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ABSTRACT 

ROLE OF MICRORNA-21 IN ATHEROGENESIS 

Rihab Hamed-Berair 

March 18, 2016 

 

MicroRNA-21 (miR-21) is an evolutionarily conserved microRNA, abundant in most 

cardiovascular tissues. It has been implicated in the pathogenesis of several 

cardiovascular diseases including restenosis, myocardial infarction, and heart failure. 

However, little is known about the contribution of miR-21 in atherosclerosis. My data 

show that expression of miR-21 is increased by >1.5-fold in murine atherosclerotic 

lesions and by 1.5-2.0-fold in the macrophages of Western diet (WD)-fed LDLR-KO mice 

(for 12-20 weeks). In vitro, LDL, oxidized LDL, acetylated LDL and LPS induced miR-21 

by 2-4-fold and down-regulated its target protein, PDCD4, in bone marrow-derived 

macrophages. Basally, macrophages isolated from miR-21-KO mice showed induction of 

several cytokines and chemokines, and significantly increased early and late apoptosis. 

Stimulation of miR-21-KO macrophages with interferon+LPS polarized the 

macrophages to the pro-inflammatory M1 phenotype (increased expression of CD11c 

and CD86). LPS increased the nuclear translocation of NF-B and increased the 

formation of several pro-inflammatory cytokines by 3-45-fold in miR-21-KO 
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macrophages. Staurosporine and 4-hydroxynonenal increased both early and late 

apoptosis of miR-21-KO macrophages (2-4-fold). This was accompanied by increased 

cleavage of caspase-3, caspase-7, and caspase-9. Transplantation of bone marrow cells 

from miR-21-KO to LDLR-KO mice, followed by 12 weeks of WD, increased the lesion 

formation (1.7-fold), apoptosis (3-fold) and necrosis (1.6-fold) in the aortic valve of miR-

21-KO chimeric mice. This was accompanied by increased staining for IL-1β, IL-12, 

cleaved caspase-3, and cleaved caspase-9 in the plaques of miR-21-KO chimeric mice. 

Collectively, these data suggest that miR-21 prevents atherosclerosis by inhibiting 

macrophage apoptosis, necrosis, and inflammation. 
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CHAPTER 1 

GENERAL INTRODUCTION 

ROLE OF MICRORNAs IN ATHEROSCLEROSIS 

 

 

1.1 Cardiovascular Disease: Cardiovascular disease (CVD) is the leading cause of 

morbidity and mortality, and accounts for 17.3 million deaths per year.  This number is 

expected to increase to more than 23.6 million by 2030 [1]. In the United States, CVD 

accounts for 31.3% of all deaths; and 1 in 3 American adults has one or more type of 

CVD, or increased risk factors for CVD [1]. More than 2150 Americans die of CVD each 

day- an average of 1 death every 40 seconds. The estimated direct cost for the 

management of CVD will increase from $273 billion to $818 billion between 2010 and 

2030 [2].  

 

1.1.1 Atherosclerosis: Atherosclerosis is the underlying cause of most CVD and 

accounts for 70% of all cardiovascular deaths [3]. Atherosclerosis is a multi-factorial, 

complex, and chronic inflammatory disease of the arterial wall. It is initiated by 

endothelial activation in response to excessive accumulation of lipoproteins within the 

vessel wall, leading to the migration of circulatory monocytes into sub-endothelial space 

and their differentiation into macrophages. Macrophages take up oxidized lipids in the 

sub-endothelial space and transform into foam cells. These foam cells secrete pro-

inflammatory cytokines that facilitate lipoprotein retention and enhance lesion 
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inflammation and atherogenesis [4-6]. Most often, lesions are covered and stabilized by 

a fibrous cap, which is formed by vascular smooth muscle cells (VSMCs) [7]. 

Progression of this lesion into a vulnerable plaque is characterized by increased 

macrophage apoptosis, large necrotic cores, focal thinning of the fibrous cap, and high 

level of inflammatory cytokines which can further propagate or destabilize the lesions. 

 

1.1.1.a. Diseases progression: 

(i) Normal artery: The normal artery wall is comprised of three well-defined layers: the 

intima; media; and adventitia. These three layers are separated by two layers of elastin. 

Internal elastic lamina separates intima from media, and external elastic lamina 

separates media from the adventitia [8]. Intima is the innermost layer of the vessel wall 

and is lined by a single adjacent layer of endothelial cells (ECs) that lies on a basement 

membrane of extracellular matrix, which is bordered by the internal elastic lamina. The 

intimal ECs are joined together by junctional complexes which allow straight 

communication between cells. The endothelial cells form a dynamic barrier between the 

blood and the arterial wall and have functions in leukocyte trafficking, thrombosis, and 

vascular tone [8]. 

 

The medial layer predominantly comprises of VSMCs. There can be one or several 

layers of VSMCs, depending on the size of the artery [8]. Cells are held together by an 

extracellular matrix encompassed mainly of elastic fibers, proteoglycans, and collagen. 

The extracellular matrix within the arterial wall is produced mainly by the VSMCs [8].  

These VSMCs express different contractile proteins such as -smooth muscle actin. 

Thus, the main function of the media layer is contraction and regulation of blood flow [9]. 

The outermost layer of the artery is the adventitia. It is typically comprised mostly of 

fibroblasts and connective tissues, and therefore provides mechanical support and 
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stability to the blood vessels. The adventitia also accommodates a number of leukocyte 

populations to fight possible infection [10]. 

(ii) Early atherosclerotic lesion: Atherosclerotic lesions occur predominantly at sites 

where the blood flow is turbulent and does not cause as much shear stress as 

elsewhere, notably, in arterial branch points, bifurcations, and curvatures [11, 12]. The 

first step of the development of atherosclerosis is sub-endothelial accumulation of 

apolipoprotein B-containing lipoproteins [13]. In the intima lipoproteins are associated 

with the proteoglycans of the extracellular matrix, which restrains them from returning to 

the bloodstream. In the sub-endothelial space these lipoproteins are devoid of plasma 

antioxidants, and therefore  are susceptible to oxidation [14]. These modified lipids 

activate the overlying ECs and result in an increased expression of adhesion molecules 

on ECs surface. Also, these modified lipids contribute to lipoprotein aggregation and 

additionally promote lipoprotein retention [5].  

 

Following increased expression of adhesion molecules on ECs surface, monocytes 

become tethered and roll on endothelial cells via the interaction of monocyte P-selectin 

glycoprotein ligand-1 (PSGL-1) with endothelial selectins [15]. Further adhesion of 

monocytes with ECs is achieved by endothelial vascular cell adhesion molecule 1 

(VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Finally, this firm adhesion of 

monocytes allows their entry into the sub-endothelial space [16]. In the intima, 

monocytes differentiate into macrophages, which take up modified  lipoproteins and 

transform into foam cells [17]. Macrophages internalize modified lipids through 

scavenger receptors, such as the scavenger receptor A (SRA) and CD36, resulting in 

accumulation of cholesteryl esters in cytoplasmic droplets [6]. The accumulation of lipid-

containing foam cells within the intima leads to the formation of fatty streaks. These fatty 

streaks can begin early in life from childhood and can remain unchanged or even 
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regress. Some fatty streaks however develop into advanced atherosclerotic plaques 

[18].   

 (iii) Advanced atherosclerotic lesions: The progression from the relatively simple 

fatty streak to the more complex lesion is characterized by increased inflammation. 

Macrophages are the principal mediators of this development [6]. Foam cells secrete 

pro-inflammatory cytokines (such as TNFα, IL-1β, IL-6 etc.) and enhance lesion 

inflammation and atherogenesis [4, 5]. Also, these established lesions are characterized 

by proliferation and migration of VSMCs from the media layer to the intima [19]. VSMCs 

undergo a transformation  from a contractile phenotype to a proliferative/synthetic 

phenotype, then release various types of proteinases that degrade the extracellular 

matrix (ECM) [20]. Migration of the VSMCs leads to formation of the fibrous cap that has 

an essential role in maintaining the mechanical stability of the lesion [19]. The cap is also 

composed of collagen bundles and elastic fibers. In humans, the majority of 

atherosclerotic lesions go unnoticed because of the formation of the fibrous cap that 

covers and stabilizes these lesions [19]. However, when the formation of the fibrous cap 

is thick enough to obstruct blood flow through a vessel, minor chest pain or angina is 

often felt [21].  

 

(iv) Vulnerable lesions and plaque rupture: Progression of atherosclerotic plaques to 

vulnerable plaques is accompanied by a high content of inflammatory cells, large 

necrotic core, and a thin fibrous cap which is more prone to rupture. In advanced 

atherosclerotic lesions, inflammation continues to be unresolved as a result of increased 

infiltration of inflammatory cells, which in turn secrete pro-inflammatory cytokines, 

proteases, coagulation factors, and vasoactive molecules. These molecules degrade the 

collagen in the cap and inhibit formation of a stable fibrous cap, therefore destabilizing 

the plaque [22].  The composition of the plaque is thought to determine the risk of 
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rupture. Lesions with thick fibrous caps are considered stable; yet continuous failure to 

clear foam cell macrophages and resolve vascular inflammation beneath such caps 

progressively leads to weakening of the protective cap. Moreover, VSMCs in advanced 

stages undergo apoptosis which results in reduced matrix synthesis and weakens the 

fibrous cap [23]. Another key factor in lesion vulnerability is the necrotic core which 

arises from a combination of lesional macrophage apoptosis and defective clearance of 

these dead cells (efferocytosis) [24]. Also, the necrotic core applies physical pressure on 

the fibrous cap and leads to further VSMCs apoptosis [25]. Physical disruption of the 

fibrous cap allows plaque rupture and exposes their highly thrombogenic material to 

interact with blood, which can trigger coagulation and atherothrombosis, the most 

common cause for myocardial infarction and stroke [5, 26]. 

 

1.2. Macrophage inflammation and apoptosis in atherosclerotic plaques: 

Macrophages play an important role in all stages of lesion progression and are the main 

component of atherosclerotic plaques [27]. They contribute largely to plaque 

inflammation and apoptosis, which are key processes in the development, progression, 

and instability of atherosclerotic lesions [28].  

 

1.2.1 Inflammation: Macrophage-mediated inflammation plays a vital role in 

atherogenesis. RNA isolated from lesional macrophages by laser capture 

microdissection and immunohistochemistry show increased inflammation in human and 

animal plaques [29].  

 

Mechanistic studies have identified several inflammatory signaling pathways which 

regulate vascular inflammation. Mullick et. al. addressed the role of toll-like receptor 

(TLR) signaling in lesional macrophages and demonstrated that high fat-fed LDLR-
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deficient mice transplanted with bone marrow from TLR2 knockout mice had reduced 

lesion area only when the mice were challenged with a TLR2 agonist [30]. A TLR 

heterodimer of TLR4/TLR6, along with a CD36 ligand has been recognized as a 

common molecular mechanism by which oxidized lipids stimulate sterile inflammation 

and activate NF-B [31]. Lutgene et. al. addressed the role of the CD40–CD40 ligand 

(CD40L) signaling axis, which plays a crucial part in immunological pathways, and they 

determined that CD40L-stimulated macrophages display NF-B activation [32]. 

Interestingly, fat-fed LDLR knockout mice transplanted with bone marrow from CD40 

knockout mice had decreased lesion area and inflammation [32].  

 

NF-B is a crucial regulator of inflammation [6] which controls the transcription of many 

genes with well-known roles in atherogenesis, such as chemokines, cytokines, and  

adhesion molecules [33]. Activation of NF-B has been demonstrated in human 

atherosclerotic plaques, in macrophages, smooth muscle cells, and ECs [34]. 

Nevertheless, Kanters et al. reported an increase in atherosclerotic lesions in LDL 

receptor– deficient mice when the classical NF-B –activating kinase, IKK2, was 

selectively ablated in macrophages [35]. Others have suggested a pro-atherogenic role 

of NF-B in macrophages [31, 32].  

 

Monocytes can differentiate into two major types of macrophages: those that promote 

inflammation, referred to as classically activated (M1) macrophages; and M2 

macrophages, which are anti-inflammatory and promote resolution of inflammation [36]. 

M1 macrophages, which are differentiated from Ly6Chigh monocytes, are classically 

activated by lipopolysaccharide (LPS) in the presence of IFNγ, leading to the production 

of IL-2, IL-23, IL-6, IL-1, and TNF-α. On the contrary, activated M2 macrophages, which 
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are differentiated from Ly6Clow monocytes, differentiate in the presence of IL-4, IL-13, IL-

10, or vitamin D3, produce a large amount of IL-10, and express scavenger receptors, 

mannose receptors, and arginase [37]. There is evidence that the imbalance in the ratio 

of M1 to M2 macrophages has different roles in different stages of atherosclerosis [38]. 

Studies in a murine model of atherosclerosis revealed that M2 macrophages are 

predominant in early lesions, while lesion progression correlates with the dominance of 

M1 phenotype [39]. Differential distribution of polarized macrophages within human 

atherosclerotic lesions links M1 activation to rupture-prone plaque areas [40].  

 

1.2.2. Apoptosis: Macrophage apoptosis plays a vital role in lesion progression 

because it facilitates necrotic core formation and the conversion of a benign lesion to a 

vulnerable plaque [28]. The necrotic core arises from a combination of macrophage 

apoptosis and defective clearance of these dead cells (efferocytosis) [24]. Macrophage 

cell death also occurs in early atherosclerotic lesions, however efferocytosis removes 

apoptotic cells. This leads to reduced lesion cellularity, inflammation, and plaque 

progression rather than an increase in plaque necrosis [41].  

 

Apoptosis is achieved by a group of intracellular cysteine proteases, namely caspases 

[42]. Caspase activation can be mediated by well-characterized extrinsic and/or intrinsic 

pathways. The extrinsic pathway is induced by death ligands, such as FasL, binding to 

cell surface receptors (e.g. Fas receptor) leading to the activation of caspase-8. The 

intrinsic pathway is activated after mitochondrial inter-membrane space proteins such as 

cytochrome C are released into the cytosol where they activate caspase-9. Activated 

caspase-8 and caspase-9 subsequently cleave and activate several downstream 

caspases, including caspase-3 and caspase-7, which then cleave intracellular 

substrates, resulting in apoptosis. The extrinsic apoptotic signal is amplified by the 
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intrinsic pathway via the cleavage of Bid by caspase-8. The truncated Bid, tBid, moves 

from the cytosol to the mitochondria and causes the release of apoptogenic factors from 

the mitochondria. The apoptotic cell also prepares itself for phagocytosis by actively 

flipping phosphatidylserine [42]. 

 

Several studies have identified macrophage apoptosis in and surrounding the necrotic 

core. In these cells signs of apoptosis have been detected by nuclear condensation, 

DNA fragmentation, and activated caspases [43, 44]. Also, some lesional macrophages 

displayed morphological features of necrosis, characterized by swollen organelles and 

disrupted cell membranes. Due to defective clearance of apoptotic cells in 

atherosclerotic lesions, it is likely that some of these necrotic macrophages originate 

from apoptotic cells [45]. Free cholesterol (FC) loading has been suggested to activate 

caspase-8-mediated apoptosis which could be blocked by an anti-Fas ligand antibody 

[46]. Additionally,  FC accumulation in macrophages resulted in a decrease in the 

mitochondrial transmembrane potential, followed by release of cytochrome C and 

execution of the intrinsic pathway through caspase-9 activation [47]. In this model, 

intrinsic pathway activation is not blocked by inhibition of the extrinsic pathway, 

indicating that a Fas-mitochondria cross-talk pathway is not involved [47].  

 

Several mechanisms are postulated to be responsible for macrophage apoptosis in 

atherogenesis, including growth factor deprivation, oxidative stress, death receptor 

activation by ligands that exist in advanced atheroma, and prolonged activation of 

endoplasmic reticulum (ER) stress pathways [48]. However, the role of these pathways 

in the etiology of lesion progression and stability is not clearly understood. 
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1.3. MicroRNA: 

1.3.1. History: MicroRNAs (miRNAs) are short non-coding strands of RNA that regulate 

thousands of genes in most physiological and pathological conditions [49]. The first 

miRNAs, lin-4 and let-7, were described by Lee et. al. in Caenorhabiditis elegans [50].  

These miRNAs were found to be expressed temporally and regulate developmental 

transitions in Caenorhabditis elegans. Since then, there has been a substantial increase 

in miRNA studies reflecting the interest in how these RNAs regulate protein expression 

and cell function. So far over 2500 mature miRNAs have been detected in humans and 

several of them have been shown to regulate an array of cellular processes.   

 

1.3.2. Genomic location and biogenesis: miRNAs mainly map to an intergenic region 

as single or clustered genes or an intragenic region within coding or non-coding 

transcribed units [51, 52]. Intragenic miRNAs expression is mostly regulated by the 

promoter of host genes, resulting in similar expression patterns for miRNA and mRNA 

[53]. Intergenic miRNAs have also been shown to be expressed independently from host 

genes [54]. The intergenic miRNAs have their own promoters and have the features 

commonly associated with RNA polymerase II–mediated transcription. Clustered 

miRNAs have one promoter and are co-regulated and transcribed as a long primary 

miRNA (pri-microRNA) [53]. 

 

In eukaryotes, most miRNAs are transcribed by RNA polymerase II into long transcripts 

called primary miRNAS (pri-miRNAs) [55] which are several kilo bases long, capped, 

spliced, and polyadenylated. A few miRNAs are transcribed by RNA pol III, e.g., miR-

515-1, miR-517a, and miR-517c [56]. In this pri-microRNA, intra-strand regions of 

complementarity result in the formation of an imperfect hairpin loop (pri-miRNA). The 

functional miRNA sequence is present on the arm of this loop [51]. Pri-miRNAs are 
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recognized by a microprocessor which is comprised of the class II Ribonuclease III 

enzyme, Drosha, and Di George Syndrome critical region 8 (DGCR8), a double stranded 

RNA binding protein [57]. The DGCR8 binds the double-stranded RNA, and the RNase 

III enzyme Drosha cleaves the double-stranded stem about 11 bp from the base of the 

stem, leaving a two-nucleotide overhang at the 3’ end (Fig. 1). The formed 70-100 bp 

long RNA molecule is called pre-microRNA [53, 58, 59]. After microprocessor cropping, 

pre-miRNAs are then exported into the cytoplasm by Exportin5/RanGTP [60]. Exportin5 

is a nuclear transporter that exports pre-miRNAs in a complex with RanGTP. The entire 

complex  then migrates to the cytoplasm, where the release of pre-miRNA occurs in 

response to the hydrolysis of RanGTP to RanGDP [61]. In the cytoplasm, the pre-miRNA 

is further cleaved by the class I Ribonuclease III, Dicer, to form imperfect duplexes. The 

PAZ domain of Dicer recognizes the 3’ overhang of pri-miRNA and the dicer catalytic 

subunit, RNAse III, cleaves the stem loop into the mature miRNA [62]. The processed 

miRNA is composed of double-stranded RNA of a 22 bp miRNA duplex [63]. Generally, 

the strand with the least stable 3’ end base pairing functions as the guide strand while 

the other strand, frequently noted miR*, is degraded. However, both the canonical guide 

strand and the star strand of several miRNAs have been proven to be functional. 

 

1.3.3. Mechanisms: To achieve gene silencing, the guide strand is loaded into the large 

enzyme complex RNA-induced silencing complex (RISC), then the miRNA seed 

sequence binds target mRNA 3’ Untranslated regions (UTRs) [49]. The RISC’s major 

functional unit is Argonaute (Ago2) which is a versatile enzyme involved in RNA-induced 

silencing. Perfect complementarity between the miRNA and the mRNA results in mRNA 

strand cleavage. However, the mechanism of gene silencing employed by miRNAs 

revolves around translational repression when miRNA targets are not based on perfect 

base pairing [49, 64]. Binding sites vary in their affinities based on sequence  
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Figure 1.  Biogenesis of microRNAs. 
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complementarity, in addition to the presence of an adenosine within the mRNA UTR in 

line with the first nucleotide of the miRNA.   

Target prediction programs use the seed sequences to predict the mRNA targets for 

miRNAs, but the existence of a seed region binding sequence in mRNA does not ensure 

miRNA binding, and the predicted targets have to be experimentally validated. 

Furthermore, due to the short seed region, single miRNAs may bind hundreds of 

mRNAs, while individual mRNAs can be targeted by several miRNAs which explains the 

diverse roles of miRNAs  in the fine-tuning of a wide range of biological processes [65]. 

Different levels of complementarity between the miRNA and mRNA can lead to various 

kinds of impacts on gene expression. Expression patterns of miRs have been reported 

to be altered in various disease states, including cancer and inflammatory diseases [66].  

 

1.3.4. MicroRNAs and atherosclerosis: Results from numerous studies have 

demonstrated a crucial role for miRs in regulating various atherogenic processes 

including lipoprotein metabolism, endothelial integrity, macrophage activation, and 

vascular smooth muscle cell (VSMC) proliferation. Table 1 shows the differential 

expression of miRNAs in atherosclerotic lesions. In atherosclerotic plaques, expression 

of miRNAs is modulated by different stimuli. The differentially regulated miRs then 

regulate various signaling pathways by modulating their target genes. A series of genetic 

manipulation or pharmacological intervention approaches have been applied to regulate 

the expression of atherogenic miRNA (Table 2) and their target genes. Described below 

are some of the miRs involved in atherogenesis. 
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1.3.5. Role of microRNAs in lipoprotein metabolism: miRNAs have been shown to 

have substantial impact on lipid metabolism. The epicenter of lipoprotein metabolism 

resides in the liver, which has been the focus of many miRNAs. miR-122 is the most 

abundant miRNA in the liver [67] and was the first miRNA shown to affect lipid 

homeostasis [68-73]. Antagomir inhibition of endogenous miR-122 in mice results in 

significant reduction of plasma cholesterol [71] . Moreover, cholesterol synthesis genes, 

which are not predicted targets of miR-122, were also  down-regulated [71]. Results from 

a separate study, which used antisense oligonucleotide (ASO)-mediated inhibition of 

miR-122, showed 30% reduction in plasma level of total cholesterol and 40% decrease 

in plasma triglycerides [69]. Mice treated with miR-122 ASO exhibited increased hepatic 

fatty acid oxidation, a decrease in hepatic fatty acid, and activation of AMP-activated 

kinase (AMPK), as well as down-regulation of genes involved in cholesterol biosynthesis 

such as HMG-CoA reductase [69]. Interestingly, Emlen et al., demonstrated a 

predominant increase in the low density lipoprotein (LDL) fraction in non-human 

primates following miR-122 inhibition by locked-nucleic acid-modified oligonucleotide 

(LNA-antimiR) [68]. miR-122 germ line and liver-specific knockout (LKO) mice displayed 

a 30% reduction in the total cholesterol [70, 73]. Interestingly, microarray analysis of 

hepatic gene expression in LKO mice revealed that the only statistically significantly 

enriched motifs corresponded to sites that match the miR-122 seed sequence [70]. 

These results indicate that the altered expression of a significant fraction of dys-

regulated transcripts in LKO livers is attributable to direct targeting by miR-122 [70]. 

Moreover, genes involved in lipid metabolism were highly represented in the liver of LKO 

mice. Notably, among the upregulated genes were two key enzymes, Agpat1 and 

Mogat1, which catalyze triglyceride biosynthesis [70]. miR-122 deficient mice also exhibit 

reduction in the expression of microsomal triglyceride protein (MTTP) [73].  
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Table 1: Expression of miRNA in atherosclerotic plaques.  

microRNA Species Organ/Cell Methods of characterization Reference 

Up-regulated miRNAs 

Let-7f Human Sclerotic intima Microarray, qRT-PCR [74] 

MiR-21 Human, Rat Aortic, carotid, femoral 
arteries/Sclerotic intima 

Microarray, qRT-PCR [74-76] 

miR-26b Human Carotid artery Microarray, qRT-PCR [77] 

miR-27b Human Sclerotic intima qRT-PCR [74] 

miR-30e Human Carotid artery Microarray, qRT-PCR [77] 

miR-33 Human Carotid artery Microarray, qRT-PCR [78] 

miR-34a Human Aortic, carotid, femoral 
arteries 

Microarray, qRT-PCR [76] 

miR-100 Human Carotid artery qRT-PCR [79] 

miR-125a Human Carotid artery Microarray, qRT-PCR [77] 

miR-127 Human Carotid artery qRT-PCR [79] 

miR-130 Human Sclerotic intima qRT-PCR [74] 

miR-133b Human Carotid artery qRT-PCR [79] 

miR-146 Rat Carotid artery Microarray, qRT-PCR [75] 

miR-146a Human Aortic, carotid, femoral 
arteries 

Microarray, qRT-PCR [76] 

miR-146b Human Aortic, carotid, femoral 
arteries 

Microarray, qRT-PCR [76] 
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miR-147 Human, 
Mice 

Carotid artery qRT-PCR [80] 

miR-155 Human, 
Mice 

Macrophage Microarray, qRT-PCR [76, 80] 

miR-210 Human Aortic, carotid, femoral 
arteries/Sclerotic intima 

Microarray, qRT-PCR [74, 76] 

miR-214 Rat Carotid artery Microarray, qRT-PCR, NB [75] 

miR-223 Human, 
Rat, Mice 

Aorta, carotid artery qRT-PCR [81] 

miR-352 Rat Carotid artery Microarray, qRT-PCR, NB [75] 

Down-regulated miRNAs 

miR-24 Human Coronary artery In situ hybridization* [82] 

miR-105 Human Carotid artery Microarray, qRT-PCR [77] 

miR-125a Rat Carotid artery Microarray, qRT-PCR, NB [75] 

miR-125b Rat Carotid artery Microarray, qRT-PCR, NB [75] 

miR-126 Human Aortic, carotid, femoral 
arteries 

Microarray, qRT-PCR [76] 

miR143 Rat Carotid artery Microarray, qRT-PCR [75] 

miR-181b Mice Aortic intima qRT-PCR [83] 

miR-221 Human Sclerotic intima qRT-PCR [74] 

miR-222 Human Sclerotic intima qRT-PCR [74] 

miR-347 Rat Carotid artery Microarray, NB [75] 

miR-365 Rat Carotid artery Microarray, NB [75] 
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miR-520 Human Carotid artery Microarray, qRT-PCR [77] 

Up-regulated/down-regulated miRNAs 

 miR-133a Human, Rat Carotid artery Microarray, qRT-PCR  [75, 79] 

miR-145 Human, Rat Carotid artery Microarray, qRT-PCR, NB [75, 79] 
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Table 2: Effect of genetic manipulation and pharmacological interventions of miRNA on atherogenesis.  

microRNA Mice Manipulation References 

Pro-atherogenic 

miR-19b ApoE-KO  Precursor and inhibitor   [84]  

miR-33 ApoE-KO or LDLR-KO Double knockout mice/ BMT/ Inhibitor [78, 85-88]  

miR-92a ApoE-KO  Inhibitor  [89] 

miR-126 3p miR-126 WT or KO Inhibitor [90]  

miR-
143/145  
(cluster) 

LDLR-KO  Double knockout  [91]  

miR-144-3p ApoE-KO  mimics  [92] 

miR-145 ApoE-KO  Inhibitor  [93] 

miR-302a LDLR-KO  Inhibitor  [94] 

miR-342-5p ApoE-KO  antagomir  [95] 

miR-712 ApoE-KO  Inhibitor  [96] 

Anti-atherogenic 

miR-24 ApoE-KO  Overexpression and inhibition  [82] 

miR-30c ApoE-KO  Overexpression and inhibition  [97] 

miR-126 5p ApoE-KO Double knockout  [98]  

miR-146a ApoE-KO/ LDLR-KO/ 
FVB/NJ   

mimics [99, 100]  

miR-181b ApoE-KO  mimics  [83] 

miR-223 ApoE-KO  Inhibitor and genetic deletion  [81] 

miR-467b ApoE-KO  antagomir  [101] 

miR-663 C57BL/6N  Overexpression   [102] 

miR-467b ApoE-KO  antagomir  [101] 

miR-663 C57BL/6N  Overexpression   [102] 
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miR-467b ApoE-KO  antagomir  [101] 

miR-663 C57BL/6N  Overexpression   [102] 

Pro/anti-atherogenic 

miR-155 ApoE-KO or LDLR-KO Double knockout mice/ BMT/ Inhibitor/ 
mimics/              

 Genetic deletion 

[80, 103-
107]  
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Cholesterol efflux capacity is essential for maintaining cholesterol homeostasis and is a 

strong predictor of atherosclerosis in humans. miR-33 was identified as a key post-

transcriptional regulator of cellular cholesterol homeostasis by three independent studies 

[108-110]. Humans have two copies of miR-33, miR-33a, and miR-33b, which are 

positioned within intronic sequences of the genes encoding the SREBP2 and SREBP1 

transcription factors. Rodents, on the other hand, only have one form of SREBP and 

miR-33 [111]. miR-33a is co-transcribed along with Srebf-2 in both hepatocytes and 

macrophages and the expression of miR-33a and Srebf-2 is comparable across many 

tissues [108, 109]. miR-33 has been shown to regulate high density lipoprotein (HDL) 

level  post transcriptionally by regulating  ATP-binding cassette A1 (ABCA1), which is 

responsible for the movement of free cholesterol out of the cell, and ABCG1 (which 

mobilizes cellular free cholesterol to more lipidated HDL particles) in liver and in 

macrophages. Targeting of ABCA1 and ABCG1 by miR-33 results in reduced cholesterol 

efflux to high-density lipoprotein (HDL) [108-110]. Studies in non-human primates 

showed that antisense oligonucleotides targeting miR-33a/b are effective in increasing 

HDL cholesterol and lowering VLDL-associated triglycerides by inducing ABCA1 

expression [112, 113]. In addition to cholesterol transport, these miRNAs were 

demonstrated to regulate key genes involved in fatty acid metabolism and insulin 

signaling [114].  

 

A recent study by Meiler et. al. demonstrated that miR-302a suppressed ABCA1, while 

anti-miR-302a treatment attenuated atherosclerosis progression in LDL receptor 

deficient mice [94]. miR-10b also directly suppressed ABCA1 and ABCG1, and 

negatively regulated cholesterol efflux from murine and human lipid-loaded 

macrophages [115]. Similarly, miR-27 [116], miR-144 [117, 118], miR-145 [91, 119], 

miR-223 [120], and miR-758 [121] target ABCA1 and post-transcriptionally regulate 
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cellular cholesterol efflux to apolipoprotein A-I. The final step of reverse cholesterol 

synthesis (RCT) is uptake of the HDL cholesterol by the liver, which is mediated by 

scavenger receptors. It has been proven that miR-96, miR-185, and miR-223 repress 

hepatic scavenger receptor B-I, delivering an additional essential mechanism to regulate 

HDL cholesterol transport [120, 122]. 

 

1.3.6. MicroRNAs and endothelial function: The early phase of atherosclerotic 

disease is characterized by the activation of endothelial cells (ECs), which is induced by 

both biochemical and biomechanical stimuli. Endothelial activation and inflammation is 

characterized by expression of adhesion molecules, such as VCAM-1, ICAM-1, and E-

selectin. Numerous miRNAs have been shown to play a role in the regulation of the 

inflammatory response in ECs. Recent studies highlighted an important role for miR-

181b as a suppressor of endothelial inflammatory responses by targeting importin-a3, a 

protein required for nuclear translocation of NF-B and therefore inhibiting NF-B-

responsive genes, VCAM-1 and E-selectin [123]. Systemic delivery of miR-181b reduces 

NF-B activity and atherosclerotic lesion formation in the aortic arch of ApoE-deficient 

mice [83]. Similarly miR-31 and miR-17-3p control EC inflammation by controlling the 

expression of adhesion molecules VCAM-1, ICAM-1, and E-selectin [124].  Also miR-

155 and miR-221/222 have been shown to protect the endothelium by inhibiting the 

angiotensin II-induced inflammatory response in ECs in an Ets-1-dependent manner 

[125]. However, the role of miR-155 in EC function remains controversial because it has 

also been found to impair endothelium-dependent vasorelaxation by directly targeting 

endothelial nitric oxide synthase (eNOS) mRNA [126]. miR-146a and miR-146b have 

also been shown to inhibit endothelial activation by promoting eNOS expression via the 

RNA-binding protein HuR; and by suppressing the induction of adhesion molecules 
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through targeting TRAF6 and IRAK1/ 2 [127]. Let-7g has been suggested to exert anti-

inflammatory effects on ECs through targeting transforming growth factor (TGF)-β 

pathway [128]. miR-126, expressed predominantly in ECs is reported to prevent 

atherosclerosis by inhibiting VCAM-1 expression in ECs [129, 130]. A recent study 

demonstrated that inhibition of miR-126-5p increased lesion formation in ApoE-KO mice 

[98]. 

 

Accumulating evidence indicates that alteration of flow conditions regulate miRNAs 

expression in ECs [131]. It was shown that shear stress is capable of inducing 

endothelial miR-21, which causes up-regulation of endothelial nitric oxide synthase and 

reduces endothelial cell apoptosis [132]. However, Zhou et. al. demonstrated pro-

atherogenic function of miR-21 in ECs by targeting peroxisome proliferator-activated 

receptor a (PPAR-a), hence enhancing the expression of VCAM-1 and MCP-1 [133]. 

Disturbed flow also downregulates miR-126-5p and exacerbates lesion formation 

through upregulation of delta-like 1 homolog (Dlk1), a negative regulator of EC 

proliferation [98]. Other shear stress-regulated miRNAs are miR-1275, -638 and -663 

which are upregulated in human umbilical vein endothelial cells (HUVECs). On the 

contrary, miR-320a, -b -c,- 151-3p, -195, -139-5p, and -27b are down regulated by shear 

stress [134]. 

 

1.3.7. Role of miRNAs in regulating macrophage functions: miRs have been 

suggested to play a pivotal role in regulating macrophage functions. Table 3 illustrates 

the atherogenic properties of miRs expressed in macrophages. These include foam cell 

formation, inflammation, and apoptosis. Described below are the mechanisms by which 

some of the macrophage miRs affect atherogenic processes.  
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Ingestion of lipoproteins by macrophages causes foam cell formation, an early 

pathogenic event in atherosclerotic plaque development. Microarray analysis on oxidized 

LDL (oxLDL)-activated human primary monocytes showed the upregulation of 5 

miRNAs: miR-125a-5p, miR-9, miR-146a, miR146b-5p and miR-155 [135]. Inhibition of 

miR-125a-5p increased lipid uptake in oxLDL-stimulated macrophages, possibly via its 

target Oxysterol binding protein-related Protein 9 (ORP9), which is involved in lipid 

metabolism and membrane transport [135]. Another study showed that the expression of 

miR-146a diminished in oxLDL-stimulated THP-1 macrophages via TLR4 upregulation 

[136]. A recent study by Li et. al. demonstrated that systemic delivery of miR-146a 

mimetic prevents macrophage activation and atherosclerosis in  Apoe-/-Ldlr-/- and Ldlr-/-  

mice [99]. Similar to miR-146a, miR-147 also limits the macrophage inflammatory 

response following TLR stimulation in a negative feed-back manner [137]. TLR4 

stimulation induces NF-B and STAT1 binding to the miR-147 promoter [137]. Inhibition 

of TLR-induced miR-147 reduces the secretion of inflammatory cytokines from 

macrophages [137].  

 

One of the most studied miRNAs in macrophages is miR-155. miR-155 is specifically 

expressed in atherosclerotic plaques and pro-inflammatory macrophages [80]. In vitro 

studies looking at the effect of miR-155 showed conflicting results. Several studies 

demonstrated an anti-inflammatory role of miR-155 [138-140]. Huang et. al. observed 

that miR-155 was involved in negative feedback regulation of oxLDL-induced 

inflammation via the down regulation of lectin-like oxidized LDL receptor 1 (LOX-1), 

CD36 and CD68, thereby resulting in reduced lipid uptake [139]. Another study showed 

that miR-155 repressed the expression of adhesion molecules (VCAM-1 and ICAM-1) 

and chemokines via targeting secretogranin II (SCG2), a key AP-1 regulatory protein 

and a direct angiogenic cytokine [138] . Likewise, miR-155, markedly up-regulated by 



23 
 

oxLDL stimulation, has been suggested to affect the secretion of cytokines (TNFα, IL-6, 

and IL-8 etc) by attenuating MyD88-mediated NF-B activation in atherosclerosis [139]. 

On the contrary, miR-155 has been reported to mediate the pro-inflammatory effects in 

monocytes/macrophages by suppressing B-cell CLL/lymphoma 6 (Bcl6) which can 

antagonize the NF-B pathway. Deficiency of miR-155 in oxLDL-stimulated 

macrophages in vitro, as well as in lesional macrophages, diminished the expression of 

the chemokine (chemokine C–C motif ligand2, CCL2) [80], suggesting a pro-atherogenic 

role for miR-155. Consistent with these findings, in vivo studies have shown that ApoE-/- 

mice with bone marrow cells deficient in miR-155 exhibit reduced macrophage 

inflammatory responses, enhanced macrophage cholesterol efflux, and reduced lesion 

size [80]. Furthermore, the same research group demonstrated that silencing of Bcl6 in 

mice harboring miR-155-/- macrophages enhances plaque formation and CCL2 

expression [80]. By contrast, in LDL receptor knockout (LDLR-KO) mice, bone marrow 

miR-155 deficiency enhanced atherosclerosis by generating a more pro-inflammatory 

macrophage phenotype [103].  

 

Accumulating evidence also demonstrated an important role for miRNAs in regulating 

macrophage polarization. miR-124 has an essential role in inhibiting macrophage 

activation and polarizes macrophages towards an anti-inflammatory M2 phenotype via 

targeting the transcription factor C/EBP-α [169]. miR-223-null macrophages displayed an 

increase in M1 and decrease in M2 biomarkers, indicating a suppressive effect of this 

miRNA on macrophage pro-inflammatory capacity, in part, by targeting the protein 

Pknox1 [170]. Similarly, miR-125a-5p diminished M1 phenotype expression induced by 

lipopolysaccharide (LPS), but promoted the expression of M2 markers in response to IL-

4 [153].  
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Table 3: Atherogenic properties of miRs expressed in macrophages. 

 

 

microRNA Foam Cell 
Formation 

Inflammation Apoptosis Reference 

Let-7f N Y N [141] 

miR-19b Y Y N [84, 142] 

miR-21 Y Y Y [143-145] 

miR-24 N Y N [146] 

miR-26b N Y N [147] 

miR-27b Y Y N [116, 148] 

miR-30 c N N Y [149] 

miR-33 Y Y N [78, 88] 

miR-34a N Y N [150, 151] 

miR-92a N Y N [152] 

miR-125a Y  Y N [135, 153] 

miR-125b N Y Y [154-156] 

miR-127 N Y N [157] 

miR-143/145 
Cluster 

N Y N [158] 

miR-143 N Y N [159] 

miR-144-3p N Y N [92] 

miR-145 N Y N [158] 

miR-146a Y Y N [99, 136] 

miR-146b N Y N [160] 

miR-147 N Y N [137] 

miR-155 Y Y Y [139, 161] 

miR-181b N Y N [162] 

miR-210 N Y N [163] 

miR-214 N Y N [164] 

miR-221 N Y N [165] 

miR-222 N Y N [166] 

miR-223 Y Y Y [167, 168] 

miR-302a Y N N [94] 

miR-342-5p N Y N [95] 

miR-467b Y Y N [101] 
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On the contrary, miR-155 has been reported to target C/EBPα orβ? to induce M1 

phenotype [171].  

 

To the best of my knowledge only one study has been performed thus far which directly 

tested the contribution of miRNAs in macrophage apoptosis in atherosclerotic lesions. In 

this study Wei et. al. showed that miR-155 deficiency diminished the progression of 

atherogenesis by decreasing the necrotic core and deposition of apoptotic cell debris in 

the plaque [105].  

 

1.3.8. Role of microRNAs in regulating VSMCs: miRs have also been recognized as 

important modulators of vascular smooth muscle cell (VSMC) phenotype switching and 

their proliferation. During the formation of an atherosclerotic plaque, some VSMCs go 

through a phenotypic change from a contractile to a secreting phenotype. The secreting 

VSMCs produce extracellular matrix proteins and metalloproteinases. miRNAs are 

phenotypic regulators of VSMCs.  In general, miR-221[172], miR-24 [173], miR-31 [174], 

miR-146a [175], miR-208 [176], and miR-26a [177] have been associated with the 

synthetic phenotype of VSMCs mainly functioning in the platelet-derived growth factor 

signaling and cell cycle. On the other hand, miR-1 [178], miR-133 [179], miR-21, miR-

143, miR-145 [180], miR-100 [181], and let-7d [182] expression have been related to 

contractile VSMCs, where they have been linked with the inhibition of cell proliferation, 

migration, and promotion of contractility. 

  

MiR-21 stimulates VSMCs proliferation by targeting phosphatase and tensin homolog 

(PTEN) and B-cell CLL/lymphoma 2 (Bcl-2) [75]. Interestingly, antisense mediated 

depletion of miR-21 significantly reduces neointima formation in balloon-injured rat 

carotid arteries [75]. Moreover, upregulated miR-21 expression inhibits reactive oxygen 
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species-induced SMC apoptosis and death [183] in a programmed cell death 4(PDCD4) 

- dependent manner [183]. Li et. al. demonstrated that miR-21 promotes VSMC 

proliferation, invasion, and migration through targeting activator protein-1 (AP-1) [184]. 

miR-146a can promote VSMC proliferation and neointimal hyperplasia by decreasing 

 Krüppel-like factor 4 (KLF4) expression [175].   

 

1.4. MicroRNA-21: miR-21 is evolutionarily conserved across different vertebrate 

species, and is encoded by a single gene located on the short arm of human 

chromosome 17 within the intronic region of the protein coding gene TMEM49. Despite 

the fact that miR-21 and TMEM49 are overlapping genes in the same direction of 

transcription, pri-miR-21 is independently transcribed from a conserved promoter that is 

located within the intron of the overlapping protein-coding gene [185]. miR-21 is one of 

the most studied miRNAs because it modulates a plethora of biological processes. miR-

21 is extensively studied in cancer because it is consistently upregulated  in nearly all 

types of solid [186] and hematological tumors [187-189]. It is involved in various 

immunological and developmental processes [144, 190, 191]. miR-21 has also been 

implicated in the manifestation of several aspects of CVD including restenosis, 

myocardial ischemia, and heart failure [192]. Expression of miR-21 is highly regulated by 

multiple transcription factors including AP-1[185], NF-B [193], and STAT3 [194] which 

directly bind the miR-21 promoter and alters its expression. There are more than 1000 

predicted target genes of miR-21.  

 

1.4.1. miR-21 and inflammation: Several studies indicate that miR-21 plays a key role 

in regulating proteins that orchestrate the inflammatory process, and it is thought to be 

involved in the transition between the pro- and anti-inflammatory phases of the immune 

response [144, 190, 195]. It has been shown that miR-21 plays an important role during 
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hematopoiesis, and its  expression increases as different cell types such as neutrophils 

[196], bone marrow-derived mast-cells [197], and various lineages of activated T-cells 

[198, 199] mature to an “active” state. Kashashima et. al. demonstrated that treatment of 

monocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA) to differentiate monocytes 

toward macrophages increased miR-21 expression significantly [200]. Subsequent 

studies revealed significant up-regulation of miR-21 in cells treated with all-trans retinoic 

acid to generate neutrophils [196], GM-CSF/IL-4 to generate immature dendritic cells 

(DCs) [201, 202], and LPS to generate activated macrophages [144, 203], as well as 

LPS-mediated B-cell activation [204]. Moreover parallel with miR-21 induction in various 

immune cell types, in vivo studies of diseased tissue often display increased expression 

of miR-21 relative to healthy control tissue. This has been shown in different models of 

allergic airway inflammation [203, 205], psoriasis, atopic eczema [206], and osteoarthritis 

[207]--many of which are characterized by infiltration of immunocytes. Increased miR-21 

expression was associated with increased IL-10 induction via targeting PDCD4, and 

increased TNFα formation by targeting PTEN, which collectively resulted in the 

resolution of inflammation [198, 199, 208, 209]. 

 

Beyond its direct effects on macrophages, miR-21 was shown as marker of activated T-

cells [198, 199, 208, 209]. Interestingly, T-cells transfected with miR-21 acquire a more 

Th2 phenotype [210]. Stagakis et. al. demonstrated that miR-21 regulates T-cell 

activation and polarization via targeting PDCD4 [211]. 

 

Analysis of miR-21 predicted target genes through target-pathway analysis indicated the 

following two signaling pathways that are significantly regulated by miR-21: (a) Janus 

kinase (JAK) and signal transducer and activators of transcription (STAT); and (b) 

cytokine–cytokine receptor interaction [212]. Together, these pathways are the core of 

http://europepmc.org/abstract/med/2744002/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A47622
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the cytokine response system. Dysregulation of cytokine signaling is known to be a main 

cause of inflammation [213, 214]. Moreover, miR-21 has also been reported to inhibit 

toll-like receptor 2 (TLR-2) agonist-induced lung inflammation in mice [215], exhibiting its 

anti-inflammatory role. 

 

1.4.2. miR-21 and apoptosis: The biological roles of miR-21 are extensively studied in 

cancer because it is consistently overexpressed in nearly all types of solid tumors-- 

including breast, pancreas, lung, gastric, prostate, colon, head and neck, and 

esophageal cancers [186]. It is also upregulated in hematological malignancies such as 

leukemia [187], lymphoma [188], and multiple myeloma [189]. Therefore, miR-21 can be 

classed as an oncomir. Experimental data from numerous transgenic and/or deficient 

mouse models of miR-21 show that miR-21 exerts its oncogenic function mainly through 

the inhibition of cellular apoptosis [216, 217]. Moreover, knockdown of miR-21 increases 

apoptotic cell death in vitro [218] and in murine models of cancer [219]. Therefore, miR-

21 has an established role as an anti-apoptotic factor which suppresses the expression 

of a large number of genes that participate (directly or indirectly) in the (extrinsic or 

intrinsic) apoptotic pathway to promote tumorigenesis [220].  

 

Anti-apoptotic effects of miR-21 have also been described in CVD. Chen et. al. 

demonstrated that miR-21 inhibitors increased H2O2-induced cardiac myocyte death and 

apoptosis, while pre-miR-21 had the opposite effect. The authors showed that miR-21 

exerts an anti-apoptotic function in cardiac myocytes through targeting PDCD4 [221]. 

Interestingly, in acute myocardial infarction (AMI), miR-21 was identified as a protective 

miRNA in ischemia-induced cell apoptosis via targeting PDCD4, and local viral delivery 

of miR-2I reduced the infarct size [222]. Sayed et. al. reported that miR-21 exert its anti-

apoptotic function in cardiac myocytes in an AKT/FasL (a key initiator of the extrinsic 
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apoptotic pathway) dependent manner. In this study the authors demonstrated that miR-

21 decreases in cardiac myocytes in response to hypoxia, which was associated with 

enhanced expression of PTEN and FasL protein [223]. In endothelial cells it was shown 

that shear stress is capable of inducing endothelial miR-21, which causes up-regulation 

of endothelial nitric oxide synthase and reduces endothelial cell apoptosis [132]. In 

VSMC several studies identified anti-apoptotic and proliferative effect of miR-21 on 

VSMCs in vitro and in rat carotid arteries in vivo through targeting (PTEN) [75] and 

programmed cell death 4 (PDCD4) [183].  

 

Recently the role of miR-21 in immune cell apoptosis has received great interest.  A 

study by Ruan et. al.  demonstrated that in activated T-cells,  miR-21 expression was 

upregulated, resulting in reduction of T-cell apoptosis via targeting Tipe2. Conversely 

overexpression of Tipe2 in T-cells augmented their susceptibility to activation-induced 

apoptosis [208]. In a recent study (Shang et. al.) inhibition of miR-21 expression was 

shown to augment glucose-induced caspase-3 activation and apoptosis in macrophages 

in a PDCD4 dependent manner, suggesting an anti-apoptotic role of miR-21. [145].  
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1.5. PROJECT OBJECTIVE: A thorough review of literature suggested although several 

miRs have been implicated in atherogenesis, a big gap in understanding persists in 

identifying which miRs are expressed/induced in macrophages, and which ones regulate 

atherogenic processes such as foam cell formation, inflammation and apoptosis, both in 

vitro and in atherosclerotic lesions. Experiments should be conducted to elucidate the 

underling mechanisms associated with these processes.  Based on the available 

literature and my pilot studies, I hypothesized that miR-21 prevents atherogenesis by 

inhibiting NF-B mediated macrophage inflammation and apoptosis. To test this 

hypothesis the following two aims were formulated: 

 

1. Examine the effects of myeloid cell-specific deficiency of miR-21 on 

atherogenesis. Examine how atherogenic and inflammatory stimuli affect the 

expression of miR-21 in cultured macrophages and in the aortic lesions of Western 

diet-fed LDLR-KO mice. Investigate the atherogenicity of miR-21 by transplanting 

the myeloid cells from miR-21-KO and WT mice into LDLR -KO mice, and analyze 

the lesion size and composition in the recipient mice fed Western diet for 12 weeks.  

 

2. Elucidate the mechanisms by which miR-21 affects atherogenic functions of 

macrophages. Investigate the effect of deficiency of miR-21 in macrophages on 

foam cell formation, macrophage polarization, cytokine formation, and apoptosis. 

Examine the role of NF-B and MAP kinases in inflammatory signaling and 

contribution of intrinsic and extrinsic pathways of apoptosis by measuring the 

activation of caspases.  
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CHAPTER 2 

 

EXPESSION OF MICRORNA-21 IN RESPONSE TO ATHEROGENIC AND 

INFLAMMATORY STIMULI, AND CONTRIBUTION OF MICRORNA-21 IN 

ATHEROGENESIS 

 

2.0 INTRODUCTION 

 Atherosclerosis, the underlying cause of most cardiovascular disease, is a chronic 

inflammatory disease that arises from maladaptive inflammatory responses to sub-

endothelial lipoproteins. A central aspect of these responses is a failure to clear sub- 

intimal LDL, which results in the accumulation of cholesterol-laden macrophages or foam 

cells. These foam cells continue to establish a chronic inflammatory response by 

secreting pro-inflammatory mediators such as chemokines, cytokines, and matrix-

degrading proteases [6]. The significance of macrophages in atherogenesis is 

emphasized by the observation that macrophage-deficient mice are resistant to 

atherosclerotic lesion formation [224]. Progression of atherogenesis is characterized by 

the apoptosis of these macrophages in the lipid core. Contribution of macrophage 

apoptosis is a complex phenomenon. In early stages of the lesions, macrophage 

efferocytosis eradicates apoptotic cells and prevents lesion progression, whereas in 

advanced lesions, efferocytosis is not sufficient to clear the apoptotic cells which leads to 

the formation of necrotic cores instability of lesions [225]. 
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MicroRNAs (miRs) are highly conserved short non-coding RNAs which regulate a variety 

of physiological and pathological functions. These -22 nucleotide long single-stranded 

RNA fragments can facilitate the degradation of mRNA targets and/or inhibit mRNA 

translation. The first miRNA, discovered in C. elegans, was found to be a regulator of 

development [50, 51], however, subsequent studies have revealed a crucial role of 

miRNAs in all major cellular processes.  

 

miRs have been implicated in all processes and phases of atherosclerosis [226]. They 

are involved in: the regulation of cholesterol homeostasis, endothelial activation and 

leukocyte recruitment, vascular inflammation, macrophage apoptosis and necrosis, 

smooth muscle cell proliferation, and thinning of the fibrous cap [226-228]. Since 

macrophages play a critical role in lesion inflammation and atherogenesis, I measured 

the expression of miRs which regulate both macrophage inflammation and apoptosis in 

atherosclerotic plaques of LDL receptor-null mice. My systematic, thorough, and rigorous 

screening of miRs expressed in atherosclerotic lesions showed that miR-21, implicated 

in inflammation and apoptosis, is expressed in atherosclerotic lesions, and its expression 

is induced by atherogenic and inflammatory stimuli in cultured macrophages. This 

chapter describes the role of miR-21 in atherogenesis.    

 

EXPERIMENTAL PROCEDURES 

2.1 Animal studies: 

2.1.1. Animal housing and husbandry: Wild type C57BL/6 (WT) mice and LDL 

receptor-knockout (LDLR-KO; B6.129S7-Ldlrtm1Her/J) mice on C57BL/6 background were 

obtained from the Jackson Laboratory, Bar Harbor, ME. miR-21-KO mice were kindly 

provided by Dr. Yong Li. Since these mice were on a mixed background [229], they were 

bred with C57BL/6 mice by congenic breeding for 9 generations to obtain miR-21-KO 
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mice on a C57-KO background. The mice were housed and bred under pathogen-free 

conditions in a barrier facility at  the University of Louisville vivarium under controlled 

temperature and 12 h light/12 h dark cycle, following the guidelines of the Association for 

the Accreditation of Laboratory Animal Care. Prior to the indicated protocols, all the mice 

were maintained on a normal chow (NC; PicoLab Rodent Chow 20 containing 4.5 % fat 

by weight and 0.02 % cholesterol). Studies were performed under protocols approved by 

the University of Louisville Institutional Animal Care and Use Committee. 

 

2.1.2. Animal treatment: Eight week old C57BL/6 and LDLR-KO mice were placed on 

either a NC or Western Diet (WD; Teklad TD 88137 containing 21.2% fat and 4.5% 

cholesterol) for 12 weeks. Water and diet were provided ad libitum and body weights 

were measured on a weekly basis for the duration of the study. At 20 weeks of age mice 

were anesthetized with pentobarbital, and blood was withdrawn by cardiac puncture 

using EDTA as an anti-coagulant. The vasculature was perfused with phosphate buffer 

saline (PBS), and entire aorta from the heart, extending to the iliac arteries and including 

the sub-clavian right and left common carotid arteries, was removed and washed with 

PBS, followed by immediate immersing in RNALater solution from Ambion (Austin, TX, 

USA) to stabilize the RNA. Peri-adventetial tissue was removed under the dissecting 

microscope. Aortas were snap-frozen in liquid nitrogen followed by pulverization and 

homogenization of aortic tissues. Total RNA was then isolated using a miRCUR RNA 

isolation kit from Exiqon (Woburn, MA, USA). 

 

2.1.3. MicroRNA expression array: Expression of miRNAs in the aorta of NC (n=6) or 

WD- fed LDLR-KO mice (n=6) was measured by miRNA array at Exiqon. The quality of 

the total RNA was confirmed by an Agilent 2100 Bioanalyzer profile. RNA (400ng) was 

labeled with fluorescent Hy3™ and Hy5™, using the miRCURY LNA™ microRNA Hi-
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Power Labeling Kit, Hy3™/Hy5™ (Exiqon, Denmark).  The Hy3™-labeled samples and 

a Hy5™-labeled reference RNA sample were mixed pair-wise and hybridized to the 

miRCURY LNA™ microRNA Array 7th Gen (Exiqon, Denmark), which contains capture 

probes targeting all microRNAs for human, mouse, or rat registered in the miRBASE 

18.0. The hybridization was performed according to the miRCURY LNA™ microRNA 

Array Instruction manual using a Tecan HS4800™ hybridization station (Tecan, Austria). 

After hybridization the microarray slides were scanned and stored in an ozone-free 

environment (ozone level below 2.0 ppb) in order to prevent potential bleaching of the 

fluorescent dyes. The miRCURY LNA™ microRNA Array slides were scanned using the 

Agilent G2565BA Microarray Scanner System (Agilent Technologies, Inc., USA), and the 

image analysis was carried out using the ImaGeneR 9 (miRCURY LNA™ microRNA 

Array Analysis Software, Exiqon, Denmark). The quantified signals were background- 

corrected and normalized using the global Lowess (Locally Weighted Scatterplot 

Smoothing) regression algorithm.  

 

We detected 503 miRNAs in the NC and WD fed LDLR-KO mice.  The data were log- 

transformed and normalized using auto scaling (mean-centered and divided by the 

standard deviation of each variable). This step was performed to transform the 

expression values so that the distribution is more Gaussian. Univariate analysis methods 

were used to compare the two groups. Fold Change (FC) analysis and the t-test was 

used to create the volcano plots.   

 

2.1.3. Isolation of bone marrow cells and generation of bone marrow derived 

macrophages: To isolate bone marrow cells, tibias and femurs of C57/BL6, miR-21-KO, 

and LDLR-KO mice were aseptically removed and flushed with 5ml of PBS containing 

2% FBS.  Cells were passed through a cell strainer (100µm, BD Falcon) and centrifuged 
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at 500xg for 5min. The pellets were re-suspended in RPMI-1640 medium supplemented 

with 5% FBS and 10ng/ml macrophage-colony stimulating factor (M-CSF, a macrophage 

growth factor required for the differentiation of mononuclear progenitor cells into 

macrophages) from R & D System (Minneapolis, MN, USA). Cells were plated in a 10 

cm-dish and incubated at 37°C for 16h. The non-adherent bone marrow cells were then 

cultured in RPMI-1640 containing 5% FBS, 10ng/ml M-CSF, and L-929 conditioning 

media. The cells were seeded in a 6-well, ultra-low attachment plate from Corning 

(Corning, NY, USA) and cultured  at 37°C for 7 days to allow for differentiation into 

primary macrophages. Total RNA was isolated using the miRCUR RNA isolation kit from 

Exiqon (Woburn, MA, USA). 

 

2.1.4 Phenotyping of blood cells by flow cytometry: One hundred micro liter blood 

was mixed with 1.0ml red blood cell lysis buffer and incubated for 10 minutes at room 

temperature. Cells were centrifuged at 500xg for 5min and rinsed twice with 2% FBS in 

PBS. The Fc receptor (FcR) was blocked for 10min at 4°C to prevent non-specific 

antibody binding with FcR Blocking Reagent (Miltenyi Biotec, San Diego, CA, USA). 

Cells were incubated with a panel of fluorescent conjugated antibodies for 30min at 4°C. 

After washing, samples were analyzed using the BD LSR II. Experiment files were 

exported and further analyzed using the FlowJo analysis software. Antibodies used 

were: FITC-NK1.1, PE-Ly6c, PerCP-e710-CD8a, PE-Cy7-CD62L, APC-CD19, Alexa 

700-Gr-1, APC-e780-CD3e, e605 NC BD-CD11b, and e650 NC-CD4. Bone marrow cells 

were detected by using the following antibodies:  APC-CD45, ALEXA 700-CD34, APCe 

780-CD117(c-kit), FITC-SCA, PE-CD16/32 FcgR, and e450-lin.  All antibodies were 

obtained from BD Biosciences (San Jose, CA, USA) or eBioscience (San Diego, CA, 

USA).   
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2.1.5. Phenotyping of bone marrow cells by flow cytometry:  To isolate bone marrow 

cells, tibias and femurs of C57/BL6 and miR-21-KO mice were aseptically removed and 

flushed with 5 ml of PBS containing 2% FBS.  Cells were passed through a cell strainer 

(100µm, BD Falcon) and centrifuged at 500xg for 5 min. The Fc receptor was blocked as 

described above. Cells were incubated with desired antibodies for 30 min at 4°C as 

described above.  

 

2.1.5. Bone marrow transplant: Bone marrow transplant experiments were performed 

as previously described [230]. Briefly, 6 week old LDLR-KO mice were acclimated to the 

animal facility for one week before being subjected to an ablative dose of whole body 

irradiation. (at a dosage of 950cGy by way of a cesium source for 10 minutes), to ablate 

the endogenous bone marrow cells. After 24h, all irradiated mice were injected with 

1x107 bone marrow cells isolated from tibias and femurs of WT or miR-21-KO mice. After 

5 weeks of recovery, recipient mice were characterized for hematopoietic recovery and 

chimerism by q-RT-PCR measurement of miR-21 expression in white blood cells. Mice 

were then fed WD for 12 weeks. Subsequently, mice were euthanized to collect blood 

and tissues for biochemical and pathological analyses (Fig 2).  

 

2.1.6. Atherosclerotic lesion analyses: For the analysis of lesion formation in the 

aortic sinus, the tissue was frozen in OCT reagent and serial cryosections of 8μm-

thickness were taken from the origin of the aortic valve leaflets throughout the aortic 

sinus as described [231, 232]. Mean lesion area was calculated from the analysis of 

digital images obtained from 9-12 serial sections from each mouse, using Image J 

software. Oil red O staining was used to detect the lipid deposition in these sections 

while Sirius Red staining was used to visualize collagen. Digital images were acquired 

using Spot Advanced camera and analyzed by Image J software by a blinded observer. 
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Figure 2. Bone marrow transplant protocol. Bone marrow cells isolated from the hind 

limbs of miR-21-KO mice and WT mice under sterile conditions were reconstituted in 

sterile PBS, and 1x107 cells were transplanted in lethally-irradiated LDLR-KO mice via 

retro-orbital injection. Five weeks after reconstitution, mice were checked for chimerism 

and then placed on Western diet (WD; 42% fat) for 12 weeks.  
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2.1.7. Immunohistochemical analyses:  

a) Fluorescent labeling of antibodies: Anti-α-smooth muscle actin was linked with 

DyLight®488, and anti-CD3 antibody was labeled with Texas Red using a fast 

conjugation kit from Abcam (Cambridge, MA, USA) as per the manufacturer’s 

instructions. Briefly, 100-200µg of the antibody was incubated with the modifier and 

Cy5/DyLight®488/Texas Red conjugate reagents for 15 minutes in the dark at room 

temperature, followed by the addition of the quencher reagent. The conjugated 

(fluorescent) antibodies were stored at 4°C until used.  

b) Immuno-staining: Air-dried cryostat sections were fixed in cold acetone for 30 

minutes or 4% paraformaldehyde in PBS (phosphate buffered saline) for 20 minutes, 

followed by permeablization with 0.1% Triton-X100 for 10 minutes. The sections were 

stained with appropriate fluorescent primary antibodies; macrophages were stained with 

RPE or Alexa 647-conjugated rat anti-mouse CD68 (Serotec, Raleigh, NC; 1:50, 

overnight at 4° C); smooth muscle cells were identified with DyLight®488-conjugated 

monoclonal anti-α-smooth muscle cell actin, clone A4 (Sigma Chemicals, St. Louis, MO; 

1:250, overnight at 4° C); T-lymphocytes were stained with Texas Red conjugated rabbit 

polyclonal anti-CD3 antibody (Abcam, Cambridge, MA; 1:50, overnight at 4° C).  

 

2.1.9. Biochemical Analysis: 

Blood Glucose: Mice were fasted for 12 h and blood was collected from the tail vein. 

Blood glucose was measured using a glucometer. 

 

Complete blood cell count: Complete cell blood count (CBC) was measured on a 

Hemavet 1700 flexible veterinary multi-species hematology system (Drew Scientific, 

Miami Lakes, FL, USA).  
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Plasma cholesterol: Plasma cholesterol was measured enzymatically with a 

commercially available kit from Wako (Richmond, VA, USA) as described [231-233].  

PATHSCREEN: Measurement of plasma albumin, total protein, ALT, AST, CK, LDH and 

creatinine level was done by COBAS MIRA Plus Automated Chemistry Analyzer 5600 

(Roche, Indianapolis, IN, USA), using commercial kits from Wako Chemicals Inc. 

(Richmond, VA, USA) as described [234].  

 

2.2 In Vitro Analyses: 

2.2.1. Cell culture: Immortalized bone marrow-derived macrophage cell lines (BMDM) 

were established by infecting the bone marrow of C57BL/6 mice with the murine 

recombinant J2 retrovirus containing the v-myc and v-raf oncogenes as previously 

described [235]. Cells were cultured in RPMI-1640 medium supplemented with 5% Fetal 

Bovine Serum (FBS), 1% HEPES, and 0.1% gentamicin (Sigma Aldrich, St. Louis, MO, 

USA). Cells were maintained in a humidified atmosphere of air and 5% CO2 at 37°C.  

 

2.2.2. Expression of miR-21: To examine the effect of atherogenic and inflammatory 

stimuli on the expression of miR-21, BMDM from C57BL/6 mice were seeded in 12 well 

plates incubated in RPMI-1640 medium containing 0.5 % FBS for 18h. Cells were then 

incubated with LDL (50µg/mL), acetylated-LDL (50µg/mL), oxidized-LDL (50µg/mL), and 

lipopolysaccaride (LPS; 100ng/mL) for 24h in RPMI-1640 medium and expression of 

miR-21 was measured by Real Time Quantitative PCR. 

2.2.3. Real Time-PCR: RNA concentrations and purity were determined using the 

NanoDrop 2000 (Thermo Scientific, Hudson, NH). All samples fulfilled the quality criteria 

(A260/280 ratio between 1.8 and 2.1). Total RNA was reverse-transcribed to cDNA 

using Taqman microRNA RT kit from Life Technologies (Foster City, CA, USA). miR-21 
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expression was measured using Taqman miRNA and Taqman Universal PCR Master 

Mix from Life Technologies (Foster City, CA, USA). Data were normalized to a 

housekeeping gene snoRNA20. 

 

RESULTS 

Expression profile of miRs in the aortic lesions: To investigate the contributions of 

miRs in atherosclerosis the expression of miRs in atherosclerotic lesions was first 

examined. Eight week old LDLR-KO mice were maintained either on NC or WD for 12 

weeks, and expression of miRs in the aortae was measured by miRNA microarray. As 

shown in Tables 4 and 5, we detected a total of 503 miRs in the aortae, out of which 100 

miRNAs were significantly upregulated (Table 4; P<0.05) and 50 miRNAs were 

downregulated (Table 5; P<0.05) in WD fed mice. Differential expression of the top 100 

miRs is illustrated in the heat map (Fig. 3). Eleven out of 50 downregulated and 22 out 

of 100 upregulated miRs identified in my study are novel miRs, which have not been 

described in the literature. Moreover, I also observed that several miRs differentially 

expressed in aortic lesions that have not been studied in the context of inflammation and 

apoptosis, which are hallmarks of the process of atherogenesis (Table 6). 

 

To find a predictive model that describes the direction of maximum covariance between 

variables and the class membership, we applied Partial Least Squares – Discriminant.  
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Table 4: MicroRNAs upregulated in aortic lesions of WD-fed LDLR-KO mice. 

 

MicroRNA Fold Change (FC) log2(FC) P value 

mmu-miR-3473a 1.9539 0.96632 9.55E-12 

mmu-miR-690 1.8193 0.86338 8.35E-10 

mmu-miR-3473b 1.7682 0.82227 2.14E-10 

mmu-miR-669m-3p 1.7317 0.79221 1.99E-08 

mmu-miR-3082-5p 1.7175 0.78031 1.12E-08 

mmu-miR-544-5p 1.684 0.75193 1.71E-06 

mmu-miR-466i-5p 1.6357 0.70994 4.79E-09 

mmu-miR-669b-3p 1.6258 0.70111 8.37E-10 

mmu-miR-1192 1.6055 0.68298 1.27E-07 

mmu-miR-669a-3-3p 1.5882 0.66739 1.06E-08 

mmu-miR-199a-5p 1.5697 0.65048 1.97E-08 

mmu-miR-302c-3p 1.5688 0.64968 1.84E-06 

mmu-miR-466f-3p 1.542 0.62481 1.28E-08 

mmu-miR-669f-3p 1.5406 0.62351 6.97E-11 

mmu-miR-467g 1.537 0.62016 6.01E-08 

mmu-miR-7b-3p 1.537 0.62014 0.00036158 

mmu-miR-1298-5p 1.5349 0.61814 2.31E-06 

mmu-miR-669c-3p 1.5336 0.61691 2.90E-09 

mmu-miR-29b-3p 1.5299 0.61342 9.53E-07 

mmu-miR-468-3p 1.5299 0.6134 5.05E-10 

mmu-miR-669p-3p 1.5292 0.61277 4.56E-09 

mmu-miR-7a-2-3p 1.5267 0.61038 4.33E-06 

mmu-miR-143-5p 1.5088 0.5934 1.47E-05 

mmu-miR-466q 1.5067 0.59138 1.99E-07 

mmu-miR-466(a,b,c,e,p)-3p 1.5058 0.59058 1.65E-08 

mmu-miR-214-3p 1.5057 0.59047 3.20E-05 

mmu-miR-140-5p 1.4927 0.57791 1.82E-06 

mmu-miR-466d-3p 1.478 0.56364 8.58E-07 

mmu-miR-467e-3p 1.4761 0.56178 3.56E-07 

mmu-miR-466a-5p/mmu-
miR-466p-5p 

1.4714 0.55722 1.53E-08 

mmu-miR-199b-5p 1.468 0.5539 7.22E-08 

mmu-miR-27a-3p 1.4658 0.55168 3.08E-08 

mmu-miR-32-3p 1.4649 0.55079 3.12E-07 

mmu-miR-669a-3p/mmu-
miR-669o-3p 

1.4575 0.54346 2.23E-08 
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mmu-miR-466d-5p 1.4501 0.53614 5.39E-08 

mmu-miR-5622-5p 1.4438 0.52989 9.88E-09 

mmu-miR-669k-5p 1.4432 0.52929 1.94E-08 

mmu-miR-1899 1.4278 0.51382 7.36E-07 

mmu-miR-29c-3p 1.4229 0.50879 5.84E-07 

mmu-miR-574-5p 1.4183 0.50411 1.61E-06 

mmu-miR-24-1-5p 1.4168 0.50262 1.46E-07 

mmu-miR-467f 1.4164 0.50221 1.23E-08 

mmu-miR-30b-5p 1.4134 0.49921 1.21E-06 

mmu-miR-466i-3p 1.4103 0.49601 7.72E-07 

mmu-miR-466f 1.4088 0.49443 2.33E-08 

mmu-miR-219b-5p 1.4063 0.4919 3.75E-05 

mmu-miR-21a-5p 1.4045 0.49009 2.86E-06 

mmu-miR-467a-3p 1.4027 0.48821 1.40E-07 

mmu-miR-3097-5p 1.4 0.4854 4.46E-05 

mmu-miR-212-3p 1.3994 0.48486 5.17E-07 

mmu-miR-669l-3p 1.3987 0.48405 6.78E-07 

mmu-miR-466c-5p 1.3982 0.48355 1.53E-09 

mmu-miR-23b-3p 1.3973 0.48262 9.17E-07 

mmu-miR-24-3p 1.3944 0.47964 3.23E-08 

mmu-miR-27b-3p 1.3923 0.47747 6.76E-07 

mmu-miR-499-3p 1.389 0.47407 0.00031691 

mmu-miR-467c-3p 1.389 0.47404 2.16E-05 

mmu-miR-669e-3p 1.3884 0.4734 2.38E-06 

mmu-miR-140-3p 1.3836 0.46847 2.11E-06 

mmu-miR-34c-3p 1.3719 0.45622 0.00073564 

mmu-miR-467b-3p 1.3708 0.45503 9.24E-06 

mmu-miR-24-2-5p 1.3686 0.45274 3.18E-09 

mmu-miR-574-3p 1.3665 0.45049 2.86E-08 

mmu-miR-145a-5p/mmu-
miR-145b 

1.3577 0.4412 0.0001327 

mmu-miR-669d-5p 1.3535 0.43672 1.42E-08 

mmu-miR-466b-5p/mmu-
miR-466o-5p 

1.3531 0.43627 1.82E-08 

mmu-miR-466e-5p 1.346 0.42871 3.29E-05 

mmu-miR-669d-2-3p 1.3395 0.42173 4.23E-05 

mmu-miR-669h-3p 1.334 0.41578 0.00019577 

mmu-miR-669f-5p 1.3331 0.41478 5.37E-06 

mmu-miR-669d-2-3p/mmu-
miR-669d-3p 

1.3315 0.41302 8.52E-08 

mmu-miR-1929-5p 1.3196 0.40014 0.00090059 
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mmu-miR-669l-5p 1.3142 0.39415 2.25E-06 

mmu-miR-5119 1.3109 0.39058 4.50E-06 

mmu-miR-467d-3p 1.3082 0.38755 0.00084184 

mmu-miR-466a-5p 1.306 0.38515 3.02E-08 

mmu-miR-196a-1-3p 1.3054 0.38448 0.00010696 

mmu-miR-31-5p 1.303 0.38183 0.0017204 

mmu-miR-297a-3p/mmu-
miR-297b-3p/mmu-miR-

297c-3p 

1.302 0.38076 1.32E-07 

mmu-miR-1187 1.3018 0.38055 5.14E-07 

mmu-miR-3078-3p 1.3013 0.37997 0.00019798 

mmu-miR-466m-3p 1.2999 0.37841 0.0023432 

mmu-miR-1907 1.2997 0.3782 0.0010376 

mmu-miR-130a-3p 1.2989 0.37729 4.60E-05 

mmu-miR-713 1.2927 0.37033 0.00020919 

mmu-miR-669e-5p 1.2913 0.36885 1.03E-05 

mmu-miR-30c-5p 1.2893 0.36656 1.02E-06 

mmu-miR-669i 1.2861 0.36305 0.00064834 

mmu-miR-210-3p 1.2779 0.35374 5.61E-06 

mmu-miR-881-5p 1.2748 0.35024 0.00048273 

mmu-miR-143-3p 1.2647 0.3388 2.07E-07 

mmu-miR-490-3p 1.2619 0.33557 0.00084483 

mmu-miR-466a-3p/mmu-
miR-466e-3p 

1.2602 0.33362 0.00010367 

mmu-miR-466f-5p 1.2593 0.33264 1.10E-05 

mmu-miR-301a-3p 1.2577 0.33078 0.00019132 

mmu-miR-669o-5p 1.2543 0.32688 0.00086269 

mmu-miR-697 1.2515 0.32368 0.0013927 

mmu-miR-145a-3p 1.2504 0.32241 6.23E-05 

 
                   
 
 

 

 

 

 

 



44 
 

Table 5: MicroRNAs downregulated in the aortic lesions of WD-fed LDLR-KO mice.  

MicroRNA Fold Change (FC) log2(FC) P value 

mmu-miR-592-3p 0.29732 -1.7499 6.31E-12 

mmu-miR-551b-5p 0.47888 -1.0623 1.13E-07 

mmu-miR-677-3p 0.51159 -0.96694 1.01E-11 

mmu-miR-142a-3p 0.52117 -0.94017 1.34E-06 

mmu-miR-142a-5p 0.53128 -0.91246 2.61E-06 

mmu-miR-3102-5p 0.59296 -0.754 2.46E-05 

mmu-miR-346-3p 0.59622 -0.74608 2.85E-09 

mmu-miR-2861 0.59976 -0.73755 3.04E-09 

mmu-miR-762 0.61598 -0.69905 5.28E-07 

mmu-miR-1971 0.62061 -0.68823 1.95E-10 

mmu-miR-3572-3p 0.62092 -0.68752 3.43E-07 

mmu-miR-3474 0.62338 -0.68182 4.48E-07 

mmu-miR-425-3p 0.64964 -0.62228 6.11E-05 

mmu-miR-541-3p 0.65363 -0.61346 5.85E-10 

mmu-miR-1947-3p 0.66676 -0.58476 2.07E-08 

mmu-miR-378a-3p/mmu-
miR-378b/mmu-miR-378c 

0.66929 -0.5793 3.16E-11 

mmu-miR-2137 0.6807 -0.5549 6.19E-08 

mmu-miR-3090-5p 0.6894 -0.53659 2.74E-08 

mmu-miR-503-5p 0.69298 -0.52911 1.07E-06 

mmu-miR-205-5p 0.69343 -0.52818 2.49E-05 

mmu-miR-542-3p 0.7036 -0.50717 0.00021434 

mmu-miR-21a-3p 0.71707 -0.47982 1.92E-05 

mmu-miR-92a-3p 0.72133 -0.47127 0.0027195 

mmu-miR-378a-3p 0.72223 -0.46946 6.22E-08 

mmu-miR-3103-3p 0.72377 -0.46639 2.40E-07 

mmu-miR-1934-5p 0.73189 -0.45031 2.65E-06 

mmu-miR-1843b-3p 0.7332 -0.44772 8.86E-08 

mmu-miR-20a-5p 0.74702 -0.42078 3.85E-06 

mmu-miR-322-5p 0.748 -0.41889 4.96E-07 

mmu-miR-744-5p 0.74913 -0.41671 4.47E-10 

mmu-miR-763 0.75243 -0.41037 5.66E-08 

mmu-miR-126a-3p 0.75506 -0.40533 3.99E-05 

mmu-miR-139-5p 0.75764 -0.40042 6.51E-07 

mmu-miR-20b-5p 0.75819 -0.39936 2.57E-05 

mmu-miR-708-5p 0.76574 -0.38507 2.07E-05 

mmu-miR-155-5p 0.76916 -0.37864 0.006224 
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mmu-miR-146a-5p 0.76926 -0.37846 7.05E-07 

mmu-let-7a-2-3p 0.77013 -0.37682 2.57E-06 

mmu-miR-351-5p 0.77232 -0.37273 4.32E-05 

mmu-miR-185-3p 0.77682 -0.36435 0.00032576 

mghv-miR-M1-8-5p 0.78053 -0.35747 1.55E-07 

mmu-miR-770-3p 0.78481 -0.34959 1.42E-05 

mmu-miR-499-5p 0.78967 -0.34067 0.00049803 

mmu-miR-1941-3p 0.78999 -0.34009 1.95E-07 
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Figure 3. Heatmap of miRNAs in aortic lesions. Hierarchical clustering heatmap and 

dendogram analyses of the 100 most significantly changed miRNAs in 8 week old LDLR-

KO mice maintained on normal chow or Western diet for 12 weeks. Six mice per group 

were used for analyses. 

*
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Table 6: Novel miRNAs identified in the aortic lesions of LDLR-KO mice. 

Novel miRNAs expressed 
in aortic lesions 

miRNAs not studied in 
inflammation 

miRNAs not studied in 
apoptosis 

Up-regulated 

mmu-miR-3473a mmu-miR-544-5p mmu-miR-466i-5p 

mmu-miR-690 mmu-miR-669b-3p mmu-miR-669b-3p 

mmu-miR-3473b mmu-miR-1192 mmu-miR-1192 

mmu-miR-669m-3p mmu-miR-669a-3-3p mmu-miR-669a-3-3p 

mmu-miR-3082-5p mmu-miR-466f-3p mmu-miR-466f-3p 

mmu-miR-669p-3p mmu-miR-669f-3p mmu-miR-467g 

mmu-miR-466q mmu-miR-467g mmu-miR-669c-3p 

mmu-miR-5622-5p mmu-miR-669c-3p mmu-miR-1298-5p 

mmu-miR-669k-5p mmu-miR-1298-5p mmu-miR-467e-3p 

mmu-miR-1899 mmu-miR-468-3p mmu-miR-466d-3p 

mmu-miR-467f mmu-miR-7b-3p mmu-miR-466d-5p 

mmu-miR-669l-3p mmu-miR-466(a,b,c,e,p)-
3p 

mmu-miR-466i-3p 

mmu-miR-3097-5p mmu-miR-467e-3p mmu-miR-466c-5p 

mmu-miR-669e-3p mmu-miR-466d-3p mmu-miR-467b-3p 

mmu-miR-467c-3p mmu-miR-466(a,p)-5p mmu-miR-466(b,o)-5p 

mmu-miR-669d-5p mmu-miR-669(a,o)-3p mmu-miR-466e-5p 

mmu-miR-669d-2-3p mmu-miR-466d-5p  

mmu-miR-669h-3p mmu-miR-466i-3p  

mmu-miR-1929-5p mmu-miR-466f  

mmu-miR-669l-5p mmu-miR-467a-3p  

mmu-miR-5119 mmu-miR-466c-5p  

mmu-miR-3078-3p mmu-miR-466(b,o)-5p  

 mmu-miR-466e-5p  

 mmu-miR-669f-5p  

 mmu-miR-466a-5p  

 mmu-miR-1187  

 mmu-miR-297(a,b,c)-3p  

Down-regulated 

mghv-miR-M1-6-5p mmu-miR-770-3p mmu-miR-21a-3p 

mmu-miR-1941-3p mmu-miR-378a-3p mmu-miR-3090-5p 

mghv-miR-M1-8-5p mmu-miR-21a-3p mmu-miR-2137 

mmu-miR-763 mmu-miR-503-5p mmu-miR-1971 

mmu-miR-1843b-3p mmu-miR-3090-5p mmu-miR-142a-5p 

mmu-miR-1934-5p mmu-miR-2137 mmu-miR-142a-3p 

mmu-miR-3103-3p mmu-miR-541-3p mmu-miR-677-3p 
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mmu-miR-1947-3p mmu-miR-1971  

mmu-miR-3474 mmu-miR-2861  

mmu-miR-3572-3p mmu-miR-142a-5p  

mmu-miR-3102-5p mmu-miR-677-3p  

 mmu-miR-551b-5p  
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Analysis (PLS-DA). This method is similar to Principal Component Analysis (PCA) with 

the advantage that it also provides the Variable Importance in Projection (VIP) scores. 

This provides information on how the two groups are classified. As shown in Fig. 4, the 

PLS-DA scores plot between the first and second component, clearly separating the 

expression pattern of miRs in non-atherogenic (NC) vs atherogenic (WD) aortae. Fig. 5 

shows the VIP scores of the top 25 miRs which distinguish the two experimental groups. 

Differential expression pattern of miRs in the aortic lesions (WD) is illustrated in the 

volcano plot (Fig. 6). 

 

A Pub Med search showed that out of 150 differentially expressed miRs in the aortic 

lesions, 4 miRs are associated with foam cells, 60 miRs are linked with inflammation, 

and 80 miRs are implicated in apoptosis. It has also been shown that 14 down-regulated 

and 34 upregulated miRs in the aortic lesions are expressed in macrophages (Fig. 7). 

Thirteen out of 23 down regulated and 30 out of 37 up-regulated inflammatory miRs 

(Fig. 8) are associated with macrophage inflammation; and 13 out of 28 downregulated 

and 29 out of 52 upregulated miRs are related to apoptosis and macrophages.  

 

Since inflammation and apoptosis are critical features of lesion stability and nature, and 

macrophages are the major constituents of atherosclerotic plaques, I next examined 

which of the miRs expressed in macrophages are associated with both inflammation and 

apoptosis. As shown in Fig. 9 and Table 7, 39 miRs expressed in macrophages are 

associated with both inflammation and apoptosis. VIP scores of the hierarchy show that 

miR-21 is among the top 5 miRs which drive the separation of the expression pattern of 

differentially expressed miRs. Since miR-21 is associated with inflammation and 

apoptosis in a variety of pathological conditions, subsequent studies focused on 

examining the contribution of this miR in atherogenesis.   
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Figure 4. PLS-DA Principal component analysis of lesional miRNAs of LDL 

receptor knockout (LDLR-KO) mice maintained on normal chow (red) or Western 

diet (green) for 12 weeks. 
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Figure 5. Variable Importance in Projection (VIP) scores of top 25 miRs that 

discriminate LDL receptor knockout (LDLR-KO) mice maintained on normal chow 

from those maintained on Western diet for 12 weeks.  
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Figure 6. Volcano plots of differentially expressed miRNAs in atherosclerotic 

lesions of normal chow and Western diet-fed LDLR-KO mice. Fold change (FC) 

threshold was 1.25 (x axis) and the P value threshold was set at 0.05 (y axis). Values in 

pink were found to be significantly expressed. 
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Figure 7. Volcano plots of comparative miRNA expression profiles of 

macrophages/inflammation in the aortae of normal chow and Western diet-fed 

LDLR-KO mice. Those miRNAs that increased significantly are in the right, and those 

that decreased significantly are in the in the left (p < 0.05; unpaired t-test, n = 12 

animals: 6NC and 6WD). X-axis indicates the log transformed fold change and the Y-

axis represents corresponding p-values. (A) miRNAs that are expressed in macrophage; 

(B) miRNAs associated with inflammation; and (C) miRNAs that are expressed in 

macrophages and associated with inflammation. 
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Figure 8. Volcano plots of comparative miRNA expression profiles of 

macrophages/apoptosis in the aortae of normal chow and Western diet-fed LDLR-

KO mice.  Those miRNAs that increased significantly are in the right and those that 

decreased significantly are in the in the left (p < 0.05; unpaired t-test n = 12 animals: 

6NC and 6WD). X-axis indicates the log transformed fold change and the Y-axis 

represents corresponding p-values. (A) miRNAs that are expressed in macrophage; (B) 

miRNAs associated with apoptosis; and (C) miRNAs that are expressed in macrophage 

and associated with apoptosis. 
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Figure 9. Volcano plots and VIP scores of comparative miRNA expression profiles 

of macrophage /inflammation/apoptosis in the aortae of normal chow and Western 

diet-fed LDLR-KO mice. (A) Volcano plots of comparative expression profile of miRNAs 

that are known to be expressed in macrophages and associated with inflammation and 

apoptosis. (B) Variable Importance in Projection (VIP) scores of top 15 miRs  that 

discriminate LDL receptor knockout (LDLR-KO) mice maintained on Western diet (WD) 

from those maintained on normal chow (NC) for 12 weeks, n = 6 per group. 
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Table 7: Differential expression of miRNAs in macrophages and their association with 

inflammation and apoptosis. 

mmu-MIR 
VIP 

SCORE 
Fold change 

(FC) 
log2(FC) P value 

mmu-miR-378a-3p/mmu-
miR-378b/mmu-miR-378c 

1.0536 0.66929 -0.5793 3.18E-11 

mmu-miR-346-3p 1.0513 0.59622 -0.74608 2.88E-09 

mmu-miR-24-2-5p 1.0471 1.3686 0.45274 3.19E-09 

mmu-miR-21a-5p 1.0446 1.4045 0.49009 2.87E-06 

mmu-miR-32-3p 1.0423 1.4649 0.55079 3.13E-07 

mmu-miR-24-3p 1.0413 1.3944 0.47964 3.25E-08 

mmu-miR-29c-3p 1.041 1.4229 0.50879 5.87E-07 

mmu-miR-140-5p 1.0381 1.4927 0.57791 1.81E-06 

mmu-miR-143-3p 1.0379 1.2647 0.3388 2.07E-07 

mmu-miR-199a-5p 1.0373 1.5697 0.65048 1.97E-08 

mmu-miR-29b-3p 1.0364 1.5299 0.61342 9.48E-07 

mmu-miR-27a-3p 1.0362 1.4658 0.55168 3.09E-08 

mmu-miR-140-3p 1.0357 1.3836 0.46847 2.11E-06 

mmu-miR-27b-3p 1.0341 1.3923 0.47747 6.78E-07 

mmu-miR-199b-5p 1.0338 1.468 0.5539 7.19E-08 

mmu-miR-146a-5p 1.0323 0.76926 -0.37846 7.07E-07 

mmu-miR-7a-2-3p 1.0318 1.5267 0.61038 4.35E-06 

mmu-miR-24-1-5p 1.0313 1.4168 0.50262 1.47E-07 

mmu-miR-30b-5p 1.028 1.4134 0.49921 1.20E-06 

mmu-miR-212-3p 1.026 1.3994 0.48486 5.19E-07 

mmu-miR-20a-5p 1.0239 0.74702 -0.42078 3.84E-06 

mmu-miR-139-5p 1.0223 0.75764 -0.40042 6.48E-07 

mmu-miR-30c-5p 1.0193 1.2893 0.36656 1.02E-06 

mmu-miR-143-5p 1.014 1.5088 0.5934 1.48E-05 

mmu-miR-23b-3p 1.0138 1.3973 0.48262 9.17E-07 

mmu-miR-126a-3p 1.0046 0.75506 -0.40533 3.97E-05 

mmu-miR-219b-5p 1.0018 1.4063 0.4919 3.76E-05 

mmu-miR-210-3p 0.99421 1.2779 0.35374 5.61E-06 

mmu-miR-20b-5p 0.99142 0.75819 -0.39936 2.56E-05 

mmu-miR-130a-3p 0.98563 1.2989 0.37729 4.60E-05 

mmu-miR-185-3p 0.98258 0.77682 -0.36435 0.000325 

mmu-miR-205-5p 0.97951 0.69343 -0.52818 2.49E-05 

mmu-miR-214-3p 0.97328 1.5057 0.59047 3.20E-05 

mmu-miR-145a-5p/mmu-
miR-145b 

0.97154 1.3577 0.4412 0.000133 
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mmu-miR-34c-3p 0.96066 1.3719 0.45622 0.000736 

mmu-miR-301a-3p 0.94645 1.2577 0.33078 0.000192 

mmu-miR-92a-3p 0.90447 0.72133 -0.47127 0.002713 

mmu-miR-31-5p 0.87873 1.303 0.38183 0.001722 

mmu-miR-155-5p 0.78511 0.76916 -0.37864 0.006225 
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Expression of miR-21 in atherosclerotic mice: Microarray analyses (Fig. 10A) and  

quantitative  real time PCR analyses (Fig. 10B) showed that the expression of miR-21  

increased by 1.4-2.4-fold in the aortae of WD fed LDLR-KO mice as compared with NC 

fed mice. To examine the expression of miR-21 in macrophages under atherogenic 

conditions, expression of miR-21 in BMDM (after 12 weeks of WD) and in peritoneal 

macrophages (after 20 weeks of WD) was compared with corresponding NC fed WT 

(C57BL/6) and LDLR-KO mice. As shown in Fig. 10C, WD had no effect on the 

expression of miR-21 in WT BMDM; however, it increased the expression of miR-21 by 

1.7-fold (P<0.05) in LDLR-KO BMDM. Similarly, WD increased the expression of miR-21 

in the peritoneal macrophages of LDLR-KO mice (Fig. 10D). Together, these data 

suggest that under atherogenic conditions, the expression of miR-21 is significantly 

increased in aortae and macrophages. 

 

Expression of miR-21 in cultured macrophages by atherogenic lipoproteins: 

Oxidized LDL and acetylated LDL (AcLDL) are known to be taken up by the scavenger 

receptors on the macrophages to form foam cells. Therefore, an examination of how 

these lipoproteins affect the expression of miR-21 was conducted. As shown in Fig. 11A 

and B, incubation of BMDM with 50 µg LDL, oxLDL and AcLDL for 24h increased the 

expression of miR-21 by 1.5-4 fold (P<0.05). Similarly, BMDM stimulated with LPS (100 

ng/mL) under the identical conditions increased the expression of miR-21 by 2-fold (Fig. 

11C). LPS also down regulated PDCD4 (Fig. 11D), one of the target proteins of miR-21; 

however, it did not affect the expression of other target proteins of miR-21 such as 

FABP4 and Vimentin. Collectively, these data suggest that similar to atherogenic mice, 

macrophage expression of miR-21 is also increased by atherogenic lipoproteins in vitro.   

 

 



63 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC     WD     NC     WD

E
x
p
re

s
s
io

n
 (

fo
ld

 c
h
a
n
g

e
)

0

1

2

3

C57BL/6       LDLR-KO

NC         WD

E
x
p
re

s
s
io

n
 (

fo
ld

 c
h
a

n
g

e
)

0.0

0.5

1.0

1.5

NC         WD

E
x
p

re
s
s
io

n
 (

fo
ld

 c
h

a
n

g
e

)

0.0

0.5

1.0

1.5

BMD
Peritoneal  
macrophage 

NC         WD
E

x
p

re
s
s
io

n
 (

fo
ld

 c
h

a
n

g
e

)

0

1

2

3
Aorta (array) Aorta (qRT-PCR) 

A B 

C D 

* * 

* 

* 



64 
 

Figure 10. Effect of Western Diet on the expression of miR-21 in atherogenic mice. 

LDLR-KO mice were maintained on NC or WD for 12 weeks and expression of miR-21 in 

the aortae was measured by (A) microRNA array (n = 6) and (B) qRT-PCR (n = 8). 

Panel C shows the expression of miR-21 (by qRT-PCR; n=12/group) in the bone 

marrow- derived macrophages (BMDM) of WT C57BL/6 and LDLR-KO mice maintained 

on NC or WD for 12 weeks. (D) Expression of miR-21 in peritoneal macrophages 

isolated from LDLR-KO mice maintained on NC or WD for 20 weeks (n = 12/group). 

Values are mean ± SEM. *P < 0.05 vs NC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PBS            LPS

E
x
p

re
s
s
io

n
 (

fo
ld

 c
h

a
n

g
e

)

0

1

2  * 

PBS    LDL   AcLDL

E
x
p

re
s
s
io

n
 (

fo
ld

 c
h

a
n

g
e
)

0

2

4

PBS    LDL   oxLDL

E
x
p

re
s
s
io

n
 (

fo
ld

 c
h

a
n

g
e
)

0

1

2

A B 

C 

PDCD4 

Actin 

    0      50   100  LPS(ng/ml)  

FABP4 

Actin 

Vimentin 

Actin 

D 

* 

* 

* 

* 



66 
 

Figure 11. Expression of miR-21 by atherogenic stimuli in BMDM. BMDM were 

incubated with PBS (control), LDL (50 µg), oxLDL (50 µg) (A), AcLDL (50 µg) (B), or LPS 

(100 ng/ml) (C) for 24 hours. Expression of miR-21 was measured by real time 

quantitative PCR. Data are expressed as mean ± SEM. *P < 0.05 vs PBS. (D) Western 

blot analyses of BMDM from WT mice treated with LPS (50 ng/ml and 100 ng/ml) for 

24h.   
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Effect of miR-21 deficiency on foam cell formation: To examine the effect of miR-21 

on atherogenesis, we first examined how deficiency of miR-21 affects foam cell 

formation. As shown in Fig. 12, incubation of WT or miR-21-KO BMDM for 72h with LDL 

had no effect on lipid uptake. However, AcLDL increased the lipid deposition in WT 

macrophages, while the deficiency of miR-21 in the macrophages increased the foam 

cell formation by 2.3-fold (P<0.05). These data are consistent with our hypothesis that 

miR-21 in macrophages is anti-atherogenic, and it is induced under atherogenic 

conditions as an adaptive response.  

 

Characterization of MiR-21-KO mice: Next, experiments were designed to examine 

how the deficiency of miR-21 affects atherogenesis. Prior to performing these 

experiments, a rigorous characterization of the miR-21-KO mice was conducted focusing 

on the abundance of immune cells. 

 

Effect of miR-21 deficiency on bone marrow cells, CBC, and immune cells: Gating 

strategy for the flow cytometric analyses of immune cells is depicted in Fig. 13. As 

shown in Fig. 14, bone marrow cells isolated from miR-21-KO and WT mice showed no 

difference in the number of common myeloid progenitors (c-kit+/Sca-1-/CD34+), erythroid 

progenitors (c-kit+/Sca-1-/CD16/32-), granulocyte monocyte progenitors (c-kit+/Sca-1-

/CD16/32+), hematopoietic progenitors (c-kit+/Sca-1+/CD34-), and multipotent progenitors 

(c-kit+/Sca-1+/CD34-).  

 

As shown in Fig. 15, hematopoietic progenitor cells generate various blood cells.  Data 

presented in Table 8 showed that deficiency of miR-21 did not affect the levels of white 

blood cells (WBCs), red blood cells (RBCs), hemoglobin, hematocrit, mean cell volume, 

mean cell hemoglobin, platelets, or mean platelet volume.  
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Figure 12. Foam cell formation in miR-21 deficient BMDM. WT and miR-21-KO 

BMDM treated with PBS (control), LDL (50 μg/ml) and AcLDL (50 μg/ml) for 72 h and 

foam cell formation was measured following staining with Oil red O. (A) Representative 

photomicrograph of lipid laden foam cells. (B) Quantitation of Oil red O staining. Three 

fields per slide were used for analyses. Values are mean ± SE of three independent 

experiments.  
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Figure 13. Gating strategy used to identify bone marrow cells by flow cytometry. 

Cells were isolated from bone marrow of miR-21 WT and KO mice and  stained with 

anti- CD45, CD34, CD117(c-kit), SCA, CD16/32 FcgR, and e450-lin antibodies.  
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Figure 14. Characterization of miR-21-KO mice. Bone marrow cell differentiation was 

analyzed by flow cytometry. Common myeloid progenitors (CMP), erythroid progenitors 

(EP), granulocyte monocyte progenitors (GMP), hematopoietic progenitors (HP), and 

multipotent progenitors (MPP) cell counts are shown. Eight mice per group were used 

for analyses. Data are expressed as mean ±SEM. 
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Figure 15. Formation of different blood and immune cells from hematopoietic 

progenitor cell.  

Hematopoietic Progenitor 

Common  myeloid progenitor Common lymphoid progenitor 

Lymphoblast 

NK T Cell B Cell 

CD4+ CD8+ 

Megakaryocte Erythroid   
Progenitor 

Erythroid Progenitor 

Megakaryoblast 

Thrombocytes 
Erythrocyte 

Macrophage 

Basophil 

Neutrophil 

Eosinophil 
Monocyte 

Myeloblast Monoblast 

Multipotent Progenitor 

Granulocyte Monocyte  
progenitor 

DC 



74 
 

Table 8: Complete blood count of WT and miR-21-KO mice 

 
   Values are mean ± SEM. *P<0.05 vs WT mice. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters WT KO 

WBC/µl 2652.5±230.5 2452.5±224.7 

Neutrophils /µl  603.75±80.6 806±101.26 

Lymphocytes /µl   1992.5±159.8 1542.5±159.9 

Monocytes /µl  52.5±10.6 45.0±8.24 

Eosinophils /µl   Traces Traces 

Basophils /µl   Traces Traces 

Platelets (103/µL) 652.4±24.3 702.6±35.4 

RBC (106/µL) 8.38±0.08 7.91±0.17* 

Hemoglobin (g/dL) 10.70±0.18 11.18±0.21 

Hematocrit (%) 38.35±0.45 36.99±0.69 

Mean Cell Volume (fL) 45.76±0.16 46.80±0.54 

Mean Cell Hemoglobin (pg) 12.79±0.22 14.13±0.14* 

Mean Cell Hemoglobin 
Concentration (g/dL) 

27.89±0.48 30.21±0.22* 

Red Cell Distribution (%) 17.58±0.24 17.40±0.27 

Mean Platelet Volume (fL) 4.10±0.06 4.15±0.05 



75 
 

Sub-populations of WBCs – total lymphocytes, monocytes, neutrophils, eosinophils, and 

basophils in miR-21-KO were also comparable to WT mice. To determine whether miR-

21 deficiency affects circulating immune cells, flow cytometry analyses was performed 

on circulating leukocytes. Gating strategy for these experiments is illustrated in Fig. 16. 

In the lymphoid lineage, we observed no difference in the abundance of B-cells, CD4+- 

or CD8+ - T cells, natural killer (NK) cells, granulocytes or monocytes (Table 9). 

Examination of the sub-population of monocytes showed that the levels of CD62L-/Ly6C- 

(anti-inflammatory) monocytes were lower in miR-21-KO cells (Table 9, P< 0.05). 

Together, these data suggest that deficiency of miR-21 does not affect bone marrow 

cells or immune cells. 

 

Effect of miR-21 deficiency on atherogenesis: After establishing that miR-21-KO mice 

are phenotypically normal, the effect of miR-21 deficiency in myeloid cells on 

atherogenesis was examined. For these experiments, bone marrow cells from miR-21-

KO and WT mice were transplanted in LDLR-KO mice.  

 

Characterization of chimeric mice: Five weeks after reconstitution of bone marrow 

cells, the recipient LDLR-KO mice were characterized for hematopoietic recovery and 

chimeric expression of miR-21 in WBCs. As shown in Fig. 17, the levels of miR-21 were 

depleted by 85% in the chimeric mice derived with miR-21-KO bone marrow than the 

WT bone marrow reconstituted mice. All the recipient LDLR-KO mice were then 

maintained on WD for 12 weeks and then euthanized to measure various biochemical 

and pathological parameters. 
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Figure 16. Gating strategy to identify circulating immune cells by flow cytometery. 

RBCs were lysed, and after the exclusion of doublets and debris, immune cells were 

identified by CD45 staining. A sequential gating strategy was used to identify populations 

expressing specific markers: granulocytes (Grans) (Gr-1, CD11b), monocytes (Monos) 

(CD11b), monocyte sub-population (CD11b ,CD62L, Ly6c), natural killer cells (NK) (GR-

1, NK1.1), CD4 T Cells (CD3e, CD4), CD8 T Cells (CD3e, CD8),  and B-cells (CD19, 

NK1.1). 
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Table 9: Circulating immune cells in WT and miR-21-KO mice. 

 

 
Values are mean ± SEM. *P<0.05 vs WT mice. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters WT KO 

CD4+ T-Cells/µl 75.2±14.5 56.6±10.3 

CD8+ T-Cells/µl 37.6±7.4 33.1±5.7 

NK /µl 27.6±2.6 24.3±2.7 

B-Cells/µl 359.1±58.5 264.5±36.2 

Granulocytes /µl 138.7±21.8 202.1±40.4 

Monocytes /µl 73.0±12.2 46.91±7.6 

Monocyte sub-population  

CD62L- /Ly6C+ (%) 15.4±1.5 18.6±1.3 

CD62L+ /Ly6C+ (%) 36.7±5.0 42.2±4.5 

CD62L+ /Ly6C- (%) 12.8±1.5 16.0±2.5* 

CD62L-/Ly6C- (%) 35.2±5.4 23.2±2.8 
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Figure 17. Expression of miR-21 in the chimeric mice. Bone marrow cells in LDLR-

KO mice were lethally irradiated and then repopulated with the bone marrow cells of WT 

of miR-21-KO mice. Five weeks after the recovery, expression of miR-21 in the chimeric 

mice was measured by quantitative PCR in white blood cells. (A) Expression of miR-21 

in each individual recipient mouse. (B) Group data of recipient mice. Values are mean ± 

SEM. *P<0.05 vs WT mice. 
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Biochemical analyses: As shown in Table 10, myeloid cell-specific deficiency of miR-

21 had no effect on body weight, blood glucose, liver enzymes, surrogate markers of 

injury, or renal functions. Plasma cholesterol and triglyceride levels of miR-21 chimeric 

mice were also comparable with controls (Fig. 18). 

 

Analyses of atherosclerotic lesions: To examine the role of miR-21 in atherogenesis, 

lesions in the aortic valves were examined in the miR-21 chimeric and WT mice. 

Morphometric analysis of the lesion area in the aortic valve showed that the mean lesion 

area of LDLR-KO mice transplanted with miR-21 bone marrow was 1.5 fold higher than 

the lesion area of LDLR-KO mice transplanted with WT bone marrow (Fig. 19). 

Quantitation of lipid staining in the non-necrotic area showed that the lesions of miR-KO 

mice accumulate more fat than the WT mice. Staining for the macrophages and CD3+ T-

cells in the non- necrotic area was comparable in the miR-21-KO chimeric mice with WT-

chimeric mice (Fig. 20A and 20B). However, staining for the intimal smooth muscle cells 

was significantly lower in the miR-21-KO mice than WT mice (Fig. 20C). Sirius Red 

staining of the lesions showed that collagen staining in the miR-21-KO group was 

comparable with controls (Fig. 20D).  
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Table 10:  Parameters measured in the plasma of chimeric mice after  

12 weeks of WD. 

Parameters WT KO 

Blood Weight (g) 31.63±0.93 31.81±0.78 

Blood Glucose (mg/dl) 248.2±13.3 233.05±6.7 

Total Protein (g/dl) 7.02±0.4 10.9±1.2* 

Albumin (g/dl) 2.7±0.05 3.0±0.1* 

Alanine aminotransferase (U/l) 50.96±5.8 68.5±7.2 

Aspartate aminotransferase  (U/l) 92.3±11.4 117.8±10.1 

Creatinine (mg/dl) 0.19±0.03 0.3±0.06 

Creatinine kinase (U/l) 282.7±52.9 251.7±27.1 

Lactate dehydrogenase (U/l) 464.6±45.8 591.3±37.1* 

 
 Values (n=15/group) are mean ± SEM. *P<0.05 vs WT mice. 
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Figure 18. Plasma lipids in chimeric mice: MiR-21-KO or WT chimeric LDLR-KO mice 

were maintained on WD for 12 weeks (n = 15 per group) and plasma cholesterol (A) and 

triglycerides (B) were measured enzymatically. Values are mean ± SEM. 
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Figure 19. Effect of miR-21deficiency on lesion formation in the aortic valve. MiR-

21-KO or WT chimeric LDLR-KO mice were maintained on WD for 12 weeks (n = 15 per 

group), and lesions in the aortic valves were quantified. Lipids were visualized by Oil 

Red O staining. Upper panel are representative photomicrographs of aortic valve and 

Lower are the group data of lesion quantitation. Values are mean ± SEM. *P<0.05 vs WT 

mice. 
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Figure 20. Lesion cellularity of miR-21 deficient chimeric mice. MiR-21-KO or WT 

chimeric LDLR-KO mice were maintained on WD for 12 weeks and lesions in the aortic 

valves were stained with A) anti- CD68 (macrophage), B) CD3 (T-cells), C) α-smooth 

muscle cell actin (SMC), and D) Sirius Red (collagen). Values are mean ± SEM. *P<0.05 

vs WT mice. 
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DISCUSSION 

Major findings of the studies presented in this chapter are: a) several miRs associated 

with inflammation and apoptosis, including miR-21, are expressed in atherosclerotic 

lesions; b) expression of miR-21 is increased by atherogenic stimuli in vivo and in vitro; 

and c) myeloid cell-specific deficiency of miR-21 exacerbates atherogenesis in LDL 

receptor-KO mice. Since miR-21 has been suggested to play a vital role in inflammation 

and apoptosis in a variety of pathophysiological conditions, these findings support the 

concept that inflammation and apoptosis are the key elements of atherogenesis.  The 

observation that myeloid cell-specific deficiency of miR-21 does not affect plasma 

cholesterol but increases atherogenesis indicates that it is the processes within the 

lesions such as inflammation and apoptosis, which drive atherogenesis in the conditions 

of miR-21 deficiency. 

 

Atherosclerosis usually occurs in medium and large-sized arteries. Arterial stenosis or 

thrombotic occlusion of the artery leads to myocardial ischemia, stroke and renal 

ischemia [236]. Since atherogenesis progresses for years before displaying clinical 

symptoms, early detection of the disease along with therapeutic intervention can 

significantly diminish subsequent events, improve the quality of life, and increase  the life 

span. Therefore, understanding the mechanisms of atherogenesis is of prime 

significance. In the last decade, miRs have emerged as critical modulators of various cell 

types and functions which govern inflammatory responses in atherogenesis. These 

include: endothelial activation, monocyte recruitment, foam cell formation, macrophage 

polarization and apoptosis, and smooth muscle cell proliferation [237].  

 

I identified several novel miRs which are differentially expressed in the aortic lesions of 

LDLR-KO mice. Differential expression of several miRs, which have been studied in 
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various cellular and pathophysiological processes, but have not been investigated in the 

context of atherosclerosis, was  observed in murine aortic lesions. This opens up new 

avenues to examine the contribution of these miRs in the etiology of atherosclerosis. 

 

Among the other miRs differentially regulated in murine aortic lesions in my study, 

several miRs have been shown to be either expressed in atherosclerotic lesions or are 

associated with atherogenic processes such as cholesterol homeostasis, foam cell 

formation, vascular inflammation, and apoptosis. These include miR-17, miR-92a, miR-

499, miR-155, miR-146a, miR-21, miR-29b, and miR-143. Forty eight of these 

differentially expressed miRs in atherosclerotic lesions are expressed/associated with 

macrophages.  

 

My studies show that only 4 out of these 48 miRs (miR-155, miR-27a, miR-24 and miR-

21) have been implicated in foam cell formation (as evident from Pub Med search). My 

data showing that the expression of miR-21 is increased in vitro and in vivo under 

atherogenic conditions are in agreement with the observed upregulation of miR-21 in 

human atherosclerotic plaques by Raitoharju E et al [76]. However, the contribution of 

miR-21 in atherosclerosis has not been directly tested. In this study, I show for the first 

time that the deficiency of miR-21 increases foam cells formation in vitro, and myeloid 

cell-specific deficiency of miR-21 exacerbates atherosclerosis in LDLR-KO mice. These 

studies are significant because they a) describe a new pathological role of miR-21, and 

b) provide new insight about the potential biochemical mechanisms by which miR-21 

affects atherogenesis.  

 

Complementary to my studies, it was recently reported that LPS increases the 

expression of miR-21 in macrophages. Additionally, inhibition of miR-21decreases while 
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overexpression of miR-21 increases lipid accumulation in LPS-treated macrophages 

[143]. However, the role of miR-21 in LPS-induced inflammation is quite complex. In 

epithelial cells, miR-21 downregulates its target PTEN and thereby increases AKT 

phosphorylation and NF-B activation [238]. Contrary to these observations, miR-21 is 

induced by LPS to mitigate TLR4 mediated pro-inflammatory signaling by inhibiting NF-

B [144]. Mice deficient in miR-21 target PDCD4, have elevated levels of IL-10 

decreased levels of IL-6, and decreased LPS-induced mortality [239]. Inhibition of miR-

21 blocks LPS-induced PDCD4 downregulation and increases NF-B activation and IL-6 

formation, suggesting the anti-inflammatory role of miR-21. In endothelial cells miR-21 is 

induced by shear stress, and overexpression of miR-21 increases nitric oxide production 

and decreases apoptosis [132]. On the contrary, oscillatory shear stress induces miR-21 

and increases the expression of atherogenic molecules MCP-1 and VCAM-1 in PPAR-α-

dependent manner.  

 

Consistent with the increased expression of miR-21 in atherosclerotic lesions in this 

study, induction of miR-21 has also been reported in several other inflammatory 

conditions such as colitis, type 2 diabetes, allergic airway inflammation, psoriasis and 

atopic eczema, and osteoarthritis [190]. Moreover, high expression of miR-21 was 

observed in experimental peritonitis, which was further increased during the resolution of 

inflammation [240]. This suggests that miR-21 may also act as a pro-inflammatory 

molecule under specific conditions.  

 

While my data clearly demonstrates that myeloid cell-specific deficiency exacerbates an 

intermediate phase of atherogenesis, further studies are required to examine the 

contribution of myeloid/macrophage specific-miR-21 in early and advanced (complex) 
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lesions. Potentially, miR-21 could be deleterious early on by promoting vascular 

inflammation, whereas it may facilitate the resolution of inflammation. Contribution of 

endothelial cells and macrophage-specific miR-21 at various stages of lesions also 

needs to be investigated. It is conceivable that endothelial miR-21 would prevent shear 

stress and endothelial cell apoptosis, and prevent early atherogenesis.  

 

My studies also show that deficiency of miR-21 decreases the abundance of intimal 

smooth muscle cells in atherosclerotic lesions. Inhibition of miR-21 has previously been 

shown to decrease smooth muscle cell proliferation and neointima formation in balloon-

injured rat carotid arteries [75]. Although this study is in agreement with my data, the 

underling mechanisms are potentially different because in the bone marrow transplant 

model, proliferation and migration of smooth muscle cells from the media to the intima is 

unlikely. It is possible that deficiency of miR-21 prevents the recruitment of stem cell-

derived smooth muscle cells to the lesion. Alternatively, lack of miR-21 promotes smooth 

muscle cell apoptosis. While in early and intermediate phases of atherosclerosis, 

deficiency of smooth muscle cells decreases the lesion growth, decrease in smooth 

muscle cells in advanced lesions around the necrotic core would lead to the thinning of 

necrotic core and destabilization of the plaque.  Further studies are required to examine 

how miR-21 affects smooth muscle cell abundance at different stages of lesion 

formation, as well as the underling mechanisms and consequences of these processes. 

 

In addition to miR-21, I observed an upregulation of miR-24 in murine atherosclerotic 

plaques. miR-24 is also expressed in human coronary artery lesions [82], where it is 

inversely associated with MMP-14. Expression of miR-24 is more abundant in stable 

plaques as compared to unstable plaques. Inhibition of miR-24 in ApoE-KO mice 

increased lesion size and MMP-14 expression, causing the plaques to become more 
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unstable. These studies support the notion that induction of miRs such as miR-21 and 

miR-24 in atherosclerotic lesions is a reflection of their anti-inflammatory nature.  

 

Interestingly, my data also show that miR-155 was downregulated in atherosclerotic 

lesions. This is contrary to the studies of Nazai-Jahantigh et. Al. which showed that miR-

155 was induced in atherosclerotic lesions and promoted atherosclerosis by inhibiting 

Bcl6 in macrophages [80]. Although, in agreement with these studies, deficiency of miR-

155 in myeloid cells decreased macrophage inflammation and atherosclerosis [104]. 

However, deficiency of miR-155 in the bone marrow cells of LDLR-KO mice increased 

vascular inflammation and atherogenesis [103]. Collectively these data suggest that 

similar to miR-21, the role of miR-155 in vascular inflammation and atherogenesis is also 

very complex and appears to be atherosclerotic stage-specific. Therefore caution should 

be exercised in interpreting these data.  

 

While miR-155 is one of the most studied miRNAs, less is known about the contribution 

of miR-27a/b in atherosclerosis. My data show that miR-27a is upregulated in the lesions 

of LDLR-KO mice. In vitro studies have shown that while miR-27a/b do not affect cellular 

cholesterol accumulation, they can inhibit cholesterol efflux by decreasing the 

expression of ATP binding cassette transporter A1 (ABCA1) and apoA-1 [116]. Several 

miRs such as miR-19b, miR-144-3p, and miR-302a have been reported to promote 

macrophage lipid accumulation in vitro and atherogenesis in mice, primarily by targeting 

ABCA1 [84, 92, 94]. However, expression of these miRs was not differentially regulated 

in my study. Given the varying functions and effects of different miRs in various cell 

types, as well as disease progression, a thorough investigation of miRNAs contribution  

in foam cell formation and atherogenesis is warranted.   
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CHAPTER 3 

 

CONTRIBUTION OF MICRORNA-21 IN REGULATING MACROPHAGE 

INFLAMMATION AND APOPTOSIS IN VITRO AND IN MURINE ATHEROSCLEROTIC 

PLAQUE FORMATION 

 

3.0. INTRODUCTION: 

MiR-21 has been shown to be upregulated in atherosclerotic plaques [76]. My studies in 

Chapter 2 show that the expression of miR-21 is increased both under atherogenic 

conditions in vitro and in aortic lesions of LDLR-KO mice. My data in Chapter 2 also, for 

the first time, showed that the myeloid cell-specific deficiency of miR-21 exacerbates 

atherogenesis in LDLR-KO mice. However, the biochemical mechanisms by which miR-

21 affects atherogenesis are not known. Since macrophage-induced generation of 

cytokines and  apoptosis of macrophages are two critical determinants of atherosclerotic 

lesion formation and progression, my studies in this chapter will be focused on the role 

of miR-21 in regulating inflammatory signaling and apoptotic responses.  

 

Inflammation is a hallmark of atherosclerosis [241]. It includes both innate and adaptive 

immunity, primarily via macrophages and T-cells, respectively. Activation of 

macrophages to the pro-inflammatory phenotype via TLR4 activation enhances the 

generation of pro-inflammatory cytokines and enhances vascular inflammation [242]. 

MicroRNA-155 was the first miR that was shown to be induced by TLR4 agonist LPS 
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during the macrophage inflammatory response [243]. Subsequently, several miRs have 

been suggested to modulate LPS/TLR4-induced cytokine formation in macrophages 

[242]. The role of miR-21 in LPS-induced inflammation has been a subject of intense 

investigation of late. Recently my mentor, in collaboration with  others, showed that miR-

21 protects from LPS-induced peritonitis [244]. However, the contribution of miR-21 in 

regulating TLR4 signaling in the context of atherosclerosis has not been examined. In 

this chapter, I will examine how miR-21 affects macrophage polarization and cytokine 

formation both in vitro and in atherosclerotic lesions, and I will delineate the role of NF-

kB and MAP Kinases in these processes. 

 

Macrophage apoptosis is another key determinant of the progression, nature, and 

stability of atherosclerotic lesions. Several miRNAs, including miR-21, have been 

suggested to regulate cellular apoptosis. Upregulation of miR-21 in tumorigenesis has 

been linked to its anti-apoptotic role [216-218]. However, it is unclear whether 

atherogenic stimuli cause apoptosis in a miR-21-dependent manner. In this chapter I will 

examine the role of miR-21 in macrophage apoptosis under atherogenic conditions in 

vitro and in vivo and describe the mechanisms by which miR-21 affects macrophage 

apoptosis.  

 

3.1. EXPERIMENTAL PROCEDURES: 

3.1.1. Macrophage Polarization:  BMDM were seeded in a 6-well plate at 1x106 cells 

per well. Cells were primed with IFN-γ (2,5 ng/ml) for 16h followed by incubation with 

LPS (10 ng/ml) to polarize them to a M1 phenotype. Incubation of BMDM with IL-4 (10 

ng/ml) was used to polarize the cells to a M2 phenotype. Following treatment, cells were 

washed twice with PBS, and the pellets were suspended in FACS buffer (1% FBS in 

PBS). They were then incubated with Fc Block (BD Biosciences, San Jose, CA, USA) for 
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10min at 4°C before being stained with fluorescent-conjugated primary antibodies or 

appropriate isotype controls for 30min at 4°C. The following antibodies were used for 

macrophage polarization characterization: phycoerythrin (PE)-conjugated anti-F4/80 

(Biolegends, San Diego, CA, USA), V 450-conjugated anti-CD80 (BD Biosciences 

Franklin Lakes, New Jersey, USA), A 700-conjugated anti-CD86 (BD Biosciences 

Franklin Lakes, New Jersey, USA), PE-Cy7-conjugated anti-CD11c (eBioscience, San 

Diego, CA, USA),  AlexaFluor 647-conjugated anti-Mgl-1 (CD301a; AbD Serotec, 

Raleigh, NC, USA), and Alexa 488-conjugated anti-CD206 (AbD Serotec, Raleigh, NC, 

USA). 

 

3.1.2. Measurement of cytokines: To examine the effect of miR-21 on cytokine 

production, WT and miR-21-KO BMDM were incubated with LPS as described above, 

and cytokines excreted in the cell culture medium were measured by the mouse 

cytokine/chemokine 32-plex array (Eotaxin, G-CSF, GM-CSF, IFNγ, IL-1α, IL-1β, IL-2, 

IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, IP-10, 

KC, LIF, LIX, MCP-1, M-CSF, MIG, MIP-1α, MIP-1β, MIP-2, RANTES, TNFα, and 

VEGF; Eve Technologies Corporation, Calgary, AB, Canada). The assay sensitivities of 

these markers ranged from 0.1 – 33.3 pg/mL. To confirm the results of the multiplex 

assay, IL-6 levels were also measured by ELISA (e-Biosciences, San Diego, CA, USA). 

 

3.1.3. Macrophage Apoptosis: To examine the effect of miR-21 on macrophage 

apoptosis, WT and miR-21-KO BMDM were incubated with staurosporine (STS; 500 nM) 

or 4-hydroxynonenal (HNE, 25 µM) in serum-free medium for 2h followed by incubation 

for 4h in complete incubation medium at 37°C. Apoptosis was measured using the 

Apoptosis Detection Kit (eBioscience, San Diego, CA 

USA) as per the manufacturer’s instructions. In this method, Annexin V-fluorescein 
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isothiocyanate (FITC) binds phosphatidylserine (PS) and propidium iodide (PI) or 7-

aminoactinomycin D (7-AAD). Exclusion of vital cells was used to discriminate between 

apoptotic and necrotic cells. Briefly, after treatment, cells were washed once in PBS and 

then once in Annexin V binding buffer. Harvested cells were suspended in Annexin V 

binding buffer at a concentration of 1×106 cells/ml. Suspended cells were stained with 5 

μL Annexin V-FITC and incubated for 10 minutes (in the dark) at room temperature. 

Cells were washed with the Annexin V binding buffer and stained with PI or 7-AAD. Flow 

cytometry was performed using an LSRII (BD Biosciences). Data were analyzed using 

the Flow software (Tree Star, Ashland, OR). Data of apoptosis were confirmed by the 

staining for cleaved caspases by Western blotting. 

 

3.1.4. Western blotting: Following treatments, cells were rinsed twice with PBS and 

lysed in a protein lysis buffer containing 25 mm HEPES, 1 mm EDTA, 1 mm EGTA, 0.1 

% SDS, 1 % NP-40, and 1X protease and phosphatase inhibitors. Protein concentration 

was estimated in crude cell extracts using the Bradford method (Bio-Rad, Hercules, CA, 

USA). Approximately 10-50 μg of crude cell extract was applied to each lane of a 4-20% 

Bus-Tris-HCI gel and electro blotted onto a PVDF membrane. The membrane was then 

blocked with 5% skim milk or 5% bovine serum albumin for 1h followed by probing with 

appropriate dilutions of primary antibodies overnight at 4ºC. PVDF membranes were 

then incubated with horseradish peroxidase-conjugated secondary antibodies for 1h at 

room temperature. Immunoreactive bands were detected using a Typhoon scanner (SA 

Biosciences, Valencia, CA, USA) after exposure to ECL detection reagent. Band 

intensity was quantified by using ImageQuant software. Primary antibodies used were 

anti-PDCD4 (Cell Signaling), anti-PTEN (Cell Signaling), anti-FABP4 (Cell Signaling), 

anti-vementin (Cell Signaling), anti-α-tubulin (Cell Signaling), anti-AKT phospho S473 

(Abcam), and anti-AKT(abcam). The apoptotic pathway antibodies used were: caspase-
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3 (Cell Signaling), caspase-9 (Cell Signaling), cleaved caspase-8 (Cell Signaling), and 

caspase-8 (Cell Signaling).  

 

3.1.5. Western blotting for the detection of NF-B activation: Untreated and LPS 

(100 ng/ml) treated cells were harvested, and the nuclear proteins were extracted from 

the cells using EpiSeeker Nuclear Extraction Kit (Abcam, ab113474) as per 

manufacturer’s instructions. Samples were electrophoresed and stained with anti- NF-B 

p65 (phospho S536) and anti-histone H1 antibodies  

 

3.1.6. Immunohistochemical analyses: IL12, IL-1 cleaved-caspase-3, and cleaved-

caspase-9 were detected using Cy5-conjugated rat-anti-IL-6, rat anti-IL-12, hamster anti-

IL1 (Biolegend, San Diego, CA), anti-cleaved caspase-3 and anti-cleaved caspase-9 

(Cell Signaling Technology, Inc., Danvers, MA) antibodies respectively. DAPI was used 

to stain the nuclei. 

 

3.1.7. TUNEL staining for apoptosis: To detect apoptotic cells in the lesions, sections 

of the aortic valve were fixed, permeabilized, and incubated with the TUNEL reaction 

mixture (In Situ Cell Death Detection Kit, Fluorescein, Roche Applied Science, 

Indianapolis, IN) containing TdT and fluorescein-dUTP as per manufacturer’s 

instructions. Sections were counterstained with DAPI to identify the nuclei. 

 

3.1.8. Lesional Necrosis: Sections of the aortic valves were stained with hematoxylin 

and eosin, and plaque necrosis was quantified by measuring the area acellular 

hematoxylin and eosin-negative areas in the intima, as described [245].  
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3.1.9. Statistical Analyses: Statistical Analyses were performed as described in 

chapter 2. 

 

3.2.0. RESULTS: 

3.2.1. Polarization of miR-21-KO macrophages: To investigate how miR-21 regulates 

macrophage functions, we examined the effect of miR-21 deficiency on macrophage 

polarization. Macrophages were either polarized to the classical M1 phenotype by 

(INF+LPS) or alternatively spliced with IL-4.  In the first series of experiments, WT and 

miR-21-KO macrophages were primed with INF (2.5 ng for 16h) and then incubated 

with LPS (10 ng/mL) for 24h. As shown in Fig. 21, 24h after stimulation with INF+LPS, 

M1 markers CD11c and CD86 were significantly increased in miR-21-KO macrophages 

as compared with WT cells, whereas only a modest change was observed in the 

abundance of  CD80, another M1 marker. Similarly, stimulation of cells with LPS (10 

ng/ml; without priming with INF) for 24h also increased the abundance of CD11c and 

CD86 but did not change the levels of CD80 in miR-21-KO cells. The INF+LPS or LPS 

alone catalyzed induction of M1 markers CD11c and CD86 in miR-21-KO BMDM, but 

they disappeared after 48h of stimulation. In the second series of experiments, the effect 

of IL-4 was examined on M2 polarization in miR-21-KO BMDM. Twenty four hours of 

incubation with IL-4 levels of CD301 increased in miR-21-KO macrophages, whereas 

abundance of CD206 and CD209 was unchanged (Fig. 22). In addition, 48h of 

incubation of miR-21-KO cells with IL-4 significantly increased the levels of CD301 and 

CD206; however, only a modest increase in the level of CD209 was observed. Together, 

these data suggest that miR-21-KO macrophages have a unique phenotype because 

only specific markers of both M1 and M2 are induced in these macrophages in response 

to M1 and M2 stimuli.  
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Figure 21. Effect of miR-21 deficiency on the polarization of macrophages to a M1 

phenotype. MiR-21-KO and WT BMDM were primed with IFNγ (2.5 ng/ml) for 16h, 

followed by stimulation with LPS (10 ng/mL) for 24 or 48h; incubated with LPS (10 

ng/mL) for 24 or 48h; and incubated with PBS (vehicle) for 24 or 48h. Expression of 

CD11c (A), CD80 (B), and CD86 (C) was measured by flow cytometry. Data (n=3/group) 

are mean ± SEM. *P<0.05 vs PBS group.   
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Figure 22. Effect of miR-21 deficiency on the polarization of macrophages to a M2 

phenotype. MiR-21-KO and WT BMDM were incubated with IL-4 or PBS (vehicle) for 

24/48h, and the expression of CD206 (A), CD209 (B), and CD301 (C) was measured by 

flow cytometry. Data (n=3/group) are mean ± SEM. *P<0.05 vs PBS group.   
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3.2.2. Effect of miR-21 deficiency on cytokine formation: Because vascular 

inflammation is a critical determinant of lesion nature and progression, we investigated 

how miR-21 affects inflammatory signaling in macrophages, the major driver of 

inflammation in atherosclerotic lesions. In the first series of experiments 0.5x106 WT and 

miR-21-KO BMDM were seeded in 12-well plates and incubated for 24h at 

37ºC.Incubated medium was then collected and analyzed for expression levels of 32 

cytokines and chemokines by multiplex cytokine array. Levels of 8 analytes were too low 

to be reliably quantified. Data for the other cytokines are presented in (Fig. 23). As 

shown in Fig. 23, levels of CXCL2 were 38-fold (P<0.05) higher in miR-21-KO than WT 

macrophages. Macrophage deficiency of miR-21 also increased the levels of TNFα by 7-

fold, IL-6 by 4-fold, IL-9 by 1.8-fold, CXL10 by 3-fold, CCl3 by 2.4-fold and CCl4 by 3-fold 

(P<0.05; Fig. 23). Basal levels of the other cytokines and chemokines in miR-21-KO 

macrophages were comparable with controls. These data suggest that basally, 

macrophage miR-21 deficiency increases the formation of several pro-inflammatory 

cytokines and chemokines.  

 

3.2.3. LPS induced cytokine formation in miR-21 deficient macrophages: Next, the 

effects of pro-inflammatory stimulants such as LPS on cytokine and chemokine 

formation in miR-21-KO macrophages were studied. As shown in Fig. 23, incubation of 

both WT and miR-21-KO BMDM with LPS (100 ng/mL) for 24h increased the formation 

of leukemia inhibiting factor (LIF; an IL-6 class of cytokine) by 24-fold, IL-1β by 18-fold, 

IL1α by 11-fold, and IL-2, IL-6, IL9, IL-12 (p40), TNFα, CXCL2, and G-CSF by 2.5-5-fold 

(P<0.05). Levels of KC (murine analog of IL-8) and VEGF were also moderately (<2-fold; 

P<0.05) increased by LPS in miR-21-KO BMDM. To confirm the multiplex data, A time 

course (4-24h) of LPS (100 ng/mL) induced IL-6 formation was also examined by ELISA 

in WT and miR-21-KO BMDM. As shown in Fig. 24, IL-6 formation in LPS stimulated 
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Figure 23. Cytokines and chemokine levels in LPS-stimulated miR-21-KO 

macrophages. MiR-21-KO and WT BMDM were incubated with 100ng/ml LPS or PBS 

(vehicle) for 24 hours and the cytokines secreted in the incubation medium were 

measured by multi-plex cytokine array. Data (n=6/group) are mean ± SEM. *P<0.05 vs 

PBS group.  
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Figure 24. Formation of IL-6 in LPS-stimulated miR-21-KO macrophages.  MiR-21-

KO and WT BMDM were incubated with 100ng/ml LPS or PBS (vehicle) for 4, 8, and 

24h, and IL-6 secreted in the incubation medium was measured by ELISA. Data 

(n=6/group) are mean ± SEM. *P<0.05 vs PBS group.  
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miR-21-KO cells were significantly higher than WT macrophages at all time points 

examined. Collectively, these data suggest that miR-21 prevents the formation of pro-

inflammatory cytokines in response to inflammatory molecules like LPS. 

 

3.2.4. Inflammatory and atherogenic stimuli and expression of potential miR-21 

targets in atherosclerotic lesions of chimeric miR-21-KO mice: Since formation of 

pro-inflammatory cytokines such as IL-1β and IL-12 was significantly increased by LPS 

in miR-21-KO macrophages, examination of how deficiency of miR-21 affects the 

abundance of these cytokines in atherosclerotic lesions was conducted. As shown in 

Fig. 25 and Fig. 26, staining for IL-1β and IL-12 was much higher in the aortic valves of 

chimeric miR-21-KO than WT mice, suggesting that miR-21 is likely to be a critical 

regulator of vascular inflammation. 

 

3.2.5. Effect of miR-21 deficiency on the activation of NF-B and p38 and ERK MAP 

kinases: To explore the mechanisms by which miR-21 inhibits the formation of pro-

inflammatory cytokines, the effect of miR-21 deficiency on NF-B activation was first 

examined. For this, nuclear translocation of NF-B in cells treated with LPS was 

measured. As shown in Fig. 27, treatment of WT BMDM with LPS (100 ng/mL) led to a 

significant increase in the nuclear abundance of the NF-B p65-unit at 1h after 

treatment. The nuclear translocation of NF-B was much faster in miR-21-KO cells, and 

maximal activation was achieved 5min after stimulation. NF-B content in these cells 

returned to basal levels after 1h. After 5-30min of LPS stimulation NF-B activation was 

increased by 2-fold in miR-21-KO BMDM (Fig 27). These data suggest that LPS-

induced activation of NF-B is more robust and rapid in miR-21-KO macrophages than 

WT cells. 
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Figure 25. Abundance of IL-1β in atherosclerotic lesions of miR-21-KO chimeric 

LDLR-KO mice. Representative photomicrographs of IL-1β in the aortic valves of LDLR-

KO mice transplanted with bone marrow cells from WT or miR-21 KO mice, and fed 

Western diet for 12 weeks. 
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Figure 26. Abundance of IL-12 in atherosclerotic lesions of miR-21-KO chimeric 

LDLR-KO mice. Representative photomicrographs of IL-12 in the aortic valves of LDLR-

KO mice transplanted with bone marrow cells from WT or miR-21 KO mice, and fed 

Western diet for 12 weeks. 
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Figure 27. Effect of miR-21 deficiency on the activation of NF-B. MiR-21-KO and 

WT BMDM were incubated with LPS (100 ng/ml) for 0-120 min, and activation of NF-B 

(p65) was measured in the nuclear extract by Western blotting (A). Intensities of the 

bands were normalized to 0 min WT (B) or respective 0 min groups (C). Data are mean 

± SEM. *P <0.05 vs PBS group. 
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Apart from NF-B, TLR4 signaling can also be regulated by MAP kinases [246]. 

Therefore, we examined the effect of miR-21 deficiency on the activation of p38 and 

ERK in LPS- stimulated BMDM. As shown in Fig. 28, LPS activated p38 both in WT and 

miR-21-KO macrophages in a time-dependent manner. The maximum activation was 

achieved after 15 min of stimulation, and subsequently p38 phosphorylation diminished 

with time. Throughout the time course, LPS-induced p38 activation in miR-21-KO cells 

was comparable with WT macrophages. These data suggest that increased TLR4 

activation by LPS in miR-21-KO macrophages is not mediated by p38 phosphorylation. 

 

MiR-21 has been suggested to modulate the activation of ERK MAP kinase in response 

to a variety of stimuli [229, 247, 248]. My data show that appreciable ERK 

phosphorylation was visible after 5min of LPS stimulation in WT but not miR-21-KO 

macrophages (Fig. 29). The phosphorylation of ERK peaked at the 15min time point in 

the WT cells. MiR-21-KO cells also displayed ERK activation at this time point; however, 

it was much lower than the WT cells. ERK activation diminished in both WT and miR-21-

KO cells after 30 min of LPS stimulation. Together, these data suggest that LPS induced 

phosphorylation of ERK was appreciably lower in miR-21-KO BMDM than WT cells. 

 

3.2.6. Effect of miR-21 deficiency on the abundance of its predicted targets: Our 

data so far suggests that IL-12 is a target protein of miR-21 in LPS-stimulated 

macrophages, and cytokines such as IL-1β, IL-6, and LIF are also the potential direct 

targets of miR-21. To have comprehensive analyses of miR-21 targets, I examined the 

effect of LPS on several of its predicted targets in macrophages. As shown in Fig. 30, 

LPS down-regulated PDCD4 and Vimentin in both WT and miR-21-KO BMDM, and the 

levels of PDCD4 and Vimentin in LPS-induced WT cells were comparable with LPS-

induced miR-21-KO macrophages. LPS did not affect the levels of PTEN, FABP4, 
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Figure 28. Effect of miR-21 deficiency on the phosphorylation of p38 MAP Kinase. 

miR-21-KO and WT BMDM were incubated with LPS (100 ng/ml) for 0-120min and 

activation of p38 was measured by Western blotting (A). Panel B shows the data 

normalized to total p38. 
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Figure 29. Effect of miR-21 deficiency on the ERK activation. miR-21 KO and WT  

BMDM were incubated with LPS (100 ng/ml) for 0-120min and activation of pERK was 

measured by Western blotting (A). Panel B shows the data normalized to total ERK.  
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Figure 30. Effect of miR-21 deficiency on its target proteins. (A) miR-21 KO and WT 

BMDM were incubated with LPS (100 ng/ml) for 24h and expression of PDCD4 and 

PTEN was measured by Western blotting. (B) miR-21 KO and WT miR-21-KO and WT 

BMDM were incubated with PBS, LPS (100 ng/ml), LDL (50 µg/mL) or oxLDL (50 µg/mL) 

for 24h, and expression of vimentin, FABP4, Sprouty1 and Sprouty2 was measured by 

Western blotting. 
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Sprouty 1, and Sprouty 2 in both WT and miR-21-KO cells. Similarly LDL or oxidized 

LDL did not affect the quantity of Vimentin, FABP4, Sprouty 1, and Sprouty 2 in both WT 

and miR-21-KO macrophages.  

 

3.2.7. miR-21 and macrophage apoptosis: Apart from inflammation, apoptosis is also 

a critical determinant of the nature and stability of atherosclerotic plaques. Therefore,  

the effect of miR-21 deficiency in  macrophage apoptosis was measured. For these 

experiments, I first studied the apoptosis of unstimulated BMDM. WT and BMDM were 

seeded in 12-well plates and apoptosis was measured after 6h by flow cytometry 

following staining with Annexin V/propidium iodide. As illustrated in Fig. 31, both early 

and late apoptosis was significantly higher in miR-21-KO macrophages than WT cells. 

Next, we examined the effect of two well-known inducers of apoptosis, 4-

hydroxynonenal (HNE) and staurosporine (STS) on apoptosis in miR-21 deficient 

macrophages. As shown in Fig. 32 and Fig. 33, both HNE and STS significantly 

increased the early as well as late apoptosis in miR-21-KO macrophages. These data 

suggest that miR-21 protects against macrophage apoptosis. 

 

3.2.8. MiR-21 and activation of caspases in macrophage: To study the mechanisms 

of miR-21-induced macrophage apoptosis, we probed the activation of caspases in miR-

21-KO BMDM. Stimulation with STS led to increased levels of cleaved caspase-3 and 

caspase-7 in both WT and miR-21-KO cells; however, the magnitude of cleavage was 3-

4-fold greater in miR-21-KO cells (Fig. 34). To examine whether the activation of 

caspases in miR-21-KO cells is triggered by the extrinsic or intrinsic pathway, I 

examined the effect of STS on the cleavage of caspase-8 and caspase-9. As shown in 

Fig. 35, STS did activate caspase-8 in WT and miR-21-KO cells. However, caspase-9 

was cleaved by STS in WT macrophages and deficiency of miR-21 increased the STS- 
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Figure 31. MiR-21 deficiency increases macrophage apoptosis. WT and miR-21-KO 

BMDM were seeded in 12-well plate and incubated for 6h in RPMI cell culture medium at 

37 °C. Cells were then harvested and stained with Annexin V/propidium iodide (PI) and 

analyzed by flow cytometry. (A) Percentages of Annexin V+, PI−(early apoptosis) and (B) 

Percentage of PI+ cells (late apoptosis). Data (n=6/group) are mean ± SEM. *P = <0.05 

vs WT. 
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Figure 32. miR-21 protects macrophages from staurosporine-induced apoptosis. 

WT and miR-21-KO BMDM were incubated with staurosporine (500 nM) or DMSO 

(vehicle) for 6h. Cells were stained with Annexin V/propidium iodide (PI) and analyzed 

by flow cytometry. (A) Percentages of Annexin V+, PI− (early apoptosis) and (B) 

percentage of PI+ cells (late apoptosis). Data (n=6/group) are mean ± SEM. *P = <0.05 

vs WT. 
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Figure 33. miR-21 protects macrophages from HNE-induced apoptosis. WT and 

miR-21-KO BMDM were incubated without or with HNE (25 µM) in HBSS for 2h. Cells 

were then incubated for 4h in RPMI medium and stained with Annexin V/propidium 

iodide (PI) and analyzed by flow cytometry. (A) Percentages of Annexin V+, PI− (early 

apoptosis) and (B) percentage of PI+ cells (late apoptosis). Data (n=6/group) are mean ± 

SEM. *P = <0.05 vs WT. 
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Figure 34. Effect of miR-21 on the activation of caspase-3 and caspase-7 in BMDM. 

WT and miR-21-KO BMDM were incubated with 500 nM staurosporine (STS) or DMSO 

for 6h and cleaved caspase-3 and caspase-7 were measured by Western blotting.  
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Figure 35. Effect of miR-21 deficiency on the activation of extrinsic and intrinsic 

pathways of apoptosis in BMDM. WT and miR-21-KO BMDM were incubated with 500 

nM staurosporine (STS) or DMSO for 6 h and cleaved caspase-8 and caspase-9 were 

measured by Western blotting.  
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induced cleavage of caspase-9 by 4-fold. Together, these data suggest that miR-21 

prevents macrophage apoptosis by preventing the activation of the caspase-9-driven 

intrinsic pathway.  

 

To examine the role of miR-21 targets PDCD4 and PTEN on macrophage apoptosis, we 

measured the levels of these proteins in STS stimulated BMDM. As shown in Fig. 36, 

STS did not affect the abundance of PDCD4 or PTEN in both the WT and miR-21-KO 

cells, suggesting that these proteins do not regulate macrophage apoptosis, at least in 

response to STS.  

 

3.2.9. Effect of miR-21 deficiency on apoptosis and necrosis in atherosclerotic 

plaques: To investigate whether miR-21 also protects from cell death in atherosclerotic 

lesions, apoptosis and necrosis in the aortic valves of WT and miR-21-KO chimeric mice 

was investigated. TUNNEL staining  was utilized  to examine apoptosis in the lesions.  

TUNNEL positive cells were visible in the lesions of both WT and KO-mice, but the 

abundance of TUNNEL positive cells was significantly higher in the lesions of miR-21-

KO chimeric mice (Fig. 37). Staining for activated caspase-3 (Fig. 38) and caspase-9 

(Fig. 39) was also greater in miR-21-KO chimeric mice.  

 

In order to study lesion necrosis, sections of the aortic valves were stained with 

hematoxylin and eosin, and necrosis was measured by quantitating the anuclear, 

afibrotic, and eosin-negative areas. As shown in Fig. 40, 14% of the area in aortic 

lesions of WT mice was necrotic. Lesion necrosis was increased by 1.4-fold in miR-21-

KO chimeric mice. Together these data suggest that the deficiency of miR-21 increases 

apoptosis and necrosis in atherosclerotic plaques. 
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Figure 36. Effects of miR-21 deficiency on the abundance of PTEN and PDCD4. WT 

and miR-21-KO BMDM were incubated with 500 nM staurosporine (STS) or DMSO for 

24 h, and levels of PTEN and PDCD4 were measured by Western blotting.  
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Figure 37. Apoptosis in the aortic valves of miR-21-KO chimeric LDLR-KO mice. 

Sections of the aortic valves of LDLR-KO mice transplanted with bone marrow cells from 

WT or miR-21 KO mice (fed Western diet for 12 weeks) were stained to look for TUNEL-

positive signals (green). Values (n=12/group) are mean ± SEM. *P < 0.05 vs WT.  
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Figure 38. Abundance of activated caspase-3 in atherosclerotic lesions of miR-21-

KO chimeric LDLR-KO mice. Representative photomicrographs of cleaved caspase-3 

in the aortic valves of LDLR-KO mice transplanted with bone marrow cells from WT or 

miR-21 KO mice and fed Western diet for 12 weeks. 
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Figure 39. Abundance of activated caspase-9 in atherosclerotic lesions of miR-21-

KO chimeric LDLR-KO mice. Representative photomicrographs of cleaved caspase-9 

in the aortic valves of LDLR-KO mice transplanted with bone marrow cells from WT or 

miR-21 KO mice and fed Western diet for 12 weeks. 
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Figure 40. Effect of miR-21 deficiency on lesional necrosis.  Sections of the aortic 

valves of LDLR-KO mice transplanted with bone marrow cells from WT or miR-21 KO 

mice (fed Western diet for 12 weeks) were stained with hematoxylin & eosin. Necrotic 

areas are anuclear, afibrotic, and eosin-negative. Values (n=6/group) are mean ± SEM. 

*P < 0.05 vs WT.  
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3.3.0 DISCUSSION: 

Data presented in this chapter show that: a) in vitro polarization of miR-21-KO 

macrophages by INF+LPS induces the markers of the M1 phenotype; b) deficiency of 

miR-21 increases the formation of pro-inflammatory cytokines in vitro (basally, as well as 

in response to LPS), and in atherosclerotic lesions of LDLR-KO mice; c) NF-B and ERK 

are likely to induce a pro-inflammatory response in miR-21-KO macrophages; d) 

deficiency of miR-21 cause macrophage apoptosis in vitro and in atherosclerotic 

plaques; and e) anti-apoptotic effects of miR-21 could be mediated by the intrinsic 

pathway of apoptosis via the activation of caspase-9. 

 

An interesting observation of my study was that basally, miR-21-KO macrophages 

profoundly increased the formation of pro-inflammatory cytokines and chemokines such 

as TNFα, KC (murine analog of IL-8), CCL3, CCl4, CXCL2, and CXCL10. Levels of anti-

inflammatory cytokines IL-4 and IL-10 were not affected by miR-21 deficiency in LPS-

stimulated cells. Further studies are required to examine the molecular mechanisms by 

which miR-21 deficiency basally increases the formation of these inflammatory 

mediators.  

 

Macrophages mediate the innate immunity of atherosclerotic plaques. TLR4 are well 

known activators of innate immunity and play a key role in vascular inflammation and 

atherogenesis. TLR signaling is very active in human atherosclerotic plaques, and 

activation of TLR4 plays a vital role in the initiation and progression of atherogenesis 

[249]. My data suggest that the deficiency of miR-21 increases macrophage 

inflammation. Priming the cells with INF followed by stimulation with a low dose of LPS, 

a TLR4 agonist, showed a significant upregulation of markers of pro-inflammatory “M1” 
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polarization-Cd11c and CD86, whereas abundance of CD80 was not affected. Further 

studies are required to investigate why miR-21 regulates the expression of some M1 

markers and not others. Nonetheless, my data support the notion that miR-21 is an anti-

inflammatory microRNA. It is further supported by the fact that a relatively higher dose of 

LPS robustly increased the formation of several pro-inflammatory cytokines and 

chemokines. LPS-induced formation of IL-6 and IL-12 is consistent with the published 

literature [250]. In dendritic cells, it has been shown that IL-12 is a direct target of miR-21 

because it binds to the 3’ UTR region of the gene [195, 203]. The massive increase in 

the formation of LIF, IL1α, IL1β, and CXCL2 in LPS-stimulated miR-21-KO macrophages 

suggests that these cytokines could be potential direct targets of miR-21. Induction of IL-

1β and IL-6 in atherosclerotic plaques exhibits the first direct evidence that miR-21 

inhibits vascular inflammation. 

 

While there are several pathways to generate IL-1β, one of the areas of intense 

investigation is the contribution of inflammasome activation in IL-1β formation. 

Accumulation of cholesterol in macrophages could lead to the formation of cholesterol 

crystals. These cholesterol crystals can activate the cytosolic-nucleotide binding domain 

and leucine-rich repeat gene family (NLRP3) activating its associated inflammasome 

and facilitate the formation of IL-1β. The cholesterol crystals in atherosclerotic plaques 

can promote vascular inflammation by activating NLRP3 and increasing the formation of 

IL-1β. Genetic deficiency of IL1β or NLRP3 has been shown to decrease atherogenesis 

[251]. Additional studies are required to examine the potential role of miR-21 in 

inflammasome activation. 

 

Anti-inflammatory functions of miR-21 could also be mediated by NF-B since several 

miRs have been reported to modulate inflammation by regulating NF-B. miR-146a and 
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146b are induced in macrophages in an NF-B-dependent manner and facilitate the 

resolution of inflammation by limiting TLR signaling and cytokine formation [252]. 

Similarly, miR-147 attenuates TLR signaling in macrophages in a negative feedback 

manner [137]. miR-155 mediated cytokine formation is suggested to be mediated by the 

activation of myeloid differentiation primary response gene 88 (MyD88)/NF-B signaling 

[140]. Moreover, miR-342-5p has been reported to increase iNOS and IL-6 via Akt1-

mediated inhibition of miR-155 expression, while inhibition of miR-342-5p prevented 

atherosclerosis in ApoE-KO mice [95]. I observed a more rapid and higher activation of 

NF-B in LPS-stimulated macrophages. These observations are in agreement with 

Barnett et. al., who recently reported that the deficiency of miR-21 increases LPS-

induced IL-6 formation via NF-B activation [244]. Further studies are required to 

examine the effect of NF-B inhibition on cytokine production in miR-21-KO 

macrophages. 

 

Cytokine formation in macrophages can also be facilitated by MAP Kinases such as 

ERK and p-38. miR-21-induced angiogenesis has been suggested to be mediated by 

AKT and ERK activation [253]. In this study ERK and AKT were induced by miR-21, and 

an antigomir of miR-21 blocked this process. MiR-21 has also been suggested to be 

regulated by reactive oxygen species-activated ERK/NF-B in arsenite-induced cell 

transformation [248]. Others have suggested that miR-21 is both a target and regulator 

of ERK/NF-B and JNK/c-jun axis [254]. My data show that LPS-induced ERK activation 

was diminished in miR-21-KO cells. P38 is a well-known to contributor to LPS-induced 

cytokine formation. However, deficiency of miR-21 did not affect p38 activation. 

Therefore, these MAP Kinases are unlikely to mediate the LPS-induced cytokine 

formation in miR-21-KO macrophages. Deficiency of miR-21 in macrophages also did 
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not affect the abundance of several miR-21 targets including PTEN, PDCD4 and Sprouty 

1 and 2. Together these data suggest that the pro-inflammatory signaling in miR-21-KO 

macrophages is likely to be regulated by NF-B. 

 

My data also showed that prolonged incubation of miR-21-KO macrophages with IL-4 

induced the markers of alternatively activated “M2” macrophages, CD206 and CD301. 

Delayed induction of these M2 markers suggests that inhibition of miR-21 may facilitate 

the resolution of inflammation in advanced lesions. Treatment with resolvin D1, a lipid 

mediator that facilitates the resolution of inflammation, has been suggested to induce 

miR-21 in peritonitis [240]. However, further studies are required to directly test the 

contribution of miR-21 in the resolution of inflammation, especially in advanced 

atherosclerotic lesions. 

 

Another salient feature of my study was the activation of apoptotic signaling. My data 

showed apoptosis was significantly increased both basally, and in response to 

atherogenic stimulant HNE and the protein kinase inhibitor staurosporine, in miR-21-KO 

macrophages. Increased apoptosis in miR-21-KO cells was accompanied by enhanced 

activation of caspase-3 and caspase-7. miR-21 deficiency did not affect caspase-8 

activation suggesting that miR-21 does not affect the extrinsic pathway of apoptosis. 

However, deficiency of miR-21 increased the cleavage of caspase-9 in response to 

staurosporine, suggesting the activation of the intrinsic pathway of apoptosis. Myeloid 

cell-specific deficiency of miR-21 also increased apoptosis and enhanced the 

abundance of active casapse-3 and caspase-9. These studies are quite novel because 

the contribution of miR-21 in macrophage apoptosis, in the context of atherosclerosis, 

has never been examined. My data suggest that one of the mechanisms by which miR-

21 inhibits apoptosis is by inhibiting the activation of the intrinsic pathway of apoptosis. 
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Further studies are required to examine whether caspase-9 activation in miR-21-KO 

macrophages is involved in Apaf-1 expression and apoptosome formation, or these 

pathways do not contribute to caspase-9 activation in these cells. Staurosporine did not 

affect the abundance of PTEN and PDCD4, the well-known targets of apoptosis in 

cancer cells [220], in miR-21-KO macrophages. Further studies are required to identify 

the targets of miR-21-induced intrinsic apoptosis in macrophages, especially in response 

to atherogenic stimuli. 

 

The effects of miR-21-mediated macrophage apoptosis are likely to be different at the 

various stages of atherogenesis. In early stages increased apoptosis is likely to 

decrease the lesion size because efferocytosis  would remove the apoptotic cells [225]. 

An increase in apoptosis in intermediate, and advanced lesions would increase plaque 

necrosis and progression [225]. Indeed, I observed a significant increase in plaque 

necrosis in the lesions of miR-21 deficient chimeric LDLR-KO mice. These observations 

are contrary to the recent studies by Ma et. al. [230], which showed that miR-21-KO 

mice are protected from caerulein- or L-arginine-induced pancreatitis by inhibiting 

necrosis. The observed differences are likely to be due to local environment (lipid rich 

lesions in atherosclerosis) and cell specificity. Apoptosis of smooth muscle cells in the 

advanced atherosclerotic lesions would lead to the thinning of the necrotic core and 

compromise lesion stability. Therefore, caution should be exercised in interpreting the 

results.  
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CHAPTER 4 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

The goal of this dissertation was to determine the role of miR-21 in atherogenesis and to 

delineate the molecular mechanisms by which miR-21 affects atherogenesis. To support 

the rationale of the study, I first performed a gene array analysis to identify the 

differential expression of miRs in murine aortic lesions. I identified 503 miRs in the 

lesions, out of which 50 miRs were downregulated and 100 miRs were upregulated in 

the plaques. Systematic, thorough, and rigorous analyses of these miRs identified 15 

miRs expressed in macrophages and associated with inflammation and apoptosis, which 

drive the separation of the expression pattern of differentially expressed miRs in the 

plaque. miR-21 was identified as the fourth  miR in that hierarchy. Expression of miR-21 

was increased by >1.5-fold in atherosclerotic plaques and by 1.5-2.0-fold in the 

macrophages of atherogenic mice. In vitro, LDL, oxidized LDL, acetylated LDL, and LPS 

induced miR-21 by 2-4-fold in bone marrow-derived macrophages. 

 

To examine the contribution of miR-21 in the manifestation of atherosclerosis, I first 

examined the effect of miR-21 deficiency on foam cell formation. Incubation of miR-21-

KO macrophages with acetylated LDL increased the foam cell formation by >2-fold, 

suggesting the anti-atherogenic nature of miR-21.  Additional studies are required to 

examine if this is mediated by the upregulation of CD-36, SRA-1 or both. 
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To examine the role of miR-21 in atherosclerotic plaque formation, bone marrow cells of 

LDLR-KO mice were lethally irradiated and re-populated with bone marrow cells of either 

WT or miR-21-KO mice. These chimeric mice were maintained on western diet for 12 

weeks. This led to a 1.7-fold increase in the lesion size in the aortic valves of the 

chimeric miR-21-KO mice. These data clearly demonstrated the atheroprotective role of 

miR-21. 

 

Since inflammation and apoptosis play critical roles in all phases of atherosclerosis, 

contribution of these processes in miR-21-mediated atherosclerosis was further 

examined. Basally, macrophages isolated from miR-21-KO mice showed induction of 

several cytokines and chemokines. Stimulation of miR-21-KO macrophages with 

interferon+LPS polarized them to the pro-inflammatory M1 phenotype (increased 

expression of CD11c and CD86). LPS increased the nuclear translocation of NF-B and 

robustly increased the formation of several pro-inflammatory cytokines including LIF, IL-

6, IL-12, IL-1α, IL-1β, and CXCL-2, in miR-21-KO macrophages. This was accompanied 

by the activation of NF-B. Further studies are required to examine the causal role of 

NF-B in increasing the formation of these cytokines in miR-21-KO macrophages. This 

can be accomplished by knocking down NF-B p65 by siRNA and measuring the 

cytokine formation. To examine if these cytokines are direct targets of miR-21, luciferase 

activity should be performed in miR-21-KO cells.  

 



145 
 

Complimentary to in vitro experiments, abundance of IL-1β and IL-12 was also increased 

in atherosclerotic lesions of miR-21-KO chimeric mice. While these studies support the 

notion that miR-21 inhibits lesion inflammation, additional experiments should be 

performed to isolate the macrophages from the aortae of atherogenic miR-21-KO 

chimeric mice in order to quantify the expression of these cytokines. This will provide 

quantitative evidence for the anti-inflammatory nature of miR-21 in the context of 

atherosclerosis. Expression of NF-B, and predicted miR-21 targets in these cells will 

delineate the mechanism by which miR-21 prevents vascular inflammation. 

 

To examine the contribution of miR-21 in apoptosis, macrophage apoptosis was 

measured in cells treated with staurosporine and HNE-treated cells as well as 

unstimulated cells. Deficiency of miR-21 significantly increased both early and late 

apoptosis in miR-21-KO macrophages. Apoptosis in these cells was significantly 

increased by staurosporine and HNE. This was accompanied by the activation of 

caspase-3, caspase-7 and caspase-9. These data suggest that miR-21 prevents 

macrophage apoptosis by preventing the activation of the intrinsic pathway of activation. 

Further studies are required to examine the role of Apaf-1 and cytochrome C in the miR-

21-dependent activation of caspase-9. Additional studies are also required to examine if 

this process is mediated by Bax, Bcl-xl, or other apoptotic mediators.  

 

Increased TUNEL staining as well as increased staining for caspase-3 and caspase-9 in 

the lesions of miR-21-KO chimeric mice support the anti-apoptotic role of miR-21 in 

atherogenesis. This was accompanied by increased lesion necrosis. Since macrophage 

apoptosis has different roles at various stages of lesion progression, the role of miR-21 
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in macrophage apoptosis needs to be examined in early, intermediate, and advanced 

lesions. Moreover, smooth muscle cell apoptosis of the necrotic core should also be 

investigated because it is a critical determinant of lesion stability. 

 

In summary, this dissertation has identified a novel anti-atherogenic role of miR-21, 

which is at least in part, due to anti-inflammatory and anti-apoptotic properties of miR-21, 

especially in macrophages.  
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