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ABSTRACT 

 
THE N-TERMINAL METHYLTRANSFERASE HOMOLOGS NRMT1 AND 

NRMT2 EXHIBIT NOVEL REGULATION OF ACTIVITY THROUGH 
HETEROTRIMER FORMATION 

 
Jon David Faughn 

 
June 26, 2018 

 
Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel 

substrates and catalytic activities.  Even within families and between homologs, it 

is becoming clear the intricacies of methyltransferase specificity and regulation 

are far more diverse than originally thought.  In addition to specific substrates 

and distinct methylation levels, methyltransferase activity can be altered through 

formation of complexes with close homologs.  This work involves the N-terminal 

methyltransferase homologs NRMT1 and NRMT2.  NRMT1 is a ubiquitously 

expressed distributive trimethylase. NRMT2 is a monomethylase expressed at 

low levels and in a tissue-specific manner.  They are both nuclear 

methyltransferases with overlapping target consensus sequences but have 

distinct enzymatic activities and tissue expression patterns.  Co-expression of 

NRMT1 with NRMT2 increases the trimethylation activity of NRMT1, and here I 

aim to understand how this occurs.  I used analytical ultracentrifugation to show 

that while NRMT1 primarily exists as a dimer and NRMT2 as a monomer, when 

co-expressed they form a heterotrimer.  I used co-immunoprecipitation and 

molecular modeling to demonstrate in vivo binding and map areas of interaction. 
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While overexpression of NRMT2 increased the half-life of NRMT1, the reciprocal 

experiment did not produce the same results, indicating that NRMT2 may be 

increasing NRMT1 activity via increase the stability of the enzyme.  Accordingly, 

the catalytic activity of NRMT2 is not needed to increase NRMT1 activity or 

increase its affinity for less preferred substrates.  Additionally, monomethylation 

could not rescue phenotypes seen with loss of trimethylation. Taken together, 

these data support a model where NRMT2 expression activates NRMT1 activity, 

not through a catalytic change, but by increasing the stability and substrate 

affinity of NRMT1.



	 vi	

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS  .................................................................................... iii 
ABSTRACT ........................................................................................................... iv 
LIST OF TABLES ................................................................................................ viii 
LIST OF FIGURES ............................................................................................... ix 
 
CHAPTER 
 
 I A WORLD OF METHYLATION 
  
 Types of Cellular Methylation ............................................................... 1 
  
 Methyltransferase families ................................................................... 6 
  
 Methylation readers ............................................................................. 11 
 
 Functions for different levels of methylation ........................................ 13 
  
 Demethylases ..................................................................................... 14 
  
 Physiological impact of aberrant protein methylation .......................... 16 
  
 N-terminal methylation ........................................................................ 23 
 
 Functions of N-terminal methylation .................................................... 26 
 
 II THE N-TERMINAL METHYLTRANSFERASE HOMOLOGS NRMT1 

AND NRMT2 EXHIBIT NOVEL REGULATION OF ACTIVITY 
THROUGH HETEROTRIMER FORMATION 

 
  Introduction ......................................................................................... 33 
 
  Materials and methods ........................................................................ 38 
 
  Results ................................................................................................ 45 
 
  Discussion ........................................................................................... 82 
 
 III FUTURE DIRECTIONS AND IMPLICATIONS ON HUMAN HEALTH 

AND DISEASE 



	 vii	

 
  Introduction ........................................................................................ 87 

  Monomethylation vs Trimethylation .................................................... 88 

  Potential roles for N-terminal monomethylation ................................. 92 

  NRMT2 mutations in human cancers ................................................. 97 
 
 
REFERENCES .................................................................................................. 118 
 
CURRICULUM VITAE ....................................................................................... 151 
 
 
 
 

 
  



	 viii	

LIST OF TABLES

 

I.

 

NRMT2 missense mutations found in human cancers ..................

 

99

 

II.

 

NRMT2 mutations increase distance between corresponding 

NRMT1 residues previously implicated in interaction .................. 101

 

  



	 ix	

LIST OF FIGURES

 

1.

 

NRMT1 and NRMT2 dimerization model ............................................. 31

 

2.

 

Analytical Ultracentrifugation shows NRMT1 and NRMT2 form 

heterotrimers ........................................................................................ 47

 

3.

 

NRMT1 and NRMT 2 interact in vivo

 

.................................................... 51

 

4.

 

Modeling of NRMT1 and NRMT2 dimers ............................................. 55

 

5.

 

Modeling of NRMT1 and NRMT2 heterotrimer

 

..................................... 58

 

6.

 

NRMT1 and NRMT2 truncation mutants .............................................. 62

 

7.

 

NRMT2 expression stabilizes NRMT1.................................................. 67

 

8.

 

Catalytic activity of NRMT2 is not required for increased trimethylation

 

activity by NRMT1. ............................................................................... 71

 

9.

 

NRMT2 (Val224) is catalytically inactive 

 

.............................................. 75

 

10.

 

NRMT2 overexpression did not rescue NRMT1 knockout phenotypes.79

 

11. NRMT1 knockdown increases migratory potential of MCF-7 breast 

adenocarcinoma cells

 

........................................................................... 94

 

12. NRMT2 mutation in cancer: Q67H ..................................................... 103

 

13. NRMT2 mutation in cancer: F68L ...................................................... 105

 

14. NRMT2 mutation in cancer: R71T ...................................................... 107

 

15. NRMT2 mutation in cancer: D232N ................................................... 109

 

16. NRMT1-NRMT2 heterotrimer model .................................................. 116

 

 
  



	 1	

CHAPTER I 

A WORLD OF METHYLATION 

Types of Cellular Methylation 

As the study of genetics progressed beyond Mendel’s classic experiments 

using plant hybrides, it became clear that the central dogma of molecular biology 

was not a robust explanation for who we are. The knowledge that every cell in an 

organism shares the same genetic information, though they can become 

functionally and morphologically distinct, led to the idea that DNA sequence 

alone cannot control all hereditary traits and gave rise to what would eventually 

become the field of epigenetics. (Esteller 2007). Initially, epigenetics referred to 

modifications to DNA that did not involve changes in the DNA sequence. These 

modifications influenced the association of DNA with various regulatory proteins, 

with the most well-characterized of these being methylation of CpG-rich regions 

of DNA. These areas, termed CpG islands, are generally found in upstream 

regulatory sites of genes, and in their unmethylated state allow the gene to be 

transcribed after association with the necessary transcription factors (Holliday 

and Pugh). However, genes that need to be expressed dynamically or in a 

tissue-specific manner have promoter regions that are heavily methylated. This 

adds an extra layer of control over DNA sequence for establishing distinct cellular 

phenotypes. 
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DNA methylation also allows for modification of gene control over an 

organism’s lifespan.  Studies looking at phenotypic differences between 

monozygotic twins (twins sharing a common genotype) found disease 

susceptibility and morphological differences between all sets of twins.  However, 

in examining global and locus-specific DNA methylation, twins were found to be 

epigenetically indistinguishable early in life. Only in examining older twin sets did 

it become evident that there were vast alterations in the amount and distribution 

of promoter methylation between genetically identical pairs (Fraga et al. 2005). 

This was striking evidence that dynamic changes in protein expression can give 

rise to individual phenotypes that are regulated by mechanisms outside heritable 

genotype, such as DNA methylation. Furthermore, these mechanisms can 

change over time and in response to environmental stimuli.   

 It soon became clear that DNA methylation was not the only type of 

methylation affecting the epigenetic landscape.  In 1964, while using puromycin 

to inhibit protein translation, it was noted that amino acid incorporation into 

histone proteins is blocked but the addition of methyl groups is not (Allfrey et al., 

1964). This provided evidence of an enzyme responsible for post-translationally 

methylating histone proteins. The enzyme responsible, Protein Methylase I, was 

partially purified and found to use S-adenosyl-L-methionine (SAM) as a methyl 

donor to target the guanidino group of arginine residues.  Around 70% of the 

radio-labeled SAM was found to be incorporated into histones, and it was 

concluded these were the primary methyl acceptor proteins. Soon after, Protein 

Methyltransferase II, targeting the carboxyl groups of proteins, and Protein 
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Methyltransferase III, targeting the ε -amino groups of lysine, were discovered 

and purified. The discovery of Protein Methyltransferase III also speculated on 

the existence of multiple enzymes for mono-, di-, and trimethylation (Kim & Paik, 

1965; Paik & Kim, 1968; Kim & Paik, 1970; Paik & Kim, 1970). 

 While the number of post-translational modifications and their associated 

enzymes continued to grow, it wasn’t until the 1990s that genetic and chromatin 

biology experimental techniques had advanced enough to associate functional 

roles for protein methylation. The demonstration that arginine methylation, 

carried out by the yeast homolog of human protein arginine N-methyltransferase 

1 (PRMT1), is necessary for the export of nuclear ribonucleoproteins uncovered 

the first physiological role for post-translational protein methylation (Shen et al., 

1998). Soon after, a role for eukaryotic histone lysine methylation was 

discovered. Methylation of lysine 4 of histone 3 (H3K4) is highly conserved and 

plays a necessary roll in the facilitation of transcription (Strahl et al., 1999). 

Within the coming years, the histone-targeting SET domain-containing family of 

protein methyltransferases would be discovered. As the size of the SET family 

increased, it became evident that histones were not the only targeted substrates, 

but non-histones as well, controlling signaling pathways, transcription factors, 

and tumor suppressors (Herz et al., 2013). The SET classification currently has 

56 family members that methylate a variety of targets, and in many of which 

mutations have been shown to coincide with various diseases and cancer (Albert 

& Helin, 2010).  
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 The discovery of multiple methyltransferase families, as well as 

associations with other post-translational modifications (PTMs) such as 

acetylation, phosphorylation, ADP-ribosylation, ubiquitination, and citrullination of 

histones gave rise to the concept these chemical marks may encode a kind of 

“language,” eventually termed the histone code (Strahl & Allis, 2000). The 

histone code specifies the pattern of these PTMs on histones encodes for 

transcriptional activation or repression, with histone methylation contributing to 

the heritable nature of the code (Strahl & Allis, 2000).  To add a level of 

complexity, histone methylation can promote transcriptional activation or 

repression depending on which residue it occurs.  Histone H3 lysine 4 

trimethylation (H3me3K4) is a classic marker of transcriptional activation, while 

histone H3 lysine 9 trimethylation (H3me3K9) is a classic marker of 

transcriptional repression (Bernstein et al., 2002). The level of methylation on 

each individual residue can also have distinct effects.  For example, 

monomethylated histone 3 lysine 27 (H3meK27) promotes transcriptional 

activation, while the di- or trimethylated residue (H3me2/3K27) is repressive.  

Histone 3 lysine 79 mono- and dimethylation (H3me1/2K79) also promote 

transcriptional activation, while trimethylation can cause either activation or 

repression dependent upon other PTMs nearby (Rosenfeld et al., 2009; Barski et 

al., 2007; Steger et al., 2008).  

Epigenetic modification of RNA nucleotides is the most recent discovery 

and includes modification of the four common nucleotide bases to over a 

hundred chemically distinct modified structures that are present in all eukaryotic 
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species (Cantara et al., 2011). These modifications allow for intricate control over 

RNA-specific cellular processes and RNA-mediated structural support. It was 

long thought that RNA modifications were static, due to the covalent nature of the 

bonds (He, 2010).  However, within the last 5-10 years, the most common 

epigenetic mark among mammalian RNA, N6-methyladenosine, has been 

demonstrated to be dynamic and reversible (Jia et al., 2011; Zheng et al., 2013).  

N6-methyladenosine has ubiquitous tissue distribution and broad 

implications in post-transcriptional gene regulation. Using m6A RNA 

immunoprecipitation, followed by high-throughput sequencing, m6A has been 

identified in more than 7,000 human mRNAs and 300 non-coding RNA 

transcripts. It has also been found in micro-RNAs and long non-coding RNA 

transcripts (Dominissini et al., 2012; Meyer et al., 2012, Fu et al., 2014). m6A 

methylation is ubiquitously involved across the life cycle of RNA, as well as 

different tissues and cell lines. m6A methylation directly modifies RNA structure, 

subsequently improving accessibility for a number of RNA-binding proteins (Lue, 

et al., 2015). It is also involved in pre-mRNA splicing, pri-miRNA processing, 

nuclear export, modulation of translation, and RNA degradation (Pan et al., 

2018).  The misregulation of m6A RNA methylation is implicated in both solid and 

hematopoietic tumor development, continued oncogenesis, and tumor metastasis 

(Vu et al., 2017; Cai et al., 2018; Cui et al., 2017; Yuan et al., 2014; Chen et al 

2017). Recently, m6A RNA methylation has been also linked to pluripotency of 

cancer stem cells; small subsets of neoplastic cells within tumors with stem-like 

capacity of self-renewal, survival, and the ability to reemerge as drivers of 
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tumorigenesis even years after detection of a primary tumor (Vu et al., 2017; 

Kreso & Dick, 2014).    

Methyltransferase families 

 The addition of a methyl group can be accomplished by a variety of 

reactions onto hundreds of different substrates. However, the enzymes that 

catalyze these reactions are found in a relatively small number of structural 

arrangements and with conserved primary structures that allow for their 

separation into similar groups (Petrossian & Clarke, 2011). As of 2017, structural 

alignment and clustering of the catalytic domains of known methyltransferases 

result in the classification of eleven SAM-dependent and four SAM-independent 

families (Fenwick & Ealick, 2018).  SAM-dependent methyltransferases employ 

SAM as the methyl group donor to methylate target substrates, leaving the 

product S-adenosyl-homocysteine (SAH) (Cheng & Blumenthal, 1999).  SAM-

independent methyltransferases employ a variety of methyl donors, including 

tetrahydrofolate (THF), betaine, methylamine, and O6-methylguanine-DNA 

(Doukov et al., 2000; Evans et al., 2002; Moore et al., 1994; Niedzialkowska et 

al., 2016).  

Structurally, the majority of the SAM-dependent methyltransferases fall 

into the Class I (7-beta-strand) methyltransferase family. Class I 

methyltransferases are composed of alternating beta strands and alpha helices, 

typically forming a seven-stranded beta sheet with three alpha helices on each 

side (Fenwick & Ealick, 2018). The evolutionarily-conserved N-terminal side of 

the beta sheet forms the Rossman fold SAM-binding motif of each enzyme, while 
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the dynamic C-terminal side of the sheet binds the substrate. Given the number 

of possible substrates for SAM-dependent methyltransferases (nucleic acids, 

proteins, small molecules), the vast shape and structure of the C-terminal region 

isn’t surprising. (Martin & McMillan, 2002). While many of the SAM-dependent 

methyltransferases are monomers, they can also be expressed as homodimers 

and tetramers (Huang et al., 2000).  

The DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) are part 

of the Class I family and are each comprised of a large, multi-domain N-terminus 

with regulatory functions, and a catalytic C-terminus (Cheng & Blumenthal, 

2008). Each catalytic domain is comprised of a common structure consisting of a 

mixed seven-stranded beta sheet, formed by six parallel and one antiparallel 

beta strands (Cheng & Blumenthal, 2008). Additionally, six helices are folded 

around the central beta sheet. This conserved domain is implicated in both 

catalysis and cofactor binding, with a nearby nonconserved region that 

recognizes specific DNA targets (Cheng et al., 1995; Jeltsch et al., 2002; Cheng 

et al., 2008; Jurkowska, 2011). While DNMT1, DNMT3A, and DNMT3B have 

catalytic activity alone, there is a fourth DNMT, DNMT3L, that is unable to bind 

SAM and is catalytically inactive, despite sharing homology to its other family 

members (Gowher et al., 2002; Gowher et al., 2005; Kareta et al., 2006). 

DNMT3A and DNMT3L form a heterotetramer consisting of two DNMT3A and 

two DNMT3L homologs. Both enzymes contain hydrophobic interfaces 

characterized by the stacking of two phenylalanine residues, facilitating protein-

protein interactions as well as contact between DNMT3A and DNMT3L. This 
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region of contact affects the position of alpha helices in DNMT3A and is likely 

responsible for the increased interaction of the complex with target DNA, even 

though DNMT3L has no catalytic activity of its own (Jia et al., 2007; Jurkowska et 

al., 2008; Jurkowska et al., 2011).  

The first identified “writer” of m6A methylation was found to be a highly-

conserved methyltransferase enzyme, METTL3, which is also in the Class I 

family (Bokar et al., 1997). After its identification as an RNA methyltransferase, it 

was shown that its catalytic activity was also dependent on interaction with an 

inactive homolog, METTL14 (Bokar et al., 1997; Bujnicki, 2002; Wang et al., 

2014; Ping et al., 2014). Both METTL3 and METTL14 are SAM-dependent 

enzymes, and subsequent investigation has shown that this heterodimer complex 

and its associated interaction with Wilms’ tumor 1-associating protein (WTAP) 

are implicated in increased substrate selectivity and tighter control of levels of 

target methylation (Ping et al., 2014). Knocking down the METTL3-METTL14-

WTAP complex results in longer half-lives and more abundant distribution of their 

target RNAs (Ping et al., 2014). This is indicative that m6A methylation is 

functioning to repress the transcription of target genes (Alexandrov et al., 2002; 

Ozanick et al., 2005; Leulliot et al., 2008).  Additionally, knockdown of WTAP 

results in mislocalization of METTL3 and METTL14 to their associated mRNAs, 

indicating an interaction among each of the components is crucial for proper 

substrate targeting (Ping et al., 2014).  

The methylation activity of the METTL3-METTL14-WTAP complex is 

greater than that METTL3 and METTL14 individually (note: WTAP does not have 
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methyltransferase activity itself) (Liu et al., 2014). Crystallization of the complex 

revealed METTL3-METTL14 methyltransferase domains that are highly similar to 

other Rossman fold-containing methyltransferases, with each comprising a 

central, curved, eight-stranded beta sheet flanked by four alpha helices. 

Dimerization of the complex was found to be governed by extensive hydrogen 

bonding interactions and hydrophobic contacts. Interestingly, though both 

METTL3 and METTL14 have low catalytic activity individually, steric hindrance 

and occlusion by METTL3 side chains prevented the binding of SAM to the 

catalytic site of METTL14 when in complex (Sledz & Jinek, 2016; Wang et al., 

2016). Knockout of METTL3 or METTL14, individually, has been demonstrated to 

abrogate all substrate binding and subsequent m6A mRNA methylation in mouse 

embryonic stem cells (Geula et al., 2015). This is indicative that METTL14 is 

likely facilitating an increase in integrity and substrate targeting of the complex, 

though not playing a role in catalysis.  

The SPOUT family of methyltransferases comprises the second most 

abundant SAM-dependent class of methyltransferases and is characterized by a 

six-stranded parallel beta sheet surrounded by seven alpha helices, with the first 

three strands forming the classic Rossman fold (Anantharaman, 2002; Fenwick & 

Ealick, 2018). As a homodimer, the C-terminus comprises several conserved 

catalytic residues, and the active site is located near the surface and comprises 

residues of both monomers (Anantharaman et al., 2002; Shubert 2003; Michel et 

al., 2003). SPOUT family members share a common topological feature of a 

deep trefoil knot in the catalytic domain, responsible for binding S-adenosyl-
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methionine (Lim, et al., 2003). SPOUT-family methyltransferases target tRNA for 

methylation, which is associated with a number of molecular functions, including 

promotion of secondary structure and thermodynamic stability of tRNA, 

protection from degradation, and a variety of effects on translation (Voigts-

Hoffman et al., 2007; Edmonds et al., 1991; Alexandrov et al., 2006, Björk et al., 

2001).  

 The other major SAM-dependent family of methyltransferases is the 

Su(var), Enhancer of zeste, Trithorax (SET) family.  SET-domain 

methyltransferases function primarily in large macromoleculer complexes. Each 

SET-domain methylatransferase contains eight curved beta strands that form 

three small sheets, with the C-terminus forming a knot-like structure below the 

surface loop. Unique to the SET family, a set of highly conserved residues form a 

triangular zinc cluster that is necessary for cofactor binding and transfer of the 

methyl group (Schultz et al, 1998; Zhang et al., 2002). Substrate recognition by 

the SET domain is governed by the N- and C-termini, which are near the active 

site, and by recognition of regions far from the active site during incorporation 

with other large macromolecular complexes (Trieval et al., 2002). Species of SET 

proteins can mono-, di-, or trimethylate, and are generally classified by the lysine 

residues they target on histones (Lachner & Jenuwein, 2002; Santos-Rosa et al., 

2002).  
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Methylation readers 

 Chemical modifications to nucleotides or proteins are only as effective as 

their ability to be recognized. Methylation “readers” encompass a number of 

proteins whose actions are dependent on the recognition of this methylation 

state. The inability or aberrant recognition of this epigenetic state is implicated in 

developmental defects and various cancers, implicating methyl-readers as critical 

factors in health and disease (Wang & Allis, 2009; Chi et al., 2010).   

 A number of methylation readers have been described (Taverna et al., 

2007; Musselman et al., 2012; Patel et al., 2013), with the largest family of 

readers making up the plant homeodomain (PHD) finger-containing proteins. The 

PHD finger is a globular protein consisting of two beta-sheets and an alpha helix, 

featuring conserved cysteine and histidine residues that function to coordinate 

two Zn2+ ions (Pascual et al., 2000). The PHD finger family of readers recognizes 

multiple levels of methylated lysine and unmodified lysine residues on histone 

tails (Musselman & Kutateladze, 2011; Sanchez & Zhou, 2011). As with many 

readers of methylation, the recognition of the substrate is governed by a 

structurally-conserved region of the PHD finger consisting of two to four aromatic 

residues, forming an aromatic cage. The aromatic rings are positioned in such a 

way as to cation-pi, hydrophobic, and van der Waals contacts with the 

trimethylated lysine residue (Mussleman 2009, 2011).  

 The so-called “Royal Family” methylation readers include the three beta-

strand core regions of chromodomains, Tudor, malignant brain tumor (MBT) 

repeats, and conserved proline and tryptophan (PWWP) domains. Each of these 
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share significant sequence similarities and have evolved from a larger 

homologous superfamily (Maurer-Stroh et al., 2003). The Tudor and 

chromodomains also share equivalent recognition regions, with both binding 

methylated peptides using equivalent amino acid positions and structure 

(Maurer-Stroh, et al., 2003). The PWWP domain contains a five beta-stranded 

structure and likely is a result of divergent evolution from the same superfamily 

from which the Tudor and chromodomains evolved (Maurer-Stroh et al., 2003). 

DNMT3B contains a PWWP domain that contains a basic surface region and is 

responsible for DNA binding, although these basic residues are not evolutionarily 

conserved (Maurer-Stroh et al., 2003. As such, it remains unclear if all PWWP-

containing proteins exclusively bind DNA. Interestingly, though the PWWP 

domain of DNMT3B binds DNA, it has not been demonstrated as a necessary 

requirement for CpG methylation (Qui, et al., 2002).  

The MBP family of methyl readers have a general preference for binding 

mono- or dimethylated peptides over trimethylated peptides (Kim et al., 2006). 

This is a result of steric clashes within the aromatic cage of MPB repeats with 

trimethylated (and unmodified) peptides. This is due to hydrogen bond formation 

between the methylammonium proton and carboxylate acid residue of an 

aspartic acid residue lining the aromatic cage pocket (Li et al., 2007). 

Additionally, the other methylammonium proton of the substrate is hydrogen 

bonded to a water molecule that is held in place by the nearby main-chain 

residues (Li et al., 2007).  This aromatic cage recognition motif is shared among 

all members of the “royal family” readers. The multiple binding pockets of MBP 
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domains give precise control over which level of methyl mark is bound, furthering 

the evidence that tight control of chromatin regulation by histone PTMs isn’t only 

controlled by whether or not a methyl group is present, but to the level at which it 

is present.  

 

Functions for different levels of methylation 

 In 1971, it was noted that mono- and dimethylated arginine had distinctly 

different levels of resistance to tryptic attack, and as such, proposed that specific 

levels of methylation could govern association with nearby proteins via an 

increasing hydrophobic characteristic of the guanidine group that is promoted by 

increasing methylation (Brostoff & Eylar, 1971). However, it wasn’t until the 

discovery of the histone code that distinct functions for distinct levels of 

methylation became clear.   

The emergence of the concept of the histone code described the idea that 

the sequence of PTMs on histone proteins could form a language governing the 

recruitment of chromatin remodelers and subsequent expression and repression 

of genes (Strahl & Allis, 2000).  As reader proteins were discovered and 

characterized, this “language” evolved and control of gene expression by PTMs 

was found to be increasingly complex (Patel & Wang, 2013).  An additional layer 

of complexity was illuminated when it was found that reader proteins not only 

recognize if lysine and arginine residues in histones are methylated but also to 
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what degree the methyl marks are deposited (mono-, di-, or trimethylation for 

lysine and mono- or dimethylation for arginine) (Kim et al., 2006).  

Proteome diversity is not only governed by the presence or absence of a 

methyl group, but also to what extent a residue is methylated. Different 

methylation states will recruit different reader proteins, ultimately facilitating 

different protein-protein interactions, or in the case of histone proteins, differential 

gene expression (Li et al., 2006). A number of factors are involved in the 

recognition of different methyl states, though the majority involve the aromatic 

cage present in all methyllysine reader complexes (Beaver & Waters, 2016). The 

shape, depth, and composition of the binding pocket, number of cation-pi 

interactions among the aromatic rings and polarized methyl groups, and 

presence of negatively charged side chains and hydrogen bond acceptors all 

contribute to the selectivity of distinct levels of methylation (Hughes et al., 2007; 

Ma & Dougherty 1997; Guo et al., 2009; Botuyan et al., 2006; Jacobs & 

Khorasaniz 2002; Llin et al., 2006; Taverna et al., 2007). Additionally, single 

amino acid substitutions within these chromodomains facilitate enough alteration 

of the binding pocket to differentiate between di-, and trimethylysine residues 

(Eisert & Waters, 2011).  

 

Demethylases 

The ability to read PTMs at the level of methylation led to the idea that not 

only is methylation deposition tightly regulated, but its removal may be as well. It 
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was long suspected that histone methylation was an irreversible mark, because 

the half-lives of histones and the methylated lysine residues associated with 

them had been shown to be the same (Byvoet, 1972).  However, rapid activation 

and repression of gene expression isn’t compatible with the idea that the 

methylated residues must degrade at the same rate as the histone itself 

(Chinenov, 2002), and it was thought that a histone demethylase must exist.  A 

number of demethylating enzymes, with various catalytic methodologies had 

been described, but their characterization was limited by the inability to pinpoint 

their activity to a specific target or show direct activity against amino acid side 

chains within proteins (Kim et al., 1964; Paik & Kim 1973; Paik & Kim, 1974; 

Khanna & Jorns, 2001; Chinenov 2002).  

The first protein lysine-specific demethylase (or “eraser” protein) was 

characterized in 2004 (Shi et al., 2004). Lysine-specific demethylase-1 (LSD1) is 

an evolutionarily conserved amine oxidase that preferentially targets methylated 

H3K4 for demethylation via an oxidation reaction (Shi et al., 2004). Similar to the 

substrate specificity of its methyltransferase counterparts, LSD1 is able to 

distinguish between methylated lysine on H3K4 and H3K9 (Shi et al., 2004). 

Additionally, it is able to discriminate between di- and trimethylation of H3K4, as 

trimethylated variants of the same residue are unable to be demethylated (Shi et 

al., 2004; Metzger et al., 2005). Soon after the discovery of LSD1, a second 

demethylase was discovered, JmjC domain-containing histone demethylase 1 

(JHDM1). JHDM1 specifically targets dimethylated H3K36 for demethylation via a 

hydroxylation-mediated mechanism (Tsukada et al., 2006).  
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Whether it was steric hindrance between the demethylase binding pocket 

and lysine trimethylation (as the case for JHDM1) or the requirement of a 

protonated nitrogen (as in the case for LSD1), the discovery of a demethylase 

capable of removing a trimethylation mark remained elusive.  The first family of 

demethylases capable of removing trimethylation, JMJD2, was found using a 

candidate gene screen (Tsukada et al., 2006).  Twenty-eight members of the 

JmjC family were assayed for the ability to use a hydroxylation-mediated 

mechanism to demethylate trimethylated histone lysines (Cho et al., 2012). 

JMJD2A and JMJD2C were shown to catalyze demethylation of trimethylated 

H3K9 and trimethylated H3K36. However, while they could both convert 

trimethylation to dimethylation, neither could convert dimethylation to 

monomethylation (Whetstine et al., 2006).  The only JMJD2 family member 

capable of converting H3me3K9 to H3me1K9 was JMJD2D (Toyokawa et al, 

2011). While the JMJD2 family members all were specific for methylated lysine 

residues, they differed in the degree of methylation they could remove, indicating 

an additional level of demethylation regulation and reinforcing the notion that 

different levels of methylation encode different functional readouts (Whetstine, et 

al., 2006, Vakoc et al., 2005; Krogan et al., 2006).  

 

Physiological impact of aberrant protein & DNA methylation 

As described above, the dynamics of protein methylation are incredibly 

precise and tightly controlled. Perturbing this system, whether it be through mis-

writing, mis-reading, or mis-erasing of methylation marks has been shown to 
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facilitate oncogenesis and the progression of a variety of other diseases.  The 

overall misregulation of DNA methylation has emerged as a fundamental part of 

chromosomal stability, proper gene expression, genome imprinting, and 

transcriptional silencing of foreign DNA fragments (Levin & Moran, 2011; Peters 

2014; Jaenisch & Bird; 2003). Inappropriately methylated DNA can interact with 

other genomic elements, such as histone modifications, and can similarly be 

involved in the incorrect positioning of histones during tumor initiation and 

oncogenesis (Esteller, 2007; Feinberg et al; 2006). Oftentimes, this misregulation 

of DNA methylation is found in common patterns among tumor- and stage-

specific variants cancers and can serve as a useful biomarker for clinical 

diagnostics (Cancer Genome Atlas Network, 2008).   

Cancer-related inhibition of DNA methylation has become a common 

target of chemotherapeutic development over the last 15 years. Small-molecule 

inhibitors like azacitidine target DNA methyltransferases by functioning as a 

nucleoside cytidine and incorporating into RNA to lead to inhibition of the 

production of the protein (Cihak, 1974). Azacitidine has shown efficacy in treating 

myelodysplastic syndrome and cutaneous T-cell lymphoma, as well as moderate 

success in acute myelogenous leukemia (Cowan et al., 2010). In addition to a 

cancer therapeutic, azacytidine has been in successful in the treatment of HIV 

and human T-lymphotropic virus (Dapp et al., 2009; Diamantopoulous et al., 

2012).  

More recently, combinatorial therapies using monoclonal antibodies 

targeting immune checkpoint factors such as programmed cell death protein-1/2 
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(PD-1, PD-2) or cytotoxic T lymphocyte antigen-4 (CTLA-4) receptors and DNA 

methyltransferase inhibitors have been explored in order to increase 

immunotherapy responses and decrease the ability for malignancies to evade the 

host immune system (Mazzone et al., 2017). Increased H3K27 trimethylation 

(H3K27me3), facilitated by Enhancer of Zeste-2 (EZH2) can lead to 

differentiation and increased plasticity of CD4+ T-cells, decreasing 

immunosurveillance and the ability to distinguish tumor cells from non-tumor cells 

(Tumes et al., 2013). Pre-clinical studies have shown combinatorial therapy with 

anti-PD-1 and anti-CTL-4 antibodies and azacytidine to be more efficacious in 

eradicating metastatic tumors from melanoma in mice versus treatment with both 

immunotherapies alone (Kim et al., 2014).      

Mutations of the highly conserved H3K27 methyltransferase, (EZH2), the 

catalytic component of the polycomb repressor complex (PRC2), are among the 

most common driver mutations found in the progression of solid tumors 

(Varambally et al., 2002). Overexpression of EZH2 has been shown to be a 

prognostic marker for prostate cancer progression, with the lowest expression 

being associated with localized disease and highest found in metastatic tumors 

(Varambally et al., 2002; Rhodes et al., 2003, Saramaki et al., 2006; Yu et al., 

2003). A correlation between increased EZH2 expression is also found in 

invasive breast metastases versus primary and local tumors (Kleer et al., 2003).  

Additionally, recent work has found mutations in EZH2 to be associated 

with hematological disease progression (Yap et al., 2011). A subset of B-cell 

lymphoma patients feature mutations of Y641 in SET domain of the EZH2 
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complex, with the EZH2(Y641) phenotype being associated with increased levels 

of H3K27 trimethylation levels and acting as a gain-of-function mutation to 

increase histone methylation (Ciferri et al., 2012; Yap et al., 2011). Around 30% 

of germinal center B-cell type diffuse large B-cell lymphoma (DLBCL) and around 

10% of follicular lymphoma (FL) harbor this mutation (Morin et al., 2010). 

EZH2(Y641) mutants are shown to favor trimethylation over mono- or 

dimethylation, and thus accumulate an abnormal amount of trimethylated histone 

marks versus wild type (WT). This is likely associated with a structurally larger 

substrate-binding pocket formed by a mutation of the Tyr 641 residue to a 

smaller residue such as His, Asn, or Phe (Yap, 2011). Mutations in DLBCL and 

FL repress genes associated with cellular proliferation checkpoints and terminal 

differentiation (Yap et al., 2011). Normally, the expression of WT EZH2 

decreases and the expression of genes involved in terminal differentiation 

increases, as the B-cell moves away from the germ center phenotype (Yap et al., 

2011).  However, mutant EZH2 mitigates these checkpoints and results in B-cell 

hyperplasia (Yap et al., 2011). Similar to that of prostate cancer (Saramaki et al., 

2006), these epigenetic mutations are reversible in lymphoma, with suppression 

of EZH2 correlating with the reexpression of tumor suppressor genes (Beguelin, 

2013).  

In addition to misregulated histone methylation, aberrant expression of 

methyltransferases can also result in sweeping changes in the function of non-

histone oncogenes and tumor suppressors. Lysine residues on cancer-

associated transcription factors, including p53, NFkappaB, and STAT3, are 
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targeted for methylation by some of the same enzymes associated with histone 

methylation (Stark et al., 2011). The functional consequences of this methylation 

are dependent on the particular residue and degree to which it is methylated 

(Stark et al., 2011).  SMYD2, an H3K4 methyltransferase, also monomethylates 

K370 on p53, leading to transcriptional repression of certain p53 target genes 

(Huang, 2006). K370 is also a target for dimethylation, which stimulates 

interaction with the p53 coactivator 53BP1 and strongly increases p53 

expression (Huang et al., 2007). Both mono- and dimethylation are removed from 

p53 K370 by the H3K4 demethylase LSD1 (Huang, 2007). Additionally, lysine 

residues in the regulatory C-terminus of p53 are targets for the histone 

methyltransferase, Set9 (Chuikov et al., 2004) Methylation of these residues is 

associated with p53 stability and association with target genes, and a reduction 

in Set9 decreases both these phenotypes (Chuikov et al., 2004).   

Interestingly, SET9 also targets lysine residues on the p65 subunit of the 

NFκB transcription factor. Increased NFκB-associated inflammatory response 

was noted with increased SET9-dependent lysine methylation (Ea et al., 2009; 

Lu 2010). In an opposing manner, monomethylation of the RelA subunit of NFκB 

by SETD6 attenuated RelA-dependent transcription pathways, including 

inflammatory responses of immune cells (Levy et al., 2011). In addition to its role 

as an H3K27 trimethylase, a novel role for EZH2-dependent methylation of the 

STAT3 transcription factor has been elucidated. Increased tyrosine 

phosphorylation of STAT3 is associated with increased proliferation of 

glioblastoma stem-like cells, and this phosphorylation is dependent on EZH2 
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methylation. Inhibition of EZH2 reverses this phenomenon and decreases 

expression of pro-oncogenic proteins (Kim et al., 2013).  

To further illustrate the role methyltransferases play on transcription 

factors, tumor-associated proteins, and downstream cell proliferation, SMYD2-

mediated methylation of estrogen receptor alpha (ERα) attenuates recruitment to 

chromatin and prevents active transcription of target genes under an estrogen-

depleted condition (Zhang et al., 2013; Hamamoto et al., 2014). This methylation 

is diminished upon estrogen stimulation and allows for acetylation of ERα, 

increasing target gene transcription and demonstrating the crosstalk between 

PTMs and related transcriptional changes (Zhang et al., 2013). Increased 

SMYD2 expression is also found to correlate with human bladder carcinomas 

compared to non-neoplastic bladder tissue. This is due to the increased 

methylation of Rb by SMYD2, in which the methylation also accelerated 

phosphorylation of Rb, promoting cell cycle progression of cancer cells (Cho, 

2011; Carr 2011).  

Besides transcription factors, various other non-histone substrates are 

also targets for modification by methyltransferases. and the over or under-

expression of these associated enzymes can facilitate pro-tumorigenic outcomes. 

Heat-shock protein 70 (HSP70) is a highly evolutionarily conserved molecular 

chaperone, found to be non- or minimally-methylated in non-neoplastic tissues, 

with highly dimethylated variants found in a number of cancerous tissues (Cho et 

al., 2012). This is due to increased expression of the SET1D1A 

methyltransferase, which increases lysine dimethylation of HSP70 and promotes 
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a methyl-dependent association with Aurora kinase B and subsequent growth of 

cancer cells (Cho et al., 2012).  In a similar manner, HSP90 is methylated in 

much higher amounts in cancerous tissues due to increased SMYD2-dependent 

methylation, facilitating increased chaperone complex formation and accelerated 

proliferation (Hamamoto, et al., 2014).  

Elevated expression of SMYD3 is associated with colorectal, 

hepatocellular, and breast carcinomas (Hamamoto et al., 2004; Hamamoto et al., 

2006; Saddic et al., 2010; Mazur et al., 2014). SMYD3-dependent methylation of 

vascular endothelial growth factor receptor 1 (VEGFR1) on a lysine residue in its 

kinase domain increases its kinase activity and accelerates proliferation of 

carcinoma cells (Kunizaki et al., 2007). In a similar study, increased SMYD3 

expression increases methylation of MAP3K2, which promotes increased MAP 

kinase signaling and promotes the formation of Ras-driven carcinomas (Mazur et 

al., 2014). Additionally, highly methylated arginine and lysine residues of 

VEGFR2 have been shown to play a critical role in the tyrosine phosphorylation 

and activation of VEGFR2-mediated angiogenesis pathways (Hartsough et al., 

2013). Thus, alteration in histone methyltransferase expression not only affects 

transcriptional dynamics directly through chromatin architecture but also 

indirectly through regulating the function of non-histone protein targets.  It can 

also be associated with changes in additional PTMs, dramatically altering the 

PTM landscape of proteins.  
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N-terminal methylation 

Most of the literature focusing on the functional roles of protein 

methylation centers on methylation of lysine and arginine side chains.  However, 

an additional type of protein methylation, α -amino methylation of the N-terminal 

amino acid (N-terminal methylation), has also been identified. The initial reports 

of N-terminal methylation on the bacterial ribosomal proteins L16 and L33 were 

first published in 1976, and the list of N-terminally methylated substrates slowly 

expanded for the next three decades (Brosius & Chen, 1976; Chang et al., 1976; 

Wittman-Liebold et al., 1976; Stock et al., 1987). A common consensus 

sequence of Xxx-Pro-Lys (X-P-K) emerged as the number of mono-, di-, and 

trimethylated substrates grew, and it was hypothesized that an enzyme or group 

of enzymes were responsible for the recognition of this sequence and 

subsequent methylation (Stock et al., 1987).  

N-terminal RCC1 methyltransferase-1 (NRMT1), formally notated as 

METTL11A, was identified as the first N-terminal methyltransferase enzyme in 

both yeast and humans (Webb et al., 2010; Tooley et al., 2010).  As predicted, it 

is able to methylate an X-P-K consensus sequence, and database searches for 

proteins beginning with this consensus identified at least 100 putative target 

substrates (Tooley et al., 2010).  NRMT1 is a 25 kDa protein from the Class I 

family of methytransferases.  In vitro peptide methylation assays and substrate 

immunoprecipitations have recently expanded the X-P-K consensus sequence of 

NRMT1 (Petkowski, 2012).  After initiating methionine cleavage, position 1 can 

be alanine, proline, serine, glycine, or methionine. Position 2 can encompass 
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most uncharged polar or nonpolar amino acids, and position three can be either 

Lys or Arg (Petkowski, 2012). This expanded consensus sequence increases the 

number of potential NRMT1 targets to over 300, making α-N-terminal methylation 

a much more abundant modification than initially hypothesized (Petkowski, 

2012). Specificity was further characterized by showing the affinity of NRMT1 for 

its substrates is dictated by the substrate’s consensus sequence (Petkowski, 

2012). Of those already tested, NRMT1 exhibits the strongest affinity for 

substrates beginning with a P-P-K consensus or substrates that have been 

previously mono- or dimethylated (Petkowski, 2012). 

This preference for ringed prolines or pre-methylated substrates is 

predicted to result from a favorable interaction between these substrates and a 

conserved triad of aromatic residues making up the “aromatic cage” domain of 

NRMT1 (Petkowski et al., 2012).  Of note, this aromatic cage is similar to those 

seen in chromodomains that bind methylated lysine residues (Nielson et al., 

2002).  Kinetic studies using an N-terminal RCC1 peptide as substrate and/or 

specific chemical inhibitors have determined that NRMT1 works through a 

random sequential bi-bi kinetic mechanism with distributive processivity 

(Richardson et al., 2015).  Either SAM or the protein substrate can be the first to 

bind NRMT1, and methyl groups are distributed one at a time versus en masse 

(Richardson et al., 2015). Similarly, in vitro methylation assays using an N-

terminal peptide of the NRMT1 substrate CENP-A, confirmed that NRMT1 has a 

greater affinity for di- versus monomethylated and mono- versus unmethylated 
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substrates, further explaining the observed processivity of the enzyme (Wu, 

2015).  

Crystal structures of NRMT1 along with SAH (a reaction product and 

methyltransferase inhibitor) and a variety of X-P-K substrates (with X varying 

among six residues) revealed a unique β -hairpin insert between β -strand 5 and 

α-helix 7 and an N-terminal extension consisting of two α -helices are both 

involved in substrate binding and likely to contribute to the substrate specificity of 

the enzyme (Wu et al., 2015; Dong et al., 2015).  Substrate binding is found deep 

within a negatively charged channel connecting to the cofactor binding pocket, 

though the free and peptide-bound structures show little conformational change, 

indicating the likelihood that this pocket it preformed (Wu et al., 2015).  An 

inserted peptide is oriented in such a way to point the α -N-terminal toward the 

cofactor, likely facilitating the methyl transfer. This stereochemistry is unique to 

this enzyme compared to other protein methyltransferases and likely contributes 

to the specificity of N-terminal methylation (Dong et al., 2015).  

Sequence analysis of NRMT1 has yielded one predicted homolog, 

METTL11B (later renamed NRMT2). Primary structure identity between NRMT1 

and NRMT2 is approximately 50%, with key catalytic residues sharing 100% 

sequence identity and spatial location within the catalytic site (Tooley et al., 2010; 

Petkowski et al., 2013). Crystallization of NRMT2 to 2 Å has recently been 

deposited in the protein data bank (PDB: 5UBB), but NRMT2 also has an 

additional 60 amino acid N-terminal domain has yet to be crystalized (Petkowski, 

2013).  NRMT1 and NRMT2 similarly localize to the nucleus, though NRMT1 is 
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ubiquitously expressed, and NRMT2 expression is highly tissue-specific 

(Petkowski, 2013).  NRMT2 is found predominately in the liver and skeletal 

muscle (Petkowski, 2013). 

While sequentially and structurally similar and capable of methylating the 

same consensus sequences, NRMT1 and NRMT2 differ in their catalytic 

specificities (Petkowski, 2013). In vitro methylation assays with recombinant 

NRMT1 or NRMT2, reveal NRMT2 to be exclusively capable of monomethylation 

(Petkowski, 2013).  This is in striking contrast to the mono-, di-, or trimethylase 

activity found in its homologous counterpart (Petkowski, 2013).  Interestingly, the 

rate at which substrates achieved trimethylation was increased when NRMT1 

and NRMT2 were combined, indicating NRMT2 may be serving a priming 

function for NRMT1 by adding the initial methyl group and reducing the substrate 

burden on NRMT1 (Petkowski et al., 2013). This model is further supported by 

the fact that NRMT1 is a distributive methyltransferase with increasing affinity for 

substrates with higher levels of methylation (Wu et al., 2015). Increasing the 

amount of monomethylated substrates available could increase the affinity for 

subsequent di- and trimethylation by NRMT1, which would be useful in times of 

high substrate concentration (Petkowski, 2013).   

 

Functions of N-terminal methylation 

The very first proposed functional role for N-terminal methylation was 

increasing protein stability, as dimethylation of the N-terminal proline of Crithidia 

cytochrome c-557 protected it from tryptic digestion (Smith and Pettigrew, 1980).  
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However, to date, this is the only known substrate where N-terminal methylation 

has been proven to increase protein stability.  More recently, it has been shown 

that N-terminal methylation also promotes protein-DNA interactions (Chen, 

2007).  The binding of RCC1 to chromatin is absolutely necessary for proper 

mitosis, nuclear-cytoplasmic transport, and nuclear envelope assembly 

(Nemurgut et al., 2001; Hetzer et al., 2002).  NRMT1 uniquely methlyates the α-

amino group of RCC1, and mutants of RCC1 that can’t be methylated (lysine 4 of 

the consensus sequence is mutated to a glutamine - K4Q) fail to localize to 

chromatin during mitosis (Chen et al., 2007).  In vitro binding assays have shown 

that N-terminal methylation of RCC1 directly promotes its interaction with DNA 

and not the histone proteins (Chen, 2007).  It is hypothesized that the permanent 

positive charge on the α -N terminus of RCC1, resulting from N-terminal 

trimethylation, facilitates electrostatic binding to the phosphate backbone of DNA 

(Stock et al, 1987; Chen et al., 2007).  The diffuse distribution and decreased 

association with DNA of the K4Q-RCC1 mutants results in an increased 

frequency of multipolar spindles and an eventual disruption of mitosis, providing 

one example of the biological importance of N-terminal methylation (Chen et al., 

2007).  

Another proven target for N-terminal methylation is damaged DNA binding 

protein-2 (DDB2) (Cai et al., 2014).  DDB2 exhibits high affinity for UV light-

induced cyclobutane pyrimidine dimers (CPD) and other bulky DNA adducts 

produced by a number of carcinogens (de Laat et al., 1999). UV-DDB (a 

heterodimer complex of DDB1 and DDB2) functions as a global genome 
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nucleotide excision repair (NER) factor, where DDB2 acts to detect UV-damaged 

chromatin and recruit xeroderma pigmentosum complementation group C (XPC) 

(Moser et al., 2005). DDB2 features an N-terminal Ala-Pro-Lys (A-P-K) 

consensus sequence, and is mono-, di-, and trimethylated on the N-terminal 

alanine residue by NRMT1 (Cai et al., 2014). NRMT1-induced N-terminal 

methylation promotes nuclear localization of DDB2, facilitated recruitment of 

DDB2 to CPD foci, increased CPD repair efficiency, induced proper cell-fate 

decisions via ATM activation, and increased resistance of cells to UV damage 

(Cai et al., 2014). Methylation-defective mutants of DDB2 are defective in nuclear 

localization and recruitment to CPD foci (Cai et al., 2014). This is predicted to be 

through a mechanism similar to RCC1, whereby N-terminal methylation 

enhances the binding of DDB2 to DNA though electrostatic interaction (Cai et al., 

2014).  

NRMT1 has also been implicated in double-stranded break repair (DSB), 

and as such, to function as a tumor suppressor (Bonsignore (1) et al., 2015).  

Loss of NRMT1 results in increased sensitivity of human breast cancer cell lines 

to both etoposide and ɣ-irradiation, agents that cause double strand DNA breaks 

(Bonsignore (1) et al., 2015).   Loss of NRMT1 also increases the proliferation 

rate, invasive potential, anchorage-independent growth, xenograft tumor size, 

and sensitivity to tamoxifen of these breast cancer cell lines (Bonsignore (1) et 

al., 2015). The exact mechanism of how NRMT1 depletion sensitizes cancer 

cells to double stand breaks remains to be determined, but both BRCA-

associated protein-1 (BAP1) and poly [ADP-ribose] polymerase-3 (PARP3) are 
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predicted NRMT1 targets involved in homologous recombination and non-

homologous end-joining, respectively.  As with DDB2, N-terminal methylation 

may also regulate their recruitment to damaged-DNA (Bonsignore (1) et al., 

2015).  

In accordance with the phenotypes seen with NRMT1 knockdown in cell 

culture, global knockout of NRMT1 in mice (NRMT1-/- mice) gives rise to 

phenotypes similar to that seen in other mouse models defective in DNA damage 

repair (Bonsignore (2) et al., 2015; de Boer, et al., 2002). NRMT1-/- mice typically 

die before three weeks of age, are smaller than their wildtype counterparts, 

exhibit female-specific sterility, have marked kyphosis, decreased mitochondrial 

function, and increased liver pathogenesis (Bonsignore (2) et al., 2015). NRMT1-

/- livers show altered expression of genes related to apoptosis, oxidative 

phosphorylation, fatty acid metabolism, and steroid biosynthesis (Bonsignore (2) 

et al., 2015). Given the number of NRMT targets, it is likely these mice aren’t 

merely deficient in DNA damage repair (as demonstrated by Chen et al., 2007 

and Bonsignore (1) et al., 2010), but are likely deficient in a number of protein-

protein and protein-DNA interactions as well.   

As NRMT1 has now been shown to have significant biological relevance, 

we are interested in determining more about its regulation.  We have previously 

seen that co-expression with NRMT2 activates NRMT1 trimethylase activity and 

are especially interested in how this is occurring.  Recent studies with other 

homologous methyltransferases have identified a new pattern of regulation 

through heterodimer formation (Liu et al., 2014; Wang et al., 2016).  The major 
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type I arginine methyltransferase in Trypanosoma brucei, PRMT1, is activated 

through binding of its inactive homologous prozyme, PRMT3 (Kafkova, 2017).  

Though PRMT3 has no activity itself, through binding, it stabilizes and activates 

PRMT1 (Kafkova, 2017).   

Similarly, the N6-methyadenosine (m6A) RNA methyltransferase METTL14 

was recently reported to form a heterodimer complex with its homolog METTL3. 

Both METTL14 and METTL3 have methyltransferase activity individually, though 

the METTL14-METTL3 complex shows dramatically enhanced methyltransferase 

activity compared to either enzyme alone (Liu et al., 2014). Both enzymes 

contain catalytic domains, though phylogenetic analysis shows a much more 

conserved DPPW domain in METTL3 compared to the variable motif of 

METTL14 (Bujnicki et al., 2002; Iyer et al., 2016). The crystal structure of the 

METTL3-METTL14 complex, along with its bound cofactor SAM, has been 

solved to 1.70 Å and 1.65 Å, respectively. There are steric clashes in the 

METTL14 when SAM is bound that aren’t present in METTL3, indicating that 

METTL3 is the catalytic subunit of the complex. However, as METTL3 has 

minimal activity alone, its interaction with METTL14 is structurally necessary to 

lead to catalytic action (Wang et al., 2016). A similar mechanism of synergistic 

complex formation is found in DNA methylation, with the binding of catalytically 

inactive DNMT3L with active DNMT3a or DNMT3b (Jia, et al., 2007). The 

following chapter will explore the hypothesis that NRMT1 and NRMT2 also 

complex in a heterodimer, with the less active NRMT2 stabilizing and activating 

NRMT1 (Figure 1).  
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Figure 1 
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Figure 1. Model of predicted NRMT1 and NRMT2 heterodimer complex, with the 

less catalytically active NRMT2 stabilizing NRMT1 to promote trimethylation. 
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CHAPTER II 

THE N-TERMINAL METHYLTRANSFERASE HOMOLOGS NRMT1 AND 
NRMT2 EXHIBIT NOVEL REGULATION OF ACTIVITY THROUGH 

HETEROTRIMER FORMATION 
 

Introduction 

The initial defining feature of methyltransferase enzymes was onto which type of 

substrate they catalyzed the transfer of methyl groups from S-adenosyl-

methionine (SAM).  DNA methyltransferases have been further characterized into 

those that place 5’methylcytosine de novo or maintain it at hemimethylated CpG 

sites (Holliday and Pugh 1975).  Protein methyltransferases have been further 

characterized by the amino acid they methylate and the level (mono, di, or tri) of 

methylation they catalyze (Boriack-Sjodin and Swinger 2016).  Likewise, the RNA 

methyltransferases have been divided into four superfamilies based on their 

structure and the nucleotide they methylate (Motorin and Helm 2011).  It is 

becoming clear, however, that in addition to these intrinsic methyltransferase 

qualities, there is an additional layer of functional regulation in their expression 

patterns and complex formation. 

A common theme emerging is complex formation between 

methyltransferase homologs.  In Trypanosoma brucei, the major type I arginine 

methyltransferase, PRMT1, has a very narrow substrate specificity and weak 
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activity in vitro (Kafkova et al. 2017).  However, co-expression with its close 

paralog PRMT3 increases PRMT1 stability, and subsequently, its activity 

(Kafkova et al. 2017).  PRMT3 is missing key catalytic residues and does not 

exhibit in vitro enzymatic activity and has been characterized as a prozyme 

(Kafkova et al. 2017).  Activation of a catalytically weak enzyme by an inactive 

prozyme paralog has also been seen in T. brucei polyamine biosynthesis and 

described as the prozyme paradigm (Willert, Fitzpatrick, and Phillips 2007).  On 

average, the enzyme/prozyme complex typically exceeds the activity of the active 

enzyme alone by 2000 fold (Willert, Fitzpatrick, and Phillips 2007; Nguyen et al. 

2013).   

Similarly, the recently discovered N6-methyladenosine (m6A) RNA 

methyltransferase METTL3 forms a heterodimer with its close homolog 

METTL14 (Liu et al. 2014).  Unlike T. Brucei PRMT1 and PRMT3, METTL3 and 

METTL14 each show weak methyltransferase activity in vitro (Liu et al. 2014; 

Wang et al. 2016).  However, m6A methylation activity is significantly increased 

upon heterodimer formation, and this binding also promotes reciprocal stability of 

the homologs (Liu et al. 2014; Wang et al. 2014).  Though these data suggest 

METTL14 is not strictly an inactive prozyme, it appears its catalytic activity is not 

required for in vivo activity of the complex (Wang, Doxtader, and Nam 2016).  

The crystal structure of the heterodimer catalytic domains also indicates the 

METTL14 catalytic site is relatively occluded and does not bind SAM (Wang, 

Doxtader, and Nam 2016).  The current model is that the primary role of 
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METTL14 is to provide structural support to METTL3 and interact with RNA 

substrate (Wang, Doxtader, and Nam 2016; Wang et al. 2016). 

The mammalian methyltransferase EZH2 is part of the PRC2 complex that 

represses transcription by di- and trimethylating histone H3 on lysine 27 

(H3K27me2/3) (Schuettengruber et al. 2007).  EZH2 has one close homolog, 

EZH1, which also interacts with members of the PRC2 complex (Margueron et al. 

2008).  PRC2-EZH1 can also repress transcription, but EZH1 has weak 

H3K27me2/3 activity (Margueron et al. 2008).  In contrast to PRC2-EZH2, PRC2-

EZH1 represses transcription by binding and compacting nucleosomes 

(Margueron et al. 2008).  The PRC2-EZH2 and PRC2-EZH1 complexes are 

thought to be primarily mutually exclusive, but data indicate EZH1 and EZH2 can 

interact with each other both in vitro and in vivo (Margueron et al. 2008; Oliviero 

et al. 2016).  It is still functionally unclear why a PRC2 complex that contains 

EZH2 would also contain EZH1 (Oliviero et al. 2016), but as they accomplish the 

same goal by different mechanisms, there may be certain circumstances when 

synergistic activity would be beneficial.  Unlike T. brucei PRMT1 and PRMT3 and 

mammalian METTL14 and METTL3, Ezh1 and Ezh2 have very different 

expression patterns (Margueron et al. 2008), and the need for complexed EZH1 

and EZH2 may be specific to the tissues and developmental times where their 

expression patterns overlap. 

We work on the N-terminal methyltransferase homologs NRMT1 (N-

terminal RCC1 methyltransferase 1) and NRMT2 (N-terminal RCC1 

methyltransferase 2), which, following cleavage of the initiating methionine, 
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methylate the α-amine of the first N-terminal residue of their substrates.  NRMT1 

and NRMT2 are 50% identical and 75% similar and share an N-terminal X-P-K 

consensus sequence (Petkowski et al. 2013; Petkowski et al. 2012).  Though 

structurally similar, they differ in their catalytic activities. In vitro, NRMT1 exhibits 

distributive trimethylase activity, and in vivo, complete knockout of NRMT1 via 

homologous recombination or CRISPR/Cas9 abolishes N-terminal trimethylation 

(Petkowski et al. 2013; Shields et al. 2017; Bonsignore, Tooley, et al. 2015).  

NRMT2 exhibits monomethylase activity in vitro (Petkowski et al. 2013), but its 

knockout phenotypes remain to be characterized due to lack of an antibody that 

successfully detects it endogenously.  

There are over 300 predicted NRMT targets (Petkowski et al. 2012) and 

over a dozen verified targets, including RCC1, the tumor suppressor 

Retinoblastoma protein (Rb), the histone chaperone SET, the centromere 

proteins CENP-A and CENP-B, Poly(ADP-Ribose) Polymerase 3 (PARP3), 

Damaged DNA-binding protein 2 (DDB2), and a variety of myosin light chains 

and ribosomal proteins (Bailey et al. 2013; Dai et al. 2013; Dai et al. 2015; Cai et 

al. 2014; Tooley et al. 2010).  For the verified targets, N-terminal methylation 

seems to predominantly regulate protein-DNA interactions.  Loss of N-terminal 

methylation of RCC1 disrupts its binding to DNA, its localization to chromatin, 

and its ability to properly establish mitotic spindles (Chen et al. 2007).  N-terminal 

trimethylation of CENP-B enhances its binding to α-satellite DNA (Dai et al. 

2013), and N-terminal trimethylation of CENP-A is also required for its 

recruitment to the centromere (Sathyan, Fachinetti, and Foltz 2017).  DDB2 that 
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cannot get N-terminally methylated cannot be as efficiently recruited to UV-

induced cyclobutane dimers and these dimers cannot be as effectively repaired 

(Cai et al. 2014). 

  NRMT1 and NRMT2 have distinct mRNA expression patterns. NRMT1 is 

expressed ubiquitously in all tissues, while NRMT2 has much lower, tissue-

specific expression, with its highest expression found in the skeletal muscle and 

the liver (Petkowski et al. 2013).  This indicates NRMT1 can function 

independently without NRMT2.   In addition, NRMT1 knockout does not 

significantly affect monomethylation levels (Shields et al. 2017), indicating that 

even at low levels, NRMT2 can function without NRMT1 present. Taken together 

these data indicate both NRMT1 and NRMT2 can function independently without 

the other present.  However, it is unknown if N-terminal mono- and trimethylation 

are functionally redundant, and in vitro co-expression of NRMT2 with NRMT1 is 

able to increase the trimethylation activity of NRMT1 (Petkowski et al. 2013), 

indicating the two may also work synergistically under certain conditions.  

Here I aimed to better understand the interdependence of NRMT1 and 

NRMT2 and determine if they function in a complex.  First, I used analytical 

ultracentrifugation to show that purified recombinant NRMT1 and NRMT2 interact 

and determined the stoichiometry of interaction as 2:1 NRMT1 to NRMT2.  Next, 

I used co-immunoprecipitation (co-IP) to show NRMT1 and NRMT2 can be found 

complexed together in vivo and molecular modeling to map their areas of 

interaction.  I also used cycloheximide experiments to determine that while the 

half-life of NRMT1 increases in the presence of overexpressed NRMT2, the 
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converse is not true.  I used kinetic assays to quantitatively determine the effect 

of NRMT2 expression on NRMT1 activity and site directed mutagenesis to 

determine that NRMT2 enzymatic activity is not needed for an increase in 

NRMT1 trimethylase activity or substrate affinity.  Finally, to determine if N-

terminal mono- and trimethylation are functionally redundant, I tagged the NRMT 

substrate SETα with Dendra2 photoswitchable protein and showed its half-life is 

significantly decreased in NRMT1 CRISPR/Cas9 knockout cells.  This decrease 

in half-life can be rescued by NRMT1 overexpression but not by overexpression 

of NRMT2.  From these data, I conclude that NRMT1 and NRMT2 are most 

similar to their family members METTL3 and METTL14, which both exhibit 

methyltransferase activity in vitro but the activity of METTL3 predominates in 

vivo.  Stability and substrate affinity are increased by complex formation and 

monomethylase priming activity is not required.  These data do not rule out an 

additional unique function of N-terminal monomethylation by NRMT2, but show 

one of its functions when expressed is to promote N-terminal trimethylation. 

 

Materials and methods 

Constructs and antibodies 

For recombinant protein production, full-length human NRMT1, NRMT2, and 

NRMT2 V224L were cloned into pet15b (Merck Millipore, Burlington, MA) and 

purified as described previously (Petkowski et al. 2013; Chen, Brownawell, and 

Macara 2004; Shields et al. 2017). The full-length human NRMT1-FLAG, 
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NRMT1-GFP, NRMT2-FLAG, and NRMT2-GFP used in the co-IPs were cloned 

into pKH3 (FLAG constructs) or pKGFP2 (GFP constructs), as previously 

described (Petkowski et al. 2013).  All truncated constructs were sub-cloned from 

these full-length ORFs using primer sets that combined the primers used for full-

length cloning and the following unique primers:  

NRMT11-59 Reverse: 5’-GGGAATTCTTGTTCGGGCCTTCCCTCA-3’, 

NRMT152-172 Forward: 5’-GGTCTAGAATGTTTTTGAGGGAAGGCCCGAAC-3’ 

NRMT152-172 Reverse: 5’-GGGAATTCTCCTGGGCCATGTTGTCTTTGATGAC-3’ 

NRMT1178-223 Forward: 5’-GGTCTAGAATGGACGTGGACAGCAGCGTGTGC-3 

NRMT21-112 Reverse: 5’-GGGGATCCCCAGGCCCCCCAACAAATTT-3’ 

NRMT277-223 Forward: 5’-GGTCTAGAATGCAAGAAGTACCAGCCACAGAA-3’ 

NRMT277-223 Reverse: 5’- GGGGATCCGTCCTTCAATATGATGATGCC-3’ 

To make SETα-Dendra2-pCDH, human SETα was amplified from our previously 

published SETα-FLAG construct (Tooley et al. 2010) to introduce 5’ Xho1 and 3’ 

HindIII restriction sites and sub-cloned into the pDendra2-N vector (Clontech, 

Mountain View, CA). The SETα-Dendra2 construct was then amplified to 

introduce 5’ Xba1 and 3’ Swa1 restriction sites and sub-cloned into the lentiviral 

vector pCDH-CMV-EF1-Puro (pCDH, Addgene, Cambridge, MA).  Lentivirally 

expressed NRMT2-GFP, NRMT1-FLAG, and NRMT2-FLAG were first amplified 

from the corresponding mammalian expression vectors to introduce 5’ Xba1 and 

3’ Swa1 restriction sites and sub-cloned into pCDH.  Primary antibodies for 
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western blots were used at the following dilutions: rabbit anti-FLAG-HRP (1:1000, 

Sigma-Aldrich, St. Louis, MO), rabbit anti-GFP (1:1000, Cell Signaling 

Technologies, Danvers, MA), rabbit anti-NRMT1 (1:1000) (Tooley et al. 2010), 

rabbit anti-me3-RCC1 (1:10,000) (Tooley et al. 2010), rabbit anti-me1/2-RCC1 

(1:5000) (Tooley et al. 2010), rabbit anti-GAPDH (1:2000, Trevigen, 

Gaithersburg, MD), and mouse anti-Dendra2 (1:500, Origene, Rockville, MD). 

 

Cell culture and lentivirus production 

Human embryonic kidney cells (HEK293, ATCC, Manassas, VA) cells were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies, 

Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Atlanta 

Biologicals) and 1% penicillin-streptomycin (P/S; Life Technologies). HCT116 

human colorectal carcinoma cell lines (generous gift from Dr. Ian Macara) were 

maintained in McCoy’s 5a Modified Medium (Life Technologies) supplemented 

with 10% FBS and 1% P/S.  Lentivirus expressing empty pCDH vector, NRMT2-

GFP-pCDH, SETα-Dendra2-pCDH, NRMT1-FLAG-pCDH, or NRMT2-FLAG 

pCDH was made by co-transfecting HEK293 cells with 50 µg pCDH containing 

the appropriate cDNA, 37.5 µg psPAX2 packaging vector, and 15 µg pMD2.G 

viral envelope plasmid using calcium phosphate transfection (McCaffrey and 

Macara 2009). Forty-eight hours post-transfection, supernatant was collected 

and virus concentrated using 100 kD ultrafilters (EMD Millipore). Virus 

concentration was determined by titration in HEK293 cells and HCT116 cells 
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were transduced by addition of a volume of virus equal to a multiplicity of 

infection (MOI) of 1. Three days post-transduction, transduced cells were 

selected for by addition of 2 µg/ml puromycin. For Dendra2 experiments, cells 

were first transduced with overexpression virus.  Transduced cells were selected 

for with puromycin after three days, and then retransduced with SETα-Dendra2 

expressing virus. 

 

Co-Immunoprecipitations (co-IPs) 

For co-IP experiments, 1x106 HEK293 cells were seeded in 60 mm tissue culture 

dishes 24 hours prior to calcium phosphate transfection with 2 µg each of 

appropriate constructs.  24 hours post-transfection, cells were scraped directly 

into 100 µl lysis buffer (50mM Tris pH 7.5, 300 mM NaCl, 5 mM MgCl2, 1% NP-

40, 7mM BME) plus protease inhibitors for protein isolation.  20 µl of cell lysate 

was retained for input control, and the remainder mixed with 20 µl M2 agarose 

beads (Sigma-Aldrich). The bead/protein mixture was rotated 1-2 hours at 4oC 

and washed 3x with PBS + 0.1% NP-40. The immunoprecipitated proteins were 

eluted from the beads in 5X Laemmli buffer and boiled for 5 minutes at 95o C. 

The bead-free supernatant from IP and 15ug total protein input samples were run 

on 12% SDS-PAGE gels. Western blotting was performed using the above 

antibodies.  

 

Analytical Ultracentrifugation 
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Sedimentation velocity experiments were carried out in a Beckman Coulter 

ProteomeLab XL-A analytical ultracentrifuge (Beckman Coulter Inc., Brea, CA) at 

20°C and 40,000 rpm in standard 2 sector cells. Buffer density and viscosity (50 

mM Tris, 50 mM KCl at pH 8.0) were calculated using Sednterp (free software: 

Biomolecular Interaction Technologies Center at the University of New 

Hampshire, http://jphilo.com/sdtr0601.exe). Data were analyzed with the program 

Ultrascan 3.0 (free software: www.ultrascan.uthscsa.edu/) using the “combine 

pseudo-3D distributions” operation. The partial specific volumes of NRMT1 and 

NRMT2 were calculated from the amino acid compositions (0.734 ml/g for 

NRMT1 and 0.737 ml/g for NRMT2) using the Protparam tool in ExPASy (free 

software: web.expasy.org). Dr. Bill Dean is greatly appreciated for performing the 

analytical ultracentrifugation and subsequent analysis.  

 

Cycloheximide experiments 

1x106 HCT116 cells, HCT116 cells transduced with lentivirus expressing NRMT2-

GFP, HCT116 cells with CRISPR/Cas9-mediated knockout of NRMT1 (HCT116 

NRMT1-/-) (Shields et al. 2017), or HCT116 NRMT1-/- cells transduced with 

lentivirus expressing NRMT2-GFP were plated 24 hours prior to the start of the 

cycloheximide chase experiment. At the start of each time point, the McCoy’s 5a 

Modified Medium was replaced with fresh media containing 100 µg/ml 

cycloheximide (Sigma-Aldrich). Cells were harvested in 100 µl cell lysis buffer 

(see above) and protein was quantified using the Pierce 660 nM Protein Assay 

(Thermo-Fisher Scientific, Waltham, MA). 20 µg total protein per time point was 
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separated on 12% SDS-PAGE gels and subjected to Western blotting using 

antibodies against NRMT1, GFP, and GAPDH as a loading control. Pixel density 

and normalization for each band was quantified using Image Lab software (Bio-

Rad, Hercules, CA). 

 

Dendra2 experiments 

As described above, HCT116 or HCT116 NRMT1-/-  cells were transduced with 

control (empty pCDH vector), NRMT1-FLAG, or NRMT2-FLAG expressing 

lentivirus at an MOI of 1.  Three days post-transduction cells were selected with 

puromycin treatment. Three days post-puromycin treatment, cells were 

retransduced with lentivirus expressing SETα-Dendra2 at an MOI of 1. 72 hours 

post-transduction, 2000 cells per well of each experimental condition were plated 

at an N=6 on a 96-well plate and allowed to adhere and grow for 48-72 hours.  

Kinetic fluorescent analysis using the Cytation5 Imaging System (BioTek, 

Winooski, VT) was started by taking pre-conversion images in the GFP and RFP 

channel for each well. Each well was then exposed to the DAPI channel (UV) at 

maximum intensity for 16 seconds for photoconversion of the Dendra2. Post-

conversion RFP kinetic imaging was performed once per hour for 24 hours, with 

cells maintained at 5% CO2 and 37°C.  Imaging settings remained constant 

throughout.  The raw fluorescence value of the RFP channel for each well was 

then normalized to the 0-hour time point and fluorescent decay between cell 

types was measured.  
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In vitro methylation assays 

Methyltransferase assays were conducted using the MTase-Glo 

Methyltransferase Assay (Promega, Madison, WI) and following the given 

protocol. Briefly, after optimization for protein concentration, all assays used 0.4 

µM recombinant enzyme, 20 µM S-adenosyl methionine (SAM), and varied 

concentrations of SPK-RCC1 (SPKRIAKRRSPPADA) or SSK-MYL9 

(SSKRAKAKTTKKRPK) peptides as substrate. Substrates were serially diluted in 

a 96-well plate and reactions were started with the addition of the appropriate 

recombinant enzyme.  All reactions were carried out at room temperature and 

stopped after 20 minutes with the addition of 0.5% trifluoroacetic acid. The 

MTase-Glo detection reagents were then added and luminescence was 

quantified using the Cytation5 Imaging System (BioTek).  

 

Protein modeling and statistical analysis 

Molecular modeling and the associated images were produced using the PyMOL 

Molecular Graphics System, Version 2.0.6 (Schrödinger, LLC).  PDB accession 

numbers are 2EX4 (NRMT1) and 5UBB (NRMT2).  Modeling was performed by 

molecular alignment of monomeric species of NRMT2 (5UBB) and dimeric 

NRMT1 (2EX4). Each species was rotated to minimal root-mean-square 

deviation (RMSD) scores (adapted from Coutsias et al., 2004) and potential 

interacting residues were measured using the “measurement wizard,” natively 
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incorporated into the PyMOL user interface. All measured residues of interaction 

had a distance >4Å, satisfying the maximum Van der Waals radius between 

atoms involved. All statistical analyses were performed using GraphPad Prism 

Software for Mac Version 7.0d (La Jolla, California). The specific statistical test is 

noted in the respective figure captions and results are presented as mean ± 

standard error, n = 3 unless specifically stated. 

 

Results 

NRMT1 and NRMT2 form heterotrimers 

Like METTL3 and METTL14, NRMT1 (METTL11A) and NRMT2 (METTL11B) are 

part of the Methyltransferase like (METTL) family of class I methyltransferases 

containing seven-beta-strand methyltransferase motifs and Rossman folds for 

binding SAM (Iyer, Zhang, and Aravind 2016; Schapira and Ferreira de Freitas 

2014).  Though the enzymes in the METTL family have a wide range of 

substrates, including protein, RNA, and small molecules, they are structurally 

similar (Richon et al. 2011).  Given that METTL3 and METTL14 must form a 

heterodimer for optimal m6A methylation activity (Liu et al. 2014), and NRMT1 

has been shown to have increased N-terminal trimethylation activity when co-

expressed with NRMT2 (Petkowski et al. 2013), I wanted to determine if NRMT1 

and NRMT2 also heterodimerize. 

 His-tagged recombinant human NRMT1 and NRMT2 were expressed and 

purified from E. coli and analyzed individually and combined by analytical 
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ultracentrifugation.  Ultrascan 3 analysis identified a pool of NRMT1, that when 

analyzed alone, sediments as a monomer of approximately 33 kD (Figure 2A).  

This is slightly larger than the predicted molecular mass of 25 kD for a NRMT1 

monomer.  The majority of NRMT1, however, sedimented as a 52 kD dimer 

(Figure 2A).  NRMT2 showed an opposite pattern when run alone.  There was a 

pool of NRMT2 that sedimented as a 52.6 kD dimer, but the majority sedimented 

as a 35.7 kD monomer, which is close to its predicted molecular mass of 32 kD 

(Figure 2B).  When run in combination at equimolar concentrations, monomers of 

each NRMT1 and NRMT2 were still present, but a new species of 83.8 kD was 

now visible, representing a heterotrimer formed from a NRMT1 dimer and a 

NRMT2 monomer (Figure 2C).  The pool of NRMT1 dimer was completely 

depleted, suggesting that if NRMT2 monomer is present the NRMT1 dimer will 

bind it.  In addition, as there was excess monomeric NRMT1 and NRMT2 present 

and no indication of a NRMT1 and NRMT2 heterodimer, these data also suggest 

NRMT1 cannot bind NRMT2 unless it is already homodimerized and a pool of 

NRMT2 monomer can exist independent of the heterotrimer. 

 

  



	 47	

Figure 2 
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Figure 2. NRMT1 and NRMT2 form heterotrimers. (A) Ultrascan 3 analysis 

shows a minor pool of His-tagged NRMT1 sediments as a monomer of 

approximately 33 kD and a major pool sediments as a homodimer of 

approximately 52 kD. (B) The majority of His-tagged NRMT2 sediments as a 

monomer of approximately 35.7 kD, with a minor pool sedimenting as a 

homodimer of approximately 52.7 kD. (C) An equimolar mixture of NRMT1 and 

NRMT2 shows the formation of an 83.8 kD heterotrimeric species, representing a 

NRMT1 dimer and NRMT2 monomer. NRMT1 dimers are no longer present, but 

monomers of both NRMT1 and NRMT2 can still be seen. Dr. Bill Dean is greatly 

thanked for the running and interpretation of the analytical ultracentrifugation 

experiment.  
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NRMT1 and NRMT2 interact in vivo 
  
Now knowing that NRMT1 and NRMT2 can interact in vitro, I wanted to next 

determine if the homologs also interact in vivo.  Full length C-terminally-tagged 

human NRMT1-FLAG and NRMT2-GFP were co-expressed in human embryonic 

kidney cells (HEK293) by transient transfection.  Twenty-four hours post-

transfection, NRMT1-FLAG was immunoprecipitated (IP) out of the cell lysate 

and western blots were used to determine if NRMT2-GFP co-

immunoprecipitated.  As expected, full length NRMT1-FLAG was able to co-IP 

NRMT2-GFP (Figure 3A).  To test if the reciprocal was true, full length human 

NRMT2-FLAG and human NRMT1-GFP were also co-expressed in HEK293 cells 

by transient transfection.  While NRMT1-GFP did show some non-specific 

binding to beads alone, it was enriched in the co-IP lane, indicating full length 

NRMT2-FLAG is able to co-IP NRMT1-GFP (Figure 3B).   

As both these co-IPs were done with overexpressed tagged proteins, I 

next wanted to determine if endogenous NRMT1 and NRMT2 interact.  We have 

previously developed a rabbit antibody against human NRMT1 that successfully 

works for western blot but not for IP (Tooley et al. 2010).  Though NRMT1 and 

NRMT2 are 50% identical, the fourteen amino acid peptide antigen used to 

produce the NRMT1 antibody only had three amino acids in common and does 

not appear to detect NRMT2 (Tooley et al. 2010).  As we have yet to find a 

NRMT2 antibody that consistently works for either western blot or IP from cell 

lysate, I expressed full length NRMT2-FLAG in HEK cells, immunoprecipitated it 

with anti-FLAG agarose and assayed for the presence of endogenous NRMT1 by 
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western blot.  As a control, I also expressed VRK2-FLAG, which has been shown 

to interact with endogenous NRMT1 (Petkowski et al. 2012).  I found that 

endogenous NRMT1 did co-IP with both VRK2-FLAG and NRMT2-FLAG (Figure 

3C).  Taken together, these data indicate that NRMT1 and NRMT2 can interact 

both in vitro and in vivo. 
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Figure 3 

 

	 	



	 52	

Figure 3.  NRMT1 and NRMT 2 interact in vivo (A) Western blots showing 

NRMT2-GFP co-immunoprecipitates with NRMT1-FLAG after co-transfection into 

HEK293 cells. (B) Reciprocally, NRMT1-GFP co-immunoprecipitates with 

NRMT2-FLAG. (C) Endogenous NRMT1 co-immunoprecipitates with both 

NRMT2-FLAG and VRK2-FLAG (a known binding partner of NRMT1, used as a 

positive control) (Petkowski et al. 2012). * denotes NRMT1 band. Upper band is 

a non-specific band detected by NRMT1 antibody (Tooley et al. 2010). 
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Modeling of NRMT1 and NRMT2 interactions  
 
I next wanted to determine which domains on NRMT1 and NRMT2 are 

responsible for heterotrimer formation.  The crystal structures of NRMT1 and 

NRMT2 (PDB codes 2EX4 and 5UBB) have been determined to 1.75 and 2 Å, 

respectively (Min 2005; Dong 2017), and as predicted by homology modeling 

(Petkowski et al. 2013) are almost identical barring the additional N-terminal 

domain on NRMT2, which was not included in the structure (Dong 2017). The 

core of both enzymes is a seven-stranded β sheet (β1-7) flanked by five α -

helices (α1-5) (Wu et al. 2015).  In addition, there are several other structural 

elements including three N-terminal helices and a pair of β hairpins (βAB) inserted 

between β5 and α6 (Wu et al. 2015).   

To help predict which domains of NRMT1 and NRMT2 interact, I first used 

PyMOL molecular visualization software to model the NRMT1 dimer.  The space-

filling model (Figure 4A) and ribbon diagram (Figure 4B) indicate NRMT1 

homodimerization is facilitated by α5 of one monomer and the loop between 

α1/β1 on the second monomer (Figure 4B). Neither of these regions are involved 

in either the substrate or SAM-binding motifs (Wu et al. 2015) but are exposed on 

the outside of the protein and would be available for interaction (Figure 4A).  The 

model specifically predicts interactions between Ser157 and Gly156 of the α5 

helix with Ser64 and Arg68 of the α1/β1 loop, which are 4.2 and 3.9 Å apart, 

respectively (Figure 4C). 
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Though our analytical ultracentrifugation results suggest NRMT2 is 

predominantly found as a monomer, it can also be found as a homodimer (Figure 

2B), and these dimerization interactions could provide insights into how it 

heterotrimerizes with NRMT1.  The NRMT2 crystal structure (PDB code 5UBB) 

and our PyMOL models of NRMT2 dimerization (Figure 4D, E), indicate its 

homodimerization is facilitated by the unstructured N-termini (minus the 59 amino 

acid region unique to NRMT2, which is not included in the crystal structure) and 

the βAB hairpins of each monomer.  Our model specifically predicts Gln60, Val61, 

and Ile62 of the N-terminus interact with Cys229, Ile230, and Leu231 of the βAB 

hairpin, respectively (Figure 4F).  The extreme N-terminus is not currently 

predicted to contribute to substrate or SAM binding (Wu, 2015), but it is hard to 

predict how the additional 59 amino acid NRMT2 N-terminal tail could affect the 

overall structure.  The βAB hairpins are predicted to contribute to the substrate-

binding pocket (Wu et al. 2015), which indicates binding of NRMT2 to NRMT1 

could alter the ability of NRMT2 to bind substrate. 
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Figure 4 

	
	 	



	 56	

Figure 4.  Modeling of NRMT1 and NRMT2 dimers. Space-filling model of (A) 

NRMT1 and (D) NRMT2 homodimers showing regions of dimerization (green 

overlap, middle).  Ribbon diagrams of (B) NRMT1 and (E) NRMT2 homodimers 

and detail of regions of interaction between monomers. All measurements 

between residues fall within accepted Van der Waals distances for interaction. 

Boxed regions are enlarged below each model.  Measured distances between 

interacting residues from monomers of (C) NRMT1 and (F) NRMT2. All 

interactions were modeled with PyMOL using PDB accessions codes 2EX4 and 

5UBB. 	 	
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 I next used PyMOL to model the possible interactions between a NRMT1 

dimer and a NRMT2 monomer (Figure 5A).  I found that if the previously modeled 

interactions between NRMT1 monomers are maintained, the NRMT2 monomer 

primarily interacts within the first 50 amino acids of NRMT1, with a secondary set 

of interactions between Arg79, Pro83, andTyr104 of NRMT1 and Leu231, 

Asp232, and Gln60 of NRMT2 (Figure 5A-C).  The NRMT2 residues involved are 

almost identical to those involved in homodimerization (Figure 5C).  As predicted, 

the model suggests that NRMT2 interacts with the NRMT1 dimer as it would with 

another NRMT2 monomer.  As the N-terminus of NRMT1 is not needed for its 

dimerization, both NRMT1 monomers would theoretically be available for binding 

to NRMT2.  However, NRMT1 dimerization places both N-termini in the same 

plane, so steric hindrance may preclude binding of more than one NRMT2 

monomer to the NRMT1 dimer (Figure 5D). 
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Figure 5 
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Figure 5.  Modeling of NRMT1 and NRMT2 heterotrimer. (A) Top - Space-filling 

model showing area of interaction between the NRMT1 dimer (green) and 

NRMT2 monomer (multicolored). Bottom - 180
o
 rotation of the heterotrimer 

model. The NRMT2 monomer is shaded with a blue-to-red gradient, representing 

the N-terminal to C-terminal orientation of the amino acid sequence. The majority 

of interactions between the NRMT1 dimer and NRMT2 monomer are predicted to 

involve the blue (N-terminus) shaded region of NRMT2. (B) Ribbon diagram of 

the NRMT1 dimer interacting with the space-filling model of the NRMT2 

monomer. Boxed region is enlarged below and shows the majority of residues of 

interaction are found in the N-terminus of both enzymes. (C) Diagram of and 

measured distances between interacting residues of NRMT1 and NRMT2. (D) 

Ribbon diagram of NRMT1 homodimer, indicating N-termini of each monomer 

(purple) are oriented in the same plane.  All interactions were modeled with 

PyMOL using PDB accessions codes 2EX4 and 5UBB. 
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 To test these models, I performed co-IPs with N- and C-terminal 

fragments of NRMT1 and NRMT2 (Figure 6A).  To determine if it is primarily the 

unstructured N-terminal tail of NRMT2 that interacts with full-length NRMT1-

FLAG, I made constructs consisting of the first 112 amino acids of NRMT2 

(containing important predicted residues) or amino acids 77-223 of NRMT2 

(directly succeeding the important predicted residues) fused to GFP.  An 

additional C-terminal fragment of NRMT2 (amino acids 207-283) was attempted 

but did not express.  NRMT1-FLAG and NRMT21-112-GFP or NRMT277-223-GFP 

were co-expressed in HEK293 cells, and NRMT1-FLAG was immunoprecipitated 

using anti-FLAG antibody conjugated to agarose beads.  Contrary to the model, 

the first 112 amino acids of NRMT2 did not strongly interact with NRMT1, though 

amino acids 77-223 did (Figure 6B,C).  The main difference between the co-IPs 

and the models was that the first 112 amino acids in the co-IPs contained the 

extra 59 amino acid N-terminal tail that was not included in the crystal structure 

or subsequent model.  These data indicate that the presence of the additional N-

terminal amino acids of NRMT2 affect its binding to NRMT1. 

 To determine if it is primarily the first 50 amino acids of NRMT1 that 

interact with full-length NRMT2-FLAG, I made constructs consisting of the first 59 

amino acids, amino acids 52-172, or amino acids 178-223 of NRMT1 fused to 

GFP (Figure 6A).  NRMT2-FLAG and NRMT11-59-GFP, NRMT252-172-GFP, or 

NRMT2178-223-GFP were co-expressed in HEK293 cells, and NRMT2-FLAG was 

immunoprecipitated out as previously described. Supporting the model, the first 
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59 amino acids of NRMT1 did strongly interact with NRMT2 (Figure 6D).  

However, amino acids 52-172 also interacted with NRMT2 (Figure 6E), as did 

amino acids 178-223, though to a lesser degree than the first two constructs 

(Figure 6F).  These data indicate that the first 50 amino acids of NRMT1 are 

sufficient to promote interaction with NRMT2, though the predicted interactions of 

Arg79, Pro83, and Tyr104 may also be playing a role. 
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Figure 6 
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Figure 6.  NRMT1 and NRMT2 truncation mutants.  (A) Diagram showing full-

length and truncation constructs of NRMT1 and NRMT2.  Subscript indicates the 

amino acid (aa) sequence from N- to C-terminus of each construct. (B) Full-

length NRMT1-FLAG only weakly interacts with the first 112 aa of NRMT2, (C) 

though strongly interacts with a NRMT2-GFP fragment (amino acids 77-223) that 

is missing the 59 aa tail that is also lacking from the crystal structure and 

subsequent model. (D) Full-length NRMT2-FLAG strongly interacts with the first 

59 aa of NRMT1, as well as, (E) amino acids 52-172. (F) There is a decreased 

interaction of NRMT2-FLAG with the C-terminal fragment of NRMT1 (amino 

acids 178-223). N =3 for each truncation experiment.  
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NRMT2 expression stabilizes NRMT1 
 
As both PRMT1 and METTL3 stability is enhanced by binding to its homolog 

partner (Kafkova et al. 2017; Liu et al. 2014; Wang et al. 2014), I wanted to next 

determine if the half-life of NRMT1 is enhanced by the expression of NRMT2 or 

vice versa.  To first measure the half-life of endogenous NRMT1 under basal 

conditions (i.e. low levels of NRMT2 as determined by qRT-PCR (unpublished 

data)), I treated HCT116 human colorectal carcinoma cells with 100 µg/ml 

cycloheximide and harvested cell lysates at six time points, up to twelve hours 

after treatment.  Western blots of the lysates were probed with our anti-NRMT1 

antibody (Tooley et al. 2010) and anti-GAPDH as a loading control.  NRMT1 

levels were normalized to GAPDH and calculated using Image Lab software.  

The experimentally calculated half-life for endogenous NRMT1 was 

approximately 8.8 hours (Figure 7A).   

Due to the lack of an antibody that specifically detects endogenous 

NRMT2 in cell lysate, I used NRMT2-GFP to determine the half-life of NRMT2 

under basal conditions.  HCT116 cells were transduced with lentivirus expressing 

NRMT2-GFP at an MOI of 1.  48 hours post-transduction, successfully 

transduced cells were selected for by puromycin treatment.  This was to ensure 

all cells in the experiment were expressing a homogenously low level of NRMT2-

GFP.  Again, cells were treated with 100 µg/ml cycloheximide and harvested at 

six time points, up to twelve hours after treatment.  Western blots of the lysates 

were probed with anti-GFP and anti-GAPDH and analyzed as above.  The 
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experimentally calculated half-life for NRMT2 under basal conditions (i.e. with 

NRMT1 present) was approximately 5.3 hours (Figure 7B). 

 To determine if NRMT2 expression is altered in the absence of NRMT1, I 

first transduced CRISPR/Cas9-mediated NRMT1 knockout HCT116 cells 

(Shields et al. 2017) with lentivirus expressing NRMT2-GFP at an MOI of 1.  After 

puromycin selection, cells were treated with 100 µg/ml cycloheximide and 

harvested as previously described. The experimentally calculated half-life for 

NRMT2 in cells lacking NRMT1 expression was approximately 3.3 hours (Figure 

7C). This was not statistically significant from the half-life of NRMT2-GFP in 

control cells (Figure 7E), indicating the stability of NRMT2 is not dependent on 

NRMT1 expression.  This also highlights the short half-life of NRMT2, and 

indicates its expression may be tightly regulated and confined to times of specific 

need. 

 Next, I aimed to measure if NRMT2 overexpression affects the stability of 

endogenous NRMT1.  As previously, HCT116 cells were transduced with 

lentivirus expressing NRMT2-GFP at an MOI of 1.  They were then treated with 

100 µg/ml cycloheximide and harvested as previously.  Interestingly, in the 

presence of overexpressed NRMT2, the half-life of NRMT1 increases to 

approximately 14.8 hours (Figure 7D).  This is a significant increase in NRMT1 

half-life as compared to its half-life of 8.8 hours under basal NRMT2 conditions 

(Figure 7E).  These data fit with a model of NRMT1 providing basal 

housekeeping N-terminal methyltransferase activity, and NRMT2 being induced 
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to enhance NRMT1 activity when needed during times of stress of increased 

substrate burden. 
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Figure 7 
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Figure 7.  NRMT2 expression stabilizes NRMT1. HCT116 cells were treated for 0 

-12 hours with 100 µg/ml cycloheximide to inhibit protein synthesis. (A) Half-life of 

endogenous NRMT1 protein was calculated to be 8.8 hours. (B) Half-life of 

NRMT2-GFP protein was calculated to be 5.3 hours. (C) HCT116 cells with 

CRISPR/Cas9-mediated knockout of NRMT1 (HCT116 NRMT1-/-) were also 

treated for 0 -12 hours with 100 µg/ml cycloheximide. The half-life of NRMT2-

GFP in the absence of NRMT1 was slightly lower at 3.3 hours (D) Finally, 

HCT116 cells overexpressing NRMT2-GFP were treated for 0 -12 hours with 100 

µg/ml cycloheximide. The half-life of endogenous NRMT1 in the presence of 

overexpressed NRMT2 was found to be a significantly longer 14.8 hours. (E) 

Comparison of the half-lives of each group.  Blots are representative images of 

three independent experiments. Pixel densitometry was quantified using Bio-Rad 

Image Lab software, with GAPDH serving as the loading control for each lane. 

NRMT1 and/or GFP bands were internally normalized to T=0 lane and set to 1.  

Half-life was calculated using a one-phase decay non-linear regression and 

constraining Y0 to 1 and the plateau to 0 (dashed lines).  * denotes p<0.05 as 

determined by ANOVA followed by Tukey’s multiple comparison test to compare 

groups using GraphPad Prism. 
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Catalytic activity of NRMT2 is not necessary for increased trimethylation by 

NRMT1  

To determine if NRMT2 enhances NRMT1 activity through a priming activity as 

previously hypothesized (Petkowski et al. 2013), or if it is simply providing 

enhanced stability, I performed in vitro methylation assays with different 

combinations of wild type (WT) NRMT1, WT NRMT2, and NRMT2 V224L, a 

mutant initially identified in human breast cancer that is almost completely devoid 

of methyltransferase activity (Shields et al. 2017).  When using as substrate a 

peptide consisting of the first fifteen amino acids of RCC1 

(SPKRIAKRRSPPADA), NRMT1 recombinant enzyme alone exhibited a Km of 

1.1 µM (Figure 8A), WT NRMT2 recombinant enzyme alone exhibited a Km of 

55.6 µM (Figure 8B), and NRMT2 V224L had no activity (Figure 8C).  In 

combination with WT NRMT2, the Km of NRMT1 decreased to 0.9 µM (Figure 

8D), and in combination with NRMT2 V224L, the Km of NRMT1 decreased to 0.1 

µM (Figure 8E), indicating the increased activity of NRMT1 is not dependent on 

the catalytic activity of NRMT2. 

 However, only the decrease in Km with NRMT2 V224L was statistically 

significant from the Km of NRMT1 alone (Figure 8F).  As the Ser-Pro-Lys 

consensus sequence of the RCC1 peptide is a preferred substrate for NRMT1 

(Petkowski et al. 2012), I wanted to test if I could see a greater decrease in Km 

with NRMT2 addition when using a less preferred substrate.  We have previously 

seen that the Km of NRMT1 is considerably higher when using the Ser-Ser-Lys 

consensus sequence of myosin regulatory light chain 9 (MYL9) (unpublished 
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data), so I repeated the experiments above using a peptide of the first fourteen 

amino acids of MYL9 (SSKRAKAKTTKKRP) as substrate.  NRMT1 recombinant 

enzyme alone exhibited a Km of 15.6 µM (Figure 8G).  Neither WT NRMT2 nor 

NRMT2 V224L had any activity on the MYL9 peptide (Figure 8H,I).  In 

combination with WT NRMT2, the Km of NRMT1 decreased to 6.6 µM (Figure 

8J), and in combination with NRMT2 V224L, the Km of NRMT1 decreased to 4.4 

µM (Figure 8K).  Using this Ser-Ser-Lys substrate, both WT NRMT2 and NRMT2 

V224L were able to significantly lower the Km of NRMT1 (Figure 8L), further 

verifying the catalytic activity of NRMT2 is not needed, and indicating NRMT2 is 

not increasing NRMT1 activity via a substrate priming role, but by providing 

stability and altering substrate affinity. 
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Figure 8 
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Figure 8. Catalytic activity of NRMT2 is not necessary for increased 

trimethylation by NRMT1. (A) Wildtype NRMT1 shows a Km of 1.1 µM when 

trimethylating the SPK-RCC1 peptide substrate, (B) while the Km of NRMT2 is 

55.6 µM. (C) The catalytically inactive NRMT2 V224L mutant is unable to 

methylate the same substrate. (D) Combing NRMT1 and NRMT2 lowers the Km 

of NRMT1 to 0.9 µM, while (E) the combination of NRMT1 and catalytically 

inactive NRMT2 V224L further lowers the Km of NRMT1 to 0.1 µM. (F) 

Comparison of Michaelis-Menton constants for NRMT1 alone, NRMT2 alone, or 

NRMT1 in combination with NRMT2 or NRMT2 V224L with SPK-RCC1 peptide 

as substrate.  Only the combination of NRMT1 with NRMT2 V224L was 

significantly different from NRMT1 alone.  Calculated constants are the mean of 

three independent experiments ± SEM.  *** denotes p< 0.001 as determined by 

unpaired Student’s t-test.  Using a less preferred, but still enzymatically-favorable 

substrate SSK-MYL9, (G) increases the Km of NRMT1 to 15.6 µM but shows no 

enzymatic activity with (H) NRMT2 or (I) NRMT2 V224L. (J) Combining NRMT1 

and NRMT2 decreases the Km of NRMT1 to 6.6 µM, and (K) the combination of 

NRMT1 and NRMT2 V224L further lowers the Km of NRMT1 to 4.4 µM. (L) 

Comparison of Michaelis-Menton constants for NRMT1 alone, NRMT2 alone, or 

NRMT1 in combination with NRMT2 or NRMT2 V224L with SSK-MYL9 peptide 

as substrate.  The constants for both the combinations of NRMT1 with NRMT2 

and NRMT1 with NRMT2 V224L were significantly different from NRMT1 alone.  

Calculated constants are the mean of three independent experiments ± SEM. * 
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and ** denote p<0.05 and 0.01, respectively, as determined by unpaired 

Student’s t-test.   
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 To understand why NRMT2 V224L was able to significantly decrease the 

NRMT1 Km with the RCC1 peptide, and not WT NRMT2, I performed molecular 

modeling of the NRMT2 V224L mutant (Figure 9).  It is easy to see how V224L 

might disrupt NRMT2 catalytic activity, as Val224 is in the substrate binding 

pocket and is directly adjacent to Asn223, which forms critical hydrogen bonds 

and electrostatic interactions with substrate (Petkowski et al. 2013; Shields et al. 

2017).  When mutated to Leu, this residue extends much further into the pocket, 

potentially disrupting nearby interactions with substrate (Figure 9B).  

Interestingly, another residue critical for NRMT2 catalytic activity, Asp232 

(Petkowski et al. 2013), is also nearby in this pocket, and is one of the predicted 

secondary sites of interaction with NRMT1 (Figure 5C, Figure 9C).  Though they 

are not directly adjacent to each other they are connected by a short, 

unstructured loop, and it is possible to envision how a change in the position of 

residue 224 could indirectly affect the position of Asp232 (Figure 9C).  Mutation 

of Val224 to Leu could impact NRMT2 function via two different mechanisms, 

first by disrupting substrate binding and subsequent catalytic activity, and second 

by promoting Asp232 accessibility and subsequent complex formation with 

NRMT1. 
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Figure 9 

 

	
  



	 76	

Figure 9. A valine à leucine mutation at position 224 renders NRMT2 

catalytically inactive. (A) Cartoon rendering of NRMT2 monomer showing WT 

valine at position 224 (B, top) mutated to leucine (B, bottom) that eliminates 

methyltransferase activity. (C) Leu224 and Asp232 are connected by a short, 

unstructured loop. Images were produced in PyMOL.	 	
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NRMT2 overexpression cannot rescue NRMT1 knockout phenotypes 

The above data lead to a model where the NRMT1 homodimer normally 

functions alone as the primary N-terminal methyltransferase in cells, but can act 

synergistically with NRMT2 to increase N-terminal trimethylation levels at times 

of high need.  This model implies that NRMT2 is not simply a functionally 

redundant homolog of NRMT1 but an important activator.  To further confirm 

NRMT1 and NRMT2 are not functionally redundant, I wanted to test if NRMT2 

expression could rescue NRMT1 knockout phenotypes.  It has been shown that 

N-terminal dimethylation protects the N-terminus of cytochrome c557 from 

digestion in Crithidia oncopelti (Smith and Pettigrew 1980).  I wanted to see if N-

terminal mono- or trimethylation differentially affected this protection and affect 

the rate of decay, using a mammalian substrate with a known consensus 

sequence for both NRMT1 and NRMT2, the α isoform of SET (SETα) (Petkowski 

et al. 2012; Tooley et al. 2010). 

 Human SETα was C-terminally tagged with Dendra2 photoswitchable 

protein and lentivirally expressed in HCT116 human colorectal carcinoma cells at 

an MOI of 1 (Figure 10B).  Before excitation, Dendra2 fluoresces green, but 

when activated by UV-violet or blue light, fluoresces red (Figure 10A) (Zhang et 

al. 2007).  The red form is highly stable independently, but when fused to a 

protein of interest, its signal can be followed to determine the rate of decay of the 

protein (Zhang et al. 2007).  I first measured the rate of decay of SETα-Dendra2 

in control HCT116 cells (Figure 10C, blue).  I then showed the rate of decay of 
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SETα-Dendra2 in HCT116 NRMT1-/- cells was significantly quicker (Figure 10C, 

red). Overexpression of NRMT1 in the HCT116 NRMT1-/- cells restored the 

original rate of decay of SETα-Dendra2 (Figure 10C, green).  However, 

overexpression of NRMT2 in the HCT116 NRMT1-/- cells was not able to rescue 

the SETα-Dendra2 rate of decay, and it remained significantly different from the 

HCT116 control (Figure 10C, purple).  These data indicate N-terminal mono- and 

trimethylation are not functionally redundant and suggest that, unlike EZH1 and 

EZH2 (Shields et al., 2017), NRMT1 and NRMT2 are not serving the same 

function through different mechanisms.  Our data point to the stabilization of 

NRMT1 and an increase in substrate binding as important functions of NRMT2 

but do not rule out other specific roles for N-terminal monomethylation that are 

distinct from those regulated by N-terminal trimethylation. 
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Figure 10 
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Figure 10.  NRMT2 overexpression cannot rescue NRMT1 knockout phenotypes 

(A) HCT116 NRMT1-/- cells transduced with empty pCDH virus (control), virus 

overexpressing NRMT1 (NRMT1 O/E), or virus overexpressing NRMT2 (NRMT2 

O/E) were also transduced with virus expressing SETα-Dendra2.  Pre conversion 

SETα-Dendra2 expresses in the GFP channel, post-conversion it expresses in 

the RFP channel. The RFP signal then decreases over time and a rate of decay 

can be calculated. (B) Western blots showing HCT116 cells express endogenous 

NRMT1 and were fully mono/dimethylated (me1/2RCC1) and trimethylated 

(me3RCC1) (lane 1).  In contrast, HCT116 NRMT1-/- cells do not express NRMT1 

or exhibit N-terminal trimethylation, but retain mono/dimethylation (lane 2). In 

HCT116 NRMT1-/- cells overexpressing NRMT1-FLAG, both NRMT1 protein and 

trimethylation were restored (lane 3). In HCT116 NRMT1-/- cells overexpressing 

NRMT2-FLAG, a slight increase in mono/dimethylation can be seen, with no 

restoration of NRMT1 or trimethylation (lane 4). FLAG blot shows both NRMT1-

FLAG and NRMT2-FLAG are expressing. Dendra2 blot shows SETα-Dendra2 

expression levels are similar between lines. GAPDH was used as a loading 

control.  (C) First, the rate of decay of SETα-Dendra2 was measured in control 

HCT116 cells (blue).  This rate of decay significantly increased in HCT116 

NRMT1-/- cells (red).  Overexpressing NRMT1-FLAG in HCT116 NRMT1-/- cells 

restores the original rate of decay (green), and there was no statistically 

significant difference between control and NRMT1 overexpression cell lines.  

Overexpressing NRMT2-FLAG in HCT116 NRMT1-/- cells cannot rescue the 

decay (purple), which remains significantly faster than control. Curves were 
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constructed by comparing loss of RFP signal over time as compared to time 0 

and are the mean of three independent experiments ± SEM. *, **, *** denotes 

p<0.05, 0.01, and 0.001, respectively, as determined by 2-way ANOVA. 
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Discussion 

Our work is the first to demonstrate a physical interaction between the N-terminal 

methyltransferase homologs, NRMT1 and NRMT2.  Here I show that NRMT1 

homodimers interact with NRMT2 monomers to form heterotrimers.  Heterotrimer 

formation increases the stability of NRMT1 but has no significant effect on the 

stability of NRMT2.  Though we have previously seen that co-expression with 

NRMT2 increases NRMT1 activity (Petkowski et al. 2013), I now show that 

NRMT2 catalytic activity is not necessary for this increase in NRMT1 activity and 

propose that NRMT2 is not priming for NRMT1, but instead increasing its 

stability.  I also show that N-terminal mono- and trimethylation are not functionally 

redundant, at least in regards to promoting protein stability, indicating that 

NRMT1 and NRMT2 are also not functionally redundant.  The sole role of 

NRMT2 may be to stabilize and activate NRMT1, or it may have other distinct 

functions.   

In addition to stabilizing METTL3, METTL14 has been proposed to 

enhance interaction with RNA substrates (Wang, Doxtader, and Nam 2016; 

Wang et al. 2016).  We have seen that NRMT1 has varying affinities for the 

different NRMT N-terminal consensus sequences (Petkowski et al. 2012), and it 

may be that binding of NRMT2 to the NRMT1 homodimer, strengthens its affinity 

for certain less favored consensus sequences.  Our in vitro methyltransferase 

data support this model, as NRMT2 binding had little effect on the Km of NRMT1 

when methylating a Ser-Pro-Lys peptide, but significantly decreased the Km of 

NRMT1 when methylating the less preferred Ser-Ser-Lys peptide.  We had 
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originally proposed that NRMT2 was a primer for NRMT1 that was expressed at 

times of high substrate burden (Petkowski et al. 2013), but it may be that NRMT2 

is expressed at times when less preferred substrates require methylation.  In this 

way, it is both providing stability to NRMT1 and altering its substrate preference. 

 These data indicate that, while overall unique, the interaction between 

NRMT1 and NRMT2 has the most in common with the interactions of PRMT1/3 

and METTL3/14.  Like PRMT1/3 and METTL3/14, binding of the homologs 

increases the stability of the active enzyme (Kafkova et al. 2017; Liu et al. 2014; 

Wang et al. 2014).  Similar to METTL14, but unlike PRMT3, NRMT2 has weak 

catalytic activity in vitro (Wang et al. 2014; Liu et al. 2014; Kafkova et al. 2017).  

However, SAM was visualized in the active site of the NRMT2 crystal, and I have 

seen that CRISPR-mediated knockout of NRMT1 results in a complete loss of N-

terminal trimethylation, but N-terminal monomethylation remains the same 

(Figure 8B) (Shields et al. 2017).  This indicates that, unlike METTL14, NRMT2 

also has some activity in vivo.  What the function of this in vivo N-terminal 

monomethylation is remains to be determined. 

 If charge or bulk of the N-terminus are the main regulatory aspects of N-

terminal PTMs, it seems intuitive that N-terminal monomethylation could not 

functionally replace trimethylation, as it is much smaller and does not produce a 

pH-independent positive charge (Stock et al. 1987).  However, similar to lysine 

monomethylation, N-terminal monomethylation could still have its own distinct 

function.  RNA polymerase II (Pol II) pausing is regulated by the switch between 

mono- and trimethylation of histone H4 lysine 20 (H4K20me1 and H4K20me3, 
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respectively) (Kapoor-Vazirani and Vertino 2014).  While H4K20me3 promotes 

pausing by inhibiting the recruitment of the male-specific lethal (MSL) complex, 

H4K20me1 recruits MSL and promotes the release of Pol II into elongation 

(Kapoor-Vazirani and Vertino 2014).  One way subtle changes in the degree of 

methylation can affect protein function so dramatically, is that each can be 

recognized by different methyl-reading chromodomains.  H4K20me1 can 

efficiently recruit the MSL complex to chromatin due to the chromo-barrel domain 

of MSL3 (Moore et al. 2010; Kim et al. 2010), whereas H4K20me3 is 

preferentially bound by the double tudor domain of the histone demethylase 

jumonji domain containing 2A (JMJD2A) (Garske, Craciun, and Denu 2008).  

Therefore, it is possible that N-terminal mono- and trimethylation could similarly 

recruit distinct proteins with different binding domains, and in doing so, 

differentially affect many cellular processes.  It will be interesting to determine if 

families of such N-terminal methylation “readers” exist.   

 Though the interactions between NRMT1 and NRMT2 seem the most 

distinct from the interactions between EZH1 and EZH2, there are also some 

similarities.  Most striking is the tissue distribution of the homologs.  NRMT1, like 

EZH1, is ubiquitously expressed in most adult tissue types (Petkowski et al. 

2013; Margueron et al. 2008). While NRMT2 has very low basal expression in 

adult mice, we do see enrichment in both skeletal muscle and the liver 

(Petkowski et al. 2013).  EZH2 also has very low basal expression in adult tissue, 

with some enrichment in the spleen, but seems to be highly expressed in the 

proliferative tissue of the kidney during development (Margueron et al. 2008).  It 
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has been hypothesized that these disparate expression patterns represent an 

evolutionary sub-functionalization of the homologs (Margueron et al. 2008).  

EZH1 is the general methyltransferase directly involved in transcriptional 

repression, while EZH2 is dedicated to placing repressive marks during 

replication (Margueron et al. 2008).  Though EZH1 and EZH2 are catalytically 

distinct, they are functionally redundant in regards to transcriptional repression, 

and their differential expression patterns could allow for a tighter regulation of this 

repression (Margueron et al. 2008).  The function of PRC2 complexes expressing 

both EZH1 and EZH2 remains to be determined (Margueron et al. 2008; Oliviero 

et al. 2016), but like PRMT1/3, METTL3/14, and NRMT1/2, co-expression might 

result in a more active complex, useful in times of high demand. 

Unlike EZH1/2, NRMT1 and NRMT2 do not seem to be functionally 

redundant.  Their evolution may have led to neo-functionalization instead of sub-

functionalization (Prince and Pickett 2002).  I propose a model where each has a 

distinct function, but at times when they are co-expressed, can form 

heterotrimers with increased N-terminal trimethylation activity.  In this way, 

regulated NRMT2 expression would serve to promote its developmental or cell 

type-specific role and increase N-terminal methylation when needed.  It will be 

interesting to see if NRMT2 expression is regulated during development or in 

proliferating tissues and continue to explore potential unique roles for N-terminal 

monomethylation. Also of note is the V224L NRMT2 mutation found in human 

breast cancer (Shields et al. 2017).  While NRMT1 has been shown to have 

cancer type-specific roles as a tumor suppressor or oncogene (Bonsignore, 
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Butler, et al. 2015; Shields et al. 2017), there is as yet no data demonstrating 

NRMT2 misregulation in any cancer type. Therefore, extensive characterization 

of this mutation has not occurred.  However, these data demonstrating it not only 

abolishes NRMT2 activity but also promotes NRMT1 activity make it an 

interesting candidate for a driver mutation in cancers that overexpress NRMT1 or 

a protective mutation in cancers that downregulate NRMT1.  Future studies will 

determine how expression of this mutant affects oncogenic phenotypes in such 

cancer cell lines. 
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CHAPTER III 

FUTURE DIRECTIONS AND IMPLICATIONS ON HUMAN HEALTH AND 
DISEASE 

 

Introduction 

The work presented in Chapter II illustrates the physical interaction 

between the α-amino methyltransferase homologs, NRMT1 and NRMT2. I have 

demonstrated the formation of a heterotrimeric species, consisting of a 

homodimer of NRMT1 and monomer of NRMT2, which increases the stability of 

NRMT1 but does not impart a change of stability on NRMT2. Additionally, I have 

used in silico modeling to identify likely residues of interaction among the NRMT1 

homodimer, as well as the NRMT1-NRMT2 heterotrimer.  Functionally, I have 

shown that N-terminal trimethylation and monomethylation do not serve 

redundant purposes, with NRMT2 overexpression being unable to rescue the 

SETα stability phenotype associated with loss of NRMT1-associated 

trimethylation. Previous work indicated an increase in NRMT1-associated 

trimethylation when co-expressed with NRMT2 (Petkowski, 2013).  It was 

originally hypothesized that NRMT2 monomethylation was priming for NRMT1 

trimethylation.  However, I now show that NRMT2 catalytic activity is not needed 

for its promotion of NRMT1 activity, and propose NRMT2 increases NRMT1 

activity by stabilizing the enzyme. 
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Though NRMT2 activity is not needed for its activation of NRMT1, it does 

demonstrate weak in vitro and in vivo catalytic activity on its own (Petkowski et 

al.,2013).  Also, CRISPR-mediated loss of NRMT1, in vitro, abrogates the N-

terminal trimethylation of substrates but monomethylation of these same 

substrates is retained (Shields, 2017). This indicates that providing stability to 

NRMT1 may not be the sole purpose of NRMT2.  The following chapter will 

discuss potential unique roles of N-terminal monomethylation, how they could be 

experimentally determined, and how currently unstudied mutations in NRMT2 

could actually be important on their own right or through their impact on NRMT1. 

 

Monomethylation vs. Trimethylation 

 Yeast Set1 is a member of the COMPASS complex and was the first 

identified methylase capable of mono-, di-, and trimethylation of lysine 4 of 

histone 3 (H3K4) (Briggs et al., 2001; Krogan et al., 2001; Schneider et al., 

2005). Drosophila contain three H3K4 methyltransferases related to Set1 and 

found in COMPASS complexes- dSet1, Trx, and Trithorax-related (Trr), whereas 

mammals possess two representatives for each of the H3K4 methyltransferases 

found in drosophila (Mohan et al., 2011; Silatifard 2012). The Set1 orthologues in 

both drosophila and mammals are responsible for the bulk of all levels of 

methylation of H3K4, and these levels are tightly controlled during different 

stages of development (Mohan et al., 2011; Sedkov et al., 2003; Chauhan et al., 

2012). Active promoter regions are marked by H3K4 trimethylation (H3K4me3), 
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whereas promotor-distant enhancer regions are specifically marked by H3K4 

monomethylation (H3K4me1) (Heintzman et al., 2007). These methylation states 

of enhancers are also noted to distinguish active (noted by H3K4me1 and H3K27 

acetylation) versus inactive states (noted by H3K4me1 and H3K4me3) 

(Heintzman et al., 2009).  

The COMPASS complex localizes to both promoters and enhancers, and 

the Trr methyltransferase (mammalian homolog: MII3) is required for the 

maintenance of H3K4me1, with significant loss of H3K4me1 and increase in 

H3K27me3 noted upon knockdown of this Trr or MII3. The loss of H3K4me1 and 

increase in H3K27me3 switches the enhancer from an inactive to active state 

(Herz, 2012). Should this switch from an inactive to active state occur in 

oncogenes, it’s possible the misregulation of monomethylation could have 

pathological consequences. In a similar manner, the deposition of H3K4me1 by 

mammalian MLL3/4 at enhancers is shown to correlate with increased levels of 

chromatin interaction and gene activity during differentiation. Loss of H3K4me1 

reduces these long-range interactions between promoters and enhancers and 

subsequently causes defects during development (Yan et al., 2018).  

Similar to the enzymatic action catalyzed by NRMT2, protein arginine 

methyltransferase-7 (PRMT7) is unique in that it is only capable of 

monomethylating its target proteins (Cáceres et al., 2018). Each level of 

methylation on arginine residues of histones can have distinct functional 

consequences. For example, dimethylation of arginine 2 on histone H3 

(H3R2me2) inhibits the Set1-mediated trimethylation of H3K4, maintaining 
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transcriptional silencing. However, monomethylation of this same residue 

(H3R2me1) does not induce Set1 inhibition and its associated H3K4 

trimethylation and is associated with active transcription (Kirmizis et al., 2009). 

PRMT7, like NRMT2, is also found less broadly expressed than other PRMT 

family members, and its highest expression is in skeletal muscle (Jeong et al., 

2016). It is also notably found in mouse embryonic stem cells and is thought to 

regulate pluripotency and differentiation. (Buhr et al., 2008).  

PRMT7-null mice show reduced oxidative metabolism and increased age-

related obesity, indicating a distinct functional role of monomethylation in skeletal 

muscle metabolism (Jeong et al., 2016).  In another function, similar to that of the 

NRMT family, PRMT7 and its associated monomethylation activity are 

associated with genes associated with DNA damage repair (Karkhanis et al., 

2012).  PRMT7 contains an arginine binding pocket featuring larger residues 

than those found in other PRMT family members capable of dimethylation. The 

steric hindrance conveyed by these bulkier residues contributes to the 

monomethylation-only catalytic activity of PRMT7 (Jain et al., 2016; Cáceres et 

al., 2018). Interestingly, mutation of one particular active site residue, Glu181 to 

aspartate increases the size of the active site and corresponding affinity for 

monomethylated substrates, ultimately changing PRMT7 from a 

methyltransferase only capable of monomethylation to one capable of mono-, 

and dimethylating substrates (Debler et al., 2016).  

Sequence alignment of PRMT7 and its PRMT homologs capable of 

dimethylation yield fewer regions of conservation compared to NRMT1 and 
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NRMT2, which share a 50% sequence identity and 75% sequence similarity, with 

all the catalytic residues being fully conserved (Cáceres et al., 2018; Petkowski 

et al., 2013). The distinct feature of NRMT2, setting it apart from NRMT1, is the 

additional 60 amino acid N-terminal tail, comprised of two alpha helices. This tail 

is unstructured and floats freely from the N-terminal region of the enzyme, and it 

was initially thought that this bulky region was likely responsible for the detection 

of previously methylated substrates, thus restricting NRMT2 to monomethylation 

only (Petkowski et al., 2013). Additionally, while the catalytic regions of NRMT1 

and NRMT2 are similar in structure, they differ in residues. It was hypothesized 

that switching the catalytic residues of NRMT2 to those of NRMT1 could yield di- 

and trimethylating capability for NRMT2 (Petkowski et al., 2013).  We have 

conducted these experiments and found the removal of the N-terminal tail does 

not change the monomethylation capacity of NRMT2 to one of di- or 

trimethylation, but abolishes activity of NRMT2 altogether (Shields et al., 2017). 

Addition of the tail to NRMT1, failed to yield soluble recombinant protein (Shields 

et al., 2017).  Furthermore, mutation of the catalytic residues of NRMT2 to those 

of NRMT1 also yielded no change in catalytic ability or altered substrate 

specificity (Shields et al., 2017).  

I have now shown that while NRMT2 does have enzymatic function on its 

own, one of its major roles is contributing to the structural stability of NRMT1. It is 

likely the additional 60 amino acid tail is playing a structurally supportive versus 

catalytic role in the heterotrimer complex. A number of studies have 

demonstrated disruptions to unstructured regions of proteins distant from the 
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active site can have functional consequences and/or affect protein stability 

(Bromberg & Rost, 2009; Teng et al., 2010; Yang et al., 2013). At high 

concentrations, proteins with intrinsically disordered regions often bind to multiple 

partners with modest affinity, as the mass action caused by this high 

concentration overcomes the specificity of interaction (Vavouri et al., 2009). 

These unfavorable interactions explain the toxicity found by the overexpression 

of these proteins in some disease states. It is possible the highly flexible and 

dynamically plastic N-terminal tail of NRMT2 is cause for its tightly controlled, 

and thus overall low expression throughout tissues. Many proteins that contain 

intrinsically disordered regions are able to bind a broad range of partners, 

including other proteins, nucleic acid structures, or even themselves (He et al., 

2009). I have shown that removal of the unstructured tail of NRMT2 abolishes its 

ability to monomethylate target peptides in vitro, and this loss of specificity could 

be attributed to the decreased protein-protein interaction previously conveyed by 

the N-terminal tail (discussed in Shields et al., 2017). 

 

Potential Roles for N-terminal Monomethylation 
 

I have shown here that stability of the NRMT1 target SETα is significantly 

decreased upon knockout of NRMT1 compared to control cells (Figure 10 A & 

C). This phenotype can be rescued by overexpression of NRMT1 alone, but not 

NRMT2 (Figure 10 A & C). These data indicate that, in regards to regulating 

protein stability, N-terminal methylation is not functionally redundant with N-

terminal trimethylation.  This could be due to its smaller size or its inability to 
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produce a positively charged N-terminus.  However, in addition to regulating 

protein stability, N-terminal trimethylation also regulates protein-DNA interactions 

and is predicted to regulate protein-protein interactions (Tooley et al., 2010; Chen 

et al., 2007).  N-terminal monomethylation could function redundantly in either of 

these roles. 

We have previously seen that loss of NRMT1 leads to increased migration 

of MCF-7 cells (Bonsignore, 2015).  To test if this migration phenotype, can be 

rescued by restoration of just N-terminal monomethylation, I repeated the cell 

migration assay using control MCF-7 cells, NRMT1-knockdown MCF-7 cells 

(transduced with an shRNA against NRMT1), and NRMT1-knockdown MCF-7 

cells rescued with flag-tagged NRMT1 or NRMT2, respectfully. (Figure 11A). 

Cells were grown to ~70% confluency and scratched with a pipette tip and 

images were taken at 0, 24, 48, and 72 hours (Figure 11B). As expected, NRMT1 

knockdown in MCF-7 cells increased the migratory ability of the cells over that of 

control. Interestingly, at the 48 and 72-hour time-points, rescue of this migration 

phenotype is accomplished by both NRMT1 and NRMT2 (Figure 11C).  This 

indicates that while N-terminal monomethylation is not functionally redundant in 

regards to regulating protein stability, it can functionally replace N-terminal 

trimethylation when promoting migration.  I propose that in this particular 

phenotype, N-terminal methylation is regulating protein-protein interactions. 
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Figure 11 
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Figure 11. NRMT1 knockdown increases migratory potential of MCF-7 breast 

adenocarcinoma cells. (A) Representative immunoblots showing control MCF-7 

lysate (lane 1), NRMT1 knockdown (lane 2), NRMT1 knockdown + flagged-

tagged NRMT1 rescue construct (lane3), NRMT1 knockdown + flagged-tagged 

NRMT2 rescue construct (lane 4). (B) 24, 48, 72-hour time points measuring 

distanced moved relative to 0 hour. (C) Representative images from each cell 

line at each time point. Distance moved was determined by measuring total area 

of no cell invasion in three wells per experiment per day. Values are a 

combination of three independent experiments and error bars represent SEM. 

GraphPad Prism was used to determine statistical significance via two-way 

ANOVA between groups followed by a multiple comparisons test via Tukey’s 

post-hoc analysis. * denotes p<0.05  
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One NRMT1 target, myosin light chain-9 (MYL9), plays a regulatory role in 

the actin-myosin II complex and is promotes cytoskeletal dynamics and motion in 

both muscle and non-muscle cells (Ouderkirk & Krendal, 2014). MYL9 has also 

been implicated in cytoskeletal rearrangement and both overexpression and 

aberrant activation of MYL9 can promote invasion of cancer-associated 

fibroblasts and increased metastatic potential of primary carcinoma cells (Calvo 

et al., 2013; Cermák et al., 2010).  We have seen that loss of N-terminal 

methylation of MYL9 promotes both cell spreading and cell migration (Nevitt, 

unpublished data), and I attribute the increased migration of MCF7 cells seen 

with NRMT1 knockdown, at least in part, to altered action of MYL9. 

 Our lab has recent SILAC mass spectrometry data showing that mono-, 

and trimethylation of MYL9 both block a significant portion of its protein-protein 

interactions (Nevitt, unpublished data), and I propose that N-terminal methylation 

of MYL9 disrupts protein-protein interactions that inhibit the migratory functions of 

MYL9. Rescue by NRMT2 allows only monomethylation to occur, but this is 

adequate to block aberrant protein-protein interactions and return cells to a less 

migratory phenotype.  

The third function of N-terminal trimethylation is to regulate protein-DNA 

interactions (Chen et al., 2007).  I predict that N-terminal monomethylation will 

not be able to rescue this function, as only trimethylation produces a pH-

independent charge on the N-terminal residue, facilitating interaction with the 

negatively charged phosphate backbone of DNA.  However, to test this 
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hypothesis, one could look at the DNA binding ability of mono- vs trimethylated 

MYL9.  We have previously used chromatin immunoprecipitation (ChIP) to show 

loss of N-terminal methylation reduces the occupancy of MYL9 at the ICAM1 

promoter (Nevitt, unpublished data).  To see if the level of methylation is 

important for this promoter occupancy, these experiments can be performed in 

the HCT116 CRISPR/Cas9 NRMT1 knockout strain rescued with NRMT1 or 

NRMT2. I hypothesis that restored binding capacity of MYL9 to the ICAM1 

promoter will only be seen after NRMT1 rescue, due to the potential for 

trimethylation and a pH-independent positive charge on the N-terminus of MYL9.  

 
 
NRMT2 mutations in human cancers 
 

In testing whether NRMT2 catalytic activity was needed to activate 

NRMT1, I discovered that the V224L NRMT2-null mutant found in human breast 

cancer actually activated NRMT1 better than wild type NRMT2 (Figure 7E & K). 

Molecular modeling showed that mutation of Val224 to Leu could impact NRMT2 

function via two different mechanisms, first by disrupting substrate binding and 

subsequent catalytic activity, and second by promoting Asp232 accessibility and 

subsequent complex formation with NRMT1 (Figure 9). To date, ninety-one 

NRMT2 missense mutations have been identified in human cancers (Cosmic 

Catalogue of Somatic Mutations in Cancer), and I decided to see if any additional 

mutations could predictably alter NRMT1/NRMT2 interactions.  

Of the 91 mutations, a number affect residues I have found to be 

implicated in formation of the NRMT1-NRMT2 heterotrimer (bold, Table I), while 
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others are found in the active site of NRMT2 near conserved aromatic residues 

(Petkowski et al., 2013). As noted in Chapter II, modeling predicts that 

heterotrimer formation of the NRMT1 dimer and NRMT2 monomer is governed, 

in part, by non-covalent interactions between proximally located resides (Figure 

4).  Of the seven missense mutations found in human cancers listed in Table I, 

four affect specific residues deemed important for heterotrimer formation (Figure 

5F), and modeling predicts each one of these increases the distance between 

the wildtype NRMT1 and NRMT2 residues (Figures 12A,C-15A,C) and mutated 

residues (Figures 12B,D-15B,D). This increase in distance will likely disrupt these 

non-covalent forces associated with heterotrimer formation, possibly destabilizing 

the structure.   
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Table I 

Mutation Primary Tissue 

Q67H Lung 

F68L Large intestine 

T17A Liver 

S131N Skin 

R71T Pancreas 

L57S Large intestine  

D232N Prostate 
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Table I: NRMT2 missense mutations found in human cancers. Bolded mutations 

are incorporating residues implicated in the NRMT1-NRMT2 heterotrimer 

interaction. 
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Table II 

NRMT2 mutation WT NRMT1 Distance b/w WT 

residues (Å) 

Distance b/w 

mutated NRMT2 

& WT NRMT1 

residues (Å) 

Gln67His Ser44 2.1 5.1 

Phe68Leu Ser39 1.0 2.5 

Arg71Thr Gln50 1.4 10.6 

Asp232Asn Pro83 3.2 5.3 
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Table II. NRMT2 mutations increase distance between corresponding NRMT1 

residues previously implicated in interaction (see figure 4). 
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Figure 12 
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Figure 12. NRMT2 mutations found in cancers. (A) WT NRMT2 possessing 

glutamine at residue 67 (blue). (B) Q67H mutation (blue) found in lung cancer. 

(C) Bond length (Å) between NRMT2 D67 and WT NRMT1 S44. (D) The 

distance measured in (C) is increased to 5.1 Å in the NRMT2 Q67H mutant.  

Mutational analysis and molecular measurements were produced using the 

PyMOL Molecular Graphics System, Version 2.0.6 (Schrödinger, LLC). PDB 

accession numbers are 2EX4 (NRMT1) and 5UBB (NRMT2).    
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Figure 13 
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Figure 13. NRMT2 mutations found in cancers. (A) WT NRMT2 possessing 

phenylalanine at residue 68 (blue). (B) F68L (blue) found in pancreatic cancer. 

(C) Bond length (Å) between NRMT2 F68 and WT NRMT1 S39. (D) The distance 

measured in (C) is increased to 2.5 Å in the NRMT2 F68L mutant.  Mutational 

analysis and molecular measurements were produced using the PyMOL 

Molecular Graphics System, Version 2.0.6 (Schrödinger, LLC). PDB accession 

numbers are 2EX4 (NRMT1) and 5UBB (NRMT2).    
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Figure 14 
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Figure 14. NRMT2 mutations found in cancers. (A) WT NRMT2 possessing 

arginine at residue 71 (blue). (B) R71T (blue) found in pancreatic cancer. (C) 

Bond length (Å) between NRMT2 R71 and WT NRMT1 Q50. (D) The distance 

measured in (C) is increased to 10.6 Å in the NRMT2 R71T mutant.  Mutational 

analysis and molecular measurements were produced using the PyMOL 

Molecular Graphics System, Version 2.0.6 (Schrödinger, LLC). PDB accession 

numbers are 2EX4 (NRMT1) and 5UBB (NRMT2).    
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Figure 15 
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Figure 15. NRMT2 mutations found in cancers. (A) WT NRMT2 possessing 

aspartic acid at residue 232 (blue). (B) D232N mutation (blue) found in prostate 

cancer. (C) Bond length (Å) between NRMT2 D232 and WT NRMT1 P83. (D) 

The distance measured in (C) is increased to 5.3 Å in the NRMT2 D232N mutant.  

Mutational analysis and molecular measurements were produced using the 

PyMOL Molecular Graphics System, Version 2.0.6 (Schrödinger, LLC). PDB 

accession numbers are 2EX4 (NRMT1) and 5UBB (NRMT2).    
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Missense mutations, including those outside the active site, have been 

widely implicated in the alteration of protein structure and stability (Ode et al., 

2007; Lorch et al., 2000; De Cristofaro et al., 2006). Changes of residues, 

especially those altering polarity or charge, can direct conformational changes in 

the native folding of the protein. These include disruption of salt bridges and 

hydrogen bonds, which facilitate potential interactome alterations. Additionally, 

single aberrant amino acid substitutions have been shown to disrupt protein-

protein interactions and substrate binding. Ung et al have shown a Glu230 to Gln 

mutation in the cAMP-dependent protein kinase catalytic subunit leaves the 

enzyme with physical properties similar to that of the wildtype, but with the 

inability to form a native ternary complex with MgATP and a protein kinase 

inhibitor (Ung et al., 2006). Protein function alteration may direct or as a result of 

an alteration of protein stability conveyed by a missense mutation. Of the number 

of known disease-causing missense mutations, 83% result in a change of protein 

stability (Wang & Moult, 2001).   

I have shown that NRMT1 is structurally dependent upon the presence of 

NRMT2 to avoid premature degradation (Figure 7). The aforementioned NRMT2 

mutations found in human cancers all decrease the proximity of key interacting 

residues I predict stabilize the NRMT1/NRMT2 complex. With this decrease in 

stability, likely comes an increase in protein degradation. If the heterotrimer 

complex is degrading prematurely, it’s unlikely that key substrates are being 

properly trimethylated. As noted, N-terminal trimethylation produces a pH-
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independent positive charge on substrates and functions to increase interaction 

with the positively-charged substrates and negatively-charged phosphate 

backbone of DNA. The inability of substrates to be trimethylated, facilitated by 

the early degradation of the NRMT heterotrimer, could cause misregulation of 

key protein-protein or protein-DNA interactions implicated in the suppression of 

tumorigenesis, thus acting as a driver mutation for these small subsets of 

cancers. This would be relatively straightforward to examine experimentally, 

although a full NRMT2 knockout cell line would need to be initially developed. A 

number of mutagenesis experiments could be carried out to produce the Q67H, 

F68L, R71T, and D232N NRMT2 mutants. These could be co-expressed, along 

with WT NRMT1 in a NRMT2-null cell line and NRMT1 stability could be 

measured via cycloheximide, similar to Figure 6 in Chapter II.  

Computational molecular mapping of disease causing mutations onto 

known protein structures and free energy perturbation (FEP) calculation are 

additional in silico methods of determining structurally and functionally important 

sites and the effects of mutations on protein stability (Dimmic et al., 2005; Dixit et 

al., 2009).  FEP takes into account the energies between covalently bonded 

atoms, as well as the geometry and torsion forces between WT and mutated 

residues in comparison to their surrounding environment to deduce a comparable 

value of electrostatic energy and subsequent stability on the entire molecule 

(Dixit et al., 2009). While these techniques are processor-heavy and require a 

robust learning curve, they are able to generate large amounts of data that can 

subsequently be used to develop hypotheses and direct further bench work.  
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The COSMIC database also lists three NRMT2 missense mutations found 

in residues not previously implicated in the heterotrimer stability. One of these, 

S131N, slightly increases the size of the SAM-binding pocket, near which the WT 

serine is positioned. This marginal increase in size of the SAM-binding motif 

could have detrimental functional consequences on an enzyme that already has 

very select and relatively low catalytic abilities. The inability of NRMT2 to stabilize 

SAM and thus utilize it for monomethylation will be of key interest as the tissue- 

and developmentally-specific roles of monomethylation are deduced.  

Interestingly, the two other missense mutations listed on the COSMIC 

database, T17A and L57S, are located on the 60 amino acid, free N-terminal tail 

of the enzyme. As noted in the previous chapters, this tail is the most distinct 

feature of NRMT2 when compared to NRMT1, and floats freely from the N-

terminal end (as such, it does not readily crystalize and is missing from PDB 

accession 5UBB) (Petkowski et al., 2013). We have shown that removal of the N-

terminal tail abolishes all methylation activity of NRMT2 (discussed in Shields et 

al., 2017).  It seems unlikely that the tail functions in NRMT1/NRMT2 

trimerization, as my co-immunoprecipitation data show its inclusion seems to 

disrupt binding (Figure 6). Similar to what was described above, experiments on 

protein stability and heterotrimer formation in the presence of WT NRMT1 and 

tailless NRMT2 could provide some insight into this phenomenon.  

NRMT1 and NRMT2 share a general consensus sequences for 

substrates, but I have shown there are some distinct differences (Figure 8), and it 

is possible this tail regulates these differences.  The NRMT2 V224L mutant has 
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no methyltransferase activity of its own. However, when combined in vitro with 

NRMT1, it reduces the KM of binding the SPK-RCC1 peptide around 10-fold 

versus NRMT1 alone, and around 7-fold versus the combination of NRMT1 and 

WT NRMT2. An additional significant outcome, though less pronounced, is seen 

when binding the SSK-MYL9 peptide. Though the V224L mutation is not in the N-

terminal tail, it is possible the T17A and L57S mutations are increasing or 

decreasing substrate-binding efficiency in a similar manner. Similar in vitro 

methyltransferase experiments using recombinantly-produced NRMT2 T17A and 

NRMT2 L57S, alone and combined with WT NRMT1, would give evidence into 

any changes in binding efficiency conveyed by these mutations. It is also 

possible that the N-terminal tail is indeed cause for increasing the binding affinity 

of NRMT2 for particular substrates. Experiments using circular dichroism or 

isothermal calorimetry would yield information on binding and dissociation of 

Wildtype, as well as mutant NRMT2, with and without the presence of NRMT1, 

on any number of selected substrates.  

In my initial model, I predicted that the behavior of NRMT1 and NRMT2 

would be similar to that of the class I methyltransferases METTL3 and METTL14 

(Liu, 2014), where a heterodimeric complex would form with the less catalytically 

active NRMT2 promoting N-terminal trimethylation via NRMT1 (see Figure 1). 

Experimentally, I have demonstrated that while NRMT1 and NRMT2 do 

physically interact, they do so as a heterotrimeric species consisting of a NRMT1 

dimer and NRMT2 monomer. Furthermore, I have shown that NRMT1 and 

NRMT2, individually, have catalytic activity. However, the catalytic activity of 
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NRMT2 is not necessary for the increased trimethylation by NRMT1. Instead, I 

have shown the promotion of N-terminal trimethylation to be dependent on the 

structural presence of NRMT2 within the heterotrimer complex. (Figure 16).  
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Figure 16 
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Figure 16. Revised model of NRMT1 and NRMT2 interaction. A NRMT1 

homodimer and NRMT2 monomer physically interact to promote stability and N-

terminal trimethylation.  
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 The methyltransferome, like other post-translational modifications, adds 

yet another layer of diversity beyond the central dogma of molecular biology. The 

many facets of “readers,” “writers,” and “erasers” of methylation will continue to 

be deduced and only more-so as the combination of computational chemistry, 

structural biology, and biochemistry gets ever more advanced. The work 

presented in this dissertation is but a small, albeit integral, part of vast landscape 

of chemical modifications to macromolecules that no doubt has an impact on 

health and disease. As the experiments proposed in chapter III are completed, 

the impact N-terminal methylation has on development, physiology, and the 

promotion or suppression of pathogenic cell growth will become more 

illuminated.   
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