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ABSTRACT 

ALPHA-AMINO METHYLATION AND ACETYLATION ARE NOVEL  

REGULATORS OF MYL9 FUNCTION 

Christopher David Nevitt 

June 27, 2018 

 

 Dysregulation of alpha-amino post-translational modifications (Nα-PTMs) is 

found in multiple cancers and developmental disorders. However, the exact roles Nα-

PTMs play in regulating protein function remain poorly understood. I sought to clarify 

the role of Nα-methylation and Nα-acetylation in the regulation of Myosin Regulatory 

Light Chain 9 (MYL9). MYL9 is a key cytoskeletal regulator and transcription factor and 

is the first protein confirmed to undergo both Nα-methylation and Nα-acetylation. 

Through this work I revealed novel regulatory features of MYL9, while also presenting a 

framework by which to understand the coordinated regulation of proteins by Nα-

methylation and Nα-acetylation. 

 Nα-PTM selective mutants of MYL9 were generated by modifying the consensus 

sequence targeted by Nα-methyltransferases and Nα-acetyltransferases. These mutants 

were assayed alongside wildtype (WT) protein for effects on MYL9 stability and function 

in mammalian cell lines. Offering a counterpoint to the dogmatic perspective of Nα-

PTMs as modifiers of protein stability, loss of either Nα-methylation or Nα-acetylation 

did not 
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alter MYL9 half-life. Instead, distinct functionality of Nα-methylated and Nα-acetylated 

MYL9 was observed. 

 MYL9 is known primarily as a regulator of cytoskeletal dynamics through its 

regulation of non-muscle myosin II (NMII) activity. A specialized nuclear role for MYL9 

has been described in which it binds at select gene promoters and activates transcription. 

My results show that Nα-methylation promotes this nuclear function of MYL9.  The Nα-

methylation selective mutant of MYL9 increased TNFα stimulated transcription of 

intercellular adhesion molecule 1 (ICAM1) as compared to all other variants of MYL9. In 

addition, this MYL9 mutant showed increased binding at the ICAM1 promoter. Nα-

methylation has been shown to increase protein-DNA interactions, implicating this 

mechanism in the regulation of MYL9 nuclear function. Phosphorylation of MYL9 at 

serine 19 (pS19) is required for NMII activity. Expression of a Nα-methylation deficient 

mutant of MYL9 increased the occurrence of pS19 after stimulation as compared to all 

other variants of MYL9. This mutant of MYL9 also displayed increased cell migration 

and cell spreading on fibronectin, measures of NMII activity. As such, I propose a model 

in which Nα-methylation of MYL9 favors nuclear activity while blocking cytoplasmic 

activity. 
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CHAPTER I 

INTRODUCTION 

 

 The protein machinery of a cell is regulated by numerous mechanisms to generate 

a system capable of carrying out the many cellular activities required for life. One such 

mechanism is the alteration of protein biochemistry and function through post-

translational modifications (PTMs). Our knowledge of the types of PTMs that occur and 

the manners in which they regulate protein function continues to grow, reflecting a 

remarkably diverse and complex system. In this dissertation, I seek to expand our 

understanding of protein regulation by a novel class of PTMs that occur on the free 

protein alpha-amino group (Nα-PTMs) rather than on amino acid sidechains. 

Specifically, I report the first study of how Nα-methylation and Nα-acetylation regulate a 

shared substrate. 

 Myosin regulatory light chain 9 (MYL9) was recently identified to occur in both 

Nα-methylated and Nα-acetylated states (Petkowski, Schaner Tooley et al. 2012). More 

than 100 substrates are predicted to be modified in such a manner, with MYL9 being the 

first among them to be confirmed in vivo (Petkowski, Schaner Tooley et al. 2012). As the 

regulatory subunit of the non-muscle myosin II holoenzyme (NMII), MYL9 is involved 

in basic cellular processes that are essential across the spectrum of human cell types 

(Betapudi 2014). My research investigates the impact of Nα-methylation and Nα-

acetylation on MYL9 both in order to contribute to a more complete understanding of the 

regulation of this key protein, as well as to provide a model of how these Nα-PTMs can 
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act to coordinately regulate protein function. In this chapter, I will discuss the current 

state of knowledge regarding protein methylation, acetylation, and Nα-PTMs, before 

moving on to discuss the cellular functions and regulation of MYL9. 

 

Protein Acetylation and Methylation: The Histone Code as a Framework 

 Over the last two decades, knowledge regarding the regulatory roles played by 

protein acetylation and methylation have increased dramatically. Perhaps the most 

striking example of this is the deciphering of the histone code. The histone code 

hypothesis was first proposed in 2000 and posited that the pattern of PTMs on histone 

proteins serves as a code that regulates chromatin structure and influences DNA-

dependent processes (Strahl and Allis 2000). 

 The basic repeating unit of chromatin is the nucleosome, which consists of 147 bp 

of DNA wrapped around a histone octamer (two H2A-H2B dimers and a tetramer formed 

by two H3 and two H4 proteins) (Kornberg and Lorch 1999). Nucleosomes are then 

packed into high order structures, eventually giving rise to chromosomes. This tight 

packing of DNA necessitates a mechanism to open the structure of chromatin, making it 

accessible to the machinery associated with DNA-templated processes, such as 

transcription and replication (Kornberg and Lorch 1999). Numerous studies have 

established that chromatin structure is intimately tied to the regulation of gene 

expression, with dense regions of heterochromatin being associated with gene silencing 

and open euchromatin regions being associated with active transcription (Lorch and 

Kornberg 2017). Post-translational modification of histones, particularly their N-terminal 
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tails, which extend from the nucleosome core, represent a dynamic mechanism by which 

chromatin structure is regulated (Gardner, Allis et al. 2011).  

 Acetylation and methylation are major modifications of the histone code, which 

also includes phosphorylation, ubiquitination, and propionylation, among other PTMs 

(Rothbart and Strahl 2014). Enzymes that deposit these modifications have been termed 

writers, while those that remove histone PTMs have been termed erasers (Gardner, Allis 

et al. 2011). The effects of histone PTMs can be directly mediated by the biophysical 

properties of the modification itself or by proteins termed readers that contain domains 

that recognize and bind histone PTMs (Rothbart and Strahl 2014). The complexity of the 

histone code is greatly increased by extensive interplay between modifications (Zhang, 

Cooper et al. 2015). Based on biological context and the specific residues modified, 

histone acetylation and methylation can function in opposition or in concert with one 

another. The biophysical properties of these PTMs, as well as the properties of their 

writers, readers, and erasers contribute to this complex interplay. 

 Acetylation occurs on lysine residues and results in a neutral charge on the 

residue sidechain replacing the native positive charge. This charge alteration has been 

proposed to disturb electrostatic histone-histone and histone-DNA interactions, 

promoting the transcriptionally active euchromatin state (Wolffe and Hayes 1999). High 

levels of lysine acetylation on the tails of histones H3 and H4 (Myers, Evans et al. 2001), 

as well as lysine acetylation on the globular domain residues of histone H3 lysine 56 

(H3acK56) (Yuan, Pu et al. 2009) and lysine 64 (H3acK64) (Di Cerbo, Mohn et al. 

2014), favor decreased DNA association with the nucleosome and are observed in 

actively transcribed regions of chromatin. Additionally, histone H3 lysine 122 acetylation 
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(H3acK122) favors transcriptional activity, likely through the promotion of histone 

eviction (Tropberger, Pott et al. 2013). 

 A direct biophysical impact of histone methylation on chromatin structure has not 

been described. Methylation occurs on both lysine and arginine residues but does not 

alter the positive charge of these residue’s sidechains. Lysine residues can be mono, di, or 

tri methylated, while arginine residues can be mono or di methylated. In certain contexts, 

these states appear to be functionally distinct. In lower order eukaryotes, writers of 

methylation can catalyze each of these states (Wagner and Carpenter 2012). However, in 

mammals catalysis of histone trimethylation has evolved as a specialized function of the 

methyltransferase SETD2 (Kizer, Phatnani et al. 2005).  Other mammalian histone 

methyltransferases, including the NDS 1/2/3 family and SMYD2, catalyze only mono/di 

methylation in vivo (Wagner and Carpenter 2012). Further evidence of distinct roles for 

mono/di/tri methylation is provided by examining the chromatin regions in which these 

modifications predominantly occur. Trimethylation of histone H3 lysine 9 (H3me3K9) is 

strongly associated with heterochromatin (Wang, An et al. 2003, Bilodeau, Kagey et al. 

2009), while monomethylation (H3me1K9) can be found in euchromatin regions 

(Tachibana, Ueda et al. 2005, Collins, Northrop et al. 2008). Similarly, histone H3 lysine 

36 trimethylation (H3me3K36) is found at actively transcribed genes (Carrozza, Li et al. 

2005, Joshi and Struhl 2005), while the mono/di methylated form is more widely 

distributed (Kim, Kiefer et al. 2007, Schneider, Arteaga-Salas et al. 2011). 

 Much of what is known about the functional impact of histone methylation 

focuses on the roles of reader proteins. A large number of domains recognize and bind 

methylated lysine and arginine, including, chromo, PHD, Tudor, and PWWP domains 
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(Taverna, Li et al. 2007, Vezzoli, Bonadies et al. 2010). In contrast, only bromo, and 

more recently Yeats, domains have been identified as readers of lysine acetylation 

(Vezzoli, Bonadies et al. 2010, Li, Wen et al. 2014). Additionally, some reader domains 

recognize and bind unmodified lysine and arginine residues (Lan, Collins et al. 2007), 

creating a system in which each state of a residue carries with it information that can be 

propagated toward a functional outcome by reader proteins. Writers and erasers of 

histone PTMs commonly contain reader domains, and this contributes to the 

establishment of positive and negative crosstalk between modifications (Zhang, Cooper 

et al. 2015). Other proteins that contain reader domains include ATP-dependent 

chromatin remodeling enzymes and members of the core transcriptional machinery 

(Vermeulen, Mulder et al. 2007, Swygert and Peterson 2014). 

 Often, multiple modifications work coordinately to recruit reader proteins. Due to 

its double bromodomains, the TFIID subunit TAF1 is preferentially recruited to 

diacetylated histones (Jacobson, Ladurner et al. 2000). TRIM24 contains both a PHD 

finger and a bromodomain, contributing to its binding the combination of unmodified 

H3K4 and H3acK23 (Tsai, Wang et al. 2010). Recruitment of TEFb and efficient 

transcriptional elongation are favored at nucleosomes that contain both histone H3 

phosphorylated at serine 10 (H3phS10) and histone H4 acetylated at lysine 16 

(H4acK16), through a process that involves multiple reader proteins (Zippo, Serafini et 

al. 2009). Neighboring modifications can also negatively regulate reader protein binding. 

For example, binding of heterochromatin protein 1 to mono/di methylated H3K9 is 

blocked by phosphorylation of H3K10 (Fischle, Tseng et al. 2005). 
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 Interplay between histone PTMs is abundant and appears to be an essential feature 

of chromatin regulation. Modification of H3K27 provides an interesting study of the 

interplay between protein acetylation and methylation. H3K27 is found mono, di, or tri 

methylated, as well as acetylated (Pauler, Sloane et al. 2009, Creyghton, Cheng et al. 

2010, Ferrari, Scelfo et al. 2014). The trimethylated form is linked to transcriptional 

repression, and is thought to exert its functional effect by blocking binding of the HATs 

p300 and CBP, preventing an accumulation of acetylation at enhancers that is required 

for gene activation (Pauler, Sloane et al. 2009, Pasini, Malatesta et al. 2010). H3acK27 

has an opposing effect, favoring the activation of enhancers and gene transcription 

(Creyghton, Cheng et al. 2010). The switching of chromatin from a repressed to an active 

state requires the removal of trimethylation and deposition of acetylation at H3K27. This 

transition is facilitated in part by phosphorylation of the neighboring residue H3S28 

(Gehani, Agrawal-Singh et al. 2010). This phosphorylation blocks methylation of H3K27 

by the Polycomb complex PRC2, allowing for acetylation to predominate (Gehani, 

Agrawal-Singh et al. 2010, Lau and Cheung 2011). The reverse switch, from an active to 

a repressed state, requires removal of the acetylation mark by the NURD complex and 

subsequent methylation by PRC2 (Reynolds, Salmon-Divon et al. 2012). During 

differentiation, the accumulation of H3me3K27 and gene silencing is facilitated by 

CTBP2 functioning with NURD to remove H3K27 acetylation (Kim, Kang et al. 2015). 

Interestingly, monomethylaton of H3K27 is found at actively transcribed genes, 

suggesting an opposing effect for this modification as compared to H3me3K27 (Barski, 

Cuddapah et al. 2007, Creyghton, Cheng et al. 2010). Dimethylation of H3K27 is widely 

occurring, but its functional role remains unknown (Jung, Pasini et al. 2010). Further 



7 
 

research will be required to create a more complete picture of how H3K27 methylation 

and acetylation combine to regulate chromatin structure and gene expression. 

 

Protein Acetylation and Methylation: Regulation of Non-Histone Proteins 

 Recent advances in proteomic technologies have led to the discovery that 

methylation and acetylation are also widely occurring on non-histone proteins. Similar to 

histones, methylation and acetylation on non-histone proteins is regulatory and dynamic 

(Choudhary, Weinert et al. 2014, Biggar and Li 2015). Often, the same writers and 

erasers of acetylation and methylation identified as part of the histone code machinery 

catalyze the modification of non-histone proteins. Proteomic analysis has revealed that 

the majority of identified methylation sites are actually found on non-histone substrates 

(Guo, Gu et al. 2014), and the majority of acetylated proteins are non-nuclear 

(Choudhary, Kumar et al. 2009). Additionally, proteomics has identified non-histone 

protein methylation and acetylation in species ranging from bacteria through mammals, 

highlighting the importance of these modifications in cellular biology (Krause, Yang et 

al. 2007, Zhang, Sprung et al. 2009). While mass spectrometry has been vital in 

determining the wide occurrence of protein acetylation and methylation, biochemical 

studies have begun to provide insights into the functions and mechanisms associated with 

these modifications. Methylation and acetylation have been observed to regulate protein 

function by altering stability, protein-protein and protein-DNA interactions, and through 

crosstalk with other PTMs (Choudhary, Weinert et al. 2014, Biggar and Li 2015). 

 Acetylation is frequently seen to block ubiquitination and thus increase the 

stability of proteins. Nearly one-third of acetylation sites are also targets of 
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ubiquitination, highlighting the potential for competition between these modifications 

(Wagner, Beli et al. 2011). Following this model, the TGFβ regulator SMAD7 is 

stabilized by p300-dependent acetylation at K64 and K70, which blocks ubiquitination of 

these residues by SMURF1 and subsequent degradation (Gronroos, Hellman et al. 2002, 

Simonsson, Heldin et al. 2005). Similarly, MDM2 mediated degradation of p53 has been 

shown to require recruitment of the deacetylayse HDAC1 in order to remove multiple 

lysine acetylations that are directly blocking ubiquitination sites (Ito, Kawaguchi et al. 

2002). Adding to the complex interplay of PTMs in p53 regulation, methylation of p53 at 

K372 was shown to promote acetylation and thus stabilization (Ivanov, Ivanova et al. 

2007). An opposing interaction between methylation and acetylation in the regulation of 

stability is described for the transcription factor E2F1. Methylation of E2F1 at K185 

inhibits protein acetylation, increases ubiquitination, and ultimately increases protein 

degradation (Kontaki and Talianidis 2010). Several additional instances of methylation 

decreasing protein stability have been published, including for DNMT1 and the NF-κB 

subunit p65 (Esteve, Chin et al. 2009, Yang, Huang et al. 2009). Based on these examples 

it appears that acetylation may be a conserved mechanism for promoting protein stability, 

while the impact of methylation is more likely to be protein and site specific. 

Additionally, interplay between methylation and acetylation in the regulation of protein 

stability has been observed in multiple cases and may occur frequently. 

 Non-histone protein acetylation and methylation have been seen to differentially 

regulate molecular interactions. As is seen with histone proteins, acetylation appears to 

facilitate protein-protein interactions while disrupting protein-nucleic acid interactions. 

This effects has been described for the HIV protein Tat. In its non-acetylated state, Tat 
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binds an HIV RNA stem-loop structure known as TAR (Reeder, Kwak et al. 2015). 

Acetylation of Tat at K50 reduces RNA binding and increases interaction with the protein 

PCAF (Dorr, Kiermer et al. 2002). PCAF contains a bromodomain that interacts with 

acetylated Tat (Mujtaba, He et al. 2002). While the interaction of readers containing 

bromodomains with acetylated residues has been described extensively for histone 

proteins, few examples exist for a bromodomain interaction with acetylated non-histone 

proteins. This corresponds with the finding that the majority of bromodomain containing 

proteins are nuclear (Filippakopoulos and Knapp 2012), while the majority of non-

histone protein acetylation occurs in the cytoplasm and in mitochondria (Choudhary, 

Kumar et al. 2009).  

 In opposition to acetylation, protein methylation appears to facilitate protein-DNA 

interactions. Arginine methylation of p53-binding protein 1 (53BP1) by PRMT1 is 

required for its binding to DNA and function in DNA damage repair (Boisvert, Rhie et al. 

2005). The DNA damage checkpoint protein MRE11 is also methylated by PRMT1 and 

loss of this methylation impairs MRE11 function, leading to check point defects 

(Boisvert, Dery et al. 2005). While the direct mechanism by which methylation facilitates 

MRE11 function has yet to be shown, protein-DNA interaction is strongly implicated, as 

checkpoint protein complex formation was shown to not be altered by loss of methylation 

(Boisvert, Dery et al. 2005). DNA-binding of p65 and downstream gene transcription is 

favored by methylation at R30, extending the role of methylation in protein-DNA 

interactions to transcription factors (Wei, Wang et al. 2013). 

Methylation is also involved in protein-protein interactions. Protein reader 

domains that were originally described in the context of histones are emerging as readers 
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of non-histone protein methylation. 53BP1 contains dual Tudor domains that bind 

dimethylated K382 of p53 (Kachirskaia, Shi et al. 2008). The negative regulator of p53 

L3MBTL1 can also recognize and bind p53 at methylated K382, but this interaction 

occurs through MBT domains rather than Tudor domains (West, Roy et al. 2010). 

Interestingly, K382 of p53 can also be acetylated, a modification that activates 

transcription through the recruitment of co-activators (Barlev, Liu et al. 2001). As such, 

methylation and acetylation are in direct competition for modification of this lysine of 

p53, with each promoting opposing functional outcomes through alteration of protein-

protein interactions. 

 Crosstalk between methylation and other PTMs, especially phosphorylation, is 

also common. The blocking of phosphorylation by methylation of a neighboring residue 

has been termed the ‘methylation-phosphorylation switch’ (Sabbattini, Sjoberg et al. 

2014, Biggar and Li 2015). Such a switch occurs in the regulation of Rb, where 

methylation at K810 blocks phosphorylation of the neighboring residues S809 and S811 

(Carr, Munro et al. 2011). By blocking phosphorylation, methylation functions to 

promote cell cycle arrest (Munro, Khaire et al. 2010). In addition to Rb, DNMT1 also 

undergoes a methylation-phosphorylation switch. Methylation of DNMT at K142 

prevents phosphorylation at S143 (Esteve, Chang et al. 2011). Methylation has also been 

described to increase phosphorylation of target proteins in certain contexts. For example, 

autophosphorylation of the receptor tyrosine kinase (RTK) VEGFR2 at Y1052 requires 

methylation at the nearby residue K1041 (Hartsough, Meyer et al. 2013). Another RTK, 

EGF, shows a similar requirement for methylation to allow for autophosphorylation of a 

nearby residue (Hsu, Chen et al. 2011). Interactions between methylation and 
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phosphorylation have been further described in the MAPK, Hippo, and JAK-STAT 

pathways (Biggar and Li 2015). These studies suggest that methylation may serve as a 

mechanism to fine tune protein regulation by phosphorylation in many settings. It will be 

important to evaluate the interaction between methylation and phosphorylation as 

additional proteins are biochemically evaluated, particularly when methylation and 

phosphorylation sites occur in close proximity. 

 FOXO1 provides a case in which acetylation and methylation regulate protein 

function in opposing manners through several of the mechanisms described above. 

FOXO1 is a transcription factor that regulates metabolism-related gene expression in 

response to insulin signaling (Accili and Arden 2004). Phosphorylation of FOXO1 at 

S253 by AKT leads to its retention in the cytoplasm, where it is preferentially 

ubiquitinated and degraded (Aoki, Jiang et al. 2004, Yamagata, Daitoku et al. 2008). 

Acetylation of FOXO1 increases S253 phosphorylation, favoring increased cytoplasmic 

retention and decreased stability (Matsuzaki, Daitoku et al. 2005). Further, FOXO1 

acetylation at residues K242, K245, and K262 decrease FOXO1 binding to DNA and 

subsequent transcriptional activity (Matsuzaki, Daitoku et al. 2005, Jing, Gesta et al. 

2007). Conversely, methylation of FOXO1 by PRMT1 at R248 and R250 block S253 

phosphorylation, leading to increased FOXO1 stability and transcriptional activity 

(Yamagata, Daitoku et al. 2008).  

Both acetylation and methylation are emerging as key regulators of protein 

function (Table 1). Abundant crosstalk has been described between acetylation, 

methylation, and other PTMs, highlighting the complex nature of protein regulation by 

these modifications. Acetylation and methylation appear to have predominantly opposing 
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effects on protein stability and molecular interactions. However, there are instances in 

which acetylation and methylation show positive interplay. As such, future studies should 

carefully address how, in a substrate-specific manner, acetylation and methylation are 

coordinately regulated to drive protein function. 

 

Alpha-Amino Protein Acetylation and Methylation 

 Acetylation and methylation of both histone and non-histone proteins are 

abundant and play important regulatory roles. However, the discussion thus far has 

focused exclusively on methylation and acetylation of lysine and arginine side chains. It 

has long been known that proteins are also modified on the free alpha-amino group at 

their N-terminus (Brown and Roberts 1976, Pettigrew and Smith 1977, Stock, Clarke et 

al. 1987, Mullen, Kayne et al. 1989). Proteins are known to be acetylated, methylated, 

ubiquitinated, sumoylated, and modified in numerous other ways at this location (Tooley 

and Schaner Tooley 2014). Biochemical and functional studies of Nα-PTMs have lagged 

considerably behind the study of traditional PTMs on residue sidechains. This is likely 

due to a combination of technical difficulties in studying Nα-PTMs, as well as, a 

pervasive bias in the field that Nα-PTMs are constitutive rather than regulatory in nature. 

Recent studies of Nα-acetylation and Nα-methylation, the most abundant Nα-PTMs, have 

done a great deal to counteract this perception, and many important regulatory roles for 

these modifications are emerging. An overlap in the substrate pools for Nα-acetylation 

and Nα-methylation has also recently been discovered, raising the possibility that these 

modifications can confer distinct functional readouts to the same target proteins 

(Petkowski, Schaner Tooley et al. 2012). 



13 
 

 Nα-acetylation is catalyzed by the N-terminal acetyltransferase (NAT) family of 

enzymes, consisting of NatA through NatF in higher order eukaryotes (Starheim, Gevaert 

et al. 2012). The NATs catalyze the transfer of an acetyl moiety from acetyl-CoA to the 

amino terminus of substrate proteins. These enzymes are responsible for the modification 

of more than 80% of the human proteome, making Nα-acetylation one of the most widely 

occurring human PTMs (Arnesen, Van Damme et al. 2009, Aksnes, Drazic et al. 2016).  

Most NAT family members predominantly localize to the cytoplasm, with only NatF 

associating with the Golgi apparatus (Aksnes, Van Damme et al. 2015, Aksnes, Drazic et 

al. 2016). Among the NAT family, NatA targets the largest number of substrates, acting 

on more than 30% of the human proteome (Aksnes, Drazic et al. 2016). NatA catalyzes 

the modification of proteins in which the initiator methionine has been cleaved, revealing 

an N-terminal serine, threonine, alanine, glycine, cysteine, or valine (Table 2) (Polevoda, 

Norbeck et al. 1999, Polevoda and Sherman 2003). A proline in the second position after 

the N-terminus blocks NatA activity (Polevoda, Norbeck et al. 1999). Two subunits 

compose NatA, NAA10 and NAA15 (Starheim, Gevaert et al. 2012). NAA10 is the 

catalytic subunit and shows activity when not associated to NAA15 (Van Damme, 

Evjenth et al. 2011). NAA15 associates with the ribosome and helps establish co-

translational modification of substrate proteins (Gautschi, Just et al. 2003).  Post-

translational activity of NatA has also been reported (Helbig, Gauci et al. 2010, Helsens, 

Van Damme et al. 2011). 

 Underlying the importance of Nα-acetylation by NatA to proper cell function, a 

mutation in NAA10 was recently shown to be causal in the lethal X-linked 

developmental disorder Ogden syndrome (Van Damme, Stove et al. 2014, Myklebust, 
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Van Damme et al. 2015). Additionally, both over and under expression of NAA10 is seen 

in a variety of cancers, suggesting that precise regulation of Nα-acetylation levels is 

important for regulated cell growth (Kalvik and Arnesen 2013).  

 N-terminal RCC1 methyltransferase 1 and 2 (NRMT1, NRMT2) are the only 

known eukaryotic N-terminal methyltransferases (Tooley, Petkowski et al. 2010, 

Petkowski, Bonsignore et al. 2013). These enzymes were identified in 2010 and 2013, 

respectively, allowing for the first real functional studies of N-terminal methylation 

(Tooley, Petkowski et al. 2010, Petkowski, Bonsignore et al. 2013). Both NRMT1 and 

NRMT2 show nuclear localization, and to date, all characterized substrates of Nα-

methylation have known nuclear roles (Tooley and Schaner Tooley 2014). Based on the 

experimental determination of the NRMT consensus sequence, greater than 300 

substrates are predicted (Petkowski, Schaner Tooley et al. 2012). NRMT1 and NRMT2 

predominantly methylate proteins in which the initiator methionine has been cleaved to 

reveal an N-terminal alanine, proline, serine, or glycine, but substrate specificity is also 

determined by the residues in the second and third positions from the N-terminus (Table 

2) (Petkowski, Schaner Tooley et al. 2012).  

NRMT1 is a distributive trimethylase, catalyzing the successive transfer of methyl 

groups from S-adenosyl methionine (SAM) to a substrate protein’s amino terminus 

(Richardson, Mao et al. 2015). As such, NRMT1 can catalyze mono, di, or trimethylation 

of substrates but trimethylation predominates both in vitro and in vivo (Chen, Muratore et 

al. 2007, Tooley, Petkowski et al. 2010, Richardson, Mao et al. 2015). In contrast, 

NRMT2 catalyzes only monomethylation (Petkowski, Bonsignore et al. 2013). NRMT1 

shows more widespread tissue distribution and higher expression than NRMT2, but 
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NRMT2 expression activates NRMT1 activity (Petkowski, Bonsignore et al. 2013). It 

was originally proposed that NRMT2 primarily serves to relieve substrate burden and 

prime substrates for trimethylation by NRMT1, but it has recently been shown that 

NRMT2 catalytic activity is not necessary for NRMT1 activation, and it actually works 

by binding and stabilizing NRMT1 (unpublished data from Jon Faughn and Christine 

Schaner Tooley). 

 The biological importance of Nα-methylation is highlighted by several lines of 

evidence.  First, mice lacking NRMT1 are small in size, show signs of prematuring aging 

(including graying and kyphosis), exhibit female-specific infertility, and have a high rate 

of morbidity by 6 months of age (Bonsignore, Tooley et al. 2015). NRMT1 misregulation 

and mutation are observed in a variety of cancers (Sabates-Bellver, Van der Flier et al. 

2007, Brune, Tiacci et al. 2008, Finak, Bertos et al. 2008), and NRMT1 knockdown (KD) 

increases the rate of tumor growth in a breast cancer xenograft model (Bonsignore, Butler 

et al. 2015).  

While the importance of both Nα-acetylation and Nα-methylation is clear, studies 

of the biochemical and functional impact of these modification at the substrate level have 

only just begun. Early studies of Nα-PTMs focused mainly on their impact on protein 

stability (Stock, Clarke et al. 1987). Nα-methylation was described as a blocking group 

preventing access by aminopeptidases and leading to increased protein stability 

(Pettigrew and Smith 1977, Smith and Pettigrew 1980). This effect was demonstrated for 

cytochrome c and was hypothesized to extend to additional Nα-methylated substrates 

(Smith and Pettigrew 1980, Stock, Clarke et al. 1987). Several instances of Nα-

acetylation decreasing protein stability have been observed, leading to the proposal of an 
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Ac/N-end rule pathway. The Ac/N-end rule refers to the recognition of specific Nα-

acetylated N-terminal sequences, known as degrons, by E3 ubiquitin ligases and 

subsequent targeting of proteins for proteosomal degradation (Hwang, Shemorry et al. 

2010). The rule was originally described in yeast, where Nα-acetylated methionine, 

serine, threonine, alanine, valine, or cysteine residues are recognized by the E3 ubiquitin 

ligases Doa10 or Not4 (Hwang, Shemorry et al. 2010, Shemorry, Hwang et al. 2013). The 

Ac/N-end rule has been proposed to extend to mammals as Nα-acetylation has been 

shown to lead to ubiquitination and degradation of human RGS2 (Park, Kim et al. 2015). 

The effect of Nα-PTMs on stability may very well be substrate specific, however. The 

stability of human protein THOC7 (Myklebust, Van Damme et al. 2015) and Drosophila 

protein Hyx (Goetze, Qeli et al. 2009) are increased by Nα-acetylation. Given the current 

state of knowledge, substrate specific studies should be carried out to determine how Nα-

methylation and Nα-acetylation impact stability. In particular, it will be interesting to see 

if regulation of stability proves to be a conserved role for Nα-methylation as was initially 

proposed. 

 Emerging evidence shows a role for both Nα-acetylation and Nα-methylation in 

the regulation of molecular interactions. Indeed, the predominate function identified to 

date for Nα-methylation has been the promotion of protein-DNA interactions. 

Trimethylation of regulator of chromosome condensation 1 (RCC1) was shown to be 

required for its proper localization to chromosomes during mitosis, and loss of 

trimethylation resulted in multipolar spindle formation and aneuploidy (Chen, Muratore 

et al. 2007, Tooley, Petkowski et al. 2010). Loss of RCC1 localization with DNA was 

observed in NRMT1 KD cells (Tooley, Petkowski et al. 2010), as well as with a non-
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methylatable K4Q mutant of RCC1 (Chen, Muratore et al. 2007). DNA damage binding 

protein 2 (DDB2) was also shown to require Nα-trimethylation for its localization to sites 

of DNA damage (Cai, Fu et al. 2014). Loss of DDB2 Nα-methylation resulted in 

increased sensitivity to UV light exposure and decreased repair of cyclobutane 

pyrimidine dimers (Cai, Fu et al. 2014). An effect of Nα-acetylation on protein-DNA 

interactions has yet to be described, but based on the lysine and arginine acetylation data, 

we predict it will inhibit protein-nucleic acid interactions. 

 There is some evidence that Nα-methylation may also be involved in protein-

protein interactions. Recently, proper recruitment of the constitutive centromere 

associated network was found to require Nα-methylation of CENP-A (Sathyan, Fachinetti 

et al. 2017). Centromere nucleosomes containing non-methylated CENP-A showed 

reduced recruitment of CENP-T and CENP-I, leading to defects in chromosome 

segregation (Sathyan, Fachinetti et al. 2017). Although this work did not prove a direct 

role for Nα-methylation in protein-protein interaction, it did show a requirement for Nα-

methylation for proper protein complex formation. Previously, Nα-methylation was 

modeled to occur at sites of hydrophilic binding in protein complexes, but this has yet to 

be experimentally verified (Stock, Clarke et al. 1987). The involvement of Nα-

methylation in protein-protein interactions will be an interesting area of continued 

research.  

The involvement of Nα-acetylation in protein-protein interactions has been 

established. Nα-acetylation of the APC/C complex protein Hcn1 facilitates its binding to 

Cut9 (Zhang, Kulkarni et al. 2010). When the Nα-acetyl group of Hcn1 is not bound by 

Cut9 it instead acts as a docking site for the E3 ubiquitin ligase Doa10, promoting Hcn1 
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degradation (Shemorry, Hwang et al. 2013). In a separate line of research, it was shown 

that the Nα-acetyl methionine of the E2 enzyme Ubc12 is buried in a hydrophobic pocket 

of the E3 enzyme Dcn1 (Scott, Monda et al. 2011). This Nα-acetyl dependent interaction 

was shown to facilitate ubiquitin complex activity, increasing the modification of Cul1 

(Scott, Monda et al. 2011). 

 Nα-methylation and Nα-acetylation also impact the sub-cellular localization of 

certain substrates. As discussed previously, Nα-methylation facilitates the proper 

localization of a number of proteins to DNA. Loss of Nα-methylation causes these 

proteins to show diffuse nuclear localization, rather than accumulation at sites of 

functionality (Chen, Muratore et al. 2007, Cai, Fu et al. 2014, Sathyan, Fachinetti et al. 

2017). Nα-acetylation has been shown to play a role in the sorting and targeting of 

proteins to organelles. Specifically, cytosolic proteins were found to be enriched in Nα-

acetylation while ER-targeted proteins were found to be predominantly unmodified 

(Forte, Pool et al. 2011). In this study, the engineering of secretory proteins bound for the 

ER resulted in their mislocalization to the cytosol (Forte, Pool et al. 2011). Nα-

acetylation has also been reported to increase the localization of α-Synuclein to the 

plasma membrane (Dikiy and Eliezer 2014). This was shown to occur through the Nα-

acetylation dependent stabilization of an N-terminal α-helix that facilitates the protein-

membrane interaction of α-Synuclein (Dikiy and Eliezer 2014). 

 As discussed previously, lysine and arginine methylation and acetylation have 

been shown to participate extensively in PTM crosstalk. It seems likely that the same will 

hold true for Nα-PTMs, but there are still only a small number of observations in this 

regard. One example of crosstalk between an Nα-PTM and an internal PTM has been 
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described for histone H4. In yeast, loss of histone H4 Nα-acetylation leads to an increase 

in dimethylation of H4R3 and an associated increase in ribosomal DNA silencing 

(Schiza, Molina-Serrano et al. 2013). Follow-up in vitro studies showed that Nα-

acetylation of histone H4 led to decreased H4R3 methylation by PRMT3, but did not 

affect methylation by PRMT1, PRMT5, or PRMT8 (Fulton, Zhang et al. 2017). This 

suggests that in some settings, Nα-PTMs may influence the occurrence of internal PTMs 

by modulating the activity of specific modifying enzymes. As additional substrates of 

Nα-acetylation and Nα-methylation are studied at the biochemical level, it is likely that 

additional instances of PTM crosstalk will be observed. 

 Early studies showed that Nα-acetylation and Nα-methylation both occur on 

proteins with an N-terminal alanine or serine, but until recently no common substrates 

had been identified and these modifications were considered mutually exclusive. This 

misconception arose from the observation that all identified Nα-methylated proteins 

shared the N-terminal sequence X-P-K, where X was alanine, serine, or proline (Stock, 

Clarke et al. 1987). Based on this observation, the still unidentified methyltransferase was 

considered to require a proline in the 2nd position and a lysine in the 3rd position. Indeed, 

this hypothetical methyltransferase was even referred to as the PK methyltransferase. A 

proline in the second position of substrates is known to block NAT catalytic activity, 

leading to the belief that Nα-acetylation and Nα-methylation were mutually exclusive 

(Polevoda, Norbeck et al. 1999, Polevoda and Sherman 2003). 

 The identification of NRMT1 and NRMT2 as the eukaryotic methyltransferases 

allowed for comprehensive studies of N-terminal sequence recognition to be performed. 

In vitro methylation assays and in vivo immunoprecipitation experiments demonstrated 
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that NRMT could bind and modify an expanded consensus sequence in which the second 

amino acid was not restricted to proline, but instead could accommodate most nonpolar 

or uncharged polar amino acids (Petkowski, Schaner Tooley et al. 2012). Among the 

newly identified NRMT consensus sequences was SSK, a sequence also permissive for 

Nα-acetylation by NatA (Polevoda and Sherman 2003, Petkowski, Schaner Tooley et al. 

2012). The SSK N-terminal sequence containing protein myosin regulatory light chain 9 

(MYL9) was then immunoprecitated and identified by mass spectrometry in both Nα-

methylated and Nα-acetylated forms, making it the first known protein subject to both of 

these modifications (Petkowski, Schaner Tooley et al. 2012). Additional consensus 

sequences that allow for overlap of NRMT and NatA substrates include SNK and SQK 

(Polevoda and Sherman 2003, Petkowski, Schaner Tooley et al. 2012). NRMT can act on 

some substrates that retain the initiator methionine, resulting in potential overlap with 

NatB substrates that have the consensus sequences MNK and MNR (Polevoda and 

Sherman 2003, Petkowski, Schaner Tooley et al. 2012). This results in a set of greater 

than 100 proteins that are potential targets of both Nα-methylation and Nα-acetylation. 

The ability of MYL9 to be both Nα-methylated and Nα-acetylated has been verified but 

the functional relevance of these modifications remains to be determined. 

 In summary, methylation and acetylation are important regulators of protein 

function. These modifications regulate diverse functions, whether they occur on lysine 

and arginine sidechains, or on the alpha-amino terminus of proteins (Table 3). While the 

number of identified methylated and acetylated proteins has quickly increased due to 

advances in proteomic technologies, biochemical and functional characterization lags 

behind. Evidence from both histone and non-histone proteins points toward acetylation of 
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residue sidechains decreasing protein-nucleic acid interactions by disrupting electrostatic 

interactions, while serving as a potential site for protein-protein interactions. Nα-

acetylation has been shown to be directly involved in protein-protein interactions, but its 

effect on protein-nucleic interactions has yet to be described. In opposition to this, Nα-

methylation has been shown to increase protein-nucleic acid interactions, but as of yet is 

only implicated in influencing protein-protein interactions. Methylated residue sidechains 

of both histone and non-histone proteins participate in protein-protein interactions, 

suggesting a similar role for Nα-methylation may still emerge as biochemical studies 

continue. 

 Interplay between PTMs is emerging as a conserved mechanism of protein 

regulation. The idea that complex, combinatorial deposition of PTMs determines end 

protein function was first described in the histone code hypothesis (Strahl and Allis 

2000). This combinatorial deposition includes PTMs on neighboring residues, as well as, 

different PTMs on the same residue. The authors of this hypothesis also suggested that 

multifactorial regulation of proteins by PTMs may extend beyond histones. Mounting 

evidence favors this perspective and shows that internal PTMs on non-histone proteins 

also act in concert to coordinately regulate protein function. We now aim to show that 

N-PTMs can also serve as part of a protein regulatory code, with differing N-PTMs 

promoting distinct functional readouts for shared substrates. As MYL9 is the first proven 

substrate for both Nα-methylation and Nα-acetylation, we will begin our studies there. 

 

PTMs of MYL9 Regulate Diverse and Essential Cellular Processes 
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 Myosin regulatory light chain 9 (MYL9) is a ubiquitously expressed protein 

whose function is absolutely crucial to nearly every cell type in the human body 

(Betapudi 2014, Heissler and Sellers 2014). As a regulatory light chain of the non-muscle 

myosin II (NMII) holoenzyme, MYL9 function is a determinant of cytoskeletal dynamics 

and signal mechanotransduction (Vicente-Manzanares, Ma et al. 2009, Humphrey, 

Dufresne et al. 2014). In addition, a nuclear role for MYL9 as a transcriptional activator 

of select genes, including intercellular adhesion molecule 1 (ICAM1) and xanthine 

oxidase (XDH), has recently emerged (Li and Sarna 2009, Zhang, Liu et al. 2015). As 

will be discussed further below, MYL9 impacts diverse cellular processes ranging from 

migration to stem cell differentiation. Numerous disease states are associated with 

dysregulation of MYL9, including developmental disorders and cancers (Newell-Litwa, 

Horwitz et al. 2015). In this section, I will discuss the cellular function of MYL9 as a 

regulator of NMII, before moving on to examine its emerging role in the nucleus. Finally, 

I will discuss open questions regarding MYL9 function and how Nα-PTMs may be 

involved in the regulation of this key protein. 

 The best described role of MYL9 is as the regulatory subunit of NMII. NMII is 

found in nearly every cell in the human body, where it functions as a force-generating 

ATPase that contributes to actin cytoskeleton dynamics (Vicente-Manzanares, Hodges et 

al. 2009, Betapudi 2014). Precise regulation of NMII activity contributes to essential 

cellular processes that are shared by many cell types. NMII activity must be coordinated 

to achieve directional cellular migration, requiring both extension of laemellopodia at the 

leading edge and retraction of the plasma membrane at the trailing edge (Vicente-

Manzanares, Zareno et al. 2007, Vicente-Manzanares, Koach et al. 2008). Establishment 
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of planar cell polarity (PCP) involves regulation of NMII downstream of the non-

canonical WNT PCP pathway (Phillips, Murdoch et al. 2005, Lee, Andreeva et al. 2012). 

NMII provides the force necessary for cytokinesis and requires proper regulation in order 

to achieve correct division and maintain genome integrity (Wu, Sahasrabudhe et al. 2010, 

Yang, Wei et al. 2012). Cell-cell adhesions also involve NMII as adherens junctions 

require actin rearrangement for the formation of interdigitating filipodia at these junctions 

(Hoelzle and Svitkina 2012). Additionally, NMII is a key player in mechanotransduction, 

the conversion of mechanical forces to biochemical signals. Mechanical strain on the 

cytoskeleton leads to nuclear translocation of YAP, a transcription factor that coordinates 

stem cell differentiation, and as such is regulated by NMII activity (Dupont, Morsut et al. 

2011). MYL9 is the target of regulatory pathways determining NMII function in each of 

these processes. As such, MYL9 and NMII are intimately involved in diverse cellular 

events such as embryogenesis, body patterning, auditory sensing, retinal function, 

angiogenesis, synapse formation, tumorigenesis, and cancer metastasis (Betapudi 2014, 

Newell-Litwa, Horwitz et al. 2015). 

 The NMII holoenzyme includes six subunits: two heavy chains (MHCs), two 

regulatory light chains (RLCs), and two essential light chains (ELCs) (Figure 1). Lower 

eukaryotes have a single NMII isoform, while three isoforms (NMIIA, NMIIB, and 

NMIIC) are found in mammals (Richards and Cavalier-Smith 2005). Isoforms of NMII 

are defined by their myosin heavy chain incorporation and show tissue specific 

expression (Kawamoto and Adelstein 1991). Three MHC paralogs, MYH9, MYH10, and 

MYH14, are incorporated into NMIIA, NMIIB, and NMIIC, respectively (Simons, Wang 

et al. 1991, Golomb, Ma et al. 2004). Isoforms of NMII show overlapping ELC and RLC 
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expression, and MYL9 can be incorporated into each form of NMII found in humans 

(Park, Han et al. 2011). 

 The central structure of NMII is a homodimer of two 230 kDa MHCs. The heavy 

chains contain three functional domains: a globular head, a flexible neck region, and a 

coiled-coil α-helical tail region. The head domain binds both actin and ATP, and 

undergoes a conformational change upon hydrolysis of ATP that is responsible for the 

conversion of chemical energy to mechanical work. The flexible neck region contains 

two amphiphilic, α-helical IQ domains. The first IQ domain is bound by a 17 kDa myosin 

ELC, which plays a structural role in supporting NMII function. The second IQ domain is 

bound by the 20 kDa RLC, MYL9, which regulates NMII activity. The flexible neck 

region is also responsible for amplification of the mechanical change induced by ATP 

hydrolysis within the head group (Uyeda, Abramson et al. 1996). The coiled-coil tail 

region is responsible for MHC homodimerization, resulting in a double headed myosin 

enzyme. Higher-order oligomerization of NMII enzymes also occurs within their coiled-

coil tail domains, leading to myosin filament formation. Anti-parallel association of 

NMII enzymes in filaments allows for the transmission of contractile forces to the actin 

cytoskeleton. The α-helical coiled coil tail terminates in a short, non-helical C-terminal 

region that is the primary site of divergence among the MHC paralogs. Some evidence 

suggests that this non-helical portion of the tail helps determine localization within the 

cell. 

 Regulation of NMII activity primarily occurs through post-translational 

modification of the N-terminal tail of MYL9. Phosphorylation of MYL9 at serine 19 

(S19) alone or in combination with threonine 18 (T18) results in activation of NMII 
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(Heissler and Sellers 2014). These activating PTMs of MYL9 result in increased myosin 

filament formation, increased ATPase activity of the head group, and subsequent 

increases in actin filament binding (Ikebe, Koretz et al. 1988, Trybus 1989). The 

activation of NMII by phosphorylation of MYL9 is characterized by a transition from an 

inactive 10S state to an active 6S state (Cross, Jackson et al. 1988). In the 10S state, the 

non-helical C-terminal region of the MHC tail associates with the neck region, preventing 

myosin filament formation (Trybus, Huiatt et al. 1982). Phosphorylation at S19 or 

S19/T18 of MYL9 facilitates transition to the 6S state by causing dissociation of the 

MHC tail from the neck region, allowing the coiled-coil tail region to form a rod like 

structure and oligomerize with other NMII proteins to form myosin filaments (Cross, 

Jackson et al. 1988, Trybus 1991). 

 The activation of NMII is tightly regulated by multiple upstream kinases that 

target MYL9. These include kinases downstream of small Rho GTPases (RhoA, Rac, and 

Cdc42) as well as Ca2+/calmodulin responsive kinases (MLCK and ZIPK) (Somlyo and 

Somlyo 2003). Rho associated kinase (ROCK) functions downstream of RhoA and is 

considered a master regulator of NMII (Newell-Litwa, Horwitz et al. 2015). In addition to 

phosphorylating MYL9 at S19/T18 (Amano, Ito et al. 1996, Chrzanowska-Wodnicka and 

Burridge 1996), ROCK also phosphorylates and inactivates the primary negative 

regulator of NMII activity, myosin light chain phosphatse (MLCP) (Kimura, Ito et al. 

1996, Katoh, Kano et al. 2001). While all of the above named kinases target S19/T18 of 

MYL9, their tissue specific expression and subcellular distribution can lead to distinct 

phenotypes upon activation. ROCK activation in fibroblasts leads to abundant formation 

of actomyosin filament bundles known as stress fibers throughout the cytoplasm 
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(Totsukawa, Yamakita et al. 2000). In contrast, Ca2+/calmodulin activation of myosin 

light chain kinase (MLCK) in fibroblasts leads to actomyosin bundle formation at the 

periphery of the plasma membrane (Totsukawa, Yamakita et al. 2000). MYL9 can also be 

phosphorylated on the N-terminal tail at serines 1 and 2 (S1 and S2), and threonine 9 (T9) 

by protein kinase C (PKC) (Nishikawa, Sellers et al. 1984, Varlamova, Spektor et al. 

2001). In vitro studies show that phosphorylation at these residues decrease MLCK 

affinity for NMII and thus oppose activation (Nishikawa, Sellers et al. 1984). However, 

studies in cells found no substantial effect on the regulation of NMII activity for these 

phosphorylation sites (Beach, Licate et al. 2011). As such, the relevance of S1, S2, and 

T9 phosphorylation remains an open question regarding MYL9 and NMII function. 

 NMII is predominantly localized to the cytoplasm, but MYL9 and NMII have 

both been found in the nucleus of multiple cell types (Li and Sarna 2009, de Lanerolle 

2012, Zhang, Liu et al. 2015). A unique role for nuclear MYL9 in transcriptional 

activation is beginning to emerge that involves direct binding to DNA within the core 

promoter region of target genes. In colonic smooth muscle cells, nuclear MYL9 was 

found to mediate inflammation through transcription of ICAM1 (Li and Sarna 2009). 

Increased transcription of ICAM1 required binding of MYL9 to an AGCTCC sequence 

39 base pairs upstream of the transcription start site. MYL9 was immunoprecipitated with 

MHC as well as transcription factor IIB (TFIIB) and RNA polymerase II (RNAPII), 

suggesting that interaction of the NMII complex with preinitiation complex (PIC) 

machinery may be involved in transcriptional activation. Similarly, in cardiomyocytes, 

nuclear MYL9 was found to contribute to ischemia/reperfusion injury through the 

activation of XDH transcription (Zhang, Liu et al. 2015). In this case MYL9 bound the 
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promoter sequence GTCGCC, a similar sequence as was bound at the ICAM1 gene. 

Additionally, MYL9 interacted with MHC and PIC members in the cardiomyocytes 

nucleus. In a related finding, the cardiac-specific RLC MYL2 activated NADPH oxidase 

2 (NOX2) gene transcription through binding to an AGCTCC sequence and associating 

with the PIC machinery (Zhang, Liu et al. 2015). 

 The above examples describe a novel nuclear role for MYL9, but many questions 

remain regarding the mechanism by which transcriptional activation is achieved. It has 

been suggested that NMII may provide mechanical force to generate the sliding motion 

of RNAPII with respect to the DNA (Li and Sarna 2009). This hypothesis requires the 

interaction of NMII with filamentous actin in order to generate mechanical force, which 

has yet to be seen (de Lanerolle 2012). In fact, the majority of actin in the nucleus is 

monomeric and not filamentous (de Lanerolle and Serebryannyy 2011). Non-muscle 

myosin I (NMI) has also been described in the nucleus where it interacts with both RNA 

polymerase I (RNAPI) and RNAPII. NMI has been shown to require interaction with 

polymeric actin for transcriptional activation of ribosomal DNA when associated with 

RNAPI, suggesting a requirement for motor activity (Ye, Zhao et al. 2008). Interestingly, 

NMI does not appear to require actin in order to activate transcription in complex with 

RNAPII (Hofmann, Vargas et al. 2006). The ability of NMI to promote RNAPII-

dependent transcription without interacting with actin led to the suggestion that NMI 

functions through protein complex stabilization and that ATPase activity is not required 

for this function (de Lanerolle 2012). Further complicating the issue, dephosphorylation 

of MYL9 was found to favor transcription of ICAM1 while phosphorylation of MYL9 

favored transcription of XDH (Li and Sarna 2009, Zhang, Liu et al. 2015). Clearly, 
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further research is required to delineate the mechanism by which MYL9 and NMII exert 

transcriptional regulation. 

 Several pressing questions remain regarding MYL9 function. Chief among these 

is how the cytoplasmic versus nuclear role of MYL9 is regulated. No mechanism has 

been described governing the cytoplasmic versus nuclear localization or activity of 

MYL9 and NMII. NMII function is predominantly regulated by PTMs of the N-terminal 

tail of MYL9, making this an important region to be further evaluated when addressing 

these questions. MYL9 is known to exist in distinct Nα-methylated and Nα-acetylated 

forms, but the regulatory role of these modifications remains unknown. Given the 

cytoplasmic localization of NATs and the nuclear localization of NRMTs, these 

modifications may be important to delineate the cytoplasmic versus nuclear roles of 

MYL9 and NMII. Additionally, studies of histone acetylation show that this modification 

plays a role in blocking protein-DNA interactions. Conversely, Nα-methylation of 

multiple proteins has been shown to facilitate protein-DNA interactions. 

 Chapter II describes my original research to address the open question of how Nα-

PTMs regulate MYL9. I hypothesized that Nα-acetylation of MYL9 promotes its 

cytoplasmic roles and/or blocks its nuclear roles, while Nα-methylation promotes its 

nuclear roles (Figure 2). Based on observations of protein acetylation and methylation 

highlighted in this chapter, I further hypothesized that Nα-PTMs regulate these functions 

by altering MYL9 stability, molecular interactions, and internal PTMs. I addressed these 

hypotheses through three aims. In Aim 1, I investigated the impact of Nα-PTMs on 

MYL9 stability. Aim 2 investigated the impact of Nα-PTMs on MYL9 cytoskeletal 
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function in the cytoplasm, and Aim 3 investigated their impact on the nuclear function of 

MYL9 as a transcription factor.  

 This research reveals novel regulatory features of MYL9, a protein whose 

function is intimately tied to the maintenance of health and progression of disease in 

numerous cell and tissue types. Simultaneously, this work provides a model for 

understanding how Nα-methylation and Nα-acetylation act coordinately to regulate 

protein function. 
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Table 1 Summary of known impacts of acetylation and methylation on non-histone 

protein function. Acetylation of lysine sidechains and methylation of lysine or arginine 

sidechains is a conserved, prevalent, and dynamic protein regulatory event. Biochemical 

studies have begun to discern the functional impacts of these PTMs on non-histone 

proteins. Here, the impacts of these modifications on non-histone protein stability, 

molecular interactions, and other PTMs are summarized. Acetylation frequently occurs at 

sites that are also targets of ubiquitination and has been observed to increase protein 

stability by blocking ubiquitin-mediated proteasomal degradation. In the case of the HIV 

Tat protein, acetylation blocks a protein-nucleic acid interaction and favors a protein-

protein interaction, reflecting mechanisms seen with histone acetylation. Methylation 

predominantly promotes protein stability, facilitates both protein-protein and protein-

nucleic acid interactions, and shows complex regulatory crosstalk with sites of 

phosphorylation. 1=(Gronroos, Hellman et al. 2002), 2=(Simonsson, Heldin et al. 2005), 

3=(Ito, Kawaguchi et al. 2002), 4=(Kontaki and Talianidis 2010), 5=(Matsuzaki, Daitoku 

et al. 2005), 6=(Esteve, Chin et al. 2009), 7=(Yang, Huang et al. 2009), 8=(Dorr, Kiermer 

et al. 2002), 9=(Kachirskaia, Shi et al. 2008), 10=(West, Roy et al. 2010), 11=(Boisvert, 

Rhie et al. 2005), 12=(Wei, Wang et al. 2013), 13=(Boisvert, Dery et al. 2005), 14=(Carr, 

Munro et al. 2011), 15=(Esteve, Chang et al. 2011), 16=(Yamagata, Daitoku et al. 2008), 

17=(Hartsough, Meyer et al. 2013), 18=(Hsu, Chen et al. 2011). 
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Table 2 Substrate recognition by NatA and NRMTs is determined by the N-terminal 

amino acid sequence of target proteins. NatA catalyzes Nα-acetylation of over 30% of 

the human proteome. It broadly recognizes and modifies proteins with a cleaved initiator 

methionine (iMet), but its activity is blocked by a Proline in the second position. NRMT1 

and NRMT2 share substrate recognition characteristics. The NRMTs act predominantly 

on proteins in which the iMet has been cleaved, but can also target some proteins in 

which the iMet is retained. Historically, the NRMTs were thought to require a Proline in 

the second position of substrate proteins. Further studies revealed that most non-polar or 

polar uncharged amino acids in the second position are permissive for NRMT activity. 

Evaluation of consensus sequence requirements revealed a subset of more than 100 

proteins that can undergo modification by both NatA and the NRMTs. 
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Table 3 Summary of known impacts of Nα-acetylation and Nα-methylation on 

protein function. Over the past decade, biochemical studies have begun to reveal the 

regulatory impacts of Nα-PTMs on protein function. While the role of Nα-PTMs appears 

to be largely substrate specific, some trends are beginning to appear. Nα-acetylation can 

promote protein degradation through the Ac/N-end rule pathway, facilitate protein-

protein interactions, and promote cytosolic localization or association with membranes. 

In contrast, Nα-methylation favors protein stabilization and facilitates protein-nucleic 

acid interactions. 1=(Goetze, Qeli et al. 2009), 2=(Myklebust, Stove et al. 2015), 

3=(Shemorry, Hwang et al. 2013), 4=(Park, Kim et al. 2015), 5=(Smith and Pettigrew 

1980), 6=(unpublished data, Schaner Tooley lab), 7=(Zhang, Kulkarni et al. 2010), 

8=(Scott, Monda et al. 2011), 9=(Sathyan, Fachinetti et al. 2017), 10=(Chen, Muratore et 

al. 2007), 11=(Tooley, Petkowski et al. 2010), 12=(Cai, Fu et al. 2014), 13=(Dai, Otake 

et al. 2013), 14=(Forte, Pool et al. 2011), 15=(Dikiy and Eliezer 2014), 16=(Behnia, 

Panic et al. 2004), 17=(Setty, Strochlic et al. 2004), 18=(Schiza, Molina-Serrano et al. 

2013), 19=(Fulton, Zhang et al. 2017). 
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Figure 1 NMII activity is regulated by phosphorylation of MYL9. The non-muscle 

myosin II (NMII) holoenzyme is composed of two myosin heavy chains (MHCs), two 

essential light chains (ELCs), and two regulatory light chains (RLCs). The MHCs are 

composed of a head group with actin-binding and ATPase domains, a flexible neck 

region which is bound by the light chains, and a coiled-coil tail domain that is the site of 

homodimerization between MHCs. The head group undergoes a conformational change 

upon ATP hydrolysis, converting chemical energy into mechanical work. In addition to 

facilitating homodimerization, the tail domain also supports anti-parallel filament 

formation between NMII enzymes, allowing for the transfer of contractile forces to the 

actin cytoskeleton. The ELCs help maintain the structure of the NMII holoenzyme. 

MYL9 is a RLC and is the primary regulatory region for NMII. Phosphorylation of 

MYL9 at S19 or S19/T18 increases the activity of NMII by increasing the ATPase 

activity of the MHC head group and by promoting myosin filament formation. A number 

of upstream kinases act on these residues, including serine/threonine kinases downstream 

of Rho GTPases, as well as the Ca2+-responsive kinase myosin light chain kinase 

(MLCK). NMII activation is attenuated by the action of myosin light chain phosphatase 

(MLCP), which removes phosphorylation at S19 and T18. This figure is reproduced from 

(Newell-Litwa, Horwitz et al. 2015) under a creative commons license. 
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Figure 2 Proposed model of the impact of Nα-acetylation and Nα-methylation on 

MYL9. MYL9 has been found in both Nα-acetylated and Nα-methylated states, but the 

role of these modifications in MYL9 regulation is unknown. Given the cytoplasmic and 

nuclear localization of NATs and NRMTs, respectively, I propose a role for these PTMs 

in establishing pools of MYL9 specialized for compartmental specific functions. Nα-

acetylated MYL9 participates in cytoskeletal regulation in the cytoplasm and Nα-

methylated MYL9 acts as a transcriptional activator through direct DNA binding in the 

nucleus. Supporting a compartmental role for Nα-PTMs in MYL9 regulation, Nα-

methylation has been shown to facilitate protein-DNA interactions, while acetylation has 

been shown to disrupt protein-DNA interactions.  
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CHAPTER II 

ALPHA-AMINO POST-TRANSLATIONAL MODIFICATIONS ARE 

NOVEL REGULATORS OF MYL9 FUNCTION 

 

Introduction 

 Post-translational modifications (PTMs) are a primary means by which cells 

regulate the biochemistry and function of their protein machinery. PTMs play roles in 

virtually every known cellular process, and our knowledge of them is essential to 

understanding development, homeostasis, and disease (Edwards, Schwammle et al. 2014, 

Santos and Lindner 2017, Simithy, Sidoli et al. 2018). Alpha-amino PTMs (Nα-PTMs), 

occurring on the free protein alpha-amino group rather than on residue sidechains, are a 

widely occurring class of modification whose role in protein regulation remains poorly 

understood (Brown and Roberts 1976, Stock, Clarke et al. 1987, Tooley and Schaner 

Tooley 2014). The most prevalent Nα-PTMs, acetylation and methylation, were 

originally considered to occur on mutually exclusive substrates based on consensus 

sequence restrictions (Stock, Clarke et al. 1987, Polevoda and Sherman 2003, Chen, 

Muratore et al. 2007). Updated consensus sequences and the identification of both Nα-

acetyl and Nα-methyl proteoforms of myosin regulatory light chain 9 (MYL9) led to the 

recognition that more than 100 proteins are prospective substrates for such dual 

modification (Petkowski, Schaner Tooley et al. 2012). Here, we investigate for the first 
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time Nα-acetylation and Nα-methylation as PTMs that provide distinct and opposing 

regulation on the function of a common substrate, MYL9, and provide a groundwork 

towards a general understanding of how these Nα-PTMs work coordinately to govern 

protein function. 

 MYL9 is a regulatory subunit of the force-generating ATPase non-muscle myosin 

II (NMII) (Conti and Adelstein 2008). NMII is ubiquitously expressed across cell types, 

where it associates with actin filaments to govern cytoskeletal dynamics (Conti and 

Adelstein 2008, Vicente-Manzanares, Ma et al. 2009). As such, MYL9 and NMII are 

intimately involved in basic cellular processes such as the establishment of cell shape, 

cell polarity, adhesion, migration, and signal mechanotransduction (Vicente-Manzanares, 

Ma et al. 2009, Newell-Litwa, Horwitz et al. 2015). The activity of NMII is largely 

regulated by post-translational modifications of MYL9 (Adelstein and Conti 1975, 

Vicente-Manzanares, Ma et al. 2009, Newell-Litwa, Badoual et al. 2015). Multiple 

kinases associated with the Rho family of GTPases and the Ca2+ responsive myosin light 

chain kinase (MLCK) phosphorylate MYL9 at threonine 18 and serine 19 (Amano, Ito et 

al. 1996, Vicente-Manzanares, Ma et al. 2009, Yuen, Ogut et al. 2009, Newell-Litwa, 

Badoual et al. 2015). Phosphorylation at these residues increase the association of NMII 

with actin filaments as well as the ATPase activity of the myosin head group (Adelstein 

and Conti 1975, Amano, Ito et al. 1996, Conti and Adelstein 2008). 

 MYL9 has also been found to play a unique role in the nucleus, associating with 

the promoter of intercellular adhesion molecule 1 (ICAM1) and acting as a transcriptional 

activator (Li and Sarna 2009). Studies in human colonic smooth muscle cells identified 

the binding site for MYL9 at the ICAM1 promoter as AGCTCC (-39/-34) and further 
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showed an interaction with RNAPII and TFIIB, members of the core transcriptional 

machinery (Li and Sarna 2009). MYL9 also activates transcription of xanthine oxidase in 

cardiomyocytes through promoter binding and association with preinitiation complex 

members (Zhang, Liu et al. 2015). How the distinct nuclear and cytoplasmic roles of 

MYL9 are regulated is not yet understood, and to date there have been no investigations 

into what role the Nα-PTMs of MYL9 play. 

 Nα-acetylation is catalyzed by the cytoplasmic N-terminal acetyltransferase 

(NAT) family of enzymes and is thought to occur on up to 80% of the human proteome 

(Brown and Roberts 1976, Aksnes, Drazic et al. 2016). NatA is the family member with 

the widest substrate specificity, and its substrate recognition sequence makes MYL9 a 

prospective target (Polevoda and Sherman 2003). Diverse, substrate-specific impacts of 

Nα-acetylation on protein biochemistry and function have been described. It has been 

shown to promote protein degradation by acting as a docking site for E3 ubiquitin ligases, 

to be directly involved in protein-protein interactions by facilitating binding in 

hydrophobic pockets, to assist with proper protein folding and prevention of aggregation, 

as well as, to increase protein localization to the plasma membrane (Arnesen, Starheim et 

al. 2010, Hwang, Shemorry et al. 2010, Monda, Scott et al. 2013, Dikiy and Eliezer 2014, 

Aksnes, Drazic et al. 2016).  

 Nα-methylation is catalyzed by the N-terminal RCC1 methyltransferases 1 and 2 

(NRMT1 and NRMT2), the only known eukaryotic alpha-amino methyltransferases 

(Tooley, Petkowski et al. 2010, Petkowski, Bonsignore et al. 2013). These enzymes are 

found in the nucleus and have over 300 predicted substrate proteins (Tooley, Petkowski 

et al. 2010, Petkowski, Schaner Tooley et al. 2012, Petkowski, Bonsignore et al. 2013). 
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While NRMT2 catalyzes monomethylation, NRMT1 is a distributive methyltransferase 

that catalyzes the addition of up to three methyl groups to a protein N-terminus, resulting 

in trimethylation (Tooley, Petkowski et al. 2010, Petkowski, Bonsignore et al. 2013).  

NRMT1 shows more widespread and higher expression across cell types than NRMT2, 

and trimethylation is the predominant form of Nα-methylation found in cells (Tooley, 

Petkowski et al. 2010, Petkowski, Bonsignore et al. 2013).  Until recently, Nα-

methylation was thought to be a general promoter of protein stability, as it was originally 

identified as a modification that protected cytochrome c from degradation (Pettigrew and 

Smith 1977, Smith and Pettigrew 1980). We and others have now shown that it also 

facilitates the protein-DNA interaction of substrates such as RCC1, CENP-A, CENP-B, 

and DDB2, and thus, plays an important role in the maintenance of genome integrity 

(Chen, Muratore et al. 2007, Dai, Otake et al. 2013, Cai, Fu et al. 2014, Bonsignore, 

Butler et al. 2015, Bonsignore, Tooley et al. 2015, Sathyan, Fachinetti et al. 2017). While 

several transcription factors are substrates of NRMT1, it has not yet been experimentally 

demonstrated that Nα-methylation plays a role in transcriptional regulation (Tooley, 

Petkowski et al. 2010, Petkowski, Schaner Tooley et al. 2012).  

 While we have previously shown that MYL9 in cells can be found in both the Nα-

acetylated and Nα-methylated forms (Petkowski, Schaner Tooley et al. 2012), we now 

confirm that MYL9 is a direct substrate of both NatA and NRMT1 . We then utilize the 

consensus sequence requirements of these enzymes to generate mutants of MYL9 that 

select for either Nα-methylation or Nα-acetylation. This allows us to describe for the first 

time the impact of these modifications on MYL9 stability and function. We use a 

photoswitchable fluorescent tag to demonstrate that despite the prevailing dogma in the 
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field, Nα-acetylation and Nα-methylation do not alter the half-life of MYL9. Rather, we 

find evidence that these Nα-PTMs help to specialize MYL9 for its distinct roles in the 

cytoplasm and nucleus. Importantly, we reveal Nα-methylation as a novel regulator of 

MYL9 that compromises its cytoskeletal function while enhancing its activity as a 

transcriptional activator. 

 

Results 

N-terminal consensus sequence mutants of MYL9 select for Nα-methylation or Nα-

acetylation 

 MYL9 has previously been immmunoprecipitated from cells or tissue in both Nα-

methyl and Nα-acetyl modification states (Petkowski, Schaner Tooley et al. 2012). The 

N-terminal methionine of MYL9 is cleaved, revealing an SSK amino acid sequence that 

fits within the consensus recognition sequence for both NRMT1 and NatA (Figure 3A) 

(Polevoda and Sherman 2003, Petkowski, Schaner Tooley et al. 2012). To confirm the 

Nα-PTMs of MYL9 are catalyzed by these enzymes, in vitro enzymatic assays were 

performed with rhNRMT1 and rhNAA10, the catalytic subunit of NatA. A peptide 

substrate corresponding to amino acids 2-15 of MYL9 was used at varying concentrations 

to generate a Km determination for each enzyme. Both NRMT1 and NAA10 were found 

to catalyze the modification of MYL9. NRMT1 showed moderate activity with a Km of 

28.8 μM (Figure 3B), while NAA10 showed high activity with a Km of 0.7 μM (Figure 

3C). 

 To test if we could select for either Nα-methylation or Nα-acetylation of MYL9, 

we designed N-terminal mutants of MYL9 based on the consensus sequence 
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requirements for NRMT1 and NatA. The N-terminal amino acid sequence SPK is known 

to be a favorable substrate for NRMT1, while a proline in the second position of proteins 

is well described as blocking NatA activity (Polevoda and Sherman 2003, Tooley, 

Petkowski et al. 2010, Petkowski, Schaner Tooley et al. 2012). Similarly, NRMT1 

activity is reported to be restricted by a glutamine in the third position, while this amino 

acid is permissive for NatA activity (Polevoda and Sherman 2003, Chen, Muratore et al. 

2007, Petkowski, Schaner Tooley et al. 2012). Based on this information, we utilized 14 

amino acid peptides of MYL9 containing an S3P (SPK MYL9) or K4Q (SSQ MYL9) 

mutation in the in vitro enzymatic assays to see if they could select for the activity of 

either NRMT1 or NatA (Figure 3A). 

 Matching the published consensus sequence requirements, NRMT1 showed 

increased affinity for SPK MYL9 with a Km of 0.7 μM (Figure 3D), while NAA10 

showed no activity with SPK MYL9 out to 40 μM of substrate (Figure 3E). SSQ MYL9 

showed opposing results, with NRMT1 having no activity on this substrate out to 160 μM 

of substrate (Fig 3F), and NAA10 maintaining activity with a Km of 5.0 μM (Figure 3G). 

Taken together, these results demonstrate that the N-terminal consensus sequence of 

MYL9 is permissive for modification by both NRMT1 and NatA, and that SPK and SSQ 

mutants of MYL9 select for either Nα-methylation or Nα-acetylation, respectively.  

 

Nα-PTMs do not alter the half-life of MYL9 

 A major focus of the Nα-PTM field has been on how these modifications impact 

the stability of proteins. Early studies suggested that Nα-methylation protects proteins 

from degradation, as this modification was shown to increase the stability of cytochrome 
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c and block degradation by aminopeptidases (Pettigrew and Smith 1977, Smith and 

Pettigrew 1980). Nα-acetylation is known to decrease the stability of some proteins by 

acting as a docking site for E3 ubiquitin ligases, and thus promoting proteolytic 

degradation (Hwang, Shemorry et al. 2010, Shemorry, Hwang et al. 2013). However, 

accumulating evidence suggests that these effects on stability are substrate specific, rather 

than intrinsic properties of Nα-acetylation and Nα-methylation (Tooley and Schaner 

Tooley 2014, Aksnes, Drazic et al. 2016). 

 To see if Nα-PTMs regulate the stability of MYL9, the photoswitchable 

fluorescent protein Dendra2 was C-terminally tagged to full-length WT, SPK, and SSQ 

MYL9. Dendra2 in its basal state fluoresces in the GFP channel, but after 

photoconversion fluoresces in the RFP channel (Gurskaya, Verkhusha et al. 2006, Adam, 

Nienhaus et al. 2009). This allows for tracking of half-life by following the rate of red 

fluorescence decay after photoconversion, and alleviates the need to treat with cytotoxic 

agents such as cycloheximide (Zhang, Gurskaya et al. 2007). When Dendra2 was 

expressed alone and photoconverted, the sum red fluorescence intensity was found to be 

stable over a 48 hour period (Figure 4A,B). When WT and mutant MYL9 was tagged 

with Dendra2, decay in red fluorescence related to the degradation of MYL9 was 

observable within 24 hours of photoconversion for all variants (Figure 4C). 

 The half-life of WT MYL9 was determined to be 16.4 hours (95% confidence 

interval, 15.49 - 17.52 hours) by fitting fluorescence decay data gathered over 48 hours to 

a model of one-phase exponential decay. To determine if alterations in Nα-modification 

state could be statistically linked to changes in the rate of MYL9 decay, SPK and SSQ 

MYL9 fluorescence data were each fit to an individual model of decay as well as a model 
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shared with WT MYL9. These models were compared for best fit, and in each case it was 

found that a model of decay shared with WT MYL9 was adequate to describe the decay 

of SPK and SSQ MYL9 (Fig 4D,E). This demonstrates that regulation of MYL9 stability 

is not a role for Nα-methylation or Nα-acetylation, and helps overturn the perception that 

the primary role of these modifications is as modifiers of protein half-life. 

 

Nα-methylation deficient MYL9 promotes cell spreading on fibronectin 

 We next turned our attention to how Nα-PTMs regulate the function of MYL9 in 

the cytoplasm and nucleus. The primary role of MYL9 in the cytoplasm is regulation of 

actin cytoskeletal dynamics through modulation of NMII activity (Conti and Adelstein 

2008, Vicente-Manzanares, Ma et al. 2009). We analyzed cell spreading of NIH3T3 

mouse fibroblasts on fibronectin, as fibroblast adhesion to fibronecton is a well-studied 

process requiring active cytoskeletal rearrangement (Potter, Tirnauer et al. 1998, Zhong, 

Chrzanowska-Wodnicka et al. 1998, Huveneers, Truong et al. 2008). We hypothesized 

that Nα-acetylation would facilitate the cytoplasmic role of MYL9 as a cytoskeletal 

regulator. As such, we expected the Nα-acetylation deficient SPK mutant of MYL9 to 

show impaired cell spreading. 

 Control NIH3T3 cells or cells transduced with WT, SPK, or SSQ MYL9-FLAG 

were plated on 3 μg/ml fibronectin-coated chamber slides and imaged every 15 minutes 

for 1 hour. Cells were placed on ice prior to plating to promote a uniform distribution of 

rounded, single cells (Figure 5A, first column). Surprisingly, SPK MYL9 transduced 

cells showed levels of cell spreading that were comparable to control or WT MYL9 

transduced cells (Figure 5A,B). We unexpectedly found that cells expressing the Nα-
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methylation deficient SSQ MYL9 mutant showed significantly greater cell spreading 

over 1 hour (Figure 5B). Only SSQ MYL9 expressing cells had readily observable 

lamellipodia and filopodia that stretched over the fibronectin-coated surface by 1 hour 

(Figure 5A, black arrows). In order to ensure that expression level differences were not 

driving our results, we confirmed equal expression of WT, SPK, and SSQ MYL9-FLAG 

by Western blotting (Figure 5C). The SSQ MYL9 mutant is not recognized by NRMT1, 

but is targeted by NatA at levels comparable to WT (Figure 3C,G), suggesting that a 

decrease in Nα-methylation of MYL9 is responsible for the increase in cell spreading. As 

such, it appears that Nα-methylation restricts the participation of MYL9 in cytoskeletal 

rearrangement. 

 To address the possibility that loss of Nα-methylation leads to an increase in Nα-

acetylation in vivo, we compared levels of Nα-acetylation for WT and SSQ MYL9-FLAG 

in NIH3T3 cells. WT or SSQ MYL9-FLAG was immunoprecipitated from cell lysates 

using anti-FLAG beads. Western blotting for total and Nα-acetyl MYL9 was then 

performed using a FLAG antibody and a newly generated Nα-acetyl MYL9 antibody 

(Ubf1), respectively. As expected, levels of Nα-acetylation did not increase for SSQ as 

compared to WT MYL9 (Figure 6A). This confirms that the functional impacts 

associated with SSQ MYL9 are a result of loss of Nα-methylation rather than alteration 

of Nα-acetylation. The Ubf1 antibody was raised against a synthetic Nα-acetylated 

MYL9 peptide. This antibody was tested against unmodified, Nα-acetylated, Nα-

methylated, and Nα-trimethylated MYL9 peptides. Ubf1 only showed binding to the Nα-

acetylated MYL9 peptide, confirming the specificity of this antibody (Figure 6B). 
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Nα-methylation reduces the cytoskeletal activity of MYL9 

 We next sought to confirm the impact of Nα-methylation on the cytoskeletal 

activity of MYL9 in HCT116 human colon carcinoma cells. These cells have a migratory 

phenotype, and the nuclear role of MYL9 in ICAM1 transcription has been reported in 

colon cells, making this cell line suited for the study of both cytoplasmic and nuclear 

functions of MYL9 (Li and Sarna 2009, Nigro, Schettino et al. 2018). To test the role of 

Nα-modifications of MYL9 in regulating cytoskeletal activity, we measured the 

migratory potential of non-transduced control cells and cells transduced with WT, SPK, 

or SSQ MYL9-FLAG. A Boyden chamber design was employed, in which cells were 

serum-starved, plated on an extracellular matrix extract, and migration towards serum 

containing media was quantified after 24 hours. MYL9 variants were transduced into 

cells at equal levels so that protein abundance differences would not affect results (Figure 

7A). Only HCT116 cells expressing the Nα-methylation deficient SSQ MYL9 mutant 

showed a significant increase in migration as compared to non-transduced cells (Figure 

7B). This suggests that loss of Nα-methylation of MYL9 leads to increased cytoskeletal 

dynamics, as required for migration. This result is consistent with our findings in 

NIH3T3 cells, and supports a model in which Nα-methylated MYL9 does not participate 

in activation of NMII. 

 Multiple signaling pathways converge on phosphorylation of MYL9 at serine 19 

(pS19) in order to increase NMII activity (Conti and Adelstein 2008, Vicente-

Manzanares, Ma et al. 2009). Because of the requirement for pS19 MYL9 in NMII 

related activities, including migration and cell spreading, we next tested if the activated 

cytoskeletal function of SSQ MYL9 is associated with increased levels of pS19. To 
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accomplish this, we treated HCT116 control and MYL9-FLAG (WT and mutant) 

expressing cell lines with calcimycin, an MLCK activator, and evaluated pS19 levels. We 

found that after treatment, the non-methylatable SSQ MYL9 mutant has increased pS19 

as compared to WT and SPK MYL9 (Fig 7C,D). The ratio of pS19 to total MYL9-FLAG 

was quantified, and it confirmed that SSQ MYL9 shows enrichment of this activating 

PTM (Figure 7D). This result provides a biochemical basis for the cytoskeletal 

phenotypes shown by SSQ MYL9 expressing cells. 

 To confirm the role of Nα-methylation in these findings and ensure pS19 levels 

are not altered by the K4Q mutation, we next assayed the phosphorylation of WT MYL9 

in NRMT1 KO HCT116 cells (Shields, Tooley et al. 2017). These cells are deficient in 

Nα-methylation (Figure 7E), and as such should mirror the results seen with SSQ MYL9. 

After calcimycin treatment, the pS19 to total WT MYL9-FLAG ratio was significantly 

higher in NRMT1 KO HCT116 cells, as compared to control cells (Figure 7E,F). This 

confirms that loss of Nα-methylation, and not the K4Q mutation, promotes the activation 

of MYL9 through serine 19 phosphorylation, a modification that is critical for proper 

regulation of cytoskeletal dynamics. 

 

Nα-methylation of MYL9 promotes its nuclear function 

 We next looked at the role of Nα-PTMs in regulating the nuclear function of 

MYL9, where it serves as a transcriptional activator of ICAM1 (Li and Sarna 2009). As 

NRMT1 is found in the nucleus, and Nα-methylation has been shown to facilitate 

protein-DNA interactions, we proposed that Nα-methylation of MYL9 would facilitate its 

transcriptional activation of ICAM1 (Chen, Muratore et al. 2007, Tooley, Petkowski et al. 
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2010, Dai, Otake et al. 2013, Cai, Fu et al. 2014, Sathyan, Fachinetti et al. 2017). To test 

this, we treated non-transduced as well as WT and mutant MYL9-FLAG transduced 

HCT116 cells with TNFα in order to induce ICAM1 transcription, and then measured the 

induction of ICAM1 transcription for each cell line by qPCR. We found that cells 

expressing the Nα-methylation enriched SPK MYL9 mutant had significantly greater 

induction of ICAM1 transcription than all other cell lines (Figure 8A). 

 To confirm that enrichment of Nα-methylation was responsible for the heightened 

transcriptional activity of SPK MYL9, and not loss of Nα-acetylation, this mutant was 

transduced into control and NRMT1 KO HCT116 cells and ICAM1 transcription was 

again assayed. Loss of Nα-methylation reduced the transcriptional activity of SPK 

MYL9, as seen by a decrease in ICAM1 transcription when expressed in NRMT1 KO 

cells as compared to control cells (Figure 8B). This confirms a requirement for Nα-

methylation to promote the optimal transcriptional activity of MYL9 in its specialized 

nuclear role. 

 We next sought to clarify the mechanism by which Nα-methylation facilitates the 

transcriptional activity of MYL9. First, we used immunofluorescence to determine if Nα-

methylation of MYL9 results in increased nuclear localization, which would increase the 

pool of MYL9 available to participate in transcription. HCT116 cells transduced with 

WT, SPK, or SSQ MYL9-Dendra2 were imaged before and post-TNFα treatment. A 

Dendra2-only expressing cell line was included as a control for non-specific changes in 

localization. Dendra2-only did not show TNFα responsive localization (Figure 8C). 

However, all variants of MYL9 showed an increase in the nuclear to total ratio of MYL9-

Dendra after TNFα treatment (Figure 8C). In addition, there were no significant 
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differences between MYL9 variants with regards to nuclear localization before or after 

TNFα treatment. This experiment indicates that Nα-methylated MYL9 does not increase 

the pool of nuclear MYL9, and that the mechanism by which this PTM facilitates 

transcriptional function occurs downstream of nuclear localization. 

 Previous studies have shown Nα-methylation to be important for the association 

of chromatin regulating and DNA damage response proteins with DNA (Chen, Muratore 

et al. 2007, Dai, Otake et al. 2013, Cai, Fu et al. 2014, Sathyan, Fachinetti et al. 2017). To 

see if Nα-methylation similarly facilitates the protein-DNA interaction of MYL9 with the 

ICAM1 promoter, we performed ChIP in non-transduced and WT, SPK, and SSQ 

MYL9-FLAG expressing HCT116 cells. Only the Nα-methylation enriched SPK mutant 

of MYL9 resulted in enriched immunoprecipitation of the ICAM1 promoter over input 

(Figure 8D). This indicates that Nα-methylation facilitates the protein-DNA interaction of 

MYL9 with the ICAM1 promoter, and provides a mechanism by which Nα-methylation 

supports the transcriptional function of MYL9. 

 

Discussion 

 Wide spread Nα-methylation of skeletal muscle myosin light chains was first 

reported in the 1980s (Henry, Dalgarno et al. 1982, Henry, Trayer et al. 1985). These 

light chains shared an APK N-terminal sequence, which fit the predicted eukaryotic 

consensus sequence at that time, cleavage of the initiator methionine followed by an 

alanine or proline in the first position, proline in the second, and lysine in the third 

(Stock, Clarke et al. 1987). A hypothetical PK methyltransferase was proposed, based on 

these amino acid restrictions (Stock, Clarke et al. 1987). As proline in the second position 
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of substrates blocks the activity of NATs, Nα-methylation and Nα-acetylation were 

considered to be mutually exclusive modifications (Stock, Clarke et al. 1987, Polevoda 

and Sherman 2003). We later identified two eukaryotic methyltransferases, NRMT1 and 

NRMT2, allowing for more specific studies of substrate recognition and catalysis 

(Tooley, Petkowski et al. 2010). These studies revealed the NRMTs do not have a strict 

requirement for proline in the second position, and instead can permit most non-polar and 

uncharged polar amino acids in this position (Petkowski, Schaner Tooley et al. 2012). In 

addition, flexibility was found in the first and third amino acids of the consensus 

sequence (Petkowski, Schaner Tooley et al. 2012). This resulted in the identification of 

more than 100 proteins that are predicted targets for both Nα-methylation and Nα-

acetylation (Petkowski, Schaner Tooley et al. 2012). This set of proteins includes the 

eukaryotic non-muscle myosin light chains, which have an SSK N-terminal sequence 

(Petkowski, Schaner Tooley et al. 2012). Supporting this finding, mass spectrometry 

analysis identified both Nα-methyl and Nα-acetyl modification states of MYL9, making 

it the first confirmed dual substrate (Petkowski, Schaner Tooley et al. 2012). In this 

study, we verify that Nα-methylation and Nα-acetylation of MYL9 are catalyzed by 

NRMT1 and NatA, respectively.  This allows us to exploit the consensus sequence 

requirements of NRMT1 and NatA to generate Nα-PTM selective mutants of MYL9. We 

show that SPK MYL9 selects for Nα-methylation, while SSQ MYL9 selects for Nα-

acetylation. 

 Regulation of stability has historically been considered the primary role for Nα-

methylation and Nα-acetylation. Early studies showed that alpha-amino dimethylproline 

blocked degradation of cytochrome c by aminopeptidases (Pettigrew and Smith 1977, 
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Smith and Pettigrew 1980). This function has been proposed as a general function of Nα-

methylation but has yet to been confirmed with any additional substrates (Stock, Clarke 

et al. 1987). More recently, a novel protein degradation pathway termed the Ac/N-end 

rule was described (Hwang, Shemorry et al. 2010). It was shown that in S. cerevisiae, 

proteins with an Nα-acetylated Met, Ala, Val, Ser, Thr, or Cys are targeted for proteolytic 

degradation by the E3 ubiquitin ligases Doa10 or Not4 (Hwang, Shemorry et al. 2010, 

Shemorry, Hwang et al. 2013). This pathway was later demonstrated in human cells for 

the protein RGS2, with potential impact on blood pressure regulation (Park, Kim et al. 

2015). WT MYL9 has an N-terminal Ser that can be Nα-acetylated, making it a potential 

target of the Ac/N-end rule pathway. We employed full-length WT and Nα-PTM 

selective mutants of MYL9 to study the impact of Nα-PTMs on MYL9 half-life. In our 

study, blocking Nα-acetylation or Nα-methylation of MYL9 did not alter stability. This 

finding aligns with the model that Nα-PTMs modify protein stability in a context and 

substrate specific manner, with factors such as complex formation (i.e. sequestering the 

N-terminus) and secondary structure of the N-terminus contributing to regulatory 

outcomes (Shemorry, Hwang et al. 2013, Aksnes, Drazic et al. 2016). 

 As the NATs and NRMTs show distinct cellular compartmentalization, we tested 

whether Nα-acetylation and Nα-methylation regulate the distinct cytoplasmic and nuclear 

roles of MYL9 (Tooley and Schaner Tooley 2014, Aksnes, Drazic et al. 2016). We first 

investigated how Nα-PTMs modulate the cytoplasmic role of MYL9 as a regulator of 

NMII activity and cytoskeletal dynamics by looking at the downstream cellular processes 

of cell adhesion and migration (Conti and Adelstein 2008, Vicente-Manzanares, Ma et al. 

2009). While PTMs on the N-terminal tail of MYL9 are recognized as key regulators of 
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NMII dynamics (Heissler and Sellers 2014), this was the first study to investigate the 

functional impact of Nα-PTMs . We found that blocking Nα-methylation through 

expression of an SSQ MYL9 mutant led to both increased cell spreading on fibronectin 

and increased migration. These results are indicative of increased cytoskeletal dynamics 

occurring downstream of heightened NMII activation. Importantly, we showed that the 

SSQ MYL9 mutant did not undergo increased Nα-acetylation as compared to WT MYL9, 

ruling out the possibility that the increased cytoskeletal activity was related to increased 

Nα-acetylation. Corresponding with this result, we did not find blocking Nα-acetylation 

to alter our measures of cytoskeletal function. 

 Phosphorylation of MYL9 at serine 19 increases NMII association with F-actin as 

well as ATPase activity (Amano, Ito et al. 1996, Heissler and Sellers 2014). We found 

that Nα-methylation of MYL9 decreases the occurrence of pS19, offering a mechanism 

for the increased cytoskeletal activity that was observed when Nα-methylation was 

blocked. Further studies are needed to reveal the mechanism by which Nα-methylation of 

MYL9 reduces pS19, but possibilities include altered interactions with kinases or 

phosphatases. In our study, calcimycin, a calcium ionophore that activates MLCK, was 

used to induce phosphorylation of MYL9. However, the impact of Nα-methylation on 

MYL9 pS19 likely extends beyond MLCK to phosphorylation catalyzed by the Rho 

GTPase associated kinases, as cell spreading and migration showed sensitivity to Nα-

methylation and these processes involve multiple kinases. Precedent for the interplay of 

Nα-PTMs with internal residue PTMs has been set by studies of Histone H4 (Schiza, 

Molina-Serrano et al. 2013, Fulton, Zhang et al. 2017).  Nα-acetylation of histone H4 

reduces arginine 3 methylation by yeast histone methyltransferase 1 (Hmt1) and by 
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human protein arginine methyltransferase 3 (PRMT3) (Schiza, Molina-Serrano et al. 

2013, Fulton, Zhang et al. 2017). Serine 19 phosphorylation of MYL9 is often 

accompanied by phosphorylation of threonine 18, a PTM that further increases NMII 

activity (Amano, Ito et al. 1996, Heissler and Sellers 2014). In contrast, phosphorylation 

of MYL9 at serines 1 and 2 by protein kinase C has been described to inhibit NMII 

activity (Nishikawa, Sellers et al. 1984, Ikebe, Hartshorne et al. 1987, Heissler and 

Sellers 2014). The proximity of these PTMs, taken together with our finding of interplay 

between Nα-methylation and pS19, suggest that the N-terminal PTMs of MYL9 may 

exert complex, combinatorial control over NMII activity.  Future studies will further 

investigate the interplay between N-terminal and internal side chain PTMs of MYL9. 

 We next investigated how Nα-PTMs regulate the nuclear function of MYL9 as a 

transcriptional activator of ICAM1. In colon smooth muscle cells, MYL9 binds the 

ICAM1 core promoter region, interacts with RNA polymerase II and TFIIB, and 

promotes the transcription of ICAM1 (Li and Sarna 2009). It has separately been shown 

that TNFα signaling results in a myosin-dependent increase in ICAM1 transcription (Wu, 

Guo et al. 2009). We found that upon TNFα treatment, expression of the SPK MYL9 

mutant results in significantly greater ICAM1 transcription as compared to WT or SSQ 

MYL9. Our in vitro enzyme assays show that the SPK mutant both blocks NatA activity 

and is a preferred substrate of NRMT1, likely resulting in increased levels of Nα-

methylated MYL9 in addition to blocking Nα-acetylation.  

 Using NRMT1 KO cells, which lack Nα-trimethylation, we confirmed that Nα-

methylation facilitates the transcription of ICAM1. When SPK MYL9 was expressed in 

NRMT1 KO cells it was unable to induce transcription of ICAM1 at levels seen in 



 

57 
 

control cells. A number of NRMT substrates require localization to DNA for their 

function. Nα-methylation has been shown to be required for proper protein-DNA 

interaction and downstream function for RCC1, DDB2, CENP-A, and CENP-B (Chen, 

Muratore et al. 2007, Dai, Otake et al. 2013, Cai, Fu et al. 2014, Sathyan, Fachinetti et al. 

2017). Nα-trimethylation in particular is proposed to facilitate protein-DNA interactions 

because it results in a pH-insensitive positive charge at the amino terminus that is 

favorable for association with the negatively charged DNA phosphate backbone (Stock, 

Clarke et al. 1987, Tooley, Petkowski et al. 2010, Tooley and Schaner Tooley 2014). 

Accordingly, we performed ChIP and found that Nα-methylation enhances the 

association of MYL9 with the ICAM1 promoter. MYL9 has also been described to 

interact with the promoter and activate transcription of xanthine oxidase in 

cardiomyocytes (Zhang, Liu et al. 2015). As such, it seems likely that transcriptional 

activation by MYL9, and the promotion of this function by Nα-methylation, will be 

identified in more settings in the future. 

 We have shown that Nα-methylation favors the specialized, nuclear function of 

MYL9 by both reducing participation in cytoskeletal activities and by increasing 

association with DNA. This provides the first report of how Nα-PTMs regulate MYL9 

function. However, many questions remain regarding the Nα-PTMs of MYL9. In 

particular, a clear role for Nα-acetylation has yet to emerge. One possibility is that levels 

of MYL9 Nα-acetylation regulate substrate availability for Nα-methylation. NATs occur 

in the cytoplasm and catalyze both co-translational and post-translational modification of 

substrates (Aksnes, Drazic et al. 2016). This means that NATs have access to substrates 

before the NRMTs, which are compartmentalized in the nucleus, and suggests that the 
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degree of MYL9 Nα-acetylation will dictate the degree of MYL9 Nα-methylation 

(Tooley, Petkowski et al. 2010, Tooley and Schaner Tooley 2014). In this way, Nα-

acetylation may mark MYL9 molecules designated for cytoplasmic activity. In addition 

to MYL9, a number of predicted dual NRMT and NAT substrates are known to have both 

cytoplasmic and nuclear roles, including inversin and NEMO (Nurnberger, Bacallao et al. 

2002, Huang, Wuerzberger-Davis et al. 2003). This raises the distinct possibility that 

regulation of compartmental activity is a conserved role for Nα-acetylation and Nα-

methylation.  If there are distinct pools designated for each or a single pool that can be 

interchangeably Nα-acetylated or Nα-methylated remains to be determined. Alpha-amino 

deacetylases and demethylases have been proposed, but have yet to be identified (Tooley 

and Schaner Tooley 2014).  However, whether or not Nα-PTMs prove to be 

interchangeable or static, our study makes clear that one substrate can occur as multiple 

Nα-proteoforms, and these proteoforms serve to increase protein functional diversity. 

 The importance of uncovering the properties of protein regulation by Nα-PTMs is 

highlighted by developmental defects and disease states associated with dysregulation of 

Nα-methylation and Nα-acetylation. NRMT1 KO mice display improper development, 

premature aging, and premature morbidity (Bonsignore, Tooley et al. 2015). 

Additionally, a number of mutations in NRMT1 that decrease catalytic activity have been 

associated with cancers, and knockdown of this enzyme has been shown to increase 

mammary tumorigenesis (Bonsignore, Butler et al. 2015, Shields, Tooley et al. 2017). A 

mutation in NAA10, the catalytic subunit of NatA, results in the lethal X-linked 

developmental disorder Ogden syndrome (Van Damme, Stove et al. 2014, Myklebust, 

Van Damme et al. 2015). Dysregulation of Nα-acetylation is also observed in multiple 
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cancers, and overexpression of NatA has been shown to drive oncogenic transformation 

in lung cells (Kalvik and Arnesen 2013). Interestingly, aberrant post-translational 

regulation of MYL9 has also been observed in multiple cancers, including those of the 

breast and lung (Newell-Litwa, Horwitz et al. 2015). Further studies that reveal the 

regulatory roles of Nα-acetylation and Nα-methylation at the protein level are essential to 

expanding our understanding of basic cell biology and will also reveal novel pathways 

that contribute to disease related processes. 

 

Experimental procedures 

Recombinant protein expression and in vitro enzyme assays 

 Human NRMT1 (rhNRMT1) and NAA10 (rhNAA10) were expressed as His6-

tagged recombinant proteins and purified as previously described (Chen, Brownawell et 

al. 2004, Shields, Tooley et al. 2017). Briefly, protein ORFs (GE Dharmacon, 

Marlborough, MA) were amplified and subcloned into the pet15b vector (EMD 

Millipore, Billerica, MA), expressed in BL21 Star (DE3) Escherichia coli (Thermo 

Scientific, Waltham, MA), and purified on Ni2+-NTA beads (Qiagen, Hilden, Germany). 

 In vitro methyltransferase experiments were carried out using the MTase-Glo 

Methyltransferase Assay (Promega, Madson, WI) following the manufacturers 

guidelines. 0.2 μM rhNRMT1 was incubated at room temperature with synthetic peptide 

substrates corresponding to the 14 N-terminal amino-acids of WT or mutant MYL9 (Fig 

2A) (AnaSpec, Fremont, CA) in the presence of 40 μM s-adenosylmethionine (SAM). 

Peptide substrates were used at concentrations ranging from 0 to 160 μM. Reactions were 

stopped at 20 minutes by addition of trifluoroacetic acid. Methyltransferase activity was 
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then measured by the accumulation of a luminescent signal, which was generated by 

reaction of a detection reagent with the methyltransferase reaction product s-

adenosylhomocysteine (SAH). 

 In vitro acetyltransferase experiments were performed using the Enzo 

Acetyltransferase Activity Kit (Enzo Life Sciences, Farmingdale, NY) following 

manufacturers guidelines. 0.1 μM rhNAA10 was incubated with N-terminal peptides of 

WT or mutant MYL9 at room temperature in the presence of excess acetyl-CoA. The 

reaction was stopped after 30 minutes by addition of ice cold isopropyl alcohol. 

Acetyltransferase activity was measured by reading fluorescence (Ex 380 nm/Em 520 

nm) generated by the reaction of a detection reagent with the acetyltransferase reaction 

product CoA. 

 All readings were taken on a Cytation5 cell imaging multi-mode reader (BioTek, 

Winooski, VT). For both methyltransferase and acetyltransferase assays, background 

signal was measured by the inclusion of no substrate control reactions and was subtracted 

from experimental reactions. Background subtracted signal intensities at varying 

substrate concentrations were then fit to a model of Michaelis-Menten enzyme kinetics 

and a Km determination was made using GraphPad Prism 7 software (San Diego, CA). 

 

Molecular cloning, mutagenesis, and lentivirus production 

 To generate the C-terminally tagged MYL9-Dendra2 fusion protein, the MYL9 

protein ORF (GE Dharmacon) was amplified and subcloned into the pDendra2-N vector 

(Clontech, Mountain View, CA) using XhoI and HindIII restriction sites. Site-directed 

mutagenesis was performed using the Quikchange system (Agilent Technologies, Santa 
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Clara, CA) to generate S3P (SPK) and K4Q (SSQ) mutant MYL9-Dendra2 fusion 

proteins. WT, SPK, and SSQ MYL9-Dendra2, as well as Dendra2 alone, were then 

amplified and subcloned into the pCDH-EF1-MCS-IRES-Puro lentiviral expression 

vector (System Biosciences, Palo Alto, CA) using XbaI and NheI restriction sites. The 

following forward primers and their reverse compliments were used for mutagenesis: 

S3P: 5’-GATCTCGAGATGTCCCCCAAGCGGGCCAAAGC-3’ and K4Q: 5’-

CGAGATGTCCAGCCAGCGGGCCAAAGCC-3’.  To generate C-terminally tagged 

MYL9-FLAG proteins, WT, SPK, and SSQ MYL9 were amplified from the MYL9-

pDendra2 constructs and subcloned into the pWPI lentiviral expression vector (Addgene, 

Cambridge, MA) using 5’ and 3’ PmeI restriction sites. The following 3’ primer included 

the FLAG nucleotide sequence followed by a stop codon:  

5’-CGGTTTAAACTCATTTATCATCATCATCTTTATAATCGTCGTCTTT 

ATCCTTGGCGC-3’ 

 Lentivirus was generated through co-transfecting HEK293T cells with 50 μg of 

expression plasmid (pCDH or pWPI from above), 37.5 μg psPAX2 packaging vector, and 

15 μg pMD2.G envelope plasmid using calcium phosphate transfection. Viral 

supernatants were collected forty-eight hours after transfection, concentrated with 

100KDa molecular weight cut off filters (Millipore Sigma, Burlington, MA), and tittered 

in HEK293T cells. GFP expressed by the pWPI vector and Dendra2 expressed by the 

pCDH vector was used for titering. 

 

Cell culture, transgene expression, and small molecule treatment 
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 HEK293T human embryonic kidney and NIH 3T3 mouse embryonic fibroblast 

cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Life 

Technologies, Grand Island, NY) with 10% fetal bovine serum (FBS; Atlanta 

Biologicals, Atlanta, GA) and 1% penicillin-streptomycin (P/S; Life Technologies). 

HCT116 human colorectal carcinoma and NRMT1 KO HCT116 cell lines were cultured 

in McCoy’s 5A Modified Medium (Life Technologies) supplemented with 10% FBS and 

1% P/S. NRMT1 KO cells were previously generated and verified by sequencing and 

protein expression (Shields, Tooley et al. 2017). The maintenance of this cell line was 

verified by Western Blotting for loss of Nα-methylation (Fig 4E). All cells were grown 

on tissue-culture treated plastic and maintained at 37C and 5% CO2. HEK293T, NIH 

3T3, and HCT116 cell lines were a generous gift from Dr. Ian Macara, Vanderbilt 

University. 

 For experiments involving transgene expression, cells were harvested with 

Trypsin-EDTA (Life Technologies), plated in fresh media, and transduced with lentivirus 

at a multiplicity of infection (MOI) of 2. Transgene expression was confirmed and cells 

were used for experiments 3-4 days after transduction. Cells transduced with the pCDH 

vector were selected for by treatment with 2 μg/ml puromyocin 48 hours after 

transduction, and were used for experiments 48 hours after treatment. For experiments 

involving small molecule treatment, cells were cultured to 80% confluence, and media 

was changed to fresh media containing the desired small compound. Calcium ionophore 

A23187 (calcimycin; Sigma Aldrich, St. Louis, MO) was resuspended in DMSO and 

used at a final concentration of 0.1 μM. Cells were treated with calcimycin for 45 minutes 

to induce phosphorylation of MYL9 by MLCK. Recombinant human tumor necrosis 
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factor alpha (TNFα; Life Technologies) was resuspended in sterile, distilled water and 

used at a final concentration of 20 ng/ml. Cells used in transcriptional studies were 

treated for 2 hours, while cells used for localization and promoter binding studies were 

treated for 1 hour. 

 

Half-life measurement and modeling 

 25K HEK293 cells expressing Dendra2 or Dendra2-MYL9 fusion proteins were 

plated in triplicate in black-walled, clear-bottom 96-well tissue culture plates and given 

24 hours to adhere. Experiments were then carried out in a Cytation 5 cell imaging multi-

mode reader maintained at 5% CO2 and 37C. Cells were imaged pre-photoconversion at 

20x in the GFP and RFP channels, followed by photoconversion through exposure to the 

DAPI laser line (UV) at maximum intensity for 16 seconds. Following photoconversion, 

cells were imaged in the RFP channel every 4 hours for 48 hours, imaging settings (LED 

intensity, integration time, gain) were maintained throughout experiments. Sum RFP 

fluorescence intensity values were calculated from post-photoconeversion images at each 

time point, and then were plotted relative to the 0h intensity. 3-4 experiments were 

performed for each group, and MYL9-Dendra decay curves were then generated in 

GraphPad Prism using a one-phase exponential decay model. Initial y values were set to 

1 for all curves and curve plateaus (y-value at infinite time) were set to 0. Decay curves 

for each MYL9-Dendra variant were compared to WT in a pairwise fashion to determine 

if the data sets could be adequately fit by a single curve or if independent curves were 

required. An extra sum-of-squares F test was used to compare the goodness of fit of 

shared and independent curves, and subsequently determine the probability with which 
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the shared curve represents both data sets. MYL9 half-life was calculated as ln(2)/k, with 

k being the rate constant (h-1) generated by the exponential decay model. 

 

Cell spreading 

 2-well chamber slides (Thermo Scientific) were coated with 3 μg/cm2 fibronectin 

(Corning, Corning, NY) in tris-buffered saline for 1 hour at room temperature. The 

remaining solution was removed and slides were blocked with 5 mg/ml bovine serum 

albumin (BSA; Research Products International, Mt. Prospect, IL) in phosphate-buffered 

saline. Control and NIH 3T3 cells expressing WT, SPK, or SSQ MYL9-FLAG were 

grown to confluence, trypsinized, counted, and resuspended at 100k cells/ml in fresh 

media. Cells were then placed on ice for 20 minutes to promote rounding. 70K cells were 

then plated per chamber, and chamber slides were immediately placed in a Cytation 5 cell 

imaging multi-mode reader with CO2 maintained at 5% in the sample chamber. The 

sample chamber was raised from room temperature to 37C, with time 0 being defined as 

when 37C was reached. Cells were then imaged with a 20x phase contrast objective 

every 15 minutes for 1 hour. The surface area was quantified for the 4 largest cells per 

image at each time point by tracing cell outlines using the ImageJ 1.47v (NIH, Bethesda, 

MD) plug-in NeuronJ version 1.4.3 (Meijering, Jacob et al. 2004). 12 cell areas taken 

from 3 independent experiments were used to generate the mean cell surface area for 

each sample at each time point. 

 

Transwell migration 
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 Cell migration was measured using a 96-well basement membrane extract (BME) 

cell invasion assay (Trevigen, Gaithersburg, MD) as previously described (Bonsignore, 

Butler et al. 2015). Briefly, control and WT, SPK, or SSQ MYL9-FLAG expressing 

HCT116 cells were serum-starved for 24 hours in McCoy’s 5A Modified Medium with 

0.1% BSA. 50K cells in serum-free media were then plated on 0.25x BME in triplicate in 

the upper chamber of a transwell plate. Media supplemented with 1% FBS was plated in 

the lower chamber of transwells to serve as a chemoattractant. Migration was allowed to 

proceed for 24 hours, non-migrating cells were washed away, and migrating cells were 

stained using Calcein-AM. Fluorescence at 485 nm excitation, 520 nm emission was used 

to quantify the degree of cell migraton. 

 

Western blots 

 Primary antibodies and dilutions used for Western Blotting were: rabbit anti-

FLAG (1:500; Invitrogen, Carlsbad, CA), HRP-conjugated mouse anti-FLAG (1:1000; 

Sigma Aldrich), rabbit anti-β-actin (1:1000; Cell Signaling Technologies, Danvers, MA), 

rabbit anti-pS19 MYL9 (1:1000; Cell Signaling Technologies), and rabbit anti-Nα-

trimethyl RCC1 (1:10,000) (Chen, Muratore et al. 2007), and rabbit anti-Nα-acetyl 

MYL9 (1:1000) (Ubf1). The Ubf1 antibody (Cocalico Biologicals, Inc., Stevens, PA) was 

provided as custom rabbit antisera containing polyclonal antibodies against a synthetic 

Nα-acetyl MYL9 peptide linked to keyhole limpet hemocyanin. Secondary antibody used 

was donkey anti-rabbit (1:5,000; Jackson ImmunoResearch, West Grove, PA). 

Densitometry was performed using ImageJ 1.47v software (NIH). 
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Dot Blots 

The specificity of the Ubf1 antibody for Nα-acetyl MYL9 was validated by performing 

dot blots. 2 μg of unmodified, Nα-acetyl, Nα-methyl, and Nα-trimethyl  MYL9 synthetic 

peptides (AnaSpec) were spotted onto a nitrocellulose membrane and then blotted with 

Ubf1 (1:1000) followed by donkey anti-rabbit (1:5,000) secondary antibody. 

 

Immunoprecipitation 

 Protein lysates from control, WT, or SSQ MYL9-FLAG expressing NIH3T3 cells 

were incubated with 20 μl of M2 anti-FLAG beads (Sigma Aldrich) overnight at 4 ⁰C. 

Beads were washed with 0.1% NP40 (IBI Scientific, Peosta, IA) before eluting 

precipitated proteins in 40 μl of 5x Laemmli sample buffer at 90 ⁰C for 5 minutes. Two 

SDS-PAGE gels were loaded with the eluate and Western blotting was performed for 

total FLAG and Nα-acetyl MYL9. 20 μl of inout lysate was also resolved by SDS-PAGE 

and blotted for FLAG and GAPDH. 

 

Real time PCR analysis 

 Cells were lysed in TRIzol (Life Technologies) and RNA was then extracted in 

chloroform, pelleted in isopropanol, and washed with ethanol. The SuperScript First-

Strand Synthesis System (Life Technologies) was used to generate cDNA. SYBR Green 

PCR Master Mix (BioRad, Herculaes, CA) was used to detect cDNA amplification on a 

CFX96 Touch Real-Time PCR Detection System (BioRad). Transcript expression levels 

were compared using the ∆∆CT quantification method, with GAPDH serving as a 
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control. Melt curves were performed to confirm the presence of single reaction products. 

Primers (Integrated DNA Technologies, Coralville, IA) used were:  

ICAM1 forward 5’-GTAGCAGCCGCAGTCATAAT-3’ 

ICAM1 reverse 5’-GGGCCTGTTGTAGTCTGTATTT-3’ 

GAPDH forward 5’-ACAGCCTCAAGATCATCAGCAA-3’ 

GAPDH reverse 5’-CCATCACGCCACAGTTTCC-3’. 

 

Immunofluorescence 

 Dendra2 or MYL9-Dendra2 expressing HCT116 cells were analyzed for MYL9 

cellular compartmentalization either before or 1 hour post-TNFα treatment. Cells were 

fixed with 4% paraformaldehyde, permeabilized with 0.3% Triton X-100, and blocked 

with 3% BSA. Mouse anti-Dendra2 primary antibody (1:150; Origene, Rockville, MD) 

followed by Alexa Fluor 488 conjugated goat anti-mouse secondary antibody (1:2,000; 

Invitrogen) was used to detect MYL9-Dendra2 or Dendra2 alone. Cells were 

counterstained with Hoechst (1:50,000; AnaSpec). Imaging was performed on a Cytation 

5 cell imaging multi-mode reader with a 40x objective and image analysis was performed 

using Gen5 software (BioTek). Total Dendra2 signal was quantified by the sum green 

fluorescence intensity of images. To quantify nuclear Dendra2, the sum green 

fluorescence intensity overlapping with Hoechst signal was quantified. 

 

Chromatin immunoprecipitation 

 Control and WT, SPK, or SSQ MYL9-FLAG expressing HCT116 cells were 

treated with TNFα for 1h. Cells were cross-linked with 1% formaldehyde, resuspended in 



 

68 
 

lysis buffer, and sonicated to fragment DNA. 10% of total sheared lysate was saved as an 

input sample. MYL9-FLAG was then immunoprecipitated from lysates using M2 anti-

FLAG beads (Sigma Aldrich) that were pre-blocked in herring sperm DNA. After 

immunoprecipitation, beads were washed and bound material was eluted. De-crosslinking 

was performed by incubating with 5M NaCl. Eluates were then treated with RNase A and 

proteinase K. The remaining immunoprecipitated DNA was isolated using a Qiagen PCR 

purification kit (Qiagen) and resuspended in TE buffer. Input samples were processed 

alongside ChIP samples after elution. Equal amounts of purified DNA were amplified by 

PCR and analyzed by running on 2% agarose gels. PLK-1 served as a control for non-

specific DNA binding. Primers for the PLK-1 (Integrated DNA Technologies) and 

ICAM1 (Invitrogen) promoters were as follows: ICAM1 forward 5’-

CGCCCGATTGCTTTAGCTTG-3’, ICAM1 reverse 5’-

GGCTGAGGTTGCAACTCTGA-3’, PLK-1 forward 5’-

GGTTTGGTTTCCCAGGCTAT-3’, and PLK-1 reverse 5’-

GCTGGGAACGTTACAAAAGC-3’. 

 

Statistical Analyses 

 Statistics were performed with GraphPad Prism 7 software. For experiments 

involving the comparison of only two groups, a two-tailed Student’s t-test was 

performed. For experiments involving the comparison of three or more groups, one-way 

ANOVA was performed with Tukey’s test for multiple comparisons between all groups. 

For experiments involving comparison of three or more groups at multiple time points, 

two-way random measures ANOVA with Tukey’s multiple comparisons test between all 
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groups was performed. For experiments involving comparison of three or more groups 

under two conditions, regular two-way ANOVA with Bonferroni’s multiple comparisons 

test between all groups was performed. All error bars shown represent standard deviation.
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Figure 3 WT MYL9 is a substrate of both NRMT1 and NatA, while MYL9 mutants 

can be either N-acetylated or N-methylated. A) WT MYL9 (SSK) has been found 

in Nα-methylated and Nα-acetylated forms. The S3P (SPK) MYL9 mutant is Nα-

methylated, and the K4Q (SSQ) MYL9 mutant is Nα-acetylated. In vivo, the initiator 

methionine of WT MYL9 is cleaved to reveal the N-terminal sequence shown.  B-G) In 

vitro methyltransferase and acetyltransferase assays were performed to determine the Km 

of NRMT1 or NAA10 (the catalytic subunit of NatA) when using peptides corresponding 

to the 14 N-terminal amino acids (after Met cleavage) of WT and mutant MYL9 as 

substrates. B) The Km of NRMT1 with WT (SSK) MYL9 was determined to be 28.8 μM. 

C) NAA10 with WT (SSK) MYL9 had a Km of 0.7 μM. D) SPK MYL9 was confirmed 

to be a preferred substrate of NRMT1 with a Km of 0.7 μM. E) NAA10 showed no 

activity with SPK MYL9 up to 40 μM. F) SSQ MYL9 was not a substrate of NRMT1, 

showing no activity up to 160 μM. G) The Km of NAA10 with SSQ MYL9 was 5.0 μM. 

n=3 for all experiments. All error bars represent standard deviation. 
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Figure 4 The half-life of MYL9 is not altered by Nα-PTMs. A-E) HEK293T cells 

were transduced with MYL9-Dendra2 or Dendra2 fluorescent protein alone. Dendra2 

was photoconverted from green to red by exposure to UV light. Protein half-life was 

tracked by measuring RFP signal every 4 hours for 48 hours. A) Fluorescence images of 

cells expressing Dendra2 alone. B) The sum fluorescence intensity of Dendra2 only 

expressing cells is plotted over 48 hours. Individual cells show decreased RFP intensity 

as cell division occurs, but the sum intensity over the field of view remains constant. C) 

Fluorescent images of cells expressing WT or mutant MYL9-Dendra2 out to 24 hours. 

D,E) Fluorescent decay for WT, SPK, and SSQ MYL9 was plotted and fit to a model of 

one-phase exponential decay. SPK and SSQ MYL9 were each fit to an individual model 

of decay and a model of decay shared with WT MYL9. Individual and shared fit models 

were then evaluated by an extra sum-of-squares F test. For both SPK and SSQ MYL9 it 

was determined that a shared model of decay with WT MYL9 was as effective as an 

individual model, indicating no effect on stability. The half-life of MYL9 was determined 

to be 16.4 hours. Scale bars are 100 μm. n=3-4 for all experiments. All error bars 

represent standard deviation. 
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Figure 5 Loss of MYL9 Nα-methylation increases cell spreading on fibronectin. A) 

NIH 3T3 mouse fibroblasts were plated in chamber slides coated with 3 μg/cm2 

fibronectin and cell spreading was monitored as a measure of cytoskeletal rearrangement. 

Cells were imaged every 15 minutes for 1 hour. Non-transduced control cells and cells 

expressing WT or SPK MYL9 all showed comparable, modest cell spreading over 1 

hour. Cells expressing the Nα-methylation deficient SSQ mutant of MYL9 showed 

considerable cell spreading, with lamellipodia and filopodia (black arrows) readily 

observable. Scale bar is 100 μm. B) Cell spreading was quantified by measuring the cell 

surface area of the four largest cells per image at each time point. Each data point 

represents 12 cells measured over three independent experiments (n=3). Cells expressing 

SSQ MYL9 covered significantly greater area than all other cell lines at 45 (p<.01) and 

60 (p<.001) minutes as determined by two-way random measures ANOVA with Tukey’s 

multiple comparisons test (all measurements μm2; 45 min: Control – 96.7±6.1, WT 

MYL9 – 96.4±14.6, SPK MYL9 – 98.4±22.1, SSQ MYL9 – 154.1±25.2; 60 min: Control 

– 115.1±12.6, WT MYL9 – 113.6±18.7, SPK MYL9 – 113.0±28.9, SSQ MYL9 – 

188.3±30.0). C) Equal expression of MYL9 variants was confirmed through Western 

Blotting. FLAG was used as a measure of MYL9-FLAG expression. GAPDH was used 

as a loading control. All error bars represent standard deviation. 
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Figure 6 The SSQ mutant of MYL9 does not show increased Nα-acetylation. A) To 

confirm that alterations in MYL9 function with the SSQ mutant are due to loss of Nα-

methylation and not an increase in Nα-acetylation, the degree of Nα-acetylation of WT 

and SSQ MYL9-FLAG was probed in NIH3T3 cells. Immunoblots (IB) from input lysate 

of GAPDH and FLAG are shown as a loading control and as a measure of MYL9-FLAG 

expression, respectively. MYL9-FLAG was immunoprecipitated (IP) with anti-FLAG 

beads and then the levels of total MYL9-FLAG and Nα-acetyl MYL9-FLAG were 

evaluated by Western blotting. Nα-acetylation was blotted for using a newly generated 

antibody raised against a synthetic Nα-acetyl MYL9 peptide. Nα-acetylation of MYL9 

did not increase with the SSQ mutant as compared to WT. B) A dot blot shows the 

specificity of the newly generated Nα-acetyl MYL9 antibody (Ubf1). Synthetic N-

terminal peptides of MYL9 that were unmodified (Unmod), Nα-acetylated (Ac), Nα-

methylated (Me), or Nα-trimethylated (Me3) were spotted onto a nitrocellulose 

membrane and then probed with Ubf1. Only the Nα-acetyl MYL9 peptide spot is 

detected by the Ubf1 antibody.  
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Figure 7 Nα-methylation limits the cytoskeletal activity of MYL9. A,B) HCT116 cells 

were transduced with WT or mutant MYL9-FLAG and transwell migration assays were 

performed. A) Western Blotting confirms that MYL9 variants were expressed at equal 

levels. -actin was used as a loading control. B) Only cells expressing the non-

methylatable SSQ MYL9 mutant showed significantly greater migration than non-

transduced control cells (p=.01), indicating enhanced cytoskeletal activity (Control – 

1.00, WT – 1.27±0.10, SPK – 1.52±0.25, SSQ – 1.81±0.26). C,D) To determine if 

phosphorylation of MYL9 is altered by Nα-PTM state, HCT116 cells transduced with 

WT or mutant MYL9-FLAG were treated with 0.1 uM calcimycin for 45 min to induce 

pS19, which promotes NMII cytoskeletal activity. C) Representative blot showing 

increased pS19 of the non-methylatable SSQ MYL9 mutant. FLAG blot used to 

determine total MYL9 protein levels. D) SSQ MYL9 had a significantly greater ratio of 

pS19 to total protein than SPK MYL9 (p<.05; WT – 0.30±0.06, SPK – 0.21±0.12, SSQ – 

0.58±0.13). E,F) To further test the role of Nα-methylation in the phosphorylation of 

MYL9, control and NRMT1 KO HCT116 cells were transduced with WT MYL9-FLAG 

and treated with calcimycin. E) Representative blot showing increased pS19 WT MYL9 

in cells that lack Nα-methylation (Me3). F) WT MYL9 in NRMT1 KO cells had a 

significantly greater ratio of pS19 to total protein than WT MYL9 in control cells 

(p<.005; Control – 0.47±0.01, NRMT1 KO – 0.81±0.08). One-way ANOVA with 

Tukey’s multiple comparisons test was used for analysis of results in B and D. Results in 

F were analyzed by a Student’s two-tailed t-test. n=3 for all experiments. All error bars 

represent standard deviation. 
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Figure 8 Nα-methylation promotes the transcriptional activity of MYL9. A) HCT116 

cells transduced with WT or mutant MYL9-FLAG were treated with 20ng/ml TNFα for 2 

hours before ICAM1 transcript levels were measured by qPCR. Cells expressing the Nα-

methylation enriched SPK mutant of MYL9 show significantly greater transcription of 

ICAM1 than all other TNFα stimulated cell lines. Results are shown as fold-change 

compared to untreated, non-transduced cells, and one-way ANOVA with Tukey’s 

multiple comparisons test was performed for statistical analysis (p<.001; Control – 

9.03±1.50, WT – 6.35±1.36, SPK – 23.71±3.21, SSQ – 4.18±1.23). B) Control and 

NRMT1 KO HCT116 cells were transduced with SPK MYL9-FLAG, treated with TNFα, 

and ICAM1 transcript levels were measured. The induction of ICAM1 transcription by 

SPK MYL9 was significantly decreased in methylation-deficient NRMT1 KO cells. 

Results are shown as fold-change compared to treated control cells, and a Student’s two-

tailed t-test was performed for statistical analysis (p<.005; Control – 1.00, NRMT1 KO – 

0.46±0.11). C) To test if Nα-methylation promotes nuclear localization, WT and mutant 

MYL9-Dendra2 proteins were transduced into HCT116 cells and treated with TNFα. 

Cells were fixed at 0h and 1h post-TNFα treatment, and the nuclear/total MYL9-Dendra2 

ratio was calculated. All MYL9-Dendra2 protein variants showed equal increases in 

nuclear localization after TNFα treatment (p<.05). Control Dendra2 protein showed no 

change in localization upon treatment. Two-way ANOVA with Bonferroni’s multiple 

comparisons test was used for analysis of results (Dendra2-only No Tx – 0.59±0.01, 

TNFα - 0.58±0.01; WT No Tx – 0.41±0.005, TNFα - 0.50±0.04; SPK No Tx – 

0.42±0.03, TNFα - 0.50±0.01; SSQ No Tx – 0.41±0.005, TNFα - 0.48±0.005). Scale bars 

are 100 μm. D) To test if Nα-methylation promotes MYL9 binding to the ICAM1 
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promoter, HCT116 cells were transduced with WT or mutant MYL9-FLAG, treated with 

TNFα for 1h, and promoter binding was analyzed by ChIP. The PLK promoter served as 

an off-target control sequence. Immunoprecipitated DNA was analyzed by PCR 

amplification and analysis on an agarose gel. The Nα-methylation enriched SPK MYL9-

FLAG mutant was the only protein to result in detectable enrichment of the ICAM1 

promoter sequence over input. n=3 for all experiments. All error bars represent standard 

deviation.
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CHAPTER III 

WORKING MODEL, SUPPLEMENTARY EXPERIMENTS,  

AND FUTURE DIRECTIONS 

 

Working Model 

 Chapter II described the first study of the coordinated biological regulation of a 

protein, MYL9, by Nα-methylation and Nα-acetylation. The literature described in 

chapter I served as a starting point from which to form hypotheses and ask questions 

about the biochemical and functional impact of these modifications on MYL9. This 

literature indicated that MYL9 has distinct cytoplasmic (Heissler and Sellers 2014) and 

nuclear (Li and Sarna 2009, Zhang, Liu et al. 2015) roles, the regulation of which is 

poorly understood. We found that, matching the nuclear compartmentalization of NRMTs 

(Tooley and Schaner Tooley 2014), Nα-methylation both promotes the nuclear function 

of MYL9 and blocks its cytoplasmic activation (Figure 9). Nα-methylation led to 

increased binding at the core promoter of ICAM1 and upregulated transcription of this 

gene in response to TNFα. This fits with previous studies of Nα-methylation, which have 

shown that this modification promotes protein-DNA interactions (Chen, Muratore et al. 

2007, Tooley, Petkowski et al. 2010, Cai, Fu et al. 2014). The literature also described 

abundant instances of interaction between internal residue methylation with 

phosphorylation (Biggar and Li 2015). We found such an interaction between Nα-

methylation of MYL9 and serine 19 phosphorylation. Nα-methylation decreased 
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phosphorylation at S19, presumably simultaneously reducing NMII activation, as this 

corresponded with decreased rates of cell spreading and migration, processes that require 

NMII driven actin filament rearrangement (Vicente-Manzanares, Ma et al. 2009). 

 In our studies, Nα-acetylation was not required to promote MYL9 cytoplasmic 

functions. As indicated by our current working model (Figure 9), this has led to a new 

hypothesis that Nα-acetylation may function to regulate the availability of MYL9 for Nα-

methylation. This hypothesis is based on the cytoplasmic localization of NATs and their 

ability to associate with the ribosome and catalyze co-translational modification of 

substrates (Starheim, Gevaert et al. 2012). Dual substrates of NATs and NRMTs, such as 

MYL9, are available for Nα-acetylation before they localize to the nucleus and are 

available for Nα-methylation (Aksnes, Drazic et al. 2016). As such, Nα-acetylation of 

MYL9 may serve to limit the pool of MYL9 that is available to be recruited for 

specialized nuclear function by Nα-methylation. Regulation of MYL9 by Nα-acetylation 

in this way would help to ensure that adequate pools of MYL9 are always available for its 

primary role as a regulator of NMII activity. 

 

Supplementary Experiments 

 The above studies addressed the roles of Nα-acetylation and Nα-methylation on 

MYL9 stability and interaction with DNA. The literature reviewed in chapter I, however, 

also describes/predicts roles for Nα-acetylation and Nα-methylation in regulating protein-

protein interactions. We sought to address how these interactions may fit into our 

working model of MYL9 regulation by Nα-PTMs and have begun several preliminary 

experiments to answer this question. 
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 Protein-protein interactions occur at sites of internal residue acetylation and 

methylation on both histone and non-histone proteins (Zhang, Wen et al. 2012, Zhang, 

Cooper et al. 2015). ‘Reader’ proteins contain conserved domains that recognize and bind 

these modified residues (Taverna, Li et al. 2007). To date, no conserved domains that 

recognize Nα-methylation or Nα-acetylation have been described. Several instances of 

protein-protein interactions have been described that directly involve acetylated N-

termini, but such interactions have yet to be experimentally demonstrated for methylated 

N-termini. One pressing question is if known reader domains of internal methylation and 

acetylation can also recognize alpha-amino modifications. 

 To address whether any known reader domains recognize and bind the methylated 

or acetylated alpha-amino group of MYL9, an in vitro binding screen was performed. 

Experiments were carried out at the MD Anderson Protein Array and Analysis Core 

under the direction of Dr. Mark Bedford. Arrays of recombinant methyl or acetyl reader 

domains were immobilized on chips using an Aushon 2470 Arrayer. The methyl reader 

array consisted of 104 unique domain constructs (Figure 10A) and the acetyl reader array 

consisted of 30 unique domain constructs (Figure 10B). Biotinylated N-terminal peptides 

of MYL9 were synthesized and flowed over the reader chips. Unmodified, mono, and tri 

methylated MYL9 peptides were tested for binding on the methyl reader array. 

Unmodified and acetylated MYL9 peptides were tested for binding on the acetyl reader 

array. Peptides that bound reader domains were then detected using streptavidin-

AlexaFluor488 and visualized using a Molecular Probes GenePix 4400A MicroArray 

Scanner. 



 

86 
 

 No known methyl or acetyl reader domains (except two “sticky” domains that 

commonly show non-specific hydrophobic interactions with peptides; unpublished data, 

Dr. Mark Bedford) showed affinity for modified MYL9 peptides (Figure 10C, D). 

Domain families tested with the methyl reader array included Tudor, PHD, chromo, 

PWWP, MBT, AGENET, and BAH. The acetyl reader array tested the bromo and 

YEATS domain families. Together, these represent a thorough screen of known 

methylation and acetylation binding modules (Gardner, Allis et al. 2011). Similar in vitro 

reader domain and peptide arrays have helped to decipher the histone code and have also 

been utilized to find novel non-histone protein-protein interactions (Espejo, Cote et al. 

2002, Shanle, Shinsky et al. 2017), showing the validity of this method. For that reason, it 

is likely that Nα-methylated and Nα-acetylated MYL9 are not being read by previously 

described domains. While this result is specific to MYL9, it seems possible that it may 

hold true for Nα-PTMs in general, as the N-terminal α-amine presents a considerably 

different steric environment than is found at the ε-amine of lysine or at the guanidino 

group of arginine. In addition, the affinity of reader domains for internal modifications 

can be influenced by neighboring residue identity (Taverna, Li et al. 2007), highlighting 

the importance of protein sequence context in these interactions. Nα-PTMs present a 

unique sequence context as compared to all internal PTMs, and this may play a role in the 

lack of binding observed in our study. 

 It is quite possible that unique protein domains specifically recognize and bind 

Nα-methylation and Nα-acetylation. To test this hypothesis for MYL9, I performed an 

unbiased pull-down screen for modification-specific interactors in HEK293 cells using 

stable isotope labeling of amino acids in cell culture (SILAC) LC-MS/MS. Briefly, cells 
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were grown in normal media (light) or media supplemented with 13C labeled lysine 

(heavy) for 8 passages. This resulted in 98.9% incorporation of isotopically labeled lysine 

into proteins of cells grown in heavy media as determined by LC-MS/MS. For pull-

downs, synthetic 14 amino acid N-terminal peptides of MYL9 were synthesized in an 

unmodified, Nα-acetylated, Nα-monomethylated, and Nα-trimethylated state. All 

peptides were synthesized with a C-terminal biotin moiety, allowing them to be linked to 

M280 streptavidin Dynabeads. Pulldowns with unmodified MYL9 peptide were 

performed using protein lysate harvested from cells grown in light media. Separate 

pulldowns were performed with acetylated, monomethylated, or trimethylated MYL9 

peptides using heavy isotope labeled protein lysate. Each pull-down was performed with 

20 μg of peptide and 300μg of protein lysate. After pull-downs, beads were washed and 

then bound protein was eluted in Laemilli buffer. For analysis, elutions from each 

modified peptide pull-down were mixed with an elution from an unmodified peptide 

pulldown. This generated three samples that each contained light proteins that interacted 

with unmodified MYL9 and heavy proteins that interacted with one of the forms of 

modified MYL9, allowing for a quantitative comparison of interactors based on 

modification state. Samples were then resolved by SDS-PAGE, in-gel trypsin digested, 

and subjected to LC-MS/MS using a NanoAcquity HPLC system interfaced to a 

ThermoFisher Q Exactive mass spectrometer. LC-MS/MS and subsequent data analysis 

were performed by MS Bioworks. 

 Each sample yielded approximately 1,300 protein identifications, with 1,611 total 

proteins identified across all three sample pairs. Only proteins that had a SILAC ratio 

(peptides identified in both light and heavy states) were included for further analysis, 



 

88 
 

resulting in approximately 650 proteins per sample pair. Interactions of interest were 

further selected by setting a cut-off of a three-fold change in the SILAC ratio 

(0.33>heavy/light>3). Interestingly, all modification states of MYL9 predominantly 

reduced protein-protein interactions and this was particularly evident for monomethylated 

and trimethylated MYL9 (Figure 11A). Because we were interested in identifying readers 

of Nα-PTMs, I selected 3 of the 8 candidate interactors that showed increased binding to 

modified MYL9 (increased heavy/light ratio) for further validation by peptide pull-downs 

followed by Western blot. These included the proteasomal subunit PSMD7, the 7SK 

snRNP subunit HEXIM2, and the adapter protein 14-3-3 σ (Figure 11B). Contrary to the 

SILAC results, PSMD7 and HEXIM2 each showed equal binding to all forms of the 

MYL9 peptide by Western blotting, while 14-3-3 σ failed to show detectable binding to 

any of the MYL9 peptides (Figure 11C). These results indicate that the small number of 

enhanced binding interactions seen with modified MYL9 as compared to unmodified 

MYL9 may have been artefactual. 

 Mono and trimethylated MYL9 peptides each showed approximately 300 

downregulated interactions in the SILAC pulldown screen as compared to unmodified 

MYL9 peptide (Figure 11A). Meanwhile, acetylated MYL9 peptide only showed 22 

downregulated protein interactions as compared to unmodified MYL9 peptide (Figure 

11A). This suggests that the blocking of protein-protein interactions, as opposed to 

promoting of protein-protein interactions, may be an important regulatory feature of 

MYL9 Nα-methylation. To initially confirm the SILAC screen findings concerning 

downregulated interactions, the interaction of Cofilin-1, a regulator of actin 

polymerization, with MYL9 peptides was evaluated by peptide pull-down and Western 
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blot. Cofilin-1 showed just over 2-fold reduction in binding to mono and trimethylated 

MYL9 peptides as compared to unmodified MYL9 (Figure 11C), supporting the SILAC 

screen result (Figure 11D). 

 The large number of interactions downregulated by Nα-methylation of MYL9 

was initially perplexing. However, functional studies of MYL9 Nα-PTMs showed that 

methylation blocked the cytoplasmic functions of MYL9, specifically those of migration 

and cell spreading, while favoring its nuclear function as a transcriptional activator 

(chapter II). This raises the possibility that Nα-methylation partitions a pool of MYL9 for 

nuclear rather than cytoplasmic activity in part by blocking protein interactions necessary 

for cytoplasmic function. This is an intriguing possibility, as compartmental-specific 

functional roles were observed for Nα-methylated MYL9 but no corresponding alteration 

in cellular localization was seen. An increase in protein-DNA interactions was shown to 

facilitate the nuclear function of Nα-methylated MYL9. As such, regulation of molecular 

interactions, including protein-protein interactions, may explain how compartmental 

specific roles are regulated by Nα-PTMs despite the lack of strict compartmental 

localization. It will be interesting to see if further downregulated interactions are 

confirmed and if these are functionally related to the blocking of MYL9’s cytoplasmic 

activity. 

 

Future Directions 

 Blocking of MYL9 protein-protein interactions by Nα-methylation could 

potentially elucidate the mechanism behind the decrease in S19 phosphorylation 

associated with this modification. Decreased affinity of S19 kinases for Nα-methylated 
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MYL9 would lead to decreased S19 phosphorylation. However, these particular 

interactions would not be identified by the above SILAC screen, as the pulldown peptides 

only corresponded to the first 14 amino acids of MYL9. Additionally, kinase-substrate 

interactions are difficult to capture by pulldown and co-immunoprecipitation techniques 

because of the transient nature of these interactions. For this reason, in vitro enzyme 

assays that evaluate the ability of kinases, such as MLCK or ROCK, to modify an Nα-

methylated MYL9 peptide would provide a viable first step to follow-up on this 

mechanism. If kinase activity was seen to be decreased by MYL9 Nα-methylation, the 

role of protein-protein interactions in this could be further investigated through the use of 

biophysical methods, such as isothermal titration calorimetry. An alternative mechanism 

could be the altered interaction of MYL9 with serine/threonine phosphatases. Nα-

methylation favoring an interaction of MYL9 with the phosphatase MLCP at serine 19 

would explain the effect on phosphorylation observed, but this does not fit with the 

SILAC screen findings that show Nα-methylation as predominantly blocking protein-

protein interactions. 

 To fully understand how Nα-acetylation and Nα-methylation regulate MYL9, it 

will be important to gain a better understanding of the occurrence of these modifications. 

It would be of great interest to know if the relative ratio of unmodified, Nα-acetyl, and 

Nα-methyl MYL9 is constant or shows variation by cell type, tissue, or through 

development. The functional diversity of NMII in humans is increased by the expression 

of three distinct isoforms, each of which have small but important differences in 

functionality (Betapudi 2014). This is highlighted by the fact that NMIIA KO in mice is 

lethal at embryonic day 6.5 (E6.5) (Conti, Even-Ram et al. 2004), while NMIIB KO is 



 

91 
 

lethal at E14.5 (Tullio, Accili et al. 1997, Tullio, Bridgman et al. 2001), and mice with 

NMIIC KO can live into adulthood (Ma, Jana et al. 2010). Additionally, NMII isoform 

expression varies by cell type, and isoforms have been shown to participate in distinct 

cellular functions (Newell-Litwa, Horwitz et al. 2015). The Nα-PTMs of MYL9 may 

similarly function to increase NMII functional diversity in subtle but significant ways. 

Characterizing the Nα-PTM state of MYL9 in numerous settings would be an invaluable 

tool for generating hypotheses related to the function of these modifications. 

 We attempted to quantify the relative ratio of unmodified, Nα-methylated, and 

Nα-acetylated MYL9 in HEK293 cells through mass spectrometry. However, the ability 

to quantify the abundance of MYL9 Nα-PTMs proved to be technically limited by the 

ability to detect the N-terminal peptide with enough abundance to generate reliable 

comparisons between Nα-PTM states. Immunoaffinity enrichment for a particular Nα-

PTM state, such as by using the Ubf1 Nα-acetyl MYL9 antibody, could be used to 

increase the detection of the N-terminal peptide, but this methodology would not 

facilitate the quantitative comparison of multiple Nα-PTM states. This method could, 

however, be employed to track how the abundance of a single Nα-PTM varies across 

conditions, such as through development or in a disease setting. 

 A key question regarding protein regulation by Nα-PTMs is if these modifications 

are dynamic and reversible. To date, no erasers of Nα-methylation or Nα-acetylation have 

been identified. This is surprising given that protein methylation and acetylation 

occurring on internal residues are subject to removal by a number of eraser enzymes 

(Gardner, Allis et al. 2011, Choudhary, Weinert et al. 2014, Biggar and Li 2015). The 

presence of erasers allows the regulatory impact of these internal modifications to be 
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reversed, creating a tunable system for protein regulation that involves a balance between 

the activity of writers and erasers (Torres and Fujimori 2015). It is quite possible that 

erasers of Nα-methylation and Nα-acetylation exist but have yet to be identified. The 

occurrence of Nα-methylation was first recognized in the 1970s (Pettigrew and Smith 

1977), but the responsible enzymes were not identified until 2010 (Tooley, Petkowski et 

al. 2010). 

 The presence of a Nα-PTM erasers could be assayed for by testing for activity in 

cell lysate fractions. Such a method was employed in the identification of NRMT1 

(Tooley, Petkowski et al. 2010). The eraser identification assay would involve producing 

pre-modified recombinant proteins and then incubating them with cell fractions separated 

by chromatography. Pre-modified proteins could be generated using a yeast protein 

expression system that also overexpresses an Nα-PTM modifying enzyme (Johnson, 

Geeves et al. 2013). Enzymatic removal of Nα-PTMs could be assayed for after 

incubation with cell fractions through the use of subtiligase. Subtiligase is an engineered 

enzyme that can be employed to ligate biotin to free protein alpha-amino groups (Wiita, 

Seaman et al. 2014), and it has previously been used to detect changes in the abundance 

of Nα-acetylation (Yi, Pan et al. 2011). A cell fraction that has eraser activity would 

result in an increase in free alpha-amino termini and subsequent biotinylation by 

subtiligase. Western blotting and detecting of biotin with streptavidin-HRP could be used 

to analyze changes in the abundance of free alpha amino termini and thus cell fractions 

that show eraser activity. To avoid an increase in signal from contaminants in the cell 

fraction, the pre-modified recombinant protein could be C-terminally tagged, allowing for 

this test protein to be immunopurified before analysis. This methodology has the 
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advantage of being applicable to the search for erasers of any Nα-PTM, with the 

selectivity of the assay being determined by the modification placed on the recombinant 

test protein. It is also independent from the need of modification-specific antibodies for 

each substrate/PTM pair tested. 

 The possibility that erasers of Nα-methylation and Nα-acetylation are not present 

must also be considered. In this scenario, proteins would be stably Nα-modified until 

degradation. As such, one possibility is that the regulatory nature of Nα-PTMs is to stably 

increase protein functional diversity, creating pools of biochemically distinct proteins 

from a single gene product. In this model, non-reversible PTMs can be conceptually 

likened to alternative splicing, which is capable of producing distinct protein isoforms 

from a single gene. Whether Nα-methylation and Nα-acetylation prove to be stable or 

reversible modifications remains to be seen. 

 As was described in the current working model, it is likely that the degree to 

which MYL9 is Nα-acetylated is a determinant of the abundance of its Nα-methylation. 

This would be especially true if the modifications are static and there are no Nα-erasers. 

Interplay between the occurrence of these modifications, in which one Nα-PTM blocks 

the availability of the alpha-amino group for the opposing modification, has implications 

for the regulation of MYL9 and other dual modified substrates in a number of scenarios. 

Metabolic state is linked to the global occurrence of protein acetylation through 

fluctuation of acetyl-CoA levels (Choudhary, Weinert et al. 2014). Acetyl-CoA is an 

essential cofactor employed by acetyltransferases and is also a key metabolic 

intermediate in glycolysis and fatty acid β-oxidation (Lin, Su et al. 2012). Glucose 

availability has been shown to impact histone acetylation in a manner that requires ATP-
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citrate lyase, which converts glucose derived citrate into acetyl-CoA, establishing a link 

between carbon source utilization and the enzymatic deposition of protein acetylation 

(Wellen, Hatzivassiliou et al. 2009). A link between acetyl-CoA levels and Nα-

acetylation of apoptotic proteins was shown in several mammalian cell lines, establishing 

that NAT activity is also sensitive to metabolic state (Yi, Pan et al. 2011). The link 

between acetyl-CoA availability and Nα-acetylation has been suggested to alter cell 

biology in both normal development and cancer transformation as metabolic profiles shift 

during these processes (Silva and Martinho 2015). The occurrence of substrates that are 

dual targets of NATs and NRMTs suggests that metabolic alterations that impact 

acetylation levels will have an inverse effect on methylation levels. How metabolism 

impacts the interplay of Nα-acetylation and Nα-methylation and ultimately protein 

regulation will be an important area of continued research. 

 The relevance of interplay between Nα-acetylation and Nα-methylation extends 

beyond metabolite availability. Several disorders are associated with mutations in NatA. 

Children with the X-linked lethal disorder Ogden syndrome harbor a causal S37P 

mutation in NAA10, the catalytic subunit of NatA (Rope, Wang et al. 2011). This 

mutation results in a reduction in the degree of Nα-acetylation of NatA substrates, 

leading to severe global developmental delays (Van Damme, Stove et al. 2014, 

Myklebust, Van Damme et al. 2015). Additional mutations in NAA10, including R116W, 

R83C, and F128L cause disorders that are characterized by intellectual disabilities and 

developmental delays (Rauch, Wieczorek et al. 2012, Saunier, Stove et al. 2016). The 

pathology of these disorders is associated with Nα-acetylation deficiency, but the 

mechanistic consequences of this deficiency are not understood at the substrate level. It 
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would be of great interest to know if disease-associated NatA mutations that lead to a loss 

of Nα-acetylation also result in a subsequent increase in Nα-methylation. Studies that 

address this question would contribute to a mechanistic understanding of protein 

dysregulation in NAT disorders. 

 Numerous cancers are associated with dysregulated expression of MYL9 or its 

upstream kinases (Newell-Litwa, Horwitz et al. 2015), showing that precise regulation of 

MYL9 is crucial to proper cell function. Additionally, altered expression of both NRMTs 

and NATs are found in cancers, but their mechanistic contribution to disease progression 

is not yet understood. NRMT expression is low in testicular and breast cancers, but high 

in colorectal cancers and lymphoma (Tooley and Schaner Tooley 2014). Supporting a 

mechanistic role for NRMT in cancer progression, tumorigenesis was greatly favored by 

NRMT1 KD in a breast cancer xenograft study using MCF-7 cells (Bonsignore, Butler et 

al. 2015). NatA has been found overexpressed in both colorectal and breast cancer 

(Kalvik and Arnesen 2013), and NatA overexpression has been shown to be sufficient to 

drive transformation in lung and colorectal cells (Ren, Jiang et al. 2008, Lee, Ou et al. 

2010). Clearly, precise regulation of MYL9, Nα-methylation, and Nα-acetylation are all 

required for proper cell function. As such, understanding the specific regulation of MYL9 

by Nα-methylation and Nα-acetylation, and how this regulation is altered in disease, is 

likely to provide novel insights into disease related mechanisms. 

 In this dissertation, I first demonstrated that, contrary to current models, neither 

Nα-acetylation nor Nα-methylation affect the half-life of MYL9.  I then went on to show 

that Nα-PTMs regulate the distinct functions of MYL9 in the cytoplasm and nucleus. Nα-

methylation favors the specialized function of MYL9 as a transcription factor in the 
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nucleus by promoting its interaction with the ICAM1 promotor. Simultaneously, Nα-

methylation limited MYL9 phosphorylation at serine 19, leading to decreased 

cytoskeletal activity. Preliminary data also indicates that Nα-methylation may block 

protein-protein interactions of MYL9 to regulate this functional switch. Though Nα-

methylated and Nα-acetylated forms of MYL9 were seen to be functionally distinct, the 

role of Nα-acetylation remains unclear. I propose a model in which Nα-acetylation 

governs the degree to which MYL9 is available for Nα-methylation. Such an interplay 

between Nα-acetylation and Nα-methylation would have large ramifications for both 

normal cell biology and in multiple disease settings. In all, I have shown that Nα-

methylation and Nα-acetylation are distinct and important regulators of MYL9 function. 

In addition to further studying the role of these modifications for MYL9, the regulatory 

paradigms I have described should guide future studies of other dual NRMT and Nat 

substrates. Conducting further substrate level studies of protein regulation by Nα-PTMs 

will be key to understanding how these modifications contribute to cellular function and 

disease.
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Figure 9 Nα-methylation facilitates the nuclear function of MYL9 by both blocking 

its cytoplasmic activation and favoring its interaction with DNA. MYL9 

predominantly functions in the cytoplasm as a regulator of cytoskeletal dynamics through 

its association with non-muscle myosin II. Nα-methylation of MYL9 was found to 

decrease its phosphorylation at serine 19, a crucial activating PTM, while simultaneously 

leading to a decrease in cell spreading and migration, functions that require active 

cytoskeletal rearrangement. In the nucleus, Nα-methylation of MYL9 led to increased 

binding to the ICAM1 promoter and transcription of the ICAM1 gene. Taken together, 

these results show that Nα-methylation favors a specialized nuclear activity of MYL9 by 

both blocking its canonical functions and promoting its interaction with DNA. Nα-

acetylation of MYL9 was not required for the functions examined. Because Nα-

acetylation can occur co-translationally, this modification may serve to block the Nα-

methylation of MYL9 and as such limit the pool of MYL9 that is available for 

recruitment to nuclear function. 
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Figure 10 Known methyl and acetyl reader domains do not bind Nα-PTMs. 

Recombinant methyl (A) and acetyl (B) reader domains were immobilized on a 

microarray chip. C,D) Biotinylated unmodified and modified peptides of MYL9 were 

flowed over the microarray. Bound peptide was detected with streptavidin-AF488. Nα-

PTMs of MYL9 were not specifically bound by any of the tested reader domains. C) 

Non-specific binding was observed for all forms of MYL9 peptide to the Tudor domain 

from the LBR protein (chip 4, positions 2 and 9). This protein module is recognized as 

consistently undergoing non-specific interactions (unpublished data, Dr. Mark Bedford). 
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Figure 11 SILAC screen identifies Nα-methylation as an inhibitor of MYL9 protein-

protein interactions. Synthetic peptides of MYL9 that were unmodified, or alpha-amino 

acetylated, monomethylated, or trimethylated were used to pulldown interactors from 

light or heavy isotope labeled HEK293 protein lysates. Each modified MYL9 pulldown 

was combined with an unmodified MYL9 pulldown and changes in interactions were 

quantified by SILAC LC-MS/MS. A) Few increases in interactions were seen with any 

modification of MYL9. Notably, both mono and trimethylation led to widespread 

blocking of interactions. B) Several proteins of interest that showed upregulated 

interaction with MYL9 modifications were selected for verification by Western blot. C) 

Western blots of pulldowns failed to confirm the increased interactions reported by the 

SILAC screen for PSMD7, HEXIM2, and 14-3-3 σ, indicating that the small number of 

increased interactions reported may be artefacts. D) Several proteins of interest that 

showed downregulated interaction with Nα-methylated MYL9 are highlighted. Both 

mono and trimethylation led to a large decrease in interactions with diverse proteins, 

including those associated with cytoskeletal and transcriptional regulation. A decrease in 

Cofilin-1 interaction with methylated MYL9 was confirmed by Western blotting (C).
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APPENDIX 

LIST OF ABBREVIATIONS 

 

53BP1 – P53-Binding Protein 1 

AKT – AKT Serine/Threonine Kinase 1 

APC/C – Anaphase Promoting Complex/Cyclosome 

CBP – CREB Binding Protein 

Cdc42 – Cell Division Cycle 42 

CENP-A – Centromere Protein A 

CENP-I – Centromere Protein I 

CENP-T – Centromere Protein T 

CoA – Coenzyme A 

CTBP2 – C-Terminal Binding Protein 2 

Cul1 – Cullin 1 

Cut9 – Cell Division Cycle 16 Homolog 

Dcn1 – Defective In Cullin Neddylation 1 

DDB2 – Damage Specific DNA Binding Protein 2 

DNMT1 – DNA Methyltransferase 1 

Doa10 – ERAD-Associated E3 Ubiquitin-protein Ligase DOA10 

E2F1 – E2F Transcription Factor 1 
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EGF – Epidermal Growth Factor 

ELC – Essential Light Chain 

ER – Endoplasmic Reticulum 

FOXO1 – Forkhead Box O1 

HAT – Histone Acetyltransferase 

Hcn1 – Anaphase-Promoting Complex Subunit Hcn1 

HDAC1 – Histone Deacetylase 1 

HEXIM2 – Hexamethylene Bisacetamide Inducible 2 

Hyx – Cell Division Cycle 73 Homolog 

ICAM1 – Intercellular Adhesion Molecule 1 

KD – Knockdown 

KO – Knockout 

L3MBTL1 – Lethal (3) Malignant Brain Tumor-like Protein 1 

MDM2 – E3 Ubiquitin-protein Ligase Mdm2 

MHC – Myosin Heavy Chain 

MLCK – Myosin Light Chain Kinase  

MLCP – Myosin Light Chain Phosphatase 

MRE11 – Double-strand Break Repair Protein MRE11 

MYL9 – Myosin Regulatory Light Chain 9 

Nα-PTM – Alpha-amino Post-translational Modification 

NAA10 – N(Alpha)-Acetyltransferase 10, NatA Catalytic Subunit 

NAA15 – N(Alpha)-Acetyltransferase 15, NatA Auxiliary Subunit 

NAT – N-terminal Acetyltransferase 
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NatA – N-terminal Acetyltransferase A 

NRMT1 – N-terminal RCC1 Methyltransferase 1 

NRMT2 – N-terminal RCC1 Methyltransferase 2 

NF-κB – Nuclear Factor Kappa-B 

NMI – Non-muscle Myosin I 

NMII – Non-muscle Myosin II 

NURD – Nucleosome Remodeling and Deacetylase Complex 

p53 – Tumor Protein P53 

p65 – NF-Kappa-B Transcription Factor P65 

PCAF – p300/CBP Associated Factor 

PCP – Planar Cell Polarity 

PKC – Protein Kinase C 

PRC2 – Polycomb Repressive Complex 2 

PRMT – Protein Arginine Methyltransferase Family 

PSMD7 – Proteasome 26S Subunit, Non-ATPase 7 

Rac – Rac Family Small GTPase 

Rb – Retinoblastoma Protein 

RhoA – Ras Homolog Family Member A 

RLC – Regulatory Light Chain 

RNAPI – RNA Polymerase I 

RNAPII – RNA Polymerase II 

ROCK – Rho Associated Coiled-Coil Containing Protein Kinase 

RTK – Receptor Tyrosine Kinase 
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SAM – S-Adenosyl Methionine 

SETD2 – SET Domain Containing 2 

SMAD7 – SMAD Family Member 7 

SMURF1 – SMAD Specific E3 Ubiquitin Protein Ligase 1 

SMYD2 – SET And MYND Domain Containing 2 

TAF1 – TATA-Box Binding Protein Associated Factor 1 

TAR – Transactivation Response Element 

Tat – Transactivator of Transcription 

TEFb – Transcription Elongation Factor B 

TFIIB – Transcription Factor II B 

TFIID – Transcription Factor II D 

TGFβ – Transforming Growth Factor Beta 

THOC7 – THO Complex 7 

TNFα – Tumor Necrosis Factor Alpha 

TRIM24 – Tripartite Motif Containing 24 

Ubc12 – NEDD8-conjugating Enzyme UBC12 

VEGFR2 – Vascular Endothelial Growth Factor Receptor 2 

XDH – Xanthine Oxidase 

YAP – Yes Associated Protein 

ZIPK – Zipper Interacting Protein Kinase 
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