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ABSTRACT 

DYSREGULA nON OF MICRORNA EXPRESSION IN ACQUIRED 

ENDOCRINE-RESISTANT BREAST CANCER 

Tissa T. Manavalan 

September 20, 2012 

MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional 

level by repressing translation or stimulating mRNA degradation. In this study, I 

tested the hypothesis that miRNAs are differentially expressed in antiestrogen

sensitive MCF-7 versus -resistant L Y2 human breast cancer cells. Microarray 

analyses identified 97 miRNAs that are differentially expressed between two estrogen 

receptor alpha (ERa) -positive human breast cancer cell lines: endocrine-sensitive 

MCF-7 versus -resistant L Y2 cells under basal conditions. Opposite expression of 

miRs-lOa, -21, -22, -12Sb, -181, -200a, -200b, -200c, -221, and -222 was confirmed 

between MCF-7 and L Y2 cells. The ER antagonist ICI 182,780 (fulvestrant or 

Faslodex) generally blocked the effect of estradiol E2 and 4-hydroxytamoxifen (4-

OHT) regulated miRs, i.e .. , miR-lOa, miR-21, miR-22, miR-200a, miR-221, and miR-

222, indicating that these responses in MCF-7 cells are ER-mediated. Time

dependent variation in basal (ethanol, the vehicle), E2, and 4-0HT regulation of the 

top 8 miRNAs was detected in MCF-7 cells. Bioinformatic analyses to impute the 

biological significance of the identified miRNAs by identifying their computationally 

predicted target genes in the human genome using TargetScan, Pic Tar, and the Sanger 
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miRBase Targets databases was performed. Thirty six putative mRNA targets were 

identified. Agreement in the direction of anticipated regulation was detected for 12 

putative targets. These miRNAs showing opposite expression between these two 

breast cancer cell lines may be involved in endocrine resistance. 

MiR-200 family includes two clusters i.e. miR-200 aJ200bl 429 and miR-

200cl141 encoded on chromosome 1 and chromosome 12, respectively. Lower miR-

200a, miR-200 band miR-200c expression was observed in estrogen-independent 

LCC1 and endocrine-resistant LCC2, LCC9, and LY2 compared to the parental, 

endocrine-sensitive MCF-7 human breast cancer cell line. ZEB 1 protein was found to 

be expressed in endocrine-resistant LY2 cells but not in endocrine-sensitive MCF-7 

cells. L Y2 cells did not express E-cadherin, a ZEB 1 target which is a marker for 

epithelial phenotype. This is the first demonstration that L Y2 cells have undergone 

EMT as part of their endocrine-resistant phenotype. Concomitant with miR-200 

decrease, there was an increase in ZEB 1 mRNA expressIOn m L Y2 cells. 

Overexpression of miR-200b or miR-200c in LY2 cells changed the cellular 

morphology from a mesenchymal to an epithelial appearance and sensitized cells to 

inhibition by 4-0HT and fulvestrant. These studies indicate that reduced expression 

of miR-200 and a corresponding increase in ZEB 1 protein is an indicator of 

endocrine-resistance in breast cancer cells. 
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CHAPTER I: INTRODUCTION TO BREAST CANCER 

BREAST CANCER AND ESTROGEN SIGNALING 

Breast cancer is the leading non-cutaneous form of cancer that is diagnosed in 

women of the United States [I]. According to the American Cancer Society, it is 

estimated that in 20 II about 230,000 women will be diagnosed with invasive breast 

cancer and approximately 39,520 women are expected to die from breast cancer [2] 

(http://www.cancer.orglResearch/CancerFactsFigureslBreastCancerFactsFigureslbrea 

st-cancer-facts-and-figures-20l1-2012). Although the highest incidence of breast 

cancer is seen on non-hispanic white women, death due to this cancer is highest in 

African-American women because they have triple-negative breast cancer (TNBC). 

In TNBC, which is the most aggressive form of breast cancer, cells do not express 

estrogen receptor (ER), progesterone receptor (PR) or the epidermal growth factor 

receptor (HER2/neu/erbB2). In the last two decades, the incidence rates for breast 

cancer in women over 50 has declined by 2 % due to early detection and better 

therapy, including the use of the antiestrogen tamoxifen. 

http://www.breastcancer.org/symptoms/understand_bc/statistics.jsp . 

The breast tissue is composed of milk producing lobules and ducts that 

connect lobules to the nipple. The luminal epithelial cells that line the ducts of the 

breast are regulated by steroid hormones, such as estrogens and progesterone and 

peptide hormones i.e. Prolactin, Oxytocin. Estrogens are steroid hormones produced 

by the ovary. The three forms of estrogen produced in the ovary are Estrone (E 1), 



Estradiol (E2) and Estriol (E3). EJ is the major form of estrogen in postmenopausal 

women, E2 is the predominant form of estrogen in pre-menopausal women and E3 is 

primarily synthesized in pregnancy. Estrogens promote cell replication by binding to 

their receptors, estrogen receptors alpha (ERa) and beta (ERP) that mediate the 

subsequent recruitment of coregulators, chromatin remodeling complexes, and RNA 

polymerase leading to transcription of estrogen responsive genes [3]. The two modes 

of signaling through the ER include genomic and non genomic. 

Genomic ER signaling - Binding of E2 to ER induces a conformation change to the 

ER leading to its activation and binding to DNA sequences called estrogen response 

elements (EREs). This is the classic or genomic mode of estrogen signaling. 

Alternatively, the E2-ER complex may interact with DNA indirectly by a 'tethering' 

mechanism involving direct interaction of ER with transcription factors including AP

I, Sp I or NF-KB [4]. Depending on the type of transcriptional coregulators 

associated with ER, the E2-ER complex can have different effects [5,6]. For example, 

E2-ER binds to the ERE of the NRF-l gene in MCF-7 cells and recruits API 

coactivator and RNA polymerase to increase the expression of TFAM mitochondrial 

gene [7]. Ligand independent ER signaling involves protein kinases that 

phosphorylate and activate ER. 

Non-genomic ER signaling - In addition to genomic ER signaling a small percent of 

total cellular ERa that are localized in the plasma membrane (PM) can initiate rapid 

activation of intracellular phosphorylation cascades mediated by extracellular signal 

regulated kinases 1/2 (ERK1I2) and phosphoinositide 3-kinase (PI3K or AKT) [8,9]. 

This rapid E2-initiated cascade is referred to as "membrane-initiated" or "non

genomic" ER signaling and is independent of gene transcription, although 'non-
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genomic' estrogen activation of signaling pathways can stimulate gene transcription 

in breast cancer cells [10]. 

GPR30/ GPER: In addition to ERa, there is a plasma membrane-bound estrogen 

receptor that is a G-coupled protein receptor (GPR30IGPER) [11,12]. Filardo et al. 

have shown that E2 can activate the MAPK signaling cascade via binding to GPR30 

leading to transcription of cell proliferative genes [13] . ER antagonists ICI 182, 780 

and 4-0HT were found to activate GPR30 and mediate MAPK signaling [14]. 

In addition, ligand activated membrane ERa can phosphorylate and activate 

key signaling molecules including Epidermal Growth Factor Receptor (EGFR), c- src, 

Shc and p85a regulatory subunit of MAPK [15-17]. Although this mechanism is 

independent of E2-mediated transcription, the activation of signaling pathways may 

affect downstream molecules, subsequently leading to nuclear ER activity and also 

induce transcription of E2-responsive genes [18]. Thus there is cross-talk between 

growth factor receptor pathways and genomic ER signaling [17]. 

ENDOCRINE THERAPIES FOR THE TREATMENT OF BREAST CANCER 

Estrogens are natural ligands of ER. Blocking estrogen-mediated tumor 

growth has been the mode of breast cancer treatment for many years. Endocrine 

therapies either target ERa action or block estrogen synthesis. Antiestrogens (e.g., 

Tamoxifen (TAM) and Raloxifene (RAL» function by binding to the ER and 

blocking its transcriptional activity. ICI 46,474 (now known as TAM) was originally 

developed by Imperial Chemical Industries (lCI) Ltd. Pharmaceuticals Division [19]. 

It was developed by a group of scientists that included Arthur Walpole, Dora 

Richardson and Michael J.K Harper. Although initial studies focused on its role as a 

contraceptive drug, it was Walpole who later on suggested its use as an antiestrogen. 
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He identified that TAM acts as an estrogen in the mouse vagina while it is an 

antiestrogen in rat vaginal epithelium and uterus [20,21]. Walpole also suggested that 

TAM may inhibit tumor formation in the breast. After his death in 1977, significant 

studies on TAM's role as a SERM (Selective Estrogen Receptor Modulator) as well 

as an antitumor agent was investigated by Craig V. Jordan [22-25] . 

It was in 1977 that TAM was approved by the FDA to be used clinically as an 

antiestrogen in the United States. Since then, TAM, a non-steroidal antiestrogen, has 

been widely used for the prevention and treatment of ERa-positive breast cancer 

[26,27]. TAM has cell-type-specific mixed agonist/antagonist activity, and is thereby 

classified as a SERM [28]. SERMs are classified according to its structure, which are 

more or less similar to E2. TAM is a triphenylethylene which is metabolized in the 

liver to its active form 4-0HT by the cytochrome P450 enzyme CYP2D6. In the 

breast, 4-0HT acts as an ER antagonist and competes with E2 for binding to the ER. 

For over 30 years, TAM has been the 'gold standard' for the treatment of breast 

cancer in pre-menopausal women [29]. One of the disadvantages of TAM is that 

women on TAM therapy have an increased risk of uterine cancer due to its agonist 

activity in the uterus [30]. 

RAL and arzoxifene are benzothiophenes. RAL avoids some of the side 

effects associated with TAM due to its antagonist activity in both breast and uterus. 

RAL was first approved in 1997 by the FDA to be used in the treatment of 

osteoporosis in post-menopausal women [31]. It was subsequently demonstrated to 

prevent recurrent disease and primary breast cancer by a number of clinical trials [32]. 

The RUTH (Raloxifene Use For The Heart) is a significant trial that demonstrated the 

use of RAL in the treatment of osteoporosis in post-menopausal women who had 

cardiovascular disease [33]. The trial showed that RAL is effective not only in the 
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treatment of osteoporosis but also for ER-positive breast cancer. Results of the STAR 

(Study of Tamoxifen and Raloxifene) trial that was published in 2006 further 

confirmed the role of RAL in the treatment of osteoporosis as well as invasive breast 

cancer in women [34]. 

Another class of antiestrogens used in the treatment of breast cancer is called 

Selective Estrogen Receptor Downregulators (SERD) with the prototype fulvestrant. 

It is a SERD because it binds the ligand binding domain (LBD) noncovalently, and 

targets ERa to the 26S proteasome for degradation [35]. 

Aromatase inhibitors (AIs) are a class of antiestrogens that block estrogen 

synthesis [36]. In post-menopausal women, estrogens are no longer synthesized by 

the ovaries. However estrogens are synthesized from either locally produced or 

adrenal androgenic precursors (e.g. DHEA or Dehydroepiandrosterone, DHEA

sulphate) in peripheral tissues including adipose tissue, brain, skin, bone, 

endometrium, and breast [37]. In these tissues, the enzyme aromatase (CYP 19A1) 

catalyzes the conversion of androgens, (i.e., testosterone and androstenedione) to 

estrogens (i.e., E, and E2, respectively). The three most commonly used AIs are 

letrozole, anastrozole and exemestane. AIs have been shown to be more effective 

than TAM in promoting disease-free survival in post-menopausal women [38]. 

Exemestane is a steroidal AI that bind to the substrate-binding site of aromatase 

enzyme and irreversibly inhibits its action [39]. Letrozole and Anastrozole are non

steroidal AIs that bind reversibly to the substrate binding site of the aromatase 

enzyme [4]. Unlike TAM, AIs do not increase the risk of endometriosis and 

thromboembolism [40]. However AIs increase osteoporosis and fractures along with 

side effects such as hot flashes and headaches. The use of AIs is limited by 

musculoskeletal pain which some breast cancer survivors find intolerable [41]. 

5 



MECHANISMS OF ENDOCRINEffAMOXIFEN-RESISTANCE 

Although hundreds of thousands of women are alive today because TAM 

prevents breast cancer recurrence [42], the majority of tumors that initially respond to 

TAM develop resistance. It is estimated that 40% of the women who receive adjuvant 

hormonal therapy acquire endocrine resistance [43,44]. The mechanisms of acquired 

endocrine/TAM- resistance remain to be fully elucidated despite intense study by 

many labs over the past 25 years [45] 

Loss of ERa and aberrant expression of coregulators contribute to endocrine

resistance- Acquired endocrine resistance, which occurs after a woman was initially 

successfully treated on TAM, was originally thought to be due to loss of ERa 

expression. Mechanisms involved in the loss of ERa expression include activation of 

EGFR and MAPK signaling [46,47], methylation of ERa promoter [48] and hypoxia 

[49]. However, ERa was found to be lost in only 15-20% of TAM-resistant cancers, 

suggesting other mechanisms for the development of endocrinelTAM-resistance [50]. 

Recent studies show that a variant of ERa called ERa36 is expressed in tumors that 

are not responsive to TAM [51]. Another variant of ERa called ERa46 was found to 

be decreased in TAM-resistant breast cancer [52]. 

Other factors that playa role in the development of endocrinelTAM-resistance 

include altered expression of coregulators [53-56]. For example, AlB 1 (also known 

as SRC-3 or NCoA-3), a nuclear coactivator is overexpressed in breast tumors and is 

associated with increased ERa mediated transcription [56] and reduced TAM

responsiveness in patients [57]. On the other hand, reduced expression of Nuclear 

receptor co-repressor (NCoR) was observed in a mouse model of human breast cancer 

and correlated with TAM-resistance [58]. Low NCoR is associated with a shorter 

disease-free survival and is used as predictor of TAM-resistance in ERa-positive 
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breast cancer [59]. Increased expression of AP-I, Sp 1 and NF-KB transcription 

factors have been associated with endocrine resistance [60-62]. TAM-liganded ERa 

acts as an antagonist and increases AP-l and NF-kB transcriptional activities in MCF-

7 breast cancer cells [63]. TAM-liganded ERJ3 was found to act as an agonist and 

induce AP-l regulated gene transcription in MCF-7 and MDA-MB-453 breast cancer 

and Ishikawa endometrial cancer cells transfected with an ERJ3 expression plasmid 

[63]. This leads to enhanced cell proliferation and growth, resulting in TAM

resistance. Increased NF-KB transcriptional response was reported in TAM- resistant 

and ERBB2-positive cell lines, MCF-7/HER2 and BT474 [62]. The study showed 

that the increase in NFkB transcriptional response was reversed by the NF-kB 

inhibitor Parthenolide leading to better response to TAM. The study also showed that 

the increased TAM-responsiveness in these cells was due to enhanced recruitment of 

the corepressor NCoR to the TAM-ER complex upon treatment with the inhibitors. 

Post-translational modifications of ERa contributes to endocrine resistance -

Posttranslational modifications such as phosphorylation, sumoylation and acetylation 

can alter the conformation of ERa such that it affects its ligand binding properties and 

interaction with proteins such as coregulators [64-66]. Phosphorylation of ERa takes 

place mainly by activation of kinase pathways such as protein kinase A (PKA), 

MAPK and Src pathways [67-69]. Some of the phosphorylation sites within ERa that 

can alter the response of cells to TAM include Ser102/4/6, Ser 118 and Ser 305 [66]. 

The Ser 118 residue on ERa can be phoshorylated by pathways such as MAPK, 

PI3K, CDK7 and IKKa [70-72] . E2 or EGF can induce the MAPK pathway and thus 

phosphorylate Ser118 leading to enhanced ERa activation [73]. Phosphorylation of 

ERa on Ser118 by MAPK was found to reduce its affinity for TAM [72]. ERa that is 

7 



phosphorylated at Ser-118 was also found to have decreased DNA binding capacity 

when bound to TAM. Another consequence of phosphorylation of ERa at Ser 118 is 

its altered interaction with coactivator AIB I [72]. Phosphorylation of ERa at Ser305 

by PKA has been shown to result in TAM resistance by altering the interaction of 

ERa with coactivator NCoA-1 (also known as SRC-I), and promote transcription by 

TAM [74-76]. P21-activated protein kinase-l (Pakl) phosphorylates ERa at Ser305. 

This leads to transactivation of ERa independent of ligand binding and increases 

ERa-mediated transcriptional activity. As a result there is reduced responsiveness of 

tumors to TAM [77,78]. Hence expression of Pak 1 is considered as a poor prognostic 

marker for TAM resistance. 

Altered glycosylation is an early step in carcinogenic transformation [79] and 

yet is an understudied field of knowledge regarding modification of ERa and other 

proteins that can move between the plasma membrane and nuclear compartment. 

Glycosylation of ERa at the hydroxyl group of its Ser or Thr residues has been 

reported [80,81]. O-linked N-acetyl glucosamine (O-GlcNAC) residues were 

identified on ERa that was isolated from bovine calf uteri and insect cells expressing 

mouse ERa [80]. The Thr575 residue on the C-terminal fragment of ERa was 

identified as a major site of glycosylation site in these ERa. Additional glycosylation 

sites were later identified on Ser 10 and Thr50 of mouse ERa [81]. However these 

modifications were not found to alter the DNA-binding properties of ERa. 

Acetylation of transcription factors by histone acetyl transferases (HATs) such as 

p300, CBP and P/CAF makes the DNA accessible to nuclear coregulators [82]. 

Acetylation of ERa by p300 at Lys residues 266 and 268 in its hinge/ ligand binding 

domain was reported by Mi et al. [83]. Their study demonstrated that acetylation of 
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ERa did not modify its localization or ability to bind E2 or coregulators. However, 

acetylation increased ERa's DNA binding properties and transactivation. Contrary to 

this observation, mutation of Lys302 and 303 residues of ERa to Arg enhanced its 

activation by E2 [84]. They found that acetylation is specific to Lys302 and 303 

residues in the hinge region of ERa. This indicates an inhibitory effect of acetylation 

on the sensitivity of ERa to ligands. Mutation of Lys residues could thus contribute 

to development of breast cancer. Interestingly, an ERa K303R mutation has been 

reported in breast cancer patients with atypical hyperplasia [85] 

Sumoylation is a post- translational modification involving addition of SUMO 

(small ubiquitin-like modifier) moieties to proteins. SUMOylation is increased in 

carcinogenesis [86]. ERa is sumoylated by (SUMO)-l, at the Lys residues in the 

hinge region [87]. Sumoylation enhanced ERa transcriptional activity. Proteins 

PIAS 1 and PIAS3 were found to stimulate sumoylation of ERa in the presence of 

ligands, e.g., E2 and TAM [87]. This would be expected to increase ERa turnover. 

Using mutation studies involving substitution of Lys residues in the hinge region with 

Arg, the authors observed that there was an inhibition of sumoylation and reduced 

ERa transcriptional activity. Thus posttranslational modifications of ERa alter its 

transcriptional activity as well as interaction with coregulators. 

Aberrant growth factor receptors and cytoplasmic signaling contribute to endocrine 

resistance 

Role of Receptor Tyrosine Kinases (RTK) - Enhanced RTK signaling mediated by 

growth factor overexpression or intrinsic activation has a role in endocrine resistance. 

Further, overexpression of EGFR, insulin like growth factor receptor (lGFR) and the 

mutant human epidermal growth factor receptor (HER-2/neu or ERBB2) contribute to 
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endocrine/TAM-resistance because they activate cell survival/proliferation responses 

independent of estrogen-ER activity [88-91]. 

Endocrine resistance also involves activation of the intracellular protein kinase 

pathways, (e.g. the MAPK and the PI3K) that are downstream of plasma membrane

initiated EGFR, IGFR and ERBB2 signaling [89,92]. Deregulation of these pathways 

could be due to genetic modifications such as mutation of PTEN, a tumor suppressor 

that inhibits PI3K, or due to amplification of ERBB2 [64,93,94]. The mechanism of 

ERBB2 overexpression in endocrine resistance is not fully understood. However it is 

proposed that the intrinsic activation of ERBB2 and subsequent activation of the 

MAPK pathway that leads to phosphorylation of ERa at Ser118 results in its ligand

independent activation [94-96]. This would lead to non-responsiveness of cells to 

TAM-mediated repression of ERa-mediated transcription. Another mechanism of 

antiestrogen-resistance in ERBB2 overexpressing cells is the impaired recruitment of 

transcriptional corepressors such as NCoR and SMRT by TAM-occupied ERa [94]. 

As a result there is reduced responsiveness of ERBB2-overexpressing cells to TAM. 

This was seen in ERBB2-expressing tumor samples. 

Role of cell cycle modulators - Aberrant expression of cell cycle regulators that are 

targets of antiestrogens can lead to endocrine resistance [97]. Overexpression of 

MYC, cyclin E1 or cyclin 01, inactivation of the retinoblastoma (Rb) tumor 

suppressor, or the decreased expression of cyclin-dependent kinase (CDK) inhibitors 

p21 and p27 lead to loss of antiestrogen-responsiveness [98-102]. c-Myc, a nuclear 

transcription factor has mitogenic effects similar to E2 and is, in fact, an immediate 

early gene product stimulated by E2-ERa [103]. MYC promotes cell cycle 

progression by regulating cell cycle modulators (e.g. p21 and p27) [104]. MYC 

overexpression has been shown to promote TAM-resistance by suppressing the 
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expression of CDKN1A that encodes p21 which is a repressor of cell cycle regulators 

cyclin-cdk2 [105]. This relief of repression of cyclin E1 CDK2 complexes by p21 

results in enhanced growth rate in response to TAM. Along with CDK2, Cyclin EI 

promotes entry of cells into the S-phase of the cell cycle [97]. Cyclin DI 

overexpression also leads to increased tumor growth in response to TAM [106]. This 

is due to enhanced cyclin DI binding to ERa through STAT3, thus activating 

ERa. TAM was found to enhance binding of ERa to STA T3 in the presence of 

cyclin DI, thus promoting tumor growth. Overexpression of MYC and Cyclin DI 

and Cyclin EI has also been reported in patients with breast cancer [107]. 

Loss of Rb function has also been linked to endocrine resistance [102]. Rb is a 

critical regulator of cell growth [108]. Inactivation of Rb function due to 

phosphorylation has been reported in breast cancer [109]. This loss of function is 

associated with aberrant cyclinlCDK activity. Other factors that can result in loss of 

Rb function in breast cancer includes mutation and epigenetic silencing [110]. 

Aberrant Rb pathway function has also been reported in ER-negative breast cancer 

and is used as a predictor of poor response to TAM therapy [ III ]. 
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CHAPTER II: SIGNIFICANCE OF MICRORNA EXPRESSION IN 

ENDOCRINEff AMOXIFEN -RESISTANT BREAST CANCER 

BIOGENESIS OF MICRO RNA 

Regulation of gene expression is critical for the normal development of an 

organism. MicroRNA (miRNA) are a class of short non-coding RNA that regulate 

gene expression at the post-transcriptional and/or translational level [112]. These 

RNAs, which are 21-22 nucleotides in length, regulate a number of cellular processes 

including growth, development, differentiation, apoptosis and cell cycle [113]. 

miRNAs were first described by Lee et. al. in Caenorhabiditis elegans [114]. Today 

there are over 9200 publications listed in PubMed on miRNAs in humans, reflecting 

the interest in how these RNAs post-transcriptionally regulate protein expression and 

cell function. 

miRNAs are given a three lettered prefix depending on the species that they 

originate in i.e., hsa for homo sapiens, mmu for mouse, and so on [lIS]. If miRNAs 

originate from different genomic loci, they are assigned a numerical suffix, i.e. hsa

miR-29b-l and hsa-miR-29b-2. miRNAs that differ by a few bases are given a 

lettered suffix of the form miR-12Sa and miR-12Sb. Those miRNAs that originate 

from opposite arms of the hairpin precursor are assigned suffixes of the type miR

l42-Sp and miR-142-3p. miR-21 and miR-21 * refers to miRNAs that arise from the 

same hairpin precursor. An asterix in the miRNA name indicates that it is a less 

predominant form of the miRNA[ 116]. miRNA cluster arises due to gene duplication, 

e.g., the miR-200 cluster of miRNAs is located in two chromosomes, i.e., miR-200a, 
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miR-200b and miR-429 are located on chromosome 1 and miR-200c and miR-141 are 

located on chromosome 12. Each cluster is transcribed into a common precursor 

RNA. A miRNA family refers to miRNAs that arise from a common ancestor and 

whose sequences are similar e.g. miR-221 and miR-222 family. 

MiRNA are located mostly in the introns of protein coding genes [117]. In 

eukaryotes, most miRNAs are transcribed by RNA polymerase II into long transcripts 

called primary miRNA (pri-miRNA) [118]. A few miRNAs are transcribed by RNA 

pol III, e.g., miR-515-1, miR-517a, miR-517c [119]. Primary miRNA is processed 

into -70 nucleotide precursor miRNAs (pre-miRNA) by a ribonuclease III (RNase III) 

enzyme Drosha in association with an RNA binding protein DGCR8 (together called 

the Microprocessor complex). Recent studies show that some intronic miRNAs 

(mirtrons) are processed by splicing machinery instead of Drosha and DGCR8 [120], 

Pre-miRNA is then exported from the nucleus to the cytoplasm by Exportin and Ran

GTP. In the cytoplasm, the pre-miRNA is further cleaved by RNase III Dicer along 

with RNA-binding proteins TRBP and PACT (in humans) to a mature double 

stranded miRNA. Mature miRNAs is incorporated into the RNA-induced silencing 

complex (RISC) consisting of Argonaute 2 (Ag02) and TRBP protein. The miRNA 

duplex unwinds and the RISC degrades one of the strands of the miRNA (passenger 

strand, e.g., miR-21 *) while the functional strand (guide strand, e.g., miR-21) targets 

messenger RNA (mRNA) for degradation or translational repression. According to 

miRBase (version 18, November 2011), the human genome encodes more than 1500 

human miRNAs. 

MICRO RNA FUNCTION 

MiRNAs affect mRNA stability or repress translation. The 5'UTR of miRNA 

harbours a 2-8 nucleotide seed region that binds to the 3'UTR of mRNA in a 
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complementary fashion. Perfect base pairing between the miRNA and mRNA leads 

to mRNA degradation [121]. This type of perfect complementarity between miRNA 

and the target mRNA is seen in mostly in plants and rarely in vertebrates and viral 

miRNAs. 

In most metazoans, there is mostly imperfect base pairing leading to 

translational repression. Many theories have been proposed for the repression of 

translation by miRNAs. One theory states that the AG02 protein of the miRNA

ribonUcleoprotein (miRNP) complex (consisting of mature miRNA, Ag02 and TRBP 

protein) competes with the eIF4E elongation factor from binding to the 5' cap of 

mRNA, thus repressing translation [122]. Another study shows that the elongation 

factor eIF6 is a major target of miRNPs. The authors of this study propose that 

AG02 interacts with eIF6 and inhibits joining of the 60S ribosomal subunit to the 

40S initiation complex [123]. It has also been proposed that repression of translation 

occurs at post-initiation stages of translation due to slow elongation of mRNA 

[124,125]. Repression of mRNAs by binding of miRNPs induce deadenylation 

mediated by a glycine-tryptophan protein called GW182 and poly (A) binding protein 

(PABP) which in tum recruits deadenylase CCR4 and CAF1, and subsequently 

results in decay of mRNAs [126,127]. An alternate mechanism of repression by 

miRNA is by sequestration of mRNA in P-bodies [128]. mRNAs that undergo 

translational repression by the RISC were found to accumulate in these P-bodies 

[129]. In eukaryotes, there are two modes of mRNA decay induced by miRNAs. The 

mRNA is degraded either by 3'~ 5' exosome activity or by removal of the 5' cap 

followed by 5'~3' degradation catalyzed by XRNI [130]. 

Currently there are over 10, 000 miRNAs that have been reported in different 

organisms [131]. It is estimated that miRNAs regulate -50% of protein-coding 
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genes in the human genome [132]. MiRNA target prediction software programs have 

shown that each miRNA can have more than one mRNA target. MiRNAs have been 

shown to fine-tune the expression of genes to allow optimal expression during 

different stages of development. In humans, miRNAs exhibit tissue specific 

expression and regulate cellular processes by targeting key proteins and signaling 

networks [133]. 

REGULATION OF MICRO RNA EXPRESSION 

Role of miRNA processing proteins - MiRNA expression is regulated at different 

levels. The ratio of the ribonuclease Drosha and its binding partner DGCR8 is tightly 

regulated to ensure proper pri-miRNA processing [134]. DGCR8 stabilizes Drosha. 

Drosha in tum regulates DGCR8 levels by cleaving and thus inactivating it. Thus a 

tight feedback loop maintains the cellular DroshaJDGCR8 ratio [135]. 

A number of co-activators and co-repressors can alter Drosha activity. Transforming 

growth factor beta (TGF~) signaling and bone morphogenetic protein (BMP) and 

SMAD proteins stimulate, while the nuclear factor NF90-NF45 heterodimer 

suppresses Drosha activity [136,137]. ERa along with helicases p68 and p72, and 

Drosha have been shown to affect Drosha complex formation, thus repressing pri

miRNA processing[ 138]. 

Defects in Exportin 5 results in accumulation of pre-miRNAs in the nucleus 

[139]. Another ribonuclease that is a key point of regulation in the miRNA 

biogenesis pathway is Dicer. Altered Dicer expression can affect processing of pre

miRNA to mature miRNA. Dicer mutation has been reported in non-small cell lung 

cancer and prostate cancer [140,141]. It has been shown that Dicer cofactors, TRBP 

and PACT are critical in maintaining the stability of Dicer in cells [142,143]. 
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Increased phosphorylation of TRBP by MAPK signaling was found to enhance Dicer 

activity and promote miRNA processing [144]. 

Role of Ag02 proteins - After cleavage of the pre-miRNA by the ribonuclease Dicer, 

one of the strands of the mature miRNA is incorporated into the RISC by Ag02 

protein. Although the human genome encodes about 8 Ago proteins, Ag02 is the 

major protein involved in RNA cleavage and silencing. The level of Ag02 determines 

the amount of mature miRNA synthesized. Ag02 is subject to regulation at the 

transcriptional and post-transcriptional level. For example in MCF-7 breast cancer 

cells Ag02 expression is inhibited by E2 and EGF-MAPK signaling [145]. 

Regulation of miRNA transcription - A number of transcription factors have been 

shown to regulate miRNA expression. For example, p53 has been shown to increase 

the expression of miR-34 and miR-107 families [146,147]. MYC stimulates the 

expression of miR-17-92 cluster of miRNAs in lymphoma cells [147]. In neuronal 

cells, the REI Silencing Transcription Factor (REST!) inhibits transcription of miR-

124 by recruiting histone deacetylases (HDACs) and methyl CpG binding protein 

MeCP2 to the miR-124 gene promoter [148]. The transcription of primary miRNA 

transcripts have been shown to be regulated by platelet-derived epidermal growth 

factor (PDGF) and transforming- growth factor-beta (TGF-~) [149,150] 

Steroid hormone regulation of miRNA expression- Steroid hormones and their 

receptors have been reported to regulate miRNA expression in a variety of cancer cell 

lines [151-153]. Because the focus of my dissertation is the role of miRNA 

expression in endocrine resistant breast cancer, I will focus on estrogen regulation of 

miRNA expression [154,155]. E2 regulation of miRNA expression was studied by 

Cohen et. al. in adult zebrafish [156]. miR-196b and Let 7h were up-regulated, and 

miR-130c and miR-lOla were downregulated by E2 treatment in this study. Further, 
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Hoxb8a, a target of miR-196b was downregulated regulated by E2 in zebrafish. In a 

model of mammary carcinogenesis in rats, E2 was found to regulate the expression of 

miRs after 6, 12 and 18 weeks of treatment in female August Copenhagen Irish (ACI) 

rats [157]. Some of the miRNAs that were altered after E2 treatment include miR-

22*, miR-99a, miR-127, miR-499, miR-17-5p, miR-20a, and miR-92. Castellano et. 

a!. have shown that E2 upregulates the expression of miRNAs encoded by the miR-

17-92 and miR-106a-363 paralogous cluster in MCF-7 breast cancer cells [158]. 

Microarrays identified 23 miRNAs to be downregulated by E2 in MCF-7 cells [159]. 

Of these, the expression of 8 were confirmed by quantitative real time PCR (Q-PCR) 

in MCF-7, BT474, T47D and ZR-75-1 breast cancer cells. The expression of pri

miR-21 and pri-miR-181a were also found to be regulated by E2 in MCF-7 cells. 

Another study by Cicatiello et al. identified miR-424 and miR-760 to be increased by 

E2 while miR-107, miR-570 and miR-618 were found to be decreased by E2 [160]. 

This study identified miRNA binding sites in the mRNA of E2-regulated target genes 

by global mapping. 

Work done m our laboratory has also shown that E2 regulates miRNA 

expression in MCF-7 breast cancer cells [161,162]. E2 was found to decrease miR-21 

expression which in tum increased the expression of its target genes, PDCD4 and 

BCL2. Contrary to our results, Nakshatri e. a!. reported an increase in miR-21 

expression in MCF-7 cells after treatment with lOnM E2 for 4 h [163]. However, 

others have likewise reported that E2 reduces miR-21 expression [159,164-166] A 

summary of miRNAs that are regulated by E2 was recently reviewed [167] 

Epigenetic control of miRNA expression -DNA methylation and histone 

modifications regulate miRNA expression. These mechanisms have been attributed 

to the aberrant expression of miRNAs seen in diseases such as cancer. For example, 
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hypermethylation of miR-134, miR-34b/c, miR-137, miR-342 has been reported in 

different types of cancer [168,169]. Hypomethylation of let 7a-3 has been reported in 

lung adenocarcinoma [170]. The promoter of miRNA genes e.g. miR-1 and miR-27a 

are altered by histone modification [171]. Acetylation of miR-1 gene promoter results 

in its decreased expression in lung cancer. HDAC inhibitors reversed this effect. 

MICRORNA AS ONCOGENES OR TUMOR SUPPRESSORS 

Aberrant miRNA expression has been reported in a number of diseases 

including cancer [172]. MiRNAs act as oncogenes or tumor suppressors by 

regulating the expression of genes associated with key pathways. As such, their 

expression and the regulation of their expression is of keen interest in cancer research, 

both for use as clinical biomarkers and as targets for prevention or treatment. 

MicroRNAs as tumor suppressors- miR-15a and miR-16 act as tumor suppressors by 

negatively regulating the anti-apoptotic gene BCL2. Downregulation of miR-15a and 

miR-16 has been observed in chronic lymphocytic leukemia (CML), resulting in 

increased expression of BCL2 and anti-apoptotic activity [173]. miR-34a is 

downregulated in colon, ovarian, lung and pancreatic cancers [174-176]. It targets the 

oncogene MYCN [177]. miR-34 indirectly controls p53 activation through SIRTl 

[178] . The Let-7 family of miRNAs were found to be deleted in a number of cancers 

including lung, colon and lymphomas [179,180]. They act as tumor suppressors by 

negatively regulating cell cycle regulators, CDK6 and CCND [181]; and oncogenes 

such as RAS, MYC and HMGA2 by translational repression [182,183]. 

MicroRNAs as oncogenes- One of the most important miRNAs that acts as an 

oncogene is miR-21. It has been shown to repress the expression of tumor 

suppressors such as the programmed cell death protein (PDCD4), tropomyosin 
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(TPMl), phosphatase and tensin homologue (PTEN) and maspin[184-188]. miR-21 is 

overexpressed in lung, breast, pancreatic and prostate cancer [189-191]. 

In addition to miR-21, the miR-17 -92 cluster is overexpressed in aggressive 

lung cancer and its putative targets include PTEN and RB2 [132,192]. The expression 

of miR-155 is increased in most lymphomas, e.g., miR-155 was found to be 

significantly decreased in Burkitt's lymphoma and Diffuse Large cell B-Iymphoma 

(DLBCL)[193]. It has been suggested that this overexpression of miR-155 

downregulates the expression of the transcription factor PU.1 that is important in B

cell differentiation [194]. 

MICRO RNA EXPRESSION IN BREAST CANCER 

MiRNAs are aberrantly expressed in breast cancer [195,196]. MiRNA 

expression is either upregulated or downregulated in breast cancer cells or tumors 

when compared to normal breast tissue. miRNAs have been shown to have a role in 

tumor progression by altering the expression of oncogenes and tumor suppressors 

[197]. miRNAs promote metastasis and invasive properties of breast cancer cells. 

Expression profiling of miRNAs in solid tumors and breast tissues have identified 

miRNAs that are associated with breast cancer subtypes [198]. A few examples of 

the miRNAs that are deregulated in breast cancer include tumor suppressors such as 

Let-7, miR-125, miR-200, and the oncogenic miRs such as miR-21 and miR-155 

[199]. Downregulation of the tumor suppressor Let-7a alters the expression of its 

targets Ras and HMGA2 [200]. miR-125a and miR-125b have been shown to target 

tumor suppressors ERBB2 and ERBB3 [201]. Downregulation of Let-7a, miR-200 

and miR-205 promotes epithelial-to-mesenchyma1 transition (EMT) in breast cancer 

[202-204]. The targets of miR-200 include nuclear transcription factors ZEB 1, ZEB2; 

phospholipase C, gamma l(PLCGl) and TGF-~2 [205-207]. Other metastatic 
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promoting miRNAs that promote migration and invasion of cancer cells include miR

lOb, miR-520c and miR-373 [208,209]. miR-lOb targets HOXDlO expression [210]. 

HOXDlO has been shown to target genes involved in angiogenesis and cell migration 

[211]. Loss of HOXD 1 0 thus promotes an invasive phenotype in breast cancer. 

The miRNAs that are oncogenic, and overexpressed in breast cancer, are miR-

21 and miR-29, miR-34, miR-155, and miR-21O [199]. MiR-21 has been shown to 

promote tumor formation by targeting PDCD4, PTEN, TPMl, and BCL2 [187,212]. 

The miR-17/92 cluster has been shown to have a dual role as a tumor suppressor and 

an oncogenic miRNA. Hossain et al. reported its role as a tumor suppressor by 

reducing the expression of the ER coactivator AlB 1 [2l3]. AlB 1 was originally 

identified as an oncogene by Myles Brown [214] and further studies have confirmed 

AIBI's role in breast cancer [215-217]. Li et at. described miR-17-5p of the 17/92 

cluster to be a metastasis promoting miRNA in breast cancer by suppressing HMG 

box-containing protein IHBPI expression [218]. HBPI is a suppressor of Wntl~

catenin signaling. Downregulation of HBPI by miR-17-5p activates Wntl~-catenin 

signaling and thus promotes migration and invasion of MCF-7 breast cancer cells. 

Analysis of miRNA expression in breast tumors using tissue microarray 

identified a number of miRNAs that are differentially expressed in breast cancer 

tissue when compared to normal tissue, e.g., miR-lOb, miR-21, miR-145 were 

upregulated in breast cancer tissue [219]. There was also a correlation between 

miRNA expression, ER and PR status, lymph node status in these samples. In another 

study, miR-342 and miR-520g were found to be overexpressed in ER-positive and 

HER2 positive tumors when compared to normal tissue [220]. miRNA signatures 

associated with specific breast cancer cell type such as luminal and basal-like has 

been reported [198]. Let-7a, miR-21, miR-141 and miR-214 were expressed in 
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luminal cell type while miR-145 and miR-205 were associated with the myoepithelial 

cell type [221]. 

Circulating miRNAs have been detected in the blood, plasma and serum of 

breast cancer patients [222,223]. The level of plasma miRNAs was higher in breast 

cancer patients when compared to control groups [224,225]. For example miR-425*, 

Let 7c were found to be higher in the plasma of women with early stage breast cancer 

when compared to healthy controls. Higher expression of miR-lOb and miR-34 was 

found in the serum of breast cancer patients correlated with metastasis [222]. 

Systemic miR-195 and Let-7a were higher in breast cancer patients when compared to 

normal sUbjects[226]. The expression of these miRNAs also correlated with ER 

status [227]. These reports indicate that miRNAs could be valuable diagnostic 

markers in the prognosis and treatment of breast cancer. 

MICRORNAs REGULATE ERa ACTIVITY 

MiRNAs regulate ERa expression and activity. MiR-206 downregulates 

ERa mRNA and protein level in MCF-7 human breast cancer cells [228]. This study 

showed that miR-206 expression is increased in ERalERBB2-negative tumors when 

compared to ERa-positive tumor specimens. Adams et al. reported a double negative 

feedback loop between miR-206 and ERa in MCF-7 cells [229]. Another study by 

the same group reported increased miR-206 expression in MCF-7 and T47D breast 

cancer cells [230]. This increased miR-206 expression was found to suppress 

estrogenic effects in cells by decreasing the expression of ERa and coactivators such 

as NCoA-l, AIBI and GATA3 that are involved in ERa signaling. The authors 

propose that enhanced EGF signaling contributes to the loss of ERa by increasing 

miR-206 expression. This loss of ERa is one of the factors responsible for the 
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transformation of cells from luminal to a basal-type. Among the other miRNAs that 

target ERa are miR-22, miR-221 and miR-222. miR-22 degraded ERa mRNA [231]. 

The expression of this miRNA was lower in ERa-positive breast cancer cell lines 

such as MCF-7, T-47D and BT474 when compared to ERa-negative cell lines 

including MDA-MB-231 and SK-Br3 [232]. In contrast to miR-22, miR-2211222 

suppressed ERa protein and not mRNA [233]. This study identified two binding sites 

for miR-221 and miR-222 in the 3'UTR of ERa. Further, a negative feedback loop 

between miR-2211222 cluster and ERa has been reported in breast cancer cells [234]. 

miR-2211222 represses ERa, which in tum represses the expression of miR-2211222. 

Thus miR-22 11222 acts as a tumor suppressor in ERa-positive cells. However Rao et 

al. have shown that prolonged treatment of cells with E2 or fulvestrant releases miR-

221/222 from the negative feedback loop. This results in increased miR-2211222 

expression leading to enhanced cell proliferation and endocrine-resistance [235]. 

Let-7 family of miRNAs target ER-a66. There is an inverse correlation between the 

expression of Let -7 family and its target ERa-66 in breast cancer samples [236]. 

Let-7 family also targets an isoform of ERa, ERa-36 that is located in the plasma 

membrane [237]. Loss of Let-7 family was found to confer TAM-resistance due to 

increased ER-a36 and enhanced non-genomic signaling. Among the other miRNAs 

that target ERa include miR-18a, miR-18b, miR-193b and miR-302c [238]. This 

study utilized a protein lysate microarray approach where a library of pre-miRs were 

transfected into MCF-7 and T47D cell lines, and the expression of ERa was analyzed 

in the protein lysates. 
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MICRORNA AND ENDOCRINE RESISTANCE 

Computational analysis of microRNAs have identified miRNAs and their 

targets that have a role in fulvestrant resistance [239]. miR-2211222 has been reported 

to promote TAM-resistance by targeting ERa and the cell cycle regulator p27 (also 

known as Kipl) [233,240,241]. Miller et al. showed that miR-221/222 is 

overexpressed in ERa-negative cells lines and tumors, as well as HER2-positive 

tumors. Overexpression of miR-2211222 was associated with fulvestrant-resistance 

[235]. Prolonged fulvestrant treatment induced miR-2211222 expression in MCF-7 

cells. Some of the signaling pathways that are involved in promoting the miR-

2211222-mediated fulvestrant resistance and oncogenic activity include the ~-catenin, 

TGF-~ and p53 pathways [235]. miR-2211222 is also increased in 

CD44+CD24-IIOWlineage- human breast cancer stem cells, indicating a role for these 

stem cells in drug resistance [242]. A study by Lu et al. shows that anti-miR-221 

suppressed the growth of TAM-resistant xenografts in mice [243]. miR-15a/16 was 

found to downregulate the anti-apoptotic gene BCL2 and promote TAM resistance in 

MCF-7 cells expressing the HER2delta16 mutant [244]. miR-451, a tumor suppressor 

miRNA was reported to be suppressed in MCF-7 derived cell lines that are T AM

resistant [245]. miR-451 targets the expression of 14-3-3~, an anti-apoptotic gene that 

is overexpressed in TAM-resistant tumors and is also associated with poor clinical 

outcome in breast cancer. Thus the loss of miR-451 in ER-positive breast cancer 

upregulates 14-3-3~ and contributes to TAM-resistance. 

A PubMed search for 'MicroRNA and endocrine resistance III breast cancer' 

generates 12 publications as of September 2012. Most recently, global miRNA 

expression profiling using Exiqon microarrays in 152 ERa + tumors in 52 patients 

who received adjuvant tamoxifen as mono-therapy identified 10 miRNAs that 
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discriminated between patient samples according to patient outcome[246] . Patients 

with recurrence in general had lower levels of miRs- 190b, 339-5p, 520c-3p, 520g, 

520h, 139-3p, 204, 502-5p, 365, and 363. However, none of the data were 

statistically significant except that miR-7 increased with tumor grade. The authors 

concluded that "the miRNA profile does not seem to provide information with regard 

to the probability of recurrence following adjuvant tamoxifen-treatment in post

menopausal ER+ breast cancer patients." [246]. However, they also noted that tumor 

heterogeneity might be a factor in miRNA expression. 

DISSERTATION SPECIFIC AIMS AND HYPOTHESES 

As reviewed in Chapter I, breast cancer is one of the leading causes of death 

among women in the United States [1]. Although TAM prevents recurrence of breast 

cancer in women, about 40% of women who receive adjuvant hormonal therapy 

acquire resistance [53,248]. The mechanisms of acquired endocrine resistance remain 

to be fully elucidated [249]. This study was focused towards identifying miRNAs that 

are dysregulated in acquired endocrineffAM- resistant breast cancer. By identifying 

miRNAs that are differentially expressed in antiestrogen-sensitive MCF-7 cells versus 

antiestrogen-resistant L Y2 breast cancer cells, it would be possible to use them as 

prognostic markers of antiestrogen resistance in breast cancer. 

Our laboratory identified miRNAs that are differentially regulated by TAM in 

endocrine-sensitive MCF-7 and endocrine-resistant L Y2 human breast cancer cells 

[161,247]. Microarray expression profiling identified miRNAs that are regulated by 

E2 and TAM. They were found to be regulated in the opposite direction in MCF-7 

and L Y2 cells. Q-PCR was preformed to confirm the expression 12 miRNAs that 

24 



showed significant opposite expression between the two cell lines. Bioinformatic 

prediction identified 36 putative mRNA targets of the 12 miRNAs whose expression 

was validated by Q-PCR. Some of the mRNA targets include PDCD4, BCL2, 

CYPIBl, ERBB3. ZEBl, a target of miR-200 family of miRNAs and a promoter of 

EMT, was found to be overexpressed in L Y2 cells when compared to MCF-7 cells. 

This was a significant finding as it indicated that L Y2 cells represent cells that have 

undergone EMT. This study identified miR-200 family of miRNAs to have a role in 

suppressing endocrine-resistance in breast cancer. 

Identification of specific miRNAs and their gene targets will advance our 

understanding of mechanisms of antiestrogenlendocrine-resistant breast cancer. The 

overall hypothesis of this proposal is that miRNAs are dysregulated in acquired 

endocrine-resistant breast cancer. 

The specific aims to test the hypothesis were: 

SPECIFIC AIM 1: Identify miRNAs oppositely regulated by 4-0HT in 

antiestrogen-sensitive MCF -7 and antiestrogen-resistant L Y2 human breast 

cancer cells. 

I hypothesized that there is inverse regulation of miRNAs in tamoxifen-sensitive 

versus-resistant breast cancer cell lines, and that the regulation of these miRNAs that 

are altered in tamoxifen resistance is mediated through the ER. Microarray was used 

to identify miRNAs that are differentially expressed between MCF-7 and L Y2 cells. 

Results of the microarray analyses were validated by quantitative real time 

polymerase chain reaction (Q-PCR). 
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SPECIFIC AIM 2: Identify the genes targeted by select miRNAs and correlate 

these miRNAs with changes in mRNA in MCF-7 and LY2 cells. 

I hypothesized that changes in miRNA expression correlate with changes in target 

gene expression in MCF-7 and L Y2 cells. miRNAs thus mediate dysregulated 

expression of target oncogenes or tumor suppressors and hence alter critical gene 

pathways in tamoxifenlendocrine-resistance. Bioinformatics was used to identify 

putative targets of select miRNAs that were identified and some were experimentally 

verified in Aim 1. 

SPECIFIC AIM 3: Determine if knockdown of miRNAs upregulated and 

overexpression of miRNAs downregulated in endocrine-resistant breast cancer 

cells restore endocrine-sensitivity. 

I hypothesized that changes in miRNA and mRNA expression correspond to changes 

in functional outcomes in cells. These changes can be reversed by knockdown or 

overexpression of those miRNAs that are up or downregulated respectively. 

Transfection using anti-miRNA or precursor miRNA oligonucleotides followed by 

functional assays were used to determine whether knockdown or overexpression of 

miR-200 restored endocrine-sensitivity/resistance and alter biological functions in 

cells. 
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CHAPTER III: DIFFERENTIAL EXPRESSION OF MICRORNAs IN 

TAMOXIFEN- SENSITIVE MCF-7 VERSUS TAMOXIFEN-RESISTANT LY2 

BREAST CANCER CELLS 

The text of this chapter was published in Cancer Lett. 2011 Dec 26;313( 1 ):26-43 

1. INTRODUCTION 

The ability of selective estrogen receptor modulators (SERMs, e.g., tamoxifen 

and raloxifene) and aromatase inhibitors (AI) to prevent disease recurrence in 

patients whose initial breast tumors expressed estrogen receptor alpha (ERa) provides 

compelling data supporting the role of ERa in the pathogenesis of breast cancer [250]. 

Unfortunately, approximately 40% of patients relapse after tamoxifen (TAM) or other 

endocrine therapies [251]. The mechanisms for the acquired resistance to endocrine 

therapies is complex and, even in the presence of continued ERa expression, includes 

amplification of growth factor signaling pathways, e.g., epidermal growth factor 

receptor (EGFR), MAPK, PI3K1AKT, JNK, and p38 MAPK [251-253], but the role 

of microRNAs in endocrine-resistance remains to be fully elucidated. 

MicroRNAs are short, non-coding RNAs that regulate gene expression at the 

post-transcriptional level by direct binding to the 3'UTR of mRNA targets within the 

ribonucleoprotein RNA-induced silencing (RISC) complex, causing translational 

repression usually accompanied by mRNA decay [254,255]. miRNAs regulate 

diverse cellular processes including differentiation, replication, migration, and 

apoptosis [256]. Microarray technology has been used to generate miRNA profiles 
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and demonstrate aberrant miRNA expression in a variety of cancers including breast 

tumors and cell lines [257-262]. These miRNA expression profiles correlate with 

classification of tumor grade and patient prognosis [257,258,263]. Altered miRNA 

expression in cancer may result from chromosomal rearrangements, deletions or 

epigenetic modifications in DNA or chromatin structure [263]. Bioinformatic 

analyses are used to identify putative mRNA targets of miRNAs, thus linking 

miRNAs to the regulation of complex protein networks involved in a variety of 

cellular functions [264]. miRNAs in breast cancer cells function as tumor 

suppressors, e.g., Let-7 family members, miR-125a and miR-125b, and miR-200; or 

as oncogenes, i.e., 'oncomirs', e.g., miR-21, miR-lOb, miR-155, and the miR-17-92 

cluster [262,265]. 

miRNAs are processed from longer transcripts called precursor (pre)-miRNAs 

by Dicer within the cytoplasm. Pre-miRNAs are, in tum, the products of the 

processing, within the nucleus by DROSHA, of the initial miRNA gene transcripts 

called primary (pri)-miRNAs [266]. Recent studies have identified miRNAs 

regulated by estradiol (E2) in breast cancer cells and other cells and tissues (reviewed 

in [267]). For example, we and others reported that miR-21 and the Let-7 family of 

miRNAs are downregulated by E2 in breast cancer cells [260,261,267,268]. 

Interestingly, E2 upregulates transcription of miR-17 -92 and its paralog miR-106a-363 

clusters in MCF-7 human breast cancer cells, but appears to delay processing of the 

miR-17-92 gene product into its final miRNAs, including miR-18a and miR-20a 

[269], although the mechanism remains to be identified. 

There are only a few studies of miRNA in TAM/endocrine-resistant breast 

cancer cells. Cell-based studies found that miRNA-2211222 are overexpressed in 

TAM-, fulvestrant-, and tumor necrosis factor (TNF)- resistant derivative of MCF-7 
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cells [270-272]. However, no one has examined the effect of TAM on the expression 

of miRNAs in TAM-sensitive versus resistant breast cancer cells. 

To investigate whether antiestrogen-resistance correlates with changes in 

miRNA expression, we profiled miRNA expression in TAM- sensitive MCF-7 and 

TAM/endocrine-resistant LY2 human breast cancer cells. LY2 cells were derived 

from MCF-7 by serial passage in the anti estrogen LY 117018, a precursor to 

Raloxifene (RAL) [273], and express wild-type ERa. rnRNA levels similar to MCF-7 

cells [274], but are resistant to TAM, RAL, and fulvestrant (lCI 182,780) [275]. I 

hypothesized that differences in miRNA expression with TAM treatment between the 

TAM-sensitive MCF-7 versus TAM-resistant L Y2 cells would identify miRNAs and 

their rnRNA gene targets contributing to antiestrogen-sensitivity and resistance, 

respectively. miRNA microarrays were used to identify TAM-regulated rniRNAs in 

these two cell lines. This study identified 97 miRNAs that were differentially 

expressed between the two cell lines and focused on 12 rniRNAs that showed the 

greatest difference in expression between the two cell lines. Quantitative real time 

polymerase chain reaction (Q-PCR) was used to confirm the results obtained by 

microarray. In addition to miRNAs differentially regulated in the two cell lines, eight 

endogenous controls, including 6 miRNAs, 5S rRNA, and SNORD38B, were 

identilied from the microarray data and their expression confirmed by Q-PCR. 

A search of the Sloan-Kettering Targets and Expression 

(http://www.microrna.orglmicrorna/getDownloads.do) dataset was used to identify 36 

putative gene targets of these miRNAs from amongst those that were reported to be 

regulated by 4-0HT in MCF-7 cells [276]. Q-PCR was used to examine the 

expression of 8 miRNAs. Q-PCR and Western analyses were used to examine the 

expression of gene/protein targets of the miRs- 21, 125b, 200a, 200b, 200c, 221 and 
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222: PDCD4IPdcd4, BCL2/Bcl-2, CYP1Bl, ERBB3IErbB3, ESR1 IERa, and ZEB-l. 

Results from this chapter show opposite regulation of select miRNAs and target 

proteins between the two cell lines, thus indicating a putative role of these miRNAs in 

TAM/endocrine resistance. 

2. MATERIALS AND METHODS 

2.1 Cells and treatments 

MCF-7 human breast cancer cells were purchased from ATCC (Manassas, 

VA, USA) and maintained in IMEM supplemented with 10% fetal bovine serum 

(PBS) and 1 % penicillinlstreptomycin (Invitrogen, Carlsbad, CA, USA). L Y2 

tamoxifenlfulvestrant-resistant human breast cancer cells were provided by Dr. Robert 

Clarke, Georgetown University, and were used at P<16 from this source. LY2 cells 

were originally derived from MCF-7 cells by selection in increasing concentrations of 

L Y 117018 [273]. L Y2, selected for resistance to L Y 117018, are cross-resistant to 

TAM, raloxifene, fulvestrant (ICI 182,780), and are ERa positive, although ERa 

protein expression is lower than MCF-7 cells [273,277]. LCC 1, LCC2, LCC9 are 

also derivatives of MCF-7 cell lines that are E2, tamoxifen, and multiple SERM

independent, respectively [278], and were provided by Dr. Robert Clarke, 

Georgetown University, and were, like LY2, used at P<16 from this source. MDA

MB-231 'triple negative' breast cancer cells were purchased from ATCC. E2 and 4-

OHT were purchased from Sigma (St. Louis, MO, USA). ICI 182,780 was from 

Tocris (Ellisville, MO, USA). Prior to treatment, the medium was replaced with 

phenol red-free IMEM supplemented with 5% dextran charcoal-stripped PBS (DCC

PBS) and 1 % penicillinlstreptomycin (stripped medium) for 48 h (referred to as 

'serum-starving' or 'serum starved' cells). Cells were treated with ethanol (EtOH, the 
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vehicle control, 0.01 % final volume), 10 nM E2 or 100 nM 4-0HT for 6 h. For the 

microarray profiling, 4 separate experiments (biological replicates) were performed at 

different times over a 6 month period for each cell line. Note: Referrals in the text to 

ER and not specifically to ERa or ER~ indicated that either ERa or ER~ or both may 

be involved in the response tested. 

2.2 MicroRNA microarray analyses 

RNA was isolated from MCF-7 and L Y2 cells, treated as above, using the 

mirVana miRNA Isolation Kit from Ambion (Austin, TX, USA) and sent to Exiqon 

(http://exiqon.comJ/) where the RNA samples were labeled with either Hy3 or Hy5 

fluorescent labels and hybridized into the miRCURY LNATM microarray (miRbase 

11.0 human array). This micro array featured 1275 bone fide and putative human 

miRNAs plus additional controls. Four separate experiments (biological replicates) 

were performed. Data analysis was performed by Exiqon as follows: clustering of 

miRNAs was performed using log2 (Hy3/Hy5) ratios which passed the filtering 

criteria on variation across sample groups using a two tailed T-test p-value < 0.001. 

The Hy3 signals were normalized using the single color approach 'Quantile' followed 

by a background correction. The data were deposited in GEO as GSE28267 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28267 . The subset of 

miRNAs showing the highest variation among the 1275 miRNAs were used for 

clustering which provided a subset of 50 miRNAs that showed maximum variation 

between the two cell lines. The heat map (Figure 1) shows the result of clustering of 

miRNAs. The miRNA clustering tree is shown on the left and top. Each column 

represents a treatment and each row a miRNA. 

2.3 RNA isolation and quantitative Real-Time-PeR (Q-PCR) for miRNA 

expression 
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miRNA-enriched total RNA was extracted from MCF-7 and LY2 cells treated 

as above using the miRNA isolation kit (Exiqon). The quality and quantity of the 

isolated RNA was analyzed using a NanoDrop spectrophotometer and Agilent 

Bioanalyzer. cDNA was synthesized using the miRCURY LNA ™ first strand cDNA 

synthesis kit (Exiqon) and Q-PCR was performed using the miRCURY LNA ™ 

SYBR Green master mix (Exiqon) using the miRNA primer sets for miR-I0a, -21, -

22, -12Sb, -181 a, -200a, -221 and -222 (Exiqon). SNORD38B and SSRNA were used 

for normalization of miRNA expression. Analysis and fold change was determined 

using the comparative threshold cycle (Ct) method. The change in miRNA 

expression was calculated as fold-change, i.e., relative to EtOH-treated (control). 

2.4 RNA Isolation, RT -PCR and Q-PCR for mRNA expression 

RNA was extracted from cells using Trizol (Invitrogen) or RNeasy (Qiagen). 

The High Capacity cDNA Reverse Transcription kit (PE Applied Biosystems) was 

used to reverse transcribe total RNA using random hexamers. Q-PCR for BCL2, 

CYP1Bl, ERBB3, ESR1, PDCD4, and 18S using Taqman primers and probes as 

Assays-on-Demand was performed in the ABI PRISM 7900 SDS 2.1 (PE Applied 

Biosystems) using relative quantification. Analysis and fold differences were 

determined using the comparative CT method. Fold change was calculated from the 

MCT values with the formula 2-MCT and data are relative to EtOH-treated cells. 

2.S Whole cell and nuclear lysate preparation for western blotting 

Whole cell lysates were prepared and western blots were performed as 

described [277]. Nuclear extracts (NE) were prepared using the NE-PER kit from 

Thermo Scientific (Rockford, IL, USA). Antibodies were purchased as follows: ERa 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA), ER~ (HI SO, Santa Cruz, CA, 

USA), Argonaute 2 (Anti-Ago2, clone 9E8.2, #04-642, Millipore, Billerica, MA, 
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USA), Pdcd4 (GeneTex,Irvine, CA ), Bcl-2 (Assay Designs, Plymouth Meeting, PA), 

E-cadherin (Cell Signaling, Danvers, MA, USA), a-tubulin (Thermo Scientific, 

Rockford, IL, USA), ~-actin (Sigma, St. Louis, MO, USA). The ZEB-l antibody was 

generously provided by Dr. Douglas Darling, University of Louisville. 

Chemiluminescent bands on the PVDF membranes were visualized on a Kodak 

Carestream Imager using Carestream Molecular Imaging software (New Haven, CT, 

USA). 

2.6 Statistical analysis 

Data preprocessing was performed on two sets of samples sent to Exiqon at 

different times (sample set 1 and 2 contained 6 and 14 cell treatments, respectively; 

different miRNA chips were utilized for the 2 sets of samples) separately before 

combining them for further analysis. Two-step filtering (1) excluding empty and 

blank spots and (2) keeping only those spots for which foreground intensities were 

greater than 1.1 x background intensities for 2 or more samples in the 6-sample group 

and 10 or more samples in the 14-sample group was done before normalization. For 

the remaining spots, background intensities were subtracted from the foreground 

intensities. Since even after the filtering step, some spots had backgrounds larger than 

foregrounds; we treated those as missing and imputed them using the k-nearest 

neighbor algorithm. Normalization within-arrays was performed using the loess 

method [279], while for between-arrays the quantile method was applied. The two 

sets of samples were then matched by their miRNA names and combined for further 

analysis. 

In order to identify miRNAs which are expressed by MCF-7 and L Y2 cells 

treated with EtOH and 4-0HT and by MCF-7 cells treated with E2, the four technical 

replicates on each chip and the four arrays (biological replicates) corresponding to 
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each of the five treatment groups (n=20) were averaged. All expression values were 

represented as log2 ratios of Hy3 (experimental) versus Hy5 (universal reference). 

Differential expression of miRNAs between different TAM-sensitive and TAM

resistant cell lines treated with either 4-0HT or EtOH were determined by fitting a 

hierarchical linear model using the limma package [280] and testing the 

corresponding contrasts of interest, e.g., MCF-7 vs. L Y2 treated with 4-0HT, MCF-7 

vs. L Y2 treated with EtOH, and E2 vs. 4-0HT treated MCF-7 cells, for each miRNA. 

Fold change, adjusted t-statistic, unadjusted and false discovery rate (FDR) adjusted 

p-values were calculated for each miRNA for each comparison. Of the 225 miRNAs 

that passed the filter for analysis, only those miRNAs with adjusted p-values below 

0.10, i.e., FDR of 10%, were considered as differentially expressed. 

2.7 Gene pathway analysis 

Functional and network analyses of differentially expressed miRNAs gene 

expression changes were performed using Ingenuity Pathways Analysis (lPA) 8.8 

(Ingenuity® Systems, http://www.ingenuity.com). Networks were generated using 12 

differentially expressed miRNAs (Figure 3) that were uploaded into IP A. Analysis 

considered all genes from the dataset that met the 2-fold (p-value < 0.05) change cut

off and that were associated with biological functions in the Ingenuity Pathways 

Knowledge Base. For all IPA analyses, Fisher's exact test was used to determine the 

probability that each biological function assigned to the genes within the data set was 

due to chance alone. 
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3. RESULTS AND DISCUSSION 

Identification of miRNAs differentially expressed in MCF-7 and LY2 cells. 

To identify miRNAs that might be involved in T AM- resistance, we compared 

the miRNA transcription profiles between MCF-7 TAM-sensitive and LY2 TAM

resistant cells in response to 4-0HT using ethanol as the vehicle control. The cells 

were treated for 6 h, a time point selected as that at which maximal primary ERa-gene 

target transcription occurs [281]. Since serum levels of 4-0HT in breast cancer 

patients on oral TAM-citrate are 8-18 nM and breast tumors concentrate 4-0HT to 74 

nM - 1.5 IlM [282], the 100 nM 4-0HT concentration used in our experiments is at 

the lower range of that found in women on TAM therapy. In addition, MCF-7 cells 

were treated with 10 nM E2, as per previous investigations of miRNA transcriptional 

responses [260,261,268,269,283]. Four separate experiments were performed for 

each treatment group and cell line. 

A total of 97 miRNAs exhibited differential expression between TAM

sensitive MCF-7 and TAM-resistant LY2 cells with either EtOH or 4-0HT treatment 

(Figure 1, Tables 1 and 2). Forty-seven miRNAs were exclusively differentially 

expressed between the two cell lines in the presence of EtOH and 21 miRNAs were 

exclusively differentially expressed between the two cell lines in the presence of 4-

OHT. Twenty-nine miRNAs were commonly differentially expressed between the 

two cell lines both with treatment by EtOH or 4-0HT. A Venn diagram is provided 

to schematically represent these results (Figure 2, left hand side). We represent the 

same data by separating up-regulated and down-regulated miRNAs on the right hand 

side of Figure 2. For example, 53 miRNAs demonstrated enhanced and 23 miRNAs 

demonstrated reduced expression in MCF-7 cells when compared to L Y2 cells treated 

with the vehicle control EtOH (Table 1). Twenty-nine miRNAs demonstrated 
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increased and 21 miRNAs demonstrated decreased expression in MCF-7 cells when 

compared to L Y2 cells treated with 4-0HT (Table 2). Differentially expressed 

miRNAs for EtOH-treated MCF-7 versus LY2 are shown in Table 1, 4-0HT-treated 

MCF-7 versus LY2 are shown in Table 2, and E2 versus 4-0HT-treated MCF-7 are 

shown in Table 3. Of the total 225 miRNAs analyzed, 128 miRNAs were not 

differentially expressed between MCF-7 and L Y2 in cells treated with EtOH or 4-

OHT (data not shown). One miRNA, miR-423-5p demonstrated higher and miR-

181a, demonstrated lower expression in MCF-7 cells treated with E2 compared to 

MCF-7 cells treated with 4-0HT (Table 3). 

From that list of 76 miRNAs showing opposite direction of expression in 

MCF-7 versus L Y2 cells (Figure 2, Tables 1 and 2), 12 miRNAs were selected for 

further study (Figure 3A and B). The microarray expression data show that miR-lOa, 

miR-22, miR-29a, miR-125b, miR-181a, and miR-222 were lower in EtOH-treated 

MCF-7 than in LY2 cells. In contrast, miR-21, miR-93, and miR-200a, b, and c were 

lower in EtOH-treated LY2 than MCF-7. Of these miRNAs, only miR-21 and miR-

18la were E2 regulated, i.e., inhibited by E2, in MCF-7 cells. Of these miRNAs 

exhibiting opposite expression in MCF-7 and L Y2 cells, miR-lOa, miR-2l, miR-22, 

miR-125b, miR-18Ia, miR-200a and miR-222 were selected for Q-PCR validation. 

In addition, we included miR-221 for analysis because of its reported role in 

TAM/endocrine resistance [270], although its expression was not significantly 

different between MCF-7 and L Y2 cells in the microarray. A literature review of the 

relationship between these miRNAs and breast cancer is summarized in Appendix 1. 
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Figure 1: Heat map (hierarchical clusters) of significant differences in miRNA 
expression between MCF -7 and L Y2 cells. 
MCF-7 and L Y2 cells were treated with EtOH, or 100 nM 4-0HT for 6 h and miRNA 
expression determined by microarray analyses of 4 separate experiments. The 
heatmap shows 97 miRNAs significantly differentially expressed (adjusted p-value < 
0.10) for at least one of the two comparisons between cell lines (MCF-7IEtOH versus 
LY2IEtOH and MCF-7/4-0HT vs. LY2/4-0HT, see Tables 1 and 2, respectively). 
Each row of the heat map represents a gene, and each column represents a cell 
line/treatment group (as labeled at the bottom. Yellow indicates an increase in 
miRNA gene expression (relative to the other expression measurements in the same 
row) and orange/red indicates a decrease in expression. 
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Table 1: MicroRNAs Differentially Expressed in MCF-7IEtOH VS. LY2IEtOH in 
human breast cancer cells. 
Gene expression from TAM-sensitive (MCF-7) and TAM-resistant (LY2) human 
breast cancer cells treated with EtOH were filtered and the average fold change for 
each gene was calculated for MCF-7 VS. L Y2. Only those genes that demonstrated a 
statistically significant (adjusted p < 0.10) increase or decrease in expression for the 
MCF-7IEtOH VS. LY2IEtOH expression comparison are included in this table. Note 
that MCF-7IEtOH VS. LY2IEtOH means that expression for LY2 cells was utilized as 
reference group. Therefore, ratios above 1.0 indicate higher expression in MCF-7 
than L Y2 whereas ratios below 1.0 indicate lower expression in MCF-7 vs. L Y2 cells 
1 empirical Bayes' t-statistic from the hierarchical linear model fitted by limma, see 
Materials and Methods for description 
2 p_ Value corrected for the false-discovery rate (FOR) 
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Table 2: MicroRNAs Differentially Expressed in MCF-7/4-0HT VS. LY2/4-0HT in 
human breast cancer cells 
Gene expression values from TAM-sensitive (MCF-7) and TAM-resistant (LY2) 
human breast cancer cells treated with 100 nM 4-0HT for 6 h were filtered and the 
average fold change for each gene was calculated for MCF-7 vs. L Y2. Only those 
genes that demonstrated a statistically significant (adjusted p < 0.10) increase or 
decrease in expression for the MCF-7/4-0HT VS. L Y2/4-0HT expression comparison, 
were included in this table. Note that MCF-7/4-0HT VS. LY2/4-0HT means that 
expression for L Y2 cells was utilized as reference group. Therefore, ratios above 1.0 
indicate higher expression in MCF-7 relative to L Y2 and conversely, ratios below 1.0 
indicate lower expression in MCF-7 compared to L Y2 cells. 
I empirical Bayes t-statistic from the hierarchical linear model fitted by limma, see 
Materials and Methods for description 
2 p_ Value corrected for the false-discovery rate (FOR) 
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Table 3: MicroRNAs Differentially Expressed in MCF-71E2 VS. MCF-7/4-0HT in 
human breast cancer cells. 
Gene expression from TAM-sensitive (MCF-7) and TAM-resistant (LY2) human 
breast cancer cells were filtered and the average fold change for each gene was 
calculated for MCF-7 treated with E2 vs. MCF-7 treated with 4-0HT. Only those 
genes that demonstrated a statistically significant (adjusted p < 0.10) increase or 
decrease in expression for the MCF-71E2 vs. MCF-7/4-0HT expression comparison 
were included in this table. Note that MCF-71E2 vs. MCF-7/4-0HT means that 
expression for MCF-7 cells treated with 4-0HT was utilized as reference group. 
Therefore, ratios above 1.0 indicate an increase E2 relative to 4-0HT-treated MCF-7 
cells and ratios below 1.0 indicate a decrease in expression in 4-0HT-treated cells 
relative to E2-treated MCF-7 cells. 
1 empirical Bayes t-statistic from the hierarchical linear model fitted by limma, see 
Materials and Methods for description 
2 p-Value corrected for the false-discovery rate (FDR) 

MCF-lif, H'f5J1.l MCF-]l4·01ff fold dlanJ!' I-St.U p-Val.., Mjusted p-val""" 

G<nrIOs miRNA&<,M hmily 

17%S hu-miR-I:lJ.Sp 1.6.l 429 Qcw ru.'S2 
1I0H Mia-mill-ISla" OJ] -4.H (lCW M41l 
42865 hu-miR-181. 0.21 154 O(XlI 011.)4 
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Figure 2: Venn diagrams summarizing differentially expressed (DE) miRNAs. 
A) Venn diagram of miRNAs differentially expressed between TAM-sensitive (MCF-
7) and TAM-resistant (LY2) human breast cancer cells by the indicated treatments 
(EtOH and 4-0HT). Cells were treated as described in Figure 1. B) Venn diagram 
showing miRNAs either UP- (increased expression) or DOWN- (reduced expression) 
regulated between TAM-sensitive (MCF-7) and TAM-resistant (LY2) human breast 
cancer cells by treatment. 
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Figure 3: Select miRNAs that are differentially expressed in MCF-7 (TAM-S) 
and LY2 (TAM-R) breast cancer cells. 
These 12 miRNAs were identified as differentially expressed in microarray analysis 
of miRNAs in EtOH, E2 or 4-0HT treated cells. Values are log2(Hy3/Hy5) ratios in 
the sample versus the common reference pool. Each value is the avg. ± SEM of 4 
separate experiments. 

3 

2 

-3 

-5 

-6 

mlR- miR- miR- miR- mlR- miR-
lOa 21 22 29a 93 181a 

45 

miR-
125b 

o MCF-7 EtOH 
_ MCF-7 E2 
_ MCF-40HT 
DLY2 EtOH 
IZI L Y2 4-0HT 

mlR- mlR-
205 222 



Selection of endogenous control genes for Q-PCR normalization and validation 

of select miRNAs by Q-PCR 

Prior to performing Q-PCR to confirm the miRNA microarray data it was 

necessary to identify endogenous control genes (ECG) for normalization of miRNA 

transcript expression. First, we compared the expression of U6 (RNU6-1) and U48 

(RNU48) RNA genes, traditionally used as controls for miRNA expression [284-286], 

in MCF-7 and LY2 cells after 6 h of 4-0HT or EtOH treatment (Figure 4A and 4B). 

U6 expression was increased by 4-0HT in MCF-7 and reduced by 4-0HT in L Y2 

cells. U48 expression was comparable between the two cell lines and unaffected by 

4-0HT. 

Eight additional candidate ECG were identified as showing low variation in 

expression in the miRNA microarray: high signal: miR-16, Let-7f, and 5SrRNA; 

medium signal: SNORD38D (U38B), Let-7d, and miR-340; low signal: miR-765, 

miR-744, miR-887, miR-92b. Eight of these ECG were screened for their expression 

in MCF-7 and L Y2 cells after 6 h or vehicle (EtOH) or 100 nM 4-0HT treatment 

(Figure 4A and 4B). Two general conclusions can be made from these data: 1) ECG 

expression differs between the two cell lines; 2) 4-0HT affects ECG expression more 

in MCF-7 than L Y2 cells. Expression of Let-7f was reduced by 4-0HT in both cell 

lines. miR-744 was reduced by 4-0HT whereas Let-7d and miR-340 were increased 

by 4-0HT in MCF-7 cells. Overall, the best ECG in MCF-7 and L Y2 cells are U48, 

5S rRNA, U38B, and miR-765 for high, medium, and low expression miRNAs, 

respectively. Because of the low expression of miR-765, we selected 5S rRNA, U48, 

and U38B to normalize miRNA expression in the rest of the studies in this chapter. 
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Figure 4: Selection of endogenous control genes for analysis of miRNA 
expression by Q-PCR 
The expression of RNU6-1 (U6) and RNU48 (U48) RNA genes, traditionally used as 
controls for miRNA expression and eight candidate endogenous control genes (ECG) 
identified by miRNA microarray: high signal: miR-16, Let-7f, and 5SrRNA; medium 
signal: SNORD38D (U38B), Let-7d, and miR-340; low signal: miR-765 and miR-744 
were examined in MCF-7 (A) and LY2 (B) cells treated for 6 h with EtOH (vehicle 
control) or 100 nM 4-0HT. (C) The expression of the Let-7 family members was 
determined by Exiqon Microarray analysis of miRNAs in EtOH, E2 or 4-0HT treated 
cells, as indicated. Values are log2 (Hy3/Hy5) ratios in the sample versus the 
common reference pool. Each value is the avg. ± SEM of 4 separate experiments. D) 
The relative expression of MYC in MCF-7 and LY2 cells treated with EtOH, 10 nM 
E2, or 100 nM 4-0HT for 6 h was determined by Q-PCR and CT values are the mean 
of 3 separate determinations ± SEM. E) Relative MYC expression in MCF-7 was 
normalized to 18S. * P < 0.05 versus EtOH control. F) The relative expression of 
ESRI (ERa) in MCF-7 cells treated as in panel D. CT values are shown as avg. ± 
SEM of 3 replicates in one experiment. The inset shows a western blot of ERa 
protein. The blot was stripped and reprobed for ~-actin. The ratio of ERa/~-actin in 
MCF-7 was set to I and the relative expression of ERa in MCF-7 was 0.4 = 60% 
lower ERa in L Y2 compared to MCF-7 cells. 
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Although Let-7a was reported to be an ECG for miRNA [285], Let-7a expression was 

increased by E2 and reduced by 4-0HT in MCF-7 cells (Figure 4C). Let-7 family 

members are highly conserved in sequence and function across species [287]. 

Misregulation of Let-7 leads to a less differentiated cellular state and the development 

of cancer; hence, Let-7 family members are considered as tumor-suppressor miRNAs 

[288,289]. We observed that 4-0HT repressed the expression of all eight Let-7 

family members in MCF-7 cells and none of the Let-7 family members in LY2, 

commensurate with a less differentiated cellular state. Let-7b, Let-7c, Let-7g, and 

Let-7i showed opposite expression between MCF-7 and L Y2 cells. Since Let-7a 

[290] and Let-7g [291] downregulate Myc and high Myc expression results in a 

negative feedback loop inhibiting Let-7a expression [287], we examined Myc mRNA 

in MCF-7 and L Y2 cells (Figure 4D). Based on the higher Let-7 expression in LY2, 

we expected lower Myc in L Y2 and our data confirmed significantly lower Myc 

expression in L Y2 compared with MCF-7 cells (Figure 4D). In agreement with an 

earlier report [292], E2 increased and 4-0HT inhibited Myc transcription in MCF-7 

cells (Figure 4E). Since transient overexpression of Let-7a, Let-7b, and Let-7i was 

reported to inhibit ERa expression in MCF-7 cells [293], we examined ESRI mRNA 

and protein levels in MCF-7 and L Y2 cells. As expected, ESRI mRNA and ERa 

protein were lower in endocrine-resistant L Y2 compared to endocrine-sensitive MCF-

7 cells (Figure 4F). The reduced expression of ERa in L Y2 also reflects higher 

expression of miR-221 and miR-222 that have been reported to suppress ERa 

expression [234,294,295]. 
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Figure 5: Q-PCR analysis of the miRNA expression in MCF -7 and L Y2 cells. 
A) Cells were treated with EtOH, 10 nM E2, or 100 nM 4-0HT for 6 h. Where 
indicated MCF-7 (B) and LY2 (C) cells were pretreated with 100 nM ICI 182,780 for 
6 h. Values are the average of 3-8 separate experiments were normalized by U38 or 
5S rRNA and are expressed as fold relative to EtOH-treated MCF-7 expression for 
each miRNA. In A: * Significantly different from EtOH in MCF-7. In Band C: * 
Significantly different from E2 or 4-0HT in the absence of ICI. 
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To validate the changes in miRNA expression detected in the miRNA 

microarrays, Q-PCR was performed on 7 of the 12 miRNAs in Figure 3: miR-lOa, 

miR-21, miR-22, miR-125b. miR-181a, miR-200a and miR-222 in MCF-7 and LY2 

cells treated with EtOH or 100 nM 4-0HT for 6 h, and MCF-7 cells treated with 10 

nM E2 for 6 h (Figure 5A). In addition, miR-221 was analyzed because it, along with 

miR-222, has been reported to be overexpressed and involved in endocrine-resistance 

in breast cancer cells [270,283,296]. 

For comparison between the two cells lines, miRNA expression was 

normalized to the value in EtOH treated MCF-7 cells. There was general agreement 

in the direction (up- or down- regulation) of miRNA expression in MCF-7 and L Y2 

cells between the Q-PCR and microarray data. The exception is that 4-0HT increased 

miR-200a in MCF-7 cells in Q-PCR. In agreement with other recent results 

examining E2-regulation of miRNA expression in MCF-7 cells [260,261,268,269], the 

miRNA expression changes in response to E2 or 4-0HT were less than five-fold. E2 

decreased miR-21 expression in MCF-7 cells, as observed in our earlier experiments 

[268] and as reported by others [261]. 4-0HT increased miR-21 expression in MCF-7 

cells. LY2 cells had lower expression of miR-21 and miR-200a, in agreement with 

the data in the microarray (Figure 3). A recent analysis of miRNA expression in 

breast tumors by deep sequencing showed upregulation of miR-21 in ER+ breast 

tumors relative to normal breast tissue and triple negative breast tumors [297]. 

To determine if the effects of E2 and 4-0HT on miRNA expression were ER

mediated, MCF-7 cells were pretreated with 100 nM ICI 182,780 (ICI, Fulvestrant) 

for 6 h, a time that reduces ERa protein and activity [298]. For each of the eight 

miRNAs, ICI increased expression relative to EtOH in MCF-7 cells (Figure 5B). 

These data suggest that unliganded ER may suppress transcription of these miRNAs 
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or that some component regulating miRNA expression or processing is inhibited by 

unliganded ER. Alternatively, since ICI is an agonist for GPERlGPR30 [13,299], it is 

possible that ICI activates intracellular signaling pathways, e.g., MAPK, that increase 

miRNA expression. For example, MAPK increases miRNA expression by 

phosphorylating TRBP, a component of the Dicer complex that processes pre-miRNA 

into mature miRNA [300]. Testing GPERlGPR30 is beyond the scope of the current 

study. ICI ablated the inhibition of miR-21 by E2 in MCF-7 cells. These data indicate 

that E2-occupied ER suppresses the transcription of miR-21. The combination of ICI 

and 4-0HT did not further increase miRNA expression in MCF-7 cells with the 

exception of miR-lOa, a result seen in both MCF-7 and L Y2. While the mechanism 

involved for the increase in miR-lOa appears to be, at least in part, ER-mediated, 

future studies are needed to address this mechanism in greater detail. There is only 

one report about miR-lOa regulation [301]. That report found that miR-lOa 

expression increased as mouse embryonic stem cells differentiated into smooth 

muscle cells [301]. Others reported that miR-lOa associates with the 5' UTR of 

mRNAs encoding ribosomal proteins, enhances their translation, increases global 

protein synthesis, and thus contribute to oncogenesis [302]. For miR-21, miR-125b, 

and miR-181a, 4-0HT inhibited the stimulation over basal expression detected with 

ICI treatment in MCF-7 cells. 

For L Y2 cells, ICI had no significant effect on basal miRNA expression 

(Figure 5C). These data indicate that, unlike MCF-7 cells, the regulation of miRNA 

expression in L Y2 cells is independent of ER. These data are in agreement with the 

estrogen-independent, endocrine-resistant phenotype of LY2 cells [273,303]. As 

discussed above, ICI and 4-0HT synergistically increased miR-I0a transcription. ICI 

reduced 4-0HT-stimulated miR-125b and miR-222 expression (Figure 5C), a result 

53 



implicating ER involvement in 4-0HT-regulating the expression of these miRNAs, a 

result commensurate with higher miR-125b in ERalPR-positive than ERaJPR

negative breast tumors [304]. The apparent synergy of ICI and 4-0HT in upregulating 

miR-IOa transcription may be mediated by GPR30/GPER, for which both ICI and 4-

OHT are agonists [12]. However, others have reported that an ERa, variant called 

ERa,36, and not GPR30, mediates non-genomic ER signaling, including ICI agonist 

activity [305]. ERa,36 arises from a promoter in the first exon of ERa" but lacks both 

the N- and C terminal transcription activation domains, AF-I and AF-2, respectively, 

of full-length wild type ERa,66 [306,307]. Further studies would be required to 

examine ERa,36 expression in L Y2 cells. However, ERa,36 was not detected using an 

antibody that recognizes epi tope s conserved in ERa,66 and ERa,36 [307,308] 

(Appendix 4). 

Time course ofmiRNA expression in MCF-7 cells 

Time-dependent changes in the expression of 8 miRNAs were detected after I, 

4, 6, and 8 h treatment with EtOH, E2, or 4-0HT (Figure 6). E2 repressed the 

expression of miR-22, miR-125b, miR-181a, miR-200a (except at the 6 h time point), 

and miR-221 (except at the 6 h time point) relative to EtOH. 4-0HT increased 

expression of miR-2Ia, miR-22, miR-181a, and miR-200a relative to EtOH at the 6 h 

time point. 4-0HT inhibited miR-221 expression, although the difference was not 

statistically significant at the 6 h time point. To our knowledge, there are only two 

reports examining the effect of E2 on miRNA at various times (0, 1, 3,4, 6, and 12 h) 

of treatment in MCF-7 cells [260,269]. The time-course of miR-21 expression does 

not agree with a previous report showing E2 increased miR-21 over time [260]. This 

difference is likely the result of differences in the MCF-7 cells used since Bhat-
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N akshatri et al. used MCF-7 cells stably transformed with a bicistronic vector control 

[260] whereas we used MCF-7 cells at passages less than 9 from A TCC. 
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Figure 6: Time course analysis of miRNA expression. MCF-7 cells serum starved 
for 72 h and were treated for 1,4, 6 and 8 h with EtOH, 10 nM E2, or 100 nM 4-0HT. 
Values are the avg. ± SEM of 3-6 separate experiments in which each point was run 
in triplicate. Values were normalized by 5S rRNA and are expressed as fold relative 
to basal (time 0). 
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Time course of E2 and 4-0HT regulation of ERa, ER~, and Argonaute-2 (Ago2) 

To determine if changes in miRNA expression with time reflect changes in 

ERa, ER~, or Ago 2 expression, MCF-7 cells were treated with EtOH, E2, or 4-0HT 

for I, 4, 6, or 8 h prior to western blot for ERa, ER~, and Ag02 protein expression 

(Figure 7 A). These data show that ERa was increased after 4 h of treatment with 

EtOH and remained increased through the 8 h time course in MCF-7 cells. Consistent 

with previous investigations [309], E2 reduced ERa and 4-0HT stablized ERa in 

MCF-7 cells. ER~ was increased with EtOH, E2, and 4-0HT treatment for 1 h, but at 

4 h, E2 and 4-0HT reudced ER~. At 6 h, only 4-0HT reduced ER~. At 8 h, ER~ was 

increased and this increase was inhibited by E2 and 4-0HT. Ag02 was unaffected by 

EtOH until 8 h when there was an increase in Ag02. Ag02 was decreased by E2 and 

4-0HT with time and the increase in Ag02 with EtOH at 8 h was further increased by 

4-0HT. This is the first examination of the effect of E2 or 4-0HT on Ag02 

expression. The changes in miR-21 expression with time and treatment correspond to 

the expression of ERa protein and at some time points/treatments appear to inversely 

correspond to ER~ protein expression (Figure 7B). These data suggest that E2-ERa 

regulates miR-21 expression. 
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Figure 7: Time-dependent changes in ERa, ER~, and Ago2 expression in E2- or 
4-0HT- treated MCF-7 cells. MCF-7 cells were serum-starved for 48 h and either 
untreated (No Tx) or treated for 1,4, or 6 h with EtOH, 10 nM E2, or 100 nM 4-0HT. 
A) WCE (30 J..lg protein) were separated on SDS-PAGE gels and western blotted with 
two different ERa antibodies (D-12 and AER320), ER~ antibody H150, or an 
antibody for Ag02. The blot was stripped and re-probed for a-tubulin as a loading 
control. The values below each blot are the ratio of the indicated protein/a-tubulin 
normalized to the No Tx control. The last lane shows MCF-7 cells that were not 
serum-starved or treated. B) The relative expression of miR-21 in MCF-7 cells 
treated as indicated are plotted with ERa (AER320) and ER~ protein expression. The 
miR-21 data are the same as in Figure 6. 
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Computational identification of miRNA target mRNA genes in 4-0HT-treated 

MCF-7 cells 

mRNA targets of the 12 miRNAs that were differentially expressed between 

MCF-7 and L Y2 cells (Figure 2) were identified in silica using target identification 

software:, Target Scan 5.1 (http://www.targetscan.org/), Pic Tar (http://pictar.mdc

berlin.de/), miRanda (http://www.microma.org/microma/getGeneForm.do). and miR 

Base Release 15 (http://www.mirbase.org/).This data was integrated with mRNA 

targets regulated by 4-0HT after 4, 8, 24 and 48 h treatment of MCF-7 cells [276]. 

The gene symbols were transcribed from [276] and were searched against the 

miRanda predicted Human Target Site Predictions data contained in the file named 

human_predictions3ug2008. txt, downloaded from 

http://www.microma.org/microma/home.do. It was necessary to update several of the 

HUGO gene symbols presented in [276] in order to be consistent with the current 

HUGO identifiers for these transcripts in the human predictions dataset. Examples 

include updating Clorf24 to FAM129A, and RENTl to UPFI. All genes listed in 

[276] were found the predicted target of at least one miRNA in the 

human_predictions3ug2008.txt dataset with the exception of SNCG, SLC16A5, 

RAP 1 40, LOC44 1 453, ELF3, LSS, CLIC3, EHD4,SERPINA1, EGFL5, SRD5Al, 

and KRTl3. This analysis identified 36 genes that were regulated by 4-0HT in MCF-

7 cells and which are putative targets of the 12 miRNAs identified in miRNA 

microarray analyses (Figure 8, Appendix 2). Appendix 2 also lists the putative 

miRNA target mRNA genes, their mRNA expression in 4-0HT treated cells at 8 and 

48 h from [310], and whether these data agree with the data on miRNA expression in 

response to 4-0HT (Figure 5). In general, the predicated gene targets agree with the 

direction of miRNA expression in 4-0HT treated MCF-7 cells. 
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In order to identify gene networks involving 12 miRNAs that were differentially 

expressed in L Y2 and MCF-7 cells (Figure 3), Ingenuity Pathway Analysis (IPA) was 

performed. Networks created by IPA are groups of proteins that interact directly or 

indirectly with genes or proteins in a dataset. As expected, IPA identified cancer as 

the top category followed by reproductive system disease and cellular development as 

significantly associated with the miRNAs in the data set (Appendix 6). Core analysis 

using IPA generated 2 networks containing the 12 differentially expressed miRNAs 

and key proteins involved in breast cancer (Appendix 7). Network 1 and 2 shows 35 

and 9 molecules respectively (Appendix 7). The identity and cellular location of these 

molecules are provided in Appendix 3. Functional analysis with IPA tools identified 

14 molecules in network 1 and 5 in network 2 as having roles in breast cancer 

(indicated by red lines in Appendix 7). Network 1 identified Myc as a central node, 

although none of the miRNAs directly connect to Myc. miR-IOa mapped to a number 

of gene targets in Network 1 while miR-200b mapped to only one target, VIM. 

However, recent studies show that downregulation of the miR-200bc/429 cluster is 

associated with breast tumor progression through upregulation of phospholipase C 

gamma 1 (PLCG I) which, in tum, regulates cell mobility, proliferation, and viability 

[311]. APC, MYC, CYRB, CASP3, CSF1, UNCX, NPTX1, miR-lOa, miR-22, miR-

29a, miR-93, miR-200a, miR-205 and miR-222 are the genes associated with breast 

cancer in this network. Network 2 centers on estrogen receptor in breast cancer and 

supports our observation that the expression of miR-21 in MCF-7 cells is regulated by 

ER (Figure 4B). 
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Figure 8: Computational identification of mRNA gene targets of 12 miRNAs 
oppositely expressed in MCF -7 and L Y2 cells. Target prediction software was used 
to identify mRNA targets of the miRNAs. Predicted genes were overlapped with 
microarray data of 4-0HT regulated genes by [310]. This identified 36 gene targets 
as indicated . 
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PDCD4, BCL2, CYPIBl, and ERBB3 are differentially expressed in MCF-7 and 

LY2 cells 

Among the 36 putative gene targets in Appendix 2, we focused first on the 

PDCD4 tumor suppressor because we had previously identified PDCD4 tumor 

suppressor as a bone fide mRNA target downregulated by miR-2l in MCF-7 cells 

[268]. Since miR-2l expression was significantly lower in L Y2 than MCF-7 cells, we 

anticipated that PDCD4 mRNA and protein expression would be higher in LY2 than 

in MCF-7 cells. However, PDCD4 mRNA was undetectable in EtOH-treated L Y2 

cells. With 4-0HT treatment, PDCD4 mRNA was detected at low levels in L Y2 cells 

(Figure 9A). Neither E2 nor 4-0HT affected GADPH expression and GADPH CT 

values were similar in MCF-7 and L Y2 cells, indicating that the quality of the RNA 

was not an issue in the lack of PDCD4 expression in control (EtOH)-treated L Y2 cells 

(Appendix 5). 4-0HT reduced PDCD4 mRNA in MCF-7 cells (Figure 8A and 8B), 

consistent with the increase in miR-2l induced by 4-0HT. As reported previously, E2 

increased PDCD4 mRNA (Figure 9A and 9B). We did not detect Pdcd4 protein 

expression in L Y2, although Pdcd4 was expressed in MCF-7 (Figure 8C). 

The anti-apoptotic, pro-survival BCL2 is also a target of miR-21 [268]. Again, 

since miR-2l expression was lower in L Y2, we expected higher BCL2 expression in 

L Y2 than MCF-7 cells. However, BCL2 mRNA could not be detected in L Y2 cells, 

whether EtOH or 4-0HT treated (data not shown). As expected based on our 

previous data and the work of others [268,312], E2 increased BCL2 mRNA in MCF-7 

cells. 4-0HT had no significant effect on BCL2 mRNA expression in MCF-7 cells. 

We did not detect Bcl-2 protein expression in LY2, although Bcl-2 was expressed in 

MCF-7 cells (Figure 9C). Others reported that 1 /lM 4-0HT suppressed Bcl-2 

expression in MCF-7 cells after 7 d of treatment [313]. 
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CfP 1 B 1 is a cytochrome P450 enzyme implicated in the metabolism of 

exogenous and endogenous substrates, including E2, and CfP 1 BI polymorphisms are 

associated with breast cancer risk [314]. CfPIBI was stimulated by 8 h treatment 

with 1 J.lM 4-0HT in MCF-7 cells [310] and is a putative target of regulation by miR-

200 family members that are reduced in L Y2 compared to MCF-7 cells. Because 4-

OHT increased miR-200a expression, we examined CfPIBI expression after 6 h 

treatment with 4-0HT or EtOH in MCF-7 and LY2 cells. CfPIBI mRNA expression 

was very low (CT - 39) in L Y2 cells and 4-0HT did not affect CfP 1 B 1 expression 

(Figure lOA). These results are in contrast to a previous report showing 2-6-fold 

higher CfPIBI in TAM- and fulvestrant- resistant cell lines derived from of MCF-7 

cells [315]. The reason for this difference in CfP 1 BI expression may be cell line- or 

cell culture- condition mediated. As another possible difference, we noticed that the 

endocrine resistant cell lines used in the previous report were supplemented with 

insulin [315], whereas we do not supplement our cell culture media with insulin. 

Although studies in diabetic rats indicate that insulin represses hepatic CfP 1 BI [316], 

the regulation of CfPIBI by insulin in breast cancer cells has not, to our knowledge, 

been examined. CfPIBI mRNA expression was higher in MCF-7 than LY2 cells, 

but was not significantly regulated by E2 or 4-0HT with 6 h treatment in MCF-7 cells. 

These data reflect previous findings regarding detection of CfP 1 BI expression in 

MCF-7 cells [317]. We did not detect an increase in CfPIBI with 6 h of treatment, 

as reported for 12 h of E2 treatment in MCF- 7 cells [318]. The reduction of miR-

200b and miR-200c detected with 4-0HT treatment in MCF-7 cells in micro array 

(Figure 3) would be expected to increase targets of these miRNAs, including 

CfPIBI. Indeed, CfPIBI mRNA was increased in the micro array study with 8 h of 
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1 11M 4-0HT treatment (Appendix 2) [310]; but after 6 h of treatment, no reduction in 

CYP1Bl was detected. 

ERBB3 is an oncogene that is a member of the epidermal growth factor 

receptor (EGFR) family of transmembrane tyrosine kinases that is bound by heregulin 

and is involved in the pathogenesis and progression of breast cancer [319]. ERBB3 is 

frequently over-expressed in breast cancer and increased in TAM resistance 

[319,320]. ERBB3 is a putative target of miR-22, miR-125b, miR-221, miR-222, 

miR-93 according to our bioinformatic analyses and is a bone fide target of miR-125b 

[201]. Increased expression of these miRNAs in LY2 cells would be expected to 

reduce the expression of ERBB3 in L Y2 cells. In agreement with this idea, we did not 

detect ERBB3 mRNA in L Y2 cells, even when treated with 4-0HT (Figure 10B and 

data not shown). We did not detect regulation of ERBB3 mRNA by E2 or 4-0HT 

with 6 h treatment in MCF-7 cells. Others reported that ERBB3 mRNA was inhibited 

by 48 h treatment of MCF-7 cells with 1 nM E2 and this inhibition blocked by 1 11M 

TAM in MCF-7 cells [321]. The difference in time of treatment is likely responsible 

for differences in ERBB3 regulation. 
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Figure 9: miR-21 target genes expression in MCF-7 and LY2 cells. MCF-7 and 
L Y2 cells were serum-starved for 48 h and then treated with EtOH, 10 oM E2, or 100 
oM 4-0HT for 6 h prior to RNA isolation (A) or 24 h prior to WCE preparation (B) as 
described in Materials and Methods. (A) Q-PCR was performed for the indicated 
genes and fold-expression determined compared to EtOH as described in Materials 
and Methods. Values are the average of 3 separate determinations ± SEM. (B) 
Western blot for the indicated proteins. The membrane was stripped and repro bed for 
a-tubulin for normalization as described in Materials and Methods. The blot shown is 
representative of three separate biological replicates. 
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ESRt and ERa protein expression is lower in L Y2 than MCF -7 cells 

MiR-221 and miR-222 expression was higher in LY2 compared to MCF-7 

cells. miR-221 and miR-222 are overexpressed in ERa-negative and TAM-resistant 

breast cancer cell lines [270,295]. Knockdown of miR-221 and miR-222 in MDA

MB-468 breast cancer cells partially restored ERa expression and TAM-sensitivity 

[295]. ESRl mRNA expression is lower in LY2 than MCF-7 cells (Figure 1OC). 

Western confirmed lower ERa protein expression in LY2 cells when compared to 

MCF-7 cells (Figure 4F). These data agree with reports that miR-2211222 is 

overexpressed in TAM-resistant breast cancer cell lines and suppresses ERa 

expression. 

miR-200-regulated ZEDt is reduced in L Y2 cells 

miR-200 family members suppress expression of the transcription factor 

ZEB 1 that initiates epithelial to mesenchymal transition (EMT) by repressing 

transcription of E-cadherin and other genes regulating cell polarity [203,205,322-

326]. Because all three miR-200 family members were expressed at significantly 

lower levels in L Y2 than MCF-7 cells, we examined ZEB 1 as a miR-200 target in 

MCF-7, LCCl, LCC2, LCC9, LY2, and MDA-MB-231 breast cancer cells by western 

blot (Figure llA). LCCI are estrogen-independent derivatives of MCF-7 cells and 

LCC2 and LCC9 are also endocrine-resistant derivatives of MCF-7 cells [278]. 

MDA-MB-231 serve as a positive control since ZEB 1 expression is higher in MDA

MB-231, but not in MCF-7 [327]. As expected, ZEBI was not expressed in MCF-7, 

but was expressed in MDA-MB-231 (Figure 11A). LY2 cells express ZEBl, 

indicating that this cell line has undergone EMT. However, LCCl, LCC2, and LCC9 

cells do not express ZEB 1, indicating that these estrogen-independent (LCCl) and 

tamoxifenlendocrine-resistant (LCC2 and LCC9) cell lines have not undergone EMT. 
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Because E-cadherin is inversely correlated with ZEB 1 expression and inversely 

correlated with miR-200c [324], we examined E-cadherin in MCF-7, LY2, and 

MDA-MB-231 cells (Figure lIB). E-cadherin was not expressed in LY2 or MDA

MB-231 cells, indicating that LY2 cells have undergone EMT. This is, to our 

knowledge, the first demonstration of EMT in the L Y2 endocrine-resistant breast 

cancer cell line. 
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Figure 10: CYP1B1, ERBB3, and ESR1 gene expression in MCF-7 and LY2 
cells. MCF-7 and L Y2 cells were serum-starved for 48 h and then treated with EtOH, 
10 nM E2, or 100 nM 4-0HT for 6 h prior to RNA isolation (A) or 24 h prior to WCE 
preparation (B) as described in Materials and Methods. Q-PCR was performed for the 
indicated genes and fold-expression determined compared to EtOH as described in 
Materials and Methods. Values are the average of 3 separate determinations ± SEM. 
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Figure 11: ZEBl and E-cadherin expression. Whole celllysates or nuclear extracts 
were prepared from the indicated breast cancer cell lines. Identical amounts (30 )lg) 
of protein were immunoblotted for ZEB I and E-cadherin as described in Materials 
and Methods. The membranes were stripped and reprobed for ~-actin. These blots 
are representative of three separate experiments. 
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CHAPTER IV: REDUCED EXPRESSION OF MIRNA-200 FAMILY IN LY2 

CELLS CONFERS RESISTANCE TO TAMOXIFEN AND FULVESTRANT 

1. INTRODUCTION 

As previously discussed in earlier chapters, miRNAs regulate gene expression 

at the post-transcriptional level [328]. miRNAs are aberrantly expressed in different 

types of cancer including breast cancer [197]. 

EMT (epithelial-to-mesenchymal transition) is a hallmark of metastatic cancer [329]. 

EMT is induced by several signaling pathways such as TGF-~, Wnt and Notch 

[330,331]. It is characterized by loss of the epithelial marker E-cadherin due to gene 

methylation or repression by upregulation of transcription factors Zinc finger E-box 

binding homeobox domain proteins such as ZEB 1 (also known as TeFl or ~EF1) or 

ZEB2 (also known as SIP1), Snail1l2 and TWIST that repress E-cadherin in epithelial 

cells [332-335]. As a result, cells acquire a mesenchymal phenotype characterized by 

the expression of markers such as vimentin and N-cadherin [336]. Reduced 

expression of miRNA-200 and miR-205; and increased expression miR-2211222 are 

implicated in EMT and metastasis [337]. Aberrant expression of these miRNAs has 

been reported to increase metastatic breast cancer [338,339]. The link between the 

development of endocrine resistance and EMT in breast cancer is still not clearly 

understood. Studies have shown that endocrine resistance confers metastatic 

properties to cells. For example, some endocrine-resistant cells and tumors show 

activation of the ~-catenin pathway and induction of Snail and TWIST that contribute 
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to EMT by repressing E-cadherin transcription [340-342]. A few studies have shown 

that miRNAs have a role in conferring endocrine-resistance which subsequently led to 

induction of EMT and metastasis. For example, re-expression of miR-375 restored 

TAM sensitivity and reverted EMT in breast cancer cells [343]. Prolonged growth of 

MCF-7 breast cancer cells as mammospheres induced EMT and resistance to TAM 

[344]. Notably, these MCF-7 mammospheres exhibited higher expression of miR-

2211222 and reduced expression of miR-200c, miR-203 and miR-205 compared to 

MCF-7 cells [344]. 

The miR-200 family of miRNAs are derived from two chromosomal locations: 

miR-200b, miR-200a, and miR-429 are located on chromosome 1 p36; miR-200c and 

miR-141 are located on 12p13 [203]. The miR-200bc/429 cluster differs from the 

miR-200a/141 cluster by the fourth nucleotide (U to C) in the seed region and this 

means that they regulate different genes in breast cancer [206]. Reduced expression 

of miR-200 family of miRNAs has been observed in breast, ovarian, endometrial, 

lung and gastric cancers compared to normal tissue [322]. Many studies have 

identified an inverse relationship between the expression of miR-200 family and its 

targets ZEB I in cells [205,345-347]. We recently reported increased expression of 

ZEB 1 protein and loss of its target E-cadherin in an endocrine-resistant cell line L Y2 

compared to parental MCF-7 human breast cancer cells[247]. We observed that the 

L Y2 cell line had undetectable levels of miR-200 family members compared to the 

parental MCF-7 cell line, suggesting a role for miR-200 in tamoxifenlendocrine

resistance and loss of ZEB I repression. 

Here I examined the expression of miR-200a, miR-200b, and miR-20Oc and 

their regulation by E2 and 4-0HT, an active TAM metabolite in a panel of ERa 

positive breast cancer cell lines representing progreSSIOn towards 
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endocrine/tamoxifen-resistance. Further, I tested how overexpression of miR-200b 

and miR-200c affected LY2 cell morphology, expression of ZEBI and vimentin, and 

cell proliferation. I also examined how knockdown of miR-200b and miR-200c 

affected the sensitivity of MCF-7 cells to TAM and fulvestrant. Lastly, I examined if 

epigenetic modification of miR-200b and miR-200c could be responsible for the 

lower expression of these miRNAs in L Y2 cells compared to the parental MCF-7 

cells. 

2. MATERIALS AND METHODS 

Cell culture 

MCF-7 human breast cancer cells were purchased from ATCC (Manassas, VA, USA) 

and maintained in IMEM supplemented with lO% fetal bovine and 1 % 

penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA) serum [203]. LCCl, LCC2, 

LCC9, and L Y2 are derivatives of MCF-7 cells that are E2, tamoxifen, and multiple 

SERM-independent, respectively, and were graciously provided by Dr. Robert Clarke, 

Georgetown University. Prior to treatment, the medium was replaced with phenol 

red-free IMEM supplemented with 5% dextran charcoal-stripped FBS and 1 % 

penicillin/streptomycin (stripped medium) or 48 h (referred to as 'serum-starving'). 

Chemicals 

E2 and 4-0HT were purchased from Sigma-Aldrich (St. Louis, MO). ICI 182,780 

was from Tocris (Ellisville, MO). Cells were treated with ethanol (EtOH, the vehicle 

control, 0.01 % final volume) 10 nM E2 or 100 nM 4-0HT for 6 h as indicated. Where 

indicated LY2 cells were treated with 2.5 IlM 5-aza-2'-deoxycytidine (5-aza-dC, 

Sigma-Aldrich, St. Louis, MO) alone or in combination with 100 ng/Ill Trichostatin A 

(TSA, Sigma-Aldrich) for 72 h, with TSA added 16 h prior to RNA extraction. 
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RNA isolation and quantitative Real-Time-PCR (Q-PCR) for miRNA and 

mRNA expression 

miRNA-enriched total RNA was extracted from MCF-7 and LY2 cells treated as 

above using the miRNA isolation kit (Exiqon, Woburn, MA). The quality and 

quantity of the isolated RNA was analyzed using a NanoDrop spectrophotometer. 

cDNA was synthesized using the miRCURY LNATM first strand cDNA synthesis kit 

(Exiqon) and Q-PCR was performed using the miRCURY LNA ™ SYBR Green 

master mix (Exiqon) using the miRNA primer sets for miR-200a, miR-200b or -miR-

200c (Exiqon). SNORD38D, SNORD48 and 5SRNA were used for normalization of 

miRNA expression. Analysis and fold change was determined using the comparative 

threshold cycle (Ct) method. The change in miRNA expression was calculated as 

fold-change, i.e., relative to EtOH-treated (control). 

For mRNA expression, the High Capacity cDNA Reverse Transcription kit (PE 

Applied Biosystems) was used to reverse transcribe total RNA using random 

hexamers. Q-PCR for ZEBI was performed using SYBR green in the ABI PRISM 

7900 SDS 2.1 (PE Applied Biosystems,Carlsbad, CA) using relative quantification. 

The sequence of ZEB 1 primers is described in [205]. Analysis and fold differences 

were determined using the comparative CT method. Fold change was calculated from 

the MCT values with the formula 2-MCT and data are relative to EtOH-treated cells. 

Transient transfection 

MCF-7 or L Y2 cells were transfected with either anti-miRNAs (antimiRs, Ambion, 

Life Technologies, Carslbad, CA) or precursor microRNA (pre-miRs, Ambion) 

respectively for miR-200b or miR-200c using Lipofectamine RNAimax (Invitrogen) 
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reagent. After 1 or 5 d, RNA was isolated (as described above) to confirm knockdown 

or overexpression of miR-200b or miR-200c. 

MTTassay 

MCF-7 or L Y2 cells were grown in 96 well plates. Following transfection with anti

miRs or pre-miRs respectively for 24 h or 5 days, cells were treated with vehicle 

control EtOH, 10 nM E2, 100 nM or I f.lM 4-0HT, 100 nM or I f.lM fulvestrant for 4 

or 6 days. 20 f.ll of Cell Titer reagent (Promega, Madison, WI) was added to the wells 

and absorbance was read at 490 nm using a spectrophotometer (SpectraMax M2, 

Molecular Devices, Sunnyvale, CA). 

Whole cell preparation for western blotting 

Whole cell lysates were prepared and western blots were performed as described in 

[161]. Protein concentrations were determined by BioRad DCC protein assay 

(Hercules, CA). 

Antibodies and reagents 

Antibodies were purchased as follows: E-cadherin (Cell Signaling, Danvers, MA), 

vimentin (Santa Cruz Biotechnology, Santa Cruz, CA), p-actin (Sigma-Aldrich). 

Chemiluminescent bands on the PVDF membranes were visualized on a Kodak 

Carestream Imager using Carestream Molecular Imaging software (New Haven, CT). 

Microscopy images 

76 



LY2 cells were untransfected or transfected with pre-miR-200b or pre-miR-200c or 

negative control for 48 h (described above). Images were captured using a digital 

microscope (EVOS, AMG, Bothell, W A) at a magnification of 20x and 1 00 ~m scale. 

Statistical analysis 

Statistical evaluations were performed using GraphPad PRISM. Student's t-test was 

used to compare control and treatment values. P-values indicate statistical 

significance. 

3. RESULTS 

Expression of miR-200 family in MCF-7, LCCl, LCC2, LCC9 and LY2 human 

breast cancer cells 

Microarray analysis of miRNA expression revealed low miR-200a, miR-200b 

and miR-200c expression in L Y2 endocrine-resistant breast cancer cells compared to 

MCF-7 endocrine-sensitive breast cancer cells [161]. To follow up on this initial 

observation, the expression of miR-200a, miR-200b and miR-200c was measured by 

Q-PCR in a panel of human breast cancer cell lines, i.e., MCF-7 cells and LCCl, 

LCC2 and LCC9 cells that were derived from the parental MCF-7 cell line by 

propagation in mice (LCC I), and then in long-term culture with tamoxifen (LCC2) or 

fulvestrant (LCC9) [348]. L Y2 tamoxifenlfulvestrant-resistant human breast cancer 

cells were independently derived from MCF-7 cells by culture in a precursor to 

raloxifene: LY 117018 [349]. LY2 are cross-resistant to TAM, raloxifene, fulvestrant 

(Faslodex or ICI 182,780), and are ERa positive, although ERa protein expression is 

lower than MCF-7 cells [247]. These cells represent a model of the progression of 

breast cancer cells towards TAM/endocrine-resistance. 
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The effect of E2 and 4-0HT on miR-200 expression was examined by Q-PCR 

III the cell lines described above (Figure 12). 10 nM E2 and 100 nM 4-0HT 

significantly decreased miR-200a and miR-200b expression in MCF-7 cells. 

Similarly, E2 significantly decreased the expression of miR-200a, miR-200b and miR-

200c in estrogen-independent, but tamoxifen-sensitive LCCI cells. However, there 

was no effect of E2 and 4-0HT on the expression of miR-200 family in LCC2 and 

LY2 (Figure 13A-C). In LCC9, E2 and 4-0HT decrease miR-200a and miR-200b 

expression and 4-0HT decreases miR-200c expression. LCCI cells showed highest 

basal miR-200a expression. L Y2 cells had undetectable levels of miR-200 family 

expression (Figure 12A-C). This is the first report of 4-0HT regulation of miR-200 

family expression in LCC 1, LCC2, LCC9 and L Y2 cells. We and others previously 

reported that E2 reduces miR-200 family expression in MCF-7 cells [159,161] 

E2 and 4-0HT regulate ZEBt in MCF-7, LCCt, LCC2, LCC9 and LY2 human 

breast cancer cells 

miR-200 family members repress ZEB 1 [203,322,345]. Next we evaluated 

ZEB 1 mRNA expression in each cell line. Basal expression of ZEB 1 was lower in 

LCCI, LCC2, and LCC9 compared to MCF-7 (Figure 14A). As previously reported, 

ZEB 1 expression was higher in L Y2 compared to MCF-7 [247]. E2 and 4-0HT 

decreased the expression of ZEBI in MCF-7 cells (Figure 14A). There was no 

significant effect of either E2 or 4-0HT on ZEB 1 expression in LCC 1, LCC2, or 

LCC9 cells (Figure 14B). In contrast, in LY2 cells, E2 increased the expression of 

ZEB 1 mRNA. Notably, there is an inverse relationship between the expression of 

miR-200 family and ZEB 1 in LY2 cells (compare Figures. 12 and 14A). 
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Figure 12: Q-PCR analysis of the expression of miR-200 family in MCF-7, 
LCC1, LCC2, LCC9 and L Y2 cells. Cells were treated with vehicle control EtOH, 
or 10 nM ~ or 100 nM 4-0HT for 6 h. Values are the average of 3-4 experiments 
normalized to 5SrRNA or SNORD38D or SNORD48 and are expressed as fold 
relative to EtOH-treated MCF-7 expression. * p<0.05 versus MCF-7 EtOH treated. 
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Figure 13: Q-PCR analysis of the expression of miR-200 family in MCF-7, 
LCCl, LCC2, LCC9 and L Y2 cells. Cells were treated with vehicle control EtOH, 
or 10 nM E2 or 100 nM 4-0HT for 6 h. Values are the average of 3-4 experiments 
normalized to 5SrRNA or SNORD38D or SNORD48 and are expressed as fold 
relative to EtOH-treated expression for each cell line. * p<0.05 versus EtOH treated 
for each cell line. 
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Figure 14: Q-PCR analysis of the expression of ZEB1 mRNA in MCF-7, LCC1, 
LCC2, LCC9 and L Y2 cells. Cells were treated with vehicle control EtOH, or 10 nM 
E2 or 100 nM 4-0HT for 6 h. A. Values are the average of 3-4 experiments 
normalized to GAPDH and are expressed as fold relative to EtOH-treated MCF-7 
expression for each cell line. *p<0.05 significantly different from MCF-7 EtOH 
treated. B. Values are the average of 3-4 experiments normalized to GAPDH and are 
expressed as fold relative to EtOH-treated for each cell line. *p<0.05 significantly 
different from EtOH treated for each cell line. 
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Overexpression of miR-200b or miR-200c in L Y2 cells enhanced their sensitivity 

to 4-0HT or fulvestrant 

To examine if expression of miR-200 family members affects sensitivity of 

endocrine-resistant L Y2 cells to antiestrogens, cells were transiently transfected with 

precursors for miR-200a, miR-200b and miR-200c and MIT cell viability assays 

were performed in cells treated with vehicle control, 4-0HT, or fulvestrant for 6 days. 

Increased miR-200a, miR-200b and miR-200c expression was confirmed by Q-PCR 

even 7 days after transfection (Figure 15A). Treatment of nontransfected or control 

miRNA-transfected L Y2 cells with 4-0HT or fulvestrant had no effect on cell 

viability (Figure 16A). L Y2 cell viability was unaffected by overexpression of miR-

200a regardless of treatment (Figure 16A). Overexpression of miR-200b increased 

LY2 cell sensitivity to inhibition by 4-0HT and fulvestrant. Overexpression of miR-

200c reduced basal L Y2 viability and fulvestrant, but not 4-0HT, further inhibited 

L Y2 viability. 

To determine if a shorter time of pre-miR-200b and pre-miR-200c transfection 

increases sensitivity of L Y2 cells to inhibition by 4-0HT and fulvestrant, cells were 

transfected with pre-miR-200b or pre-miR-200c for 24 h and then treated with higher 

concentrations of 4-0HT and fulvestrant for 4 days. Q-PCR confirmed miR-200b and 

miR-200c overexpression in the transfected cells 5 dafter transfection (Figure 15B). 

Notably the level of miR-200b was higher after 7 d than 5 d. Cell viability assays 

demonstrated lower basal level of proliferation in cells overexpressing miR-200b or 

miR -200c regardless of treatment (Figure 16B). 
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Figure 15: Overexpression of miR-200b or miR-200c in L Y2 cells transfected 
with pre-miR-200b or pre-miR-200c or negative control. L Y2 cells were 
transfected either with negative control or pre-miR-200a, pre-miR-200b or pre-miR-
200c. RNA was harvested at 5 or 7 days and Q-PCR performed to confirm 
overexpression of miR-200a, miR-200b or miR-200c. Values are the mean ± SEM of 
triplicate determinations. 
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Figure 16: Overexpression of miR-200b or miR-200c restores sensitivity of LY2 
cells to 4-0HT and fulvestrant. A. LY2 cells were either untransfected (No TF) 
transfected with negative control (Neg control) or pre-miR-200a, miR-200b or miR-
200c. 5 days post-transfection, cells were starved for 24 h and treated with 100 nM 4-
OHT or 100 nM fulvestrant for 6 days *p<0.05 versus L Y2 EtOH treated negative 
control. # p<0.05 versus LY2 EtOH treated for each miRNA. B. L Y2 cells were 
either untransfected (No TF) or transfected with pre-rniR-200b or rniR-200c. 1 day 
post-transfection, ceIJs were treated with 1 J..LM 4-0 HT or 1 J.LM fulvestrant for 4 days 
and MTT assays were performed. Values are the mean ±SEM of 3 
experiments . *p<0.05 versus L Y2 EtOH treated No TF. 

1.2 

c::: 1.0 0 
; 
CIS ... 0.8 Q) 
:= 
0 
Q. 0.6 

Q) 
CJ 
Q) 
> ; 
CIS 

Q) 
a: 

0.4 

0.2 

0.0 

1.2 
c::: 
o ; 1.0 
e 
~ 0.8 
o ... 
Q. 
- 0.6 
Q) 
CJ 
Q) 0.4 
> ; 
CIS 

Q) 0.2 
a: 

0.0 

A 

NoTF 

B 

NoTF 

Neg control 200a 

* * * 

miR-200b 

85 

I I 

200b 

o EtOH 

4-0HT 

I 

o fulvestrant 

* 

miR-200c 

I I 
o EtOH 

4-0HT 

o fulvestrant 

200c 



Converse experiments were performed using anti-miRNA to knockdown the 

expression of miR-200b or miR-200c in MCF-7 cells (Figure 17 A and B). 

Surprisingly, knockdown of miR-200b and miR-200c reduced basal MCF-7 cell 

viability. However, there was no change in the sensitivity of cells to 100 nM 4-0HT 

or fulvestrant after knockdown of miR-200b or miR-200c (Figure 17C) in MCF-7 

cells, indicating that other factors also contribute to the sensitivity of breast cancer 

cells to antiestrogens. 

Overexpression of miR-200b or miR-200c changes morphology of L Y2 cells to a 

'cobblestone' shaped appearance 

Overexpression of miR-200b and miR-200c (Appendix SA) altered LY2 cell 

morphology (Figure IS). L Y2 cells showed a change from an elongated to a more 

epithelial or 'cobble-stone' shaped appearance (Figure ISC and D). Overexpression 

of miR-200a had no effect on LY2 cell appearance, in agreement with the lack of 

effect of miR-200a on cell viability (Figure ISB). Overexpression of a control 

miRNA had no effect on cell appearance (Appendix SB). Previous studies have 

reported the reversal of EMT in MDA-MB-231 breast cancer cells with miR-20Oc 

overexpression of [347]. These results are in agreement with my study and indicates 

that LY2 cells undergo change in morphology upon overexpression of miR-200b or 

miR-200c. 
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Figure 17: Knockdown of miR-200b or miR-200c does not promote resistance of 
MCF-7 to 4-0HT or fulvestrant. 
MCF-7 cells were either transfected with anti-miR -200b or anti-miR-200c. 1 day 
post-transfection, cells were treated with 100 nM 4-0HT or 100 nM fulvestrant for 4 
days and MIT assays were performed. Va1ues are the mean ±SEM of 3 experiments. 
*P<0.05 versus EtOH treated (miR-200b). # p<0.05 versus EtOH treated (rniR-200c) 
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To confirm if the observed change in morphology of L Y2 cells was due to 

reduced expression of mesenchymal markers, vimentin protein was examined in cells 

expressing transfected with miR-200b or miR-200c. Overexpression of miR-200b or 

miR-200c in LY2 cells did not induce MET (mesenchymal- to - epithelial transition) 

as indicated by unaltered vimentin or E-cadherin expression in cells transfected with 

miR-200b or miR-200c (Figure 18E). However, there was a decrease in ZEB I 

mRNA in cells transiently overexpressiong miR-200a, miR-200b or miR-200c (Figure 

18F). These results indicate that factors other than the reduction of miR-200b and 

miR-200c contribute to EMT in L Y2 cells. 
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Figure 18: Overexpression of miR-200 family changes morphology of L Y2 cells. 
LY2 cells were transfected with pre-miR-200a, or pre-miR-200b or pre-miR-200c for 
3 days. A-D. Images of L Y2 cells captured using a digital microscope (20x 
magnification, bar-lOO Ilm scale). E. Expression of vimentin protein in cells 
expressing miR-200a, miR-200b or miR-200c. Images and Western blots are 
representative of 3 separate experiments. F. Expression of ZEB 1 mRNA in L Y2 cells 
expressing miR-200a, miR-200b or miR-200c or negative control. Results are the 
mean ±SEM of two separate experiments. 

A. No transfection B. miR-200a 

C. miR-200b D. miR-200c 

89 



E .Q (J 
0 0 

LL 
0 0 
C\I C\I 

l- I I a:: a:: 
0 .- .-z E E 

Vimentinl q • 
1.0 0.91 0.91 

~-actin • 

c:: 1.2 
F 0 .-fI) 1.0 fI) 

~ 
~ 0.8 
CD 

""" 0.6 CQ 

~ 0.4 
CD 
> 0.2 -ca 
CD 0.0 a: 

Neg. control miR-200a miR-200b miR-200c 

90 



Inhibitors of deacetylation and methylation increase miR-200 family expression 

in LY2 cells 

One possible mechanism responsible for reduced expression of miR-200 

family members in L Y2 cells could be DNA methylation or histone deacetylation. 

Previous studies have shown that the CpG island near the miR-200c/miR-141 

transcription start site is methylated in fibroblasts and tumors cells that are miR-200c 

or miR-141-negative [350,351]. To determine if decreased expression of miR-200 

family members in L Y2 cells is due to epigenetic silencing, L Y2 cells were treated 

with 2.5 11M 5-aza-dC alone in combination with 100 ng/1l1 trichostatin A (TSA), a 

histone deacetylase (HDAC) inhibitor for 72 h. TSA was added in the last 16 h of the 

treatment period [352]. 2.5 11M 5-aza-dC and TSA increased the expression of miR-

200b and miR-200c in LY2 cells (Figure 19A and B). Concomitant with the 

increased expression of miR-200b and miR-200c, there was a decrease in expression 

of its target, ZEB 1 mRNA upon combined treatment with 2.5 11M 5-aza-dC and TSA 

(Figure 19C). To determine if the observed decrease in ZEB 1 mRNA level is due to a 

direct effect of the inhibitors, MCF-7 cells were treated with 2.5 11M 5-aza-dC alone 

or in combination with 100 ng/1l1 TSA. Combined treatment with 5-aza-dC and TSA 

did not alter the expression of ZEB 1 in MCF-7 cells (Figure 19F). However, it 

increased the expression ofmiR-200b and miR-200c in MCF-7 cells (Figure 19D and 

E). 
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Figure 19: 5-aza-dC and TSA co-administration results in an increase in miR-
200b and miR-200c expression, and a concomitant decrease in ZEB1 mRNA in 
L Y2 cells. A-C. L Y2 cells were treated with 2.5 11M 5-aza-dCA in combination with 
100 ng/1l1 TSA for 72 h. TSA was added only during the last 16 h of treatment. Q
PCR was used to determine the fold change in the expression of miR-200b, or miR-
200c, or ZEB 1 mRNA. A an C are the mean ± SEM of 2 separate experiments. B is 
the mean of triplicate determinations in one experiment. D-F. MCF-7 cells were 
treated with 2.5 11M 5-aza-dCA alone or in combination with 100 ng/1l1 TSA for 72 h. 
TSA was added only during the last 16 h of treatment. Q-PCR was used to determine 
the fold change in the expression of miR-200b, or miR-200c or ZEB 1 mRNA. Values 
are the average of triplicate determinations in one experiment. 
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4. DISCUSSION 

In this study I identified a novel role for miR-200b and miR-200c in 

modulating the sensitivity of endocrine-resistant L Y2 cells to 4-0HT and fulvestrant 

in addition to the previously reported ability of these miRNAs to stimulate EMT. A 

progressive decrease in the expression of miR-200a, miR-200b, and miR-200c was 

detected in an MCF-7 -derived cell line model of tamoxifenlendocrine resistance. The 

parental estrogen- dependent, endocrine-sensitive MCF-7 cells express all three miR-

200 family members. With the LCC2, LCC9, and L Y2 cells derived for progressive 

tamoxifen and fulvestrant resistance, I observed a graded reduction in miR-200 family 

expression (Figure 12 A-C). 

This is the first report demonstrating that overexpression of miR-200b and 

miR-200c enhanced the sensitivity of breast cancer cells to growth inhibition by 

antiestrogens 4-0HT and fulvestrant. Here I demonstrated that overexpression of 

miR-200b or miR-200c for 11 days increased sensitivity of LY2 cells to 100 nM 4-

OHT and fulvestrant (Figure 16A). A shorter 5 day period of overexpression of miR-

200a and miR-200b reduced basal LY2 cell viability independent of antiestrogen 

treatment (Figure 16B). One possible explanation for these different results is lower 

levels of miR-200b and miR-200c in cells after longer periods of transfection. Hence 

the decrease in basal cell viability in the control treated cells may be due to higher 

miR-200b and miR-200c levels at earlier times after transfection. This result may 

explain why no additional inhibitory effect of 4-0HT on cell viability was detected. 

A role for miR-200 family in drug resistance was reported in ovarian cancer 

[323]. Overexpression of miR-200c increased the sensitivity of ovarian cancer cells 

to a microtubule targeting drug Paclitaxel [323]. This was mediated by miR-200c 

targeting of a microtubule associated protein TUBB3. Overexpression of miR-200c 
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reversed resistance of UMUC3 bladder cancer cells to anti-EGFR therapy [353]. 

Similarly gemcitabine-resistance in pancreatic cancer is associated with decreased 

miR-200 expression [354]. Resistance of pancreatic cancer cells to gemcitabine was 

reduced by treatment with natural compounds such curcumin, alone or in 

combination. This was accompanied by increased miR-200 expression [353,355-

357]. CDF, an analogue of curcumin was found to increase the sensitivity of 

pancreatic cancer cells to gemcitabine through inactivation of NFkB and COX-2 

pathways which led to increased expression of miR-200b and miR-200c [356]. 

These studies show that miR-200 has a dual role in drug resistance. 

Our results show that there is an inverse relationship between the expression 

of miR-200 family (miR-200a, miR-200b and miR-200c) and ZEB1 mRNA in LY2 

cells. These data are in agreement with other reports showing an inverse correlation 

between miR-200 family and ZEB 1 expression in basal-like, TNBC cells such as 

MDA-MB-231 and BT-549 cell lines [203,205,345,347]. 

LY2 cells overexpressing miR-200b or miR-200c showed a change in 

morphology from a 'cobblestone' or mesenchymal phenotype to a spindle shaped or 

epithelial phenotype (Figure 18C and D). However cells expressing miR-200a did not 

show a change in morphology or change in sensitivity to antiestrogens (Figure 16A 

and 18B). miR-200b and miR-200c share the same seed sequence [206]. The 

similarity in effects of these miRNAs can be attributed to this identical seed sequence 

of miR-200b and miR-200c. These results indicate a novel role for miR-200b and 

miR-200c in cellular morphology and response to 4-0HT and fulvestrant. Other 

studies have observed a reversal of EMT in aggressive breast cancer cell lines 

transfected with miR-200c or miR-141 [203,205,346,347]. For example, 

overexpression of miR-200b and miR-200c reverted EMT in mesenchymal breast 
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cancer cell lines MDA-MB-231 and BT -549 by repressing the transcription and 

translation of transcription factors ZEB 1 and ZEB2 [205,325]. Similar results were 

observed in miR-200b and miR-200b transfected MDCK- Paz (Madin-Darby canine 

kidney cells) [203]. Likewise, ectopic expression of miR-20Oc restored E-cadherin 

expression and reversed the mesenchymal phenotype in NMuMG (normal murine 

mammary epithelial cells) and 4T07 breast carcinoma cell lines that had undergone 

EMT [346]. Our data showing a change in morphology of LY2 cells overexpressing 

miR-200b and miR-200c are in agreement with these observations, although we did 

not detect a reduction in vimentin or an increase in E-cadherin protein expression 

(data not shown). 

One of the mechanisms for decreased miR-200 expression in LY2 cells could 

be due to epigenetic changes in the promoter, e.g., DNA methylation and histone 

de acetylation. CpG island methylation of miR-200c/miR-141 promoter has been 

previously reported in breast and prostate cancer cells [350,351,358]. Treatment of 

MDA-MB-231 and BT549 breast and PC3 prostate cancer cells with 3 J..lM 5-aza-dC, 

an inhibitor of DNA methylation, increased miR -200c and miR -141 expression [350]. 

Analysis of histone modification by chromatin immunoprecipitation (ChIP) revealed 

dimethylation of Lysine 9 of histone H3 in miR-200c/miR-141-negative MDA-MB-

231 breast cancer cells, indicating repression of the miR-200c/miR-141 cluster. The 

data provided in this chapter agrees with these reports of epigenetic silencing of the 

miR-200 family. I demonstrated that treatment of LY2 cells with 2.5 J..lM 5-aza-dC in 

combination with TSA increased miR-200b and miR-200c expression when compared 

to untreated cells (Figure 19). There was a concomitant decrease in the expression of 

ZEBI mRNA. 
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Previous studies have shown that endocrine resistance is accompanied by loss 

of cell-to-cell adhesion and EMT. Hiscox et al. showed that induction of EMT in 

MCF-7 breast cancer cells that are tamoxifen- resistant (TAM-R), is due to EGFR 

mediated phosphorylation and activation of the ~-catenin pathway [340]. This 

promotes EMT and subsequently metastasis of cancer cells. Another study by the 

same group demonstrated that fulvestrant-resistant MCF-7 and T47D cells show 

enhanced migration and invasion due to overexpression of the c-Met receptor protein 

[359]. Further, elevated Src activity was also found to contribute to the invasive 

phenotype of TAM-R MCF-7 cells [360]. A recent study shows that prolonged 

mammosphere culture of MCF-7 cells makes them metastatic as well as resistant to 

tamoxifen [361]. Induction of Snail I transcription factor promotes EMT in MCF-7 

TAM-R cells by downregulation of the epithelial marker E-cadherin [341]. This 

effect was seen upon overexpression of a peptidyl-prolyl isomerase Pinl which, in 

tum, activates GSK-3~ or NF1d3. These reports indicate a link between aberrant 

activation of signaling pathways such as NF1d3 to EMT and endocrine resistance. 

However, there is only one report of miRNA regulation of both EMT and endocrine

resistance in breast cancer cells [343]. That study showed that overexpression of miR-

375 increased sensitivity of TAM-R MCF-7 cells to treatment with TAM by 

decreasing the expression of Metadherin (MTDH). My identification of reduced miR-

200 expression as a marker of endocrine resistance of breast cancer cells is a novel 

finding. 

Although miR-200 is considered as a tumor suppressor miRNA, there are 

some reports of its role as an oncogene. There are many reports of miR-200 family 

expression as a marker of poor prognosis and chemoresistance in ovarian cancer [362-

364]. Contrary to the expected decrease in miR-200 expression in metastatic cells, 
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Dykxhoorn et al. observed high levels of miR-200b and miR-200c in 4Tl metastatic 

mouse mammary tumor cells [365]. In concordance, 4Tl cells showed low ZEB 1 and 

high E-cadherin expression. These results indicate that mR-200 has a dual pattern of 

expression, i.e., it suppresses EMT while it promotes metastatic colonization after 

cells have invaded a distant site. Further, Korpal et al. reported pro-metastatic effects 

of miR-200 in a mouse model of breast cancer metastasis [366]. miR-200 was found 

to target Sec23a, a suppressor of metastasis that regulates the cell-secretome. These 

studies shed light on the dual role of miR-200 depending on the cell context. 

In summary, the results presented in this chapter reveal a novel role for the 

loss of miR-200b and miR-200c in contributing to the loss of antiestrogen sensitivity 

in endocrine resistant breast cells. Of course, additional factors are also involved. 

Although most studies have identified a role for miR-200 as a suppressor of EMT, my 

studies provide new evidence (Fig.16A) to show miR-200 as a suppressor of 

endocrine resistance in breast cancer cells. Future experiments are needed to assess 

the dual role of miR-200b and miR-200c in cancer progression so that appropriate 

targets can be used for targeted therapy. This would enable the use of this miRNA as 

a marker of endocrine-resistant breast cancer. 
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Figure 20: Proposed model of miR-200 function in endocrine-resistant breast 
cancer. In endocrine-sensitive breast cancer, miR-200 suppresses ZEB 1 expression 
and promotes an epithelial phenotype. Decreased expression of miR-200 family in 
endocrine-resistant breast cancer is a result of DNA methylation, and results in 
increased ZEB 1 expression and a change in morphology of cells from an epithelial to 
a mesenchymal appearance. 
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CHAPTER V: RESEARCH IMPLICATIONS 

Adjuvant endocrine therapy is widely used in the treatment of premenopausal 

and postmenopausal women with ER-positive breast cancer. It involves the use of 

SERMs, e.g., TAM, Raloxifene, and pure antiestrogens, e.g., fulvestrant, that interfere 

with estrogen receptor function [248,367]. However, about 40 % of women who 

receive adjuvant hormonal therapy acquire endocrine resistance [56]. Aberrant 

activation of growth factor signaling pathways, such as the EGFR, and the mutant 

EGFR (Her2), and altered expression of co-regulators are some of the mechanisms 

involved in endocrine resistance [368]. However, the complexity of endocrine 

resistance remains to be fully elucidated. My dissertation focused on identifying 

miRNAs that are aberrantly expressed in endocrine-resistant breast cancer. 

Deregulated expression of miRNAs has been reported in a number of cancers and 

these small RNAs are becoming increasingly important players affecting different 

signaling pathways [262]. By identifying miRNAs that are dysregulated in endocrine

resistant breast cancer, it is possible to test their use as markers of resistance. 

One major finding of my study is that there is an opposite pattern of 

expression of miRNAs in antiestrogen-sensitive MCF-7 vs. -resistant L Y2 cells. In 

Chapter III, I identified 97 miRNAs that are significantly differentially expressed in 

MCF-7 and L Y2 cells. This is a significant finding as it shows that acquisition of 

endocrine resistance is associated with altered miRNA signature. Results from this 

chapter are important as this is one of the few studies that have profiled miRNAs in 

endocrine-resistant breast cancer cells. 
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My study identified reliable endogenous control genes (ECGs) for 

normalization of miRNA Q-PCR data. Identification of an ideal ECG for 

normalization of gene expression data has remained a challenge for years. Ideally, a 

good ECG expression is one whose expression is independent of treatment condition 

and cell types. I demonstrated that the most commonly used ECGs, i.e., snoRNAs 

such as RNU6-1, vary in expression with 4-0HT treatment in MCF-7 and L Y2 cells. 

SNORD38D, 5SrRNA and SNORD48 were identified as good ECGs as they showed 

the least variation with 4-0HT treatment. They also exhibited a consistent pattern of 

expression in MCF-7 and L Y2 cells (Figure 4). My study shows the importance of 

the use of multiple ECGs to validate Q-PCR data. This is critical in miRNA gene 

analysis as the use of an inconsistent ECG leads to bias in results. 

Regulation of miRNA expression by the ER has been studied by very few 

groups [158,159,162,163]. As indicated by results in Chapter III, ICI studies 

demonstrated that the expression of miR-lOa, miR-21, miR-22, miR-200a, miR-221 

and miR-222 are ER-mediated in MCF-7 cells (Figure 5B and C). ICI treatment 

alone relieved the basal expression of these miRNAs, indicating that ER normally 

suppresses their expression in MCF-7 cells. There are reports of ERa being a target 

of the miR-22 and miR-2211222 family [231,234]. Increased expression of miR-

2211222 has also been reported in TAM- and fulvestrant- resistant breast cancer 

[283,369]. Higher expression of miR-22 11222 family and lower expression of ERa in 

L Y2 cells compared to MCF-7 cells agree with these reports. More studies are 

required to determine if ERa or ER~ are involved in the expression of the miRNAs 

identified in Chapter III. 

One important finding in my study is that there is a variable pattern of miRNA 

expression at different time points. 4-0HT increased the expression of miRNAs after 
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6 h of treatment (Figure 6). There was a corresponding increase in ERa protein levels 

after 6 h of 4-0HT treatment, further implying that the expression of miRNAs could 

be ER-mediated. 

Bioinformatic analysis identified 36 putative mRNA targets of the 12 miRNAs 

that were analyzed in Aim 1 (Figure 8). Expression of PDCD4, BCL2, CYPIBl, 

ESRI and ERBB3 was validated at the mRNA and protein level. Although there was 

agreement in the direction of expression of specific miRNAs and their putative 

targets, discrepancy was seen in the expression of PDCD4 and BCL2 protein in L Y2 

cells. Contrary to the expected increase in PDCD4 and BCL2 protein with lower 

miR-21 in LY2 cells, there was undetectable PDCD4 and BCL2 protein in LY2 cells. 

It is likely that these genes are under regulation by other miRNAs or other 

mechanisms such as epigenetic modification. Additionally, there are reports of 

phosphorylation of PDCD4 by Akt and S6Kl leading to its proteasomal degradation 

in HEK293 cells [370,371]. 

In Chapter IV, I report lower expression of miR-200 family members as cells 

progress towards endocrine-resistance (Figure 12). The role of miR-200 in drug 

resistance in ovarian, bladder and pancreatic cancer has been studied [323,353,355]; 

however, there are no reports of its role in antiestrogen-resistant breast cancer. An 

interesting discovery in Chapter IV of my dissertation is that restoring miR-200 

family members, miR-200b and miR-200c increased sensitivity of LY2 cells to 

inhibition by TAM and fulvestrant treatment (Figure 16A). These data imply that 

miR-200 contributes to endocrine-sensitivity of LY2 cells. However, the converse 

experiment (Figure 17) using antisense to miR-200b and miR-20Oc in MCF-7 cells 

did not make them resistant to TAM or fulvestrant. This implies that miR-200 is just 

102 



one of the players in the complex network of genes and pathways associated with 

endocrine resistance. 

Overexpression of miR-200 changed morphology of L Y2 cells from an 

elongated, mesenchymal to an epithelial appearance. This agrees with previous 

reports of the ability of miR-200 to reverse EMT in TNBC cells such as MDA-MB-

231 and BT-549 [205,345,347]. It was intriguing to find that LY2 cells did not 

undergo MET when transfected with miR-200a, miR-200b or miR-20Oc as there was 

no decrease in expression of the mesenchymal marker, vimentin, nor an increase in 

epithelial marker, E-cadherin. Perhaps there are other factors in addition to miR-200 

overexpression that are required to induce MET in L Y2 cells. Previous studies have 

shown that ERa inhibits EMT by suppressing the expression of transcription factors 

such as SLUG and Snail 1 [372-375]. LY2 cells have lower ERa when compared to 

MCF-7 cells (Figure 4F). Future studies could determine if restoration of ERa 

induces MET and restore sensitivity of L Y2 cells to treatment with 4-0HT and 

fulvestrant. 

Although most studies have focused on the role of miR-200 as a tumor 

suppressor, there are a few reports of miR-200 as an oncogene promoting mestastasis 

in breast cancer. Pro-metastatic effects of miR-200 family have been reported in an 

animal model of lung metastasis [366]. This would be a major drawback in the use of 

miR-200 as therapy to restore endocrine-responsiveness in cells. The expression of 

miR-200 family in tumor samples of patients resistant to TAM or fulvestrant therapy 

remains to be tested. This would give a clear understanding of the pattern of 

expression of this miRNA and for its use in therapy. 

Overall, this study contributes to better understanding of miRNAs that are 

dysregulated in endocrine-resistant breast cancer. By analyzing the miRNA signature 
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of breast cancer patients, it would be possible to determine if they are susceptible to 

developing resistance to these antiestrogens such as TAM and fulvestrant. This 

would be beneficial in a timely and effective treatment of patients with endocrine

resistant breast cancer. My study on miR-200 family provides a novel link between 

miRNA regulation of EMT and endocrine-resistant breast cancer. Finally, my study 

demonstrates that miR-200 is a significant contributor of sensitivity to antiestrogen 

therapy. By elucidating the exact mechanism involved in regulation of miR-200 

expression, this could be an attractive target to restore TAM-responsiveness in cells. 

104 



REFERENCES 

1. Ademuyiwa FO, Edge SB, Erwin DO, Orom H, Ambrosone CB, et al. (2011) 
Breast Cancer Racial Disparities: Unanswered Questions. Cancer Research 71: 640-
644. 

2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer 
statistics. CA: A Cancer Journal for Clinicians 61: 69-90. 

3. McDonnell DP, Norris JD (2002) Connections and regulation of the human 
estrogen receptor. Science 296: 1642-1644. 

4. McDonnell DP (1999) The Molecular Pharmacology of SERMs. Trends Endocrinol 
Metab 10: 301-311. 

5. Hall JM, Couse JF, Korach KS (2001) The Multifaceted Mechanisms of Estradiol 
and Estrogen Receptor Signaling. Journal of Biological Chemistry 276: 36869-36872. 

6. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. 
Nucleic Acids Res 29: 2905-2919. 

7. Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, et al. 
(2008) Estradiol stimulates transcription of nuclear respiratory factor-l and increases 
mitochondrial biogenesis. Mol Endocrinol 22: 609-622. 

8. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A 
transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 
307: 1625-1630. 

9. Zivadinovic D, Watson CS (2005) Membrane estrogen receptor-alpha levels predict 
estrogen-induced ERKlI2 activation in MCF-7 cells. Breast Cancer Res 7: RI30-144. 

10. Watson CS, Gametchu B (1999) Membrane-initiated steroid actions and the 
proteins that mediate them. Proc Soc Exp BioI Med 220: 9-19. 

II. Filardo EJ, Thomas P (2005) GPR30: a seven-transmembrane-spanning estrogen 
receptor that triggers EGF release. Trends Endocrinol Metab 16: 362-367. 

12. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane 
receptor coupled to a G protein in human breast cancer cells. Endocrinology 146: 624-
632. 

13. Filardo EJ, Quinn JA, Bland KI, Frackelton AR, Jr. (2000) Estrogen-induced 
activation of Erk-l and Erk-2 requires the G protein-coupled receptor homolog, 
GPR30, and occurs via trans-activation of the epidermal growth factor receptor 
through release ofHB-EGF. Mol Endocrinol14: 1649-1660. 

14. Ariazi EA, Ariazi JL, Cordera F, Jordan VC (2006) Estrogen receptors as 
therapeutic targets in breast cancer. CUff Top Med Chern 6: 181-202. 

15. Wong CW, McNally C, Nickbarg E, Komm BS, Cheskis BJ (2002) Estrogen 
receptor-interacting protein that modulates its nongenomic activity-crosstalk with 
SrclErk phosphorylation cascade. Proc Natl Acad Sci USA 99: 14783-14788. 

\05 



16. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, et al. (2002) Linkage of 
rapid estrogen action to MAPK activation by ERalpha-Shc association and Shc 
pathway activation. Mol Endocrinol 16: 116-127. 

17. Sun M, Paciga JE, Feldman RI, Yuan Z-q, Coppola D, et al. (2001) 
Phosphatidylinositol-3-0H Kinase (PI3K)/AKT2, Activated in Breast Cancer, 
Regulates and Is Induced by Estrogen Receptor a (ERa) via Interaction between ERa 
and PI3K. Cancer Research 61: 5985-5991. 

18. Stoica GE, Franke TF, Moroni M, Mueller S, Morgan E, et al. (2003) Effect of 
estradiol on estrogen receptor-alpha gene expression and activity can be modulated by 
the ErbB2IPI 3-KlAkt pathway. Oncogene 22: 7998-8011. 

19. Harper MJ, Walpole AL (1967) Mode of action of I.C.I. 46,474 in preventing 
implantation in rats. J Endocrinol 37: 83-92. 

20. Harper MJ, Walpole AL (1966) Contrasting endocrine activities of cis and trans 
isomers in a series of substituted triphenylethylenes. Nature 212: 87. 

21. Harper MJ, Walpole AL (1967) A new derivative of triphenylethylene: effect on 
implantation and mode of action in rats. J Reprod Fertil13: 101-119. 

22. Jordan VC (1976) Antiestrogenic and antitumor properties of tamoxifen in 
laboratory animals. Cancer Treat Rep 60: 1409-1419. 

23. Jordan VC, Dowse LJ (1976) Tamoxifen as an anti-tumour agent: effect on 
oestrogen binding. J Endocrinol68: 297-303. 

24. Jordan VC, Dix CJ, Rowsby L, Prestwich G (1977) Studies on the mechanism of 
action of the nonsteroidal antioestrogen tamoxifen (I.e.I. 46,474) in the rat. Mol Cell 
Endocrinol 7: 177-192. 

25. Jordan VC, Allen KE (1980) Evaluation of the antitumour activity of the non
steroidal anti oestrogen monohydroxytamoxifen in the DMBA-induced rat mammary 
carcinoma model. Eur J Cancer 16: 239-251. 

26. Cole MP, Jones CT, Todd ID (1971) A new anti-oestrogenic agent in late breast 
cancer. An early clinical appraisal of ICI46474. Br J Cancer 25: 270-275. 

27. Jordan VC, Koerner S (1975) Tamoxifen (ICI 46,474) and the human carcinoma 
8S oestrogen receptor. Eur J Cancer 11: 205-206. 

28. Jordan VC (2001) Selective Estrogen Receptor Modulation: A Personal 
Perspective. Cancer Res 61: 5683-5687. 

29. Brauch H, Jordan VC (2009) Targeting of tamoxifen to enhance antitumour action 
for the treatment and prevention of breast cancer: The 'personalised' approach? 
European Journal of Cancer 45: 2274-2283. 

30. Jordan VC (1995) Tamoxifen: toxicities and drug resistance during the treatment 
and prevention of breast cancer. Annu Rev Pharmacol Toxicol 35: 195-211. 

31. Ko SS, Jordan VC (2011) Treatment of osteoporosis and reduction in risk of 
invasive breast cancer in postmenopausal women with raloxifene. Expert Opin 
Pharmacother 12: 657-674. 

106 



32. Barrett-Connor E, Mosca L, Collins P, Geiger MJ, Grady D, et al. (2006) Effects 
of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N 
Engl J Med 355: 125-137. 

33. Barrett-Connor E, Mosca L, Collins P, Geiger MJ, Grady D, et al. (2006) Effects 
of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N 
Engl J Med 355: 125-137. 

34. Vogel Vg Fau - Costantino JP, Costantino Jp Fau - Wickerham DL, Wickerham 
Dl Fau - Cronin WM, Cronin Wm Fau - Cecchini RS, Cecchini Rs Fau - Atkins IN, et 
al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer 
and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) 
P-2 trial. 

35. Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a 
ubiquitinated protein whose stability is affected differentially by agonists, antagonists, 
and selective estrogen receptor modulators. J BioI Chern 276: 35684-35692. 

36. Johnston SR, Dowsett M (2003) Aromatase inhibitors for breast cancer: lessons 
from the laboratory. Nat Rev Cancer 3: 821-831. 

37. E.R S (2003) Sources of estrogen and their importance. The Journal of Steroid 
Biochemistry and Molecular Biology 86: 225-230. 

38. Chum sri S, Howes T, Bao T, Sabnis G, Brodie A (2011) Aromatase, aromatase 
inhibitors, and breast cancer. The Journal of Steroid Biochemistry and Molecular 
Biology 125: 13-22. 

39. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A (2009) History of 
aromatase: saga of an important biological mediator and therapeutic target. Endocr 
Rev 30: 343-375. 

40. Harada N (1997) Aberrant expression of aromatase in breast cancer tissues. J 
Steroid Biochem Mol Bioi 61: 175-184. 

41. Winters L, Habin K, Gallagher J (2007) Aromatase inhibitors and musculoskeletal 
pain in patients with breast cancer. CIin J Oncol Nurs 11: 433-439. 

42. Lin JH, Zhang SM, Manson JE (2011) Predicting adherence to tamoxifen for 
breast cancer adjuvant therapy and prevention. Cancer Prev Res (Phil a) 4: 1360-1365. 

43. Guarneri V, Conte PF (2004) The curability of breast cancer and the treatment of 
advanced disease. Eur J Nucl Med Mol Imaging 31 Suppl1: SI49-161. 

44. Normanno N, Di Maio M, De Maio E, De Luca A, de Matteis A, et al. (2005) 
Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. 
Endocr Relat Cancer 12: 721-747. 

45. Roop RP, Ma CX (2012) Endocrine resistance in breast cancer: molecular 
pathways and rational development of targeted therapies. Future Oncol 8: 273-292. 

46. Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, et al. (2006) 
Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive 
breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen 
receptor alpha-negative human breast tumors. Cancer Res 66: 3903-3911. 

47. Oh AS, Lorant LA, Holloway IN, Miller DL, Kern FG, et al. (2001) 
Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. 
Mol Endocrinol 15: 1344-1359. 

107 



48. Yan L, Yang X, Davidson NE (2001) Role of DNA methylation and histone 
acetylation in steroid receptor expression in breast cancer. J Mammary Gland BioI 
Neoplasia 6: 183-192. 

49. Stoner M, Saville B, Wormke M, Dean D, Burghardt R, et al. (2002) Hypoxia 
induces proteasome-dependent degradation of estrogen receptor alpha in ZR-75 breast 
cancer cells. Mol Endocrinol 16: 2231-2242. 

50. Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, et al. (2005) Molecular 
Changes in Tamoxifen-Resistant Breast Cancer: Relationship Between Estrogen 
Receptor, HER-2, and p38 Mitogen-Activated Protein Kinase. Journal of Clinical 
Oncology 23: 2469-2476. 

51. Shi L, Dong B, Li Z, Lu Y, Ouyang T, et al. (2009) Expression of ER-a36, a 
Novel Variant of Estrogen Receptor a, and Resistance to Tamoxifen Treatment in 
Breast Cancer. Journal of Clinical Oncology 27: 3423-3429. 

52. Klinge CM, Riggs KA, Wickramasinghe NS, Emberts CG, McConda DB, et al. 
(2010) Estrogen receptor alpha 46 is reduced in tamoxifen resistant breast cancer cells 
and re-expression inhibits cell proliferation and estrogen receptor alpha 66-regulated 
target gene transcription. Mol Cell Endocrinol 323: 268-276. 

53. Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, et al. Antiestrogen resistance in 
breast cancer and the role of estrogen receptor signaling. Oncogene 22: 7316-7339. 

54. Jordan VC, O'Malley BW (2007) Selective estrogen-receptor modulators and 
antihormonal resistance in breast cancer. J Clin Oncol 25: 5815-5824. 

55. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for 
combating resistance. Nat Rev Cancer 2: 101-112. 

56. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat 
Cancer 11: 643-658. 

57. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, et al. (2003) 
Role of the estrogen receptor coactivator AlB 1 (SRC-3) and HER-2/neu in tamoxifen 
resistance in breast cancer. J Natl Cancer Inst 95: 353-361. 

58. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, et al. (1998) Diverse 
signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT 
complexes. Proc Natl Acad Sci USA 95: 2920-2925. 

59. Girault I, Lerebours F, Amarir S, Tozlu S, Tubiana-Hulin M, et al. (2003) 
Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: 
evidence that NCORI expression is predictive of the response to tamoxifen. Clin 
Cancer Res 9: 1259-1266. 

60. Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, et al. (1999) Increased 
activator protein-l DNA binding and c-Jun NH2-terminal kinase activity in human 
breast tumors with acquired tamoxifen resistance. Clin Cancer Res 5: 251-256. 

61. Schiff R, Reddy P, Ahotupa M, Coronado-Heinsohn E, Grim M, et al. (2000) 
Oxidative stress and AP-l activity in tamoxifen-resistant breast tumors in vivo. J Natl 
Cancer Inst 92: 1926-1934. 

62. Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, et al. (2007) Enhanced NF kappa 
Band AP-l transcriptional activity associated with antiestrogen resistant breast 
cancer. BMC Cancer 7: 59. 

108 



63. Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, et al. (1997) Differential 
ligand activation of estrogen receptors ERalpha and ERbeta at API sites. Science 277: 
1508-1510. 

64. Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH (2007) Pathways to 
tamoxifen resistance. Cancer Lett 256: 1-24. 

65. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of 
resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer 
Res 12: 1001s-1007s. 

66. de Leeuw R, Neefjes J, Michalides R (2011) A role for estrogen receptor 
phosphorylation in the resistance to tamoxifen. Int J Breast Cancer 2011: 232435. 

67. Chen D, Pace PE, Coombes RC, Ali S (1999) Phosphorylation of human estrogen 
receptor alpha by protein kinase A regulates dimerization. Mol Cell BioI 19: 1002-
1015. 

68. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, et al. (1995) Activation 
of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. 
Science 270: 1491-1494. 

69. Joel PB, Traish AM, Lannigan DA (1998) Estradiol-induced phosphorylation of 
serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated 
protein kinase. J BioI Chern 273: 13317-13323. 

70. Weitsman GE, Li L, Skliris GP, Davie JR, Ung K, et al. (2006) Estrogen receptor
alpha phosphorylated at Serl18 is present at the promoters of estrogen-regulated 
genes and is not altered due to HER-2 overexpression. Cancer Res 66: 10162-10170. 

71. Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC, et al. (2000) Activation 
of estrogen receptor alpha by S 118 phosphorylation involves a ligand-dependent 
interaction with TFIIH and participation of CDK7. Mol Cell 6: 127-137. 

72. Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA (2006) 
Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions 
with ligand, deoxyribonucleic acid, and coregulators associated with alterations in 
estrogen and tamoxifen activity. Mol Endocrinol 20: 3120-3132. 

73. Cheng J, Zhang C, Shapiro DJ (2007) A functional serine 118 phosphorylation 
site in estrogen receptor-alpha is required for down-regulation of gene expression by 
17beta-estradiol and 4-hydroxytamoxifen. Endocrinology 148: 4634-4641. 

74. Michalides R, Griekspoor A, Balkenende A, Verwoerd D, Janssen L, et al. (2004) 
Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after 
PKA activation in breast cancer. Cancer Cell 5: 597-605. 

75. Holm C, Kok M, Michalides R, Fles R, Koomstra RH, et al. (2009) 
Phosphorylation of the oestrogen receptor alpha at serine 305 and prediction of 
tamoxifen resistance in breast cancer. J Pathol217: 372-379. 

76. Bostner J, Skoog L, Fomander T, Nordenskjold B, Stal 0 (2010) Estrogen 
receptor-alpha phosphorylation at serine 305, nuclear p21-activated kinase 1 
expression, and response to tamoxifen in postmenopausal breast cancer. Clin Cancer 
Res 16: 1624-1633. 

109 



77. Wang RA, Mazumdar A, Vadlamudi RK, Kumar R (2002) P21-activated kinase-1 
phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia 
in mammary epithelium. EMBO 121: 5437-5447. 

78. Holm C, Rayala S, lirstrom K, Stal 0, Kumar R, et al. (2006) Association 
between Pak1 expression and subcellular localization and tamoxifen resistance in 
breast cancer patients. 1 Natl Cancer Inst 98: 671-680. 

79. Potapenko 10, Haakensen VD, Luders T, Helland A, Bukholm I, et al. (2010) 
Glycan gene expression signatures in normal and malignant breast tissue; possible 
role in diagnosis and progression. Mol Oncol4: 98-118. 

80. liang MS, Hart GW (1997) A subpopulation of estrogen receptors are modified by 
O-linked N-acetylglucosamine. 1 BioI Chern 272: 2421-2428. 

81. Cheng X, Hart GW (2000) Glycosylation of the murine estrogen receptor-alpha. 1 
Steroid Biochem Mol Bioi 75: 147-158. 

82. Fu M, Wang C, Zhang X, Pestell RG (2004) Acetylation of nuclear receptors in 
cellular growth and apoptosis. Biochem Pharmacol 68: 1199-1208. 

83. Kim MY, Woo EM, Chong YT, Homenko DR, Kraus WL (2006) Acetylation of 
estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic 
acid binding and transactivation activities of the receptor. Mol Endocrinol 20: 1479-
1493. 

84. Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, et al. (2001) Direct 
acetylation of the estrogen receptor alpha hinge region by p300 regulates 
transactivation and hormone sensitivity. 1 BioI Chern 276: 18375-18383. 

85. Fuqua SA, Wiltschke C, Zhang QX, Borg A, Castles CG, et al. (2000) A 
hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. 
Cancer Res 60: 4026-4029. 

86. Bettermann K, Benesch M, Weis S, Haybaeck 1 (2012) SUMOylation in 
carcinogenesis. Cancer Lett 316: 113-125. 

87. Sentis S, Le Romancer M, Bianchin C, Rostan MC, Corbo L (2005) Sumoylation 
of the estrogen receptor alpha hinge region regulates its transcriptional activity. Mol 
Endocrinol 19: 2671-2684. 

88. Dowsett M (2001) Overexpression of HER-2 as a resistance mechanism to 
hormonal therapy for breast cancer. Endocr Relat Cancer 8: 191-195. 

89. Pancholi S, Lykkesfeldt AE, Hilmi C, Banerjee S, Leary A, et al. (2008) ERBB2 
influences the subcellular localization of the estrogen receptor in tamoxifen-resistant 
MCF-7 cells leading to the activation of AKT and RPS6KA2. Endocr Relat Cancer 
15: 985-1002. 

90. McClelland RA, Barrow 0, Madden T-A, Dutkowski CM, Pamment 1, et al. 
(2001) Enhanced Epidermal Growth Factor Receptor Signaling in MCF7 Breast 
Cancer Cells after Long-Term Culture in the Presence of the Pure Antiestrogen ICI 
182,780 (Faslodex). Endocrinology 142: 2776-2788. 

91. Knowlden 1M, Hutcheson IR, 10nes HE, Madden T, Gee 1M, et al. (2003) 
Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an 
autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. 
Endocrinology 144: 1032-1044. 

110 



92. Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, et al. (2003) 
Oestrogen receptor-mediated modulation of the EGFRlMAPK pathway in tamoxifen
resistant MCF-7 cells. Breast Cancer Res Treat 81: 81-93. 

93. Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the 
estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism 
and clinical implications for endocrine therapy resistance. Endocr Rev 29: 217-233. 

94. Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, et al. 
(2000) Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases 
enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast 
cancer cells. Cancer Res 60: 5887-5894. 

95. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, et al. (1995) HER-
2 tyrosine kinase pathway targets estrogen receptor and promotes hormone
independent growth in human breast cancer cells. Oncogene 10: 2435-2446. 

96. Kurokawa H, Arteaga CL (2003) ErbB (HER) receptors can abrogate antiestrogen 
action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res 9: 
511S-515S. 

97. Caldon CE, Daly RJ, Sutherland RL, Musgrove EA (2006) Cell cycle control in 
breast cancer cells. J Cell Biochem 97: 261-274. 

98. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, et al. (2000) 
Down-regulation of p21WAFlICIPl or p27Kipl abrogates antiestrogen-mediated cell 
cycle arrest in human breast cancer cells. Proc Natl Acad Sci USA 97: 9042-9046. 

99. Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL (1998) c-Myc or 
cyclin DI mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. 
Mol Cell BioI 18: 4499-4508. 

100. Venditti M, Iwasiow B, Orr FW, Shiu RP (2002) C-myc gene expression alone is 
sufficient to confer resistance to antiestrogen in human breast cancer cells. Int J 
Cancer 99: 35-42. 

101. Hui R, Finney GL, Carroll JS, Lee CS, Musgrove EA, et al. (2002) Constitutive 
overexpression of cyclin D I but not cyclin E confers acute resistance to antiestrogens 
in T-47D breast cancer cells. Cancer Res 62: 6916-6923. 

102. Bosco EE, Wang Y, Xu H, Zilfou JT, Knudsen KE, et al. (2007) The 
retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J 
Clin Invest 117: 218-228. 

103. Dubik D, Dembinski TC, Shiu RP (1987) Stimulation of c-myc oncogene 
expression associated with estrogen-induced proliferation of human breast cancer 
cells. Cancer Res 47: 6517-6521. 

104. Butt AJ, Caldon CE, McNeil CM, Swarbrick A, Musgrove EA, et al. (2008) Cell 
cycle machinery: links with genesis and treatment of breast cancer. Adv Exp Med 
BioI 630: 189-205. 

105. Hui R, Finney GL, Carroll JS, Lee CSL, Musgrove EA, et al. (2002) Constitutive 
Overexpression of Cyclin D I but not Cyclin E Confers Acute Resistance to 
Antiestrogens in T-47D Breast Cancer Cells. Cancer Research 62: 6916-6923. 

III 



106. Ishii Y, Waxman S, Germain D (2008) Tamoxifen stimulates the growth of 
cyclin D l-overexpressing breast cancer cells by promoting the activation of signal 
transducer and activator of transcription 3. Cancer Res 68: 852-860. 

107. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL (2005) Downstream targets 
of growth factor and oestrogen signalling and endocrine resistance: the potential roles 
of c-Myc, cyclin Dl and cyclin E. Endocr Relat Cancer 12 Suppll: S47-59. 

108. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the 
retinoblastoma gene. Nat Rev Cancer 8: 671-682. 

109. Varma H, Skildum AJ, Conrad SE (2007) Functional ablation of pRb activates 
Cdk2 and causes antiestrogen resistance in human breast cancer cells. PLoS One 2: 
e1256. 

110. Templeton DJ, Park SH, Lanier L, Weinberg RA (1991) Nonfunctional mutants 
of the retinoblastoma protein are characterized by defects in phosphorylation, viral 
oncoprotein association, and nuclear tethering. Proc Natl Acad Sci USA 88: 3033-
3037. 

Ill. Ertel A, Dean JL, Rui H, Liu C, Witkiewicz AK, et al. (2010) RB-pathway 
disruption in breast cancer: differential association with disease subtypes, disease
specific prognosis and therapeutic response. Cell Cycle 9: 4153-4163. 

112. Guarnieri DJ, DiLeone RJ (2008) MicroRNAs: a new class of gene regulators. 
Ann Med 40: 197-208. 

113. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development 
and human disease. Development 132: 4653-4662. 

114. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-
4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. 

115. Griffiths-Jones S, Grocock R, van Dongen S, Bateman A, Enright A (2006) 
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 
34: D140 - 144. 

116. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, et al. (2008) The 
regulatory activity of microRNA * species has substantial influence on microRNA and 
3' UTR evolution. Nat Struct Mol Biol15: 354-363. 

117. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of 
Mammalian microRNA Host Genes and Transcription Units. Genome Research 14: 
1902-1910. 

118. Faller M, Guo F (2008) MicroRNA biogenesis: there's more than one way to skin 
a cat. Biochim Biophys Acta 1779: 663-667. 

119. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes 
human microRNAs. Nat Struct Mol BioI 13: 1097-1101. 

120. Berezikov E, Chung W-J, Willis J, Cuppen E, Lai EC (2007) Mammalian 
Mirtron Genes. Molecular Cell 28: 328-336. 

121. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post
transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 
102-114. 

112 



122. Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, et al. 
(2007) An mRNA m7G Cap Binding-like Motif within Human Ago2 Represses 
Translation. Cell 129: 1141-1151. 

123. Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, et al. (2007) MicroRNA 
silencing through RISC recruitment of eIF6. Nature 447: 823-828. 

124. Petersen CP, Bordeleau M-E, Pelletier J, Sharp PA (2006) Short RNAs Repress 
Translation after Initiation in Mammalian Cells. Molecular Cell 21: 533-542. 

125. Maroney PA, Yu Y, Fisher J, Nilsen TW (2006) Evidence that microRNAs are 
associated with translating messenger RNAs in human cells. Nat Struct Mol BioI 13: 
1102-1107. 

126. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of 
mRNA. Proceedings of the National Academy of Sciences of the United States of 
America 103: 4034-4039. 

127. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, et al. (2006) 
Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. 
Science 312: 75-79. 

128. Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in 
cytoplasmic processing bodies. Science 300: 805-808. 

129. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA
dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Bioi 7: 
719-723. 

130. Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA 
turnover. Nat Struct Mol Bioi 11: 121-127. 

131. Sayed D, Abdellatif M (2011) MicroRNAs in Development and Disease. 
Physiological Reviews 91: 827-887. 

132. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by 
adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 
15-20. 

133. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. 
Nat Rev Mol Cell Bioi 11: 252-263. 

134. Gregory RI, Yan K-p, Amuthan G, Chendrimada T, Doratotaj B, et al. (2004) 
The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235-
240. 

135. Han J, Pedersen JS, Kwon SC, Belair CD, Kim Y-K, et al. (2009) 
Posttranscriptional Crossregulation between Drosha and DGCR8. Cell 136: 75-84. 

136. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control 
DROSHA-mediated microRNA maturation. Nature 454: 56-61. 

137. Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, et al. (2009) The 
NF90-NF45 Complex Functions as a Negative Regulator in the MicroRNA 
Processing Pathway. Molecular and Cellular Biology 29: 3754-3769. 

138. Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K-i, Ogawa S, et al. (2001) 
A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor [alpha] 

113 



coactivator through the N-terminal activation domain (AF-I) with an RNA 
coactivator, SRA. EMBO J 20: 1341-1352. 

139. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, et al. (2010) A Genetic 
Defect in Exportin-5 Traps Precursor MicroRNAs in the Nucleus of Cancer Cells. 
Cancer Cell 18: 303-315. 

140. Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, et al. (2006) 
Up-Regulation of Dicer, a Component of the MicroRNA Machinery, in Prostate 
Adenocarcinoma. The American Journal of Pathology 169: 1812-1820. 

141. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, et al. (2005) Reduced 
expression of Dicer associated with poor prognosis in lung cancer patients. Cancer 
Science 96: 111-115. 

142. Lee Y, Hur I, Park SY, Kim YK, Suh MR, et al. (2006) The role of PACT in the 
RNA silencing pathway. EMBO J 25: 522-532. 

143. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, et al. 
(2005) TRBP recruits the Dicer complex to Ag02 for microRNA processing and gene 
silencing. Nature 436: 740-744. 

144. Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the human microRNA
generating complex mediates MAPKlErk signaling. Cell 139: 112-122. 

145. Adams BD, Claffey KP, White BA (2009) Argonaute-2 expression is regulated 
by epidermal growth factor receptor and mitogen-activated protein kinase signaling 
and correlates with a transformed phenotype in breast cancer cells. Endocrinology 
150: 14-23. 

146. He L, He X, Lim LP, de Stanchina E, Xuan Z, et al. (2007) A microRNA 
component of the p53 tumour suppressor network. Nature 447: 1130-1134. 

147. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc
regulated microRNAs modulate E2Fl expression. Nature 435: 839-843. 

148. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a 
microRNA promote neuronal identity. Proc Natl Acad Sci USA 103: 2422-2427. 

149. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2009) Induction of 
microRNA-221 by platelet-derived growth factor signaling is critical for modulation 
of vascular smooth muscle phenotype. J BioI Chern 284: 3728-3738. 

150. Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, et al. (2010) Molecular basis 
for antagonism between PDGF and the TGFbeta family of signalling pathways by 
control of miR-24 expression. EMBO J 29: 559-573. 

151. Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, et al. (2011) 
Androgen regulation of micro-RNAs in prostate cancer. Prostate 71: 604-614. 

152. Tessel MA, Krett NL, Rosen ST (2010) Steroid receptor and microRNA 
regulation in cancer. Curr Opin Onco122: 592-597. 

153. Macias S, Michlewski G, Caceres JF (2009) Hormonal regulation of microRNA 
biogenesis. Mol Cell 36: 172-173. 

154. Klinge CM (2009) Estrogen Regulation of MicroRNA Expression. Curr 
Genomics 10: 169-183. 

114 



155. Fujiyama-Nakamura S, Yamagata K, Kato S (2010) Hormonal repression of 
miRNA biosynthesis through a nuclear steroid hormone receptor. Adv Exp Med Bioi 
700: 43-55. 

156. Cohen A, Shmoish M, Levi L, Cheruti U, Levavi-Sivan B, et al. (2008) 
Alterations in micro-ribonucleic acid expression profiles reveal a novel pathway for 
estrogen regulation. Endocrinology 149: 1687-1696. 

157. Kovalchuk 0, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, et al. (2007) 
Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA 
methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6: 
2010-2018. 

158. Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, et al. (2009) The 
estrogen receptor-alpha-induced microRNA signature regulates itself and its 
transcriptional response. Proc Natl Acad Sci USA 106: 15732-15737. 

159. Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, et al. (2009) 
Widespread estrogen-dependent repression of micrornas involved in breast tumor cell 
growth. Cancer Res 69: 8332-8340. 

160. Cicatiello L, Mutarelli M, Grober OM, Paris 0, Ferraro L, et al. (2010) Estrogen 
receptor alpha controls a gene network in luminal-like breast cancer cells comprising 
multiple transcription factors and microRNAs. Am J Pathol 176: 2113-2130. 

161. Manavalan IT, Teng Y, Appana SN, Datta S, Kalbfleisch TS, et al. (2011) 
Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 
versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Letters 313: 26-43. 

162. Wickramasinghe NS, Manavalan IT, Dougherty SM, Riggs KA, Li Y, et al. 
(2009) Estradiol downregulates miR-21 expression and increases miR-21 target gene 
expression in MCF-7 breast cancer cells. Nucl Acids Res: gkp 117. 

163. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, et al. 
(2009) Estradiol-regulated microRNAs control estradiol response in breast cancer 
cells. Nucleic Acids Res 37: 4850-4861. 

164. Pan Q, Luo X, Chegini N (2008) Differential expression of microRNAs in 
myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 12: 
227-240. 

165. Pan Q, Luo X, Toloubeydokhti T, Chegini N (2007) The expression profile of 
micro-RNA in endometrium and endometriosis and the influence of ovarian steroids 
on their expression. Mol Hum Reprod 13: 797-806. 

166. Tilghman SL, Bratton MR, Segar HC, Martin EC, Rhodes LV, et al. (2012) 
Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. 
PLoS One 7: e32754. 

167. Klinge CM (2012) miRNAs and estrogen action. Trends Endocrinol Metab. 

168. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, et al. (2006) Specific 
activation of microRNA-I27 with downregulation of the proto-oncogene BCL6 by 
chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435-443. 

169. Lujambio A, Esteller M (2009) How epigenetics can explain human metastasis: a 
new role for microRNAs. Cell Cycle 8: 377-382. 

115 



170. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, et al. (2007) The 
human let-7a-3 locus contains an epigenetic ally regulated microRNA gene with 
oncogenic function. Cancer Res 67: 1419-1423. 

171. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of 
microRNA levels by histone deacetylase inhibition. Cancer Res 66: 1277-1281. 

172. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge 
impact. J Clin Oncol27: 5848-5856. 

173. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, et al. (2005) miR-15 
and miR-16 induce apoptosis by targeting BCL2. Proc Nat! Acad Sci USA 102: 
13944-13949. 

174. Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, et al. (2010) 
Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer 
Res 16: 1119-1128. 

175. He C, Xiong J, Xu X, Lu W, Liu L, et al. (2009) Functional elucidation of MiR-
34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun 
388: 35-40. 

176. Ji Q, Hao X, Zhang M, Tang W, Yang M, et al. (2009) MicroRNA miR-34 
inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4: e6816. 

177. Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, et al. (2008) The MYCN 
oncogene is a direct target ofmiR-34a. Oncogene 27: 5204-5213. 

178. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRTI 
regulates apoptosis. Proc Nat! Acad Sci USA 105: 13421-13426. 

179. Eder M, Scherr M (2005) MicroRNA and lung cancer. N Engl J Med 352: 2446-
2448. 

180. Sampson VB, Rong NH, Han J, Yang Q, Aris V, et al. (2007) MicroRNA let-7a 
down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. 
Cancer Res 67: 9762-9770. 

181. Dong Q, Meng P, Wang T, Qin W, Wang F, et al. (2010) MicroRNA let-7a 
inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting 
E2F2 and CCND2. PLoS One 5: e 1 0 147. 

182. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and 
Hmga2 enhances oncogenic transformation. Science 315: 1576-1579. 

183. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. (2005) RAS is 
regulated by the let-7 microRNA family. Cell 120: 635-647. 

184. Qi L, Bart J, Tan LP, Platteel I, Sluis T, et al. (2009) Expression of miR-21 and 
its targets (PTEN, PDCD4, TMl) in flat epithelial atypia of the breast in relation to 
ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9: 163. 

185. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, et al. (2008) MicroRNA-21 
promotes cell transformation by targeting the programmed cell death 4 gene. 
Oncogene 27: 4373-4379. 

186. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, et al. (2008) 
Programmed cell death 4 (PDCD4) is an important functional target of the microRNA 
miR-21 in breast cancer cells. J BioI Chern 283: 1026-1033. 

116 



187. Zhu S, Wu H, Wu F, Nie D, Sheng S, et al. (2008) MicroRNA-21 targets tumor 
suppressor genes in invasion and metastasis. Cell Res 18: 350-359. 

188. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor 
gene tropomyosin 1 (TPMl). J BioI Chern 282: 14328-14336. 

189. Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, et al. 
(2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer 
Cell 18: 282-293. 

190. Bhatti I, Lee A, James V, Hall RI, Lund IN, et al. (2011) Knockdown of 
microRNA-21 inhibits proliferation and increases cell death by targeting programmed 
cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma. J Gastrointest Surg 15: 
199-208. 

191. Folini M, Gandellini P, Longoni N, Profumo V, Callari M, et al. (2010) miR-21: 
an oncomir on strike in prostate cancer. Mol Cancer 9: 12. 

192. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, et al. (2005) A 
polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers 
and enhances cell proliferation. Cancer Res 65: 9628-9632. 

193. Eis PS, Tam W, Sun L, Chadburn A, Li Z, et al. (2005) Accumulation of miR-
155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102: 3627-
3632. 

194. John B, Enright AJ, Aravin A, Tuschl T, Sander C, et al. (2004) Human 
MicroRNA targets. PLoS BioI 2: e363. 

195. ET Verghese AH, V Speirs, TA Hughes, (2008) Small is beautiful: microRNAs 
and breast cancer - where are we now? The Journal of Pathology 215: 214-221. 

196. Castaneda CA, Agullo-Ortuno MT, Fresno Vara JA, Cortes-Funes H, Gomez 
HL, et al. (2011) Implication of miRNA in the diagnosis and treatment of breast 
cancer. Expert Rev Anticancer Ther 11: 1265-1275. 

197. Varol N, Konac E, Gurocak OS, Sozen S (2011) The realm of microRNAs in 
cancers. Mol BioI Rep 38: 1079-1089. 

198. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. (2007) 
MicroRNA expression profiling of human breast cancer identifies new markers of 
tumor subtype. Genome Biol8: R214. 

199. Ferracin M, Querzoli P, Calin GA, Negrini M (2011) MicroRNAs: Toward the 
Clinic for Breast Cancer Patients. Seminars in Oncology 38: 764-775. 

200. Park SM, Shell S, Radjabi AR, Schickel R, Feig C, et al. (2007) Let-7 prevents 
early cancer progression by suppressing expression of the embryonic gene HMGA2. 
Cell Cycle 6: 2585-2590. 

201. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, et al. (2007) 
Coordinate Suppression of ERBB2 and ERBB3 by Enforced Expression of Micro
RNA miR-125a or miR-125b. J BioI Chern 282: 1479-1486. 

202. Paterson EL, Kolesnikoff N, Gregory PA, Bert AG, Khew-Goodall Y, et al. 
(2008) The microRNA-200 family regulates epithelial to mesenchymal transition. 
ScientificWorldJournal8: 901-904. 

117 



203. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, et al. (2008) The miR-
200 family and miR-205 regulate epithelial to mesenchymal transition by targeting 
ZEB 1 and SIP1. Nat Cell Bioi 10: 593-601. 

204. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency 
and cancer progression. Cell Cycle 8: 843-852. 

205. Burk U, Schubert J, Wellner U, Schmalhofer 0, Vincan E, et al. (2008) A 
reciprocal repression between ZEB 1 and members of the miR-200 family promotes 
EMT and invasion in cancer cells. EMBO Rep 9: 582-589. 

206. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, et al. 
(2010) miR-200bc/429 cluster targets PLCgammal and differentially regulates 
proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 
29: 4297-4306. 

207. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, et al. (2011) An 
autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and 
maintenance of epithelial-mesenchymal transition. Mol Bioi Cell 22: 1686-1698. 

208. Negrini M, Calin GA (2008) Breast cancer metastasis: a microRNA story. Breast 
Cancer Res 10: 203. 

209. Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, et al. (2009) MicroRNA 
expression profiling of human metastatic cancers identifies cancer gene targets. J 
Pathol219: 214-221. 

210. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, et al. (2010) Therapeutic 
silencing of miR-1Ob inhibits metastasis in a mouse mammary tumor model. Nat 
Biotechnol28: 341-347. 

211. Myers C, Charboneau A, Cheung I, Hanks D, Boudreau N (2002) Sustained 
expression of homeobox D10 inhibits angiogenesis. Am J Pathol 161: 2099-2109. 

212. Zhu S, Si M-L, Wu H, Mo Y-Y (2007) MicroRNA-21 Targets the Tumor 
Suppressor Gene Tropomyosin 1 (TPMl). J Bioi Chern 282: 14328-14336. 

213. Hossain A, Kuo MT, Saunders GF (2006) Mir-17 -5p regulates breast cancer cell 
proliferation by inhibiting translation of AlB 1 mRNA. Mol Cell Bio126: 8191-8201. 

214. Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, et al. (2004) 
High tumor incidence and activation of the PI3K1AKT pathway in transgenic mice 
define AlB 1 as an oncogene. Cancer Cell 6: 263-274. 

215. Torres-Arzayus MI, Zhao J, Bronson R, Brown M (2010) Estrogen-dependent 
and estrogen-independent mechanisms contribute to AlB I-mediated tumor formation. 
Cancer Res 70: 4102-4111. 

216. Qin L, Liao L, Redmond A, Young L, Yuan Y, et al. (2008) The AlB 1 oncogene 
promotes breast cancer metastasis by activation of PEA3-mediated matrix 
metalloproteinase 2 (MMP2) and MMP9 expression. Mol Cell Bioi 28: 5937-5950. 

217. Lahusen T, Henke RT, Kagan BL, Wellstein A, Riegel AT (2009) The role and 
regulation of the nuclear receptor co-activator AlB I in breast cancer. Breast Cancer 
Res Treat 116: 225-237. 

218. Li H, Bian C, Liao L, Li J, Zhao RC (2011) miR-17-5p promotes human breast 
cancer cell migration and invasion through suppression of HBPI. Breast Cancer Res 
Treat 126: 565-575. 

118 



219. Iorio M, Ferracin M, Liu C, Veronese A, Spizzo R, et al. (2005) MicroRNA gene 
expression deregulation in human breast cancer. Cancer Res 65: 7065 - 7070. 

220. Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, et al. (2009) 
MicroRNA signatures predict oestrogen receptor, progesterone receptor and 
HER2/neu receptor status in breast cancer. Breast Cancer Res 11: R27. 

221. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, et al. (2007) 
Altered MicroRNA Expression Confined to Specific Epithelial Cell Subpopulations in 
Breast Cancer. Cancer Res 67: 11612-11620. 

222. Roth C, Rack B, Muller V, Janni W, Pantel K, et al. (2010) Circulating 
microRNAs as blood-based markers for patients with primary and metastatic breast 
cancer. Breast Cancer Res 12: R90. 

223. Hu Z, Dong J, Wang LE, Ma H, Liu J, et al. (2012) Serum microRNA profiling 
and breast cancer risk: the use of miR-484/191 as endogenous controls. 
Carcinogenesis. 

224. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, et al. (2010) A pilot study 
of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 
5: e13735. 

225. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, et al. (2011) Direct 
serum assay for microRNA-21 concentrations in early and advanced breast cancer. 
Clin Chern 57: 84-91. 

226. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ (2010) Systemic miRNA-
195 Differentiates Breast Cancer from Other Malignancies and Is a Potential 
Biomarker for Detecting Noninvasive and Early Stage Disease. Oncologist 15: 673-
682. 

227. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, et al. (2010) 
Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. 
Ann Surg 251: 499-505. 

228. Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H (2008) miR-206 
Expression Is Down-regulated in Estrogen Receptor {alpha}-Positive Human Breast 
Cancer. Cancer Res 68: 5004-5008. 

229. Adams BD, Fumeaux H, White BA (2007) The Micro-Ribonucleic Acid 
(miRNA) miR-206 Targets the Human Estrogen Receptor-{alpha} (ER{alpha}) and 
Represses ER {alpha} Messenger RNA and Protein Expression in Breast Cancer Cell 
Lines. Mol Endocrinol21: 1132-1147. 

230. Adams BD, Cowee DM, White BA (2009) The role of miR-206 in the epidermal 
growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) 
signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol 23: 
1215-1230. 

231. Pandey DP, Picard D (2009) miR-22 Inhibits Estrogen Signaling by Directly 
Targeting the Estrogen Receptor {alpha} mRNA. Mol Cell Bioi 29: 3783-3790. 

232. Xiong J, Yu D, Wei N, Fu H, Cai T, et al. (2010) An estrogen receptor alpha 
suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive 
human breast cancer cell lines and clinical samples. FEBS 1. 

119 



233. Zhao JJ, Lin J, Yang H, Kong W, He L, et al. (2008) MicroRNA-2211222 
negatively regulates estrogen receptor alpha and is associated with tamoxifen 
resistance in breast cancer. J BioI Chern 283: 31079-31086. 

234. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, et al. (2010) 
MicroRNA Cluster 221-222 and Estrogen Receptor {alpha} Interactions in Breast 
Cancer. J Natl Cancer Inst 102: 706-721. 

235. Rao X, Di Leva G, Li M, Fang F, Devlin C, et al. (2011) MicroRNA-2211222 
confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. 
Oncogene 30: 1082-1097. 

236. Zhao Y, Deng C, Wang J, Xiao J, Gatalica Z, et al. (2011) Let-7 family miRNAs 
regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. 
Breast Cancer Res Treat 127: 69-80. 

237. Zhao Y, Deng C, Lu W, Xiao J, Ma D, et al. (2011) Let-7 microRNAs Induce 
Tamoxifen Sensitivity by Down-Regulation of Estrogen Receptor Alpha Signaling in 
Breast Cancer. Mol Med. 

238. Leivonen SK, Makela R, Ostling P, Kohonen P, Haapa-Paananen S, et al. (2009) 
Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor 
signaling in breast cancer cell lines. Oncogene 28: 3926-3936. 

239. Xin F, Li M, Balch C, Thomson M, Fan M, et al. (2009) Computational analysis 
of microRNA profiles and their target genes suggests significant involvement in 
breast cancer antiestrogen resistance. Bioinformatics 25: 430-434. 

240. Miller TE, Ghosha1 K, Ramaswamy B, Roy S, Datta J, et al. (2008) MicroRNA-
2211222 confers tamoxifen resistance in breast cancer by targeting p27(Kip1). J BioI 
Chern: M804612200. 

241. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, et al. (2008) MicroRNA-
2211222 confers tamoxifen resistance in breast cancer by targeting p27Kip 1. J BioI 
Chern 283: 29897-29903. 

242. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, et al. (2009) 
Downregulation of miRNA-200c links breast cancer stern cells with normal stern 
cells. Cell 138: 592-603. 

243. Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, et al. (2011) Anti-miR-222 
and -181 B suppresses growth of tamoxifen resistant xenografts in mouse by targeting 
TIMP3 and modulating mitogenic signal. Journal of Biological Chemistry. 

244. Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, et al. (2010) 
Oncogenic HER2{Delta} 16 Suppresses miR-15aJ16 and Deregulates BCL-2 to 
Promote Endocrine Resistance of Breast Tumors. Carcinogenesis. 

245. Bergamaschi A, Katzenellenbogen BS (2011) Tamoxifen downregulation of 
miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine 
resistance. Oncogene. 

246. Lyng MB, Laenkholm AV, Sokilde R, Gravgaard KH, Litman T, et al. (2012) 
Global microRNA expression profiling of high-risk ER+ breast cancers from patients 
receiving adjuvant tamoxifen mono-therapy: a DBCG study. PLoS One 7: e36170. 

120 



247. Manavalan 'IT, Teng Y, Appana SN, Datta S, Kalbfleisch TS, et al. (2011) 
Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 
versus tamoxifen-resistant L Y2 human breast cancer cells. Cancer Lett 313: 26-43. 

248. Jordan VC (2003) Is Tamoxifen the Rosetta Stone for Breast Cancer? J Natl 
Cancer Inst 95: 338-340. 

249. Schafer JM, Bentrem DJ, Takei H, Gajdos C, Badve S, et al. (2002) A 
mechanism of drug resistance to tamoxifen in breast cancer. The Journal of Steroid 
Biochemistry and Molecular Biology 83: 75-83. 

250. Peng J, Sengupta S, Jordan VC (2009) Potential of selective estrogen receptor 
modulators as treatments and preventives of breast cancer. Anticancer Agents Med 
Chern 9: 481-499. 

251. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat 
Cancer 11: 643-658. 

252. Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the 
Estrogen Receptor and the HER Tyrosine Kinase Receptor Family: Molecular 
Mechanism and Clinical Implications for Endocrine Therapy Resistance. Endocr Rev 
29: 217-233. 

253. Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, et al. (2003) Antiestrogen 
resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22: 
7316-7339. 

254. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs 
are conserved targets of microRNAs. Genome Res 19: 92-105. 

255. Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene 
regulation by miRNAs. Science 331: 550-553. 

256. Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and 
potential future. Mol Cancer Ther 7: 3655-3660. 

257. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, et al. (2005) MicroRNA 
Gene Expression Deregulation in Human Breast Cancer. Cancer Res 65: 7065-7070. 

258. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, et al. (2006) A microRNA 
expression signature of human solid tumors defines cancer gene targets. Proceedings 
of the National Academy of Sciences 103: 2257-2261. 

259. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, et al. (2008) MicroRNA 
Microarray Identifies Let-7i as a Novel Biomarker and Therapeutic Target in Human 
Epithelial Ovarian Cancer. Cancer Res 68: 10307-10314. 

260. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, et al. 
(2009) Estradiol-regulated microRNAs control estradiol response in breast cancer 
cells. Nucl Acids Res 37: 4850-4861. 

261. Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, et al. (2009) 
Widespread Estrogen-Dependent Repression of microRNAs Involved in Breast 
Tumor Cell Growth. Cancer Res 69: 8332-8340. 

262. O'Day E, Lal A (2010) MicroRNAs and their target gene networks in breast 
cancer. Breast Cancer Res 12: 201. 

121 



263. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, et al. (2005) A 
MicroRNA Signature Associated with Prognosis and Progression in Chronic 
Lymphocytic Leukemia. N Engl J Med 353: 1793-1801. 

264. Drakaki A, Iliopoulos D (2009) MicroRNA Gene Networks in Oncogenesis. 
Curr Genomics 10: 35-41. 

265. Mocellin S, Pasquali S, Pilati P (2009) Oncomirs: From Tumor Biology to 
Molecularly Targeted Anticancer Strategies. Mini Reviews in Medicinal Chemistry 9: 
70-80. 

266. Verghese ET, Hanby AM, Speirs V, Hughes TA (2008) Small is beautiful: 
microRNAs and breast cancer-where are we now? J Pathol215: 214-221. 

267. Klinge CM (2009) Estrogen Regulation of MicroRNA Expression. Current 
Genomics 10: 169-183. 

268. Wickramasinghe N, Manavalan T, Dougherty S, Riggs K, Li Y, et al. (2009) 
Estradiol downregulates miR-21 expression and increases miR-21 target gene 
expression in MCF-7 breast cancer cells. Nucleic Acids Res 37: 2584-2595 

269. Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, et al. (2009) The 
estrogen receptor-alpha induced microRNA signature regulates itself and its 
transcriptional response. Proceedings of the National Academy of Sciences 106: 
15732-15737. 

270. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, et al. (2008) MicroRNA-
2211222 confers tamoxifen resistance in breast cancer by targeting p27(Kipl). J BioI 
Chern 283: 29897-29903. 

271. Rao X, Di Leva G, Li M, Fang F, Devlin C, et al. (2011) MicroRNA-2211222 
confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. 
Oncogene in press. 

272. Xin F, Li M, Balch C, Thomson M, Fan M, et al. (2009) Computational analysis 
of microRNA profiles and their target genes suggests significant involvement in 
breast cancer antiestrogen resistance. Bioinformatics 25: 430-434. 

273. Bronzert DA, Greene GL, Lippman ME (1985) Selection and characterization of 
a breast cancer cell line resistant to the antiestrogen LY 117018. Endocrinology 117: 
1409-1417. 

274. Mullick A, Chambon P (1990) Characterization of the estrogen receptor in two 
antiestrogen-resistant cell lines, L Y2 and T47D. Cancer Res 50: 333-338. 

275. Crawford AC, Riggins RB, Shajahan AN, Zwart A, Clarke R (2010) Co
Inhibition of BCL-W and BCL2 Restores Antiestrogen Sensitivity through BECNI 
and Promotes an Autophagy-Associated Necrosis. PLoS ONE 5: e8604. 

276. Frasor J, Chang EC, Komm B, Lin C-Y, Vega VB, et al. (2006) Gene Expression 
Preferentially Regulated by Tamoxifen in Breast Cancer Cells and Correlations with 
Clinical Outcome. Cancer Res 66: 7334-7340. 

277. Riggs KA, Wickramasinghe NS, Cochrum RK, Watts MB, Klinge CM (2006) 
Decreased Chicken Ovalbumin Upstream Promoter Transcription Factor II 
Expression in Tamoxifen-Resistant Breast Cancer Cells. Cancer Res 66: 10188-
10198. 

122 



278. Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, et al. (1997) 
MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to 
the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the 
nonsteroidal antiestrogen tamoxifen. Cancer Res 57: 3486-3493. 

279. Smyth GK, Speed TP (2003) Normalization of cDNA microarray data. Methods 
31: 265-273. 

280. Smyth GK (2004) Linear models and empirical bayes methods for assessing 
differential expression in microarray experiments. Stat Appl Genet Mol Bioi 3: 
Article3. 

281. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M (2000) Cofactor dynamics and 
sufficiency in estrogen receptor-regulated transcription. Cell 103: 843-852. 

282. Kisanga ER, Gjerde J, Guerrieri-Gonzaga A, Pigatto F, Pesci-Feltri A, et al. 
(2004) Tamoxifen and Metabolite Concentrations in Serum and Breast Cancer Tissue 
during Three Dose Regimens in a Randomized Preoperative Trial. Clin Cancer Res 
10: 2336-2343. 

283. Rao X, Di Leva G, Li M, Fang F, Devlin C, et al. (2010) MicroRNA-2211222 
confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. 
Oncogene. 

284. Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling 
of microRNA precursors in human cancer cell lines. Nucl Acids Res 33: 5394-5403. 

285. Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N (2008) Identification 
of suitable endogenous control genes for microRNA gene expression analysis in 
human breast cancer. BMC Mol Bioi 9: 76. 

286. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in 
quantitative RT-PCR assays: identification of suitable reference RNA targets in 
normal and cancerous human solid tissues. RNA 14: 844-852. 

287. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends in Cell 
Biology 18: 505-516. 

288. Boyerinas B, Park S-M, Hau A, Murmann AE, Peter ME (2010) The role of let-7 
in cell differentiation and cancer. Endocr Relat Cancer 17: F19-36. 

289. Bader AG, Brown D, Winkler M (2010) The Promise of MicroRNA 
Replacement Therapy. Cancer Research 70: 7027-7030. 

290. Sampson VB, Rong NH, Han J, Yang Q, Aris V, et al. (2007) MicroRNA Let-7a 
Down-regulates MYC and Reverts MYC-Induced Growth in Burkitt Lymphoma 
Cells. Cancer Res 67: 9762-9770. 

291. Lan FF, Wang H, Chen YC, Chan CY, Ng SS, et al. (2010) Hsa-let-7g inhibits 
proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and 
upregulation of p l61NK4A. International Journal of Cancer 128: 319-331. 

292. Dubik D, Dembinski TC, Shiu RPC (1987) Stimulation of c-myc oncogene 
expression associated with estrogen-induced proliferation of human breast cancer 
cells. Cancer Res 47: 6517-6521. 

293. Zhao Y, Deng C, Wang J, Xiao J, Gatalica Z, et al. (2011) Let-7 family miRNAs 
regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. 
Breast Cancer Res Treat in press. 

123 



294. Chen J-Q, Russo J (2009) ER[alpha]-negative and triple negative breast cancer: 
Molecular features and potential therapeutic approaches. Biochimica et Biophysica 
Acta (BBA) - Reviews on Cancer 1796: 162-175. 

295. Zhao J-J, Lin J, Yang H, Kong W, He L, et al. (2008) MicroRNA-2211222 
negatively regulates ERalpha and associates with tamoxifen resistance in breast 
cancer. J BioI Chern 283: 31079-31086. 

296. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-
205 in breast cancer. Cell Res 19: 439-448. 

297. Farazi TA, Horlings HM, ten Hoeve 11, Mihailovic A, Halfwerk H, et al. (2011) 
MicroRNA Sequence and Expression Analysis in Breast Tumors by Deep 
Sequencing. Cancer Research 71: 4443-4453. 

298. Wijayaratne AL, Nagel SC, Paige LA, Christensen OJ, Norris JD, et al. (1999) 
Comparative analyses of mechanistic differences among antiestrogens. Endocrinology 
140: 5828-5840. 

299. Prossnitz ER, Maggiolini M (2009) Mechanisms of estrogen signaling and gene 
expression via GPR30. Molecular and Cellular Endocrinology 308: 32-38. 

300. Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the Human 
MicroRNA-Generating Complex Mediates MAPKlErk Signaling. Cell 139: 112-122. 

301. Huang H, Xie C, Sun X, Ritchie RP, Zhang J, et al. (2010) miR-lOa Contributes 
to Retinoid Acid-induced Smooth Muscle Cell Differentiation. Journal of Biological 
Chemistry 285: 9383-9389. 

302. 0rom UA, Nielsen FC, Lund AH (2008) MicroRNA-lOa Binds the 5'UTR of 
Ribosomal Protein mRNAs and Enhances Their Translation. Molecular Cell 30: 460-
471. 

303. Davidson NE, Bronzert DA, Chambon P, Gelmann EP, Lippman ME (1986) Use 
of two MCF-7 cell variants to evaluate the growth regulatory potential of estrogen
induced products. Cancer Res 46: 1904-1908. 

304. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, et al. (2006) Optimized 
high-throughput microRNA expression profiling provides novel biomarker 
assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5: 24. 

305. Kang L, Zhang X, Xie Y, Tu Y, Wang 0, et al. (2010) Involvement of Estrogen 
Receptor Variant ER-{alpha}36, Not GPR30, in Nongenomic Estrogen Signaling. 
Mol Endocrinol 24: 709-721. 

306. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, et al. (2005) Identification, 
cloning, and expression of human estrogen receptor-[alpha] 36, a novel variant of 
human estrogen receptor-[alpha]66. Biochemical and Biophysical Research 
Communications 336: 1023-1027. 

307. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, et al. (2006) A variant of 
estrogen receptor-{ alpha}, hER-{alpha} 36: Transduction of estrogen- and 
antiestrogen-dependent membrane-initiated mitogenic signaling. PNAS 103: 9063-
9068. 

308. Lee LMJ, Cao J, Deng H, Chen P, Gatalica Z, et al. (2008) ERalpha36, a Novel 
Variant of ERalpha, is Expressed in ER-positive and -negative Human Breast 
Carcinomas. Anticancer Research 28: 479-483. 

124 



309. Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a 
ubiquitinated protein whose stability is affected differentially by agonists, antagonists, 
and selective estrogen receptor modulators. J BioI Chern 276: 35684-35692. 

310. Frasor J, Stossi F, Danes JM, Komm B, Lyttle CR, et al. (2004) Selective 
estrogen receptor modulators: discrimination of agonistic versus antagonistic 
activities by gene expression profiling in breast cancer cells. Cancer Res 64: 1522-
1533. 

311. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, et al. 
(2010) miR-200bc/429 cluster targets PLC[gamma] 1 and differentially regulates 
proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 
29: 4297-4306. 

312. Lim KB, Ng CY, Ong CK, Ong CS, Tran E, et al. (2001) Induction of apoptosis 
in mammary gland by a pure anti-estrogen ICI 182780. Breast Cancer Res Treat 68: 
127-138. 

313. EI Etreby MF, Liang Y, Wrenn RW, Schoenlein PV (1998) Additive effect of 
mifepristone and tamoxifen on apoptotic pathways in MCF-7 human breast cancer 
cells. Breast Cancer Research and Treatment 51: 149-168. 

314. Economopoulos K, Sergentanis T (2010) Three polymorphisms in cytochrome 
P450 IB 1 (CYPIB 1) gene and breast cancer risk: a meta-analysis. Breast Cancer 
Research and Treatment 122: 545-551. 

315. Brockdorff BL, Skouv J, Reiter BE, Lykkesfeldt AE (2000) Increased expression 
of cytochrome p450 lA 1 and 1 B 1 genes in anti-estrogen-resistant human breast 
cancer cell lines. Int J Cancer 88: 902-906. 

316. Sindhu RK, Koo JR, Sindhu KK, Ehdaie A, Farmand F, et al. (2006) Differential 
regulation of hepatic cytochrome P450 monooxygenases in streptozotocin-induced 
diabetic rats. Free Radic Res 40: 921-928. 

317. Spink DC, Spink BC, Cao JQ, DePasquale JA, Pentecost BT, et al. (1998) 
Differential expression of CYPIAI and CYPIB 1 in human breast epithelial cells and 
breast tumor cells. Carcinogenesis 19: 291-298. 

318. Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, et al. (2004) Human 
CYPIB 1 Is Regulated by Estradiol via Estrogen Receptor. Cancer Res 64: 3119-3125. 

319. Hamburger A W (2008) The role of ErbB3 and its binding partners in breast 
cancer progression and resistance to hormone and tyrosine kinase directed therapies. J 
Mammary Gland BioI Neoplasia 13: 225-233. 

320. Liu B, Ordonez-Ercan D, Fan Z, Edgerton SM, Yang X, et al. (2007) 
Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast 
cancer cells. International Journal of Cancer 120: 1874-1882. 

321. Revillion F, Pawlowski V, Lhotellier V, Louchez MM, Peyrat JP (2003) mRNA 
expression of the type I growth factor receptors in the human breast cancer cells 
MCF-7: regulation by estradiol and tamoxifen. Anticancer Res 23: 1455-1460. 

322. Cochrane DR, Howe EN, Spoelstra NS, Richer JK (2010) Loss of miR-200c: A 
Marker of Aggressiveness and Chemoresistance in Female Reproductive Cancers. J 
Onco12010: 821717. 

125 



323. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK (2009) 
MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule
targeting chemotherapeutic agents. Molecular Cancer Therapeutics 8: 1055-1066. 

324. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the 
MicroRNA hsa-miR-200c Leads to Reduced Expression of Transcription Factor 8 and 
Increased Expression of E-Cadherin. Cancer Res 67: 7972-7976. 

325. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, et al. (2008) A 
Double-Negative Feedback Loop between ZEB I-SIPI and the microRNA-200 Family 
Regulates Epithelial-Mesenchymal Transition. Cancer Res 68: 7846-7854. 

326. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 Family Inhibits 
Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of 
E-cadherin Transcriptional Repressors ZEB I and ZEB2. J BioI Chern 283: 14910-
14914. 

327. Kirschmann DA, Seftor EA, Nieva DR, Mariano EA, Hendrix MJ (1999) 
Differentially expressed genes associated with the metastatic phenotype in breast 
cancer. Breast Cancer Res Treat 55: 127-136. 

328. Cannell IG, Kong YW, Bushell M (2008) How do microRNAs regulate gene 
expression? Biochem Soc Trans 36: 1224-1231. 

329. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal 
transitions in development and disease. Cell 139: 871-890. 

330. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial
mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 
98: 1512-1520. 

331. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour 
progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415-428. 

332'. Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, et al. 
(2006) E-cadherin transcriptional downregulation by promoter methylation but not 
mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. 
Br J Cancer 94: 661-671. 

333. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, et al. (2005) 
SIPl/ZEB2 induces EMT by repressing genes of different epithelial cell-cell 
junctions. Nucleic Acids Res 33: 6566-6578. 

334. Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in 
development and metastasis. Cell 118: 277-279. 

335. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, et al. (2000) 
The transcription factor snail controls epithelial-mesenchymal transitions by 
repressing E-cadherin expression. Nat Cell BioI 2: 76-83. 

336. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial
mesenchymal transitions. Nat Rev Mol Cell Bioi 7: 131-142. 

337. Sreekumar R, Sayan BS, Mirnezami AH, Sayan AE (2011) MicroRNA Control 
of Invasion and Metastasis Pathways. Front Genet 2: 58. 

338. Howe EN, Cochrane DR, Richer JK (2012) The miR-200 and miR-221/222 
microRNA Families: Opposing Effects on Epithelial Identity. J Mammary Gland BioI 
Neoplasia. 

126 



339. Wright JA, Richer JK, Goodall GJ (2010) microRNAs and EMT in mammary 
cells and breast cancer. J Mammary Gland BioI Neoplasia 15: 213-223. 

340. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, et al. (2006) Tamoxifen 
resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of 
beta-catenin phosphorylation. Int J Cancer 118: 290-301. 

341. Kim MR, Choi HK, Cho KB, Kim HS, Kang KW (2009) Involvement of Pinl 
induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer 
cells. Cancer Sci 100: 1834-1841. 

342. Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, et al. (2011) Twist contributes 
to hormone resistance in breast cancer by downregulating estrogen receptor-alpha. 
Oncogene. 

343. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, et al. (2012) Re
expression of microRNA-375 reverses both tamoxifen resistance and accompanying 
EMT-like properties in breast cancer. Oncogene. 

344. Guttilla IK, Adams BD, White BA (2012) ERa, microRNAs, and the epithelial
mesenchymal transition in breast cancer. Trends in Endocrinology &amp; Metabolism 
23: 73-82. 

345. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family 
determines the epithelial phenotype of cancer cells by targeting the E-cadherin 
repressors ZEB 1 and ZEB2. Genes Dev 22: 894-907. 

346. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial
mesenchymal transition and cancer cell migration by direct targeting of E-cadherin 
transcriptional repressors ZEB 1 and ZEB2. J BioI Chern 283: 14910-14914. 

347. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the 
microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and 
increased expression ofE-cadherin. Cancer Res 67: 7972-7976. 

348. Brunner N, Boulay V, Fojo A, Freter CE, Lippman ME, et al. (1993) Acquisition 
of hormone-independent growth in MCF-7 cells is accompanied by increased 
expression of estrogen-regulated genes but without detectable DNA amplifications. 
Cancer Res 53: 283-290. 

349. BRONZERT DA, GREENE GL, LIPPMAN ME (1985) Selection and 
Characterization of a Breast Cancer Cell Line Resistant to the Antiestrogen L Y 
117018. Endocrinology 117: 1409-1417. 

350. Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, et al. (2010) Role for 
DNA methylation in the regulation of miR-200c and miR-141 expression in normal 
and cancer cells. PLoS One 5: e8697. 

351. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, et al. (2012) Dynamic 
epigenetic regulation of the microRNA-200 family mediates epithelial and 
mesenchymal transitions in human tumorigenesis. Oncogene 31: 2062-2074. 

352. Pryzbylkowski P, Obajimi 0, Keen JC (2008) Trichostatin A and 5 Aza-2' 
deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells 
through modulation of HuR. Breast Cancer Res Treat 111: 15-25. 

353. Adam L, Zhong M, Choi W, Qi W, Nicoloso M, et al. (2009) miR-200 
expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and 

127 



reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15: 
5060-5072. 

354. Li Y, VandenBoom TG, 2nd, Kong D, Wang Z, Ali S, et al. (2009) Up
regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to
mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 
69: 6704-6712. 

355. Li Y, VandenBoom TG, II, Kong D, Wang Z, Ali S, et al. (2009) Up-regulation 
of miR-200 and let-7 by Natural Agents Leads to the Reversal of Epithelial-to
Mesenchymal Transition in Gemcitabine-Resistant Pancreatic Cancer Cells. Cancer 
Res: 0008-5472.CAN-0009-1298. 

356. Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, et al. (201 0) Gemcitabine 
sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 
and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70: 3606-3617. 

357. Bao B, Ali S, Kong D, Sarkar SH, Wang Z, et al. (2011) Anti-tumor activity of a 
novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in 
pancreatic cancer. PLoS One 6: e 17850. 

358. Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, et al. (2010) Role of 
DNA methylation in miR-200c1141 cluster silencing in invasive breast cancer cells. 
BMC Res Notes 3: 219. 

359. Hiscox S, Jordan NJ, Jiang W, Harper M, McClelland R, et al. (2006) Chronic 
exposure to fulvestrant promotes overexpression of the c-Met receptor in breast 
cancer cells: implications for tumour-stroma interactions. Endocr Relat Cancer 13: 
1085-1099. 

360. Hiscox S, Morgan L, Green TP, Barrow D, Gee J, et al. (2006) Elevated Src 
activity promotes cellular invasion and motility in tamoxifen resistant breast cancer 
cells. Breast Cancer Res Treat 97: 263-274. 

361. Guttilla IK, Phoenix KN, Hong X, Timauer JS, Claffey KP, et al. (2012) 
Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of 
the estrogen receptor by microRNAs. Breast Cancer Res Treat 132: 75-85. 

362. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, et al. (2007) MicroRNA 
signatures in human ovarian cancer. Cancer Res 67: 8699-8707. 

363. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, et al. (2008) MicroRNA 
expression profiles in serous ovarian carcinoma. Clin Cancer Res 14: 2690-2695. 

364. Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa 1M, et al. (2009) A miR-
200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol 
Oncol 114: 457-464. 

365. Dykxhoom DM, Wu Y, Xie H, Yu F, Lal A, et al. (2009) miR-200 enhances 
mouse breast cancer cell colonization to form distant metastases. PLoS One 4: e7181. 

366. Korpal M, Ell BJ, Buffa PM, Ibrahim T, Blanco MA, et al. (2011) Direct 
targeting of Sec23a by miR-200s influences cancer cell secretome and promotes 
metastatic colonization. Nat Med 17: 1101-1108. 

367. Johnston SJ, Cheung KL (2010) Fulvestrant - a novel endocrine therapy for 
breast cancer. Curr Med Chern 17: 902-914. 

128 



368. Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, et al. (2010) EGFR 
signaling in breast cancer: bad to the bone. Semin Cell Dev Bioi 21: 951-960. 

369. Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, et al. (2011) Anti-microRNA-
222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in 
mouse by targeting TIMP3 protein and modulating mitogenic signal. J BioI Chern 
286: 42292-42302. 

370. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, et al. 
(2006) S6Kl- and betaTRCP-mediated degradation of PDCD4 promotes protein 
translation and cell growth. Science 314: 467-471. 

371. Schmid T, Jansen AP, Baker AR, Hegamyer G, Hagan JP, et al. (2008) 
Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. 
Cancer Res 68: 1254-1260. 

372. Park SH, Cheung LW, Wong AS, Leung PC (2008) Estrogen regulates Snail and 
Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian 
cancer cells through estrogen receptor alpha. Mol Endocrinol 22: 2085-2098. 

373. Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, et al. (2008) ERalpha suppresses 
slug expression directly by transcriptional repression. Biochem J 416: 179-187. 

374. Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, et al. (2010) ERalpha signaling 
through slug regulates E-cadherin and EMT. Oncogene 29: 1451-1462. 

375. Dhasarathy A, Kajita M, Wade PA (2007) The transcription factor snail mediates 
epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol 
Endocrinol21: 2907-2918. 

376. Tan Y, Zhang B, Wu T, Skogerbo G, Zhu X, et al. (2009) Transcriptional 
inhibiton of Hoxd4 expression by miRNA-lOa in human breast cancer cells. BMC 
Molecular Biology 10: 12. 

377. Volanis D, Kadiyska T, Galanis A, Delakas D, Logotheti S, et al. (2010) 
Environmental factors and genetic susceptibility promote urinary bladder cancer. 
Toxicology Letters 193: 131-137. 

378. Persson H, Kvist A, Rego N, Staaf J, Vallon-Christersson J, et al. (2011) 
Identification of New MicroRNAs in Paired Normal and Tumor Breast Tissue 
Suggests a Dual Role for the ERBB2IHer2 Gene. Cancer Research 71: 78-86. 

379. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, et al. (2007) A 
MicroRNA Signature of Hypoxia. Mol Cell Bioi 27: 1859-1867. 

380. Pan Q, Luo X, Toloubeydokhti T, Chegini N (2007) The expression profile of 
micro-RNA in endometrium and endometriosis and the influence of ovarian steroids 
on their expression. Mol Hum Reprod 13: 797-806. 

381. Pan Q, Luo X, Chegini N (2008) Differential expression of microRNAs in 
myometrium and leiomyomas and regulation by ovarian steroids. Journal of Cellular 
and Molecular Medicine 12: 227-240. 

382. Hu S-J, Ren G, Liu J-L, Zhao Z-A, Yu Y-S, et al. (2008) MicroRNA Expression 
and Regulation in Mouse Uterus during Embryo Implantation. J BioI Chern 283: 
23473-23484. 

129 



383. Romero DG,. Plonczynski MW, Carvajal CA, Gomez-Sanchez EP, Gomez
Sanchez CE (2008) MicroRNA-21 Increases Aldosterone Secretion and Proliferation 
in H295R Human ~drenocortical Cells. Endocrinology: en.2007 -1686. 

384. Fix LN, Shah M, Efferth T, Farwell MA, Zhang B (2010) MicroRNA Expression 
Profile of MCF-7 Human Breast Cancer Cells and the Effect of Green Tea 
Polyphenon-60. Cancer Genomics - Proteomics 7: 261-277. 

385. Terao M, Fratelli M, Kurosaki M, Zanetti A, Guarnaccia V, et al. (2011) 
Induction of miR-21 by Retinoic Acid in Estrogen Receptor-positive Breast 
Carcinoma Cells. Journal of Biological Chemistry 286: 4027-4042. 

386. Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, et al. (2008) Four 
miRNAs associateGi with aggressiveness of lymph node-negative, estrogen receptor
positive human breast cancer. Proceedings of the National Academy of Sciences 105: 
13021-13026. 

387. Xiong J, Du Q, Liang Z (2010) Tumor-suppressive microRNA-22 inhibits the 
transcription of E-box-containing c-Myc target genes by silencing c-Myc binding 
protein. Oncogene 29: 4980-4988. 

388. Zhao J-J, Lin J, Lwin T, Yang H, Guo J, et al. (2010) microRNA expression 
profile and identification of miR-29 as a prognostic marker and pathogenetic factor by 
targeting CDK6 in mantle cell lymphoma. Blood 115: 2630-2639. 

389. Muniyappa 1jIK, Dowling P, Henry M, Meleady P, Doolan P, et al. (2009) 
MiRNA-29a regulates the expression of numerous proteins and reduces the 
invasiveness and proliferation of human carcinoma cell lines. European Journal of 
Cancer 45: 3104-3118. 

390. Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, et al. (2010) The 
MicroRNA Profile of Prostate Carcinoma Obtained by Deep Sequencing. Molecular 
Cancer Research: -. 

391. Xu H, Cheung IY, Guo H-F, Cheung N-KV (2009) MicroRNA miR-29 
Modulates Expression of Immunoinhibitory Molecule B7-H3: Potential Implications 
for Immune Based Therapy of Human Solid Tumors. Cancer Res 69: 6275-6281. 

392. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 
Modulates Wnt Signaling in Human Osteoblasts through a Positive Feedback Loop. 
Journal of Biological Chemistry 285: 25221-25231. 

393. Tanzer A, Stadler PF (2004) Molecular Evolution of a MicroRNA Cluster. 
Journal of Molecular Biology 339: 327-335. 

394. Donker RB, Mouillet JF, Nelson DM, Sadovsky Y (2007) The expression of 
Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic 
trophoblasts. Mol Hum Reprod 13: 273-279. 

395. Yeung ML, Yasunaga J-i, Bennasser Y, Dusetti N, Harris D, et al. (2008) Roles 
for MicroRNAs, miR-93 and miR-130b, and Tumor Protein 53-Induced Nuclear 
Protein 1 Tumor Suppressor in Cell Growth Dysregulation by Human T-Cell 
Lymphotrophic viius I. Cancer Res 68: 8976-8985. 

396. Kim Y-K, YuiJ, Han TS, Park S-Y, Namkoong B, et al. (2009) Functional links 
between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA 
clusters in gastric cancer. Nucl Acids Res 37: 1672-1681. 

130 



397. Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, et al. (2009) MicroRNA 
Classifiers for Predicting Prognosis of Squamous Cell Lung Cancer. Cancer Res 69: 
5776-5783. 

398. Su H, Yang J-R, Xu T, Huang J, Xu L, et al. (2009) MicroRNA-101, Down
regulated in Hepatocellular Carcinoma, Promotes Apoptosis and Suppresses 
Tumorigenicity. Cancer Res 69: 1135-1142. 

399. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, et al. (2010) MicroRNA-125b Confers 
the Resistance of Breast Cancer Cells to Paelitaxel through Suppression of Pro
apoptotic Bel-2 Antagonist Killer 1 (Bakl) Expression. Journal of Biological 
Chemistry 285: 21496-21507. 

400. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, et al. (2007) MicroRNA 
Signatures in Human Ovarian Cancer. Cancer Res 67: 8699-8707. 

401. Wong T-S, Liu X-B, Wong BY-H, Ng RW-M, Yuen AP-W, et al. (2008) Mature 
miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. 
Clin Cancer Res 14: 2588-2592. 

402. Dai R, Phillips RA, Zhang Y, Khan D, Crasta 0, et al. (2008) Suppression of 
LPS-induced IFN{gamma} and nitric oxide in splenic lymphocytes by select 
estrogen-regulated miRNA: A novel mechanism of immune modulation. Blood 112: 
4591-4597. 

403. Ferretti E, De Smaele E, Miele E, Laneve P, Po A, et al. (2008) Concerted 
microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and 
tumour cells. EMBO J. 

404. Li W, Xie L, He X, Li J, Tu K, et al. (2008) Diagnostic and prognostic 
implications of microRNAs in human hepatocellular carcinoma. Int J Cancer 123: 
1616-1622. 

405. Lowery AJ, Miller N, McNeill RE, Kerin MJ (2008) MicroRNAs as prognostic 
indicators and therapeutic targets: potential effect on breast cancer management. Clin 
Cancer Res 14: 360-365. 

406. Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, Perry N, 
Wagaarachchi P, et al. (2009) Differentially expressed microRNAs and their mRNA 
targets constitute molecular pathways associated with endometriosis. Mol Endocrinol 
23: 265-275. 

407. Murphy AJ, Guyre PM, Pioli PA (2010) Estradiol Suppresses NF-{kappa}B 
Activation through Coordinated Regulation of let-7a and miR-125b in Primary 
Human Macrophages. J Immunol184: 5029-5037. 

408. Rajabi H, Jin C, Ahmad R, McClary C, Joshi MD, et al. (2010) MUCIN 1 
ONCOPROTEIN EXPRESSION IS SUPPRESSED BY THE miR-125b ONCOMIR. 
Genes Cancer I: 62-68. 

409. Shi L, Cheng Z, Zhang J, Li R, Zhao P, et al. (2008) hsa-mir-181a and hsa-mir-
181b function as tumor suppressors in human glioma cells. Brain Research 1236: 185-
193. 

410. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, et al. (2006) 
Tell Expression in Chronic Lymphocytic Leukemia Is Regulated by miR-29 and 
miR-181. Cancer Res 66: 11590-11593. 

131 



411. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, et al. (2006) Prognostic 
Values ofmicroRNAs in Colorectal Cancer. Biomark Insights 2: 113-12l. 

412. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, et al. (2008) 
MicroRNA expression profiles associated with prognosis and therapeutic outcome in 
colon adenocarcinoma. JAMA 299: 425-436. 

413. Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, et al. (2007) 
MicroRNA gene expression during retinoic acid-induced differentiation of human 
acute promyelocytic leukemia. Oncogene 26: 4148-4157. 

414. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, et al. (2008) Genomic 
Profiling of MicroRNA and Messenger RNA Reveals Deregulated MicroRNA 
Expression in Prostate Cancer. Cancer Res 68: 6162-6170. 

415. Yan L-X, Huang X-F, Shao Q, Huang M-Y, Deng L, et al. (2008) MicroRNA 
miR-21 overexpression in human breast cancer is associated with advanced clinical 
stage, lymph node metastasis and patient poor prognosis. RNA 14: 2348-2360. 

416. Cuesta R, Martinez-Sanchez A, Gebauer F (2009) miR-181a Regulates Cap
Dependent Translation of p27kipl mRNA in Myeloid Cells. Mol Cell BioI 29: 2841-
2851. 

417. Fei J, Lan F, Guo M, Li Y, Liu Y (2008) Inhibitory effects of anti-miRNA 
oligonucleotides (AMOs) on A549 cell growth. 1 Drug Target 16: 688-693. 

418. Galluzzi L, Morselli E, Vitale I, Kepp 0, Senovilla L, et al. (2010) miR-181a and 
miR-630 Regulate Cisplatin-Induced Cancer Cell Death. Cancer Res 70: 1793-1803. 

419. Gao W, Yu Y, Cao H, Shen H, Li X, et al. (2010) Deregulated expression of 
miR-21, miR-143 and miR-181a in non small cell lung cancer is related to 
clinicopathologic characteristics or patient prognosis. Biomedicine & 
Pharmacotherapy In Press, Corrected Proof. 

420. Huang S, Wu S, Ding 1, Lin 1, Wei L, et al. (2010) MicroRNA-181a modulates 
gene expression of zinc finger family members by directly targeting their coding 
regions. Nucl Acids Res: gkq564. 

421. Bandres E, Cube do E, Agirre X, Malumbres R, Zarate R, et al. (2006) 
Identification by Real-time PCR of 13 mature microRNAs differentially expressed in 
colorectal cancer and non-tumoral tissues. Mol Cancer 5: 29. 

422. Uhlmann S, Zhang ID, Schwager A, Mannsperger H, Riazalhosseini Y, et al. 
(2010) miR-200bc/429 cluster targets PLC[gamma] I and differentially regulates 
proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. 
Oncogene. 

423. Yang H, Kong W, He L, Zhao 1-1, O'Donnell ID, et al. (2008) MicroRNA 
Expression Profiling in Human Ovarian Cancer: miR-214 Induces Cell Survival and 
Cisplatin Resistance by Targeting PTEN. Cancer Res 68: 425-433. 

424. Xia H, Cheung WKC, Sze 1, Lu G, liang S, et al. (2010) miR-200a Regulates 
Epithelial-Mesenchymal to Stem-like Transition via ZEB2 and ~-Catenin Signaling. 
lournal of Biological Chemistry 285: 36995-37004. 

425. Hurteau Gl, Spivack SD, Brock Gl (2006) Potential mRNA degradation targets 
of hsa-miR-200c, identified using informatics and qRT-PCR. Cell Cycle 5: 1951-
1956. 

132 



426. Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, et al. (2009) microRNA-
205 Regulates HER3 in Human Breast Cancer. Cancer Res 69: 2195-2200. 

427. Ie Sage C, Nagel R, Egan DA, Schrier M, Mesman E, et al. (2007) Regulation of 
the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell 
proliferation. Embo J 26: 3699-3708. 

428. Medina R, Zaidi SK, Liu C-G, Stein JL, vanWijnen AJ, et al. (2008) MicroRNAs 
221 and 222 Bypass Quiescence and Compromise Cell Survival. Cancer Res 68: 
2773-2780. 

429. Chen Y, Zaman MS, Deng G, Majid S, Saini S, et al. (2011) MicroRNAs 
2211222 and Genistein-Mediated Regulation of ARHI Tumor Suppressor Gene in 
Prostate Cancer. Cancer Prevention Research 4: 76-86. 

430. Zhang C, Zhang J, Zhang A, Wang Y, Han L, et al. (2010) PUMA is a novel 
target of miR-22 11222 in human epithelial cancers. Int J Oncol 37: 1621-1626. 

431. Wong QW-L, Ching AK-K, Chan AW-H, Choy K-W, To K-F, et al. (2010) 
MiR-222 Overexpression Confers Cell Migratory Advantages in Hepatocellular 
Carcinoma through Enhancing AKT Signaling. Clinical Cancer Research 16: 867-
875. 

133 



APPENDICES 

APPENDIX 1: Differentially expressed miRNAs in MCF-7 estrogenffAM
sensitive versus LY2 TAM! endocrine resistant cells and their roles in breast and 
other cancers. 
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miRNA Comments 
miR-lOa inhibits hoxd4 gene expression in breast cancer cells [376]. 
miR-lOa interacts with the 5' untranslated region of mRNAs encoding 
ribosomal proteins to enhance their translation and increases global protein 
expression [302]. 
In embryonic stem cells, RA induces binding of p65 to the miR-lOa 
promoter, leading to an increased in miR-lOa and enhanced miR-lOa 
expression suppresses HDAC4 expression [301]. 
miR-lOa is upregulated in bladder cancer and targets FGFR3 [377]. miR-I0a 
expression is increased by retinoic acid-induced NFlCB activation during 
smooth muscle cell (SMC) differentiation from mouse embryonic stem cells 

miR-lOa (ESCs) [301]. 
miR-21 is an oncomiR that is significantly up-regulated in all types of breast 
tumors [378] and in breast cancer cell lines [257]. miR-21 is overexpressed in 
all solid tumors (lung, breast, stomach, prostate, colon, and pancreatic) [258]. 
The role of miR-21 in breast cancer was recently reviewed [262]. miR-21 was 
significantly higher in ERa+ vs. ERa-, ErbB2 - vs. ErbB2 +, and in PR+ vs. 
PR- breast tumors [304]. Hypoxia increasedmiR-21 expression in MCF-7 
[379]. miR-21 in mammary gland was increased after 18 wks of Ez treatment 
of female ACI rats [157]. Both Ez and ICI decreased miR-21 in human 
endometrial stromal and glandular epithelial cells, but when combined, miR-21 
expression returned to basal [380]. E2 suppressed and ICI increased miR-21 in 
human myometrial smooth muscle cells [381]. E2 inhibited the ICI-induced 
increase in miR-21 in these cells [381]. Ez and Progesterone reduced miR-21 
expression on the uterus of ovex mice [382]. Angiotensin II increased miR-21 
expression, aldosterone secretion and proliferation m H295R human 
adrenocortical cells [383]. miR-21 expression was significantly reduced in 
tamoxifen-resistant MCF-7 cells [270]. Another group reported that Ez (4 h) 
increased miR-21 in MCF-7 cells [260]. Knockdown of miR-21 in ER
negativelbasal- like MDA-MB-231 breast cancer cells decreased cell migration 
in vitro and the formation of tumors in the lungs of female nude mice after tail 
vein injection of the si-miR-21 transfected MDA-MB-231 cells [187]. miR-21 
was downregulated in MCF-7 cells with 48 h of treatment with 10 f..lg/ml 
Polyphenon-60 (green tea extract) [384]. miR-21 expression is induced by all-

miR-21 trans retinoic acid in ERa+ breast cancer cells [385]. 
MiR-22 was increased in rat mammary gland by 6 and 12 wks. of E2 treatment 
of female August Copenhagen Irish (ACI) rats [157]. MiR-22 was 
differentially expressed between patients with a short time to distant metastasis 
(TDM) (i.e., tumor aggressiveness) versus those with a long TDM [386]. 
miR-22 represses ERa expression by directly targeting the ERa mRNA 3' 
UTR [231]. 
miR-22 is a tumor suppressor that represses the c-Myc-binding protein 
MYCBP, a positive regulator of c-Myc [387]. 
miR-22 repressed the c-Myc-binding protein MYCBP, a positive regulator of 
c-Myc, which resulted in inhibition of growth of MCF-7 breast cancer cells 
[387]. 

miR-22 miR-22 is a tumor suppressor [387]. 
The miR-29 family is a tumor suppressor miRNA [388]. 
miR-29a expression was down-regulated in invasive lung and pancreatic cell 
lines and re-expression of miR-29a reduced the in vitro invasive ability of lung 

miR-29a and pancreatic cancer cell lines [389]. 
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miR-93 

miR-
125b 

miR-29a was downregulated in prostate tumors [390]. 
miR-29 regulates CDK6 as well as oncogenes Tcl-14I and Mcl-I; cell growth 
and survival genes, YYI, p85, CDC42 and DNMT3; as well as natural killer 
and T-cell inhibitor B7-H3 [388]. 
miR-29a targets the 3'UTR of B7-H3, a surface immunomodulatory 

lycoprotein that inhibits natural killer cells and T cells, thus offering a 
nechanism by which loss of miR-29a plays a role in immune escape by solid 
llmors [391]. 
miR-29 is induced by Wnt signaling and in turn, the negative regulators of 
Wnt signaling, Dikkopf-I (Dkkl), Kremen2, and secreted frizzled related 
protein 2 (sFRP2), are direct targets of miR-29a in osteoblasts [392]. 
miR-29a was downregulated in human prostate cancer tumors - 42% [390]. 
miR-93 is in the tri-cistronic miR-106b cluster that expresses miR-106b, miR-
93 and miR-25. 
microRNAs mir-17, mir-106a, mir-106b, mir-93, mir-20, and mir-I8 are 
ancient paralogs [393]. 
expression of miR-93 was up-regulated in hypoxic trophoblasts [394]. 
miR-93 was among the rniRNAs determined to be the most stable miRNA 
normalizers in normal human tissues [286]. 
miR -93 was upregulated in HTL V -I-transformed human T-cell lines and 
primary peripheral blood mononuclear cells from adult T-cell leukemia 
patients [395]. 
miR-93 inhibits p21 expression, thus reducing a 'brake' on cell cycle 
progression [396] .. 
miR-93 is upregulated in squamous cell carcinoma (SCC), a type of nons mall 
cell lung carcinoma (NSCLC) [397]. 
miR-93 is upregulated in human hepatocellular carcinoma (HCC) compared to 
normal hepatic tissues [398]. 
miR-125b is a tumor suppressor miRNA in breast cancer [262]. 
miR-125b is consistently down-regulated in human breast cancer cell lines 
[257]. 
miR-125b was upregulated in Taxol-resistant breast cancer cell lines, 435TRa 
NA 435TRP compared to their parental MDA-MB-435 cell line [399]. 
Significantly higher in ErbB2- vs. ErbB2+ tumors [304]. 
Significantly higher in ERa+ than ERa- tumors [304]. 
Significantly higher in PR+ than PR- tumors [304]. 
miR-I25b inhibits ERBB2 and ERBB3 translation [201] 
miR-I25b expression was increased by hypoxia in MCF-7 cells [379]. 
miR-125b was downregulated in epithelial ovarian cancer [400] and m 
squamous cell carcinoma (SCC) of the tongue [401]. 
E2 down-regulated miR-125b in mouse splenic lymphocytes [402]. 
miR-125b was identified as a suppressor of the pathway activator Smoothened 
in cerebellar neuronal progenitor and tumor cells [403]. 
miR-125b is reduced in human hepatocellular carcinoma (HCC) [398] and 
high miR-I25b was correlated with good survival ofHCC patients [404]. 
miR-125b was downregulated in prostate tumors [390]. 
miR-125b is located at chromosome Ilq23-24, one of the regions most 
frequently deleted in breast, ovarian, and lung tumors [405]. 
miR-I25b repressed C-Raf protein expression in MDA-MB-453 breast cancer 
cells. 
miR-125b is upregulated in endometriosis [406]. 
E2 did not affect miR-125b expression in macrophages [407]. 
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miR-
181a 

miR-200 
family 
member 
s miR-
200a 

miR-
200b 

miR-
200c 

miR -125b inhibits MUC 1 protein expression in MCF-7 breast cancer cells 
[408]. 
miR -125b confers paclitaxel resistance in breast cancer cells by suppressing 
Bak1expression [399]. 
miR-181a expression was reduced by E2 in MCF-7 cells [261]. 
miR-181a and miR-18lb are down-regulated in human gliomas and act as 
tumor suppressors which triggered growth inhibition, induced apoptosis and 
inhibited invasion in glioma cells [409]. 
Regulates oncogene TCLl in Chronic Lymphocytic Leukemia (CLL) [410] 
miR-181b was over-expressed in tumors compared to normal colorectal 
samples [411,412]. 
miR-181 b was downregulated in during retinoic acid-induced differentiation of 
human acute promyelocytic leukemia [413]. 
miR181b-1, miR-181c were down-regulated in prostate cancer [414]. 
miR-181a was upregulated in 4-0HT-resistant MCF-7 cells [270). 
Predicted targets [381]: hsa-miR181 a 9q33.3 ESR2, ABI1, ABI3BP, 
ADAM11, BMP3, BMPER, BMPR2, EGR1, EGR3, FGFR3, MMP14, 
MPP5, NCOA2, NEGR1, PAK4, PAK7, RUNX1, S100PBP, SMAD7, 
SOX5, SOX6, STC1, TGFBI, TGFBR1, TlMP3, TSC22D2 [381]. 
miR-181d was up-regulated greater than twofold in breast cancer compared 
with normal adjacent tissue [415]. 
miR-181 inhibits the translation of p27kip I (p27), a cell cycle inhibitor and 
tumor suppressor, in myeloid cell differentiation [416]. 
Antisense-microRNA oligonucleotides (AMOs) against miR-181a inhibited 
the growth of A549 human lung adenocarcinoma cells [417]. 
Overexpression of miR -181 a in A549 lung cancer cells sensitized the cells to 
the lethal action of cisplatin by stimulating Bax oligomerization and the 
activation of proapoptotic caspase [418]. 
miR-181a was reduced in human NSCLC tissues [419]. 
miR-181a inhibits the expression of a large number of zinc finger genes 
(ZNFs) by interacting with seed elements within the coding regions [420]. 
miR-200a correlated with ERa. status in human breast tumors [304]. miR-200a 
expression significantly up-regulated in all types of breast tumors compared to 
adjacent normal tissue [378]. 
Significantly> in ERa.+ than ERa.- human breast tumors (1) and PR+ than 
PR- breast tumors(1), miR-200a is expressed in MCF-7 and other epithelial 
breast cancer cell lines [203]. 
miR-200a was increased in colorectal cancer cell lines [421] and in epithelial 
ovarian cancer [400]. 
miR-200 expression was reduced in tamoxifen-resistant MCF-7 cells [270]. 
All five members of the microRNA-200 family (miR-200a, miR-200b, miR-
200c, miR-141 and miR-429) and miR-205 were markedly downregulated in 
cells that had undergone EMT in response to transforming growth factor 
(TGF)-beta [203] 
The miR-200 family inhibits expression of the related transcriptional 
repressors ZEB lIdeltaEFl and SIP11ZEB2 in epithelial cells and playa major 
role in preventing these factors from triggering epithelial to mesenchymal 
transition (EMT) [203]. 
However, miR-200 family members differentially regulate EGF-driven 
invasion, viability, apoptosis and cell cycle progression of breast cancer cells, 
with the miR-200bC/429 cluster showing stronger effects than the miR-
200al141 cluster [422]. 
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miR-200a expression is increased in ovarian tumors compared to normal ovary 
[423]. 
miR-200a expression was reduced in endometriosis [406]. 
miR-200a is upregulated in squamous cell carcinoma (SCC), a type of 
nonsmall cell lung carcinoma (NSCLC) [397]. 
E2 (4 h) increased miR-200a 2-fold in MCF-7 cells [260]. 
E2 (48 h) reduced miR-20Oc expression in MCF-7 cells [261]. 
miR-200a regulated ZEB I expression, thus regulating epithelial to 
mesenchymal transition (EMT) [424]. 
Likewise, there is a double negative feedback loop of miR-200ab and ZEB I, 
which regulates E-cadherin expression, in EMT [325]. 
miR-200c was highly expressed in MCF-7 cells with lower and more variable 
expression in MDA-MB-23I cells [425]. 
TCF8, also termed ZEB I, which is a key regulator of epithelial to 
mesenchymal transition (EMT) by repressing E-cadherin expression, was 
identified as the target of miR-200c in A549 lung cancer cells [324]. 
Recent studies have implicated a negative feedback loop of miR-200c and 
ZEB I in cancer cells including breast [205,322,323,325]. 
miR-200b and miR-200c are reduced in lymph node metastases of primary 
breast tumors [209]. 
Early studies reported that miR-205 expression was higher in ERaJPR-positive 
breast tumors and reduced in ErbB2-positive breast tumors [304]. 
Expression of miR-205 was restricted to the myoepithelial/basal cell 
compartment of normal mammary ducts and lobules and miR-205 expression 
was reduced or completely eliminated in matching tumor specimens [221]. 
miR-205 expression is reduced in breast cancer cells that had undergone EMT 
in response to transforming growth factor (TGF)-beta or to ectopic expression 
of the protein tyrosine phosphatase Pez [203]. 
miR-205 was downregulated in breast tumors and miR-205 directly targets 
HER3 and inhibits the activation of the downstream mediator Akt [426]. The 
reintroduction of miR-205 into SKBr3 breast cancer cells inhibited colony 
formation and increased inhibition by tyrosine-kinase inhibitors Gefitinib and 
Lapatinib, abrogating the HER3-mediated resistance and restoring a potent 
proapoptotic activity [426] 
MCF-7 and MDA-MB-23I express lower miR-205 than non-malignant MCF
lOA cells [296]. Ectopic expression of miR-205 in MCF-7 cells significantly 
inhibited cell proliferation and overexpression of miR-205 inhibited MDA
MB-231 cell invasion and metastasis to lung when injected into nude mice 
[296]. ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct 

miR-205 targets for miR-205 [296]. 
Upregulated in 4-0HT-resistant [270] and Fulvestrant-resistant [272] MCF-7 
cells. 
Variably expressed in human breast tumors: highly expressed in some and 
completely absent in other specimens [221]. 
miR-221 is part of a gene cluster also expressing miR-222, a close homologue 
of miR-22 I [427]. Both miRNAs share an identical seed sequence [427]. 
Reduction of the p27Kipi tumor suppressor by miR-22I and miR-222 
promotes cancer cell proliferation [427]. 
MiR-221 and miR-222 both directly target the 3' untranslated regions of p27 
and p57 mRNAs [428]. 

miR-221 MiR-221 and miR-222 are elevated in ERa-negative breast cancer cells and 
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both directly target the 3' untranslated region of ESRI (ERa) and reduced ERa 
expression [295]. 
ERa inhibits miR-221 expression [234]. 
miR-221 was upregulated in Taxol-resistant breast cancer cell lines, 435TRa 
NA 435TRP compared to their parental MDA-MB-435 cell line [399]. 
miR-221 is down-regulated in prostate cancer [414] and regulates tumor 
suppressor ARHI expression [429]. 
miR-22I inhibits expression of p53 upregulated modulator of apoptosis 
(PUMA) in breast and lung cancer cells [430]. 
Upregulated in 4-0HT-resistant [270] and Fulvestrant-resistant [272] MCF-7 
cells. 
Variably expressed in human breast tumors: highly expressed in some and 
completely absent in other specimens [221]. 
miR-222 was upregulated in Taxol-resistant breast cancer cell lines, 435TRa 
NA 435TRP compared to their parental MDA-MB-435 cell line [399]. 
Overexpression of miR-222 in hepatocellular cancer activates AKT signaling 
[431 ]. 
Overexpression of miR-221 and 222 increased proliferation in ERa+ MCF-7 
breast cancer cells and reduced ERa protein levels [234]. ERa inhibits miR-
222 expression [234]. 
miR-222 inhibits expression of p53 upregulated modulator of apoptosis 
(PUMA) in breast and lung cancer cells [430]. 
Overexpression of miR-222 activates AKT signaling in hepatocellular 
carcinoma by suppressing the protein phosphatase 2A subunit B (PPP2R2A) 

miR-222 [431]. 

139 



APPENDIX 2: 
mRNA gene targets of the indicated miRNAs differentially expressed in MCF-7 
versus L Y2 cells that were identified in Frasor et al. Cancer Research 2004 
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Frasor et a/ Cancer Res. 
2004 
8 h 4- 48 h 

microarray microarray in MCF-7 OHT* 40HT* 
mRNA MCF-7 + 4- LY2 + 4- expect 4 h 4- 24 h 4-
target miRNA OHT OHT mRNA OHT OHT 

hsa-miR- higher than 
SMPD1 10a -2 3 LY2 0.62* 0.49* 

hsa-miR-
EFNB2 10a 1.2 2.7 

hsa-miR-
GPR56 10a 1.4 2.3 

hsa-miR-
SDC1 10a 1.2 2 

hsa-miR-
LTBP1 10a 0.7 2.8 

hsa-miR- higher than 
B3GNTt 125b -2 1 LY2 1.4 2 

hsa-miR-
ERBB3 125b 0.61* 0.53* 

hsa-miR-
C14orf43 125b 2 1.5 

hsa-miR-
GGA2 125b 0.9 2.5 

hsa-miR-
NAT9 125b 0.9 0.5 

hsa-miR-
SDC1 125b 1.2 2 

hsa-miR-
BAK1 125b 0.49* 0.27* 

hsa-miR-
1L13RA1 125b 1.1 2.6 

hsa-miR-
ZNF185 125b 1 2.3 

hsa-miR- lower in 
PDCD4 200a 0.3 -3 MCF-7 0.7 0.5 

hsa-miR-
ETNK1 200a than in LY2 0.9 2 

hsa-miR-
RBL2 200a 0.54* 0.91 * 

hsa-miR-
BHLHB2 200a 1.6 3 

hsa-miR-
PTPRG 200a 1 4.3 

hsa-miR-
CDC2L6 200a 0.7 2.5 

hsa-miR-
1L13RA1 200a 1.1 2.6 

hsa-miR-
ZNF185 200a 1 2.3 

hsa-miR- lower in 
PDCD4 200b -0.1 -3 MCF-7 0.7 0.5 

hsa-miR-
B3GNTt 200b than in LY2 1.4 2 

hsa-miR-
RDX 200b 1 3 

hsa-miR-
EFNB2 200b 1.2 2.7 
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hsa-miR-
C14orf43 200b 2 1.5 

hsa-miR-
ABAT 200b 0.6 0.3 

hsa-miR-
CYP1Bl 200b 24.01* 4.24* 

hsa-miR-
GBEl 200b 0.8 2.5 

hsa-miR-
PKIA 200b 0.9 3.7 

tlsa-miR- lower in 
PDCD4 200c 0.3 -3 MCF-7 0.7 0.5 

hsa-miR-
B3GNTt 200c than in LY2 1.4 2 

hsa-miR-
RDX 200c 1 3 

hsa-miR-
ETNKl 200c 0.9 2 

hsa-miR-
EFNB2 200c 1.2 2.7 

hsa-miR-
ABAT 200c 0.6 0.3 

hsa-miR-
CYP1Bl 200c 24.01* 4.24* 

hsa-miR-
GBEl 200c 0.8 2.5 

hsa-miR- lower in 
PDCD4 21 -0.5 -0.9 MCF-7 0.7 0.5 

hsa-miR-
B3GNTt 21 than in LY2 1.4 2 

hsa-miR-
RDX 21 1 3 

hsa-miR-
ETNKl 21 0.9 2 

hsa-miR-
ABAT 21 0.6 0.3 

hsa-miR-
LTBPl 21 0.7 2.8 

hsa-miR-
PTPRG 21 1 4.3 

hsa-miR- higher in 
SMPDl 22 -0.4 1 MCF-7 0.62* 0.49* 

hsa-miR-
GALNT6 22 than in LY2 0.7 0.4 

hsa-miR-
ERBB3 22 0.61 * 0.53* 

hsa-miR-
TTC9 22 0.47* 0.31* 

hsa-miR-
RBL2 22 0.54* 0.91* 

hsa-miR-
YWHAZ 22 1.5 2 

hsa-miR-
1L13RAl 22 1.1 2.6 

hsa-miR- higher in 
ERBB3 222 -1.5 1.4 MCF-7 0.61* 0.53* 

hsa-miR-
EFNB2 222 than in LY2 1.2 2.7 
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hsa-miR-
CYP1B1 222 24.01* 4.24* 

hsa-miR-
MYLIP 222 0.7 0.4 

hsa-miR-
CDC2L6 222 0.7 2.5 

hsa-miR-
PRPS1 222 2.2 3 

hsa-miR- higher in 
SMPD1 29a -0.8 0.7 MCF-7 0.62* 0.49* 

hsa-miR-
RAB30 29a than in LY2 1.3 2.2 

hsa-miR-
C14orf43 29a 2 1.5 

hsa-miR- lower in 
CD44 93 0.6 -0.7 MCF-7 1 2 

hsa-miR-
SHANK2 93 than in LY2 0.8 2.5 

hsa-miR-
RAB30 93 1.3 2.2 

hsa-miR-
RDX 93 1 3 

hsa-miR-
ERBB3 93 0.61* 0.53* 

hsa-miR-
EFNB2 93 1.2 2.7 

hsa-miR-
TTC9 93 0.47* 0.31* 

hsa-miR-
C14orf43 93 2 1.5 

hsa-miR-
RBL2 93 0.54* 0.91* 

hsa-miR-
LASP1 93 1 2.5 

hsa-miR-
MSH2 93 0.8 2.1 

hsa-miR-
IER3 93 5 4.3 

hsa-miR-
CDC2L6 93 0.7 2.5 

hsa-miR-
PKIA 93 0.9 3.7 

hsa-miR-
YWHAZ 93 1.5 2 

has-miR- lower in 
DNAJC12 181a 1.6 0.01 MCF-7 0.5 0.3 

than in LY2 
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APPENDIX 3: Identity and location of genes shown in networks 1 and 2 
(Appendix 7) 

Symbol Entrez Gene Name Location 
Network1 
APC adenomatousQolyposis coli Nucleus 

ATPase, Ca++ transporting, cardiac muscle, 
ATP2A2 slow twitch 2 C~<mIasm 
BLZF1 basic leucine ziQI!er nuclear factor 1 C~<mIasm 
BPHL b~henyl h~drolase-like (serine I}ydrolasel C~<mIasm 
CASP3 ca~ase 3, ~~tosis-related cysteine .Qe.Qtidase C~<mIasm 
CCOC88B coiled-coil domain containirlR 88B Nucleus 

Extracellular 
CSF1 colon~ stimulatirlR factor 11macro.Qh<!9..~ S.Qace 

Extracellular 
CYR61 cysteine-rich, angiogenic inducer, 61 S.Qace 
OGAT1 diacylglycerol O-acyltransferase 1 GY!.<mIasm 
ONAJB5 OnaJ (Hsp40) homolog, subfamily B, member 5 unknown 

Extracellular 
FBLN5 fibulin 5 Space 
FMNL3 formin-like 3 unknown 
HOXA1 homeobox A1 Nucleus 
LMNA lamin AlC Nucleus 
MAP4 microtubule-associated Qrotein 4 C~<mIasm 
MIR10A (includes 
EG:406902) -- unknown 
MIR125B (human) -- unknown 
MIR200A (includes 
EG:406983) -- unknown 
MIR200B (includes 
EG:406984) -- unknown 
MIR205 (includes 
EG:406988) -- unknown 
MIR22 (includes 
EG:407004) -- unknown 
MIR222 (includes 
EG:407007) -- unknown 
MIR29A (includes 
EG:407021) -- unknown 
MIR93 (includes 
EG:407050) -- unknown 

v-myc myelocytomatosis viral oncogene 
MYC homolog (avian) Nucleus 
MYT1L myelin transcription factor 1-like Nucleus 

Extracellular 
NPTX1 neuronal pentraxin I Space 
PARP6 polyJAOP-riboseholymerase familY, member 6 unknown 
PLK2 polo-like kinase 2 Nucleus 
RAB10 RAB10, member RAS oncqflene family C-.rto~asm 
retinoic acid -- unknown 
RSF1 remodeling and spacing factor 1 Nucleus 
TOG -- Nucleus 
UNCX UNC homeobox unknown 
VIM vimentin Cytoplasm 
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Network 2 
beta-estradiol unknown 
EstroQen Receptor unknown 

Extracellular 
IL6 interleukin 6 (interferon, beta 21 SRace 
MAP2 microtubule-associated protein 2 Cytoplasm 
Mapk unknown 
MIR181A (human) unknown 
MIH200C (includes 
EG:406985) unknown 
MIR21 (includes 
EG:406991) unknown 
PGR progesterone receptor Nucleus 
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APPENDIX 4: ERa36 is not expressed in MCF-7 or LY2 cell lines. Whole cell 
extracts (30 )lg) indicated breast cancer cell lines (tamoxifen (TAM)- sensitive (S) or 
TAM-resistant (TAM-R) were immunoblotted for ERa, with 0-20 (SantaCruz 
Biotechnology). The membrane was stripped and reprobed for B-actin. ERa,36 lacks 
the AlB and F domains of ERa,66, but contains the DNA binding domain (DBD, C 
region), hinge region (D region), and most of the ligand binding domain (LBD, E 
region). It also has an extra, unique 27aa domain instead of the last 138 aa encoded by 
exons 7 and 8 of the hERa66 gene (Wang et al. PNAS 103: 9063-8, 2006). The 0-20 
antibody recognizes ERa, aa 281-360 in the DBD and hinge region and thus, it should 
recognize ERa,36, but we do not see any evidence of ERa,36. 
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APPENDIX 5: GAPDH levels in MCF-7 and LY2 are comparable. MCF-7 and 
L Y2 cells were treated with 10 nM estradiol (E2) or 100 nM 4-hydroxytamoxifen (4-
OHT) for 6 h. Quantitative real time PCR was employed to evaluate glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) expression because GAPDH is often used as a 
control gene for normalization of "test" mRNAs. Values are CT (cycle threshold) 
values and are the mean +/- SEM of triplicate determinations. 
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APPENDIX 6: Results of Ingenuity Pathway Analysis. The top biological function 
and disease categories enriched with miRNAs in our dataset (Figure 3) are displayed 
along the x-axis. The y-axis displays the -(log) significance. Taller bars are more 
significant than shorter bars. Functions are listed from most significant to least and the 
red vertical line denotes the cutoff for significance (p-value of 0.05). 
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disease 

Cellular development 

Cellular growth and 
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APPENDIX 7: Ingenuity Pathway Analysis (IPA) identified 2 networks of 
molecules that interact with the 12 miRNAs that are differentially expressed in 
MCF -7 versus L Y2 breast cancer cells. Core analysis identified 2 separate 
networks that are associated with our miRNA dataset (Figure 3). Analysis identified a 
total of 44 molecules, 35 in Network 1 (A) and 9 in Network 2 (B). 
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Appendix 8: Overexpression of miR-200b or miR-200c in L Y2 cells transfected 
with pre-miR-200b or pre-miR-200c or negative control. L Y2 cells were 
transfected either with negative control or pre-miR-200a, pre-miR-200b or pre-miR-
200c. A. RNA was harvested after 3 days and Q-PCR performed to confirm 
overexpression of miR-200a, miR-200b or miR-200c. Values are the mean ± SEM of 
triplicate determinations. B. Image of L Y2 cells transfected with negative control, 
captured using a light microscope (20x magnification, 100 I..Im scale). 
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