1+/- cells. This suggests the loss of LRIT1 causes inner retinal signaling pathway crossover. When 

retinal signals cannot proceed through their normal paths, they still cross over and influence alternate 

signaling paths, which may explain the delayed retinal ganglion cell responses (150). This is further 

evidenced because the peak amplitude of retinal ganglion cell responses in the absence of LRIT1 are 

maintained and even increased, suggesting responses are delayed but not lessened.  

 We observed rhythmic ganglion cell firing in Lrit1-/- mice. The fast Fourier transforms 

demonstrate two distinct frequency clusters at ~1 Hz and ~4-5 Hz. The pre-synaptic input source that 

causes ganglion cell rhythmic firing is unknown (151). However, rhythmicity is commonly seen in 

abnormally functioning or degenerating retinas but typically absent in healthy retinas (152-154). Menzler et 

al. induced rhythmicity (~4 Hz) in healthy mouse retinas with partial photoreceptor photobleaching (152). 

Their blind rd-10 retinas exhibited an equivalent oscillatory frequency. These findings suggest that pre-

synaptic neurons in the outer retina can induce ganglion cell rhythmicity. Thus, the loss of LRIT1 in 

photoreceptors and/or horizontal cells may be responsible for our observed oscillations.  

Our data showed Lrit1 is expressed in the ONL and INL. We also showed LRIT1 is expressed in 

the OPL in a pattern consistent with horizontal cells. Lrit1-/- mice displayed no gross morphological 

abnormalities. This suggests LRIT1 is not important for development and formation of normal retinal 
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structure. Lrit1-/- mice exhibited reduced dark- and light-adapted ERG a- and b-waves. Lrit1+/- and Lrit1-/- 

mice exhibited abnormal dark- and light-adapted OPs and abnormal spontaneous and light-evoked retinal 

ganglion cell responses. These data suggest LRIT1 contributes to synaptic signaling. These results align 

with NYX and LRIT3 mutants having structurally intact retinas but exhibiting retinal dysfunction, 

supporting their roles in synaptic transmission (73,78). ELFN1 mutants exhibited disrupted synaptic 

assembly causing major retinal structure changes accompanied by retinal dysfunction (94). We hypothesize 

that like NYX and LRIT3 but unlike ELFN1, LRIT1 is expressed in photoreceptors and horizontal cells 

where it is important for normal retinal function in the mouse (Fig. 59). LRIT1 specifically was shown to 

play a role in the photoreceptor dark current. LRIT1 also possibly influences horizontal cell lateral 

inhibition. We interpret our results to implicate LRIT1 in previously unknown roles in photoreceptor and 

horizontal cell synaptic function with no likely contribution to synaptic assembly. In conclusion, our data 

characterized the effects of the loss of LRIT1 on retinal structure and function in our novel Lrit1-/- mouse. 

We support its use as a novel mouse model for future studies of photoreceptor and horizontal cell signaling. 

 

Note Added in Proof 

Two publications reporting similar results appeared (155,156). Both publications showed IHC data 

similarly localizing LRIT1 to the OPL in the mouse retina. In addition, a conditional knockout mouse 

model (CKO) for ON bipolar cell-specific LRIT1 showed LRIT1 staining was lost in the IPL but retained 

in the OPL, suggesting OPL LRIT1 is not expressed in ON bipolar cells (156). They also tested the ON 

bipolar cell LRIT1 CKO model using ERGs and saw no difference between genotypes, suggesting IPL 

LRIT1 does not affect photoreceptor hyperpolarization or ON bipolar cell depolarization.  
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CHAPTER V 

FUTURE DIRECTIONS 

 

At present, there are several unanswered questions about the functional and structural impact of 

the loss of LRIT1 in the mouse retina. First, why did we observe a reduced ERG a-wave even though we 

only observed LRIT1 staining in the OPL arising from what we hypothesize is LRIT1 expression in 

horizontal cells? Our in situ data suggest robust Lrit1 expression in photoreceptors, even though we saw no 

photoreceptor OS or IS staining for LRIT1 protein by immunohistochemistry. One explanation is diffuse 

Lrit1 expression in photoreceptors that affects the dark current seen as a reduction in the scotopic and 

photopic ERG a-waves. We will examine how rod-specific re-expression of Lrit1 will impact the scotopic 

ERG a- and b-waves. To perform this study, I have already cloned Lrit1 cDNA into a plasmid containing 

the rhodopsin promoter and N-terminal MYC and FLAG tags. The rhodopsin promoter will drive rod-

specific Lrit1 expression. The plasmid was packaged into an AAV for intravitreal injection into Lrit1-/- 

mice. The intravitreal AAV approach has previously been successful in our lab to express either GFP 

infection control or another protein (unpublished data). We will test infected mice, infected GFP control, 

and uninfected Lrit1-/- mice using ERGs to determine if rod-specific re-expression of LRIT1 is necessary 

and sufficient to restore the scotopic ERG a-wave. We expect that expression of wild-type (WT) Lrit1 in 

rods of Lrit1-/- mice will restore the scotopic a-wave. 

ERGs on rod AAV-Lrit1 mice will additionally show if restoration of the a-wave concurrently 

restores the scotopic b-wave. It is possible that re-expression of WT LRIT1 in rods will only restore the a-

wave. If the a-wave is restored but the b-wave is still reduced or otherwise abnormal, this will suggest WT 

LRIT1 in rods rescues the rod dark current but will not be sufficient to restore normal retinal function. This 

would suggest that LRIT1 is expressed in another cell type. Because we have evidence suggesting that 

LRIT1 is expressed in horizontal cells, we will generate an AAV with the Lrit1 cDNA and MYC and 

FLAG tags using the connexin57 promoter to drive horizontal cell-specific expression (157). If 
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the horizontal cell AAV-Lrit1 does affect the b-wave, we will need to co-infect rod- and horizontal AAV-

Lrit1 to see complete restoration of the ERG a- and b-waves. 

If the a-wave is restored following rod AAV-Lrit1 infection, this model will serve as an 

independent measure of LRIT1 expression in rods. We will visualize rod LRIT1 expression using anti-

MYC and –FLAG antibodies. Similarly, if the ERG a- and b-waves are restored following co-infection, we 

will visualize rod and horizontal cell LRIT1 expression simultaneously. We expect that horizontal cell 

LRIT1 expression will recapitulate the LRIT1 staining we observed at the OPL in Lrit1+/+ mice, though it 

is possible that rod LRIT1 may also localize to the OPL. We will alternatively localize LRIT1 expression at 

a higher resolution using our LRIT1 antibody in ultrastructural localization studies using electron 

microscopy. These proposed studies are similar to what has been done for GPR179 in mouse (83) or using 

immunogold particles with our LRIT1 antibody as previously shown in the rat (101). This experiment may 

additionally serve to demonstrate LRIT1 is expressed in mouse OS or IS, photoreceptor terminals, and 

horizontal cells.  

We were unable to visualize LRIT1 via Western blotting. MYC and FLAG tags on the AAV 

expression constructs will allow us to probe for LRIT1 expression via Western blot. While this will not 

show quantifiable endogenous LRIT1 expression, we can derive important information from these blots. 

For example, by running native and SDS PAGE gels, we will gain information regarding the 

oligomerization state of LRIT1. It has previously been shown that several LRR proteins form oligomers 

(158-160) while others like NYX, for example, do not at least in yeast (92). Glycosylation is a post-

translational modification added to proteins in the secretory pathway during processing in the endoplasmic 

reticulum and Golgi apparatus. We presume mature LRIT1 will be glycosylated because it follows the 

secretory pathway to reach the plasma membrane due to the presence of its N-terminal signal sequence and 

C-terminal transmembrane domain. We will be able to detect LRIT1 glycosylation on future Western blots 

as it will cause a shift in the predicted molecular weight.   

Both rod and horizontal cell AAV-Lrit1 MYC and FLAG-tagged proteins expressed in vivo will 

be used to immunoprecipitate LRIT1in an attempt to identify interacting partners. Proteins in the 

immunoprecipitate would be identified by mass spectrometry. This will identify candidate LRIT1-binding 

proteins that may explain its mechanism of function(s) in rods and horizontal cells.  
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The multi-electrode array data revealed that loss of LRIT1 leads to abnormal retinal ganglion cell 

responses. We propose that one explanation for this is that loss of LRIT1 disrupts horizontal cell-mediated 

feedback and/or horizontal cell-mediated center surround organization. Assuming this is true, either of 

these would cause changes to retinal ganglion cell responses. We will investigate this by crossing Lrit1-/- 

mice with a horizontal cell-specific Cre mouse and infecting offspring with a floxed stop AAV for Lrit1 

(161). This will enable us to express LRIT1 only in horizontal cells to yield Cx57-Lrit1+/+ and Cx57-Lrit1-/- 

mice.  

Electrical cell-paired recordings in horizontal and bipolar or retinal ganglion cells in mammalian 

and non-mammalian models showed that horizontal cell hyperpolarization caused ON bipolar cell and ON 

ganglion cell hyperpolarization but caused OFF bipolar cell and OFF ganglion cell depolarization (149). 

The converse was also shown to be true for horizontal cell depolarization (149). These prior studies 

demonstrated that horizontal cells laterally inhibit bipolar cells, which provide direct input to ganglion cells 

and indirect input via amacrine cells to ganglion cells. Previous studies in the rabbit and goldfish showed 

that horizontal cell gap junctions are increasingly uncoupled as light intensity increases (162,163). This 

suggests the horizontal cell receptive field decreases as a function of light intensity. These changes are 

analogous to the decreased ganglion cell receptive field surround size as light intensity increases shown in 

the cat retina (164-166). These studies therefore suggest that horizontal cells play a role in shaping the 

receptive field surrounds of bipolar and ganglion cells. This is consistent with our hypothesis that the loss 

of LRIT1 changing horizontal cell lateral inhibition would also alter the ganglion cell receptive field center 

surround organization (167). To determine if horizontal cell LRIT1 is disrupting retinal ganglion cell 

responses in Lrit1+/- and Lrit1-/- mice, we will record from Cx57-Lrit1+/+ and Cx57-Lrit1-/- retinal ganglion 

cells using stimuli with increasing spot sizes over a range of light intensities and also fix the spot size while 

varying light intensity. This study will test the hypothesis that horizontal cell LRIT1 alters bipolar and thus 

ganglion cell center surround organization.   

Assuming horizontal cell LRIT1 expression causes our observed abnormal retinal ganglion cell 

responses, we will elucidate the mechanism by separating the two sources of ganglion cell input. We 

observed increased ganglion cell activity, which results from increased ganglion cell input that can arise 

from two sources: either increased excitatory input, decreased inhibitory input, or a combination of both. 
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Excitatory and inhibitory pathways can be isolated in patch-clamping experiments with Lrit1 ganglion 

cells. We would hold the membrane potential stable and present spots of light decrements on a grey 

background for 2s to ganglion cells. This would be repeated several times by clamping at increasing 

membrane potentials in 10-20 mV steps similar to experiments done in mouse (35). The excitatory and 

inhibitory synaptic conductances can be calculated from these data. This will separate excitatory and 

inhibitory inputs and determine the contributions from each in Lrit1+/- and Lrit1-/- mice. These experiments 

would additionally determine if amacrine cells are also contributing to our observed abnormal retinal 

ganglion cell responses. We would expect that one or both of these inputs would be changed compared to 

WT littermates. 
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APPENDIX I 

SUPPLEMENTARY MATERIAL 

 

Lrit3 Expression in Mouse Photoreceptors 

Our observed Grm6 ON bipolar cell-specific expression pattern is consistent with previous in situ 

hybridization data (1). Because LRIT3 has previously been shown to co-localize with ON bipolar cells and 

the Lrit3nob6 mouse had a no b-wave ERG (2,3), we speculated that LRIT3 is expressed in ON bipolar cells. 

The Lrit3 expression pattern in the INL is distinct from Grm6. Our finding that Lrit3 is expressed in 

photoreceptors was unexpected. Our laboratory is currently examining this hypothesis using AAV-

mediated rod-specific Lrit3 intravitreal injections in the Lrit3nob6 mouse to express and characterize the role 

of LRIT3 in murine rods (unpublished data). Mutations in LRIT3 have been shown to affect rod and cone 

synapses differentially. In Lrit3nob6 retinas, rod synapses form appropriate synaptic contacts to horizontal 

and rod ON bipolar cells. However, cone synapses lack contacts to ON bipolar cells despite evidence of 

normal horizontal and OFF bipolar cell contacts, suggesting cone-specific LRIT3 effects (4). Additional 

experiments may be needed to determine the role of LRIT3 in cones independently of rods. Because 

Lrit3nob6 ERGs show no difference in scotopic and photopic a-waves, it is likely that Lrit3’s role in 

photoreceptors is not critical for its function in the mouse retina (2). While LRIT3 may not affect 

photoreceptor function assessed by ERG, it is possible that its expression in photoreceptors is necessary but 

not sufficient for its function in ON bipolar cell signal transmission. 
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AAV-Lrit1 Plasmid Sequence 

 
LOCUS       pAAV2.1\RHO\eGFP        5582 bp    DNA     circular UNA 12-

JUL-2016 

DEFINITION  . 

ACCESSION   urn.local...10-6cuqcun 

VERSION     urn.local...10-6cuqcun 

KEYWORDS    . 

SOURCE       

  ORGANISM   

            . 

FEATURES             Location/Qualifiers 

     misc_feature    248..377 

                     /note="ITR" 

     misc_feature    458..1296 

                     /note="Geneious type promoter eukaryotic  RHO 

PROMOTOR" 

     misc_feature    3287..3828 

                     /note="WPRE" 

     polyA_signal    3835..4049 

                     /note="PolyA Signal" 

     misc_feature    4091..4136 

                     /note="" 

     misc_feature    4137..4266 

                     /note="ITR" 

     source          1..6830 

                     /dnas_title="171116_BaseClone_654 

 pAAV_RHO_eGFP_Minus-eGFP_PlusNycSS-cMyc-   

 FLAG_PlusLrit1NoSigSeq_WithPrimers_--" 
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     sig_peptide     1305..1361 

                     /note="Nyx- signal seq" 

     misc_feature    1371..1385 

                     /note="Enterokinase sequence" 

     misc_feature    1386..1415 

                     /note="MYC tag" 

     misc_feature    1431..1454 

                     /note="DDK tag" 

     misc_feature    1461..3269 

                     /note="Lrit1 cDNA no SS" 

     PCR_primer      complement(1437..1457) 

                     /pair="" 

                     /primer="ATCCTTATCGTCGTCATCCTT" 

                     /current=0 

                     /dnas_title="Reverse (1437..1457)" 

     PCR_primer      1441..1478 

                     /pair="" 

                     /primer="ATGACGACGATAAGGATGCATTCTGTCCTTCTGAATGC" 

                     /current=0 

                     /dnas_title="Forward (1441..1478)" 

     PCR_primer      complement(3249..3286) 

                     /pair="" 

                     /primer="GGATCCAAGCTTTATTAGCAGAAGTACTCATTGATGCG" 

                     /current=0 

                     /dnas_title="Reverse (3249..3286)" 

     misc_feature    3276..3286 

                     /note="After HindIII RE from Rho eGFP construct 

overhang" 

     misc_feature    1458..1460 
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 /note="changed from %22atc%22 Iso to   

 %22gca%22 Ala to preserve 6bp region,   

 nonpolar residue, and introduce NsiI 

                     RE site for future fusion gene expression" 

     misc_feature    1297..1298 

                     /note="End of Rho from where NotI cuts Rho eGFP " 

     misc_feature    1299..1304 

                     /note="Added to introduce Not1 RE site, keeps ORF 

in 

                     frame" 

     misc_feature    3270..3275 

                     /note="added stop codons" 

     PCR_primer      1282..1319 

                     /pair="" 

                     /primer="ATATCCATCACACTGGCGGCCGCATGCTGATCCTGCTT" 

                     /current=1 

                     /dnas_title="Forward (1282..1319)" 

ORIGIN       

1  agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc 

61  acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc 

121  tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa 

181  ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccagattta 

241  attaaggctg cgcgctcgct cgctcactga ggccgcccgg gcaaagcccg ggcgtcgggc 

301  gacctttggt cgcccggcct cagtgagcga gcgagcgcgc agagagggag tggccaactc 

361  catcactagg ggttccttgt agttaatgat taacccgcca tgctacttat ctacgtagcc 

421  atgctctagg aagatcggaa ttcgccctta agctagcaga tcttccccac ctagccacct 

481  ggcaaactgc tccttctctc aaaggcccaa acatggcctc ccagactgca acccccaggc 

541  agtcaggccc tgtctccaca acctcacagc caccctggac ggaatctgct tcttcccaca 

601  tttgagtcct cctcagcccc tgagctcctc tgggcagggc tgtttctttc catctttgta 
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661  ttcccagggg cctgcaaata aatgtttaat gaacgaacaa gagagtgaat tccaattcca 

721  tgcaacaagg attgggctcc tgggccctag gctatgtgtc tggcaccaga aacggaagct 

781  gcaggttgca gcccctgccc tcatggagct cctcctgtca gaggagtgtg gggactggat 

841  gactccagag gtaacttgtg ggggaacgaa caggtaaggg gctgtgtgac gagatgagag 

901  actgggagaa taaaccagaa agtctctagc tgtccagagg acatagcaca gaggcccatg 

961  gtccctattt caaacccagg ccaccagact gagctgggac cttgggacag acaagtcatg 

1021 cagaagttag gggaccttct cctccctttt cctggatgga tcctgagtac cttctcctcc 

1081 ctgacctcag gcttcctcct agtgtcacct tggcccctct tagaagccaa ttaggccctc 

1141 agtttctgca gcggggatta atatgattat gaacaccccc aatctcccag atgctgattc 

1201 agccaggagc ttaggagggg gaggtcactt tataagggtc tgggggggtc agaacccaga 

1261 gtcatcccct gaattctgca gatatccatc acactggcgg ccgcATGCTG ATCCTGCTTC 

1321 TTCATGCGGT GGTCTTCAGT CTGCCCTACA CCAGGGCCAC CGGTGCAGGT GATGACGACG 

1381 ACAAGGAGCA GAAACTCATC TCAGAAGAGG ATCTGGCAGC AAATGATCTG GATTACAAGG 

1441 ATGACGACGA TAAGGATgca TTCTGTCCTT CTGAATGCAG CTGCAGTCTG CGCATCCTGA 

1501 GTGACGGCAG CAAGGCCAGG ACAGTGGTGT GCAGCGACCC TGACTTGACT CTGCCTCCAG 

1561 CTTCGATTCC TCCAGACACC TGCAAGCTGC GCTTAGAGAG AACCGCCATT CGCAGGGTGC 

1621 CGGGAGAGAC CTTCAGGCCT CTCAGCCGCC TGGAGCAGCT GTGGCTACCT TACAATGCTC 

1681 TCAGTGAGCT TAGTGCCCTC ATGCTCAGGG GCCTGAGACG CCTACGAGAG CTGCGGCTGC 

1741 CTGGGAACCG CCTGGTCACG TTCCCCTGGG CTGCGCTGAG GGACACTCCG CAGCTGCAGC 

1801 TGCTGGACCT GCAGGCCAAT CGCCTCTCGA CCTTGCCACC CGAGGCTGCA CACTTCCTGG 

1861 AGAACCTTAC TTTCCTGGAC CTGTCCAATA ACCAGCTGAT GAGGCTTCCT GAGGAGCTAC 

1921 TGGACGTGTG GGCTCACCTG AAGACCGGGC CCTTCCTTTC CGGCCATCAT GCCAGGCTAA 

1981 TCTTAGGGCT TCAGGACAAC CCCTGGGTGT GTGACTGTCG GCTCTATGAC CTGGTTCATC 

2041 TTCTAGATGG CTGGGTTTCT TCAAACCTGA TCTTCATCGA GGCTAGACTG AGATGTGCCA 

2101 GTCCACGCAG CCTGGCTGGA GTGGCCTTCA GCCAGCTGGA GCTAAGAAAG TGTCAGAGCC 

2161 CAGAGCTCCG TCCAGGGGTG ACCAGCATCA TATCCCCTTT GGGTAGCACA GTATTGCTAC 

2221 GTTGTGGAGC AACTGGGATC CCAGGACCTG AGATGAGCTG GAGAAGGGCC AATGGACGAC 

2281 CACTCAATGG CACAGTACAC CAGGAAGTCT CCAGTGACGG CTCAAGTTGG ACTTTGCTAG 

2341 ATTTGCCTGT TGTGTCTCTC TTTGACTCTG GGGACTACAT CTGCCAAGCC AAGAACTTCC 
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2401 TGGGAGCTTC TGAAACCCTG ATCTCCTTGA TTGTCACTGA GCCACAGACT TCTACCGGAT 

2461 ACAGTGGGAT TCCAGGTGTC CTGTGGGCAA GAACAGGGGA GGGGGCAGAA GCTGCTGCCT 

2521 ACAACAACAA GCTGGTGGCC AGGCATGTTC CTCATATGCC CGAGCATGTA GCCCTGGCTA 

2581 CCAAGCCCTC AATGCCCAGC ATAAAGGAGG AGCTGGCTCT CCAGAACTTT CAGATGGATG 

2641 TCCCAGGAGA GTTCTCCAGA GAGCCATCAG AACACCAGGA GGCACAGATG GTCAGGTCTC 

2701 TCAAGGTAGT AGGAGATACT TACCACAGTG TGTCTTTGGT GTGGAAGGCC CCTCAAGCTG 

2761 GGAACACAAC CGCCTTTAGT GTCCTTTATG CAGTCTTTGG GCATCGAGAC ATGAGAAGGA 

2821 TGACTGTGGA GCCTGGGAAG ACTAGTGTCA CTATCGAGGG ACTTGCTCCA AAGACCAAGT 

2881 ATGTGGCATG TGTCTGTGTG CGGGGCTTGG TGCCTACGAA GGAGCAATGT GTCATCTTCT 

2941 CTACTGATGA GGTAGTGGAT GCAGAGGGCA CCCAGCGACT CATCAACATG GTGGTGATCA 

3001 GCGTGGCCGC CATCATCGCG CTGCCTCCCA CCCTGCTGGT TTGCTGTGGG GCTCTCCGAA 

3061 GACGCTGCCA CAAGTGCCGC ACTGGGGGTT CTGCAGAGGC CTCTGGGGCC TATGTTAATT 

3121 TGGAAAGACT GGGCCATAGT GAGGACAGCT CAGAAGTTCT GTCCAGGAGC AGCCTCAGTG 

3181 AGGGAGATAG GCTTCTCTCA GCCCGTTCCA GCCTGGACTC CCAGGTCTTG GGTGTCAGGG 

3241 GCGGCAGACG CATCAATGAG TACTTCTGCt aataaagctt ggatccaatc aacctctgga 

3301 ttacaaaatt tgtgaaagat tgactggtat tcttaactat gttgctcctt ttacgctatg 

3361 tggatacgct gctttaatgc ctttgtatca tgctattgct tcccgtatgg ctttcatttt 

3421 ctcctccttg tataaatcct ggttgctgtc tctttatgag gagttgtggc ccgttgtcag 

3481 gcaacgtggc gtggtgtgca ctgtgtttgc tgacgcaacc cccactggtt ggggcattgc 

3541 caccacctgt cagctccttt ccgggacttt cgctttcccc ctccctattg ccacggcgga 

3601 actcatcgcc gcctgccttg cccgctgctg gacaggggct cggctgttgg gcactgacaa 

3661 ttccgtggtg ttgtcgggga agctgacgtc ctttccatgg ctgctcgcct gtgttgccac 

3721 ctggattctg cgcgggacgt ccttctgcta cgtcccttcg gccctcaatc cagcggacct 

3781 tccttcccgc ggcctgctgc cggctctgcg gcctcttccg cgtcttcgag atctgcctcg 

3841 actgtgcctt ctagttgcca gccatctgtt gtttgcccct cccccgtgcc ttccttgacc 

3901 ctggaaggtg ccactcccac tgtcctttcc taataaaatg aggaaattgc atcgcattgt 

3961 ctgagtaggt gtcattctat tctggggggt ggggtggggc aggacagcaa gggggaggat 

4021 tgggaagaca atagcaggca tgctggggac tcgagttaag ggcgaattcc cgattaggat 

4081 cttcctagag catggctacg tagataagta gcatggcggg ttaatcatta actacaagga 
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4141 acccctagtg atggagttgg ccactccctc tctgcgcgct cgctcgctca ctgaggccgg 

4201 gcgaccaaag gtcgcccgac gcccgggctt tgcccgggcg gcctcagtga gcgagcgagc 

4261 gcgcagcctt aattaaccta attcactggc cgtcgtttta caacgtcgtg actgggaaaa 

4321 ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca gctggcgtaa 

4381 tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga atggcgaatg 

4441 ggacgcgccc tgtagcggcg cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac 

4501 cgctacactt gccagcgccc tagcgcccgc tcctttcgct ttcttccctt cctttctcgc 

4561 cacgttcgcc ggctttcccc gtcaagctct aaatcggggg ctccctttag ggttccgatt 

4621 tagtgcttta cggcacctcg accccaaaaa acttgattag ggtgatggtt cacgtagtgg 

4681 gccatcgccc cgatagacgg tttttcgccc tttgacgctg gagttcacgt tcctcaatag 

4741 tggactcttg ttccaaactg gaacaacact caaccctatc tcggtctatt cttttgattt 

4801 ataagggatt tttccgattt cggcctattg gttaaaaaat gagctgattt aacaaaaatt 

4861 taacgcgaat tttaacaaaa tattaacgtt tataatttca ggtggcatct ttcggggaaa 

4921 tgtgcgcgga acccctattt gtttattttt ctaaatacat tcaaatatgt atccgctcat 

4981 gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca 

5041 acatttccgt gtcgccctta ttcccttttt tgcggcattt tgccttcctg tttttgctca 

5101 cccagaaacg ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta 

5161 catcgaactg gatctcaata gtggtaagat ccttgagagt tttcgccccg aagaacgttt 

5221 tccaatgatg agcactttta aagttctgct atgtggcgcg gtattatccc gtattgacgc 

5281 cgggcaagag caactcggtc gccgcataca ctattctcag aatgacttgg ttgagtactc 

5341 accagtcaca gaaaagcatc ttacggatgg catgacagta agagaattat gcagtgctgc 

5401 cataaccatg agtgataaca ctgcggccaa cttacttctg acaacgatcg gaggaccgaa 

5461 ggagctaacc gcttttttgc acaacatggg ggatcatgta actcgccttg atcgttggga 

5521 accggagctg aatgaagcca taccaaacga cgagcgtgac accacgatgc ctgtagtaat 

5581 ggtaacaacg ttgcgcaaac tattaactgg cgaactactt actctagctt cccggcaaca 

5641 attaatagac tggatggagg cggataaagt tgcaggacca cttctgcgct cggcccttcc 

5701 ggctggctgg tttattgctg ataaatctgg agccggtgag cgtgggtctc gcggtatcat 

5761 tgcagcactg gggccagatg gtaagccctc ccgtatcgta gttatctaca cgacggggag 

5821 tcaggcaact atggatgaac gaaatagaca gatcgctgag ataggtgcct cactgattaa 
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5881 gcattggtaa ctgtcagacc aagtttactc atatatactt tagattgatt taaaacttca 

5941 tttttaattt aaaaggatct aggtgaagat cctttttgat aatctcatga ccaaaatccc 

6001 ttaacgtgag ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc 

6061 ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc 

6121 agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt 

6181 cagcagagcg cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt 

6241 caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc 

6301 tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa 

6361 ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac 

6421 ctacaccgaa ctgagatacc tacagcgtga gctatgagaa agcgccacgc ttcccgaagg 

6481 gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga 

6541 gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact 

6601 tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa 

6661 cgcggccttt ttacggttcc tggccttttg ctgcggtttt gctcacatgt tctttcctgc 

6721 gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg ataccgctcg 

6781 ccgcagccga acgaccgagc gcagcgagtc agtgagcgag gaagcggaag 
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APPENDIX II 

ESTABLISHING BEST PRACTICES FOR ONLINE LEARNING MODULES: A SINGLE 
INSTITUTION STUDY 

 

Abstract 

To reduce lecture hours, medical schools turned to online teaching modalities to re-engage 

students and reduce cognitive overload and burnout. Importantly, developing effective online learning 

modules expands the teaching product toolbox and enhances schedule flexibility. Various authorship tools 

are available, but there is a significant need for faculty development to successfully build these novel 

resources. We performed this study to establish best practices for creating effective online learning 

modules.  Our mixed-methods survey generated data on student perceptions for overall effectiveness of 19 

online learning modules employed in a single course of the first year medical curriculum.  These surveys 

also obtained data on additional parameters to assess their impact on overall effectiveness.  Our data 

revealed that transitioning content from a lecture format to an interactive online exercise can be challenging 

because online instructors no longer have a real-time presence to assess and redirect learning on an ad hoc 

basis.  Thus, the manner in which an online module is organized, clarity of provided written information, 

and helpfulness of figures all correlated strongly with student perceptions of overall effectiveness of an 

online module.  In contrast, formative feedback and brief audio/visual lecture capture clips, while viewed 

very positively by students, appeared more as independent variables correlating less well with overall 

effectiveness.  These data will help guide faculty development as medical education transitions from 

traditional lectures to an increasing number of online learning resources.   
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Background 

The Four Levels of Teaching and Learning 

Learning theories provide the foundation for teachers to understand how their students learn to be 

effective teachers. This shifts the focus from teaching to learning. Learning theories inform and inspire 

growth of increasingly dynamic educators who contribute to the design, implementation, and evolution of 

individual learning modules, whole courses, and entire curricula in higher education. I will examine four 

different levels of teaching and learning theories that provide the framework for my research project. 

In Paulo Freire’s Pedagogy of the Oppressed, he describes the most fundamental level of teaching 

and learning (5), the theory of instructivism. He addresses instructivist educational “narration” using the 

novel phrase “banking concept of education” (6). Freire describes the students’ roles in his banking 

framework: “records, memorizes, and repeats without perceiving” where “education thus becomes an act of 

depositing … instead of communicating,” (6). The educator deposits knowledge into the student’s 

knowledge account where it rests for an indefinite amount of time. Then a student performs a knowledge 

withdrawal whereby the educator accepts or rejects the regurgitated deposit in the form of a grade as proof 

for the depth of student learning. The student’s knowledge account balance falls back to zero following 

withdrawal and payment to the educator. Instructivism is the default teaching approach in traditional 

learning. Instructivism is direct, teacher-centric instruction that delivers truth to students. Direct instruction 

may be appropriate and beneficial for sharply focused goals depending on the circumstances surrounding 

and expectations for learning. More often than not, however, learning requires much more than teacher 

telling and student listening. This makes teacher-centric instructivism a poor approach when it is the only 

one used.  

In contrast, constructivism is the pedagogical antithesis to instructivism accomplishing goals 

beyond student listening. Learning involving higher-order cognitive processes such as analysis, evaluation, 

creation, logic, judgment, problem solving, and creative thinking needs student-centered instruction (7). 

Constructivism provides a creative, student-centric solution for successfully developing higher-order skills 

(8). Constructivism recognizes the student/material interaction through the lens of the student’s personal 

experiences to build new knowledge (9). Constructivist learning relies on and enriches content connection, 

schema construction, and information integration. Constructivist teachers challenge students to create their 
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own content understanding by providing “tasks to be accomplished or problems to be solved, especially 

those that have personal relevance for learners” (5). Importantly, constructivism redefines the roles of 

educator and student such that the student assumes responsibility for his or her learning through which the 

educator is a guide (10). Constructivism requires that teacher and student understand their new 

responsibilities and how this may differ from past teaching and learning experiences.   

The second level of teaching and learning concerns the manner in which a student learns. These 

are behaviorism and cognitivism (5), which parallel instructivism and constructivism, respectively. On one 

hand, behaviorist learning is cyclical: stimulus, response, feedback, reinforcement, repeat. This type is still 

passive because the feedback depends only on providing the correct or incorrect answer, not in 

understanding necessary logic to reach the correct answer and exclude incorrect ones. On the other hand, 

cognitive learning accentuates the learner’s mental state, what they think, and what they know. Thus, 

cognitivism aligns with constructivist tenets. If behavioral learning is stimulus/response, then cognitive 

learning is appropriate stimulus/contextual application. Cognitive learning beseeches students to embed 

new information within a contextual framework to offer deeper understanding and authentic learning (11). 

By blending behaviorism and cognitivism, teachers can match learning objectives for learners to 

appropriately apply new knowledge based on the teacher’s expectations. These expectations may be lower-

level learning objectives when using behavioral learning and higher-level learning objectives when using 

cognitive learning.  

The third level regards the teacher’s role, which is subject to change within and among lessons. 

Teachers can be didactic or facilitative (5). Didactic instruction tells students “a” and “b” and concludes 

each concept is important. In contrast, facilitative teaching transpires when the teacher guides the students 

to conclusions. One example of facilitative teaching is by inquiry. Teachers use inquiry to determine 

students’ baseline knowledge, bridge students’ thinking so that students provide the answers that reveal 

new information to be taught, and provide students a situation or analogy for them to connect that 

information. Thus, facilitative teachers contextualize the principles on which the importance of “a” and “b” 

arise and anticipate how students might relate to or apply that knowledge (11,12). 

The fourth level of teaching and learning is the source of student motivation. These are 

categorized as intrinsic or extrinsic (5). Examples of extrinsic motivation may include parental 
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expectations, financial reward for their career path, and course grades, the latter of which is typically 

required for semester or annual scholarship renewal. Extrinsic motivators are less likely to result in 

authentic learning because extrinsically motivated students lose their motivation when rewards or 

consequences for extrinsic motivators are removed. However, if a student has an innate passion for a field, 

a sense of accomplishment when they master it, or a sense that a career path is their true calling, they have 

intrinsic motivation to do well. These motivations are similar to what the authors in Freakonomics define as 

incentives:  

There are three basic flavors of incentive: economic, social, and moral. Very often a single 

incentive scheme will include all three varieties. Think about the anti-smoking campaign of recent 

years. The addition of a $3-per-pack ‘sin tax’ is a strong economic incentive against buying 

cigarettes. The banning of cigarettes in restaurants and bars is a powerful social incentive. And 

when the U.S. government asserts that terrorists raise money by selling black-market cigarettes, 

that acts as a rather jarring moral incentive. (13)  

If teachers can convince students that learning specific content will be important for explicitly stated, 

intrinsically motivated reasons, students will be more interested in learning over a long-term scale and 

more likely to achieve those goals (14).  

 

Modes for Delivering Instruction 

Both instructivist and constructivist teachers can deliver material in several ways. These include 

traditional, blended, flipped, or fully online learning. First, traditional learning is in-class learning usually 

in the form of a teacher-directed live lecture with an audience of listening students. Traditional learning is 

geographically and time-dependent. Second, blended learning is any combination of in-class and online 

learning regardless of synchronicity. A blended classroom can utilize online activities, provide online 

resources and/or discussion boards, or deliver course content online while in-class time is reserved for other 

learning approaches (15). Third, flipped classrooms are a specific example of the blended classroom that 

use before-class preparation time for students to study lecture material independently (10,16). These online 

preparation modules are followed by in-class active learning activities with faculty-guided instruction to 

develop teamwork and collaborative skills and practice the application of the pre-learned content within 
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real-life situations. Flipped classrooms additionally allow students to view content through an online 

medium without temporal or spatial constraints. Students can review the content as many times as needed 

for mastery. Within the content may be embedded questions that provide feedback about the degree of 

mastery to the student. Last, online learning is learning via the internet and can occur in several formats: 

synchronous, asynchronous, or blended, the latter of which is a mixture of synchronous and asynchronous 

formats (17). Synchronous online learning is geographically independent but time-dependent where all 

learning takes place simultaneously like a live online classroom accessed from anywhere with internet 

access (18,19). Asynchronous online learning is both geographically and time-independent where all 

learning takes place at the student’s discretion (18,19). An additional advantage to asynchronous online 

learning is the student’s unlimited review of material until they reach content mastery.  

 

How Constructivism Encourages Active Learning 

Active learning is defined as purposeful student engagement in an activity to encourage content 

and skills building and can be incorporated in traditional, blended, flipped, or fully online learning 

environments. Active learning has been shown to boost content comprehension, critical thinking, problem 

solving, and information analysis compared to passive teaching models (10,20,21). Constructivist teaching 

actively engages learners to participate in their outcome-guided learning process in a self-regulated way. 

When teachers choose the right combination of activities for the expected learning levels of new content, 

learners engage and participate in outcome-guided active constructivist learning (9,22). Cognitivism, 

facilitative instruction, and intrinsic student motivation all provide additional theoretical support for 

constructivist active learning. By using a constructivist teaching approach, learning becomes active and 

student-centric with a focus on developing specific knowledge and skills.  

 

Adult Learning Theory is Similar to Online Learning Principles 

Adult learners comprise a subgroup of learners with characteristics distinct from younger students. 

Adult learning theory, or andragogy, demonstrates that adult students in higher education are dynamically 

engaged, decidedly motivated, and chiefly self-directed learners when given new content (7). This is 

because students transform and improve how they approach learning as they progress into adulthood, 



147 
 

causing a shift from teacher- to self-directed learning. The adult craving for independence contributes to 

this shift and incites a desire for self-guided learning. Adult learners have more personal experience than 

younger learners on which they can construct their own knowledge. Teachers can use this expanded 

experience scaffold to create deep, authentic adult learning experiences.  

 Similar to adult learners, online learners must also have intrinsic motivation to “control, manage, 

and plan their learning actions” in “self-regulated learning” (7,17). Self-regulated online learners must 

champion their independence to achieve academic success. Online learners must take static information and 

construct their own knowledge and make meaning (10). Online learners remain engaged when they 

encounter examples or assessments that apply to their every-day lives, which leads to deep learning (17). 

Thus, the shared characteristics of adult and online learners must be applied to effectively design courses 

that meet their learning needs.  

Replacing traditional learning with online learning is an attempt to provide students with a 

convenient, flexible, active learning experience guided by constructivism, cognitivism, facilitative teaching, 

and intrinsic motivation. In the past, online learning in higher education was aimed at non-traditional adult 

students (23) that at the time made up a minor proportion of enrollees. These non-traditional adult students 

took advantage of the benefits of online learning such as the autonomy, convenience, flexibility, 

accessibility, quality, increased access to additional resources, increased use of technology in education, 

and increased ability to teach to a variety of learning styles (22). They also directly benefitted from the 

overall increase in technological literacy of teachers and students due to marked improvements in 

technology and frequent technological use in our society (24). Traditional instruction is transforming to 

either incorporate online learning or completely replace traditional instruction with online learning. 

Statistics from 2014 show that 28.5% of students enrolled in degree-granting postsecondary public, non-

profit private, and for-profit private institutions were enrolled in one or more online learning courses (25). 

This suggests that adult students are now aware of the advantages of online learning and capitalizing on 

them. Higher education is undergoing a paradigm shift to meet the projections that online courses will soon 

be half of all learning (26).  

 

How Online Learning is Unique  
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Online learning differs from traditional learning wherein teachers are not present to immediately 

assess and redirect student learning on the spot. The first step in implementing an online learning classroom 

is determining which software teachers will use to create online learning modules. This software category 

is typically referred to as content authoring software for generating interactive, multimedia-based online 

learning modules delivered via the internet. Content authoring software is the solution to incorporating 

content from myriad media formats, increasing interactivity of online learning to create active learning 

environments independent of the teacher’s presence, and tailoring lessons for individual learning styles 

where content can be presented in a multitude of ways with the added advantage of providing a sheet of 

additional resources as needed for students who may need extra help or different explanations. Some 

examples of these programs include Adobe Captivate, Articulate Storyline, Camtasia Studio, Lectora 

Inspire, and SoftChalk (27). The technological literacy of faculty, staff, and students varies. We must also 

consider the ease in implementing a new technology. Senior computer education and IT students (n=28) 

conducted a usability study on online learning tools (n=15) to assess their user-friendliness in three 

competency categories: technical, media, and assessment (27). Adobe Captivate was ranked first and 

SoftChalk ranked second of 15 evaluated tools for its overall competencies in usability (discrete score on a 

1-5 scale [Table 4]: Captivate, 4.95; SoftChalk, 4.36) (27). These data suggest that not all content authoring 

software is created equal in its user-friendliness, which can directly impact faculty motivation and time 

spent to use and develop online learning modules if a specific software is required. 

Second, online learning resources must be created with theory-based instructional design to 

anticipate the most common ways students will stray from main points or misunderstand concepts (28). 

This requires direct, clear, and coherent material chunked into small bites coupled with adequate 

assessment and feedback. To address material chunking, content should be designed and presented in such 

a way as to require a minimal amount of possible effort for the learner. This is based on the cognitive load 

theory, which is the total amount of mental effort required for learning new content dependent on the 

content presentation (29). All learning initially takes place in the working memory (11,30). Our working 

memories are finite and can handle limited amounts of processing or mental elements at any one time. 

Cognitive load theory has 3 distinct components that contribute to the working memory: intrinsic, germane, 

and extraneous loads (11,28). Intrinsic load refers to the inherent difficulty of the information and the 
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number of components students require in their working memory to process the information. Teachers 

should aim to manage intrinsic load using approaches based on theories like the sequencing and segmenting 

effects (11,28,30). The sequencing effect is organizing content in a stepwise manner from simple to 

complex or presenting complex material in isolated steps before combining them all together (30). The 

latter can also be referred to as the pre-training effect (30). The segmenting effect chunks small pieces of 

content into discrete “bite-sized” pieces for new learners (30). Blissett et al. proposed the claim that 

approaches used to create schema-based lessons rather than traditional lessons minimizes intrinsic load and 

directly increased first-year medical student diagnostic performance by 20% in the schema-based group 

(n=53 schema students versus n=48 traditional students) (11). Germane load is the mental effort to 

permanently store information also known as schema creation (11). Teachers should maximize germane 

load by choosing relevant mental work that will directly build the necessary skills and support 

understanding of the new information (28). This is where it is paramount to carefully choose activities 

based on what learning level a student should understand the content during an assessment. Extraneous 

load is the manner in which content is presented to the student. This type should be minimized using 

approaches based on phenomena such as the split-effect (11,28,30). The split effect requires the student to 

split their attention to integrate several pieces of information, which requires more mental effort overall 

(30). Thus, intrinsic, extraneous, and germane loads directly apply to the organization and specific 

articulation of provided material in online lessons (29). Thus, teachers should carefully choose included 

written text, graphics, audio/visual files, and additional resources to balance the overall cognitive load and 

ease learning for novice students. 

 Last, adequate assessment and feedback as defined by Sadler is “specially intended to generate 

feedback on performance to improve and accelerate learning” (31). The role of feedback is especially 

important for self-directed online learning modules. Oftentimes with online learning, students allow 

formative assessment to guide their learning when lessons lack explicit, specific learning objectives. 

Assessments should be designed to determine if the student understands the material at the expected level, 

i.e. lower- versus higher-order thinking and learning according to Bloom’s taxonomy. Assessments that test 

memorization are unsuitable if students are expected to analyze a concept in a graded assignment or exam. 

Additionally, feedback should aim to include indicating the correct answer and all possible iterations of a 
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correct answer if necessary as in the case of fill-in-the-blank assessment questions for example. Feedback 

should also include reasoning for how and why provided incorrect answers are wrong. Feedback failing to 

address every incorrect answer frustrates students by not providing a comprehensive guide to the correct 

destination (answer) distinct from each proposed path (all given answer choices).  Consistent assessments 

and feedback keep the student engaged and learning actively and acts as their self-reflective bridge from no 

understanding before the lesson to content mastery after the lesson. 

 

Literature Search 

Several studies have demonstrated advantages for online learning. McLaughlin’s study assessed 

the effectiveness of the flipped classroom for pharmacy students (10). They concluded that flipped 

classrooms resulted in significant differences in final exam scores compared to the traditional classroom 

(independent t-test for traditional to blended exam scores: 160.06 ± 14.65 to 165.48 ± 13.34 out of 200 total 

points; p=0.001) (10). In an undergraduate nursing study on the effectiveness of case-based learning using 

SoftChalk, Cleveland et al. found a significant difference in the pre- and post-activity assessments (paired 

t-test p<0.001, n=315) (32). A study on dental students using SoftChalks for reviews at the beginning of a 

course instead of lectures found that review modules significantly increased post-test outcomes by 46% 

(n=114-115) (33). An examination of a SoftChalk module for screening Alzheimer’s disease was 

performed by Coffman et al. where they surveyed n=43 physicians (34). They found that the post-test score 

was 24 points higher than the pre-test score (97.3% to 72.8%, respectively) (34).  

However, several studies have shown no added benefits regarding online learning. A flipped 

classroom study for a pharmacokinetics course utilized written and audiovisual recordings followed by in-

class activities (35). They found no significant difference in student outcomes compared to a traditional 

course (35). A second online learning effectiveness study in human anatomy courses for pharmacy students 

found no significant differences in student outcomes between traditional (n=110) and online students 

(n=55-60) (36). A comparison study for online and classroom instruction in undergraduate pharmacology 

courses showed no significant difference in mean exam scores (14). Munson’s dissertation work using a 

detailed statistical analysis found no significant difference between a traditional or blended pharmaceutical 

calculations course (37). Her study included Camtasia online lectures and SoftChalk tutorials (37). Another 
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study analyzed third-year medical students (n=147) in traditional versus blended courses in evidence-based 

medicine concluding no significant difference in outcomes (38). A meta-analysis of blended learning 

studies in the health professions compared 1) blended learning to no intervention or 2) blended and non-

blended learning (39). They found that blended learning has either no effect or a positive effect when 

compared to no intervention or non-blended learning. Half of the studies examined in their meta-analysis 

examined medical student performance (39).  

Previous studies have demonstrated positive student perceptions of online learning that describe 

its myriad benefits. A study examining online learning (n=71 students) showed that respondents claim the 

“online format is convenient, flexible, and may be beneficial for learning (40).” The study by Limpach et 

al. showed a more positive student perception of the distance course compared to the traditional course 

(36). In the study by Buxton et al. on pharmacists’ synchronous or asynchronous continuing education 

formats, pharmacist perception data revealed that the asynchronous cohort had greater satisfaction, i.e. 

physical comfort, external distractions, and audio and video quality of slides (41). In a combined study on 3 

online graduate courses using SoftChalk modules, Carver et al. found that students (n=81) responded 

favorably to visual appearance, engagement, enhanced understanding, and interactive review chunking of 

information (42). Another SoftChalk-based online learning study by Newman et al. for medical students 

(n=13) in genetics found that 83% of respondents had better knowledge retention when completing self-

directed learning modules (43). Survey data from Coffman et al. indicates online learning led to 

transformational learning experience in 75% of respondents that agreed the module would change how they 

practice medicine (34). This suggests that online learning positively impacts student perceptions on 

individual mindsets to and motivation for online learning and understanding online content.  

However, online learning is not without its distinctive set of challenges. Online learning requires a 

re-education of adult students who, up to now, learned predominantly through traditional instruction 

through which they may or may not have developed the necessary skill set of a successful online learner, 

i.e. a self-regulated learner. Online learning is completed at the discretion of the student. Each student may 

learn new information at a different rate, so it may take some students much longer to complete assigned 

lessons than others. This can negatively impact their motivation to learn. Another challenge is the social 

aspect of online learning (5,12). Thus, there are significant challenges for both faculty and students to 
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design and achieve a successful online learning approach. When online learning does not include any 

collaborative or team activities, students can feel isolated, which affects their engagement, motivation, and 

outcomes (24). Hale et al. found that “students in the online course were less satisfied [than in classroom 

courses] with 8 criteria related to student satisfaction with instructor rapport, course excellence, peer 

interaction, and self-perceived knowledge gains,” (14). In a descriptive study using SoftChalks in oncology 

palliative care for medical, nursing, social work, and chaplain students (n=228 total), they found that 

student feedback specified online learning modules were too long and had too much content (44). These 

findings suggest that online learning may limit social interaction and the student’s ability to determine how 

much they learned (9). They also suggest that educators must design online learning with the student’s time 

allocation in mind (45,46). This may require educators to know their audience’s initial knowledge level to 

consider the difference between a novice and an expert learner because a novice learner will take more time 

to learn new material (45). 

In addition to student outcomes, previous studies have also shared valuable information on student 

perceptions of online learning. The implementation of online learning is assumed to result in increased 

faculty and student productivity and flexibility, decreased cost, student-centric teaching, and comparable 

student achievement (47). In opposition to these assumptions, McLaughlin et al. found that one of the 

greatest barriers to implementing a successful flipped classroom was the estimate for faculty time and 

resources (10). Moreover, Dyrbye et al. showed students commented on “issues relate[d] to: clarity of 

communication, difficulties in negotiating team work and in building relationships, technical demands, 

learning style preferences, and time commitment,” (40). These findings suggest that we may vastly 

underestimate time, social skills, and resources needed to transition from traditional to online learning (47).  

Taken together, the literature on online learning some of which specifically investigate SoftChalks 

either demonstrated no difference (14,35-39) or a positive significant difference (10,32-34,39) on student 

outcomes and perceptions. These studies support that online approaches at the least do not harm student 

learning. These studies also suggest at the most a positive role for online education in the healthcare 

profession. The contribution of online education, however, still requires extensive further study to 

determine critical criteria to generate and implement teaching and learning innovations in the online world 

(15,17). 
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Online Learning in Medical Education 

Recently, professors in medical education estimate that around 70% of medical students no longer 

attend lectures (48). Recently, the American governing body on medical education, the Liaison Committee 

on Medical Education, has expressed concerns for majority traditional instruction in medical education. 

Therefore, medical schools nationwide began integrating online learning into their curricula in a much 

higher proportion than ever before to reduce instructional lecture hours and student burn-out. However, 

there is increased accountability to meet the expected teaching standards in the newly widespread medium 

of online learning. The future of medical education to survive in the face of the transition to incorporate 

online learning depends on engaged, knowledgeable, collaborative, and self-regulated faculty educators. 

Simply using technology in the classroom does not ensure increased student motivation to learn (8). Only 

well-incorporated technology nurture intrinsic motivation and self-directed learning (24). The shift from 

traditional to online learning implores faculty to rethink their teaching strategies using instructional design 

approaches to deliver content specifically designed for the virtual arena (49,50). Teachers are constantly 

improving their teaching skills in the online classroom to more effectively guide student learning. This 

leads to an increased demand on teachers’ time and expertise in modern-day medical education (51). As a 

result, educators need to buy into the benefits of online learning to be willing to put in the increased time 

required upfront to generate highly effective online learning modules. Our goal is to describe our 

experience in implementing online learning modules to establish best practices and inform other educators 

seeking to create and integrate online learning in their curricula. 

 

Introduction 

A recent provision by the Liaison Committee on Medical Education (LCME) challenges medical 

schools to reduce their traditional lecture hours to increase interactivity, collaboration, teamwork, and 

active learning. One approach to decreasing lecture hours is constructing online learning modules using 

cloud-based authoring tools. Such tools allow individual faculty to create interactive online learning 

modules for implementation in various instructional settings. As a substitute for traditional lectures, online 

learning modules accomplish myriad functions beyond meeting the LCME’s challenge to reduce lecture 
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hours. Online learning modules provide standardized instructional content for multi-campus medical 

schools needing to document instructional comparability among sites. Online learning modules also afford 

considerable flexibility in curriculum design by reducing faculty scheduling constraints and allowing 

student access to instructional content tailored to their individual learning styles. Finally, online learning 

modules fulfill a critical role in delivering instructional content as part of a flipped classroom prior to in-

class active learning experiences.  

There are a number of cloud-based authoring tools available for faculty to create online learning 

modules. While we have predominantly used the SoftChalk Cloud® to generate e-learning content, we 

expect that the lessons learned in our study are generalizable to many different authoring platforms.  

Several studies compare asynchronous online learning to synchronous online learning or 

traditional learning to investigate the effectiveness of online learning modules (10,14,32-39,41,43). Other 

studies discuss strengths and weaknesses for online learning and using content authoring software (27,40-

42,44). Although tips for creating online learning modules have been published (18,40,52), no studies have 

analyzed the effectiveness of several online learning modules to establish best practices.  

Adult learning theory states that adult students are actively engaged, highly motivated, and 

predominantly self-directed in their mastery of new content (53). Similar to adult learners, online learners 

must also have intrinsic motivation to “control, manage, and plan their learning actions” in what Broadbent 

refers to as “self-regulated learning” (17,26). Online learning offers autonomy to adult learners through 

convenience, flexibility, accessibility, quality, and increased ability to teach various learning styles; it also 

encourages students to seek resources and develop skills on their own, both of which are critical skills for 

developing and instilling lifelong learning in future medical doctors. By placing medical education learning 

experiences within the adult learning theoretical framework, faculty can create student-centered, self-

directed online learning modules. This study examines our faculty-generated online learning modules.  

At our institution the decision to use online learning platforms as an alternative to traditional 

lectures is made on a voluntary basis. At present, our medical curriculum lacks specific guidelines for 

developing online learning modules. This study was performed to guide best practices for online learning 

module design to ultimately shape future faculty development initiatives for online learning module 

improvement.  
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Methods  

Course Structure 

All procedures performed in studies involving human participants were in accordance with the 

ethical standards of the Institutional Review Board of the University of Louisville (IRB #16.0979) and with 

the ethical standards set by the 1964 Declaration of Helsinki and its later amendments or comparable 

ethical standards. All online learning modules in the study were created using an online authoring tool 

developed by the SoftChalk® Corporation. For those unfamiliar with SoftChalk online learning modules, 

see example SoftChalk components (Supplementary Fig. 1). The University provides site licenses enabling 

access to the cloud-based authoring software for individual faculty members. This access includes storage 

space within the SoftChalk Cloud and seamless integration with curriculum management software for 

dissemination of online learning modules within the existing course structure. All evaluated online learning 

modules were included as part of the Molecular Basis of Life, Defense, and Disease (MBLD&D) course. 

This is a multidisciplinary course integrating biochemistry, genetics, and immunology with foundational 

principles of pharmacology, physiology, pathology, and microbiology. The MBLD&D course spans 16 

weeks in the spring semester of the first year medical curriculum during which enrollment for this study 

was 160 students. Student participation was voluntary and did not affect students’ grades. Survey 

completion was considered implied consent. There were 19 online learning modules included in the study 

covering a range of topics: viruses and cancer, glycolipids, lipoproteins, fast-fed metabolism, eicosanoids, 

nucleotide metabolism, drug absorption and distribution, drug metabolism and elimination, anti-

inflammatory drugs, vitamins, anti-neoplastics, pharmacodynamics, antibiotics, the pentose phosphate 

pathway, the citric acid cycle, oxidative phosphorylation, bacterial physiology and metabolism, genetics of 

bacterial pathogenesis, and sterilization and disinfection.  
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Measures and Statistics 

Upon completion of an online learning module, students were asked complete a 10-item Likert 

scale survey including the opportunity for open response (Supplementary Fig. 2). The survey addressed the 

following topics: teaching effectiveness, learner engagement, professor nuance and personality, access to 

resources and tools, organization, text, figures, audio/visual lecture capture clips using Tegrity® software, 
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formative assessment, and other learning activities such as drag-and-drop labelling, flash cards, matching 

exercises, and others. In addition to student evaluations, online learning modules were evaluated for word 

count, number of figures, number and length of audio/visual lecture capture clips, the number of formative 

assessment questions with and without feedback, and the number of additional activities included in the 

cloud-based authorship software such as drag-and-drop labelling, flash cards, matching exercises, and 

others.  

 

 

 

 

In the survey the Likert scale used values from 1-5 representing “strongly disagree,” “disagree,” 

“neutral,” “agree,” or “strongly agree” or “very ineffective,” “moderately ineffective,” “neutral,” 

“moderately effective,” or “very effective” depending on the nature of the survey item (Supplementary Fig. 

2). For online learning modules missing one or more surveyed items, survey responses for those items were 

excluded from analysis. Survey data were analyzed in aggregate to examine global trends in the studied 
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online learning modules and increase our study’s statistical power. We performed a Spearman’s rank 

nonparametric test to assess correlations between surveyed variables (overall organization, clarity of text, 

helpfulness of figures, audio/visual lecture capture clips, formative assessment, and learning activities) and 

the rated overall effectiveness of online learning modules. In addition, in an attempt to account for effects 

of lecturer, we also performed linear regression and ordinal logistic regression. In both linear and ordinal 

logistic regression models, the independent variables (overall organization, clarity of text, helpfulness of 

figures, audio/visual lecture capture clips, formative assessment, and learning activities) were each 

individually assessed for their contribution to variance observed in the dependent variable, overall 

effectiveness. In the case of linear models, both the dependent and independent variables were treated as 

continuous, with lecturer encoded as a factor variable. In contrast, for ordinal logistic regression, the 

dependent variable was treated as ordinal, whereas the independent variable was treated as continuous, 

again with lecturer encoded as a factor variable. All statistics were conducted in R (54) using the following 

packages/functions: “cor.test()” for Spearmans rank; “lm()” for linear regression; and “polr()” for ordinal 

logistic regression.  

Open response data was thematically analyzed to determine the student perception of what criteria 

constitute an effective SoftChalk. We examined open responses by reading the data to code it using 

inductive thematic analysis. This was repeated iteratively until no new codes were found. All quoted open 

responses are representatives for the determined themes. 

 

Results 

Online Learning Module Review 

Review of our online learning modules revealed extensive heterogeneity among the various 

faculty-generated online learning modules (Supplementary Fig. 3). Each online learning module varied 

broadly in all assessed parameters (data range): number of pages (5-23), the number of figures (5-27), the 

number of audio/visual lecture capture clips (0-10), the number of assessment questions (0-20), the number 

of assessment questions with accompanying feedback (0-19), and inclusion of other activities (0-10). 

Online learning modules contained means of 12 figures and 3,821 words. Notably, the more text-heavy 

online learning modules approached 7,500 words. Of interest, while online learning modules altogether 
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contained a total of 152 formative assessment questions, only 100 questions included any form of feedback 

or explanation. These data illustrate the great degree of diversity in our online learning modules and 

suggest a need for establishing best practices for individual faculty creating online learning modules.  
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Online Learning Module Surveys 

To fulfill the need to establish best practices for creating online learning modules, our voluntary 

surveys were administered to all students in the MLBD&D course following each online learning module 

to investigate teaching effectiveness, learner engagement, professor nuance and personality, access to 

resources and tools, organization, text, figures, audio/visual lecture capture clips, formative assessment, and 

other learning activities. Surveys yielded low to moderate response numbers where the lowest, highest, and 

mean response rates were 6, 77, and 30 responses, respectively, out of an eligible n = 160 participants for 

each survey (Supplementary Table 1). We determined student perceptions of our online learning modules 

by analyzing survey responses in aggregate to examine the global effectiveness of online learning modules 

rather than the effects a specific module, lecturer, or topic (Supplementary Fig. 4; Supplementary Table 2). 

Our initial results demonstrate that the majority of respondents (1) agreed (50%) or strongly agreed (29%) 

the online learning modules were effective and (2) rated overall organization and formative assessment 

extremely positively for an online learning module (Supplementary Fig. 2).  
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To assess the relationship between each of six aspects (overall organization, clarity of text, 

helpfulness of figures, audio/visual lecture capture clips, formative assessment, and learning activities) and 

overall effectiveness in greater detail, we performed a Spearman’s rank test. We found that all six of these 

variables were positively correlated with overall effectiveness, with overall organization, clarity of text, and 

helpfulness of figures representing the strongest correlations (Supplementary Table 3). However, plotting 

our survey data on overall effectiveness versus lecturer for all six lecturers, the graph illustrates that 

effectiveness varies among lecturers but also that each lecturer’s effectiveness varies with distinct patterns 

(Supplementary Fig. 5). Because correlation analysis cannot account for potential effects of variation 

observed among lecturers (Supplementary Fig. 5), we also performed linear and ordinal logistic regression 

(see Methods). Consistent with results from the Spearman’s rank test, we observed statistically significant 

associations between each of the six aspects and overall effectiveness using both regression methods 

(Supplementary Table 4).  
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When analyzing themes for the open response item for all surveyed online learning modules, the 

majority of participants commented on the most common themes of content presentation (i.e. aesthetic, 

length, organization, and coherence) and the incorporation of formative assessment question feedback. 

These specific themes are addressed in the representative student comments in Supplementary Table 5 and 

aided the formulation of the tips presented in the discussion section below.  
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Discussion 

Necessity for Online Learning Modules 

 Our study builds our understanding for what motivates students to use online learning modules 

they perceive as effective. Online learning modules are sustainable, reusable educational products that 

provide an alternative to or supplement for traditional lectures. From a practical standpoint, online learning 

modules afford significant flexibility: curriculum planners can plan the best suited faculty for lessons if 

faculty have online learning modules. Instead of faculty preparing individual lectures requiring their 

attendance, energy, and personality, they can interchange lectures with their arsenal of online learning 

modules. Finally, students can access and complete the modules without the limitations for attending a 

traditional class session at a particular location within a specified time window. Moreover, there is an 

increasing need for medical schools and educational institutions to demonstrate comparable education 

among courses with multiple sections or one course across multiple campuses. Implementing online 

learning modules resolves this need as they are easily documented, reviewable, and revisable educational 

products. As a result of these benefits, it is crucial to establish best practices to generate effective online 

learning modules. 

 

Student Perceptions of Online Learning Modules 

Our results exhibited that overall organization and formative assessment were rated extremely 

positively.  However, the Spearman’s rank test results demonstrate that overall organization, clarity of text, 

and helpfulness of figures most strongly correlate with overall effectiveness. The discrepancy between the 

survey data and Spearman’s rank correlation led us to visually examine this relationship further. When 

these data are represented in bubble density plots, the visualized trends suggest two distinct groups. Factors 

grouped in Fig. 6A such as overall organization exhibit a diagonal trend supporting the strong correlations 

to overall effectiveness whereas factors grouped in Fig. 6B such as formative assessment exhibit a distinct 

horizontal, right-shifted trend indicating that independent of overall effectiveness, respondents enjoyed the 

incorporation of these factors into the online learning modules and rated them highly (Fig. 6B, x-axis 

scores). This suggests that while overall organization and formative assessment were both rated positively 

in the surveys, these ratings were dependent and independent, respectively, of overall effectiveness. 
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Additionally, our results demonstrated only 29% of participants strongly agreed compared to 50% of 

participants that agreed the online learning modules were effective. Here we discuss practical 

improvements to online learning modules that may shift the 50% from agree to strongly agree that our 

online learning modules are effective overall.  
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Because our online learning modules are asynchronous lessons (17,40), the teacher is not present 

to redirect student learning such that teachers must make assumptions about the best way to organize and 

present content (18). Themes from our open response analysis specify student perceptions concerning 

overall organization like using bolded fonts to indicate important or high-yield information (Supplementary 

Table 5). Thus, consistent formatting and aesthetic of online learning modules reduces extraneous cognitive 

load and can indicate changes in importance or structure of new information (55). This can be 

accomplished with differential font sizes, indentation, colors, headings and subheadings, etc. The overall 

aesthetic should be clean, easy to navigate, and easy to follow for the novice learner. Use the interplay 

among text, embedded audio/video clips, additional activities, and assessments to reference and guide the 

students’ introduction to and integration of new content (56). Explicit references for all embedded files, 

figures, and links in the text aids the lesson’s coherence and students’ understanding of the function(s) of 

activities and figures (9,57).  

Additionally, it is hard for novice learners to initially determine important or fundamental points 

from supporting details when trying to learn new information (45) supporting our finding that an online 

learning module’s clarity of text is important (Supplementary Table 5). This is not to say educators should 

tell students this is all you need to know but rather guide student learning in explicitly stating crucial points 

(12,32,44,47).  

One of the challenges for self-led online learning according to previous studies and our open 

responses comments is receiving immediate feedback (31,46). The overwhelming response that 93% of 

participants found formative assessment either very effective or moderately effective for their learning 

suggests a dependence on formative assessment to monitor self-directed learning. Consistent feedback 

throughout the online learning module may keep the student engaged, guide the self-directed critical 

reflection of their content comprehension, and help them understand why their approach to assessment 

questions was adequate or inadequate (7,10,58). Effective feedback should consist of two major items: the 

correct answer with relevant reasoning and faculty anticipation of why a student may choose each incorrect 

answer with logic as to why these answers are incorrect (44). Appropriate formative assessments should 

supplement a well-designed online learning module, not rescue a poorly designed one.  
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Last, one of the chief complaints received in the open response comments was that the online 

learning modules were essentially too heavy: contained too much information overall or trivial and/or 

repetitive information and took novice learners longer to complete than the time allotted. Simplifying an 

online learning module by cutting down the amount of and carefully choosing text, accompanying figures, 

and assessment questions reduces cognitive load and reading time to ease learning while requiring less time 

(18,45,59). 

The following tips on designing an effective online learning module arising from our survey 

findings and open response themes during our study provide a starting point for integrating student 

perceptions, faculty challenges, and learning theories into online learning (Supplementary Table 6). 

 

 

 

 

Limitations 

Online learning modules are asynchronous and lack the immediate feedback of a live class. This 

suggests that online learning modules must be designed well and with great foresight. Not all faculty have 

equivalent technological literacy to generate online learning modules; this may require additional IT 

support, a teaching assistant, and faculty development to ease the faculty transition from traditional 

instruction to online learning.  
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Our survey study is further limited by a low response number, no link to student outcomes, and no 

evaluation of faculty perceptions of online learning modules. Analysis of our survey response rate as a 

function of time, online learning module effectiveness, or lecturer or analysis of word count length of 

paired open responses to overall effectiveness ratings yielded no significant correlations (data not shown). 

Our aggregate analysis of survey data combined with anonymity of participants requires us to consider the 

same subgroup of students responded to each survey resulting in a biased dataset. Our study is skewed 

toward improved, more effective online learning modules generated from six different faculty members, 

taught at different points in a semester-long course, and covered topics of various difficulty. A limitation to 

our survey is some online learning modules did not incorporate surveyed items (Supplementary Fig. 3, y-

axis scores of 0) for which we could have included a “non-applicable” choice. All of these limit the impact 

of our findings. 
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Future Directions  

Considerations for Future Faculty Development Initiatives 

Flexner recommended to integrate medical schools within universities to encourage a partnership 

between basic science and medicine (51).  Flexner’s goal in doing so was delivering the underlying 

principles that explain the “why” of most medical questions to medical students (51). Students’ 

understanding of the “why” is paramount for their ability to critically reason through applying certain 

knowledge to one circumstance but not another. The partnership between basic science and medicine thus 

began the purpose of not only preparing physicians with the base knowledge they need in a clinical setting 

but how to adapt and transform that knowledge amidst changing circumstances. The first two years of 

medical education provides an intense, detailed, often clinically integrated basic sciences curriculum as the 

foundation for developing clinical knowledge and expertise in the later years.  

Although most basic science and clinician educators are experts in their fields of study, they are 

oftentimes deprived of formal educational training from their scholarly programs. In an article for Inside 

Higher Ed, Grasgreen writes: 

Some certificate programs began in the late 1980s and 1990s, von Hoene says, but the majority 

were created over the past decade’ to answer the call for ‘faculty who can not only conduct 

research at top-tier universities, but also be effective in the classroom. (60) 

While some educators actively seek voluntary teaching certificates during or after completing field-specific 

training, most are expected to passively absorb nuances of effective teaching under this working model of 

instructivism: “‘We don’t learn how to teach...our stereotype is that a teacher gets up there and hands you a 

lot of knowledge. You’re the empty glass, they’re the pitcher of water [sic] and they pour their knowledge 

into you,’” (60). This quote echoes Paulo Freire’s “banking concept of education” (6). The Faculty Survey 

of Student Engagement revealed: 

Faculty members teaching courses in Biological Sciences, Engineering, and Physical Sciences 

allocated more than half of their class time to lecturing whereas faculty members in Education 

committed less than one quarter, indicating variation across disciplines in the use of innovative 

teaching techniques versus traditional lecturing and low-tech teaching strategies. (61)  
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No teacher can be expected to develop expert teaching skills without first learning those skills or being 

provided the time and resources for learning them in a self-directed manner, even if that teacher is a subject 

matter expert. This is why appropriate faculty development initiatives are vital. Teaching effectiveness, 

therefore, is not exclusively the fault of the educator. Educational institutions must properly design and 

provide adequate faculty development in teaching and learning and establish communities of practice for 

educators to encourage and support skills improvement together (19). 

Online learning modules provide increased flexibility to curriculum planners to assign teaching 

hours to best-fit faculty. Importantly, faculty have added flexibility to fulfill simultaneous teaching 

responsibilities without lengthening their absolute hours spent teaching. However, for these benefits to be 

applicable, faculty must generate effective online learning modules. This requires that institutions offer 

faculty development initiatives for online learning module improvement for which faculty should attend.  

A recent systematic review of the faculty development literature in higher education shows faculty 

development studies (n=39) explicitly incorporate and provide the following information for their training 

either all of the time or a lot: principles of good practice (92%), research on online learning (62%), and 

theories of learning (44%) (62). Less than half of the reviewed studies provided underlying theories upon 

which teaching is implemented. The majority of these studies only provided training on the “principles of 

good practice” (62). While there are great how-to handbooks for faculty development in the traditional 

classroom, none such comprehensive manuals exist for online teaching (62). Thus, most faculty 

development supplies principles of best practice with no connections for why these are the established 

principles of good practice. Without understanding the underlying theories of learning from which best 

practices arise, faculty are deprived of honing their ability to discern in which circumstances certain 

practices should be preserved or changed to maintain an effective, active, deep, authentic student learning 

experience (9). Previous work by Carter, Solberg, and Solberg shows that one of the critical obstacles for 

faculty in generating an online learning module or platform was “the challenge of transitioning our faculty 

from a traditional face-to-face learning environment” to online learning (63). Providing appropriate faculty 

development interventions will ease the transition to online learning, support faculty during the transition, 

and provide them with the necessary tools to succeed as teachers in a new online learning environment. 
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Teachers must understand how their students learn to be effective teachers, shifting the focus from 

teaching to learning. No teacher can be expected to attain expert teaching skills without the time, support, 

and resources to learn, apply, and critically reflect on those skills. This same logic applies to faculty 

developers who train teachers: faculty developers must understand how their teachers learn to effectively 

transfer any theories or skills in a meaningful way. Theories of learning lay the foundation for this 

understanding to advise and shape our educators. By comparing online learning modules, we now know 

what online learning module components on which we should offer faculty development interventions to 

improve our online learning modules. Further, by plotting our online learning module survey data for 

overall effectiveness as a function of lecturer, it is obvious that effectiveness varies among lecturers but 

also that each lecturer’s effectiveness varies differently. By using our survey data, we can even propose 

personalized faculty development plans to improve our online learning modules. Thus, faculty can attend 

and participate in applicable development initiatives incorporating theory, best practices, and practical 

applications to improve their online learning modules. 
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