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ABSTRACT 

ABIN1 IN THE PATHOGENESIS OF GLOMERULONEPHRITIS AND THE NOVEL 

PODOCYTE-NEUTROPHIL PROINFLAMMATORY AXIS 

Erik Anderson Korte 

April 8th, 2016 

  

Glomerulonephritis (GN) is the most common cause of end-stage renal disease 

worldwide and is characterized by deposition of immune complex, inflammation, 

proteinuria and podocyte damage.  Immunosuppressive therapy is effective in less than 

50% of patients, indicating that immunological activity is not the only relevant cause of 

kidney injury.  While methods have been described for neutrophil-mediated immune 

activation, specific glomerular mechanisms for recruitment of neutrophils and 

development of GN have not been determined.   

Here I present a pathogenic mechanism for the development of GN involving a 

novel podocyte-neutrophil axis and reveal the importance of glomerular NF-κB inhibition 

by the ubiquitin binding protein, ABIN1.  I implicate enhanced glomerular NF-κB 

activity in human chronic kidney disease using transcriptomic analysis and link genetic 

ABIN1 polymorphisms to increased risk of lupus-related GN.  Mice expressing 

dysfunctional ABIN1 with disrupted polyubiquitin binding activity are shown to develop 

spontaneous, progressive glomerular disease.  Prevention and early diagnosis require an 
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understanding of the initiating steps of disease pathogenesis, so early pathogenic changes 

were examined using antibodies directed against the mouse glomerular basement 

membrane to induce rapid glomerular damage.  Glomeruli of mice expressing 

dysfunctional ABIN1 exhibit increased production of NF-κB target cytokines and rapid 

induction of GN versus wild type mice.  Bone marrow transplantation reveals the 

glomerular genotype is more critical than the immune genotype following insult, further 

supporting the role of the target tissue in early disease pathogenesis.  I outline the 

contributions of mass spectrometry to the discovery of modulating factors and disease 

biomarkers in autoimmunity and describe an optimized technique to characterize the 

secreted protein milieu of cultured human podocytes.  Dysfunctional ABIN1 results in 

enhanced cytokine production by podocytes that can recruit and activate primary 

neutrophils.   Further, the podocytes are more sensitive to pathogenic cytoskeletal 

remodeling following exposure to neutrophil granules, highlighting a reciprocal injurious 

mechanism.  Finally, a novel peptide inhibitor of neutrophil granule release attenuates 

antibody-induced proteinuria in these mice and may have therapeutic potential in human 

GN.  Thus, I describe a novel podocyte-neutrophil axis in the pathogenesis of GN and 

propose a potential molecular mechanism of GN involving loss of ABIN1 function 

resulting in excessive NF-κB activation.   
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CHAPTER I 

 

BACKGROUND AND INTRODUCTION 

 

 

1.1 – Overview 

 

 The basic role of the kidney is to provide selective filtration of blood for removal 

of wastes, homeostatic maintenance of vascular solutes, and regulation of blood volume.  

Together, the kidneys receive roughly 25% of cardiac output.  This high rate of perfusion 

is required for optimal renal function and reduction in the glomerular perfusion results in 

reduced renal function.  The renal arterial vasculature terminates at a small ball of 

capillaries termed the glomerulus which is where initial filtration takes place.  Damage to 

the glomerulus results in protein and/or whole cell loss into the urine and reduced renal 

function [1].  Glomerulonephritis (GN) is a term which represents a heterogeneous group 

of diseases which accounts for 20% of chronic kidney diseases and is the leading cause of 

end-stage renal disease (ESRD) worldwide, although it ranks third in the United States 

behind diabetes and hypertension [2].  While GN is rather rare, unlike diabetes and 

hypertension, it predominantly affects young people and results in a lifelong medical 

burden for the patient and the health system.   
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 Many of the conditions clustered under the grand title of GN share a similar 

etiology, that is, deposition of antibodies within the glomerulus.  These circulating 

antibodies may deposit in the glomerulus through passive means with low or no direct 

affinity to the glomerular structures, which is the case in Lupus Nephritis (LN) and IgA 

nephropathy[1,3,4].  In some cases, these antibodies are specific for glomerular 

structures, as in Goodpasture disease as well as membranous glomerulonephritis 

(formerly “Idiopathic” GN before identification of the Phospholipase A2 receptor as the 

autoantigenic target of membranous glomerulonephritis in our lab in 2009) [5–7].   

It can be argued that the archetypical autoimmune condition throughout medical 

history is systemic lupus erythematosus (SLE), characterized by an abnormal immune 

response leading to loss of self-tolerance, autoantibody production, immune complex 

formation, T cell activation, and inflammatory cytokine release [8]. Medical historians 

note writings by Hippocrates that refer to the condition, but it was not until the late 

1800’s and early 1900’s when it was described in the modern sense [9].  Multiple factors 

contribute to the immune response in SLE including genetic, epigenetic, 

immunoregulatory, environmental, and hormonal factors [8,9]. SLE has the ability to 

affect essentially any body tissue, including the kidney.   

Lupus nephritis (LN) occurs clinically in about 50% of patients with SLE and is a 

major cause of morbidity and mortality [10]. The incidence of LN is variable among 

different ethnic groups suggesting that genetic factors play a role in its pathogenesis. 

Primarily, individuals of African ancestry are at increased risk for LN [4]. 

Immunosuppressive treatment is effective in only about 50% of LN patients, and that 

therapy is associated with undesirable short- and long-term side effects [11–14]. Thus, 
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identifying the molecular mechanisms responsible for the pathogenesis of LN is 

necessary to define more specific diagnostic and therapeutic targets.  Such understanding 

may provide biomarkers of disease state which would enable treatment to be 

administered most effectively along with assessment of positive response to therapy such 

that the treatment can be modified or stopped in a timely manner to best manage adverse 

side effects.   

These markers also provide important pathogenic insight and tools for testing new 

or improved therapeutics.  Historically, SLE was diagnosed based solely on clinical 

features (i.e. rash, arthritis) and only recent times have seen the development of 

quantifiable diagnostic markers for laboratory confirmation of clinical findings by 

measurement of immune cell profiles and activity, identification of specific 

autoantibodies, and identification of changes in protein expression profiles in bodily fluid 

(i.e. urine, blood, cerebral spinal fluid) [9].  Traditional approaches to biomarker 

discovery allowed only limited numbers of identified proteins per sample which, 

unfortunately, required an initial selection bias on the part of the researcher.  Recent 

improvements in mass spectrometry based approaches to novel biomarker discovery have 

allowed a level of insight not previously possible through the identification of thousands 

of proteins from individual samples.  Mass spectrometry-based studies aimed at defining 

diagnostic markers for SLE complications by comparing protein expression in normal 

and diseased bodily fluids have used two basic approaches; 1) assessment of protein 

expression differences from stained 2D gels followed by MALDI-TOF/TOF 

identification of the proteins in differing spots or 2) direct assessment and comparison of 

protein expression from intrinsic LC-MS/MS data [8, 10].  The total picture of SLE and 
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LN diagnosis, however, is still incredibly complex and interactions of genetic risks, 

environmental factors, and molecular events that contribute to the development of LN are 

only beginning to be defined. 

Finally, novel discoveries involving the molecular mechanisms behind LN 

pathogenesis, in particular the early events surrounding the inflammatory cascade which 

takes place following antibody deposition within the glomerulus, have the potential to 

contribute to the understanding of other antibody-mediated glomerulonephropathies.  

While outcomes and long term histological changes may differ due to systemic or local 

differences in these conditions, many share the same acute initiating event involving 

glomerular antibody deposition, and thus novel therapies directed at inhibiting pathogenic 

changes in this earliest stage of disease may find utility across the GN 

spectrum[1,3,5,7,12,15].  For a more complete understanding of the events following 

antibody deposition within the glomerulus, we must first discuss the cellular anatomy of 

the kidney and the current physiological understanding of the cell types involved in the 

glomerular response to damage.  

 

 

1.2 – Renal Anatomy and the Cellular Pathogenesis of Glomerular Inflammation 

 

The functional unit of the kidney is the nephron (Figure 1).  The glomerular 

capillaries serve as a size- and charge-dependent filtration barrier and are contained 

within the Bowman’s capsule which also includes non-capillary volume (Bowman’s 

space) for collection of the ultrafiltrate upon exiting the glomerular capillaries.  Upon  
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Figure 1 – The Nephron 

The nephron is the functional unit of the kidney.  The glomerular ball is held within the 

Bowman’s Capsule which drains into the proximal convoluted tubule, which begins the 

Loop of Henle, tasked with concentrating the urine before exit into the distal 

convoluted tubule and eventual draining into the collection duct which empties into the 

renal pelvis. 

Copyright Permissions not required for this type of use.   
http://open.umich.edu/education/med/resources/second-look-series/materials  

http://open.umich.edu/education/med/resources/second-look-series/materials
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exiting the Bowman’s space, the ultrafiltrate is concentrated and modified by cells lining 

the tubular walls.  The direction of flow is as follows: the proximal convoluted tubule  

descending limb of the loop of Henle  ascending limp of the loop of Henle  distal 

convoluted tubule  and finally the collecting duct which drains the concentrated urine 

into the renal pelvis.  Pathologies have been reported at almost every point in the nephron 

and possess a multitude of instigating factors and as well as promising therapeutics [16].  

However, the instigating factors in GN are almost invariably involving the glomerulus 

itself, which is where we now turn our focus. 

 Three cell types are predominant within the glomerulus: endothelial cells, 

mesangial cells, and podocytes.  Figure 2 illustrates the arrangement of glomerular tissue.  

Endothelial cells line the endothelial side of the glomerular capillaries.  Mesangial cells 

produce and maintain a significant portion of the extracellular matrix that supports the 

glomerulus.  And finally, the epithelial podocytes are situated outside of the glomerular 

capillaries and critically support the glomerular capillary basement membrane.  

Podocytes accomplish this feat through cellular projections called foot processes, which 

interdigitate tightly to wrap the basement membrane.  Small gaps between foot processes 

are called slit diaphragms and are very highly regulated by expression of membrane 

spanning proteins as well as intracellular structures and the actin cytoskeleton.  Figure 3 

diagrams this anatomy in a healthy glomerulus.  Figure 3a shows regularly spaced foot 

processes with well-defined slit diaphragms separating them.  Figure 3b describes a 

number of critical proteins involved in maintaining the slit diaphragm, namely nephrin 

and the underlying actin cytoskeleton itself.  In pathologic conditions involving antibody 

deposition leading to inflammatory damage within the glomerulus, foot process structure  



 

 

 
 

7 

 

Figure 2 – Diagram of Glomerular Structures 

A – Bowman’s Capsule, B – Proximal convoluted tubule, C – Distal convoluted tubule, 

D – Juxtaglomerular apparatus, 1. Basement membrane (Basal lamina), 2. Bowman's 

capsule – parietal layer, 3. Bowman's capsule – visceral layer, 3a. Pedicels (Foot 

processes from podocytes), 3b. Podocyte, 4. Bowman's space (urinary space), 5a. 

Mesangium – Intraglomerular cell, 5b. Mesangium – Extraglomerular cell, 6. Granular 

cells (Juxtaglomerular cells), 7. Macula densa, 8. Myocytes (smooth muscle), 9. Afferent 

arteriole, 10. Glomerulus Capillaries, 11. Efferent arteriole 

Illustration by : Michał Komorniczak 
Copyright Permissions not required for this type of use  
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Figure 3 - The Podocyte Slit Diaphragm Structures 

The podocyte slit diaphragm is an intensely maintained glomerular structure which is 

formed by the gap between podocytes foot processes.   Loss of foot process structure is a 

common sign of glomerular pathology.  (a) TEM image of cross section of GBM with slit 

diaphragm highlighted within the box.  (b) Illustration of known slit diaphragm proteins.  

Of particular note in this figure is the association of f-actin of the podocyte cytoskeleton 

in the maintenance of the slit diaphragm. 

Maddalena Gigante, Matteo Piemontese, Loreto Gesualdo, Achille Iolascon, and Filippo Aucella, “Molecular and Genetic Basis of 
Inherited Nephrotic Syndrome,” International Journal of Nephrology, vol. 2011, Article ID 792195, 15 pages, 2011. 
doi:10.4061/2011/792195 
Copyright Permissions not required for this type of use 

A. 

 

 

 

B. 
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changes as outlined in Figure 4.  Regularly-spaced slit diaphragms on the epithelial side 

of the glomerulus are lost as foot processes efface, fuse, form pseudocysts, and 

potentially detach from the glomerular capillary completely [17].   

It has been shown that mesangial cells respond to immunoglobulin, complement 

and cytokines by producing various cytokines and chemokines, resulting in increased 

endothelial cell expression of adhesion molecules that recruit and activate leukocytes 

[15,18,19].   Podocytes, too, are important factors in the glomerular inflammatory 

response, although they are markedly understudied.  It is known that inflammatory injury 

leads to podocyte dysfunction, podocyte damage is a primary cause of proteinuria, and 

podocyte loss into the urine may be a better marker for glomerular injury than proteinuria 

[17,20,21].  Only a handful of published works have investigated the possibility of a 

direct role of podocytes in the induction of GN.  Hewins et al. reported that IL-18 is 

expressed by podocytes in biopsies from patients with ANCA-associated vasculitis [22].  

Kuravi et al. reported that TNF-α stimulated cultured podocytes to release IL-6, resulting 

in inhibition of leukocyte adhesion to vascular endothelial cells [23].  Yet, the response of 

podocytes to immunoglobulin and/or complement deposition and their contribution to the 

inflammatory response remain markedly understudied.  These studies suggest that 

podocytes may participate in providing the cytokines and chemokines that control 

glomerular inflammation and further understanding of how the podocyte interacts with 

the immune system as well as the local tissue may provide pathogenic clues to more 

effective treatment or earlier diagnosis of poorly responding patients.  

In contrast to the unknown role of podocytes, neutrophils have long been 

implicated in the pathogenesis of antibody-mediated GN, albeit recent studies tend to  



 

 

 
 

10 

 

Figure 4 - Foot Process Pathologies Following Injury 

The podocyte foot process is structurally sensitive to damage, and many insults can result 

in loss of foot process structure.  Diseased glomeruli frequently exhibit foot process 

effacement, pseudocyst formation and bare areas of the GBM. 

Illustration by Erik Korte, unpublished. 
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focus primarily on the role of monocytes, B-cells, T-cells, and dendritic cells [23–29].  

Neutrophils can release both reactive oxygen species and proteases contained in 

neutrophil granules have been reported to be responsible for degradation of the 

glomerular basement membrane and subsequent proteinuria [25–27].  Direct podocyte 

injury by neutrophils has not previously been evaluated.  A recent report by Devi et al. 

showed that the glomerulus is a unique capillary bed that is constitutively patrolled by 

neutrophils which are retained within the glomerulus in the absence of proinflammatory 

stimulation [28].  Glomerular inflammation induced by deposition of anti-GBM 

antibodies increased the neutrophil retention time by 3- to 4-fold without increasing the 

number of neutrophils entering the glomerulus.  Retention of neutrophils within the 

glomerulus, even in cases without proinflammatory stimulation, provides the opportunity 

for intimate interaction with local cells.  Due to the prolonged retention of neutrophils in 

the glomerular capillaries, it is possible that small changes in localized expression of 

proinflammatory cytokines and chemokines may play a part in the induction of neutrophil 

activation in local tissues.  Until this point, little has been known regarding the cytokine 

milieu secreted by podocytes and thus their role in disease pathogenesis.  The work 

presented in this dissertation seeks to describe these unknown processes in renal 

pathophysiology.   

 

 

1.3 – Nuclear Factor kappa B in Inflammation and Disease 

 



 

 

 
 

12 

 The transcription factor nuclear factor-kappa B (NF-κB) regulates the expression 

of hundreds of genes that control cell proliferation and survival, the cellular stress 

response, innate immunity, and inflammation. Dysregulation of NF-κB activity is 

associated with many human diseases, especially those involving chronic inflammation, 

and recent studies suggest that NF-κB plays a role in the incidence and severity of GN as 

well [30–34].  In particular, both mesangial cells and podocytes demonstrate NF-κB  

activation and cytokine production in response to proinflammatory mediators [35–37].  

Immunohistochemistry (IHC)-based studies have shown enhanced glomerular and tubular 

expression of NF-κB, NF-κB regulatory proteins, and NF-κB target pro-inflammatory 

cytokines in renal biopsies from LN patients, compared with normal controls and patients 

with minimal change disease [33,34].  Another report found that pharmacological 

inhibition of NF-κB reduced the development of autoantibodies and renal impairment in 

SLE susceptible FcγRIIb-deficient mice [30].  Treatment of spontaneous SLE developing 

SWRxNZB mice with a flavonoid, Apigenin, inhibited NF-κB mediated events in T cells 

and suppressed serum IgG levels resulting in delayed appearance of nephritis [31].  This 

inhibition of NF-κB signaling protects against development of disease, at least in part, 

through reduced expression of cytokines that are transcriptional targets of NF-κB (TNF-

α, IL-1β, IL-8, MCP-1, etc.) [30,33,34,38].   

NF-κB is activated by a variety of immune, inflammatory, and stress stimuli 

through many cytokine and toll-like receptors (TLR) and regulated through a complex 

interplay of proteins (recently reviewed in [39]).  Figure 5 provides a general outline of 

the pathway.  In resting cells, NF-κB is sequestered in the cytoplasm in an inactive state 

by binding to Inhibitor of κB (IκB) proteins [40,41].  Following activation, the IκB is  
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Figure 5 - NF-κB Activation 

In the canonical NF-κB pathway, the transcription factor dimer is sequestered in the 

cytoplasm by IκB.  Phosphorylation and polyubiquitination of IκB results in its 

proteosomal degradation and translocation of NF-κB to the nucleus.  This is 

accomplished by an Inhibitor kappa Kinase (IKK) complex which includes an α, β, and γ 

subunit.  The γ subunit is called NEMO and is activated through linear or lysine-63 

linked polyubiquitination by numerous upstream factors in the Inflammatory Activation 

Complex (IAC).   

Illustration by Erik Korte, unpublished. 
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phosphorylated, polyubiquinated through Lys48 linkages, and then degraded by the 

proteasome.  This releases an active NF-κB complex to translocate to the nucleus and 

drive target gene expression.  In the canonical NF-κB pathway, phosphorylation of IκB is 

mediated by the IκB kinase (IKK) complex, which consist of α, β, and γ subunits [42]. 

IKKγ is the regulatory subunit also referred to as NF-κB essential modulator (NEMO).  

Activation of IKK is mediated by an IKK Activating Complex (IAC), a diverse group of 

signaling proteins which includes TRAFs, RIPs, TAKs and IRAKs, and is assembled 

through protein-protein interactions to linear and lysine 63-linked and linear 

polyubiquitin chains and interacts with the linking protein MyD88 in TLR-mediated 

pathways [43–46].  NEMO binding to head-to-tail linked linear polyubiquitin chains or 

the Linear Ubiquitin Assembly Complex (LUBAC) also activates the canonical NF-κB 

pathway [44,47,48].  Tight regulatory control is required for NF-κB signaling to prevent 

excessive production of many proinflammatory mediators.   

 

  

1.4 – ABIN1 as a Regulator of NF-κB Signaling 

 

The ubiquitin-binding protein, A20 binding inhibitor of NF-κB 1 (ABIN1), was 

first described in 1999 by Heyninck et al using a yeast two-hybrid screen and defined as a 

novel inhibitor of NF-κB and important A20 interacting partner [49].  She later described 

the structure and function of ABIN1, making note of the sequence homology of the 

ubiquitin bindings domains (UBD) of ABIN1 and NEMO [50].  Initial mouse models 

reported conflicting results when ABIN1 expression was knocked out, resulting in 
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embryonic lethality due to excessive liver apoptosis [51].  This embryonic lethality could 

be resolved through co-knockdown of the TNF-α receptor 1 alongside ABIN1, 

highlighting the importance of ABIN1 inhibition in the regulation of TNF-α induced 

signaling pathways [52].  Our lab returned to the original work of Heyninck et al to 

examine the homology between NEMO and ABIN1 as it pertains to autoimmunity and 

found that polyubiquitin binding to lysine 63-linked and linear polyubiquitin chains (as 

well as lysine 48-linked to a lesser degree) is required to prevent spontaneous immune 

hyperactivation in mice [53].   

It is now clear that ABIN1 has important inhibitory roles for NF-κB signaling 

related to its ability to bind polyubiquitinated proteins and modulate their function [52–

55].  Figure 6 depicts ABIN1-mediated inhibition of a general NF-κB pathway.  ABIN1 

binds to lysine 63-linked and linear polyubiquitin chains and contains the same UBD as 

NEMO that facilitates binding to other regulatory proteins, such as TRAF2/6, RIP1, 

IRAK1 and others [47,52,53,56–58].  It is not clear how ABIN1 inhibits NF-κB activity, 

but two possible mechanisms have been proposed: the first is that ABIN1 binding 

competes with NEMO binding to proteins required for activation of IKK, and the second 

is that ABIN1 recruits A20 to the IKK regulatory complex where A20 disrupts the 

interactions needed for IKK activation by removing lysine 63-linked or linear 

polyubiquitin moieties from regulatory proteins [59,60].  A20 has also been reported to 

mediate proteasomal degradation of ubiquitin processing proteins that mediate IKK 

activation [61]. Asp (D) to Asn (N) mutation at residue 485 (mouse) or 472 (human) of 

the UBD renders ABIN1 incapable of binding polyubiquitin chains on NF-κB activators 

and is similar to the homologous [D311N] mutation in NEMO [44,50,51,53,62].  We  
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Figure 6 – ABIN1-mediated Inhibition of NF-κB Signaling 

ABIN1 can bind polyubiquitinated substrates through its ubiquitin-binding domain 

(UBD). IKKγ (NEMO) is activated through lysine-63 linked and linear 

polypolyubiquitin binding as are many factors in the IAC.  ABIN1 binding may recruit 

A20 which can remove ubiquitin moieties from target proteins to inhibit their 

downstream functions.  

Illustration by Erik Korte, unpublished. 
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reported that a knock-in mouse in which wild type ABIN1 was replaced by 

ABIN1[D485N] induced constitutive activation of NF-κB signaling leading to elevated 

cytokine production and development of a progressive SLE-like autoimmune disease 

[53].  Renal injury in these animals was not characterized in this report.   

 

 

1.5 – Discovering a Protective Role for ABIN1 in Glomerular Disease Pathogenesis 

 

As outlined above, glomerular disease progression is highly associated with NF-

κB activation and NF-κB expression in podocytes is also tied to potentially destructive 

phenotypes.  Podocyte injury is made more severe by loss of nephrin in the slit 

diaphragm, which itself is known to inhibit NF-κB signaling, and NF-κB signaling in 

general has been shown to increase during progression to end-stage renal disease [63,64].  

It has been reported that expression of NF-κB proteins in podocytes was positively 

correlated to the severity of podocyte injury and subsequent proteinuria [33]. Genome 

wide association studies of American, European and Chinese SLE patients identified 

polymorphisms in ABIN1 which increased risk for developing disease [65–69].  What we 

currently know about ABIN1 suggests that it may have a role in the pathogenesis of 

glomerular disease.  Therefore, we hypothesize that functional ABIN1 expressed in 

glomerular tissue, particularly in podocytes, is critical for maintenance of the glomerular 

microenvironment, control of local inflammation, and preservation of proper renal 

function.   

This dissertation will present data showing that ABIN1 is, in fact, critical to 
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proper glomerular inflammatory homeostasis.  Novel mass spectrometry methods for 

characterization of ABIN1 phenotypic changes to podocytes will highlight the 

importance of proper NF-κB signaling regulation within podocytes.  By using ubiquitin 

binding deficient ABIN1 in vivo and in vitro, the importance of functional ABIN1 to 

glomerular function will be described.  Human polymorphisms in the ABIN1 locus will 

be defined as specific risk factors for development of glomerular disease.  Pathological 

studies of tissue and cultured podocytes will define the role of ABIN1 in podocyte 

function.  And a novel proinflammatory axis that exists between podocytes and 

neutrophils will be defined as a potential initiating step in the pathogenesis of antibody-

mediated GN.  Finally, an inhibitor of neutrophil degranulation will be described with 

these models as a possible therapeutic treatment for early stages of glomerular disease.   
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CHAPTER II 

 

MATERIALS AND METHODS 

 

 

2.1 – Overview 

 

 Experimental characterization of intricate biological function requires numerous 

methods and rigorous, well-controlled experimental design.  This presented a daunting 

challenge.  I designed in vivo, in vitro, and ex vivo experiments capable of parsing the 

complex interplay of the immune system with a target tissue with a wide possibility of 

potential mechanisms, if any mechanism did in fact exist, to explain my hypothesis.  My 

experimental design aimed to disprove my hypothesis and, failing that, shed light on the 

potential role of ABIN1 in the pathogenesis of glomerulonephritis.   

 

 

2.2 – Molecular Biology and Genetic Protocols 

 

Polymerase Chain Reaction – DNA amplification for cloning or analysis was performed 

on a CFX96 thermocycler (BioRad) or an EdvoCycler Model 541 (EdvoTek).  
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AccuPrime PFX (Invitrogen) was the polymerase and standard PCR master mixes were 

used (Invitrogen).  Reaction parameters were according to the manufacturer’s 

specifications: 3 minutes at 95 °C, followed by 30 cycles of 94 °C for 30 seconds, 

annealing at 50 °C for 30 seconds, extension at 72 °C for 30 seconds, with a final 

extension at 72 °C for 3 minutes.   

  

Bacterial Transformation – One Shot TOP10 Chemically Competent E. coli (Invitrogen) 

were utilized for transformation of bacterial stocks.  Stocks of chemically competent cells 

were mixed with 200 μg plasmid DNA on ice for 30 minutes followed by a 30 second 

heat shock in a 42 °C water bath, then return to ice for 2 minutes.  SOC media was added 

to the cells and they were incubated at 37 °C for 1 hour.  Transformed bacteria were then 

transferred to LB agar plates containing either Ampicillin (100 μg/mL) or Kanamycin (50 

μg/mL) to match the resistance markers on the plasmid and incubated overnight at 37 °C.  

The following morning, single colonies were selected and grown in LB broth (Fisher 

Scientific) overnight at 37 °C with gentle agitation at 300 RPM.  After 16-18 hours, the 

bacteria were pelleted through centrifugation at 5000 x g for 10 minutes and plasmid 

isolated as described below. 

 

Plasmid Preparation – Plasmid preparation was accomplished using the Qiagen Mini 

Prep Kit or the Qiagen Maxi Prep Kit depending on the amount of plasmid needed 

(Qiagen, MD).  The mini kit was sufficient for purification from 2-5 mL LB broth at high 

turbidity.  The mega kit was sufficient for purification from up to 100 mL LB broth at 

high turbidity.   
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Restriction Enzyme Digest – All restriction digests utilized in the course of this 

dissertation used enzymes from New England Biolabs which was also the source for all 

buffers and BSA (as required).  Restriction digests were held at a static temperature 

(typically 37 °C) in an EdvoCycler (EdvoTek) if in a 50 μL or smaller volume, or in a 

water bath calibrated to 37 °C (Fisher Scientific).   

 

Agarose Gel Electrophoresis – DNA amplicon, purified RNA or digested plasmid were 

run on 1% agarose gels to separate the DNA fragments by size using a 1kb Plus DNA 

Ladder (Invitrogen) or a 10kb Plus DNA Ladder (Invitrogen) as appropriate.  Agarose 

gels were produced fresh using 1g powdered agarose (BioRad) per 100 mL 1x TAE 

buffer (BioRad).  Standard gels comprised 50mL total volume and could be scaled up or 

down depending on specific needs of the sample.  One volume of glycerol-based (5% 

final concentration) DNA loading buffer was mixed 4 volumes of sample and current was 

applied at an appropriate level for an appropriate amount of time to achieve sufficient 

separation of the dye bands from the starting lane.  Visualization of the DNA bands was 

achieved using Ethidium Bromide (Shelton Scientific) and UV excitation and digital 

image capture on the ChemiDoc MP (BioRad).   

 

RNA Isolation –RNA was isolated from various tissues using the Aurum Total RNA Mini 

Kit (Qiagen).  Appropriate volumes of starting samples were lysed with the lysis buffer, 

mixed 1:1 with RNA-grade Ethanol (Sigma) and bound to Aurum Mini Columns 

(Qiagen) for washing in proprietary buffers.  Following the second wash, a 15 minute 
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DNase protocol degraded genomic DNA, the final wash was applied, and purified RNA 

was isolated in RNase-free water.  Quantification of RNA was achieved by readings in 

duplicate or triplicate on a NanoDrop 2000c spec (Thermo).  All protocols using 

interaction with RNA required RNase-free materials, including tips, tubes and reagents.  

Great care was taken to prevent introduction of exogenous RNases from the environment.  

Many RNA samples were checked for sample integrity using gel electrophoresis and 

ethidium bromide staining as described above to assess a 2:1 ratio of staining for 28S and 

18S bands, respectively, with properly sharp lines.  This could be done post hoc and 

samples of RNA were always saved until completion of the experiment in case questions 

arose about sample integrity.   

 

Reverse Transcription of cDNA – Purified RNA was reverse transcribed into cDNA using 

the iScript Reverse Transcription Supermix for RT-qPCR which employed a proprietary 

blend of oligo (dT) and random primers to provide unbiased representation of both 5’ and 

3’ regions of transcript (BioRad).  Optimal conditions allowed 1 μg of template RNA in 

16 μL RNA eluate, combined with 4 μL 5x Supermix, to allow a 20 μL reaction volume 

as required.  If RNA concentrations for the experiment were not sufficient in ALL 

samples to produce 1 μg template RNA in 16 μL reaction volume, all samples in the 

experiment were scaled down to a minimum input of 200 ng RNA per sample.  This 

range was determined to be optimal in our lab for our transcript targets using our 

equipment and is not intended discount the much wider ranges published by BioRad.  

The 20 μL final reaction volume could be scaled up to produce additional cDNA if 

experimental design called for more.  Reverse transcription was performed on a CFX96 
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thermocycler (BioRad) or an EdvoCycler Model 541 (EdvoTek).  Each sample was 

mixed on ice and cycling parameters were as follows: priming at 25 °C for 5 minutes, 

reverse transcription at 42 °C for 30 minutes, and enzyme inactivation at 85 °C for 5 

minutes, followed by a static hold at 4 °C.  cDNA was used immediately or stored at -20 

°C with limited freeze/thaws in this final RT solution using the protocol volumes 

described below.   

 

Primer Preparation – Primers for RT-qPCR were prepared using the database and 

software Primer-BLAST (NCBI) and selected custom primers were produced by 

Invitrogen (Carlsbad, CA).  PCR product size was optimized for the transcript but 

generally was limited to 70-300 bp based on cycling parameters and Tm was optimized 

for each transcript as well.  Multiple primer pairs were produced and tested for every 

transcript and for potential off target effects or primer dimers by melt-curve analysis on 

all analyzed samples.  Primers which spanned introns were preferred to reduce 

interference of contaminate genomic DNA.   

 

Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) – iTaq Universal SYBR 

Green Mastermix (BioRad) was used at 1x in a final reaction volume of 20 μL per well of 

a 96-well RT-qPCR plate (BioRad).  Each reaction included a final concentration of 0.4 

μM forward and 0.4 μM reverse primers optimized to be effective at that concentration 

for simplicity, and 1 μL of output cDNA from the reverse transcription protocol.  Only on 

rare instances were these parameters changed.  SYBR green was used for its low cost and 

simplicity in primer design, although the potential for off target amplification required a 
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melt curve analysis with each run.  Thermocycling was performed on a CFX96 (BioRad).  

Following a 2 minute activation at 95 °C, 40 cycles were completed of denaturation at 95 

°C for 15 seconds followed by annealing and extension at 60 °C for 40 seconds.  The 

melt curve analysis progressed from 65 °C to 95 °C in 0.5 °C steps with 5 seconds per 

step.  Housekeeping genes were optimized for each experiment but were typically either 

GAPDH or 18s rRNA, depending on stimulant and concentration of target.  Fold changes 

were calculated using the ΔΔCt method.   

 

Genome-Wide Association Study – A total of 16,999 independent case and control 

samples were collected from multiple sites as part of the Large Lupus Association Study 

2 (LLAS2) with the Institutional Review Board (IRB) approval from each institution and 

processed at the Oklahoma Medical Research Foundation (OMRF) under the auspices of 

the OMRF institutional review board. Only individuals who signed informed consent 

forms were included in the study. All SLE cases met the revised 1997 American College 

of Rheumatology for classification of SLE.  Among SLE cases, those with lupus nephritis 

fulfilled the renal criterion of either (1) persistent proteinuria >0.5 g per day (24 h) or 

persistent >3+ if quantification was not performed or (2) presence of urinary cellular 

casts (Table 2). All SLE cases met the revised 1997 American College of Rheumatology 

for classification of SLE [70].  Among SLE cases, those with lupus nephritis fulfilled the 

renal criterion of either (1) persistent proteinuria >0.5 g per day (24 h) or persistent >3+ if 

quantification was not performed or (2) presence of urinary cellular casts [70].  The 

custom-design Illumina iSelect platform at OMRF was used to genotype 5 SNPs in 

TNIP1 previously reported to be associated with systemic sclerosis (rs4958881, 
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rs3792783, rs2233287) [71], SLE (rs7708392) [67], psoriasis (rs3762999, rs999556, 

rs17728338) [72,73], and psoriatic arthritis (rs17728338, one of psoriasis SNPs) [74].  In 

addition, 347 ancestral-informative markers (AIMs) spanning the genome were 

genotyped.  After application of quality controls by excluding samples if they exhibited 

low call rates (<90%) and extreme heterozygosity (>5 standard deviations from the 

mean), revealed discrepancies between reported gender and genetic data, or were 

determined to be a duplicate or cryptic related to another sample (the proportion of alleles 

shared identical by descent >0.4), and removing extreme population outliers based on 

global ancestry estimation and principal component analysis (calculated using the AIMs 

in the ADMIXMAP[75,76] and EIGENSTRAT[77] programs, respectively) as described 

in other LLAS2 reports [66,78], a final dataset of 15,864 unrelated subjects was obtained.    

Single marker association analyses were calculated using the logistic regression function 

in PLINK v1.07 [79].  The additive genetic model was applied while adjusting for gender 

and global ancestry estimates (African, European, and East Asian) [66,80,81].  The 

Bonferroni corrected p-value threshold was set to P < 0.01 based on multiple tests of 5 

SNPs. 

 

 

2.3 – Plasmids and Lentiviral Transduction 

 

pCMV6-AC-mGFP – This cloning system was purchased from Origene to produce GFP-

tagged ABIN1 in cultured cells at a higher level than endogenous ABIN1 was produced.  

A cytomegalovirus (CMV) promoter on the cassette accomplished this in all cell types 
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used.  This plasmid also conferred ampicillin resistance for selection and high level 

production in bacterial cultures.  An insert sequence was produced and sent to Origene 

for production.  Plasmid sequences were confirmed before being used and both GFP and 

ABIN1 proteins were recognized appropriately by all methods employed in the course of 

this study. 

 

pCMV6-AC-DDK – This cloning system was produced as the GFP tagged system above, 

but rather than GFP, it included a DDK tail (non-proprietary FLAG system) for protein 

purification.   

 

Lentiviral Transduction using MDM00734 pCSC-SP-PW – Some cells are resistant to 

transient transfection due to sensitivity to transfective agents or other reasons, thus 

Lentiviral transduction was used as an alternative, which produces stable expression of 

target proteins in difficult to transfect cells.  This plasmid was designed by Michael 

Mendenhall of the University of Kentucky Viral Core.  With the help of Dr. Mendenhall, 

we designed a protocol for isolating ABIN1 inserts of the appropriate genotype (WT and 

ABIN1[D472N] and others) from transfection plasmids and production of lentivirus 

capable of transduction of cultured podocytes.  Per the University of Louisville IRB 

Approval, no virus was reproduced in University of Louisville facilities.  All local viral 

stocks were replication deficient.  An optimized multiplicity of infection (MOI) of 1-10 

based on viral titer was used for each cell type and optimized to achieve equal expression 

of WT, ABIN1[D472N] or other genotype.  Lentiviral stocks were aliquoted, frozen for 

transport and thawed only once at 37 °C on the day of use.  Cells grown in 6-well dishes 
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(TTP) in 2 mL appropriate cell culture media were exposed to an appropriate volume of 

lentivirus in polybrene at 8 μg/mL (a kind gift of Dr. Mendenhall).  Following an 8 hour 

incubation, media was removed and a second volume of 2 mL media with virus and 8 

μg/mL polybrene was added and allowed to infect overnight.  Fresh media was applied 

and cells were allowed to grow for 72 hours before transduction could be checked via 

fluorescence microscopy on an inverted CKX41 (Olympus).  Expression was confirmed 

via RT-qPCR, sequencing, western blot and other methods.   

 

 

2.4 – Antibodies 

 

ABIN1 – For detection of ABIN1, a mouse monoclonal antibody (Santa Cruz – sc-

376999) was used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight 

at 4 degrees followed by goat-anti-mouse-HRP (Santa Cruz – sc-2005) at 1:2000 (200 

μg/mL stock) for 1 hour at room temperature and chemiluminescent using Clarity 

Western ECL Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and 

ImageLab 3.0 Software (Biorad). 

 

MCP-1/CCL2 – For detection of MCP-1, a mouse monoclonal antibody (Santa Cruz – sc-

377082) was used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight 

at 4 degrees followed by goat-anti-mouse-HRP (Santa Cruz – sc-2005) at 1:2000 (200 

μg/mL stock) for 1 hour at room temperature and chemiluminescent using Clarity 
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Western ECL Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and 

ImageLab 3.0 Software (Biorad). 

 

GAPDH – For detection of GAPDH, a rabbit polyclonal antibody (Santa Cruz – sc-

25778) was used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight 

at 4 degrees followed by goat-anti-rabbit-HRP (Santa Cruz – sc-2004) at 1:2000 (200 

μg/mL stock) for 1 hour at room temperature and chemiluminescent using Clarity 

Western ECL Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and 

ImageLab 3.0 Software (Biorad). 

 

ET-1 – For detection of Endothelin 1, a goat polyclonal antibody (Santa Cruz – sc-21625) 

was used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight at 4 

degrees followed by rabbit-anti-goat -HRP (Santa Cruz – sc-2768) at 1:2000 (200 μg/mL 

stock) for 1 hour at room temperature and chemiluminescent using Clarity Western ECL 

Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and ImageLab 3.0 

Software (Biorad). 

 

ERK 1 – For detection of ERK 1, a rabbit polyclonal antibody (Santa Cruz – sc-94) was 

used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight at 4 degrees 

followed by goat-anti-rabbit-HRP (Santa Cruz – sc-2004) at 1:2000 (200 μg/mL stock) 

for 1 hour at room temperature and chemiluminescent using Clarity Western ECL 

Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and ImageLab 3.0 

Software (Biorad). 
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IκBα  – For detection of IκBα, a rabbit polyclonal antibody (Santa Cruz – sc-847) was 

used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight at 4 degrees 

followed by goat-anti-rabbit-HRP (Santa Cruz – sc-2004) at 1:2000 (200 μg/mL stock) 

for 1 hour at room temperature and chemiluminescent using Clarity Western ECL 

Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and ImageLab 3.0 

Software (Biorad). 

 

p-IκBα – For detection of phosphorylated-IκBα, a rabbit polyclonal antibody (Santa Cruz 

– sc-101713) was used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS 

overnight at 4 degrees followed by goat-anti-rabbit-HRP (Santa Cruz – sc-2004) at 

1:2000 (200 μg/mL stock) for 1 hour at room temperature and chemiluminescent using 

Clarity Western ECL Substrate (BioRad) on the BioRad ChemiDoc MP Image Station 

and ImageLab 3.0 Software (Biorad). 

 

Podocin – For detection of podocin, a rabbit polyclonal antibody (Santa Cruz – sc-21009) 

was used at 1:200 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight at 4 

degrees followed by goat-anti-rabbit-HRP (Santa Cruz – sc-2004) at 1:2000 (200 μg/mL 

stock) for 1 hour at room temperature and chemiluminescent using Clarity Western ECL 

Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and ImageLab 3.0 

Software (Biorad). 

 

p-ERK – For detection of phosphorylated ERK, a mouse monoclonal antibody (Santa 

Cruz – sc-7383) was used at 1:100 dilution (200 μg/mL stock) in 5% milk in 1x TTBS 
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overnight at 4 degrees followed by goat-anti-mouse-HRP (Santa Cruz – sc-2005) at 

1:2000 (200 μg/mL stock) for 1 hour at room temperature and chemiluminescent using 

Clarity Western ECL Substrate (BioRad) on the BioRad ChemiDoc MP Image Station 

and ImageLab 3.0 Software (Biorad). 

 

A20 – For detection of A20, a mouse monoclonal antibody (Santa Cruz – sc-376564) was 

used at 1:100 dilution (200 μg/mL stock) in 5% milk in 1x TTBS overnight at 4 degrees 

followed by goat-anti-mouse-HRP (Santa Cruz – sc-2005) at 1:2000 (200 μg/mL stock) 

for 1 hour at room temperature and chemiluminescent using Clarity Western ECL 

Substrate (BioRad) on the BioRad ChemiDoc MP Image Station and ImageLab 3.0 

Software (Biorad). 

 

β-actin – For detection of β-actin for use as a loading control, a mouse monoclonal 

antibody conjugated to HRP (Santa Cruz – sc-47778-HRP) was used at 1:500 dilution 

(200 μg/mL stock) in 5% milk in 1x TTBS for 1 hour at room temperature and 

chemiluminescent using Clarity Western ECL Substrate (BioRad) on the BioRad 

ChemiDoc MP Image Station and ImageLab 3.0 Software (Biorad). 

 

 

2.5 – Cell Culture 

 

Conditionally Immortalized Podocytes – In 2002, Moin Saleem published his 

characterization of a conditionally immortalized podocyte cell line using a temperature 
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sensitive SV40-T-gene that revolutionized almost all modern research into podocyte 

biology [82].  Briefly, these cells grow permissively at 33 °C, but upon exposure to 37 °C 

temperatures for 7-10 days, they enter growth arrest and express markers of differentiated 

podocytes in vivo.  These cells were grown in RPMI-1640 without glutamine 

(Invitrogen), supplemented with 1x Pen/Strep/Glutamine (Invitrogen), 10% fetal bovine 

serum (Sigma), and 1x Insulin/Transferrin/Selenium-X (Invitrogen).  Many stimulants 

were used, but this dissertation focuses on TNF-α (100ng/mL) (BioLegend) for all cell 

culture work.    

 

Podocyte Actin Labeling and Confocal Microscopy – Confocal microscopy images were 

obtained as previously described[83].  Briefly, 35mm collagen-coated glass bottom 

dishes (MatTek) were seeded with podocytes and allowed to mature at 37 °C for 10 days.  

Cells were serum starved with 0.5% FBS medium 24 h before stimulant was added.  

Following stimulation, cells were rinsed three times with PBS that contained calcium and 

magnesium and fixed in 3.7% paraformaldehyde (Azer Scientific) in PBS (Invitrogen) for 

10 min, followed by permeabilization with 0.025% NP-40 (Sigma) in PBS for 15 min and 

washing.  Cells were blocked in 5% BSA (Sigma) in PBS for 30 minutes before addition 

of 200 μL (3 units) rhodamine-phalloidin (Thermo) for 30 minutes.  Following another 

wash, 300 nM DAPI (Invitrogen) was incubated for 5 min, and rinsed three times with 

PBS, mounted using Vectashield Antifade Mounting Medium for Fluorescence (Vector 

Labs). Images were acquired using a Zeiss confocal microscope and analyzed using 

LSM510 software. The images for rhodamine were analyzed by FibrilTool as 

recommended by the published protocol[84].  
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2.6 – General Protein Expression Assays 

 

Sample Preparation and Cellular Lysis – Cultured cells were washed 3 times with ice-

cold PBS and lysed in RIPA Buffer (Sigma) containing 1x Protease Inhibitor Cocktail 

(Sigma) and 1x Phosphatase Inhibitor Cocktail (Santa Cruz).  Lysis was allowed to 

proceed on ice for 30 minutes followed by a centrifugation at 20,000 x g for 30 minutes 

at 4 °C to pellet cellular debris.  An appropriate volume of lysis buffer was used to 

accommodate either the confluency of cells on the plate or the approximate size of the 

cell pellet. 

 

Protein Quantification – Protein concentration was estimated using the BCA method 

(Thermo) in triplicate according to the manufacturer’s protocol.  Lysis buffer or vehicle 

into which the sample is diluted was used as a blank and serial dilutions of BCA 

(Thermo) were used to generate a standard curve. 

 

SDS-PAGE – Appropriate volumes of protein sample and water were added to 5x 

Laemmli Sample Buffer (final concentration 60 mM Tris-Cl pH 6.8, 2% SDS, 10% 

glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) to achieve equal estimated 

loading of all samples to be loaded in the gel.  Mini-PROTEAN TGX pre-cast 4-20% 

gradient gels (BioRad) were immersed in 1x Tris-Glycine-SDS buffer (BioRad) and run 

under constant voltage (15-250V) deemed appropriate for desired time of separation or 
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size of target proteins.  Precision Plus Dual Color protein standard (BioRad) was used to 

gauge size of bands identified in western blot protocol (in kDa). 

 

Polyvinylidene Fluoride (PVDF) Transfer – PVDF (BioRad) was used rather than 

nitrocellulose.  PVDF was rehydrated for at least one minute in 100% methanol (Sigma) 

followed by at least 10 minutes in 1x Tris-Glycine transfer buffer (BioRad).  Semi-dry 

transfer was achieved using the Trans-Blot Turbo (BioRad) at appropriate current 

(usually 300 mA but varied based on sample).  Totality of transfer was assessed by 

staining the gel post-transfer with Coomassie stain for 15 minutes followed by 1-4 hours 

of destain in 40% methanol (Sigma) and 10% acetic acid (Sigma).    

 

Western Blotting – PVDF membrane was washed 3 times in 1x TTBS followed by >30 

minute block in 5% milk (Great Value) in TTBS.  Appripriate dilutions of primary and 

secondary antibodies were added to 5% milk in TTBS.  Primary antibodies were allowed 

to bind overnight at 4 °C with rocking, followed by 3 washes in 1x TTBS.  HRP-

conjugated secondary antibodies were allowed to bind for 1 hour at room temperature 

with gentle rocking before washing 3 times in 1x TTBS.  Chemiluminescent detection 

was achieved using Clarity Western ECL Substrate (BioRad) on the BioRad ChemiDoc 

MP Image Station and ImageLab 3.0 Software (Biorad). 

 

Enzyme-Linked Immunosorbent Assay (ELISA) – Secreted cytokine levels for MCP-1, IL-

8, and TNF-α were analyzed using the BioLegend ELISA Max Deluxe kits per the 

manufacturer protocol.  To allow secretome samples to be utilized with primary 
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neutrophils, samples were stimulated for 6 hours with TNF-α followed by 3 washes in 

sterile, endotoxin-free Krebs buffer, followed by a 6 hour collection in 10mL Krebs 

buffer per 10cm dish at 70% confluence.  This stimulation and wash regimen was 

determined to be optimal for the cytokines of interest and no detectable TNF-α remained 

following the 3 wash steps (<<2pg/mL). 

 

Luminex-based Cytokine Arrays – Blood was collected from mice by cardiac puncture, 

allowed to clot, and the serum was separated by centrifugation.  Cytokines in mouse 

serum were measured using the Bio-Plex Mouse Cytokine 23-plex assay on the Bio-Plex 

MAGPIX Multiplex reader according to the manufacturer’s protocol (Bio-Rad). 

 

 

2.7 – Mass Spectrometry Based Protein Detection 

 

Label-free Sequencing and Quantification of Total Protein – Briefly, protein 

concentration was estimated using the BCA method (Thermo, Rockford, IL), diluted with 

6M urea in 100 mM ammonium bicarbonate, reduced with dithiothreitol and alkylated 

with iodoacetamide. The sample was digested using sequence-grade trypsin at a 1:100 

ratio of trypsin to sample protein and incubated overnight at 37 °C with shaking, then 

desalted and concentrated using a fused silica microcapillary C-18 column (Michrom 

Bioresources, Auburn, CA). The resulting peptides were analyzed by a Thermo Fisher 

Scientific LTQ-Orbitrap Elite mass spectrometer coupled with a Proxeon Easy nanoLC 

1000 UHPLC system (Thermo, Rockford, IL). Protein identification was performed with 
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Sequest Sorcerer (Sage-N Research, San Jose, CA), set up to search a FASTA formatted 

human protein database (Human RefSeq). High-probability peptide and protein 

assignments were made using Peptide and Protein Prophet algorithms[85]. Abundance of 

each identified protein was determined by normalizing the number of unique spectral 

counts matching to the protein by its predicted molecular weight, termed the protein 

abundance factor [5,86,87].  Cytokine production by unstimulated ABIN1 WT-

expressing podocytes was defined as the normal cytokine secretome and was compared to 

the ABIN1 WT stimulated and both stimulated and non-stimulated ABIN1[D472N] 

dataset to identify changes to the normal secretome of these cells. 

 

Secretome Identification, Size Selective – Most cytokines are small proteins and we have 

found that sample purity is increased through a 10 minute centrifugation in an Amicon 

Ultra-30kDa Centrifugal Filter Unit (Millipore, Billerica, MA) to remove proteins larger 

than 30 kDa, followed by preparation as we have previously described.  

 

 

2.8 – Animal Handling and Assays for Primary Tissue  

 

Transgenic Mice – The ABIN1[D485N] global knockin mice were generated on a 

129SvJxC57BL/6 background[53] and then backcrossed eight generations to C57BL/6 

for the present studies.  Heterozygous mice were used to generate ABIN1[D485N] 

homozygous and littermate WT control mice for all the experiments.  Female mice from 

0-6 months of age were utilized as indicated.  All animals were maintained in specific 
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pathogen free conditions and all studies were approved by the Institutional Animal Care 

and Use Committee of the University of Louisville (Louisville, KY).   

 

Bone Marrow Transplant and Development of Chimeric Animals – Bone marrow 

transplant was carried out as previously described[88].  Briefly, 5-7 week old female 

mice were conditioned with 950 cGy total body irradiation from a caesium source 

(Gamma-cell 40; Nordion, Ontario, Canada). At 24 h post irradiation, the mice were 

transplanted with bone marrow cells (1 x 107 cells per mouse in 0.1 ml PBS) isolated 

from tibias and femurs of age-matched donor mice, through the retro-orbital plexus with 

a 27-gauge needle. Ten WT mice received WT bone marrow and ten received 

ABIN1[D485N] bone marrow.  Likewise, ten ABIN1[D485N] mice received WT bone 

marrow and ten received ABIN1[D485N] bone marrow.  Engraftment was allowed to 

proceed for 5-7 weeks before administration of α-GBM. Engraftment was confirmed 

using leukocytes isolated from whole blood.  Both the recipient and donor mice were 

maintained on normal chow throughout the experiment.   

 

Urine Albumin:Creatinine Measurements – Spot urine samples were captured by 

scruffing the mice and massaging the bladder over a clean, disposable surface and 

collected in a sterile microcentrifuge tube. Urine was centrifuged at 5000 x g for 5 

minutes then standard sandwich ELISA was performed in triplicate according to the 

manufacturer’s protocol for mouse albumin (Bethyl) and a kinetic Jaffe method for 

creatinine (Thermo).  The ratio of albumin (μg/mL) and creatinine (mg/mL) was 

calculated for each sample at each time point. 
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Serum C3 Quantification – Serum was collected from ABIN1[D485N] and WT mice at 

ages 3-4 months and 5-6 months. C3 measurements were performed using a 1:25,000 

dilution of mouse serum and measurement with the Mouse C3 ELISA Kit from GenWay 

Biotech (#40-374-130047) per the manufacturer’s guidelines. All samples were tested in 

duplicate and the average was reported.  

 

Histopathology and immunohistochemical staining of mouse cortical tissue – Formalin-

fixed, paraffin embedded tissues were stained with PAS reagent for histological analysis 

by light microscopy.  Glomerular damage was assessed by semiquantitative scoring of 

cellularity and mesangial matrix expansion on a 0 (normal), 1+ (mild abnormality), 2+ 

(moderate abnormality), and 3+ (severe abnormality) scale. For immunohistochemical 

labeling of proteins, sections were deparaffinized in xylene and rehydrated in graded 

alcohols.  Antigen retrieval was achieved using citrate buffer solution for 20 minutes at 

95 °C (Dako), slides were washed in buffer and endogenous peroxidases were quenched 

with H2O2 for 5 minutes before washing and a 30 minute block in buffer containing 5% 

BSA and 2% sera at RT.  Primary antibody was applied overnight at 4 °C and 1:200 

dilution for WT-1 (Santa Cruz), CD45 (Angio-Proteomie), 1:50 dilution for MPO 

(AbCam) or with buffer only as a negative control followed by washing and incubation 

with appropriate secondaries at 1:200 dilution.  All sections including negative controls 

were then incubated with respective biotinylated secondary antibodies (1:200, Vector 

Labs), followed by incubation in avidin/biotinylated enzyme complex (Vectastain Elite 

ABC kit, Vector Labs). Proteins were detected following color development using 3,3′-
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diaminobenzidine (DAB) as substrate (Vector Labs). Counterstaining was performing 

using hematoxylin (Vector Labs) and cells were dehydrated, mounted and viewed at 

100x.  Digital Images were obtained with a Q Color 5 camera attached to an Olympus 

BX51 microscope using Image-Pro software. 

 

Immunofluorescence – For immunofluorescent analysis of C3, IgA or IgM, 4 micron 

frozen sections were first washed in PBS 3x5 minutes each. The blocking solution was 

applied for 30 minutes at room temperature. The primary antibody was then added for 2 

hours at room temperature. The sections were washed for 5 minutes in PBS three times. 

FITC primary antibody (C3- Cedar Lanes Laboratory, IgG- Sigma Aldrich, C1q- Hycult 

Biotech) or unlabeled primary antibody (IgA-Invitrogen, IgM-Invitrogen) followed by 

florescent secondary antibody (Alexa Flour 555- Invitrogen) were used. Following 

antibody incubation, slides were washed in PBS 3x5 minutes.  Images were acquired 

using a Zeiss confocal microscope and analyzed with LSM510 software. 

 

Transmission Electron Miscroscopy – Freshly dissected cortical tissue was placed in a 

cryomold with OCT compound (Tissue-Tek) and flash frozen in liquid nitrogen. Thick 

(1-mm) sections were prepared to evaluate the orientation and presence of glomeruli. 

Thin sections were mounted on 200 mesh naked copper grids and stained with lead citrate 

and uranyl acetate (4% in absolute alcohol). Sections were prepared for electron 

microscopy by postfixing in osmium, dehydrating in an alcohol series, and embedding in 

Durcupan resin (Ted Pella, Redding, CA) and imaging via a CM10 transmission electron 

microscope (Phillips).  
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Therapeutic Caffeination of Researcher – To achieve sufficient levels of cognition to 

conform to University of Louisville Occupational Health and Safety guidelines, daily 

consumption of 3-5 aliquots of 8.5g prepared dark blend or similar ground coffee bean 

(Caza Trail or similar) was performed on a B70 Platinum Brewing System (Keurig) 

followed by supplementation with 72 mg saccharine (Cumberland Packing Corporation).  

Physiological changes were monitored and dosing modified as necessary.   

 

Glomerular purification – To obtain 95% pure glomeruli for RNA extraction, we utilized 

a common sieving technique in small batches.  Briefly, renal cortex is dissected and 

minced followed by collagenase treatment (Sigma), initial filtration through 100nm nylon 

mesh (VWR) and glomerular purification and washing with Hanks Buffer (Invitrogen) in 

a 70nm nylon mesh (VWR).  Glomerular samples obtained were determined to be at least 

90% glomeruli by light microscopy with <5% tubule contamination.   

 

Purification of Primary Neutrophils from Donor Blood – The Percoll method is a 

standard density gradient capable of separating cellular components of whole blood.  

Briefly, whole blood from donors was centrifuged at 500 x g for 35 minutes at 25 °C, 

with neutrophils forming a distinct band which can be purified.  Isolated neutrophils were 

diluted in endotoxin-free, sterile Krebs buffer.  Microscopic evaluation of isolated cells 

showed that >92% of cells were neutrophils.  Trypan blue exclusion indicated that >95% 

of cells were viable.  The Institutional Review Board of the University of Louisville 

approved the use of human donors who provided informed consent.   
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Stimulation of Primary Neutrophils and Isolation of Granule Contents – Neutrophil 

granule contents were produced by stimulating donor neutrophils with TNF-α (2 ng/mL) 

(Sigma) and 300 nM N-Formyl-Met-Leu-Phe (fMLF) (Sigma) for 30 minutes at 37 °C in 

Krebs buffer.  Neutrophil cell bodies were removed via centrifugation for 5 minutes at 

5000 x g.   

 

Neutrophil Chemotaxis – Donor neutrophils were resuspended at 5 x 104 in Krebs buffer 

and 100 μL of suspended PMNs were allowed to undergo chemotaxis per manufacturer 

guidelines into 6.6mm diameter and 3μM pore size Transwell Permeable Supports 

(Corning) using a 1:600 dilution of cell culture supernatant in sterile, endotoxin-free 

Krebs buffer.  The Hema 3 protocol (Fisher) was used to fix and stain the membranes.   

 

Neutrophil Degranulation – Degranulation of specific and azurophilic granules was 

determined by measuring binding of FITC-conjugated monoclonal anti-CD35 

(Pharmingen) and FITC-conjugated monoclonal anti-CD66b (Accurate Chemical) on 4 × 

106/ml neutrophils using a FACSCalibur flow cytometer (Becton Dickinson, Franklin 

Lakes, N.J., USA) as previously described[89]. 

 

Nephrotoxic Sera and TAT-SNAP23 Administration – Nephrotoxic sera (a kind gift of Dr. 

David Salant) or control sera (Rockland) was injected into the tail vein of mice at 

1.5mg/25g mouse body weight.  TAT-SNAP23 was produced by Dr. Kenneth McLeish.  

Briefly, human neutrophil SNAP23 was cloned into a pTAT-vector and expressed DH5a 
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competent cells (Invitrogen).  E. coli BL21-AI cells (Invitrogen) were used to 

overexpress the recombinant TAT fusion proteins which were purified by Ni-NTA beads 

(Invitrogen). Administration of TAT-SNAP23 was via tail vein injection at the time of α-

GBM administration and 6 hours after administration at a concentration of 0.05mg/kg 

body weight.   
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CHAPTER III 

 

PROTEOMIC APPLICATIONS FOR DEFINING CELLULAR MECHANISMS AND 

DIAGNOSTIC MARKERS OF SYSTEMIC LUPUS ERYTHEMATOSUS 

 

 

3.1 – Overview of mass spectrometry and discovery proteomics 

 

As described in the Introduction, autoimmune diseases such as systemic lupus 

erythematosus (SLE) can affect many different body systems, including the central 

nervous system, blood cells, joints, skin, heart, lungs, and kidneys [11]. The molecular 

mediators which promote disease pathogenesis are not fully known, thus a primary 

objective of translational research is the identification of reliable, non-invasive, and 

quantifiable markers for detection of the early-onset of specific complications.  Such 

markers would enable treatment to be administered most effectively along with 

assessment of positive response to therapy such that the treatment can be modified or 

stopped in a timely manner to best manage adverse side effects.  These markers also 

provide important pathogenic insight and tools for testing new or improved therapeutics.  

In addition to clinical features (i.e. rash, arthritis), diagnostic information for SLE or GN 

is also provided by measurement of immune cell profiles and activity, identification of 
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specific autoantibodies, and identification of changes in protein expression profiles in 

bodily fluid (i.e. blood, cerebral spinal fluid, lavage fluid, and importantly in GN, urine).   

Mass spectrometry-based proteomic technologies have played an important role 

in each area of clinical diagnosis as well as the development of a more comprehensive 

understanding of the underlying disease process using a myriad of diverse sample types 

and techniques.  One of the preferred mass spectrometry methods in proteomics 

combines one or two dimensional (1D or 2D) liquid chromatography (LC) peptide 

separation with electro-spray ionization (ESI) tandem mass spectrometry (MS/MS) [90]. 

This LC-MS/MS methodology allows for a direct and highly-sensitive identification of 

hundreds of individual proteins from virtually any type of biomedical sample [91].  The 

decision to use 1D versus 2D-LC is based on the complexity of the protein sample.  

Typically SDS-PAGE bands or spots (< 30 proteins) are analyzed by 1D and much more 

complex samples, such as affinity-purifications and whole cell, tissue, or bodily fluid 

extracts are analyzed with 2D-LC-MS/MS.  Another type of mass spectrometry that is 

employed is matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) 

[92].  With this approach up to 96 individual protein samples are spotted onto a stationary 

target for analysis. Although the sensitivity of MALDI-TOF is limited to characterizing 

the 10-15 most abundant proteins in each sample, it has the benefit of being a higher 

throughput platform for lower complexity, pre-fractionated protein mixtures (i.e. gel 

separation) because each sample is analyzed in minutes where as a typical 1D-LC run 

requires an hour and 2D-LC-MS/MS takes 10-12 hours.  A third mass spectrometry 

approach is surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF), a 

modification of MALDI-TOF [93].  With SELDI-TOF, different surface components, 
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such as strong anion exchangers or hydrophobic characteristics, allow binding of proteins 

with certain characteristics while dissimilar proteins are washed away. This allows 

analysis of targeted subsets of structurally related proteins and reducing the complexity of 

the sample improves the overall sensitivity or dynamic range of detection.  SELDI-TOF 

results differ from LC-MS/MS and MALDI-TOF/TOF in that the results are given in 

mass to charge ratios (m/z) rather than peptide sequence, so positive protein identification 

is not possible.  It is, however, useful for rapid analysis of the protein m/z profiles of 

semi-complex samples by reducing upfront separation while preserving the fast analysis 

time of a MALDI platform.  Although not as desirable for discovery, these attributes of 

relative ease of sample preparation and speed of analysis and data output, as well as 

lower startup and operation costs presents SELDI-TOF as a more suitable mass 

spectrometry platform for a clinical test.         

A key component of these studies is the method used to prepare selectively 

targeted protein samples for mass spectrometry interpretation.  Auto-antigen 

identification studies usually involve separation of the tissue of interest by 1D or 2D 

electrophoresis (1-DE or 2-DE) SDS-PAGE, followed by immuno-blotting with anti-sera 

from SLE patients, and identification of proteins in immune-reactive bands by MALDI-

TOF/TOF or LC-MS/MS analysis [94].  Another approach isolates autoantibodies from 

SLE patient serum using immobilized protein G which is then used to affinity enrich 

antigens in targeted tissue extracts for direct characterization with 2D-LC-MS/MS 

analysis [95].  As mentioned above, studies comparing diseased and healthy body fluids 

use two general approaches; 1) 2D gel electrophoresis followed by staining of total 

protein and MALDI-TOF/TOF identification of the proteins in differing spots or 2) direct 
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comparison of total protein expression using LC-MS/MS [94,96].  The work flow of 

these applications is described in Figure 7.  Starting from sample, which could be any 

preparation of proteins, work flow could lead to a number of separation/purification 

techniques or proceed directly to tryptic digestion.  Both 1-DE and 2-DE are used to 

immunoblot for novel autoantigens followed by analysis, frequently MALDI or SELDI, 

but also including 1D and 2D-LC-MS/MS.  Complex samples may be separated by 

affinity chromatography, immunoprecipitation or magnetic bead separation.  Techniques 

may be employed to remove primarily high-abundance proteins, separate based on 

protein chemistry or interaction kinetics involving immunoglobulins or other proteins.  

The digested peptides could be subjected to analysis by MALDI, SELDI, and 1D- or 2D-

ESI-LC/MS/MS.  Gel separated and digested proteins are frequently analyzed with 

MALDI or SELDI platforms, but are appropriate for ESI as well.  More complex sample 

types, in particular whole cell lysates, which have not been separated, are frequently 

subjected to 1D- or 2D-LC peptide separation coupled with ESI-MS/MS analysis.  The 2-

dimentional aspect of LC separation allows a greater number of proteins to be identified 

from very complex samples when compared to the other methods, with the tradeoff being 

the greatly increased time (10-12 hours) to analyze one sample. SELDI-TOF and 

MALDI-TOF are used for profiling while MALDI-TOF-TOF and ESI-MS/MS can 

sequence the peptides in the sample to positively identify their parent proteins.   

Finally, we provide a mechanism by which LC-MS/MS was used to define the 

proteome of cell culture supernatant which is later assessed for its ability to activate 

primary neutrophils ex vivo.   
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Figure 7 - Flowchart of LC-MS/MS Sample Preparation 

Abbreviations: 1-DE, One-Dimensional Electrophoresis; 2-DE, 2-Dimentional 

Electrophoresis; SELDI, Surface-Enhanced Laser Desorption/Ionization; MALDI, 

Matrix-assisted laser desorption/ionization; 1D-LC, One-Dimensional Liquid 

Chromatography; 2D-LC, Two-Dimensional Liquid Chromatography; TOF, Time-of-

Flight; ESI, Electrospray Ionization 

 
Korte, et al. 2012.   
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Here I seek to explain prior contributions of mass spectrometry techniques to the 

biological understanding, diagnosis and treatment of SLE, in particular LN, and to lay out 

a framework for subsequent study of SLE, LN and GN.  It is the hope of any investigator 

that they can catalyze the dissemination of information to allow a greater understanding 

of complex techniques and illustrate their potential in translational and clinical research 

related to human diseases.  Here I outline relevant contributions of LC-MS/MS and 

discovery proteomics and adapt protocols which will be utilized to study glomerular 

disease as described in Chapters IV and V.   

 

3.2 – Cardiovascular systemic lupus erythematosus 

 

 Systemic lupus erythematosus (SLE) is an autoimmune condition known to 

increase a patient’s risk for cardiovascular disease (CVD). Even when correcting for 

potentially confounding factors such as age, genetic background, treatment methodology, 

family history, disease profile, etc., SLE patients have been shown to have risk up to 50 

times above that predicted by Framingham Risk Factors [97–100]. While mortality rates 

for active disease have fallen in recent decades, mortality rates for CVD in long-term 

SLE patients continue to rise [97,100]. LN occurs in about 50% of SLE patients and is a 

major cause of morbidity and mortality, with a significant component attributed to  

increased risk of ischemic heart disease [10,101,102]. The genetic risks, environmental 

factors, and molecular events that determine susceptibility for LN are unknown. A great 

deal of effort has been put into understanding the changes to the cardiovascular system in 

SLE.  Cardiac involvement in SLE has been reported with prevalence up to 50% [103], 
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but on average only 9% will develop true myocarditis [104,105].  SLE has long been 

known to result in immune deposits in the pericardium and/or myocardium of SLE 

patients, resulting in both histopathologic and gross anatomic changes [106].  

Arrhythmias including sinus tachycardia, atrial fibrillation, long QT, atrioventricular 

block and bundle branch block are rare complications, but can have significant effects 

when combined with other factors such as antimalarial therapy [105] and studies have 

reported up to 16% of children with SLE to have asymptomatic cardiovascular disease 

[107].  The risk of developing coronary artery disease is 4-8 times higher in SLE patients 

than in controls, and this risk increases to 50-fold in young women [98].  Treatment can 

be tailored to specific patients at risk for the development of such complications, but for 

this to be possible, early diagnosis of SLE is required followed by the accurate gauging of 

cardiovascular risk.  Mass spectrometry findings have been used to characterize the 

proteomic changes in the SLE disease state to better understand the pathogenic 

mechanisms behind cardiovascular disease to allow earlier diagnosis and improved risk 

assessment [96,108–111].  Relevant results are summarized in Table 1. 

To better understand pathogenesis of cardiovascular SLE and provide biomarkers 

for prompt diagnosis, autoantigens involved in congenital heart block were subjected to 

proteolytic cleavage with and without sera of SLE patients, followed by MALDI-TOF-

TOF identification of antibody-protected sites (epitopes) [110].  The resulting peptides 

were found to correspond to the 200-239 amino acid portion of the Ro52 protein, 

supporting the use of autoantibodies against Ro52 as a biomarker.  Subsequent studies 

have supported the role of anti-Ro antibodies (both Ro52 and Ro60) in congenital heart  
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Table 1 – Contributions of Mass Spectrometry to Cardiovascular Biomarker 

Discovery in SLE 

CARDIOVASCULAR SLE Biomarker or Mechanistic 
Haptoglobin (Hp) 
α2 [112] 

MALDI-
TOF-TOF 
and ESI-
MS/MS 

• Higher plasma Hpα2 seen in SLE vs. 
controls 

• Supporting research has implicated Hpα2 
isoforms in cardiac complications 
[113,114] 

Both 

Ro52 [110] MALDI-
TOF-TOF 

• Antibody protected sites found with SLE 
sera in 200-239 amino acid portion of the 
Ro52 protein 

Both 

Annexin A6  [96] LC-MS/MS • Autoantibodies identified against Annexin 
A6 

• Activation of Annexin A6 via 
autoantibody resulting in impaired heart 
function 

Both 

 

SLE, Systemic Lupus Erythematosus; MALDI-TOF, Matrix Associated Laser 

Desorption/Ionization-Time of Flight; ESI, Electrospray Ionization; Ro52 is also known 

as tripartite motif protein 21 (TRIM21). 

Korte et al. 2012. 
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block and suggested potential mechanisms for the development of the condition 

[115,116].    

Haptoglobin α2 polypeptide chain differences have been noted between SLE and 

non-SLE populations via MALDI-TOF-MS [112].  Patients expressing the haptoglobin 

α2 isoform have been shown to have shorter survival times after coronary artery bypass 

graft [113] and more severe complications after myocardial infarction [114], possibly due 

to decreased ability to reduce oxidative stress.  The association of haptoglobin α2 

peptides with SLE flare may offer insight into the cardiac complications seen in SLE and 

higher levels of haptoglobin α2 have been reported in SLE patients vs. controls [112].    

To identify target autoantigens and explore the pathogenesis of dilated 

cardiomyopathy, Seko et al. [96] applied a 2-DE separation approach to plasma 

membrane proteins isolated from rat cardiac myocyte cultures.  The protein blot was then 

probed with serum of healthy controls as well as a 17 year-old patient with an unusual 

presentation of delayed cardiomyopathy subsequent to neonatal lupus erythematosus.  

While the control showed no significant reactivity, many immune-reactive spots appeared 

on the sample probed with SLE serum which were excised and analyzed on a LC-MS/MS 

system.  The analysis identified 2 high-probability proteins: annexin A6, known for 

calcium signaling and membrane trafficking, and vimentin, known for maintenance of 

cellular structure (Table 1).   

The authors downplayed the likelihood of vimentin playing a role in the 

pathogenesis of myocardial contractile dysfunction.  However, mice with overexpressed 

Annexin A6 had decreased contraction and relaxation of cardiac myocytes as well as 
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dilated cardiomyopathy [117], suggesting that if autoantibodies to annexin A6 stimulate 

its function, then the result would be suppression of myocardial activity.   

 

3.3 – Immune cell involvement in systemic lupus erythematosus 

SLE is, at its core, a disease of the immune system, so a deeper understanding of 

immune cell function in both normal and diseased states is critical for a comprehensive 

understanding of SLE.  Complementary studies by Dai [118] and Wang [109] show the 

evolution of a mass spectrometry-based interpretation of peripheral blood mononuclear 

cells (PBMCs) in SLE.  Dai et al. published their work in 2008 in which they compared 

the relative changes in the proteome of PBMCs of both healthy controls and SLE 

patients.  They employed the conventional approach of 2-DE and silver stain followed by 

MALDI-TOF/TOF to identify protein spots expressed at different levels.  A total of 20 

spots differed significantly between the SLE and control group with 11 being upregulated 

and 9 downregulated.  The findings of the study are summarized in Table 2.  Briefly, 

Immunoglobulin J chain, an early differentiation marker in B cells, was upregulated, as 

was calprotectin L1, a protein released by granulocytes and monocytes during activation.  

Interestingly, calprotectin L1 levels were associated with the severity of disease and at 

the same time were linked significantly to anti-dsDNA antibodies.  Glutathione S-

transferase was downregulated in SLE, which would reduce the cell’s ability to degrade 

reactive oxygen species, which may contribute to inflammation and tissue damage. 

Wang et al. [109] followed Dai two years later with an expanded study which 

employed the use of isobaric Tagging for Relative and Absolute protein Quantification 

(iTRAQ) as a means of studying PBMC proteome changes.  The iTRAQ method was  
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Table 2 - Contributions of Mass Spectrometry to Immunological Biomarker 

Discovery in SLE 

IMMUNE CELL INVOLVEMENT IN SLE Biomarker or Mechanistic 
Immunoglobulin J 
[118] 

MALDI-
TOF 

• Upregulated in SLE 2.46 fold 
• Early differentiation marker for B-cells  

Both 

Calprotectin 
L1[118] 

MALDI-
TOF 

• Upregulated in SLE 2.02 fold  
• Known marker of disease activity in RA  
• Released from granulocytes and 

monocytes during their activation 
• Significantly tied to SLEDAI and higher 

levels of anti-dsDNA antibodies and 
SLE-arthritis 

• May also inhibit Ig production 

Both 

Glutathione S-
Transferase 
[109,118] 

MALDI-
TOF and 
iTRAQ 2D 
LC-MS/MS 

• Downregulated in SLE 0.15 fold 
(p=0.001) in one study and vs. diseased 
and healthy controls 

• Lower GST results in higher ROS levels 
and increased oxidative stress 

Both 

Apolipoprotein A-
IV precursor [118] 

MALDI-
TOF 

• Upregulated in SLE 2.67 fold (p=0.010) 
• Similar results seen in RA [119] and 

Alzheimer’s Disease [120] 

Biomarker 

Zinc finger protein 
subfamily 1A [118] 

MALDI-
TOF 

• Upregulated in SLE 2.24 fold (p=0.041)  Both 

Zinc finger protein 
– Isoform 2 protein 
549 [109] 

iTRAQ 2D 
LC-MS/MS 

• Upregulated in active SLE vs. stable SLE 
(2.7160), RA (2.3824) and Healthy 
Controls (3.1042) 

Both 

Resistin [109] iTRAQ 2D 
LC-MS/MS 

• Upregulated in active SLE vs. stable SLE 
(3.6784) and Healthy Controls (2.2652) 

• Verifies Previous Findings 

Both 

S100-P [109] iTRAQ 2D 
LC-MS/MS 

• Upregulated in active SLE vs. stable SLE 
(2.9641), and Healthy Controls (2.6475) 

Both 

S100-A12 [109] iTRAQ 2D 
LC-MS/MS 

• Upregulated in active SLE vs. stable SLE 
(2.3374), RA (2.0595) 

Both 

Brain Acid Soluble 
Protein 1 [109] 

iTRAQ 2D 
LC-MS/MS 

• Upregulated in active SLE vs. stable SLE 
(2.1139), Healthy Controls (2.6622) 

Both 

Ras-related C3 
Botulism Toxin 
Substrate 2 [109] 

iTRAQ 2D 
LC-MS/MS 

• Downregulated in stable SLE (0.4663) 
vs. diseased controls 

Both 

SLE, Systemic Lupus Erythematosus; SLEDAI, SLE Disease Activity Index; Ig, 

Immunoglobulin; GST, Glutathione S-Transferase; LN, Lupus Nephritis; LC-MS/MS, 

Liquid Chromatography Tandem Mass Spectrometry; MALDI-TOF, Matrix Associated 

Laser Desorption/Ionization-Time of Flight; ESI, Electrospray Ionization 

Korte et al. 2012. 
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used with LC-MS/MS to allow multiplexing of samples (up to 8 per run), which not only 

saves time, but also reduces technical variability.  Using 6 samples each for active SLE, 

inactive SLE, rheumatoid arthritis (RA) as a diseased control and healthy patient samples, 

452 proteins with a variety of cellular locations and biological functions were identified 

and quantified.  Of these, 126 were either upregulated or downregulated across all the 

groups.   When compared to the 2008 data, this study showed a similar downregulation of 

glutathione S-transferase and upregulation of zinc finger proteins with similar fold 

changes in both experiments, but also identified several other known SLE regulators and 

novel functional candidates.  In total, 17 proteins were upregulated and 13 were 

downregulated in active vs. stable SLE.  The author’s choices for future study are listed 

in Table 1.  Known SLE and inflammatory proteins were identified, such as resistin and 

calcium-binding family of S100 proteins.  Additionally, several novel candidate proteins 

were identified, such as brain acid soluble protein 1 and ras-related C3 botulism toxin 

substrate 2, which have roles in apoptotic mechanisms in other diseases [121,122], but 

this was their first link to SLE disease activity. 

 

3.4 – Lupus nephritis 

 

 Lupus Nephritis (LN) must be considered in a discussion on the use of proteomic 

methods in lupus, because LN is one of the most common and most severe complications 

that can arise from SLE (~50%), leading to significant morbidity and mortality [1].  As 

with other renal disorders, a major diagnostic source for LN is urine.  The advantage of 

using urine as a screening method for presence or severity of disease is the non-invasive 
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nature of sample collection.  Urine studies also allow long-term observation of patients, 

allowing tracking of changes in the urine proteome associated with changing disease 

states.  SLE and LN biomarkers have been a topic of discussion dating back to the 1960’s 

and continue to be of interest today [111,123–125].  Recent proteomic studies have 

provided insight into novel urinary biomarkers for LN and are summarized in Table 3.   

Oates et al. [126] built on the ideas of urine protein quantification using 2-DE to 

train an artificial neural network capable of identifying potentially significant changes to 

urine proteomes immediately before validation by renal biopsy.  Briefly, 200 μg protein 

was collected from 20 different patients with SLE at the time of biopsy.  The recovered 

protein was denatured and separated using 2-DE.  A total of 213 protein spots across the 

20 patient gels were used to calculate protein abundance and an artificial neural network 

was trained to identify the class of LN based on the protein abundance profile.  The 

resulting neural network was able to successfully identify >86% of all positives and 

>92% of all negatives, with the exception of class V, where each false positive was 

present in a sample also positive for Class III or IV LN, which were correctly identified.  

The group then identified the most critical spots for determining sensitivity and subjected 

each to MALDI-TOF-MS, which identified 6 proteins: α-1 acid glycoprotein, α1 

microglobulin (2 spots), zinc α-2 glycoprotein (2 spots), and IgG κ light chain (Table 3).   

Early work successfully identified proteomic profiles of renal flare in SLE 

through the use of SELDI-TOF to identify protein signatures without the need to 

positively identify proteins. This allowed the identification of novel biomarkers, but the 

protein identification limitation of the SELDI-TOF technique prevented mechanistic 

inference and predictions [127].  Zhang et al. [128] provided both diagnostic and  
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Table 3 – Contributions of Mass Spectrometry to Biomarker Discovery in Lupus 

Nephritis 

LUPUS NEPHRITIS  Biomarker or Mechanistic 
α-1 acid 
glycoprotein [126] 

2-DE then 
MALDI-
TOF 

• Diagnosis and Class Identification of 
LN 

Biomarker 

α1 microglobulin 
[126] 

2-DE then 
MALDI-
TOF 

• Diagnosis and Class Identification of 
LN 

Biomarker 

zinc α-2 
glycoprotein [126] 

2-DE then 
MALDI-
TOF 

• Diagnosis and Class Identification of 
LN 

Biomarker 

IgG κ light chain 
[126] 

2-DE then 
MALDI-
TOF 

• Diagnosis and Class Identification of 
LN 

Biomarker 

α-1 Antitrypsin 
[128] 

SELDI-
TOF then 
LC-
MS/MS 

• Upregulated in the urine at baseline and 
2 months pre-flare until 4 months post-
flare 

Biomarker 

Albumin [128] SELDI-
TOF then 
LC-
MS/MS 

• Upregulated in the urine at baseline vs. 
flare 

Biomarker 

Hepcidin-20 
[128,129] 

SELDI-
TOF then 
LC-
MS/MS 

• Upregulated in the urine 4 months pre-
flare 

Biomarker 

Aldolase A [111] LC-
MS/MS 

• Autoantibodies more common in LN 
patients than SLE without LN 

• Antibody specific to 94-183 aa epitope 
may be LN-specific biomarker  

Biomarker 

SLE, Systemic Lupus Erythematosus; LN, Lupus Nephritis; LC-MS/MS, Liquid 

Chromatography Tandem Mass Spectrometry; MALDI-TOF, Matrix Associated Laser 

Desorption/Ionization-Time of Flight; ESI, Electrospray Ionization; SELDI, Surface 

Enhanced Laser Desorption/Ionization 

Korte et al. 2012. 
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mechanistic understanding of LN using longitudinal urine proteomics to assess the 

changes in the urine proteome before, during and after SLE renal flare by combining 

SLEDI-TOF with LC-MS/MS sequencing for protein identification.  Using a sample set 

of 145 urine specimens from SLE Class III, IV and V patients, they identified 27 low 

molecular weight proteins that showed significantly different levels of expression before, 

during or after SLE flare.  While no single peptide was present in all the flare or non-flare 

samples, combinations of two peptides were found that successfully differentiated 100% 

of the remission and pre-flare samples from flare and post-flare samples.  LC-MS/MS 

analysis identified multiple isoforms of α-1 Antitrypsin, albumin, and hepcidin as 

proteins of interest (Table 3).  Interestingly, Hepcidin-20 levels were only altered pre-

flare, which means Hepcidin-20 may be a useful indicator of impending flare, allowing 

modulation of clinical management to reduce severity and duration of the flare.  A follow 

up study two years later supported this idea and further presented IL-6 and INFα-

dependent upregulation of Hepcidin transcription as a possible mechanism of Hepcidin 

increase in LN [129]. 

A study using LC-MS/MS to characterize immune-reactive bands from 2-DE 

separated endothelial cell lysate with sera of SLE patients, other autoimmune conditions 

and healthy controls identified the glycolytic enzyme aldolase A as a candidate target 

antigen [111] (Table 3).  Moreover, this was found to be more common for LN patients 

than in SLE without LN (43.4% with LN vs. 11.1% without LN).  However, reactivity to 

aldolase A was not appropriately significant between LN and other inflammatory disease 

controls such as RA and polymyositis to be used as a stand-alone biomarker for LN.  The 
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authors did however note specificity of LN patient anti-sera to the 94-183 aa region of 

aldolase A over other autoimmune conditions. 

Suzuki et al. used a combination of SELDI-TOF [130] and MALDI-TOF [131] 

for evaluation of the urine proteome in pediatric LN (Table 4).  Four potentially 

significant biomarkers were identified including transferrin (Tf), ceruloplasmin (Cp), α1-

acid-glycoprotein (AGP), and lipocalin-type prostaglandin-D synthetase (L-PGDS), each 

with great significance (p<0.005, Table 3).  Significant increases of Tf, L-PGDS, and 

AGP were seen as early as 3 months before clinical diagnosis or worsening of LN.  Both 

Tf and AGP were also seen in adult forms of the disease [132], while L-PGDS is novel to 

pediatric LN diagnosis.  Cp has been implicated in global SLE, but was not found to be 

an effective metric for defining the course of LN in pediatric patients.  

 

 

3.5 – Neuropsychiatric systemic lupus erythematosus 

 

Neuropsychiatric SLE (NPSLE) is a potentially severe complication that varies in 

its prevalence between 9.5%-95% based on the literature cited and the diagnostic criteria 

[133].  Findings suggest that NPSLE can be present in a mild form in as many as 95% of 

SLE patients [134], making it more common but typically less severe than renal or 

cardiovascular complications.  Mood disorders and cognitive disorders are common 

symptoms and can be particularly challenging to diagnose in pediatric and adolescent 

patients due to the rapid emotional and physical changes that occur at those ages.  While 

acquisition of cerebral spinal fluid (CSF) is invasive, it has become routine in the  
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Table 4 - Contributions of Mass Spectrometry to Biomarker Discovery within 

Pediatric Populations of Lupus Nephritis Patients 

PEDIATRIC LUPUS NEPHRITIS  Biomarker or Mechanistic 
Transferrin (Tf) 
[130,131] 

SELDI-
TOF then 
MALDI-
TOF 
MS/MS 

• Upregulated in worsening disease and 
flares in pediatric patients 

• Plasma Tf  related to global SLE 
activity 

• Urine Tf was related to LN disease 
activity 

Biomarker 

Ceruloplasmin 
(Cp) [130,131] 

SELDI-
TOF then 
MALDI-
TOF 
MS/MS 

• Upregulated in pediatric SLE and LN, 
but cannot specify between different 
classes of LN activity 

Biomarker 

α1-acid-
glycoprotein 
(AGP) [130,131] 

SELDI-
TOF then 
MALDI-
TOF 
MS/MS 

• AGP from plasma is for global pediatric 
SLE  

• AGP from urine is specific to pediatric 
LN  

• Useful to anticipate renal flares 

Biomarker 

Lipocalin 
[130,131] 

SELDI-
TOF then 
MALDI-
TOF 
MS/MS 

• Type prostaglandin-D synthetase (L-
PGDS) – role in chemotherapy induced 
renal damage (plasma and urine)  

• Novel to LN  

Biomarker 

Aldolase A [111] LC-
MS/MS 

• Anti-aldolase A antibodies have been 
found to be more common in SLE with 
LN than SLE without LN (43.4% to 
11.1%)  

• Possible specificity for other 
autoimmune conditions via presence of 
antibodies to the 94-183 aa epitope 

Biomarker 

SLE, Systemic Lupus Erythematosus; LN, Lupus Nephritis; Tf, Tranferrin; AGP, α1-

acid-glycoprotein (AGP); LC-MS/MS, Liquid Chromatography Tandem Mass 

Spectrometry; MALDI-TOF, Matrix Associated Laser Desorption/Ionization-Time of 

Flight; ESI, Electrospray Ionization; SELDI, Surface Enhanced Laser 

Desorption/Ionization 

Korte et al. 2012. 
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diagnosis of many neurological diseases and therefore in addition to serum, CSF is a 

useful medium for proteomic study of NPSLE.  NPSLE research has focused on both 

biomarker identification for its diagnostic value as well as autoantigen identification for 

improved mechanistic understanding of the disease state and potential therapeutic 

development (Table 5). 

Lu et al. [94] found CSF and sera obtained from NPSLE patients to be reactive to 

rat, mouse and monkey brain homogenate when separated by 2-DE.  MALDI-TOF-TOF 

was used to identify immune-reactive proteins.  A total of 275 serum samples and 177 

CSF samples were included, giving a great deal of depth and statistical power to the 

study.  Briefly, four anti-ANA-positive serum samples, which did not react to Hep2 cells, 

were used as pilot samples.  Initial analysis of the reactive spots revealed an interaction in 

3 of 4 samples with α-internexin (INA), a highly conserved protein between rodents and 

humans (Table 5).  Recombinant human INA was then used in a western blot to confirm 

reactivity of sera as well as immunofluorescence with sera and anti-INA polyclonal 

antibody (pAb).  Both the sera and the pAb were found to react to cultured rat cortical 

neurons and the reactivity of sera was reduced by incubation with recombinant INA.  

These findings opened the door for analysis of the entire cohort of CSF and serum 

samples.  Using 2 standard deviations as a cutoff for positivity, 41.7% of the NPSLE 

samples of CSF were found to be positive for anti-INA antibodies (as compared to 0% of 

SLE with cerebral infarction, 7.1% of normal SLE controls, and 10% of other 

neurological diseases).  In total, the data showed reactivity in >40% of NPSLE patients in 

a dose dependent manner toward INA.  Longitudinal studies found that antibody levels 

were inversely proportional to cognitive level and declined after initiation of therapy and  
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Table 5 - Contributions of Mass Spectrometry to Biomarker Discovery in 

Neuropsychiatric SLE 

NEUROPSYCHIATRIC SLE Biomarker or Mechanistic 
Intermediate 
Filament α-
internexin (INA) 
[94] 

2-DE then 
MALDI-
TOF 

• Reactive antibodies found in NPSLE 
patient sera in 41.7% of patients (7.1% of 
SLE, 0% healthy controls and 10% of 
other neurological diseases) 

• Results verified [135] 

Both 

α-tubulin [136] MALDI-
TOF then 
Q-TOF 

• Autoantibodies were found in 36% of 
NPSLE, (vs. 4% of SLE and 0% HC) 

• More frequently seen in severe (50%) 
than mild (20%) NPSLE 

• Confirmed by LC-MS/MS [95]  

Both 

β-tubulin [136] MALDI-
TOF then 
Q-TOF 

• Previously identified in other autoimmune 
conditions such as multiple sclerosis and 
Guillain-Barre  

• Confirmed by LC-MS/MS [95]  

Both 

Crystalline αB [95] LC-MS/MS • Novel sera and CSF autoantigen for 
active NPSLE 

Both 

Esterase D [95] LC-MS/MS • Novel sera and CSF autoantigen for 
active NPSLE 

Both 

APEX nuclease 1 
[95] 

LC-MS/MS • Novel sera and CSF autoantigen for 
active NPSLE 

• More reactive in SLE than other 
autoimmune conditions 

Both 

60 kDa Heat Shock 
Protein [135] 

LC-MS/MS • Autoantibodies directed against cerebral 
lysates found in sera of NPSLE patients 
with WMH 

• Known to cause endothelial cell apoptosis 
and coronary artery disease 

• Results verified [124] 

Both 

Anti-Rab guanosine 
diphosphate 
dissociation 
inhibitor α (anti-
αGDI) [123] 

LC-MS/MS • Found in 80% of NPSLE patient sera with 
psychosis (vs. 5.3% of NPSLE without 
psychosis and none of the CNS control 
samples) 

Both 

NPSLE, Neuropsychiatric SLE; CSF, Cerebral Spinal Fluid; WMH, White Matter 

Hypertrophies [on MRI]; CNS, Central Nervous System; LC-MS/MS, Liquid 

Chromatography Tandem Mass Spectrometry; MALDI-TOF, Matrix Associated Laser 

Desorption/Ionization-Time of Flight 

Korte et al.  2012. 
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clinical remission.  Furthermore, mice immunized with INA plus LPS developed 

cognitive impairments similar to NPSLE and exhibited hippocampal and cortical neuron 

apoptosis, suggesting that the presence of anti-INA antibodies in the serum of patients 

was pathogenic. 

Ndhlovu et al. [136] identified α- and β-tubulin as target autoantigens for NPSLE 

using patient sera to probe isolated mitochondria from bovine brain followed by MALDI-

TOF analysis. Autoantibodies to β-tubulin have been identified in other CNS targeting 

autoimmune diseases such as Guillain-Barre syndrome, Multiple Sclerosis, and 

Sydenham’s chorea, but targeting of α-tubulin is potentially specific to NPSLE.  α-

tubulin autoantibodies were present in 36% of NPSLE patient sera, only 4% of SLE 

patients without neurological symptoms and none of the MS, epileptic or healthy control 

samples (Table 5).  Possibly due to the small size of the NPSLE population in the study 

(n=37), no correlation was seen between specific symptoms of NPSLE and the presence 

of α-tubulin autoantibodies in sera.  Larger patient population studies are needed to 

further explore the involvement of anti-α-tubulin antibodies in NPSLE. 

LC-MS/MS incorporates a direct front-end separation of complex samples to 

greatly increase the sensitivity of the procedure for low abundance protein detection.  LC-

MS/MS may be superior to MALDI-based techniques when dealing with complex 

samples.  Katsumata et al. found this to be true while attempting to uncover novel serum 

autoantibodies for SLE, in particular those involved in CNS syndromes [95].  Whole 

protein extracts from human neuroblastoma and glioblastoma cell lines were separated 

using 2-DE and reacted to patient sera.  It was determined that MALDI-TOF sensitivity 

was too low for effective protein identification in this case.  To address this concern, anti-
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sera from SLE patients with and without CNS syndromes was bound to Protein G-

Sepharose beads and incubated with the same cell line extracts.  Proteins pulled down 

with the Sepharose beads were analyzed with a LC-MS/MS method using a Q-TOF 

instrument.  Most of the 154 proteins identified by the LC-MS/MS approach were not 

identified in the 2-DE/MALDI-TOF analysis and 50 were found in the CNS group but 

not the non-CNS group.  After exclusion of previously described autoantigens, 11 

recombinant candidates showed reactivity against pooled serum of 28 patients with active 

CNS SLE by western blot analysis (5 of which were only detected by LC-MS/MS).  

These 11 candidates were then probed with sera of 106 SLE patients (42 with active CNS 

syndromes) as well as 100 healthy controls, resulting in a list of 5 confirmed 

autoantigens, 3 of which were novel (crystalline αB, esterase D and APEX nuclease 1, 

Table 1).  When compared to other diseased sera (RA, SSc, SS, and MS), levels of anti-

crystalline αB was not found to be significantly different. Anti-APEX nuclease 1 and 

esterase D, on the other hand, had significantly higher levels in SLE than in these disease 

controls and between CNS and non-CNS SLE sera.  APEX nuclease 1 is the major 

apurinic/apyrimidinic endonuclease in human cells and is found to be upregulated in 

tissues under oxidative stress and has a significant effect on apoptotic regulation in 

certain tissues [137].  The effects of esterase D are less well known. 

In a similar study, Kimura et al. used a combination 2-DE and LC-MS/MS with 

an ESI-LCQ instrument to obtain higher sensitivity for low abundance proteins [135].  

Patient sera from a NPSLE patient with white matter hyperintensities (WMH) on T2-

weighted MRI scan was reacted to a 2-DE rat cerebral lysate blot.  In total, 9 reactive 

spots were seen and 5 were analyzed by LC-MS/MS.  The 2 spots of greatest intensity 
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corresponded to 60 kDa Heat Shock Protein (Hsp60) [135], which functions to refold 

proteins that are misfolded and/or facilitate degradation of proteins that cannot be 

recovered [138].  Enhanced expression of Hsp60 can induce endothelial cell apoptosis 

and Hsp60 expression on the surface of endothelial cells have been reported to be directly 

related to coronary artery disease [139], opening the possibility of a similar relationship 

in the cerebral vasculature.  In a follow-up study of 180 patients with neurological 

diseases (including 15 with SLE) and 23 healthy controls, Kimura et al. showed that the 

titer levels of anti-Hsp60 were directly correlated to severity of WMH in the brain, 

suggesting the presence of anti-Hsp60 as both a diagnostic tool as well as a mechanistic 

agent in the development of NPSLE [124]. Although the authors chose to focus on 

Hsp60, the study also found SLE specific antibodies to α-internexin, β-actin, and glial 

fibrillary acidic protein (Table 5). 

Another study using LC-MS/MS also suggested a relationship between NPSLE 

exhibiting psychosis with anti-Rab GDI-α [123].  LC-MS/MS and WB analysis of sera 

found that 4 of 5 patients with NPSLE with psychosis (80%) expressed anti-Rab GDI-α 

(Table 5), while 1 of 13 patients with NPSLE and none with psychosis (5.3%) expressed 

the autoantibody, along with no expression in patients with multiple sclerosis (n=12), 

infectious meningoencephalitis (n=13), polyneuropathy (n=10), psychotic syndromes 

(n=10), or healthy controls (n=12).   

 

 

3.6 – Other uses for proteomics in the study of SLE 
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Aside from assessing differences in disease states, pharmacologic reactions can be 

measured using proteomic techniques.  Kao et al. [140] used a 2-DE and MALDI-TOF to 

investigate the changes to apoptotic-prone macrophages (APM) from lupus-prone 

NZB/W-F1 mice before and after treatment with cystamine, a known inhibitor of 

transglutaminase 2 (TG2) activities.  A number of the findings indicated that cystamine 

has anti-apoptotic affect in the APMs and suggests possible mechanism of this activity.  

Protein expression and enzyme activity of Caspase 3 were downregulated and anti-

apoptotic proteins APIP, PEBP4, and Bcl-2 were upregulated.  ERK 1/2 showed reduced 

phosphorylation after treatment in APMs, which also would result in survival of APMs 

and fewer apoptotic bodies to serve as potential targets for autoantibody production.  

Previous studies have shown that ERK 1/2 phosphorylation is increased with cystamine 

treatment in endothelial cells [141] and neuronal tissue [142], therefore the findings of 

decreased phosphorylation in APM may help further explain the development of SLE in 

specific tissues and lead to a more complete model of pathogenesis.  

Mass spectrometry can also be useful as a supplemental technique of a study.  In 

work primarily focused on genetics, D’souza et al. [143] utilized MALDI-TOF-MS to 

support the hypothesis that catalase polymorphisms affect the risk and severity of SLE.  

Oxidative processes resulted in the 4-hydroxy 2-nonenol (4-HNE) adducts on membrane 

catalase of red blood cells (RBCs).  MALDI-TOF was of great use in this situation 

because it allowed the positive identification of catalase from RBC membranes (an 

uncommon location) while migrating at a higher molecular weight, possibly due to 4-

HNE adducts.  Ye et al. [144] expanded on previous microarray data by selecting a gene 

that is upregulated in SLE (interferon-induced with tetratricopeptide repeats 1 - IFIT1), 
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creating a IFIT1 fusion protein with GST, and then using bead immobilized GST-IFIT1 

as bait to capture interacting proteins in white blood cell lysate.  MALDI-TOF was 

performed on the proteins pulled down in the procedure and found Rho/Rac guanine 

nucleotide exchange factor to be a potential target for IFIT1 interaction in SLE.  Follow 

up studies have supported the role of the interferon pathway in SLE and other 

autoimmune diseases [145–147].  

 

3.7 – Characterization of the Secretome of Cultured Cells 

 

Cell culture provides an opportunity to isolate a cell type from the organism to 

analyze its function in a controlled setting.  It is not possible to replicate all biological 

events which would take place in a mammalian system, but experimental models utilizing 

cell culture for initial discovery can be useful to identify low abundant targets or factors 

from specific cell populations which would otherwise be masked in a typical body fluid 

sample.   

The global hypothesis of this dissertation succinctly states that podocyte activity 

can promote the development of GN, and that ABIN1 is important to prevent 

inflammation in local tissues.  This is not, however, to say that cells of the immune 

system are not involved.  NF-κB-mediated signaling events in mesangial cells and 

podocytes are known to promote synthesis and secretion of pro-inflammatory cytokines 

and chemokines which recruit neutrophils, macrophages and other immune cells to 

tissue[148–152].  Normal immune cell functions in these tissues include clearing of 

infectious material and cellular debris, while inappropriate or excessive recruitment by 
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podocytes and mesangial cells to otherwise healthy tissue can lead to inflammatory 

damage.  The renal secretome is an incompletely characterized collection of factors 

released by the cells of the kidney[152].  We characterized the normal secretome of 

podocytes and simultaneously investigated ABIN1-related changes to the secretome 

which may attract excessive numbers of immune cells to the kidney, resulting in local 

conditions which may promote LN [148–151,153–158].  This was accomplished through 

a relatively unbiased analysis of the secretome of each cell type under varying conditions 

with two-dimensional liquid-chromatography tandem mass spectrometry (2D-LC-

MS/MS).     

Method development focused on establishing a sample of appropriate purity but 

with sufficient chemical properties suitable for LC-MS/MS analysis.  Three factors were 

of great importance:  (1) the chosen stimulant, TNF-α, could mask low abundant 

cytokines via ion suppression and additionally would hinder measurement of TNF-α 

produced by the podocyte, (2) the proteomic makeup of the cell culture media would 

have to be sufficient for LC-MS/MS analysis, and (3) the media had to be sufficient for 

proper podocyte cell functions and could not induce unnecessary stress on the cells which 

would undoubtedly affect their inflammatory profile.  Podocyte cell culture media is 

comprised of 10% FBS, which contains a host of protein “contaminants”, and phenol red 

can confound LC-MS/MS analysis and should be avoided.  In addition to the chemical 

components of the media, the timing of stimulation and sample collection need to be 

optimized for each cell type used and for each stimulant.   Following a number of 

preliminary experiments, I arrived at a protocol which accomplished all of these 

preconditions.   Podocytes were stimulated in 10cm dishes for 6 hours in 10mL serum-
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free media, followed by 3 washes in 10mL warm Krebs buffer, and a 6 hour collection in 

warmed Krebs buffer.  Figure 8 outlines the kinetic properties of cultured podocytes 

stimulated from 0-18 hours with TNF-α and shows that a 6 hour stimulation was 

sufficient to induce production of 3 important proinflammatory cytokines, MCP-1, GM-

CSF, and IL-8.  In addition, I also was able to remove the TNF-α used for stimulation to 

below detectible levels of our ELISA assay (<<2 pg/mL).  This was important for both 

LC-MS/MS analysis as well as downstream characterization of these samples using 

biological methods (see Chapter V).   

Once optimal timing and media components were achieved, sample analysis had 

to be addressed.  Most cytokines are small proteins and we have found that sample purity 

is increased through a 10 minute centrifugation in an Amicon Ultra-30kDa Centrifugal 

Filter Unit (Millipore, Billerica, MA) to remove proteins larger than 30 kDa, followed by 

standard trypsin digest and LC-MS/MS sample preparation as described in the materials 

and methods.  Figure 9 shows protein identifications without this cutoff and includes a 

number or large, high abundant proteins such as fibronectin and actin.  Figure 10 outlines 

proteins identified after the 30 kDa cutoff was applied before trypsin digestion.  A 

number of cytokines expected to play a role in GN are shown to be upregulated in the 

podocyte secretome, including IL-6, MCP-1 (CCL2) and the cell adhesion molecules 

VCAM1 and ICAM1.  The benefit of mass spectrometry-based approaches is the ability 

to identify novel proteins from a given sample, and a number of promising candidates for 

future study were identified such as transgelin and TIMP1 which have a role in matrix 

remodeling and perlecan, filamin, cofilin and moesin.  Of note, a side project involving  
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Figure 8 – Kinetics of Cytokine Secretion by Podocytes in Response to TNF-α 

Stimulation 

Podocytes were produced and treated as described in the Materials and Methods.  

TNF-α stimulation (100ng/mL) at time points from 0-18 hours was used to 

determine the kinetics of cytokine production using ELISA to measure cytokine in 

pg/mL.  It was found that from 0-6 hours of TNF-α stimulation, TNF-α response 

resulted in high levels of cytokine production.  Further, the wash step following the 

18 hour time point resulted in all analytes dropping below their detectible level for 

their respective assays, and this included TNF-α which was the stimulant. 

Erik Korte.  Unpublished.   
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 Figure 9 - Identification of Total Protein Secreted from Cultured Podocytes 

Cell culture supernatant was prepared from cultured podocytes as described, 

digested and prepared for LC-MS/MS analysis.  Identified peptides were 

predominantly highly abundant matrix proteins and large cytosolic proteins, rather 

than the typically small (<30kDa) cytokines and chemokines.  This analysis 

identified 932 proteins and 35,075 unique spectra. 

Erik Korte.  Unpublished.   
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Figure 10 – Identification of Proteins Secreted by Podocytes Following 30 kDa 

Size-Selective Filtration 

Most cytokines and chemokines are small peptides of less than 30 kDa.  Thus, to 

prevent contamination and ion suppression from highly abundant proteins, an Amicon 

Ultra-30kDa Centrifugal Filter Unit from Millipore was used to remove proteins larger 

than 30 kDa before tryptic digestion.  The heatmap represents the Protein Abundance 

Factor (PAF) which provides a quantitative value for each identified peptide while 

taking into account the total protein’s size, with the understanding that larger proteins 

will produce more digested peptide fragments and thus will artificially result in higher 

numbers of peptide identification.   

Erik Korte.  Unpublished.   

Symbol WT D472N WT D472N
VIM  120.960 65.491 101.780 68.065
IL6  5.125 6.742 4.425 10.256
TAGLN  5.125 12.520 6.638 16.783
HSPG2  18.451 52.008 17.701 61.538
SCRN1  1.025 2.889 1.106 4.662
GREM1  3.075 9.631 4.425 8.392
LGALS3BP  1.025 10.594 1.106 8.392
SERPINH1  5.125 9.631 5.532 9.324
CNN3  6.150 10.594 4.425 10.256
LUM  5.125 9.631 4.425 10.256
ANXA3  4.100 7.705 2.213 10.256
TMSB4X  13.326 22.151 17.701 11.189
SERPINA1  18.451 29.856 21.020 38.228
MSN  29.726 41.414 42.040 50.350
STIP1  13.326 10.594 12.169 7.459
FLNC  12.301 9.631 8.850 7.459
CFL1  37.927 15.410 29.870 13.986
TPT1  2.050 6.742 4.425 4.662
CCL2  4.100 3.852 5.532 4.662
COL4A1  1.025 8.668 1.106 4.662
ILF3 4.100 5.779 6.638 5.594
BMP1  1.025 4.816 1.106 5.594
C1S  2.050 5.779 1.106 5.594
NPC2  3.075 2.889 2.213 5.594
VCAM1  0.000 0.000 1.106 5.594
TIMP1  5.125 7.705 5.532 7.459

Unstim TNF-α Stimulated
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moesin has suggested it may be directly involved in the pathogenesis of GN as an 

autoantigen for a small population of patients with membranous glomerulonephropathy.   

 

 

3.8 – Conclusions 

 

Many of the studies presented in this review were aimed at using proteomic applications 

to define events in specific SLE complications, but it is our view some of these 

discoveries could also provide insight into other areas of SLE or that approaches applied 

to similar diseases could be modified for use in SLE.  Recent studies have shown the use 

of MALDI-TOF techniques for synovial fluid analysis in autoimmune arthritis [159], 

which could be used to assess changes in SLE arthritis.  Kimura et al. [135] identified a 

60 kDa Heat Shock Protein as an autoantigen in NPSLE, a protein with known ties to 

coronary artery disease and endothelial cell apoptosis [139,160,161] which may play a 

role in the development of cardiovascular SLE.  Several studies have shown the benefits 

of proteomics using bronchoalveolar lavage fluid (BALF) as a sample for the study of 

sarcoidosis [162], systemic sclerosis [163,164], and other pulmonary diseases [165,166].  

The use of BALF for the study and diagnosis of pulmonary complications in SLE would 

be less invasive and safer than biopsy.  Tamburro et al. [167] recently published a 

proteomic review of the vitreous humor of the eye.  Contrasting these findings to the 

proteome of SLE patient’s vitreous humor could shed more light on the pathogenesis of 

retinopathy in SLE. Dai et al. [118] found Immunoglobulin J to be upregulated in 

peripheral blood mononuclear cells.  Other mass spectrometry-based techniques could be 
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used such as multiple reaction monitoring (MRM) and Selected Reaction Monitoring 

(SRM) LC-MS/MS, which allows focused study on only m/z ratios of interest, reducing 

sample processing time and greatly increasing throughput.  After the initial biomarker 

discovery stages, MRM/SRM has been used as a tool in biomarker validation in blood 

[168] and synovial fluid, specifically in RA patients [169].  Additionally, the speed and 

potential for multiplexing means MRM/SRM could have clinical utility in patient 

diagnosis, prognosis, and monitoring [170].  We used a LC-MS/MS approach to identify 

the M-type phospholipase A2 receptor (PLA2R) as the target antigen in idiopathic 

membranous nephropathy (iMN) [5]. Antibodies recognizing the PLA2R were present in 

70% to 80% of iMN patients.  However, they are not present in any patients with 

membranous lupus nephritis (MLN), which develops in up to 40% of patients with LN 

[171].  This suggests that there are unique autoantibodies directed against specific kidney 

proteins other than the PLA2R in MLN. Therefore, proteomic studies could be designed 

to identify such target antigens as well as specific epitopes important in MLN.   

Even with the strides we have made in the understanding of SLE, it is still a 

debilitating condition effecting hundreds of thousands of patients every year.  While 

treatments are available, they bring with them significant side effects and frequent failure 

rates.  Recent advances in mass spectrometry technology have allowed an even more 

thorough analysis of complex samples to better understand the significance of minute 

changes in the pathogenesis of SLE, while accommodating large sample sizes through 

multiplexing and high throughput methods.  The method I outline here can serve as a 

starting point for optimization of LC-MS/MS analysis for the secretomes of many diverse 

cell populations and may have applications in primary body fluid as well.  The options 
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researchers or clinicians have in mass spectrometry techniques are rapidly expanding and 

have the ability to be tailored to a specific study.  It is my hope that the characterization 

of the potential applications of mass spectrometry will provide a greater knowledge of the 

diverse uses of mass spectrometry and other proteomic technologies in the study of SLE, 

GN and other conditions.  While a proteomic understanding of disease is by no means a 

panacea, it offers the potential to help advance our knowledge and understanding of SLE 

to a point that the disease could be less of a burden for those afflicted. 
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CHAPTER IV 

 

ABIN1 DYSFUNCTION AS A GENETIC BASIS FOR LUPUS NEPHRITIS 

 

4.1 – Introduction 

 

 As stated previously, SLE is a multi-system autoimmune disease that is 

characterized by an abnormal immune response leading to autoantibody production, 

immune complex formation, T cell activation, and inflammatory cytokine release [8]. 

Multiple factors contribute to SLE and LN is a frequently associated condition which is 

devastating to the patient [8,10].  The pathogenesis of LN is variable among different 

ethnic groups showing a genetic link, but current therapies are ineffective in half the 

population and carry major side effects [4,14].   

Our lab has previously characterized SLE-like autoimmunity in a mouse model 

expressing ABIN1[D485N] [53].  Due to the more than casual relationship between SLE 

and LN, I asked if these mice could present a renal phenotype which would shed light on 

the major glomerular events in the pathogenesis of LN.  A major symptom of renal 

dysfunction is protein loss into the urine from resulting from glomerular damage [16].  

Urine albumin:creatinine ratios (UAC) present a method for analysis of spot urine by 
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measure the serum protein albumin against the level of creatinine in the urine which is 

freely filtered into the urine and not secreted to a great degree by tubule cells, and thus 

provides an appropriate normalization factor for glomerular filtration compared to 

reabsorption of water in the tubules [172].   

Physiological changes in both mouse models and human disease include foot 

process effacement and expansion of the mesangial matrix and will be described in this 

spontaneous model of autoimmunity to further suggest a GN-like phenotype [17].  

Complement component 3 (C3) plays a central role in the innate immune response and 

inflammation, and low serum C3 is a diagnostic criteria for SLE [173].  Here I seek to 

characterize the changes in this model of spontaneous autoimmunity as it pertains to 

human disease, and begin to identify the molecular mechanisms responsible for the 

pathogenesis of LN with the hope to define more specific diagnostic and therapeutic 

targets.  

 

 

4.2 – Results 

 

Renal Pathophysiology of ABIN1[D485N] knock-in mice 

We reported previously that ABIN1[D485N] mice develop antibody-mediated 

glomerulonephritis [53]. The aim of this study was to provide a complete characterization 

of the renal abnormalities in these mice.  Table 6 presents the evaluation of the histologic 

grading of glomerular changes in wild-type (WT) and ABIN1[D485N] mice at 3-4 

months and 5-6 months of age. The scoring system used for histologic grading is  
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described in Chapter 2. Glomerular size, mesangial and endocapillary proliferation, and 

mesangial expansion in ABIN1[D485N] mice were all significantly increased by 3-4 

months. By 5-6 months ABIN1[D485N] mice demonstrated a significantly progressive 

increase in glomerular size, endocapillary proliferation, and mesangial expansion, when 

compared to 3-4 month old ABIN[D485N] mice (Figure 11a).  All mice at 3-4 months of 

age demonstrated glomerular hypercellularity, with 50% showing severe (3+) changes.  

Hypercellularity was focal in 2 mice and diffuse in 9. At 5-6 months all mice showed 

diffuse hypercellularity and all but one were histologically graded as severe (3+).  An 

increase in mesangial matrix was seen in 8 of 11 mice at 3-4 months, but was only mildly 

increased in 3 of those 8 mice.  At 5-6 months, all but one mouse demonstrated a 

moderate to severe increase in mesangial matrix.  Crescents were only observed in 2 mice 

at 5-6 month, and glomerular sclerosis was seen in 4 of those mice.  

Table 6 and Figure 11b show that there was a significant amount of interstitial 

inflammation in ABIN1[D485N] mice at 3-4 months of age, while little or no tubular 

atrophy or interstitial fibrosis was observed.  By 5-6 months, there was a significant 

increase in interstitial inflammatory cell infiltration, tubular atrophy and interstitial 

fibrosis (Figure 11b).  Mild interstitial inflammation was seen in only 4 of 11 mice at 3-4 

months.  By 5-6 months, all mice had some degree of interstitial inflammation, which 

was moderate or severe in 8 of 11 mice.  Mild, patchy tubular atrophy was seen in less 

than 50% of mice in each age group.  A sparse amount of tubulointerstitial fibrosis (TIF) 

was seen in 2 of 11 mice at 3-4 months and mild to moderate TIF was observed in 6 of 11  
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Figure 11 – ABIN1[D485N] Mice Develop Severe Progressive GN 

Glomerular, interstitial, and tubular pathology was assessed by evaluation of a complete 

cross- section of an entire kidney in a blinded manner. Glomerular damage was assessed 

by semiquantitative scoring of size, cellularity, mesangial matrix expansion, crescent 

formation, and sclerosis on a 0 (normal), 1+ (mild abnormality), 2+ (moderate 

abnormality), and 3+ (severe abnormality)  scale. The semiquantitative scoring of  

interstitial  inflammatory cell infiltration, interstitial fibrosis, and tubular atrophy was 

based on the percentage of interstitium area affected: 0, normal; 1+, <25% of interstitial 

cross-section affected; 2+, 25%–50% of interstitium affected; 3+, >50%  of interstitium 

affected in a single cross-section of an entire kidney. An activity index was calculated as 

the sum of individual scores for glomerular size, glomerular hyper- cellularity, cellular 

crescents, mesangial expansion, and interstitial inflammation. We also determined 

whether the lesions were focal (involving <50% of the glomeruli) or diffuse (involving 

>50% of the glomeruli). 

Caster/Korte et al.  2013. 
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mice at 5-6 months. There were no differences in histologic injury between male and 

female mice.  

Figure 12 shows that the urine albumin to creatinine (UAC) ratio was 

significantly elevated in 3-4 month old ABIN1[D485N] mice compared to WT. The urine 

albumin excretion did not increase further in 5-6 month old ABIN[D485N] mice. 

Surprisingly, serum C3 was found to be significantly higher in 3-4 month old 

ABIN1[D485N] animals compared to WT mice, but C3 was markedly decreased in the 5-

6 month old ABIN1[D485N] mice (Figure 13). Our previous study showed that 

antinuclear antibodies were present by 3-4 months of age in ABIN1[D485N] mice [53]. 

The following figures include representative examples of the histology depicted in 

Table 6 and Figure 11.  Figure 14b shows a glomerulus from an ABIN1[D485N] mouse 

at 4 months of age demonstrating mild mesangial and endocapillary hypercellularity with 

little or no mesangial matrix expansion or interstitial inflammatory infiltrate, and Figure 

14a shows a glomerulus from a WT mouse for comparison. Figure 14c shows a 

glomerulus from a WT 6 month old mouse.  Figure 14d, Figure 15, and Figure 16 show 

the more severe glomerular changes seen in 5-6 month old ABIN[D485N] mice.  Figure 

14d shows a glomerulus with moderate mesangial and endocapillary cell proliferation 

and a thickened capillary loop wall typical of “wire loops” (arrow). Figure 15 shows an 

example of severe glomerular hypercellularity, marked mesangial matrix expansion, and 

severe interstitial cell infiltration (arrow).  Figure 16 shows a glomerulus with crescent 

formation (arrow), glomerular sclerosis, and interstitial fibrosis.  

Figure 17a shows a transmission electron micrograph (TEM) from a 6 month old 

wild type mouse. Figure 17b shows a TEM from a 4 month old ABIN1[D485N] mouse  
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Figure 12 – Urine Albumin to Creatinine is Elevated in ABIN1[D485N] Mice 

Urine albumin-to-creatinine ratio of 3- to 4-month-old and 5- to 6-month-old 

ABIN1[D485N] and WT mice (total n=82) show significant protein loss into the urine 

by 3-4 months of age in ABIN1[D485N] mice compared to ABIN1 WT.  Significance 

was calculated using Mann-Whitney rank order analysis (* p<0.05 and ** p<0.001). 

Caster/Korte et al.  2013. 
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Figure 13 – Complement Component 3 Levels are Reduced in Late Disease 

Reduced serum C3 levels are a clinical sign and diagnostic factor of SLE.  Using the 

same cohort as that described in Figure 12, serum C3 levels were assessed and found to 

be lower than WT mice in older animals, although higher than WT in the younger 

animals.   Significance was calculated using Mann-Whitney rank order analysis (*** 

p<0.0005). 

Caster/Korte et al.  2013. 
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Figure 14 – Renal Histology of WT and ABIN1[D485N] Mice 

Renal histology in wild-type and ABIN1[D485N] mice. (A) 100X magnification of a 

Periodic acid-Schiff (PAS) stained kidney section from a 3-4 month old wild-type (WT) 

mouse. (B) A comparative 100X PAS image shows that at 3-4 months the 

ABIN1[D485N] mouse kidneys display mesangial hypercellularity, matrix expansion and 

capillary loop thickening as compared to WT mouse kidneys. (C) 100X magnification of 

a Periodic acid-Schiff (PAS) stained kidney section from a 5-6 month old wild-type (WT) 

mouse. (D) A comparative 100X PAS image shows that at 5-6 months the 

ABIN1[D485N] mouse kidneys display severe mesangial hypercellularity, matrix 

expansion and “wire loops” (arrow) compared to WT mouse kidneys.  

Caster/Korte et al.  2013. 
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Figure 15 - ABIN1[D485N] Mice Exhibit Interstitial Inflammation 

Representative 40X magnification PAS stain showing glomerular injury and extensive 

interstitial immune cell infiltration (arrow) observed in 5-6 month ABIN1[D485N] mouse 

kidneys. 

Caster/Korte et al.  2013. 
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Figure 16 - ABIN1[D485N] Mice Exhibit Interstitial Fibrosis 

Representative 40X magnification of Masson's trichrome staining showing examples of 

tubuleinterstitial fibrosis, glomerular fibrosis and crescent formation (arrow) and immune 

cell infiltration (lower right corner) in 5-6 month ABIN1[D485N] mouse kidneys. 

Caster/Korte et al.  2013. 
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Figure 17 - ABIN1[D485N] mouse glomeruli display mesangial and subendothelial 

deposits. 

(A) TEM image of WT mouse kidney (large arrow, erythrocyte; small arrow, endothelial 

cell). (B) Minimal mesangial expansion and immune deposits (small arrows) in a TEM 

image of a 4-month-old ABIN1[D485N] mouse kidney. Podocyte foot processes are 

intact. The large arrow points out a monocyte in a capillary. (C) Extensive mesangial 

expansion and immune deposits (small arrows) in a TEM image of a 6-month-old 

ABIN1[D485N] mouse kidney. The large arrow points out a monocyte in a capillary. (D) 

Example of subendothelial immune deposits (long small arrow), areas of podocyte 

effacement (short small arrow), and mesangial immunoglobulin deposits (large arrow) in 

a 6-month-old ABIN1[D485N] mouse kidney.   Caster/Korte et al.  2013. 
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demonstrating moderate mesangial expansion and small electron dense deposits in the 

mesangium (small arrows).  Podocyte foot processes are intact. The large arrow points 

out a monocyte in a capillary.  TEM in Figure 17c shows extensive mesangial expansion 

and mesangial deposits in a 6 month old ABIN1[D485N] mouse kidney (small arrows). 

The large arrow points out a monocyte in a capillary.  Figure 17d shows a TEM from a 6 

month old ABIN1[D485N] mouse demonstrating subendothelial (long, small arrow) and 

mesangial (large arrow) electron dense deposits and focal foot process effacement (short, 

small arrow).  

Figure 18 shows immunofluorescence (IF) images of 5-6 month ABIN1[D485N] 

kidneys demonstrating IgG, IgA, IgM, C3, and C1q deposition along capillary loops and 

in the mesagium. IF from 3-4 month old ABIN1[D485N] mouse kidneys showed mild 

deposition of immunoglobulin and complement within the mesangium (not shown).   

Our results show that loss of ABIN1 function in NF-κB activity is associated with 

the development of proteinuria and proliferative glomerulonephritis with features typical 

of class III and IV LN. Those changes become progressively worse between 3 and 6 

months, at which time they are associated with low serum C3 levels. From our animal 

data, we postulated that genetic alterations in ABIN1 leading to dysregulation of NF-κB 

and MAPK activation could be involved in the development of LN. This hypothesis led 

us to evaluate SNPs in the gene for ABIN1, TNIP1, in SLE patients with and without LN. 

 

Association of TNIP1 SNPs and Human Lupus Nephritis 

To investigate a clinical relevance for ABIN1 dysfunction in human lupus nephritis (LN), 

5 SNPs in TNIP1 previously associated with autoimmune diseases, including SLE, were  
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Figure 18 - Deposits in ABIN1[D485N] glomeruli contain complement factors and 

immunoglobulins. 

The panels show examples of the immunofluorescence staining that was observed for the 

different labeled complement factors and immunoglobulin subtypes in kidneys from 5 to 

6-month-old ABIN1[D485N] mice. No significant immunofluorescence was observed 

for age-matched WT mice. 

Caster/Korte et al.  2013. 
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genotyped in a total of 16,999 individuals of European-ancestry (EA), African American 

(AA), Asian, Gullah and Hispanic as described in Chapter 2 (Table 7) ([65]). After 

applying quality control assessment, we studied 15,864 individuals consisting of 3,089 

SLE cases with LN, 4,308 SLE cases without LN, 1,097 SLE cases with unknown status 

of LN, and 7,492 healthy controls (Table 8). To evaluate evidence for genetic association, 

we performed single-marker logistic regression analysis adjusting for gender and global 

ancestry estimates. Comparing SLE cases with lupus nephritis to SLE cases without LN 

(case/case analysis) showed strong associations surpassing the Bonferroni corrected 

significant threshold P < 0.01 at rs7708392 in EAs (P = 3.66 x 10-4, odds ratio (OR) = 

1.22) and rs4958881 in AAs (P = 8.47 x 10-3, OR = 1.22) (Table 9). No SNPs reached the 

Bonferroni corrected significant threshold in other populations. Analysis of SLE cases 

with LN versus healthy control subjects confirmed the validity of our case only analysis 

(rs7708392 in EAs: P = 1.82 x 10−11, OR = 1.44; rs4958881 in AAs: P = 4.43 x 10-3, OR 

= 1.20). Overall, our results indicate that polymorphisms in the region of TNIP1 are 

associated with LN in EAs and AAs.   

 

 

4.3 – Discussion 

 

 Here I show that a knock-in mouse expressing an ABIN1 mutant, 

ABIN1[D485N], with impaired negative regulation of NF-κB, developed progressive, 

proliferative glomerulonephritis with histologic features of class III and IV human lupus 

nephritis (LN), and 2 SNPs of the ABIN1 gene, TNIP1, are significantly associated with 
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Table 7 - Sample summary before quality control adjustments. 

 

 
Caster/Korte et al.  2013. 
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Table 8 - Sample Summary Following Quality Control Adjustments 
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human LN. A role for NF-κB in the incidence and severity of LN was suggested 

previously by the correlation of enhanced NF-κB protein expression in disease kidney 

sections or reduction of disease phenotypes in animal models after administration of 

compounds that indirectly inhibit NF-κB signaling [30–34]. Although the mechanisms 

regulating those effects of NF-κB on LN have not been determined, these data provide a 

potential mechanism for NF-κB dysregulation in some patients with LN.  

K63 and linear polyubiquitin conjugation mediates a number of protein-protein 

interactions required for activation of the IκB kinase (IKK) complex and hence NF-κB 

transcription [56,174–176]. ABIN1 contain a polyubiquitin binding domain (UBD) that is 

also present in NEMO, termed UBAN (Ubiquitin-Binding domain in ABIN proteins and 

NEMO) [62]. . The UBAN in ABIN1 contains a highly conserved region consisting of 

amino acids 472-480 in humans and 485-495 in mice [62]. The Asp to Asn mutation at 

this conserved residue 485 (mouse) or 472 (human) of the UBAN renders ABIN1 

incapable of binding recombinant Lys63 and linear polyubiquitin chains and 

polyubiquitinated NF-κB activators from cell lysates [44,50,51,53,62]. We previously 

reported that ABIN1[D485N] knock-in mice have enhanced NF-κB signaling in B cells 

and bone marrow-derived macrophages and developed a SLE-like autoimmune disease, 

with enlarged spleens and lymph nodes, elevated levels of pathogenic immunoglobulins, 

and antinuclear antibodies in the serum as early as 4 months of age [53]. The present 

report shows that those mice develop proteinuria by 3-4 months of age, 

hypocomplementemia by 5-6 months, and renal histologic abnormalities including focal 

and diffuse glomerular hypercellularity involving both endocapillary and mesangial cells, 

increased mesangial matrix accumulation, “wire loop” thickening of glomerular capillary 
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walls, immunoglobulin (IgG, IgA, and IgM) and complement deposition in a mesangial 

and capillary loop pattern, and mesangial and subendothelial electron dense deposits by 

electron microscopy. Those findings suggest that ABIN1[D485N] knock-in mice provide 

a model of human SLE, including the development of class III/IV LN. Our model 

indicates that SLE and LN can be initiated by disruption of ABIN1 NF-κB inhibitory 

function, at least in part, in B cells. Another recent report showed that ABIN1-deficient 

mice develop progressive lupus-like autoimmune phenotypes and glomerulonephritis 

[52]. In addition to NF-κB activation, we also showed in a previous report that JNK and 

p38 MAPK signaling was enhanced after stimulation with TLR agonists in B cells, bone 

marrow-derived macrophages (BMM), and dendritic cells isolated from ABIN1[D485N] 

mice [53]. A role for enhanced MAPK signalling in the development of 

glomerulonephritis (GN) has been suggested in several reports [177–180]. Stambe et al. 

showed that there was enhanced active p-p38 MAPK in glomeruli, tubules, myofibroblast 

and infiltrated neutrophils and macrophage in kidney biopsies from patients with 

different types of proliferative GN, including class III/IV LN and that elevated p-p38 

MAPK correlated with renal dysfunction and histopathology [180]. The same group 

showed in a separate study that administration of a specific p38 MAPK inhibitor 

prevented renal injury and renal function loss from anti-glomerular basement membrane 

(GBM)-induced GN in rats [179]. Another report showed that proteinuria and glomerular 

cell proliferation-induced by anti-GBM was dependent on JNK activity in bone-marrow 

macrophages [177]. Taken together, the present study and the previous reports support 

the hypothesis that loss of ABIN1 K63 and linear polyubiquitin binding results in 

increased NF-κB and MAPK activity and participates in the development of SLE and LN.  
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Variants in the ABIN1 gene TNIP1 have been reported in SLE patients, 

suggesting a role for ABIN1 in human autoimmune disease [65,67,68]. Gateva et al. 

showed an association for a TNIP1 variant (rs7708392) in European-Ancestry American 

and Swedish SLE patients [67]. Han et al. also reported a TNIP1 variant (rs10036748) in 

a Chinese Han SLE population [68]. This SNP also showed significant association with 

European population, and the frequency (77%) was much higher in the European 

population than in the Chinese population (26%) [68]. Both of these variants are in non-

coding regions of TNIP1, and the functional consequence and association with LN were 

not reported. The associations of those TNIP1 variants were also replicated in Japanese 

(rs7708392) and Chinese Han (rs10036748) populations [181,182]. There was a stronger 

association for rs7708392 with LN in the Japanese population [181]. A replicate study of 

rs7708392 and rs10036748 in a southwest Chinese SLE population found a weak 

association, but as for the Japanese population, a significant association for rs7708392 

with LN in their SLE population was apparent [69]. Consistent with those previous 

reports, the current study found association (P = 3.66 x 10-4, odds ratio (OR) = 1.22) for 

rs7708392 when comparing American SLE patients of European-Ancestry with LN vs. 

those without LN, but this association was not significant in African, Asian or Hispanic 

American cohorts. The discord for the finding in our Asian cohort and the reported 

finding in southwest Chinese and Japanese populations with regards to LN association 

may be explained by the composition of our Asian population of 1012 total patients, 

which was 90% Korean. The present report also identified association for another TNIP1 

variant (rs4958881) (P = 8.47 x 10-3, OR = 1.22) in African American SLE patients with 

LN vs. those without LN. rs4958881 was previously reported to be associated with 
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systemic sclerosis (SSc), but not SLE [71]. Additionally, ABIN1 expression was 

decreased in SSc skin lesions and in dermal fibroblast from SSc patients, compared to 

controls, and transgenic expression of ABIN1 abrogated matrix protein expression 

induced by inflammatory cytokines in fibroblast from SSc patients [71]. This suggests 

that the rs4958881 variant could result in lower renal expression of ABIN1 in LN, 

leading to increased mesangial cell matrix production typically seen in class III and IV 

LN in humans [10] and found in the ABIN1[D485N] knock-in mice.  

 In summary, these data suggest that mutations in ABIN1 represent a new genetic 

basis for LN through the novel pathophysiologic mechanism of aberrant regulation of 

NF-κB and MAPK activity (Figure 19). This is supported by knock-in mice expressing a 

mutation of ABIN1 with loss of NF-κB and MAPK inhibitory function and a strong 

association of a novel TNIP1 polymorphism and LN in a SLE patient population with a 

higher incidence of LN. Our findings support an association between polymorphisms in 

TNIP1 and the development of LN. This mouse model closely replicates the human 

disease and, therefore, potentially serves as an effective tool to study diagnostic and 

therapeutic strategies for LN.     
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Figure 19 - ABIN1 aberrant regulation of NF-κB and MAPK signaling in LN. 

Pro-inflammatory gene activation is mediated by activation of the upstream I kappa B 

kinase (IKK) complex or MAPK kinases (MKK) activation of JNK or p38 MAPK. IKK 

and MKKs are activated by an Inflammatory Activating Complex (IAC) consisting of 

IRAKs, TRAFs, RIPs, and TAK1, among others. ABIN1 binds to K63-linked and linear 

polyubiquitin chains and inhibits components of the IAC or IKKγ.  

Caster/Korte et al.  2013. 
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CHAPTER V 

 

ABIN1 DETERMINES THE SEVERITY OF ANTIBODY-MEDIATED 

GLOMERULONEPHRITIS THROUGH A NOVEL PODOCYTE-NEUTROPHIL AXIS 

 

5.1 – Introduction 

 

Proliferative glomerulonephritis (GN) is an important cause of end-stage renal 

failure [183].  The current paradigm for the pathogenesis of GN is that immunoglobulin 

deposition in the glomerulus, in the form of immune complexes or autoantibodies against 

constituents of the glomerulus, initiates a proinflammatory response through Fc receptor 

(FcR) ligation and activation of the complement cascade, leading to immune cell 

recruitment and activation.  Mesangial cells respond to immunoglobulin and complement 

by regulating the glomerular microenvironment through the production of various 

cytokines and chemokines, resulting in increased endothelial cell expression of adhesion 

molecules that recruit and activate leukocytes [15,18].  Although inflammatory injury 

leads to podocyte dysfunction, the response of podocytes to immunoglobulin and/or 

complement deposition and their contribution to the inflammatory response are poorly 

understood, and only a few authors have published work to expand this field [22,23].  

Although limited in number, these studies suggest that podocytes have the potential to 
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actively participate in the modulation of the immune response.  If podocytes can be 

shown to provide the cytokines and chemokines that influence glomerular inflammation, 

this may open up therapeutic avenues never before considered.   

It is well established that neutrophils are pathogenic protagonists in antibody-

mediated GN, although recent effort has focused on cells that function in a more classic 

immunoregulatory role, such as monocytes, B-cells, T-cells, and dendritic cells [23–29].  

Neutrophil granules contain both reactive oxygen species and proteases that cause injury 

to vascular tissue when released, and the glomerulus is in the unique situation to be 

constantly patrolled by neutrophils [25–28].  Still, direct injury of podocytes by 

neutrophils has not previously been evaluated.   

As highlighted previously, NF-κB activation is associated with GN and is 

important to podocyte response to proinflammatory stimulation [35–37].  Inhibition of 

NF-κB signaling protects against development of disease, at least in part, through reduced 

expression of cytokines that are transcriptional targets of NF-κB [30,33,34,38].  Chapter 

IV of this dissertation as well as previous work describe ABIN1 as an important inhibitor 

of NF-κB activation [54,55,59].  It characterizes mice expressing the ubiquitin binding-

deficient mutant, ABIN1[D485N], as prone to spontaneous immune hyperactivation and 

severe GN, which is frequently fatal by 6 months [53,184].  The work outlined in Chapter 

IV describes a pathogenic state in which ABIN1 fails to inhibit NF-κB stimulation to 

allow rampant hyperactivation and uncontrolled inflammation.  It did not define a 

specific cellular mechanism or tissue-specific interaction which could be a target for 

therapeutic pharmacologic intervention, or allow current therapies to be better targeted to 

affected tissues for reduced side effects.     
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The present study used nephrotoxic sera (NTS) containing antibodies directed 

against the glomerular basement membrane (GBM) to induce a well-characterized model 

of nephrotoxic nephritis (NTN).  NTS-induced damage in wild-type and ABIN1[D485N] 

mice is used to address the hypothesis that NF-κB-dependent proinflammatory mediator 

production by intrinsic renal cells, particularly podocytes, contributes to initiation and 

progression of GN through enhanced retention and activation of neutrophils. The model 

of acute NTN mimics the pathogenesis of a number of human glomerular diseases, 

including lupus nephritis and rapidly progressive GN, and anti-GBM GN is associated 

with in vivo activation of NF-κB [38,185]. This chapter describes a role for glomerular 

cell ABIN1 regulation of NF-κB in antibody-mediated GN, and we describe a novel 

pathogenic interaction between podocytes and neutrophils within the glomerulus.    

 

5.2 – Results 

 

ABIN1[D485N] mice exhibit exaggerated and localized renal disease compared to 

WT 

Chapter IV describes that ABIN1[D485N] mice spontaneously develop severe 

GN beginning at 3-4 months of age that progresses by 5-6 months [184].  To define the 

effects for this ABIN1 mutation on intrinsic glomerular cells, NTS-induced injury was 

induced at 6 weeks of age, immediately after weaning.  Figure 20 shows urine 

albumin:creatinine (mg/g) ratios (UAC) from ABIN1[D485N] and WT mice obtained  
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Figure 20 – ABIN1[D485N] Mice More Sensitive to NTS than WT. 

NTS administered to mice at 6 weeks of produces significantly different levels of 

proteinuria, with ABIN1[D485N] animals exhibiting 9x the level of urine albumin.  

Normal serum (NS) served as a control and did not induce proteinuria.  Injection of ontrol 

sera (NS), did not change proteinuria in either WT or ABIN1[D485N] mice.  (n = 6-12 

per condition)  Student’s T-test was used to compare values between two groups. 

Korte, unpublished. 
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just prior to NTS tail vein injection (0 hour) and 24 hours after NTS injection.  The 0 

hour UAC of WT and ABIN1[D485N] mice were not different, and administration of an 

equal amount of normal serum immunoglobulin did not increase the 24 hour UAC above 

unstimulated levels in either WT or ABIN1[D485N] mice.  Both WT and 

ABIN1[D485N] mice demonstrated a significant increase in UAC 24 hours after NTS  

administration, but the increase in UAC was 9-fold higher in ABIN1[D485N] mice 

compared to WT mice.   

To separate the effects of ABIN1[D485N] on systemic immune activation and on 

intrinsic renal cells, NTN was induced in chimeric mice, as described in materials and 

methods.  Figure 21 shows that NTS-induced proteinuria was similar in WT mice 

whether transplanted with WT or ABIN1[D485N] mouse bone marrow. Again, as shown 

in Figure 20, ABIN1[D485N] mice showed significantly greater albuminuria than wild-

type mice, and that proteinuria was similar in ABIN1[D485N] mice transplanted with 

WT or ABIN1[D485N] mouse bone.  Thus, differences in proteinuria in chimeric mice 

were due to the host genotype, not to the immune system genotype. This conclusion was 

supported by serum expression of common immune mediators. Figure 22 shows that no 

significant differences between WT and ABIN1[D485N] mice in serum levels of G-CSF, 

GM-CSF, IL1α/β, IL2, IL3, IL4, IL5, IL6, IL12p70/p40, TNF-α,  KC, MCP-1, MIP1α/β, 

or RANTES were observed.   

To examine the local glomerular inflammatory response to NTS, the number of 

CD45 and myeloperoxidase (MPO) positive leukocytes infiltrating glomeruli was 

determined at 2 hr and 24 hr after NTS administration by immunohistochemistry (IHC). 

CD45 is expressed on all leukocytes, while myeloperoxidase (MPO) is highly expressed  
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Figure 21 - Bone Marrow Transplant Suggests Host Genotype is an Important 

Factor in Response to NTS 

Bone marrow transplant using ABIN1 WT hosts and either WT or ABIN1[D485N] bone 

marrow (n=10 each) produced no change in proteinuria at 13 weeks 24 hours post-NTS.  

Likewise, ABIN1[D485N] hosts did not respond differently due to immune genotypes 

(n=5 each), however the host genotype was related to a significant change in proteinuria 

severity following NTS administration.  ANOVA was used to compare values between 

the 4 conditions.   

Korte, unpublished.   
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Figure 22 - Serum Cytokine Analysis of WT and ABIN1[D485N] Mice before and 

following NTS 

Serum cytokine expression was relatively unchanged between ABIN1 WT and 

ABIN1[D485N] animals. Black corresponds to lower relative expression and increasing 

red corresponds to increasing expression of an individual cytokine within the four 

conditions.  (n = 4 per condition) 

Korte, unpublished.  
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in neutrophil azurophilic granules, modestly expressed in monocyte lysosomes, and lost 

from tissue macrophages[186].  At 2 hours, WT mice expressed an average (± 95% 

confidence interval) of 1.44 (±0.28) CD45 positive cells per glomerulus while 

ABIN1[D485N] mice had 2.31 (±0.12) (Figure 23).  At 24 hours, WT mice glomeruli 

decreased to 1.10(±0.36) CD45 positive cells per glomeruli while ABIN1[D485N] 

increased slightly to 2.33 (±0.29) cells per glomeruli (Figure 23).  Likewise, WT mice at 

2 hours expressed 0.60 (±0.13) MPO positive cells per glomerulus while ABIN1[D485N] 

mice had more than twice the MPO positive cells with 1.34 (±0.19) (Figure 23).  At 24 

hours, MPO positivity of WT mice glomeruli descreased to 0.23 (±0.11) MPO positive 

cells while ABIN1[D485N] maintained 0.95(±0.35) cells per glomeruli (Fig. 1e, p > 

0.05).  Representative images are shown in Figure 24.  

Structural and ultrastructural characteristics of NTS challenged ABIN1[D485N] 

and WT mice were assessed by light microscopy, transmission electron microscopy 

(TEM), and WT-1 IHC. Blinded analysis of Periodic acid–Schiff (PAS) stained kidney 

sections showed no differences in mesangial cellularity between WT and ABIN1[D485N] 

mice that received control serum or NTS  (n=5 per condition) (Figure 25 and Figure 26).  

Mesangial matrix was significantly increased only in ABIN1[D485N] mice that received 

NTS. Endothelial cell and podocyte changes were assessed using TEM (Figure 27).  

Endothelial cells show a typical ultrastructure without obvious signs of pathology.  

Podocytes showed prominent foot process effacement and slit diaphragm loss that was 

diffuse in ABIN1[D485N] mice, but focal in WT mice.  Glomerular expression of the 

podocyte nuclear marker, WT-1, typically decreases in GN, and that decrease  
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Figure 23 - CD45-positive and MPO-positive Cell Influx into Glomeruli 

Immunohistochemistry was used to assess influx of general leukocytes (CD45+ cells) and 

neutrophils with other minor staining (MPO+ cells) at both 2 hours and 24 hours post 

NTS administration.  The result was increased CD45 and MPO staining at both time 

points for ABIN1[D485N] expressing mice.  (n = 4-5 per condition and 30 glomeruli per 

sample)   

Korte, unpublished. 
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Figure 24 - Representative Images for Immune Cell Influx into Glomeruli Post-NTS 

These representative images provide examples of what was described in Figure 23.   
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Figure 25 – Histological Analysis of PAS-stained Sections 

Blinded analysis of PAS-stained sections of mouse kidney cortex 24 hours following 

administration of either NS or NTS found only minor differences.   All conditions were 

statistically identical to ABIN1 WT animals given control serum (NS), with the exception 

of a slight elevation of matrix expansion in ABIN1[D485N] mice treated with NTS.  (n = 

5 per condition with 30 glomeruli counted per sample.)  Student’s T-test compared values 

between two groups. 

Korte, unpublished.  
 



 

 

 
 

108 

 

Figure 26 - Representative Images for Histological Analysis of Glomeruli Following 

NTS 

These representative images provide examples of what was described in Figure 25. 

Korte, unpublished.  
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Figure 27 - Ultrastructural Analysis of NTS-induced Changes to Glomerular 

Basement Membrane 

Changes to the glomerular podocyte were noted 24 hours following NTS administration.  

(a) TEM of ABIN1 WT glomeruli 24 hours post-NTS showed minor foot process 

effacement.  (b) ABIN1[D485N] mice show massive foot process effacement at 24 hours 

post-NTS.  Representative images highlight this discrepancy.  Endothelial cell changes 

and basement membrane thicken were not widespread.  Scale bar represents 500nm.   

Korte, unpublished.   
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corresponds to increased proteinuria and worsening renal function[187].  Figure 28 shows 

a significant reduction in WT-1 stained nuclei per glomerular section in ABIN1[D485N] 

mice, compared to WT, both at endogenous levels using normal sera as well as 24 hours 

following anti-GBM administration.  Representative images are shown in Figure 29. 

To determine production of mediators of inflammation by glomerular cells, 

glomeruli were purified from renal cortex by sieving, RNA was extracted, and expression 

levels of specific transcripts were determined using a custom qRT-PCR analysis.  Genes 

included in this analysis were documented previously as contributing to GN either 

directly or as biomarkers and included adhesion molecules (VCAM1, ICAM1), 

profibrotic/proinflammatory mediators (TGFβ1, C1qB, C3, CD74, EGF), interferons 

(IFNα1, IFNγ), chemokines and cytokines (MCP-1, CCL5, CXCR7, TNF-α, IL1α, 

IL12b, IL17a), cytoskeletal/matrix proteins (MYH9, MMP2, MMP7, TIMP2), or NF-κB 

pathway proteins (RELa, NF-κBiα, IRAK1, NF-κBiζ, NF-κB1).  Figure 30 displays the 

differences in glomerular gene expression between WT and ABIN1[D485N] mice 24 

hours after NTS administration.  mRNA expression of a number of proinflammatory 

cytokine and adhesion proteins was significantly increased in ABIN1[D485N] mouse 

glomeruli.  Matrix metalloproteinase 7 (MMP7) exhibited a 40-fold increase in 

ABIN1[D485N] mouse glomeruli, compared to WT.  Other notable anti-GBM-induced 

increases in ABIN1[D485N] mouse glomeruli included VCAM1 (3.00 fold), IL1α (13.21 

fold),  IL17α (2.14 fold), TNF-α (5.88 fold), CCL2/MCP-1 (1.97 fold) and EGF (1.98 

fold).   
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Figure 28 – WT1-staining per Glomeruli 

Wilms Tumor 1 (WT1) is a nuclear marker of mature podocytes.  Glomerular WT1 

staining following control (NS) or NTS treated animals represents podocyte loss.  

ABIN1[D485N] mice exhibited a lower WT1 positive cell count per glomeruli than 

ABIN1 WT under either control or damaged conditions.  (n = 4 per condition, with 30 

glomeruli counted for each sample)  Bars represent SEM.  T-test was used to compare 

values between two groups. (**p<0.01, ****p<0.0001)   
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Figure 29 - Representative Images for WT1 Staining 

These representative images provide examples of what was described in Figure 28. 

Korte, unpublished.  
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Figure 30 – Expression of Proinflammatory Markers from Isolated Glomeruli from 

WT and ABIN1[D485N] Mice 

Isolated glomeruli from WT or ABIN1[D485N] kidneys showed marked transcriptional 

changes in a number of proinflammatory cytokines, chemokines and adhesion molecules.  

GAPDH served as a housekeeping gene and Student’s T-test was used to compare 

between two groups.  (n = 4 per condition) 

Korte, unpublished.     
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Loss of ABIN1 ubiquitin binding function in podocytes results in excess production 

and secretion of NF-κB targeted proinflammatory mediators.  

Previous studies suggested NF-κB activation plays a role in development of GN 

and in podocyte dysfunction [30,33,34,38,184].  To determine if ABIN1 regulates NF-κB 

activation and proinflammatory responses in podocytes, changes in NF-κB-dependent 

gene expression were assessed in WT and ubiquitin binding null ABIN1[D472N] 

expressing podocytes following 3-hour stimulations with TNF-α.  The array assessed NF-

κB target genes categorized as chemokines or cytokines (27), inflammatory markers (33), 

immune mediators (30).  Figure 31 shows that proinflammatory NF-κB target gene 

expression was upregulated in ABIN1[D472N] podocytes.  Those findings were 

confirmed using single target RT-qPCR for notable genes involved in GN pathogenesis, 

including MCP-1 (CCL2), IL-8, CSF2 (GM-CSF), and CSF3 (G-CSF), and significant to 

at least p<0.01 at every time point (Figure 32).  Target gene expression in 

ABIN1[D472N] podocytes was found to be 4-10 fold higher for each target even without 

exogenous stimulation. To confirm that increased transcript results in increased protein 

secretion, podocyte supernatants were collected without contamination by FBS or 

exogenous TNF-α, as outlined in Materials and Methods.  ELISA for MCP-1, IL-8 and 

TNF-α confirmed that increased secretion of these NF-κB regulated proinflammatory 

proteins correlated with increased gene expression in ABIN1[D472N] podocytes (Figure 

33).   

 

Interaction between podocytes and neutrophils in proinflammatory activation and 

injury   
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Figure 31 - Expression of Proinflammatory Factors in Cultured Podocytes 

RT-qPCR array showed transcriptional changes similar to what was reported in isolated 

glomeruli following a 3-hour stimulation by TNF-α.  Notably, proinflammatory cytokines 

and chemokines were expressed at higher levels in ABIN1[D472N] expressing podocytes 

with or without stimulation.   GAPDH served as a housekeeping gene and Student’s T-

test was used to compare between two groups.  (n = 2 per condition) 

Korte, unpublished.     
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Figure 32 – Single Target RT-qPCR Validation of Array Data 

Validation of four cytokines noted in the array showed significant increases in expression 

using single-target RT-qPCR with stimulation times ranging from 0-6 hours. Expression 

of these targets was shown to be 4-10 fold higher even at basal levels in cells expressing 

ABIN1[D472N].   GAPDH served as a housekeeping gene, all experiments were carried 

out in triplicate.  (n = 3-5 per condition)  All points are significant by Student’s T-test 

between WT and ABIN1[D472N] with p<0.01. 

Korte, unpublished.  
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Figure 33 - ELISA Quantification of Secreted Cytokines from Cultured Podocytes 

Quantification of secreted proteins by ELISA showed the differences in transcript 

corresponded to increased secretion of cytokines and chemokines into the cell culture 

supernatant. All experiments were completed in triplicate and repeated at least 3 times.  

Student’s T-test compared values between two groups. (*p<0.05, **p<0.01) 

Korte, unpublished.   
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Figure 23 and Figure 24 show that glomerular leukocyte accumulation is 

enhanced in vivo in ABIN1[D485N] expressing mice following NTN. To determine if 

ABIN1 dysfunction in podocytes was a potential mechanism for enhanced leukocyte 

recruitment into the glomerulus, the ability of WT and ABIN1[D472N] podocyte 

supernatants on chemotaxis of primary human neutrophils was tested (Figure 34).  

Podocytes expressing WT ABIN1 produced a secretome capable of recruiting cells into a 

synthetic membrane when unstimulated, and secretome from WT cells previously 

stimulated with TNF-α increased this effect.  ABIN1[D472N] expressing podocytes 

produced a secretome with stronger chemotactic capabilities than ABIN1 WT expressing 

cells at both basal levels and when stimulated. The ability of podocyte supernatants to 

stimulate neutrophil degranulation in primary human neutrophils was examined by 

measuring plasma membrane CD35 (secretory vesicle marker) and CD66b (specific 

granule marker) expression (Figure 35).  Although podocyte supernatants following 

incubation with TNF-α induced a significant increase in CD35 and CD66b expression, 

there were no differences in degranulation induced by supernatants from WT and 

ABIN1[D472N] podocytes.  

To determine if the increased chemoattraction and degranulation induced by 

podocyte products affected podocyte integrity, the effect of neutrophil granule contents 

on podocyte cytoskeletal morphology was assessed.  Podocytes were cultured for 24 hr 

with supernatants from primary human neutrophils stimulated without (control) or with 

TNF-α/fMLF for 30 minutes, and actin stress fibers were visualized using rhodamine-

phalloidin staining.  Both WT and ABIN1[D472N] podocytes displayed typical healthy 

stress fiber structure following 24 hour incubation with control neutrophil supernatant,  
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Figure 34 - Induction of Neutrophil Chemotaxis by Podocyte Cell Culture 

Supernatant 

Chemotaxis of primary human donor neutrophils into synthetic membranes was induced 

by podocyte cell culture supernatant over control cell culture media, and stimulation of 

the podocytes before washing and collection of their media resulted in greater rates of 

chemotaxis.  Furthermore, podocytes expressing ABIN1[D472N] were able to induce 

twice the rates of chemotaxis as ABIN1 WT.  (n = 3 distinct cell culture supernatants per 

condition, each used to stimulated 3 different donors of primary neutrophils.)  Student’s 

T-test compares values between groups.  (**p<0.01) 

Korte, unpublished.  
 



 

 

 
 

120 

 

 

Figure 35 - Induction of Neutrophil Degranulation Markers by Podocyte Cell 

Culture Supernatant 

Podocyte cell culture supernatant was able to induce expression of degranulation 

markers, C35 and CD66b, on human primary neutrophils.  No significant differences 

were noted between ABIN1 WT and ABIN1[D472N] podocyte supernatant, although 

podocytes stimulated before washing and collection of supernatant were able to induce 

significant expression of degranulation markers on primary neutrophils.  Expression of 

CD35 and CD66b was quantified by flow cytometry.  (n = 3 distinct cell culture 

supernatants per condition, each used to stimulated 3 different donors of primary 

neutrophils.)  Student’s T-test compares values between groups.  (*p<0.01) 

Korte, unpublished.  
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including long stress fibers extending at least half the length of the cell and crossing the 

nucleus, with a primarily unidirectional distribution (Figure 36).  Anisotropy is a 

measurement of the angularity of the f-actin stress fibers which uses rotational statistics 

to quantify changes to f-actin organization using FibrilTool which utilizes raw images 

and avoids potential bias of reprocessing [84].  Figure 37 shows the anisotropy of WT 

and ABIN1[D472N] podocyte stress fibers.  Anisotrophy was significantly reduced in 

ABIN1[D472N] podocytes, compared to WT.  TNF-α/fMLF stimulated neutrophil 

supernatant caused a significant loss of stress fiber anisotropy compared to control 

supernatant in both WT and ABIN1[D472N] podocytes.  Each cell assessed by FibrilTool 

was also examined for three additional features of podocyte morphologic alteration; 

transnuclear stress fiber loss, ring formation, and actin-rich center (ARC) formation 

(Figure 38).  All three of these features were found to be significantly increased in 

ABIN1[D472] podocytes exposed to stimulated neutrophil granules, compared to WT. 

Multivariate logistical regression analysis produced odds ratios of 7.00, 3.87, and 3.85 for 

transnuclear fiber loss, ring formation, and actin rich center (ARC) formation, 

respectively, in ABIN1[D472] podocytes (Figure 39).   

 

 

Inhibition of neutrophil degranulation reduces proteinuria in vivo 

The altered podocyte cytoskeleton induced by supernatants from stimulated neutrophils 

and the ability of supernatants from stimulated podocytes to induce neutrophil 

degranulation suggested that release of granule neutrophil contents participates in 

podocyte injury leading to proteinuria in NTN.  To test this hypothesis, we utilized a  
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Figure 36 - Neutrophil Granules Induce Cytoskeletal Remodeling in Cultured 

Podocytes 

Neutrophil granules were shown to induce major cytoskeletal remodeling of cultured 

podocytes.  Representative images of rhodamine-phalloidin stained f-actin show parallel 

stress fibers in podocytes exposed to supernatant from unstimulated neutrophils, but loss 

of both length and orientation of these stress fibers upon 24 hour exposure to supernatant 

from TNF-α-fMLF stimulated neutrophils.   

Korte, unpublished.   
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Figure 37 - Anisotropy of Podocyte F-actin Following Exposure to Neutrophil 

Granules 

The loss of stress fiber orientation is quantified using Fibriltool as described in the 

Chapter 2.  The anisotropy of f-actin was significantly reduced by exposure to neutrophil 

(PMN) granules and also in podocytes expressing ABIN1[D472N] (n=3 samples  per 

condition with at least 30 cells analyzed per sample). 

Korte, unpublished.  
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Figure 38 - Assessment of Common Morphogenic Pathologic Changes in Podocyte 

Cytoskeleton 

Other commonly cited morphological changes assessed were loss of transnuclear stress 

fibers, ring formation and ACR formation.  Representative images for each are given.  

All experiments were completed in triplicate with at least 3 separate experiments 

performed.  Multivariate logistic regression analysis was used to compare dichotomous 

outcomes of actin remodeling and accounted for both ABIN1 genotype and exposure to 

granules. 

Korte, unpublished.  
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Figure 39 - Odds Ratio of Genetic Effect and Neutrophil Granules on Pathologic 

Podocyte Cytoskeletal Rearrangements 

To properly separate the dichotomous outcomes resulting from the stimulus (neutrophil 

granules) versus the ABIN1 genotype, multivariate logistic regression analysis was used 

to odds ratios and clearly showed an impact of each on podocyte actin remodeling.   

Korte, unpublished.  
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unique TAT-SNAP-23 fusion protein to inhibit neutrophil degranulation in vivo [89,188–

190]. Both WT and ABIN1[D472N] mice treated with TAT-SNAP-23 at the time of  

anti-GBM administration and 6 hours later showed a significant reduction in proteinuria 

at 24 hours (Figure 40a).  Although the absolute levels of proteinuria were higher in both 

groups of ABIN1[D472N] mice, compared to WT, the fold reduction in proteinuria as a 

response to TAT-SNAP-23 treatment was significantly lower in ABIN1[D485N] mice 

compared to WT (Figure 40b). 

 

 

5.3 – Discussion 

 

 In the past few years, ABIN1 has emerged as a novel physiological inhibitor of 

NF-κB and a genetic factor in autoimmunity and glomerulonephritis (GN), but a 

mechanistic role for ABIN1 function in GN had not been characterized [53,66,184].  In 

this study, we show that transgenic disruption of ABIN1 polyubiquitin binding activity 

(by mouse D485N and homologous human D472N mutation) results in enhanced 

podocyte injury and proinflammatory neutrophil activation following administration of 

nephrotoxic sera (NTS) containing antibodies directed against glomerular basement 

membrane (GBM) in mice and proinflammatory activation of cultured human-derived 

podocytes.  The current paradigm is that GN is initiated from glomerular immune 

complex deposition, followed by proinflammatory activation by podocytes and other 

glomerular cells, however events regulating intrinsic kidney effects are comparatively 

understudied and unclearly defined [15,191].  Previous reports from our group and others  
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Figure 40 - TAT-SNAP23-mediated Inhibition of Neutrophil Degranulation Reduces 

Proteinuria 

Inhibition of neutrophil degranulation in vivo reduces proteinuria due to NTS.  (a) 

Administration of TAT-SNAP23 at 0 hours and 6 hours following administration of NTS 

markedly reduces proteinuria in ABIN1 WT expressing animals, but this reduction is 

muted in mutant animals. (n=6-9 per condition) (b) Fold change reduction in average 

UAC following TAT-SNAP23 treatment was higher in WT mice than in ABIN1[D485N] 

mice.   Student’s T-test compared values between two groups.   

Korte, unpublished. 
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indicate that immune deposition is mediated by autoantibody reactivity to endogenous 

and planted target glomerular antigens [5,192–195].  While it is presumed that these 

autoantibodies are nephritogenic, to date no pathogenic mechanisms have been defined.  

The NTS in vivo model was selected for our study for three reasons: (1) reports show 

glomerular NF-κB activation, (2) it shares the etiology of an important type of human 

GN without the requirement of presensitization of the immune system, and (3) rapid or 

acute development of proteinuria in response to NTS injection may allow investigation of 

the instigating pathogenic mechanism of podocyte injury [38,185,196].  Consistent with a 

podocyte injury postulate, we report no remarkable mesangial cell alterations, including a 

lack of mesangial cell expansion post NTS injection for both WT and ABIN1[D485N] 

mice and only minimal matrix expansion.  There was, however, focal podocyte foot 

process effacement in WT kidneys on electron microscopy which was more pronounced 

in ABIN1[D485N] mice.  Loss of glomerular WT-1 staining further supported podocyte 

dysfunction in α-GBM-mediated GN.  Urinary protein loss was more severe in 

ABIN1[D485N] mice following administration of α-GBM.  Proteinuria which was 9-fold 

higher in ABIN1[D485N] mice compared to WT and there was noted enrichment of 

CD45+ cells (leukocytes) and MPO staining (neutrophil azurophilic granules) in 

glomeruli of NTS treated ABIN1[D485N] mice compared to WT at both 2 hours and 24 

hours following NTS administration.  Interestingly, neutrophils were retained in the 

glomeruli at 24 hours to a much greater degree in ABIN1[D485N] mice than in WT 

which suggests either the immune system itself was mounting a stronger reaction to the 

NTS or something within the local tissue was acting on resident neutrophils and other 

immune cells to maintain their presence within the glomerulus.  To explore the question 
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of increased immune activation vs local tissue effects, bone marrow transplant produced 

chimeric mice and showed no effect of immune system genotype on the severity of GN 

resulting from NTS and instead suggested that the local genotype was indeed the driving 

force behind increased severity of renal dysfunction in ABIN1[D485N] mice.  

Differences between reactivity between 6-week old mice and 12-week old mice post bone 

marrow transplant were as expected and the well-described response of C57BL/6 mice to 

NTS allowed controlled glomerular damage that was neither the extreme nor the subdued 

categories of responses [197,198].  These findings indicated that glomerular loss of 

ABIN1 polyubiquitin binding function promotes autoantibody-mediated injury and 

proteinuria and suggests podocytes may be a cause rather than an effect of these 

pathogenic changes.  The potential mechanism for α-GBM-induced injury likely involves 

both immune and intrinsic renal tissues, but the mechanism behind their interaction is not 

well understood.  Thus we sought to describe the functional mechanism for α-GBM-

mediated injury using complementary in vivo, in vitro, and ex vivo techniques. 

Glomerular immune cell infiltration and inflammation described above are 

hallmarks of GN.  Going back to the 1990s, studies have shown correlation of elevated 

glomerular expression of NF-κB-regulated proinflammatory mediators MCP-1, TNF-α, 

and IL-1α with progression of GN in rodents and humans [199,200].  Renal cortex has 

previously been used to investigate renal expression changes of proinflammatory genes, 

but cortex samples will contain 70-90% tubule cells and their associated mRNA 

transcript, which would dampen early changes in a glomerulocentric injury like α-GBM-

induced nephritis.  Thus, we performed RT-PCR analysis for NF-κB target and GN-

associated genes using isolated glomeruli and found a significant increase in expression 
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of many proinflammatory and chemotactic transcripts, including TNF-α, MCP-1(CCL2), 

and IL-1α in ABIN1[D485N] mice 24 hours after NTS injury.  TNF-α is commonly 

overexpressed in both serum and urine of GN patients and correlates to disease severity, 

specifically in immune-complex GN, and podocytes can both produce and respond to 

TNF-α through the NF-κB pathway [201–206].  Thus, TNF-α was utilized as a stimulant 

to study inflammation and podocyte function relating to GN pathogenesis and ABIN1 

function in vitro using human-derived cultured podocytes.  Mirroring the in vivo findings, 

podocytes expressing the homologous human ABIN1 ubiquitin binding mutation 

(D472N) exhibit exacerbated NF-κB activation, increased MCP-1, CSF 1/2, and IL-8 

mRNA expression, and amplified secretion of MCP-1, IL-8, and TNF-α. 

The glomerulus has been shown to be unique among capillary beds in its ability to 

recruit and retain leukocytes, allowing intrinsic renal cells a unique opportunity for 

intimate interaction with immune cells, specifically neutrophils [28].   An intrarenal role 

for neutrophils in the pathogenesis of human GN is implicated by their glomerular 

accumulation in kidney biopsies from patients with various type of GN (including 

MPGN, ANCA, LN and α-GBM disease) and inversely by reduction in disease 

phenotypes with neutrophil depletion in various animal models of GN [3,207,208].  

However, mechanisms for glomerular recruitment and retention of neutrophils and 

neutrophil-directed injury causing proteinuria in GN have not been resolved.  The 

secretome of ABIN1[D472N] expressing podocytes amplified primary human neutrophil 

chemotaxis into synthetic membranes when compared to WT at both unstimulated levels 

and when the podocytes had been previously stimulated with TNF-α.  Furthermore, we 

found that podocytes possess the ability to induce neutrophil release of specific granules 
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and secretory vesicles. These granules contain bactericidal proteins that also cause 

inflammatory tissue injury [209,210].  Although ABIN1[D472N] supernatant tended to 

produce higher levels of degranulation markers in neutrophils than WT at endogenous 

levels, this failed to achieve statistical significance.  It was, however, clearly shown that 

stimulated podocytes of either genotype are able to produce a secretome capable of 

degranulating primary neutrophils. Thus, podocytes have the ability to both recruit 

neutrophils to the glomerulus and subsequently activate their release of injurious granule 

contents. To further explore this mechanism in vivo, we utilized an inhibitor of neutrophil 

degranulation, the chimeric protein TAT-SNAP23, which competitively binds complexed 

vesicular fusion proteins, vesicle-associated membrane protein-2 and syntaxin-4, to block 

release of granules from neutrophil cytosol [188,189].  Inhibition of neutrophil 

degranulation by TAT-SNAP23 resulted in marked decreases in α-GBM-mediated 

proteinurea in both WT and ABIN1[D485N] expressing mice.  It was interesting to note 

that TAT-SNAP23 pretreatment of WT mice resulted in a 9.5-fold reduction in UAC 

while ABIN1[D485N] mice only exhibited a 2.6 fold reduction.  This is further evidence 

that the genotype of the intrinsic renal cells, specifically podocytes, is an 

underappreciated pathogenic factor in glomerular maintenance and protection from 

immune-mediated damage.   

The interaction between podocytes and neutrophils is not one-sided and proper 

ABIN1 function within podocytes was shown to be of great importance for limiting 

pathogenic podocyte responses following an insult.  Actin regulation is paramount in slit 

diaphragm maintenance and renal function, and disorganization of actin stress fibers is a 

classic sign of podocyte damage [211–215].  Neutrophil granules clearly induce 
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remodeling of cultured podocyte actin fibers shown by a reduction in the anisotropy of 

podocyte actin fibers, as ABIN1[D472N] expressing podocytes exhibited stress fibers 

which were significantly less organized than WT when subjected to either control 

neutrophil supernatant (no or few granules) or neutrophil supernatant fully degranulated 

by 30 minute exposure to TNF-α/fMLF (high granule concentration).  Furthermore, 

additional metrics of podocyte cytoskeletal rearrangement reinforced the anisotropy 

findings, including loss of transnuclear stress fibers, ring-like actin formation, and ARC 

formation [214,216–219].  Multivariant logistical regression of phenotype frequency was 

used to determine statistical certainty of the dichotomous outcome and clearly showed 

that podocytes expressing ABIN1[D472N] were more likely to produced aberrant actin 

structures under control conditions and that development of these structures was even 

more frequent following 24 hours of exposure to a degranulated neutrophil supernatant.  

In total, actin rearrangement was strongly associated to ABIN1 genotype in cultured 

podocytes in a way that induced pathologic changes, both under stress and at baseline, 

which would promote a greater propensity for worsening disease both before and after a 

nephrotoxic insult.   

When considering that podocytes can both recruit and activate neutrophils and 

that they undergo pathogenic responses as a result of exposure to granules released by 

activated neutrophils, there is clearly support for a mechanism of GN involving a 

podocyte-neutrophil axis of pathological interactions which promote proteinurea and 

worsening renal function.  Furthermore, functional ABIN1 seems to be important in the 

regulation of podocyte responses to inhibit the damaging activity of this proinflammatory 

axis.  These data support a novel pathogenic mechanism for GN involving accelerated 
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neutrophil recruitment and activation through proinflammatory signaling within 

podocytes expressing aberrant ABIN1.  These pathogenic processes described above 

represent a shift from the current paradigm of GN pathology shown in Figure 4. The 

findings of this dissertation are outlined graphically in the form of a healthy glomerulus 

(Figure 41) and an inflamed glomerulus (Figure 42) and aim to show the importance of 

podocytes in the pathogenesis of GN.   

In closing, there is growing evidence for intraglomerular NF-κB activation and 

genetic variation in the upstream NF-κB inhibitor ABIN1 in the pathogenesis of GN 

[33,34,53,184,220,221].  Current treatment for GN involves systemic administration of 

large doses of corticosteroids, immunosuppressive drugs, and/or biologic agents. Those 

drugs are successful in inducing a remission of disease in only about 50% of patients, and 

those drugs are associated with significant side effects [222,223].  Our findings in this 

report support a role for disrupted ABIN1-mediated NF-κB activity within podocytes in 

the proinflammatory activation and injury commonly described in GN.  This indicates a 

plausible therapeutic impact for the development of a kidney-targeted NF-κB inhibitor, 

especially for treatment of GN patients with genetic variants for ABIN1 or other NF-κB 

regulators.   We also show that a peptide inhibitor of neutrophil degranulation impeded 

the development of proteinuria in an acute model of immune complex-mediated GN, 

warranting further testing of this biologic in more severe, chronic GN models.   

  



 

 

 
 

134 

 
 
Figure 41 - Healthy Glomerular Capillary 

This diagram represents the glomerular capillary in a healthy glomerulus.  Podocyte foot 

processes are evenly spaced with well-defined slit diaphragms and the entire glomerular 

basement membrane is enveloped in foot processes.  Neutrophils patrol the glomerulus 

constitutively but are not activated. 

Korte, unpublished.    
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Figure 42 - Inflamed Glomerular Capillary 

This diagram represents the proposed pro-inflammatory podocyte-neutrophil axis in the 

pathogenesis of glomerulonephritis.  Antibody-mediated injury is augmented by NF-κB-

directed inflammatory injury in the glomerulus which includes neutrophil chemotaxis, 

activation and degranulation, podocyte foot process effacement and shedding, leaving 

bare GBM, and pseudocyst formation. Our findings suggest that these injurious events 

are mediated by loss of podocyte ABIN1 ubiquitin binding activity ensued by genetic 

variants.   

Korte, unpublished.  
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CHAPTER VI 

 

CONCLUSION 

 

 This work describes a novel and underappreciated cellular interaction leading to 

glomerulonephritis and describes the molecular mechanism by which it occurs.  It reveals 

that podocytes are not the passive victims of glomerular injury as they have long been 

described.  Podocytes are integral players within the glomerulus and have the ability to 

orchestrate changes in the molecular microenvironment which affect both themselves and 

the kidney as a whole.  Mechanistically, this work shows an important role of ABIN1 as a 

critical inhibitor of NF-κB in glomerular disease, and suggests polymorphisms in ABIN1 

could predispose a patient to a number of diseases involving enhanced NF-κB 

stimulation.  And finally, it has shed light on early changes which occur following 

glomerular damage which initiate later pathology.  Early recognition and inhibition of 

these early events may reduce or prevent the development of chronic glomerular disease 

in some patients.   

 It is my hope that this work will inspire future study in the function of ABIN1, 

glomerular disease and the potential for target tissues to provide inflammatory control 

mechanisms for what have long been thought to be immune-mediated diseases.  To 

facilitate the development of subsequent projects, I have described in detail the beneficial 

function of mass spectrometry based techniques had have on discovery and outlined 
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specifically how it was used in this project to identify physiologically important proteins 

from complex samples.  Although in vivo models invariably present the most 

physiologically accurate data pertaining to any physiological process, it can be 

overwhelmingly difficult or impossible to obtain pure samples from single-cell 

populations.  The combination of in vitro experimentation with relatively unbiased 

analysis methods can elucidate the importance of low abundant factors in disease that 

would certainly be lost among the noise of a more complex system.   

 Looking beyond this work, there are specific areas of study I hope to promote 

through the publication of this dissertation.  The history of ABIN1 following its initial 

discovery and progressing into transgenic mouse models highlighted the complexity and 

promiscuity of ABIN1 as a ubiquitin binding protein.  A list of ABIN1 interacting 

partners is likely vast, and will need to be identified within individual cell types before 

we may begin to understand the full influence ABIN1 has on human disease and 

homeostasis.  Even when looking specifically at one cytokine (TNF-α) as it stimulates 

one specific pathway (NF-κB), there are three different polyubiquitin linkages interacting 

involving multiple proteins, all of which have different roles and all of which become 

possible targets of ABIN1 binding.  When considering the cell as a whole which may 

contain thousands of proteins regulated by ubiquitin binding, the potential of ABIN1 

activity in any cell type becomes immense.  Future studies can begin by using 

coimmunoprecipitation of ABIN1 and its interacting partners followed by identification 

using LC-MS/MS.  Tissue specific polymorphisms exhibiting increased risk of disease, 

as described in the GWAS study in Chapter 4, highlight promising initial directions for 

this type of discovery.  Importantly, these novel interactions may involve tissue specific 
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pathways which harbor potent targets for precise and high affinity small-molecule 

therapeutics to treat disease only in the target tissue type, which could reduce off-target 

effects of systemic therapies in use today.   

 
  



 

 

 
 

139 

REFERENCES 

 

1  Ortega, L. M., Schultz, D. R., Lenz, O., Pardo, V. and Contreras, G. N. (2010) 

Review: Lupus nephritis: pathologic features, epidemiology and a guide to 

therapeutic decisions. Lupus 19, 557. 

2  Floege, J. and Amann, K. (2016) Primary glomerulonephritides. The Lancet. 

3  Jennette, J. C. and Falk, R. J. (1998) Pathogenesis of the vascular and glomerular 

damage in ANCA-positive vasculitis. Nephrol. Dial. Transplant. Off. Publ. Eur. 

Dial. Transpl. Assoc. - Eur. Ren. Assoc. 13 Suppl 1, 16–20. 

4  Borchers, A. T., Leibushor, N., Naguwa, S. M., Cheema, G. S., Shoenfeld, Y. and 

Gershwin, M. E. (2012) Lupus nephritis: A critical review. Autoimmun Rev 12, 

174–94. 

5  Beck Jr, L. H., Bonegio, R. G. ., Lambeau, G., Beck, D. M., Powell, D. W., 

Cummins, T. D., Klein, J. B. and Salant, D. J. (2009) M-type phospholipase A2 

receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 

361, 11–21. 

6  Goodpasture, E. W. (1919) THE SIGNIFICANCE OF CERTAIN PULMONARY 

LESIONS IN RELATION TO THE ETIOLOGY OF INFLUENZA: Am. J. Med. 

Sci. 158, 863–870. 

7  Bagavant, H. and Fu, S. M. (2009) Pathogenesis of kidney disease in systemic lupus 

erythematosus. Curr. Opin. Rheumatol. 21, 489–494. 

8  Tsokos, G. C. (2011) Systemic lupus erythematosus. N Engl J Med 365, 2110–21. 



 

 

 
 

140 

9  Lahita, R. G. (Ed.). (2011) Systemic lupus erythematosus 5th ed., Elsevier 

Academic Press, Amsterdam ; New York. 

10  Weening, J. J., D D’AGATI, V., Schwartz, M. M., Seshan, S. V., Alpers, C. E., 

Appel, G. B., Balow, J. E., Bruijn, J. A., Cook, T., Ferrario, F., et al. (2004) The 

classification of glomerulonephritis in systemic lupus erythematosus revisited. 

Kidney Int. 65, 521–530. 

11  Cervera, R., Khamashta, M. A., Font, J., Sebastiani, G. D., Gil, A., Lavilla, P., 

Aydintug, A. O., Jedryka-Góral, A., de Ramón, E., Fernández-Nebro, A., et al. 

(1999) Morbidity and mortality in systemic lupus erythematosus during a 5-year 

period. A multicenter prospective study of 1,000 patients. European Working Party 

on Systemic Lupus Erythematosus. Medicine (Baltimore) 78, 167–175. 

12  Molino, C., Fabbian, F. and Longhini, C. (2009) Clinical approach to lupus 

nephritis: recent advances. Eur. J. Intern. Med. 20, 447–453. 

13  Rahman, A. and Isenberg, D. A. (2008) Systemic lupus erythematosus. N. Engl. J. 

Med. 358, 929–939. 

14  Buhaescu, I., Covic, A. and Deray, G. (2007) Treatment of proliferative lupus 

nephritis--a critical approach. Semin Arthritis Rheum 36, 224–37. 

15  Iwata, Y., Furuichi, K., Kaneko, S. and Wada, T. (2011) The Role of Cytokine in 

the Lupus Nephritis. J. Biomed. Biotechnol. 2011, 1–7. 

16  Robbins, S. L., Kumar, V. and Cotran, R. S. (Eds.). (2010) Robbins and Cotran 

pathologic basis of disease 8th ed., Saunders/Elsevier, Philadelphia, PA. 



 

 

 
 

141 

17  Kriz, W., Shirato, I., Nagata, M., LeHir, M. and Lemley, K. V. (2013) The 

podocyte’s response to stress: the enigma of foot process effacement. Am. J. 

Physiol. Renal Physiol. 304, F333–347. 

18  Allam, R. and Anders, H.-J. (2008) The role of innate immunity in autoimmune 

tissue injury. Curr. Opin. Rheumatol. 20, 538–544. 

19  Wu, S.-H., Lu, C., Dong, L. and Chen, Z.-Q. (2008) Signal transduction involved in 

CTGF-induced production of chemokines in mesangial cells. Growth Factors Chur 

Switz. 26, 192–200. 

20  Yu, D., Petermann, A., Kunter, U., Rong, S., Shankland, S. J. and Floege, J. (2005) 

Urinary Podocyte Loss Is a More Specific Marker of Ongoing Glomerular Damage 

than Proteinuria. J. Am. Soc. Nephrol. 16, 1733–1741. 

21  Sato, Y., Wharram, B. L., Lee, S. K., Wickman, L., Goyal, M., Venkatareddy, M., 

Chang, J. W., Wiggins, J. E., Lienczewski, C., Kretzler, M., et al. (2009) Urine 

Podocyte mRNAs Mark Progression of Renal Disease. J. Am. Soc. Nephrol. JASN 

20, 1041–1052. 

22  Hewins, P., Morgan, M. D., Holden, N., Neil, D., Williams, J. M., Savage, C. O. S. 

and Harper, L. (2006) IL-18 is upregulated in the kidney and primes neutrophil 

responsiveness in ANCA-associated vasculitis. Kidney Int. 69, 605–615. 

23  Kuravi, S. J., McGettrick, H. M., Satchell, S. C., Saleem, M. A., Harper, L., 

Williams, J. M., Rainger, G. E. and Savage, C. O. S. (2014) Podocytes Regulate 

Neutrophil Recruitment by Glomerular Endothelial Cells via IL-6–Mediated 

Crosstalk. J. Immunol. 193, 234–243. 



 

 

 
 

142 

24  Kniker, W. T. and Cochrane, C. G. (1965) PATHOGENIC FACTORS IN 

VASULAR LESIONS OF EXPERIMENTAL SERUM SICKNESS. J. Exp. Med. 

122, 83–98. 

25  Cochrane, C. G., Unanue, E. R. and Dixon, F. J. (1965) A ROLE OF 

POLYMORPHONUCLEAR LEUKOCYTES AND COMPLEMENT IN 

NEPHROTOXIC NEPHRITIS. J. Exp. Med. 122, 99–116. 

26  Schrijver, G., Schalkwijk, J., Robben, J. C., Assmann, K. J. and Koene, R. A. (1989) 

Antiglomerular basement membrane nephritis in beige mice. Deficiency of 

leukocytic neutral proteinases prevents the induction of albuminuria in the 

heterologous phase. J. Exp. Med. 169, 1435–1448. 

27  Schrijver, G., Bogman, M. J., Assmann, K. J., de Waal, R. M., Robben, H. C., van 

Gasteren, H. and Koene, R. A. (1990) Anti-GBM nephritis in the mouse: role of 

granulocytes in the heterologous phase. Kidney Int. 38, 86–95. 

28  Devi, S., Li, A., Westhorpe, C. L. V., Lo, C. Y., Abeynaike, L. D., Snelgrove, S. L., 

Hall, P., Ooi, J. D., Sobey, C. G., Kitching, A. R., et al. (2013) Multiphoton imaging 

reveals a new leukocyte recruitment paradigm in the glomerulus. Nat. Med. 19, 

107–112. 

29  Kim, N. D. and Luster, A. D. (2015) The role of tissue resident cells in neutrophil 

recruitment. Trends Immunol. 36, 547–555. 

30  Kalergis, A. M., Iruretagoyena, M. I., Barrientos, M. J., Gonzalez, P. A., Herrada, 

A. A., Leiva, E. D., Gutierrez, M. A., Riedel, C. A., Bueno, S. M. and Jacobelli, S. 

H. (2009) Modulation of nuclear factor-kappaB activity can influence the 

susceptibility to systemic lupus erythematosus. Immunology 128, e306–14. 



 

 

 
 

143 

31  Kang, H. K., Ecklund, D., Liu, M. and Datta, S. K. (2009) Apigenin, a non-

mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen 

presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther 

11, R59. 

32  Zheng, L., Sinniah, R. and Hsu, S. I. (2006) Renal cell apoptosis and proliferation 

may be linked to nuclear factor-kappaB activation and expression of inducible nitric 

oxide synthase in patients with lupus nephritis. Hum Pathol 37, 637–47. 

33  Zheng, L., Sinniah, R. and Hsu, S. I.-H. (2006) In situ glomerular expression of 

activated NF-kappaB in human lupus nephritis and other non-proliferative 

proteinuric glomerulopathy. Virchows Arch. Int. J. Pathol. 448, 172–183. 

34  Zheng, L., Sinniah, R. and Hsu, S. I. (2008) Pathogenic role of NF-kappaB 

activation in tubulointerstitial inflammatory lesions in human lupus nephritis. J 

Histochem Cytochem 56, 517–29. 

35  Bruggeman, L. A., Drawz, P. E., Kahoud, N., Lin, K., Barisoni, L. and Nelson, P. J. 

(2011) TNFR2 interposes the proliferative and NF-κB-mediated inflammatory 

response by podocytes to TNF-α. Lab. Investig. J. Tech. Methods Pathol. 91, 413–

425. 

36  Bao, H., Ge, Y., Peng, A. and Gong, R. (2015) Fine-tuning of NFκB by glycogen 

synthase kinase 3β directs the fate of glomerular podocytes upon injury. Kidney Int. 

87, 1176–1190. 

37  Brähler, S., Ising, C., Hagmann, H., Rasmus, M., Hoehne, M., Kurschat, C., Kisner, 

T., Goebel, H., Shankland, S. J., Addicks, K., et al. (2012) Intrinsic 



 

 

 
 

144 

proinflammatory signaling in podocytes contributes to podocyte damage and 

prolonged proteinuria. Am. J. Physiol. Renal Physiol. 

38  Sakurai, H., Hisada, Y., Ueno, M., Sugiura, M., Kawashima, K. and Sugita, T. 

(1996) Activation of transcription factor NF-kappa B in experimental 

glomerulonephritis in rats. Biochim. Biophys. Acta 1316, 132–138. 

39  Oeckinghaus, A., Hayden, M. S. and Ghosh, S. (2011) Crosstalk in NF-kappaB 

signaling pathways. Nat Immunol 12, 695–708. 

40  Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van Antwerp, D. and Miyamoto, S. 

(1995) Rel/NF-kappa B/I kappa B family: intimate tales of association and 

dissociation. Genes Dev 9, 2723–35. 

41  Jacobs, M. D. and Harrison, S. C. (1998) Structure of an IkappaBalpha/NF-kappaB 

complex. Cell 95, 749–58. 

42  Karin, M. (1999) How NF-kappaB is activated: the role of the IkappaB kinase 

(IKK) complex. Oncogene 18, 6867–74. 

43  Walczak, H., Iwai, K. and Dikic, I. (2012) Generation and physiological roles of 

linear ubiquitin chains. BMC Biol 10, 23. 

44  Tokunaga, F., Sakata, S., Saeki, Y., Satomi, Y., Kirisako, T., Kamei, K., Nakagawa, 

T., Kato, M., Murata, S., Yamaoka, S., et al. (2009) Involvement of linear 

polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11, 123–132. 

45  Adhikari, A., Xu, M. and Chen, Z. J. (2007) Ubiquitin-mediated activation of TAK1 

and IKK. Oncogene 26, 3214–26. 



 

 

 
 

145 

46  Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, 

O., Sugiyama, M., Okabe, M., Takeda, K., et al. (2003) Role of Adaptor TRIF in the 

MyD88-Independent Toll-Like Receptor Signaling Pathway. Science 301, 640–643. 

47  Rahighi, S., Ikeda, F., Kawasaki, M., Akutsu, M., Suzuki, N., Kato, R., Kensche, T., 

Uejima, T., Bloor, S., Komander, D., et al. (2009) Specific recognition of linear 

ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136, 1098–

109. 

48  Haas, T. L., Emmerich, C. H., Gerlach, B., Schmukle, A. C., Cordier, S. M., Rieser, 

E., Feltham, R., Vince, J., Warnken, U., Wenger, T., et al. (2009) Recruitment of the 

linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex 

and is required for TNF-mediated gene induction. Mol Cell 36, 831–44. 

49  Heyninck, K., De Valck, D., Vanden Berghe, W., Van Criekinge, W., Contreras, R., 

Fiers, W., Haegeman, G. and Beyaert, R. (1999) The zinc finger protein A20 

inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an 

RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-

kappaB-inhibiting protein ABIN. J. Cell Biol. 145, 1471–1482. 

50  Heyninck, K., Kreike, M. M. and Beyaert, R. (2003) Structure-function analysis of 

the A20-binding inhibitor of NF-kappa B activation, ABIN-1. FEBS Lett. 536, 135–

140. 

51  Oshima, S., Turer, E. E., Callahan, J. A., Chai, S., Advincula, R., Barrera, J., 

Shifrin, N., Lee, B., Yen, B., Woo, T., et al. (2008) ABIN-1 is a ubiquitin sensor 

that restricts cell death and sustains embryonic development. Nature 457, 906–909. 



 

 

 
 

146 

52  Zhou, J., Wu, R., High, A. A., Slaughter, C. A., Finkelstein, D., Rehg, J. E., 

Redecke, V. and Häcker, H. (2011) A20-binding inhibitor of NF-κB (ABIN1) 

controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation 

and protects from inflammatory disease. Proc. Natl. Acad. Sci. U. S. A. 108, E998–

1006. 

53  Nanda, S. K., Venigalla, R. K. C., Ordureau, A., Patterson-Kane, J. C., Powell, D. 

W., Toth, R., C. Arthur, J. S. and Cohen, P. (2011) Polyubiquitin binding to ABIN1 

is required to prevent autoimmunity. J. Exp. Med. 208, 1215 –1228. 

54  Vereecke, L., Beyaert, R. and van Loo, G. (2009) The ubiquitin-editing enzyme 

A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 

383–391. 

55  Verstrepen, L., Carpentier, I., Verhelst, K. and Beyaert, R. (2009) ABINs: A20 

binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 78, 

105–14. 

56  Conze, D. B., Wu, C. J., Thomas, J. A., Landstrom, A. and Ashwell, J. D. (2008) 

Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- 

and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol 28, 3538–47. 

57  Laplantine, E., Fontan, E., Chiaravalli, J., Lopez, T., Lakisic, G., Veron, M., Agou, 

F. and Israel, A. (2009) NEMO specifically recognizes K63-linked poly-ubiquitin 

chains through a new bipartite ubiquitin-binding domain. EMBO J 28, 2885–95. 

58  Windheim, M., Stafford, M., Peggie, M. and Cohen, P. (2008) Interleukin-1 (IL-1) 

induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to 



 

 

 
 

147 

facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol 

28, 1783–91. 

59  Mauro, C., Pacifico, F., Lavorgna, A., Mellone, S., Iannetti, A., Acquaviva, R., 

Formisano, S., Vito, P. and Leonardi, A. (2006) ABIN-1 binds to 

NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J. Biol. 

Chem. 281, 18482–18488. 

60  Evans, P. C., Ovaa, H., Hamon, M., Kilshaw, P. J., Hamm, S., Bauer, S., Ploegh, H. 

L. and Smith, T. S. (2004) Zinc-finger protein A20, a regulator of inflammation and 

cell survival, has de-ubiquitinating activity. Biochem J 378, 727–34. 

61  Shembade, N., Ma, A. and Harhaj, E. W. (2010) Inhibition of NF-kappaB signaling 

by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–9. 

62  Wagner, S., Carpentier, I., Rogov, V., Kreike, M., Ikeda, F., Löhr, F., Wu, C.-J., 

Ashwell, J. D., Dötsch, V., Dikic, I., et al. (2008) Ubiquitin binding mediates the 

NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27, 3739–3745. 

63  Wiggins, J. E., Patel, S. R., Shedden, K. A., Goyal, M., Wharram, B. L., Martini, S., 

Kretzler, M. and Wiggins, R. C. (2010) NFkappaB promotes inflammation, 

coagulation, and fibrosis in the aging glomerulus. J. Am. Soc. Nephrol. JASN 21, 

587–597. 

64  Hussain, S., Romio, L., Saleem, M., Mathieson, P., Serrano, M., Moscat, J., Diaz-

Meco, M., Scambler, P. and Koziell, A. (2009) Nephrin deficiency activates NF-

kappaB and promotes glomerular injury. J. Am. Soc. Nephrol. JASN 20, 1733–

1743. 



 

 

 
 

148 

65  Adrianto, I., Wang, S., Wiley, G. B., Lessard, C. J., Kelly, J. A., Adler, A. J., Glenn, 

S. B., Williams, A. H., Ziegler, J. T., Comeau, M. E., et al. (2012) Two independent 

functional risk haplotypes in TNIP1 are associated with systemic lupus 

erythematosus. Arthritis Rheum. 

66  Adrianto, I., Wen, F., Templeton, A., Wiley, G., King, J. B., Lessard, C. J., Bates, J. 

S., Hu, Y., Kelly, J. A., Kaufman, K. M., et al. (2011) Association Between a 

Functional Variant Downstream of TNFAIP3 and Systemic Lupus Erythematosus. 

Nat Genet 43, 253–258. 

67  Gateva, V., Sandling, J. K., Hom, G., Taylor, K. E., Chung, S. A., Sun, X., 

Ortmann, W., Kosoy, R., Ferreira, R. C., Nordmark, G., et al. (2009) A large-scale 

replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk 

loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233. 

68  Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-

M., Huang, W., Zhao, G.-P., et al. (2009) Genome-wide association study in a 

Chinese Han population identifies nine new susceptibility loci for systemic lupus 

erythematosus. Nat. Genet. 41, 1234–1237. 

69  Zhong, H., Li, X. L., Li, M., Hao, L. X., Chen, R. W., Xiang, K., Qi, X. B., Ma, R. 

Z. and Su, B. (2011) Replicated associations of TNFAIP3, TNIP1 and ETS1 with 

systemic lupus erythematosus in a southwestern Chinese population. Arthritis Res 

Ther 13, R186. 

70  Hochberg, M. C. (1997) Updating the American College of Rheumatology revised 

criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40, 

1725. 



 

 

 
 

149 

71  Allanore, Y., Saad, M., Dieude, P., Avouac, J., Distler, J. H., Amouyel, P., Matucci-

Cerinic, M., Riemekasten, G., Airo, P., Melchers, I., et al. (2011) Genome-wide 

scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic 

sclerosis. PLoS Genet 7, e1002091. 

72  Nair, R. P., Duffin, K. C., Helms, C., Ding, J., Stuart, P. E., Goldgar, D., 

Gudjonsson, J. E., Li, Y., Tejasvi, T., Feng, B. J., et al. (2009) Genome-wide scan 

reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41, 

199–204. 

73  Sun, L. D., Cheng, H., Wang, Z. X., Zhang, A. P., Wang, P. G., Xu, J. H., Zhu, Q. 

X., Zhou, H. S., Ellinghaus, E., Zhang, F. R., et al. (2010) Association analyses 

identify six new psoriasis susceptibility loci in the Chinese population. Nat. Genet. 

42, 1005–9. 

74  Bowes, J., Orozco, G., Flynn, E., Ho, P., Brier, R., Marzo-Ortega, H., Coates, L., 

McManus, R., Ryan, A. W., Kane, D., et al. (2011) Confirmation of TNIP1 and 

IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis 70, 1641–4. 

75  Hoggart, C. J., Parra, E. J., Shriver, M. D., Bonilla, C., Kittles, R. A., Clayton, D. G. 

and McKeigue, P. M. (2003) Control of confounding of genetic associations in 

stratified populations. Am. J. Hum. Genet. 72, 1492–1504. 

76  Hoggart, C. J., Shriver, M. D., Kittles, R. A., Clayton, D. G. and McKeigue, P. M. 

(2004) Design and analysis of admixture mapping studies. Am. J. Hum. Genet. 74, 

965–978. 



 

 

 
 

150 

77  Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. and 

Reich, D. (2006) Principal components analysis corrects for stratification in 

genome-wide association studies. Nat. Genet. 38, 904–909. 

78  Lessard, C. J., Adrianto, I., Kelly, J. A., Kaufman, K. M., Grundahl, K. M., Adler, 

A., Williams, A. H., Gallant, C. J., Anaya, J. M., Bae, S. C., et al. (2011) 

Identification of a systemic lupus erythematosus susceptibility locus at 11p13 

between PDHX and CD44 in a multiethnic study. Am J Hum Genet 88, 83–91. 

79  Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., 

Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., et al. (2007) PLINK: a tool set for 

whole-genome association and population-based linkage analyses. Am J Hum Genet 

81, 559–75. 

80  Smith, M. W., Patterson, N., Lautenberger, J. A., Truelove, A. L., McDonald, G. J., 

Waliszewska, A., Kessing, B. D., Malasky, M. J., Scafe, C., Le, E., et al. (2004) A 

high-density admixture map for disease gene discovery in african americans. Am J 

Hum Genet 74, 1001–13. 

81  Halder, I., Shriver, M., Thomas, M., Fernandez, J. R. and Frudakis, T. (2008) A 

panel of ancestry informative markers for estimating individual biogeographical 

ancestry and admixture from four continents: utility and applications. Hum Mutat 

29, 648–58. 

82  Saleem, M. A., O’Hare, M. J., Reiser, J., Coward, R. J., Inward, C. D., Farren, T., 

Xing, C. Y., Ni, L., Mathieson, P. W. and Mundel, P. (2002) A conditionally 

immortalized human podocyte cell line demonstrating nephrin and podocin 

expression. J. Am. Soc. Nephrol. JASN 13, 630–638. 



 

 

 
 

151 

83  Barati, M. T., Gould, J. C., Salyer, S. A., Isaacs, S., Wilkey, D. W. and Merchant, 

M. L. (2016) Influence of Acute High Glucose on Protein Abundance Changes in 

Murine Glomerular Mesangial Cells. J. Diabetes Res. 2016. 

84  Boudaoud, A., Burian, A., Borowska-Wykręt, D., Uyttewaal, M., Wrzalik, R., 

Kwiatkowska, D. and Hamant, O. (2014) FibrilTool, an ImageJ plug-in to quantify 

fibrillar structures in raw microscopy images. Nat. Protoc. 9, 457–463. 

85  Nesvizhskii, A. I., Keller, A., Kolker, E. and Aebersold, R. (2003) A statistical 

model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 

4646–4658. 

86  Cummins, T. D., Barati, M. T., Coventry, S. C., Salyer, S. A., Klein, J. B. and 

Powell, D. W. (2010) Quantitative mass spectrometry of diabetic kidney tubules 

identifies GRAP as a novel regulator of TGF-[beta] signaling. Biochim. Biophys. 

Acta BBA-Proteins Proteomics 1804, 653–661. 

87  Powell, D. W., Weaver, C. M., Jennings, J. L., McAfee, K. J., He, Y., Weil, P. A. 

and Link, A. J. (2004) Cluster analysis of mass spectrometry data reveals a novel 

component of SAGA. Mol. Cell. Biol. 24, 7249. 

88  Ma, X., Conklin, D. J., Li, F., Dai, Z., Hua, X., Li, Y., Xu-Monette, Z. Y., Young, 

K. H., Xiong, W., Wysoczynski, M., et al. (2015) The oncogenic microRNA miR-

21 promotes regulated necrosis in mice. Nat. Commun. 6, 7151. 

89  McLeish, K. R., Uriarte, S. M., Tandon, S., Creed, T. M., Le, J. and Ward, R. A. 

(2013) Exocytosis of neutrophil granule subsets and activation of prolyl isomerase 1 

are required for respiratory burst priming. J. Innate Immun. 5, 277–289. 



 

 

 
 

152 

90  Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, 

B. M. and Yates, J. R., 3rd. (1999) Direct analysis of protein complexes using mass 

spectrometry. Nat. Biotechnol. 17, 676–682. 

91  Powell, D. W., Merchant, M. L. and Link, A. J. (2006) Discovery of regulatory 

molecular events and biomarkers using 2D capillary chromatography and mass 

spectrometry. Expert Rev. Proteomics 3, 63–74. 

92  Powell, D. W., Rane, M. J., Joughin, B. A., Kalmukova, R., Hong, J.-H., Tidor, B., 

Dean, W. L., Pierce, W. M., Klein, J. B., Yaffe, M. B., et al. (2003) Proteomic 

identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein 

kinase 2 substrate: role in dimer formation and ligand binding. Mol. Cell. Biol. 23, 

5376–5387. 

93  Clarke, C. H., Buckley, J. A. and Fung, E. T. (2005) SELDI-TOF-MS proteomics of 

breast cancer. Clin. Chem. Lab. Med. CCLM FESCC 43, 1314–1320. 

94  Lu, X., Chen, X., Huang, L., Zhu, C., Gu, Y. and Ye, S. (2010) Anti-alpha-

internexin autoantibody from neuropsychiatric lupus induce cognitive damage via 

inhibiting axonal elongation and promote neuron apoptosis. PloS One 5, e11124. 

95  Katsumata, Y., Kawaguchi, Y., Baba, S., Hattori, S., Tahara, K., Ito, K., Iwasaki, T., 

Yamaguchi, N., Oyama, M., Kozuka-Hata, H., et al. (2011) Identification of three 

new autoantibodies associated with systemic lupus erythematosus using two 

proteomic approaches. Mol. Cell. Proteomics MCP 10, M110.005330. 

96  Seko, Y., Matsumoto, A., Fukuda, T., Imai, Y., Fujimura, T., Taka, H., Mineki, R., 

Murayama, K., Hirata, Y. and Nagai, R. (2007) A case of neonatal lupus 



 

 

 
 

153 

erythematosus presenting delayed dilated cardiomyopathy with circulating 

autoantibody to annexin A6. Int. Heart. J. 48, 407–415. 

97  Iaccarino, L., Bettio, S., Zen, M., Nalotto, L., Gatto, M., Ramonda, R., Punzi, L. and 

Doria, A. (2013) Premature coronary heart disease in SLE: can we prevent 

progression? Lupus 22, 1232–1242. 

98  Manzi, S., Meilahn, E. N., Rairie, J. E., Conte, C. G., Medsger, T. A., Jr, Jansen-

McWilliams, L., D’Agostino, R. B. and Kuller, L. H. (1997) Age-specific incidence 

rates of myocardial infarction and angina in women with systemic lupus 

erythematosus: comparison with the Framingham Study. Am. J. Epidemiol. 145, 

408–415. 

99  Esdaile, J. M., Abrahamowicz, M., Grodzicky, T., Li, Y., Panaritis, C., du Berger, 

R., Côte, R., Grover, S. A., Fortin, P. R., Clarke, A. E., et al. (2001) Traditional 

Framingham risk factors fail to fully account for accelerated atherosclerosis in 

systemic lupus erythematosus. Arthritis Rheum. 44, 2331–2337. 

100  Asanuma, Y., Oeser, A., Shintani, A. K., Turner, E., Olsen, N., Fazio, S., Linton, M. 

F., Raggi, P. and Stein, C. M. (2003) Premature Coronary-Artery Atherosclerosis in 

Systemic Lupus Erythematosus. N. Engl. J. Med. 349, 2407–2415. 

101  Lawrence, R. C., Felson, D. T., Helmick, C. G., Arnold, L. M., Choi, H., Deyo, R. 

A., Gabriel, S., Hirsch, R., Hochberg, M. C., Hunder, G. G., et al. (2008) Estimates 

of the prevalence of arthritis and other rheumatic conditions in the United States: 

Part II. Arthritis Rheum. 58, 26–35. 



 

 

 
 

154 

102  Faurschou, M., Mellemkjaer, L., Starklint, H., Kamper, A.-L., Tarp, U., Voss, A. 

and Jacobsen, S. (2011) High risk of ischemic heart disease in patients with lupus 

nephritis. J. Rheumatol. 38, 2400–2405. 

103  Appenzeller, S., Pineau, C. and Clarke, A. (2011) Acute lupus myocarditis: Clinical 

features and outcome. Lupus 20, 981–988. 

104  Wijetunga, M. and Rockson, S. (2002) Myocarditis in systemic lupus 

erythematosus. Am. J. Med. 113, 419–423. 

105  Comín-Colet, J., Sánchez-Corral, M. A., Alegre-Sancho, J. J., Valverde, J., López-

Gómez, D., Sabaté, X., Juan-Mas, A. and Esplugas, E. (2001) Complete heart block 

in an adult with systemic lupus erythematosus and recent onset of 

hydroxychloroquine therapy. Lupus 10, 59–62. 

106  Bidani, A. K., Roberts, J. L., Schwartz, M. M. and Lewis, E. J. (1980) 

Immunopathology of cardiac lesions in fatal systemic lupus erythematosus. Am. J. 

Med. 69, 849–858. 

107  Gazarian, M., Feldman, B. M., Benson, L. N., Gilday, D. L., Laxer, R. M. and 

Silverman, E. D. (1998) Assessment of myocardial perfusion and function in 

childhood systemic lupus erythematosus. J. Pediatr. 132, 109–116. 

108  Kurien, B. T., Newland, J., Paczkowski, C., Moore, K. L. and Scofield, R. H. (2000) 

Association of neutropenia in systemic lupus erythematosus (SLE) with anti-Ro and 

binding of an immunologically cross-reactive neutrophil membrane antigen. Clin. 

Exp. Immunol. 120, 209–217. 

109  Wang, L., Dai, Y., Qi, S., Sun, B., Wen, J., Zhang, L. and Tu, Z. (2010) 

Comparative proteome analysis of peripheral blood mononuclear cells in systemic 



 

 

 
 

155 

lupus erythematosus with iTRAQ quantitative proteomics. Rheumatol. Int. 2012 

Mar;32(3):585-93. 

110  Ottosson, L., Salomonsson, S., Hennig, J., Sonesson, S.-E., Dörner, T., Raats, J., 

Kuchroo, V. K., Sunnerhagen, M. and Wahren-Herlenius, M. (2005) Structurally 

derived mutations define congenital heart block-related epitopes within the 200-239 

amino acid stretch of the Ro52 protein. Scand. J. Immunol. 61, 109–118. 

111  Serada, S., Fujimoto, M., Takahashi, T., He, P., Hayashi, A., Tanaka, T., Hagihara, 

K., Yamadori, T., Mochizuki, M., Norioka, N., et al. (2007) Proteomic analysis of 

autoantigens associated with systemic lupus erythematosus: Anti-aldolase A 

antibody as a potential marker of lupus nephritis. PROTEOMICS–Clinical Appl. 1, 

185–191. 

112  Pavon EJ, Munoz P, Lario A, Longobardo V, Carrascal M, AbiÃ¡n J, Martin AB, 

Arias SA, Callejas-Rubio JL, Sola R, et al. (2006) Proteomic analysis of plasma 

from patients with systemic lupus erythematosus: increased presence of haptoglobin 

alpha2 polypeptide chains over the alpha1 isoforms. Proteomics 6 Suppl 1, S282–

S292. 

113  Van Vlierberghe, H., Langlois, M. and Delanghe, J. (2004) Haptoglobin 

polymorphisms and iron homeostasis in health and in disease. Clin. Chim. Acta Int. 

J. Clin. Chem. 345, 35–42. 

114  Chapelle, J. P., Albert, A., Smeets, J. P., Heusghem, C. and Kulbertus, H. E. (1982) 

Effect of the haptoglobin phenotype on the size of a myocardial infarct. N. Engl. J. 

Med. 307, 457–463. 



 

 

 
 

156 

115  Reed, J. H., Neufing, P. J., Jackson, M. W., Clancy, R. M., Macardle, P. J., Buyon, 

J. P. and Gordon, T. P. (2007) Different temporal expression of immunodominant 

Ro60/60 kDa-SSA and La/SSB apotopes. Clin. Exp. Immunol. 148, 153–160. 

116  Briassouli, P., Komissarova, E. V., Clancy, R. M. and Buyon, J. P. (2010) Role of 

the urokinase plasminogen activator receptor in mediating impaired efferocytosis of 

anti-SSA/Ro-bound apoptotic cardiocytes: Implications in the pathogenesis of 

congenital heart block. Circ. Res. 107, 374–387. 

117  Gunteski-Hamblin, A. M., Song, G., Walsh, R. A., Frenzke, M., Boivin, G. P., 

Dorn, G. W., 2nd, Kaetzel, M. A., Horseman, N. D. and Dedman, J. R. (1996) 

Annexin VI overexpression targeted to heart alters cardiomyocyte function in 

transgenic mice. Am. J. Physiol. 270, H1091–1100. 

118  Dai, Y., Hu, C., Huang, Y., Huang, H., Liu, J. and Lv, T. (2008) A proteomic study 

of peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 17, 

799–804. 

119  Li, T., Zheng, B., Huang, Z., Lin, Q., Zhao, L., Liao, Z., Zhao, J., Lin, Z. and Gu, J. 

(2010) Screening disease-associated proteins from sera of patients with rheumatoid 

arthritis: a comparative proteomic study. Chin. Med. J. (Engl.) 123, 537–543. 

120  Cui, Y., Huang, M., He, Y., Zhang, S. and Luo, Y. (2011) Genetic ablation of 

apolipoprotein A-IV accelerates Alzheimer’s disease pathogenesis in a mouse 

model. Am. J. Pathol. 178, 1298–1308. 

121  Yi, L., Zeng, X., Tan, H., Ge, L., Ji, X.-X., Lin, M. and Su, Q. (2009) Proteomics 

analysis of apoptosis initiation induced by diallyl disulfide in human leukemia HL-

60 cells. Ai Zheng Aizheng Chin. J. Cancer 28, 33–37. 



 

 

 
 

157 

122  Ohsawa, S., Watanabe, T., Katada, T., Nishina, H. and Miura, M. (2008) Novel 

antibody to human BASP1 labels apoptotic cells post-caspase activation. Biochem. 

Biophys. Res. Commun. 371, 639–643. 

123  Kimura, A., Kanoh, Y., Sakurai, T., Koumura, A., Yamada, M., Hayashi, Y., 

Tanaka, Y., Hozumi, I., Takemura, M., Seishima, M., et al. (2010) Antibodies in 

patients with neuropsychiatric systemic lupus erythematosus. Neurology 74, 1372. 

124  Kimura, A., Sakurai, T., Yamada, M., Koumura, A., Hayashi, Y., Tanaka, Y., 

Hozumi, I., Takemura, M., Seishima, M. and Inuzuka, T. (2010) Elevated Anti-Heat 

Shock Protein 60 Antibody Titer is Related to White Matter Hyperintensities. J. 

Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 

125  Reyes-Thomas, J., Blanco, I. and Putterman, C. (2010) Urinary Biomarkers in 

Lupus Nephritis. Clin. Rev. Allergy Immunol. 40, 138–150. 

126  Oates, J. C., Varghese, S., Bland, A. M., Taylor, T. P., Self, S. E., Stanislaus, R., 

Almeida, J. S. and Arthur, J. M. (2005) Prediction of urinary protein markers in 

lupus nephritis. Kidney Int. 68, 2588–2592. 

127  Mosley, K., Tam, F. W. K., Edwards, R. J., Crozier, J., Pusey, C. D. and Lightstone, 

L. (2006) Urinary proteomic profiles distinguish between active and inactive lupus 

nephritis. Rheumatology 45, 1497 –1504. 

128  Zhang, X., Jin, M., Wu, H., Nadasdy, T., Nadasdy, G., Harris, N., Green-Church, 

K., Nagaraja, H., Birmingham, D. J., Yu, C.-Y., et al. (2008) Biomarker Discovery 

for Lupus Nephritis Through Longitudinal Urine Proteomics. Kidney Int. 74, 799–

807. 



 

 

 
 

158 

129  Zhang, X. and Rovin, B. H. (2010) Hepcidin expression by human monocytes in 

response to adhesion and pro-inflammatory cytokines. Biochim. Biophys. Acta 

1800, 1262–1267. 

130  Suzuki, M., Ross, G. F., Wiers, K., Nelson, S., Bennett, M., Passo, M. H., 

Devarajan, P. and Brunner, H. I. (2007) Identification of a urinary proteomic 

signature for lupus nephritis in children. Pediatr. Nephrol. Berl. Ger. 22, 2047–2057. 

131  Suzuki, M., Wiers, K., Brooks, E. B., Greis, K. D., Haines, K., Klein-Gitelman, M. 

S., Olson, J., Onel, K., O’Neil, K. M., Silverman, E. D., et al. (2009) Initial 

Validation of a Novel Protein Biomarker Panel for Active Pediatric Lupus 

Nephritis. Pediatr. Res. 65, 530–536. 

132  Varghese, S. A., Powell, T. B., Budisavljevic, M. N., Oates, J. C., Raymond, J. R., 

Almeida, J. S. and Arthur, J. M. (2007) Urine Biomarkers Predict the Cause of 

Glomerular Disease. J. Am. Soc. Nephrol. JASN 18, 913–922. 

133  Dong, J., Li, H., Wang, J.-B., Yao, Y. and Yang, Q.-R. (2011) Predictors for 

neuropsychiatric development in Chinese adolescents with systemic lupus 

erythematosus. Rheumatol. Int. 

134  Sibbitt, W. L., Jr, Brandt, J. R., Johnson, C. R., Maldonado, M. E., Patel, S. R., 

Ford, C. C., Bankhurst, A. D. and Brooks, W. M. (2002) The incidence and 

prevalence of neuropsychiatric syndromes in pediatric onset systemic lupus 

erythematosus. J. Rheumatol. 29, 1536–1542. 

135  Kimura, A., Sakurai, T., Tanaka, Y., Hozumi, I., Takahashi, K., Takemura, M., 

Saito, K., Seishima, M. and Inuzuka, T. (2008) Proteomic analysis of autoantibodies 



 

 

 
 

159 

in neuropsychiatric systemic lupus erythematosus patient with white matter 

hyperintensities on brain MRI. Lupus 17, 16–20. 

136  Ndhlovu, M., Preuss, B. E., Dengjel, J., Stevanovic, S., Weiner, S. M. and Klein, R. 

(2011) Identification of α-tubulin as an autoantigen recognized by sera from patients 

with neuropsychiatric systemic lupus erythematosus. Brain. Behav. Immun. 25, 

279–285. 

137  Zhang, Y., Wang, J., Xiang, D., Wang, D. and Xin, X. (2009) Alterations in the 

expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-

1) in human ovarian cancer and indentification of the therapeutic potential of 

APE1/Ref-1 inhibitor. Int. J. Oncol. 35, 1069–1079. 

138  Johnson, R. B., Fearon, K., Mason, T. and Jindal, S. (1989) Cloning and 

characterization of the yeast chaperonin HSP60 gene. Gene 84, 295–302. 

139  Zhu, J., Quyyumi, A. A., Rott, D., Csako, G., Wu, H., Halcox, J. and Epstein, S. E. 

(2001) Antibodies to human heat-shock protein 60 are associated with the presence 

and severity of coronary artery disease: evidence for an autoimmune component of 

atherogenesis. Circulation 103, 1071–1075. 

140  Kao, S.-H., Hsu, T.-C., Yu, J.-S., Chen, J.-T., Li, S.-L., Lai, W.-X. and Tzang, B.-S. 

(2010) Proteomic analysis for the anti-apoptotic effects of cystamine on apoptosis-

prone macrophage. J. Cell. Biochem. 110, 660–670. 

141  Dardik, R. and Inbal, A. (2006) Complex formation between tissue transglutaminase 

II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed 

mechanism for modulation of endothelial cell response to VEGF. Exp. Cell Res. 

312, 2973–2982. 



 

 

 
 

160 

142  Pillai, A., Veeranan-Karmegam, R., Dhandapani, K. M. and Mahadik, S. P. (2008) 

Cystamine prevents haloperidol-induced decrease of BDNF/TrkB signaling in 

mouse frontal cortex. J. Neurochem. 107, 941–951. 

143  D’souza, A., Kurien, B. T., Rodgers, R., Shenoi, J., Kurono, S., Matsumoto, H., 

Hensley, K., Nath, S. K. and Scofield, R. H. (2008) Detection of catalase as a major 

protein target of the lipid peroxidation product 4-HNE and the lack of its genetic 

association as a risk factor in SLE. BMC Med. Genet. 9, 62. 

144  Ye, S., Pang, H., Gu, Y. Y., Hua, J., Chen, X. G., Bao, C. D., Wang, Y., Zhang, W., 

Qian, J., Tsao, B. P., et al. (2003) Protein interaction for an interferon-inducible 

systemic lupus associated gene, IFIT1. Rheumatology 42, 1155. 

145  Walters, E., Rider, V., Abdou, N. I., Greenwell, C., Svojanovsky, S., Smith, P. and 

Kimler, B. F. (2009) Estradiol targets T cell signaling pathways in human systemic 

lupus. Clin. Immunol. Orlando Fla 133, 428–436. 

146  Pachner, A. R., Warth, J. D., Pace, A. and Goelz, S. (2009) Effect of neutralizing 

antibodies on biomarker responses to interferon beta: the INSIGHT study. 

Neurology 73, 1493–1500. 

147  Higgs, B. W., Liu, Z., White, B., Zhu, W., White, W. I., Morehouse, C., Brohawn, 

P., Kiener, P. A., Richman, L., Fiorentino, D., et al. (2011) Patients with systemic 

lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation 

of a common type I interferon pathway. Ann. Rheum. Dis. 

148  Davas, E. M., Tsirogianni, A., Kappou, I., Karamitsos, D., Economidou, I. and 

Dantis, P. C. (1999) Serum IL-6, TNFα, p55 srTNFα, p75 srTNFα, srIL-2α Levels 



 

 

 
 

161 

and Disease Acitivity in Systemic Lupus Erythematosus. Clin. Rheumatol. 18, 17–

22. 

149  Libby, P., Ridker, P. M. and Maseri, A. (2002) Inflammation and Atherosclerosis. 

Circulation 105, 1135–1143. 

150  Boring, L., Gosling, J., Cleary, M. and Charo, I. F. (1998) Decreased lesion 

formation in CCR2-/- mice reveals a role for chemokines in the initiation of 

atherosclerosis. Nature 394, 894–897. 

151  Tedgui, A. and Mallat, Z. (2006) Cytokines in Atherosclerosis: Pathogenic and 

Regulatory Pathways. Physiol. Rev. 86, 515–581. 

152  Schlöndorff, D. and Banas, B. (2009) The mesangial cell revisited: no cell is an 

island. J. Am. Soc. Nephrol. JASN 20, 1179–1187. 

153  Nee, L. E., McMorrow, T., Campbell, E., Slattery, C. and Ryan, M. P. (2004) TNF-

alpha and IL-1beta-mediated regulation of MMP-9 and TIMP-1 in renal proximal 

tubular cells. Kidney Int. 66, 1376–1386. 

154  Yagi, H., Soto-Gutierrez, A., Navarro-Alvarez, N., Nahmias, Y., Goldwasser, Y., 

Kitagawa, Y., Tilles, A. W., Tompkins, R. G., Parekkadan, B. and Yarmush, M. L. 

(2010) Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via 

sTNFR1. Mol. Ther. 18, 1857–1864. 

155  Choi, H. M., Jo, S.-K., Kim, S. H., Lee, J. W., Cho, E., Hyun, Y. Y., Cha, J. J., 

Kang, Y. S., Cha, D. R., Cho, W. Y., et al. (2013) Glucocorticoids attenuate septic 

acute kidney injury. Biochem. Biophys. Res. Commun. 435, 678–684. 



 

 

 
 

162 

156  Pascual, V., Allantaz, F., Arce, E., Punaro, M. and Banchereau, J. (2005) Role of 

interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic 

arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486. 

157  Clinton, S. K., Underwood, R., Hayes, L., Sherman, M. L., Kufe, D. W. and Libby, 

P. (1992) Macrophage colony-stimulating factor gene expression in vascular cells 

and in experimental and human atherosclerosis. Am. J. Pathol. 140, 301–316. 

158  Kleemann, R., Zadelaar, S. and Kooistra, T. (2008) Cytokines and atherosclerosis: a 

comprehensive review of studies in mice. Cardiovasc. Res. 79, 360–376. 

159  Pan, X., Huang, L., Chen, J., Dai, Y. and Chen, X. (2011) Analysis of synovial fluid 

in knee joint of osteoarthritis:5 proteome patterns of joint inflammation based on 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int. 

Orthop. 

160  Dieudé, M., Senécal, J.-L. and Raymond, Y. (2004) Induction of endothelial cell 

apoptosis by heat-shock protein 60-reactive antibodies from anti-endothelial cell 

autoantibody-positive systemic lupus erythematosus patients. Arthritis Rheum. 50, 

3221–3231. 

161  Schett, G., Xu, Q., Amberger, A., Van der Zee, R., Recheis, H., Willeit, J. and 

Wick, G. (1995) Autoantibodies against heat shock protein 60 mediate endothelial 

cytotoxicity. J. Clin. Invest. 96, 2569–2577. 

162  Qazi, K. R., Torregrosa Paredes, P., Dahlberg, B., Grunewald, J., Eklund, A. and 

Gabrielsson, S. (2010) Proinflammatory exosomes in bronchoalveolar lavage fluid 

of patients with sarcoidosis. Thorax 65, 1016–1024. 



 

 

 
 

163 

163  Fietta, A., Bardoni, A., Salvini, R., Passadore, I., Morosini, M., Cavagna, L., 

Codullo, V., Pozzi, E., Meloni, F. and Montecucco, C. (2006) Analysis of 

bronchoalveolar lavage fluid proteome from systemic sclerosis patients with or 

without functional, clinical and radiological signs of lung fibrosis. Arthritis Res. 

Ther. 8, R160. 

164  Rottoli, P., Magi, B., Cianti, R., Bargagli, E., Vagaggini, C., Nikiforakis, N., Pallini, 

V. and Bini, L. (2005) Carbonylated proteins in bronchoalveolar lavage of patients 

with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and 

idiopathic pulmonary fibrosis. Proteomics 5, 2612–2618. 

165  Bargagli, E., Penza, F., Vagaggini, C., Magi, B., Perari, M. G. and Rottoli, P. (2007) 

Analysis of carbonylated proteins in bronchoalveolar lavage of patients with diffuse 

lung diseases. Lung 185, 139–144. 

166  Bargagli, E., Olivieri, C., Prasse, A., Bianchi, N., Magi, B., Cianti, R., Bini, L. and 

Rottoli, P. (2008) Calgranulin B (S100A9) levels in bronchoalveolar lavage fluid of 

patients with interstitial lung diseases. Inflammation 31, 351–354. 

167  Tamburro, D., Facchiano, F., Petricoin, E. F., Liotta, L. A. and Zhou, W. (2010) 

Mass spectrometry-based characterization of the vitreous phosphoproteome. 

Proteomics Clin. Appl. 4, 839–846. 

168  Schiess, R., Wollscheid, B. and Aebersold, R. (2009) Targeted proteomic strategy 

for clinical biomarker discovery. Mol. Oncol. 3, 33–44. 

169  Liao, H., Wu, J., Kuhn, E., Chin, W., Chang, B., Jones, M. D., O’Neil, S., Clauser, 

K. R., Karl, J., Hasler, F., et al. (2004) Use of mass spectrometry to identify protein 



 

 

 
 

164 

biomarkers of disease severity in the synovial fluid and serum of patients with 

rheumatoid arthritis. Arthritis Rheum. 50, 3792–3803. 

170  Whiteaker, J. R., Zhao, L., Abbatiello, S. E., Burgess, M., Kuhn, E., Lin, C., Pope, 

M. E., Razavi, M., Anderson, N. L., Pearson, T. W., et al. (2011) Evaluation of large 

scale quantitative proteomic assay development using peptide affinity-based mass 

spectrometry. Mol. Cell. Proteomics MCP 10, M110.005645. 

171  Bhinder, S., Singh, A. and Majithia, V. (2010) Membranous (class V) renal disease 

in systemic lupus erythematosus may be more common than previously reported: 

results of a 6-year retrospective analysis. Am. J. Med. Sci. 339, 230–232. 

172  Brosius, F. C., Alpers, C. E., Bottinger, E. P., Breyer, M. D., Coffman, T. M., 

Gurley, S. B., Harris, R. C., Kakoki, M., Kretzler, M., Leiter, E. H., et al. (2009) 

Mouse Models of Diabetic Nephropathy. J. Am. Soc. Nephrol. 20, 2503–2512. 

173  Petri, M., Orbai, A.-M., Alarcón, G. S., Gordon, C., Merrill, J. T., Fortin, P. R., 

Bruce, I. N., Isenberg, D., Wallace, D. J., Nived, O., et al. (2012) Derivation and 

validation of the Systemic Lupus International Collaborating Clinics classification 

criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686. 

174  Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. and Ashwell, J. D. (2006) Sensing 

of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB 

activation [corrected]. Nat Cell Biol 8, 398–406. 

175  Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. and Chen, Z. J. (2006) Activation of IKK 

by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding 

by NEMO. Mol Cell 22, 245–57. 



 

 

 
 

165 

176  Ikeda, F., Deribe, Y. L., Skanland, S. S., Stieglitz, B., Grabbe, C., Franz-Wachtel, 

M., van Wijk, S. J., Goswami, P., Nagy, V., Terzic, J., et al. (2011) SHARPIN 

forms a linear ubiquitin ligase complex regulating NF-kappaB activity and 

apoptosis. Nature 471, 637–41. 

177  Ikezumi, Y., Hurst, L., Atkins, R. C. and Nikolic-Paterson, D. J. (2004) 

Macrophage-mediated renal injury is dependent on signaling via the JNK pathway. J 

Am Soc Nephrol 15, 1775–84. 

178  Sheryanna, A., Bhangal, G., McDaid, J., Smith, J., Manning, A., Foxwell, B. M., 

Feldmann, M., Cook, H. T., Pusey, C. D. and Tam, F. W. (2007) Inhibition of p38 

mitogen-activated protein kinase is effective in the treatment of experimental 

crescentic glomerulonephritis and suppresses monocyte chemoattractant protein-1 

but not IL-1beta or IL-6. J Am Soc Nephrol 18, 1167–79. 

179  Stambe, C., Atkins, R. C., Tesch, G. H., Kapoun, A. M., Hill, P. A., Schreiner, G. F. 

and Nikolic-Paterson, D. J. (2003) Blockade of p38alpha MAPK ameliorates acute 

inflammatory renal injury in rat anti-GBM glomerulonephritis. J Am Soc Nephrol 

14, 338–51. 

180  Stambe, C., Nikolic-Paterson, D. J., Hill, P. A., Dowling, J. and Atkins, R. C. (2004) 

p38 Mitogen-activated protein kinase activation and cell localization in human 

glomerulonephritis: correlation with renal injury. J Am Soc Nephrol 15, 326–36. 

181  Kawasaki, A., Ito, S., Furukawa, H., Hayashi, T., Goto, D., Matsumoto, I., Kusaoi, 

M., Ohashi, J., Graham, R. R., Matsuta, K., et al. (2010) Association of TNFAIP3 

interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese 

population: a case-control association study. Arthritis Res Ther 12, R174–R174. 



 

 

 
 

166 

182  He, C. F., Liu, Y. S., Cheng, Y. L., Gao, J. P., Pan, T. M., Han, J. W., Quan, C., 

Sun, L. D., Zheng, H. F., Zuo, X. B., et al. (2010) TNIP1, SLC15A4, ETS1, 

RasGRP3 and IKZF1 are associated with clinical features of systemic lupus 

erythematosus in a Chinese Han population. Lupus 19, 1181–6. 

183  Saran, R., Li, Y., Robinson, B., Ayanian, J., Balkrishnan, R., Bragg-Gresham, J., 

Chen, J. T. L., Cope, E., Gipson, D., He, K., et al. (2015) US Renal Data System 

2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. 

Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 66, Svii, S1–305. 

184  Caster, D. J., Korte, E. A., Nanda, S. K., McLeish, K. R., Oliver, R. K., G’sell, R. 

T., Sheehan, R. M., Freeman, D. W., Coventry, S. C., Kelly, J. A., et al. (2013) 

ABIN1 dysfunction as a genetic basis for lupus nephritis. J. Am. Soc. Nephrol. 

JASN 24, 1743–1754. 

185  Fu, Y., Du, Y. and Mohan, C. (2007) Experimental anti-GBM disease as a tool for 

studying spontaneous lupus nephritis. Clin. Immunol. Orlando Fla 124, 109–118. 

186  Klebanoff, S. J. (2005) Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77, 598–

625. 

187  Kim, Y. H., Goyal, M., Kurnit, D., Wharram, B., Wiggins, J., Holzman, L., 

Kershaw, D. and Wiggins, R. (2001) Podocyte depletion and glomerulosclerosis 

have a direct relationship in the PAN-treated rat. Kidney Int. 60, 957–968. 

188  Uriarte, S. M., Rane, M. J., Luerman, G. C., Barati, M. T., Ward, R. A., Nauseef, W. 

M. and McLeish, K. R. (2011) Granule exocytosis contributes to priming and 

activation of the human neutrophil respiratory burst. J. Immunol. Baltim. Md 1950 

187, 391–400. 



 

 

 
 

167 

189  Bai, J., Tang, L., Lomas-Neira, J., Chen, Y., McLeish, K. R., Uriarte, S. M., Chung, 

C.-S. and Ayala, A. (2015) TAT-SNAP-23 treatment inhibits the priming of 

neutrophil functions contributing to shock and/or sepsis-induced extra-pulmonary 

acute lung injury. Innate Immun. 21, 42–54. 

190  Uriarte, S. M., Rane, M. J., Merchant, M. L., Jin, S., Lentsch, A. B., Ward, R. A. 

and McLeish, K. R. (2013) Inhibition of neutrophil exocytosis ameliorates acute 

lung injury in rats. Shock Augusta Ga 39, 286–292. 

191  Caster, D. J., Hobeika, L., Klein, J. B., Powell, D. W. and McLeish, K. R. (2015) 

Changing the concepts of immune-mediated glomerular diseases through 

proteomics. Proteomics Clin. Appl. 9, 967–971. 

192  Bruschi, M., Sinico, R. A., Moroni, G., Pratesi, F., Migliorini, P., Galetti, M., 

Murtas, C., Tincani, A., Madaio, M., Radice, A., et al. (2014) Glomerular 

autoimmune multicomponents of human lupus nephritis in vivo: α-enolase and 

annexin AI. J. Am. Soc. Nephrol. JASN 25, 2483–2498. 

193  Bruschi, M., Galetti, M., Sinico, R. A., Moroni, G., Bonanni, A., Radice, A., 

Tincani, A., Pratesi, F., Migliorini, P., Murtas, C., et al. (2015) Glomerular 

Autoimmune Multicomponents of Human Lupus Nephritis In Vivo (2): Planted 

Antigens. J. Am. Soc. Nephrol. JASN 26, 1905–1924. 

194  Caster, D. J., Korte, E. A., Merchant, M. L., Klein, J. B., Wilkey, D. W., Rovin, B. 

H., Birmingham, D. J., Harley, J. B., Cobb, B. L., Namjou, B., et al. (2015) 

Autoantibodies targeting glomerular annexin A2 identify patients with proliferative 

lupus nephritis. Proteomics Clin. Appl. 



 

 

 
 

168 

195  Onishi, S., Adnan, E., Ishizaki, J., Miyazaki, T., Tanaka, Y., Matsumoto, T., 

Suemori, K., Shudou, M., Okura, T., Takeda, H., et al. (2015) Novel Autoantigens 

Associated with Lupus Nephritis. PloS One 10, e0126564. 

196  Pusey, C. D. (2003) Anti-glomerular basement membrane disease. Kidney Int. 64, 

1535–1550. 

197  Xie, C., Sharma, R., Wang, H., Zhou, X. J. and Mohan, C. (2004) Strain distribution 

pattern of susceptibility to immune-mediated nephritis. J. Immunol. Baltim. Md 

1950 172, 5047–5055. 

198  Xie, C., Zhou, X. J., Liu, X. and Mohan, C. (2003) Enhanced susceptibility to end-

organ disease in the lupus-facilitating NZW mouse strain. Arthritis Rheum. 48, 

1080–1092. 

199  Rovin, B. H., Rumancik, M., Tan, L. and Dickerson, J. (1994) Glomerular 

expression of monocyte chemoattractant protein-1 in experimental and human 

glomerulonephritis. Lab. Investig. J. Tech. Methods Pathol. 71, 536–542. 

200  Sinniah, R., Rui-Mei, L. and Kara, A. (1999) Up-regulation of cytokines in 

glomerulonephritis associated with murine malaria infection. Int. J. Exp. Pathol. 80, 

87–95. 

201  Gabay, C., Cakir, N., Moral, F., Roux-Lombard, P., Meyer, O., Dayer, J. M., 

Vischer, T., Yazici, H. and Guerne, P. A. (1997) Circulating levels of tumor 

necrosis factor soluble receptors in systemic lupus erythematosus are significantly 

higher than in other rheumatic diseases and correlate with disease activity. J. 

Rheumatol. 24, 303–308. 



 

 

 
 

169 

202  Idasiak-Piechocka, I., Oko, A., Pawliczak, E., Kaczmarek, E. and Czekalski, S. 

(2010) Urinary excretion of soluble tumour necrosis factor receptor 1 as a marker of 

increased risk of progressive kidney function deterioration in patients with primary 

chronic glomerulonephritis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. 

Assoc. - Eur. Ren. Assoc. 25, 3948–3956. 

203  Brennan, D. C., Yui, M. A., Wuthrich, R. P. and Kelley, V. E. (1989) Tumor 

necrosis factor and IL-1 in New Zealand Black/White mice. Enhanced gene 

expression and acceleration of renal injury. J. Immunol. Baltim. Md 1950 143, 

3470–3475. 

204  Boswell, J. M., Yui, M. A., Burt, D. W. and Kelley, V. E. (1988) Increased tumor 

necrosis factor and IL-1 beta gene expression in the kidneys of mice with lupus 

nephritis. J. Immunol. Baltim. Md 1950 141, 3050–3054. 

205  Neale, T. J., Rüger, B. M., Macaulay, H., Dunbar, P. R., Hasan, Q., Bourke, A., 

Murray-McIntosh, R. P. and Kitching, A. R. (1995) Tumor necrosis factor-alpha is 

expressed by glomerular visceral epithelial cells in human membranous 

nephropathy. Am. J. Pathol. 146, 1444–1454. 

206  Abkhezr, M., Kim, E. Y., Roshanravan, H., Nikolos, F., Thomas, C., Hagmann, H., 

Benzing, T. and Dryer, S. E. (2015) Pleiotropic signaling evoked by tumor necrosis 

factor in podocytes. Am. J. Physiol. Renal Physiol. 309, F98–108. 

207  Simpson, I. J., Amos, N., Evans, D. J., Thomson, N. M. and Peters, D. K. (1975) 

Guinea-pig nephrotoxic nephritis. I. The role of complement and 

polymorphonuclear leucocytes and the effect of antibody subclass and fragments in 

the heterologous phase. Clin. Exp. Immunol. 19, 499–511. 



 

 

 
 

170 

208  Holdsworth, S. R. and Tipping, P. G. (2007) Leukocytes in glomerular injury. 

Semin. Immunopathol. 29, 355–374. 

209  Lominadze, G., Powell, D. W., Luerman, G. C., Link, A. J., Ward, R. A. and 

McLeish, K. R. (2005) Proteomic analysis of human neutrophil granules. Mol. Cell. 

Proteomics MCP 4, 1503–1521. 

210  Uriarte, S. M., Powell, D. W., Luerman, G. C., Merchant, M. L., Cummins, T. D., 

Jog, N. R., Ward, R. A. and McLeish, K. R. (2008) Comparison of proteins 

expressed on secretory vesicle membranes and plasma membranes of human 

neutrophils. J. Immunol. Baltim. Md 1950 180, 5575–5581. 

211  Sistani, L., Dunér, F., Udumala, S., Hultenby, K., Uhlen, M., Betsholtz, C., 

Tryggvason, K., Wernerson, A. and Patrakka, J. (2011) Pdlim2 is a novel actin-

regulating protein of podocyte foot processes. Kidney Int. 80, 1045–1054. 

212  Akilesh, S., Suleiman, H., Yu, H., Stander, M. C., Lavin, P., Gbadegesin, R., 

Antignac, C., Pollak, M., Kopp, J. B., Winn, M. P., et al. (2011) Arhgap24 

inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial 

focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137. 

213  Faul, C., Donnelly, M., Merscher-Gomez, S., Chang, Y. H., Franz, S., Delfgaauw, 

J., Chang, J.-M., Choi, H. Y., Campbell, K. N., Kim, K., et al. (2008) The actin 

cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of 

cyclosporine A. Nat. Med. 14, 931–938. 

214  Santamaria, B., Marquez, E., Lay, A., Carew, R. M., González-Rodríguez, Á., 

Welsh, G. I., Ni, L., Hale, L. J., Ortiz, A., Saleem, M. A., et al. (2015) IRS2 and 



 

 

 
 

171 

PTEN are key molecules in controlling insulin sensitivity in podocytes. Biochim. 

Biophys. Acta 1853, 3224–3234. 

215  Yuan, H., Takeuchi, E. and Salant, D. J. (2002) Podocyte slit-diaphragm protein 

nephrin is linked to the actin cytoskeleton. Am. J. Physiol. Renal Physiol. 282, 

F585–591. 

216  Bollée, G., Flamant, M., Schordan, S., Fligny, C., Rumpel, E., Milon, M., Schordan, 

E., Sabaa, N., Vandermeersch, S., Galaup, A., et al. (2011) Epidermal growth factor 

receptor promotes glomerular injury and renal failure in rapidly progressive 

crescentic glomerulonephritis. Nat. Med. 17, 1242–1250. 

217  Endlich, N., Kress, K. R., Reiser, J., Uttenweiler, D., Kriz, W., Mundel, P. and 

Endlich, K. (2001) Podocytes respond to mechanical stress in vitro. J. Am. Soc. 

Nephrol. JASN 12, 413–422. 

218  Morigi, M., Buelli, S., Angioletti, S., Zanchi, C., Longaretti, L., Zoja, C., Galbusera, 

M., Gastoldi, S., Mundel, P., Remuzzi, G., et al. (2005) In response to protein load 

podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for 

permselective dysfunction of chronic nephropathies. Am. J. Pathol. 166, 1309–

1320. 

219  Morigi, M., Buelli, S., Zanchi, C., Longaretti, L., Macconi, D., Benigni, A., Moioli, 

D., Remuzzi, G. and Zoja, C. (2006) Shigatoxin-induced endothelin-1 expression in 

cultured podocytes autocrinally mediates actin remodeling. Am. J. Pathol. 169, 

1965–1975. 



 

 

 
 

172 

220  Danilewicz, M. and Wągrowska-Danilewicz, M. (2013) The immunoexpression of 

glomerular NF-κB in proteinuric patients with proliferative and non-proliferative 

glomerulopathies. Pol. J. Pathol. Off. J. Pol. Soc. Pathol. 64, 78–83. 

221  G’Sell, R. T., Gaffney, P. M. and Powell, D. W. (2015) A20-Binding Inhibitor of 

NF-κB Activation 1 is a Physiologic Inhibitor of NF-κB: A Molecular Switch for 

Inflammation and Autoimmunity. Arthritis Rheumatol. Hoboken NJ 67, 2292–2302. 

222  Bomback, A. S. and Appel, G. B. (2010) Updates on the Treatment of Lupus 

Nephritis. J. Am. Soc. Nephrol. 21, 2028–2035. 

223  Bomback, A. S. and Gharavi, A. G. (2013) Lupus nephritis: Ancestry, genetic risk 

and health disparities. Nat. Rev. Nephrol. 9, 699–700. 

 

  



 

 

 
 

173 

CURRICULUM VITAE 

 

Erik A. Korte 

821 Packard Ave. 

Louisville, KY  40217 

Phone: (417) 496-3697 

Fax: (502) 852-4384 

eakorte@gmail.com 

 

______________________________________________________________________ 

 

 

EDUCATION AND TRAINING: 

 

07/2012 - current Ph.D. Candidate - Biochemistry and Molecular Biology 

University of Louisville, Louisville, KY 

                                Advisor: David W. Powell, Ph.D.   

Dissertation Title: “ABIN1 in the pathogenesis of 

glomerulonephritis and the novel podocyte-neutrophil 

proinflammatory axis”  

*Dissertation Defense scheduled 04/08/16 

   *Graduation expected May 2016 

  

mailto:eakorte@gmail.com


 

 

 
 

174 

08/2010-07/2012 M.S. - Biochemistry and Molecular Biology 

University of Louisville, Louisville, KY 

                                Advisor: David W. Powell, Ph.D.     

 

08/1999-12/2003 B.S. - Biology  

Missouri State University, Springfield, MO 

 

 

EMPLOYMENT:  

 

2009-2010 Director, Research and Development, Boyce and Bynum 

Pathology Laboratories, Columbia, MO 

2006-2008  Kaplan Test Prep, Columbia, MO 

2002-2006  Gross Human Anatomy Instructor and Lab Coordinator, Missouri 

State University 

2001-2006 St. John’s Regional Health Center Emergency Trauma Center 

Technician, Springfield, MO 

 

 

TEACHING ACTIVITIES:  

2011 Teaching Assistant, Advanced Biochemical Methods, Department 

of Biochemistry and Molecular Biology, University of Louisville  

2006-2008  Kaplan Test Prep, Columbia, MO 



 

 

 
 

175 

2002-2006 Gross Human Anatomy Instructor and Lab Coordinator, Missouri 

State University 

              

AWARDS:  

2nd Place Overall, University of Louisville, Research! Louisville, 2015. 

American Society of Nephrology, Kidney STARS Program and Travel Award, 2014. 

American Heart Association, Predoctoral Fellowship, 2014-2016. 

Finalist, Poster Competition, University of Louisville, Research! Louisville, 2014. 

University of Louisville, Research Committee Travel Award, March 2014. 

1st Place, Graduate Research Competition, Cellular and Molecular Biology, Kentucky 

Academy of Sciences Annual Meeting, Morehead State University, November 2013.   

Finalist, Poster Competition, University of Louisville, Research! Louisville, 2013. 

1st Place, Overall Poster Competition, University of Louisville, Biochemistry and 

Molecular Biology Research Colloquium, 2013. 

Michael Gordon Fellowship Awardee, 2013. 

 

Formally Commissioned as a Kentucky Colonel by Governor Steven Beshear, March 13, 

2012. 

 

 

MENTORING: 

 



 

 

 
 

176 

Ryan Sheehan, M.S. is a current Ph.D. student in Biochemistry and Molecular Biology 

that completed a rotation in the Powell lab Fall Semester 2012.  Ryan has now joined the 

lab and is working toward developing an independent project.  I have trained him in lab 

techniques for cell culture, protein purification, western blotting, RT-qPCR, and other 

techniques.   

 

Rachel G’Sell, M.S. was a Masters student in Biochemistry and Molecular Biology that 

completed a rotation in the Powell lab Fall Semester 2012.  She joined the lab and 

completed a masters project before moving to the University of Missouri to begin a 

physical therapy program.  I have trained her in lab techniques for cell culture, protein 

purification, western blotting, RT-qPCR, ELISA, immunofluorescence, and other 

techniques.   

 

Rebecca Oliver, B.S. was a summer research undergraduate student in the Powell Lab in 

2012. 

 

Dawn Caster, M.D. is a Nephrology Attending in the Kidney Disease Program at the 

University of Louisville School of Medicine that has completed a one-year research 

fellowship (7/2012-7/2013) in the Powell lab and is now starting a clinical/translational 

research program in glomerular disease. 

   



 

 

 
 

177 

Katie Harris was a middle school student at St. Francis of Assisi who completed an 8th 

grade science project under my guidance which won local, regional and Kentucky State 

science fairs. 

 

Rose Chancy is a middle school student at St. Francis of Assisi who completed her 7th, 

8th and 9th grade science projects under my guidance which won local and regional 

science fairs and placed second at the Kentucky State science fair in 2012 and first place 

in 2013 followed by a top 30 finish nationally.   

 

COMMUNITY SERVICE:  

2012-2014  Judge – Manual Regional Science Fair (grades 9-12)   

2012-2013  Judge – St. Francis of Assisi Science Fair 

2012   Judge – Kentucky Orchid Society Annual Show  

 

PROFESSIONAL MEMBERSHIPS:  

American Heart Association 

American Society of Nephrology 

Kentucky Academy of Sciences  

American Association for the Advancement of Science 

American Society for Biochemistry and Molecular Biology 

Society for Experimental Biology and Medicine 

 

 



 

 

 
 

178 

ADMINISTRATIVE SERVICE:  

 

Biochemistry and Molecular Biology Student Body President 

Biochemistry and Molecular Biology Student Body Vice President 

University of Louisville School of Medicine Strategic Planning Steering Committee 

Graduate Executive Committee 

Council of the School of Medicine 

Department of Microbiology and Immunology Chair Search Committee 

Interviews with Department of Biochemistry and Molecular Biology Graduate School 

Candidates 

Organization of the Recruitment Weekend for Prospective Biochemistry Students 

 

 

EXTRACURRICULAR:  

 

2013-2016  Derby City Mustang Club 

2011-2014  Kentucky Orchid Society 

2010-2016  Louisville Metro Government Kickball League 

2010-2012  Louisville Masters Swim Team 

2002-2003  Varsity Swimming Captain 

2001, 2003  All-Conference, Men’s Swimming 

1999-2003  Varsity Swimming and Diving Team 

1999-2003  Academic All-Conference  



 

 

 
 

179 

1999-2003  Student Athlete Advisory Committee 

 

 

GRANT SUPPORT: 

 

Granting Agency: American Heart Association (Predoctoral Fellowship, 

14PRE19880002) 

Period of Performance:  07/01/14-06/30/16 

Title: ABIN1 function in the protection from lupus nephritis and cardiovascular disease 

PI: Erik Korte  24 Cal. Months (90% effort)  $52,000 

The overall objective of this project is to define the role of ABIN1 in renal cells in the 

promotion and pathogenesis of lupus nephritis. 

 

 

PRESENTATIONS: 

 

Seminars  

 

“ABIN1, Podocytes and the Glomerular Inflammatory Microenvironment”. University of 

Louisville, Department of Biochemistry and Molecular Biology Seminar Series. 

(September 11th, 2015) 

 



 

 

 
 

180 

“ABIN1, Podocytes and the Glomerular Inflammatory Microenvironment”. University of 

Louisville, Kidney Disease Program Research Seminar Series. (September 9th, 2015) 

 

“ABINI and Lupus Nephritis: Why the Kidney Matters”. University of Louisville, 

Department of Biochemistry and Molecular Biology Seminar Series. (May 12th, 2014) 

 

“ABIN1 and Lupus Nephritis: Why the Kidney Matters”. University of Louisville, 

Kidney Disease Program Research Seminar Series. (April 18th, 2014) 

 

“ABIN1 Dysfunction as a Basis for Lupus Nephritis”. Kentucky Academy of Sciences, 

Morehead State University, 2013. (November 9th, 2013).  1st Place, Cellular and 

Molecular Biology. 

 

“ABIN1 Dysfunction as a Basis for Lupus Nephritis”. University of Louisville, 

Biochemistry and Molecular Biology Research Colloquium, 2013. (August 23rd, 2013)  

 

“Ubiquitin Binding by ABIN-1 Controls Inflammation and Development of Lupus 

Nephritis”. University of Louisville, Kidney Disease Program Research Seminar Series. 

(April 18th, 2013) 

 

“Ubiquitin Binding by ABIN-1 Controls Multiple Signaling Pathways”. University of 

Louisville, Department of Biochemistry and Molecular Biology Seminar Series. (April 

8th, 2013) 



 

 

 
 

181 

 

 “B7 Costimulation Blockade in Induced Allograft Tolerance”. University of Louisville, 

Biochemistry and Molecular Biology Journal Club (January 9th, 2012)  

 

 

Posters 

 

National/International Conferences  

 

 

Powell DW, Sheehan RM, Caster DJ, McLeish KR, Korte EA. A novel mechanism for 

enhanced neutrophil recruitment, retention, and podocyte damage in immune complex-

mediated glomerular disease. American Association of Immunology Meeting, Seattle, 

Washington , May 2016 

 

Korte, EA; Sheehan, RM; Powell, DW. Loss of glomerular cell ABIN1 polyubiquitin 

binding results in enhanced pro-inflammatory signaling and kidney injury. Abstract and 

Poster Preparation. Mechanisms of Pro-Inflammatory Diseases, Keystone Symposia. 

Olympic Valley, CA, April 2015. 

 

Powell, DW; G’Sell, RT; Sheehan, RM; Caster, DJ; Merchant, ML. McLeish, KR; 

Korte, EA. Disrupted ABIN1 Function Results in a Pro-Inflammatory Phenotype in 



 

 

 
 

182 

Human Glomerular Cells. Abstract and Poster Presentation, American Society of 

Nephrology Annual Meeting, Philadelphia, PA. November 2014. 

 

Korte, EA, G’Sell, RT; Sheehan, RM; Caster, DJ; Powell, DP.  Dysfunction of 

polyubiquitin binding by ABIN1 as a basis for lupus nephritis.  Abstract and Poster 

Presentation, Experimental Biology International Conference, San Diego, CA, April 

2014. 

 

Caster DJ, Korte, EA, Birmingham DJ, Joglekar AS, Klein JB, Harley JB, Namjou B, 

McLeish KR, Merchant ML, Rovin, BH, and Powell, DW. Patterns of Circulating 

Autoantibodies in Patients with Lupus Nephritis. Abstract and Poster Presentation, 

American Society of Nephrology, Kidney Week, Atlanta, GA, November 2013. 

 

Korte, E.A., Cummins, T.D., Mendenhall, M.D., Barati, M.T., Klein, J.B., and Powell, 

D.W.  Elongin C is a Mediator of Notch4 Activity in Human Renal Tubule Cells.  

Keystone Symposia, Whistler, Canada, March 2012. 

 

Powell, D.W. Korte, E.A., Cohen, P., and Nanda, S.K. Disruption of ABIN1 inhibition 

of NF-κB activity causes lupus-associated glomerulonephritis. Keystone Symposia, 

Whistler, Canada, March 2012. 

 

Caster DJ, Birmingham DJ, Klein JB, Harley JB, Korte EA, McLeish KR, Merchant 

ML, Rovin, BH, and Powell, DW. Identification of Candidate Target Antigens for 



 

 

 
 

183 

Membranous Lupus Nephritis. American Society of Nephrology Kidney Week, San 

Diego, CA, November 2012. 

 

 

Local/Regional Conferences 

 

Korte, Erik; Sheehan, Ryan; Caster, Dawn; Powell, David.  Loss of glomerular ABIN1 

polyubiquitin binding results in enhanced pro-inflammatory signaling and kidney injury.  

University of Louisville, Research! Louisville, 2014. 2nd Place Overall, Poster 

Competition. 

 

Korte, Erik; Sheehan, Ryan; Powell, David.  Loss of glomerular cell ABIN1 

polyubiquitin binding results in enhanced pro-inflammatory signaling and kidney injury. 

University of Louisville, Biochemistry and Molecular Genetics Research Colloquium, 

2015. 

 

Korte, Erik; Sheehan, Ryan; Caster, Dawn; G’Sell, Rachel; Powell, David.  Loss of 

ABIN1 Function Results in a Pro-Inflammatory Phenotype in Human Glomerular Cells.  

University of Louisville, Research! Louisville, 2014. Finalist, Poster Competition. 

 

Korte, Erik; Sheehan, Ryan; Caster, Dawn; G’Sell, Rachel; Powell, David.  ABIN1 

Dysfunction as a Basis for Lupus Nephritis. University of Louisville, Research! 

Louisville, 2013. Finalist, Poster Competition. 



 

 

 
 

184 

 

Joglekar AS, Korte, EA, Caster DJ, Klein JB, Rovin BH, Harley JB, Merchant ML, 

McLeish KR, Stribinskis V, G’Sell RT, Sheehan RM, and Powell, DW. Target Antigens 

in Membranous Lupus Nephritis. Abstract and Poster Presentation, Research! Louisville, 

Louisville, KY, September 2013. 

 

Korte, Erik; Sheehan, Ryan; Caster, Dawn; G’Sell, Rachel; Powell, David.  ABIN1 

Dysfunction as a Basis for Lupus Nephritis. University of Louisville, Biochemistry and 

Molecular Biology Research Colloquium, 2013.  1st Place Poster Graduate Student, 1st 

Place Poster Overall. 

 

Korte, E.A., Cummins, T.D., Mendenhall, M.D., Barati, M.T., Klein, J.B., and Powell, 

D.W.  Elongin C is a Mediator of Notch4 Activity in Human Renal Tubule Cells.  

University of Louisville, Biochemistry and Molecular Biology Retreat, 2011. 

 

Caster DJ, Klein JB, Harley JB, Korte EA, McLeish KR, Merchant ML, Oliver R, Rovin 

BH, and Powell DW. Identification of GFRα1 as a Candidate Target Antigen in 

Membranous Lupus Nephritis. Research Louisville!, 2012, 1st place poster, clinical 

fellow 

 

PUBLICATIONS: 

Caster DJ, Korte EA, Merchant ML, Klein JB, Wilkey DW, Rovin BH, Birmingham DJ, 

Harley JB, Cobb BL, Namjou B, McLeish KR, Powell DW. “Autoantibodies targeting 



 

 

 
 

185 

glomerular annexin A2 identify patients with proliferative lupus nephritis.” Proteomics 

Clinical Applications. 2015 Dec;9(11-12):1012-20.  PMID: 25824007. 

 

D. J. Caster* and E. A. Korte*, S. K. Nanda, K. R. McLeish, R. K. Oliver, R. T. G’sell, 

R. M. Sheehan, D. W. Freeman, S. C. Coventry, J. A. Kelly, J. M. Guthridge, J. A. 

James, K. L. Sivils, M. E. Alarcon-Riquelme, R. H. Scofield, I. Adrianto, P. M. Gaffney, 

A. M. Stevens, B. I. Freedman, C. D. Langefeld, B. P. Tsao, B. A. Pons-Estel, C. O. 

Jacob, D. L. Kamen, G. S. Gilkeson, E. E. Brown, G. S. Alarcon, J. C. Edberg, R. P. 

Kimberly, J. Martin, J. T. Merrill, J. B. Harley, K. M. Kaufman, J. D. Reveille, J.-M. 

Anaya, L. A. Criswell, L. M. Vila, M. Petri, R. Ramsey-Goldman, S.-C. Bae, S. A. 

Boackle, T. J. Vyse, T. B. Niewold, P. Cohen, and D. W. Powell, “ABIN1 Dysfunction 

as a Genetic Basis for Lupus Nephritis,” J. Am. Soc. Nephrol. JASN, 2013 

Nov;24(11):1743-54.  PMID: 23970121. 

   *Equal Contributing First Authors 

 

Korte EA, Gaffney PM, Powell DW. (2011) Proteomic applications for defining cellular 

mechanisms and diagnostic markers of Systemic Lupus Erythematosus. Arthritis 

Research & Therapy.  2012 Feb 20;14(1):204.  PMID: 22364570. 

 

Cummins TD, Mendenhall MD, Lowry MN, Korte EA, Barati MT, Khundmiri SJ, 

Salyer SA, Klein JB, Powell DW. (2011)  Elongin C Is A Mediator Of Notch4 Activity 

In Human Renal Tubule Cells. Biochim Biophys Acta. 1814,1748-1757. 

 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2016

	ABIN1 in the pathogenesis of Glomerulonephritis and the novel polocyte-neutrophil proinflammatory axis.
	Erik Anderson Korte
	Recommended Citation


	tmp.1461605587.pdf.xcPk7

