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ABSTRACT 

ROLES OF V AMP3 IN MELANOMA CELL MIGRATION AND INTEGRIN 

TRAFFICKING 

Yaman Babi 

Dec 21, 2010 

Integrins are major receptors for cell adhesion to the extracellular matrix, and play 

key roles in various cellular processes including adhesion, migration, proliferation and 

survival. Apart from developmental and physiological events, integrins are involved in 

many pathological conditions including cancer metastasis. During cell migration, the 

exocytosis of integrins at the cell front contributes to the formation and stabilization of 

protrusions. Previous studies showed that V AMP3, a SNARE protein that mediates 

exocytosis, is important in integrin trafficking and cell migration. However, the 

mechanism by which V AMP3 participates III integrin trafficking is not clear. Since 

V AMP3 is over expressed in melanoma, the current study determines the roles of 

V AMP3 in melanoma cell migration and integrin trafficking. shRNA-induced silencing 

of V AMP3 inhibited the migration of B 16F 1 0 melanoma cells by more than 60% without 

affecting cell proliferation. V AMP3 knockdown diminished cell adhesion to Matrigel and 

fibronectin. Furthermore, V AMP3 silencing resulted in the accumulation of ~ 1, a3 and 

a5 integrins in lysosomes, indicating that V AMP3 mediates vesicle trafficking of a3 ~ 1 
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and a5~1 integrins. For the first time, this study examined the effect of VAMP3 

knockdown on metastasis of melanoma in vivo using an experimental metastasis assay in 

nude mice. It seemed that melanoma cells can metastasize to the lung even when V AMP3 

is depleted and we suggest more quantitative experiments to determine the effect of 

V AMP3 knockdown in melanoma pulmonary metastasis in vivo. 
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CHAPTER I: INTRODUCTION 

Metastasis and cell migration 

Metastasis (Greek: displacement, /J'cTa=next + mamc;=placement, plural: 

metastases) is the process of spreading a disease from one organ to another non-adjacent 

organ. Metastases are responsible for about 90% of the deaths in cancer patients. Cancer 

metastasis by definition consists of a series of sequential steps in which some cancer cells 

escape from the original tumor site and migrate to other parts of the body through the 

bloodstream, or the lymphatic system. Metastasis start when some malignant cells break 

away from the primary tumor and degrade the proteins that make up the surrounding 

basement membrane which separates the tumor from adjoining tissues. By degrading 

these proteins, cancer cells are able to breach the ECM and invade (1) (Fig 1). Cell 

migration is a fundamental step in cancer metastasis. 

Cell migration in specific direction and to a specific site in the body is required 

in wound healing, immune responses and embryonic tissue formation and development. 

Errors during cell migration have serious consequences, including mental retardation, 

vascular diseases and cancer metastasis. An understanding of the mechanism by which 

cells migrate might lead to the discovery of novel therapeutic strategies, that can help in 

controlling invasive tumour cells. 

1 



Figure 1. Cancer metastasis cascade. Cancer metastasis consists of a series of 

sequential steps, including local tumor growth, invasion by transmigration through 

basement membranes and surrounding tissues, intravasation into blood vessels, 

dissemination and survival in the bloodstream, extravasation and re-establishment of 

tumor colonies at distant sites. 
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Chemotaxis is the process by which cells migrate In animal tissue toward a 

specific external signal (2) (Figure 2). The migration of single mammalian cell can be 

viewed under the microscope as the cells move randomly on a glass slide. By observing 

that, changes in the moving cell shape is noticed and its leading front has a characteristic 

behavior. This part of the cell is highly active, sometimes spreading forwards quickly, 

sometimes retracting, othertimes ruffling, or bubbling. It is widely considered that the 

leading front is the main engine which moves the cell forward (3). 

There is still great uncertainty on how cell migration really works. However, 

because the locomotion of all mammalian cells has several common features, the 

underlying cell migration processes are believed to be similar. The two main constant 

features are: 1) the behavior of the leading part of the cell; 2) the dorsal surface of the cell 

moves backwards and towards its trailing part. The latter feature is most easily observed 

when aggregates of a surface molecule are cross-linked with a fluorescent antibody or 

when small beads become artificially bound to the front of the cell (2). 

Studies have demonestrated that cell front is the site where membrane is recycled 

to the cell surface from internal membrane pools at the end of the endocytic cycle. This 

has led to the understanding that the extension of the leading edge occurs when new 

membrane is added at the front of the cell. If so, the actin filaments which form at the 

front might stabilize the added membrane so that a structured extension, or lamella, is 

formed rather than the cell 

4 



Figure 2. Chemotactic cell migration. (A) The cell is attached to the extracellular 

matrix through integrin receptors on the cell surface. Upon exposure to a chemoattractant, 

directionality is established by localized receptor binding that leads to activation and 

accumulation of signaling events on the side of the cell facing the highest chemottractant 

concentration. (B) The activated signaling events facilitate localized F-actin 

polymerization leading to membrane protrusion that is independent of integrins and the 

ECM. (C) The protruding psedopodium is stabilized by integrin-mediated cell adhesion. 

(D) A forward translocation ofthe cell is achieved as the cell body contracts and releases 

attachment sites at the rear of the cell. 
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blowing bubbles at its front. Integrins, mediate cell adhesion to the ECM at the leading 

edge to stabilize the lamella and serve as traction points. It is likely that these 

integrins "feet" are brought to the front by added membrane at this site. The rest of the 

cell is simply dragged forward. Although not clearly established, there are suggestions 

that the nucleus and perhaps other large structures inside the cell may also be pulled 

forward by actin filaments. In addition, it may be that the rear of the cell actively 

contracts (2). 

Integrins 

Integrins mediate cell adhesion to extracellular matrix (ECM) proteins such as 

fibronectin, laminin, collagen and vitronectin (4). Integrins define cellular shape, 

mobility, and regulate the cell cycle. Some integrins playa role in the attachment of cells 

to other cells. Besides the attachment role, integrin also plays a role in signal 

transduction, a process by which a cell transforms one kind of signal or stimulus into 

another. 

Integrins are heterodimers containing two chains: the a (alpha) and ~ (beta) 

subunits. In mammals, eighteen a and eight ~ subunits have been characterized and 

twenty-four a/~ combinations have been described (4). The a and ~ subunits contain two 

separate tails, both of which span the plasma membrane and possess small cytoplasmic 

domains. Integrin subunits penetrate the plasma membrane and have very short 

cytoplasmic domains of about 40-70 amino acids. The exception is the beta-4 subunit, 

which has a cytoplasmic domain of 1088 amino acids, one of the largest known 

cytoplasmic domains of any membrane protein. Outside the cell plasma membrane, the a 
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and ~ chains lie close together along a length of about 23 nm; the final 5 nm N-termini of 

each chain forms a ligand-binding region for the extracellular matrix (Figure 3). 

Integrin expression pattern on the cell surface makes the cell fit into its 

surrounding environment. During embryonic development, integrins are expressed very 

neatly in time and space to guide the cells and make them detect where exactly they are 

and where to attach. However, integrins that show modulated interactions with their 

environment can transfer dramatic and far-reaching consequences upon cells. This can 

give the cells the tendency to loose their original ties, recognize a different ECM 

substrate and reconfigure them with features that give them the capacity to metastasize 

(5). Indeed, many studies have shown that the upregulation of expression of specific 

integrins is associated with the acquisition of a more metastatic phenotype (6). 

Vesicle trafficking of integrins in cell migration 

Emerging evidence indicates that intracellular vesicle trafficking exerts temporal 

control over integrin functions (3). As transmembrane proteins, the a and ~ subunits of 

integrins are synthesized and paired in the endoplasmic reticulum (7, 8), transported in 

vesicles and delivered to the plasma membrane or the cell surface by exocytosis. In 

migrating cells, the cell forward movement would lead to an accumulation of integrins 

towards the cell rear (Fig 4). To enhance adhesion at the cell front or the leading edge, 

integrins at the plasma membrane are endocytosed, transported forward by vesicles and 

exocytosed at the cell front (9-11). Protein kinase Ca(PKCa) and PKC£ regulate the 

exocytosis ofintegrins (12, 13). 
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Figure 3. Structure of integrin receptors. Integrin are heterodimers of a and P 

subunits. Both the a and P subunits, except the a4 subunit, have large ligand-binding 

extracellular domains and short cytoplasmic domains. Integrins link ECM proteins on the 

extracellular face of the plasma membrane to the cytoskeletal filaments on the 

cytoplasmic face. Modified from (14). 
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Figure 4. SNARE-mediated polarized exocytosis in cell migration. Integrins and other 

plasma membrane proteins are endocytosed and transported by vesicles to the cell front. 

SNARE proteins such as VAMP3 mediate the fusion of transport vesicles with the 

plasma membrane. Accumulation of integrins at the cell front promotes migration. 
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Accordingly, Rab GTPases which control the targeting and tethering of transport 

vesicles have been shown to modulate integrin trafficking and cell mobility (11, 15). 

However, not much is known about the molecular mechanism of the integrin exocytosis, 

i. e fusion of integrin-containing vesicles with the plasma membrane. 

SNARE proteins 

SNARE proteins (§.01ub1e N-ethy1ma1eimide-sensitive factor ~ttachment protein 

receptor) are a large protein family consisting of more than 35 members in humans. 

SNAREs can be divided into two main categories: vesicle or v-SNAREs, which are 

incorporated into the membranes of transport vesicles during budding, and target or t­

SNAREs, which are found in the membranes of target compartments. Recent 

classification divides SNARE proteins according to their structural features into R­

SNAREs and Q-SNAREs (16). Research in the vesicle trafficking field has demonstrated 

that the interactions between v-SNAREs and t-SNAREs drive intracellular vesicle fusion 

(17-19). Most SNAREs are C-terminally anchored transmembrane proteins, with their N­

terminal functional domains facing the cytosol. These cytoplasmic domains of v- and t­

SNAREs form an extremely stable four-helix bundle (20). Energy made available from 

the assembly of the SNARE complex is used to bring the vesicular and target membranes 

into close proximity and drive membrane fusion (21-23) (Figure 5). What exactly not 

clear is, which SNARE proteins mediate the trafficking of integrins to the plasma 

membrane. 
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Figure 5. SNARE proteins mediate intracellular vesicle fusion. A trans-SNARE 

complex assembles when t-SNARE in the target membrane bind to the v-SNARE in the 

vesicle by forming a stable 4-helix bundle which drive membrane fusion. This results in 

cis-SNARE complex in the fused membrane. The adaptor protein a-SNAP binds to the 

cis-SNARE complex and recruits N-ethylmaleimide sensitive fusion (NSF), which 

hydrolysis ATP to dissociate the SNARE complex. The v-SNARE is then recycled for 

the next round of vesicle fusion. 
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VAMP3 

Vesicle associated membrane proteins (VAMP) are v-SNAREs found in various 

post-Golgi vesicular compartments. VAMP3 or cellubrevien is a member of this family. 

It is expressed in tissues and is localized to recycling endosomes and endosome-derived 

vesicles (24, 25). V AMP3 has been involved in the exocytosis of a-granules in platelets 

(26) as well as the recycling of endocytosed transferrin receptors (27) to the cell surface. 

Recent studies suggest that V AMP3 is implicated in integrin trafficking and cell 

migration (16, 28, 29). Studies have shown that tetanus neurotoxin-mediated cleavage of 

V AMP3 disrupts epithelial cell migration and integrin-dependent cell adhesion (29). A 

recent study from our lab showed that V AMP3-dependent integrin trafficking is crucial in 

cell migration and cell adhesion to laminin (30). The goal of my thesis is to further 

analyze the role of V AMP3 in integrin trafficking and cell migration, using melanoma 

cells as a model. 

Melanoma 

About 75% of death in skin cancer patients is referred to melanoma. According to 

a prediction by the American Cancer Society, in 2009 about 68,720 people in the United 

States will be newly diagnosed with melanoma and about 8,650 will die of the disease. In 

the United States, the percentage of people who have developed melanoma has more than 

doubled in the past 30 years. The early stage melanoma is cured by surgery in most cases, 

however, once melanoma cells metastasize, it is almost always fatal. Currently there is no 
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effective therapy for metastatic melanoma. The median survival time of melanoma 

patients with distant metastases has been reported to be 7.5 months. Therefore, new 

therapeutic strategies that inhibit metastasis are urgently needed to overcome melanoma. 

Melanoma is an attractive model for studying integrin roles in cancer progression 

because it generally follows a sequential series of definable stages (31). During the 

melanoma progression, modulations in integrin expression and signaling change the 

ability of the cancer cells to interact with the environment and convert melanoma cells 

from a stationary to a migratory and invasive phenotype. The expression levels of av~3, 

a3~1, a4~1 and a5~1 integrins are increased in melanoma (14). The av~3 integrin plays 

an important role during the transition of melonoma cells from the radial growth stage to 

the vertical growth stage. Moreover, further progression leading to metastases may 

require changes in the cell's integrins that would enhance their ability to escape from the 

primary tumor, and help in their ability to invade and ultimately form metastases. It is 

also conceivable that the av~3 integrin is reexpressed during various stages of metastatic 

dissemination and in particular during tumor reestablishment (31). However, it has to be 

pointed out that there are some differences in integrin expression patterns depending on 

in vivo (tissue) or in vitro (cell culture) analysis (14). 

As shown in the microarray dataset developed by Talantov et al. (32) (Fig. 6), 

V AMP3 is highly over expressed in melanoma. It is ranked in the top 1 % in the Over 

17 



Figure 6. Over expression of V AMP3 in melanoma. V AMP3 gene expression in 45 

melanoma specimens (M) was analyzed using the Affymetrix human genome U133A 

array, and compared to the expression in 7 normal skin (S). The original microarray 

dataset was reported by Talantov et at. Box plot was generated at www.oncomine.org. 
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expression Gene Rank (P = 2.86E-11). In this thesis, I hypothesize that V AMP3 mediates 

integrin trafficking. 
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CHAPTER II: RESULTS AND DISCUSSION 

The exocytosis of integrins at the cell front contributes to the formation and 

stabilization of protrusions in cell migration. Previous studies have shown that V AMP3 is 

involved in vesicle trafficking of integrins and cell migration (30). However, the 

mechanism by which V AMP3 participates in integrin trafficking is not well elucidated. 

Interestingly, V AMP3 is over expressed in melanoma (Fig. 6). The specific aims of my 

dissertation are to: 1) determine the role of V AMP3 in melanoma cell migration and 

integrin trafficking; 2) examine the role of V AMP3 in melanoma metastasis in vivo. 

Using the widely used B16FIO melanoma cells as a model, I developed stable cell lines 

in which V AMP3 is silenced. Using transwell migration assay and integrin 

immunostaining, I analyzed the function of V AMP3 in cell migration and integrin 

trafficking. Using a B16FlO experimental metastasis assay in nude mice, I examined if 

V AMP3 knockdown inhibits the metastasis of melanoma in vivo. 

i. Determine the role of V AMP3 in migration and integrin trafficking of melanoma 

cells 

Silencing of V AMP3 inhibits cell migration 

Immunostaining revealed that V AMP3 is present in intracellular vesicles in the 

B 16F 10 mouse melanoma cells (Fig 7 A). To examine the role of V AMP3 in integrin 

21 



trafficking and cell migration, I depleted V AMP3 expression by shRNA gene silencing. 

As shown by immunoblotting analysis (Fig 7 B), within 72 h after transfection of 

shRNAs 

Figure 7. Silencing of VAMP3 in B16FIO cells. (A) Subcellular distribution of 

V AMP3. B 16F 10 cells were fixed, permeabilized and stained with a rabbit polyclonal 

antibody to VAMP3. Representative Confocal images are shown. Arrow indicates 

V AMP3 concentrated in intracellular vesicles close to the nucleus. Bar represents 20 /lm. 

(B) B 16F 1 0 cells were transfected with two shRNAs to V AMP3: 50011515 and 

50011516. 72 h later, whole cell lysates of the transfected cells were analyzed by 

immunoblotting with the antibody to V AMP3. The same membrane was probed with an 

antibody to anti-~-actin as loading control. Shown is a representative western blot of two 

independent experiments. 
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against VAMP3, the expression of VAMP3 protein in B16F1O cells was depleted by 

more than 90%. The large reduction of V AMP3 protein indicated high efficiency of 

shRNA transfection and interference. Transfection of shRNA did not modulate the 

expression of ~-actin (Fig. 7B). 

The effect of V AMP3 knockdown on cell mobility was analyzed using transwell 

migration assay (33). Matrige1, which consists mainly of laminin and collagen, was used 

as the chemoattractant. When loaded to the upper chambers of the transwells, B 16F 1 0 

cells migrated efficiently across the membranes in a relatively homogeneous fashion (Fig 

8 A). Interestingly, cells transfected with VAMP3 shRNAs had much reduced mobility. 

Compared with the cells transfected with non-targeting scramble shRNA control, the 

number of migrated cells transfected with the V AMP3 shRNA 50011515 decreased by 

50.5% and the number of migrated cells transfected with the VAMP3 shRNA 50011516 

decreased by 26% (Fig 8 B), indicating that V AMP3 diminished the chemotactic 

migration of melanoma cells. 

Because the shRNA 50011515 silenced VAMP3 (Fig. 7B) and inhibited cell 

migration (Fig. 8), we developed B 16F 10 cell lines which stably express 50011515 to 

further analyze the role of V AMP3 in integrin trafficking and migration of melanoma 

cells. Since the shRNA is encoded in a vector that contains the puromycin resistant gene, 

B16F1O stable cells were selected in cell culture medium with puromycin (Fig 9 A). We 

expanded 24 B 16F 1 0 clones that are puromycin resistant and used immunoblotting to 

determine V AMP3 expression in the 24 clones (part of the immunoblotting is shown in 

(Fig 9 B)). VAMP3 protein was depleted 
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Figure 8. V AMP3 knockdown inhibits cell migration. (A) 72 h after transfection with 

the VAMP3 shRNAs 50011515 and 50011516, or a scrambled control shRNA, 5 x 105 of 

B 16F 1 0 cells were harvested and loaded to the top chambers of transwells. Matrigel (20 

J.lg/ml) was included in the lower chambers as a chemoattractant. After 24 h, unmigrated 

cells were removed and migrated cells were Giemsa stained. Representative images of 

migrated cells are shown. (B) Random images were taken for each transwell. The number 

of migrated cells in each image was qualified using the ImageJ software then averaged 

for each experimental group. The number of migrated cells transfected with the V AMP3 

shRNAs was normalized to the number of migrated cells transfected with the scramble 

shRNA. Error bar represent standard deviation of 3 independent experiments in which 

two transwells were used for each transfection. ***p < 0.001 vs. control shRNA, **p < 

0.01 vs. control shRNA. 
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Figure 9. Development of stable cell lines that express a V AMP3 shRNA. (A) 

B 16F 1 0 cells were transfected with the shRNA 50011515. The transfected cells were 

split into selective medium containing puromycin (1 ~g/ml). After 2 weeks, 24 stable 

clones were picked, expanded and screened for silencing of V AMP3 by immunoblotting. 

(B) Whole celllysates of 9 of the clones were immunoblotted with a VAMP3 antibody. 

The same membrane was probed with an antibody to anti-~-actin as loading control. 
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almost completely in Clones 3 and 4. These two cell lines were expanded and further 

immunoblotting analysis confirmed the depletion of V AMP3 in Clone 3 and Clone 4 to 

undetectable level compared with wild type B16F1O cells (Fig. 10). These data indicate 

VAMP3 in B16FI0 melanoma cells is silenced efficiently using shRNA. 

Then we assessed the effect of V AMP3 knockdown on the proliferation of 

B16F1O cells. Clearly, the stable cell line Clone 3 proliferated at the same rate as the wild 

type cells (Fig 11 B). This was an indication that VAMP3 was not required for cell 

survival or proliferation, and ruled out the possibility that the observed reduction in the 

number of migrated cells (Fig 8 A & B) was a result of decreased cell viability. 

Microscopic images of the wild type, Clone 3 and Clone 4 cells showed no obvious 

morphological differences (Fig 11 A). However, the pellets of Clone 3 and Clone 4 cells 

look darker in color compared to the wild type cells (data not shown), suggesting that 

secretion of the melanin pigment in the V AMP3 knockdown melanoma cells was 

disrupted. 

The transwell migration assay performed on the wild type and Clone 3 and Clone 

4 cells showed 54% reduction of migration of Clone 3 cells and 39% reduction of 

migration of Clone 4 cells compared with the wild type cells (Fig 12 B). When Clone 3 

cells were transfected with a plasmid that encodes human VAMP3, cell motility was 

rescued back to the wild type level (Fig 12 C), further indicating that migration of Clone 

3 cells was inhibited due to the knockdown ofVAMP3. Due to the fact that Clone 3 cells 

have more reduced cell migration than Clone 4 cells, Clone 3 cells were used in later 

studies to determine the effects ofVAMP3 knockdown on melanoma metastasis in vivo. 
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Figure 10. VAMP3 expression in stable cell lines that express VAMP3 shRNA. 

Whole cell lysate of wild-type B 16F 1 0, Clone 3 and Clone 4 cells were immunoblotted 

with an antibody to VAMP3. The same membrane was blotted with an antibody to ~­

actin as a loading control. 
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Figure 11. V AMP3 silencing has no effect on cell morphology and proliferation. 

(A) Representative light microscopy images for B16FlO wild type cells and clones 3 

and 4. (B) VAMP3 silencing has no effect on cell proliferation. Same amount of wild­

type and Clone 3 cells were seeded in 24 well plate. At 0, 24, 48, or 72 h after 

seeding, the number of living B 16F 1 0 wild type and clone3 were measured using the 

CellTiter 96 A Queous One Solution Cell Proliferation Assay by absorbance at 

490nm. The error bars represent standard deviation of three independent experiments. 
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Figure 12 .. Migration is inhibited in Clone 3 and Clone 4. (A) B16FlO while type 

cells and Clone 3 and 4 were harvested and loaded to the top chambers of transwells. 

Matrigel (20 Jlg/ml) was included in the bottom chamber as chemoattractant. After 24h at 

37C unmigrated cells were removed and migrated cells were Giemsa stained. 

Representative images of migrated cells are shown. (B) Random images were taken for 

each transwell and the number of migrated cells in each image was quantified using the 

Image] software then averaged for each experimental group. The number of migrated 

cells in Clone 3 and Clone 4 were normalized to the number of migrated cells of B 16F 1 0 

wild type. Error bar represents standard deviation of 4 independent experiments. (C) 

Expression of human V AMP3 rescues the inhibition of cell migration by V AMP3 

shRNA. The motility of wild-type, Clone 3 and Clone 3 cells transfected with a plasmid 

that encodes human V AMP3 was compared using the transwell migration assay. Error 

bars represent standard deviation of 4 independent experiments. *** P < 0.001 vs. wild 

type B 16F 1 0 cells. 
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Different from the transwell migration assay, which exammes chemotactic cell 

migration, wound healing assay (34) analyzes 2-dimensional random migration. The wound 

healing assay was used to analyze if V AMP3 silencing affects 2-dimensional migration (Fig 

13). Monolayers of B 16F 1 0 wild type and Clone 3 cells were wounded, and migration of the 

cells into the wounded areas was photographed until the wounds were closed. Both the wild 

type and Clone 3 cells entered the wounded space within 24 h, but Clone 3 cells showed ~ 

10% narrower wound. 48 h after wounding, both the wild type cells and Clone 3 cells have 

closed ~90% of the wounded areas. The slight difference in migration through the wound 

between the wild type and Clone 3 cells at 24 h, and the similar migration of both cells at 48 

h, conclude no obvious difference of 2-dimensional migration between the two cell lines in 

the absence of chemoattractant. 

Silencing of V AMP3 inhibits cell adhesion to fibronectin and Matrigel 

Having shown that V AMP3 is required in chemotactic migration of B 16F 1 0 

cells, I sought to measure the effect of V AMP3 knockdown on cell adhesion to the ECM 

proteins Matrigel and fibronectin. Compared with wild type cells, at 10 min, 30 min and 

60 min, adhesion of Clone 3 cells to Matrigel was attenuated by 13%, 20% and 40%, 

respectively (Fig 14 A). At 60 min and 90 min, adhesion of Clone 3 cells to fibronectin 

was decreased by 35% and 32%, respectively (Fig 14 B). These data indicate that 

silencing of V AMP3 suppressed adhesion of melanoma cells to Matrigel and fibronectin. 
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Figure 13. Wound healing assay. B16FIO cells wild type and Clone 3 was seeded at 5 x 

104 cells/well in a 6-well plate. At 90% confluency, a wound was made through the cell 

mono layers using a pipette tip. After 0, 6, 24 and 48 h, images were taken on a light 

microscope. Representative images of two experiments are shown. 
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Figure 14. Silencing of VAMP3 decreases cell adhesion to Matrigel and fibronectin. 

B 16F 1 0 wild type cells and clone3 were added to (A) Matrigel-coated plates (B) or 

fibronectin-coated plate. At different time points, unattached cells were gently washed 

away, and the number of adherent cells was measured using a colorimetric assay by 

absorbance at 490nm. Error bars represent standard deviation of two independent 

experiments. ***p < 0.001 vs. wild type B16FlO cells. 
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Effects ofVAMP3 silencing on integrin trafficking in B16FIO cells 

Cell adhesion to fibronectin is mediated by integrins. The chief components of 

Matrigel are ECM proteins such as laminin and collagen. In particular, the ~ 1 integrin 

pairs with as, aV or a8 integrin subunits to form heterodimeric fibronectin receptors, 

with a3, a6 or a7 to form laminin receptors, or with aI, a2, aIO or all to form collagen 

receptors (4). The inhibitory effects of V AMP3 knockdown on adhesion to fibronectin 

and Matrigel suggest that V AMP3 knockdown disrupted the trafficking of integrins to the 

cell surface. We postulated that if VAMP3 mediates integrin trafficking, silencing of 

V AMP3 would reduce cell surface integrin expression and result in accumulation of 

integrins in intracellular vesicles. However, when B 16F 1 0 wild type and Clone 3 cells 

were stained with polyclonal antibodies against ~I, a3 and as integrins (Fig IS A and B), 

we were unable to detect obvious effects of V AMP3 depletion on subcellular distribution 

of those integrins. The best integrin antibodies that are used in our lab to stain a3, as and 

~I (30, 3S) are mouse monoclonal antibodies. Because BI6FIO cells are mouse 

melanoma cells, those monoclonal antibodies were not suitable for the detection of 

integrins in B 16F 1 0 cells. The specificity of the rabbit and goat poly clonal antibodies 

used in (Fig. IS) needs further validation. To circumvent this problem to determine which 

integrin receptors are delivered by VAMP3, we decided to use the human cancer cell 

lines HeLa (cervical cancer) and HI299 (lung cancer). 
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Figure15. V AMP3 depletion has no obvious effect on integrins distribution. (A) 

Unpermeabilized B 16F 10 wild type and Clone 3 cells were stained with polyclonal 

antibodies to ~ I, a3 or a5 integrins. (B) Permeabilized B 16F I 0 wild type and clone 3 

cells were stained with polyclonal antibodies to ~ 1, a3 or a5 integrins. Bar represents 

20.0 flm. Representative confocal images of five experiments are shown. 
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ii. Determine the role of V AMP3 in integrin trafficking in HeLa and H1299 cells 

Silencing of V AMP3 inhibits cell migration 

siRNAs against V AMP3 were used to silence V AMP3 In HeLa cells. 

Immunoblotting analysis showed that within 72 h after siRNA transfection, the 

expression of V AMP3 protein in HeLa cells was depleted by more than 95% (Fig 16 A). 

Transfection of V AMP3 siRNA did not modulate the expression of ~-actin. 

The effect of V AMP3 knockdown on HeLa cell mobility was analyzed using the 

transwell migration assay and matrigel as the chemoattractant. When loaded to the upper 

chambers, HeLa cells migrated efficiently across the membranes (Fig 16 B). HeLa cells 

transfected with VAMP3 siRNA had much reduced mobility. Compared with the cells 

transfected with a non-targeting control siRNA, the number of migrated V AMP3 

knockdown cells decreased by 65% (Fig 16 C), indicating that V AMP3 was required in 

the migration of HeLa cells. 

Silencing of V AMP3 inhibits cell adhesion to fibronectin and laminin 

The next step was to determine the effects of V AMP3 silencing on HeLa cell 

adhesion to ECM proteins. At 10 min, 20 min and 30 min, V AMP3 silencing inhibited 

cell adhesion to fibronectin by 10%, 20% and 35% respectively (Fig 17 A). In addition, 

VAMP3 silencing inhibited adhesion to laminin by 20-25 % (Fig 17 B). These data 

suggested that V AMP3 participated in the trafficking of the integrin receptors for 

fibronectin and laminin. 

Figure 16. V AMP3 knockdown inhibits migration of HeLa cells. (A) HeLa cells were 

transfected with negative siRNA control or a siRNA against V AMP3 (Hs-VAMP3 _5). 
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72h after transfection whole celllysates were immunoblotted with antibodies to VAMP3. 

The same membrane was blotted with antibodies to p-actin as a loading control. (B) 72h 

after transfection with negative siRNA control or VAMP3 siRNA, HeLa cells were 

harvested and loaded in the top chamber of transwells. Matrigel (20/lg/ml) was included 

in the lower chamber as chemoattractant. After 24h at 370 C unmigrated cells were 

removed while the migrated cells were Giemsa stained. Representative images of the 

migrated cells are shown. (C) Random images were taken for each transwell, and the 

number of migrated cells in each image was quantified using the ImageJ software then 

averaged for each experimental group. The number of migrated cells transfected with 

V AMP3 siRNA was normalized to the number of migrated cells transfected with 

negative siRNA control. Error bar represents standard deviation of two independent 

experiments in which two transwells were used for each transfection. 
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Figure 17. Effects of V AMP3 knockdown on the adhesion of HeLa cells to 

fibronectin and laminin. 72h after transfection with negative control siRNA (gray 

columns) or V AMP3 siRNA (black columns), HeLa cells were added to fibronectin­

coated plates (A) or laminin-coated plates (B). At different time points, unattached cells 

were washed away, and the number of adherent cells was measured using a colorimetric 

assay by absorbance at 490nm. Error bars represent standard deviation of three 

independent experiments. * P < 0.05 vs. cells transfected with negative control siRNA, 

**p < 0.01 vs. cells transfected with negative control siRNA, ***p < 0.001 vs. cells 

transfected with negative control siRNA. 
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V AMP3 is required for trafficking of PI, a3 and a5 integrins to the cell surface 

To analyze the role of VAMP3 in vesicular trafficking of integrins, we 

determined the effects ofVANP3 silencing on subcellular distribution of a3~1 and a5~1 

integrins by immunostainig and confocal microscopy. Silencing ofVAMP3 in HeLa cells 

resulted in the accumulation of ~ 1, a3 and a5 integrins in intracellular vesicles as shown 

by staining of permeabilized cells (Fig 18 A). Surprisingly, V AMP3 knockdown had no 

obvious effects on cell surface expression of ~1, a3 and a5 integrins (Fig 18 B). The 

accumulation of ~ 1, a3 and a5 integrins inside the cells indicated that V AMP3 

knockdown disrupted the trafficking of ~ 1, a3 and a5 integrins to the plasma membrane, 

suggesting that VAMP3 mediates the delivery of a3~1 and a5~1 inetgrins to the cell 

surface. Disrupted integrin trafficking is consistent with reduced chemotactic migration 

and adhesion to fibronectin (a a5~1 ligand) and laminin (a a3~1 ligand) of VAMP3 

knockdown in HeLa cells (Figs 16 C and 17) in the VAMP3 knockdown cells. 

Further investigation was performed to track integrins inside the V AMP3 

knockdown cells. Permeabilized HeLa cells transfected with the control siRNA or 

V AMP3 siRNA were immunostained for ~ 1, a3 and a5 integrins after incubation with 

Lyso Tracker Red DND-99 which tags the lysosomes. As shown by confocal microscopy 

(Fig 19), in VAMP3 knockdown cells a large fraction 40%, 60% and 20% of a3, a5 and 

~ 1 integrins (respectively) were localized in lysosomes. In the control cells (Fig. 19), few 

lysosomes were detected, whereas in the V AMP3 knockdown cells, the number of 

lysosomes was increased at least 
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Figure 18. VAMP3 is required for the trafficking of a3, as and PI integrins to the 

cell surface. (A) 72h after transfection with negative siRNA control or V AMP3 siRNA, 

permeabilized HeLa cells were stained with monoclonal antibodies to a3, a5 and ~1 

integrins. Representative Confocal images of two experiments are shown. (8) 

Unpermeabilized HeLa cells were stained with monoclonal antibodies to a3, a5 and ~1 

integrins. Representative confocal images of two experiments are shown. Arrows indicate 

intracellular vesicles. 
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Figure 19. In VAMP3 knockdown cells integrins are accumulated in lysosomes. 72h 

after transfection with negative control or V AMP3 siRNAs, HeLa cells was incubated 

with Lyso Tracker Red DND-99, fixed, permeabilized and stained with antibodies 

(green) to a3 integrin (A), a5 integrin (B) or ~1 integrins (e). Representative confocal 

images of two experiments are shown. Arrows indicate integrins localization to 

lysosomes. 
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several folds. Together, these data suggested that when trafficking of ~l, a3 and a5 

integrins to the plasma membrane is inhibited, the integrins are targeted to lysosomes for 

degradation. 

To determine if V AMP3 mediates the trafficking of a3 ~ 1 and a5 ~ 1 integrins in 

other cells, the H 1299 lung cancer cell line was used. Immunoblotting analysis showed 

that within 72 h after transfection of siRNA against VAMP3, the expression of VAMP3 

protein in H1299 cells was depleted by more than 95% (Fig 20 A). Like HeLa cells, 

silencing ofVAMP3 in H1299 cells led to the accumulation of ~1, a3 and a5 integrins in 

intracellular vesicles (arrows in Fig 20 B). In contrast, V AMP3 knockdown had no effect 

on cell surface expression of ~1, a3 and a5 integrins (Fig 20 B & C). The accumulation 

of ~ 1, a3 and a5 integrins inside the V AMP3 knockdown cells indicates that V AMP3 

mediates the trafficking of ~ 1, a3 and a5 integrins in H 1299 cells. 

iii. Examine the role of V AMP3 in melanoma metastasis in vivo 

V AMP3 is over expressed in melanoma (Fig. 7). Data presented in this thesis 

suggest that silencing of V AMP3 inhibited chemotactic migration of melanoma cells in 

vitro (Fig. 8 and 12). These findings prompted us to examine whether metastasis of 

melanoma in vivo can be inhibited by silencing V AMP3. B 16F 1 0 melanoma cells are 

widely used as a syngeneic model to study melanoma metastasis. Preliminary studies in 

our lab have showed that B 16F 1 0 cells injected in the tail vein of nude mice metastasize 

to the lung and form tumor lesions. In the present study we used nude mice to study the 

effects of V AMP3 silencing on the growth and metastasis of B 16F 1 0 tumor cells to the 

lung. 
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Figure 20: VAMP3 is involved in the trafficking of PI, a3 and a5 integrins in Hl299 

cells. (A) 72h after transfection with negative control siRNA or VAMP3 siRNA 1, 

penneabilized HI299 cells were stained with antibodies to PI, a3 or a5 integrins. 

Representative Confocal images of two experiments are shown. (B) Staining of 

unpenneabilized HI299 cells show no effect ofVAMP3 knockdown on surface PI, a3 or 

a5 integrins. Representative Confocal images of two experiments are shown. Arrows 

indicates intracellular vesicles. 
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V AMP3 knockdown had no effect on the growth of melanoma 

To investigate if tumor growth in vivo is affected by VAMP3 knockdown, 

parental B16FlO and the Clone 3 cells that express a VAMP3 shRNA were injected 

subcutaneously into the anterior flank of nude mice. B 16F 1 0 cells form tumor rapidly. 

Within 5 days after injection, measurable tumors were detected (Fig. 21). 12 days after 

injection most tumors have reached 1.5 cm in diameter, and the experiment had to be 

terminated. In two independent experiments, no statistically significant differences were 

observed between the Clone 3 tumors and the wild-type B16F10 tumors (Fig 21), 

suggesting that silencing of V AMP3 has no effect on melanoma tumor growth. These 

results are consistent with the observation that V AMP3 knockdown has no effect on 

B 16F 1 0 proliferation in vitro (Fig. 11). 

Effects of V AMP3 silencing on melanoma metastasis 

The metastatic B16FlO melanoma cells injected through the tail vein of nude 

mice results in pulmonary metastases (36). In preliminary experiments, we found that two 

weeks after injection of wild type B16FlO cells, lung metastases were developed in nude 

mice (data not shown). To test the possible inhibitory effect of VAMP3 knockdown on 

metastasis, the same number of B 16F 1 0 and Clone 3 cells were injected into nude mice. 

Two weeks later, the mice were sacrificed and the lung tissues were collected and 

examined. In the first experiment, (Fig 22 A) all three mice injected with B16FlO cells 

developed pulmonary metastases, whereas only two out of four mice received the Clone 3 

cells developed metastases, 
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Figure 21: Subcutaneous tumor growth assay. Nude mIce model was used to 

investigate whether tumor growth in vivo can be inhibited by V AMP3 knockdown. 

B 16F 1 0 cells and Clone 3 expressing V AMP3 knockdown were implanted 

subcutaneously into the anterior flank skin of nude mice, and tumor growth was 

compared in the two groups of animals (each group include 5 mice). In two independent 

experiments, measurable tumors were detected within 5 days after injection, (Fig. 21). 12 

days after injection most tumors have reached the size of 1.5 cm in diameter, and the 

experiment had to be terminated .. Tumors were measured by calipers and the tumor's 

volume was calculated using the following formula: Tumor volume (mm3
) = 12 (Length x 

width2
). No significant effect of VAMP3 knockdown on tumor growth was observed. 

***p <0.001 vs. the mice injected with wild type B16FlO cells. 
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Figure 22. Experimental lung metastasis assay. B16FlO wild type cells and Clone 3 

were injected into the tail veins of a group of nude mice. Each cell line was injected in 4 

mice in two independent experiments. Two weeks after tumor cell injection, mice were 

sacrificed to examine the inhibitory effect on lung metastasis of V AMP3 knockdown. 

Representative lungs are shown in (Fig 22 A and B). Extensive tumor metastasis was 

found in the wild type and Clone 3 groups and the lungs from mice injected with both 

cell lines showed cancer lesions indicated by arrows. 
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suggesting that in this experiment silencing of V AMP3 may have an inhibitory effect on 

metastasis of melanoma to the lung. However, in another experiment (Fig. 22 B), Clone 3 

cells metastasized to the lung comparable to wild type B 16F 1 0 cells. From these 

experiments we conclude that melanoma cells can still metastasize even when V AMP3 is 

depleted. Further experiments are needed to determine quantitatively if V AMP3 

knockdown has inhibitory effects on metastasis. In addition, we may need to sacrifice the 

mice at a shorter time point to detect any differences between the two cell lines before 

they reach the same degree of metastasis. 

Discussion 

In migrating cells, integrins are transported in vesicles and exocytosed actively at 

the cell front (37). Although it is well established that SNAREs mediate intracellular 

vesicle fusion (18, 19), it is not clear which SNARE proteins mediate the trafficking of 

integrins to the plasma membrane. Using RNA interference, we show here that silencing 

of the v-SNARE V AMP3 effectively inhibit both melanoma cell migration, as well as, 

melanoma cell adhesion to Matrigel and fibronectin without affecting cell proliferation. 

V AMP3 silencing led to the accumulation of ~ 1, a3 and a5 integrins in vesicles in HeLa 

and H 1299 cells, indicating that V AMP3 is required for trafficking of these integrins to 

the plasma membrane. Together, these data suggest that VAMP3 plays an important role 

in migration and adhesion of melanoma cells and that V AMP3 mediates the trafficking of 

a3~ 1 and a5~ 1 integrins. 

By expression of catalytic light chain of tetanus toxin (TeTx-LC), a protease that 

specifically cleaves and inactivates VAMPI, VAMP2 and VAMP3, several studies show 
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that inhibition ofVAMP3 function interferes with cell motility and integrin functions. In 

CHO cells, expression of TeTx-LC impairs cell migration, reduces cell surface a5~1 

integrin, and inhibits cell spreading but not adhering to fibronectin (16,28). In MDCK 

cells, TeTx-LC expression reduces cell motility and disrupts the recycling of~1 integrin 

(29). Since among the three VAMP proteins, V AMP3 is the only one expressed in CHO 

cells and MDCK cells (16, 29), these results suggest that V AMP3 participates in integrin 

trafficking and cell migration. In the present study, we used shRNA and siRNA to silence 

V AMP3 and found that V AMP3 silencing inhibited the migration of B 16F 1 0 and HeLa 

cells by more than 60% and effectively disrupted integrin trafficking. This work provides 

further evidence that VAMP3-dependent integrin trafficking plays an important role in 

cell migration. Although trafficking of a3 ~ 1 and a5 ~ 1 integrin is disrupted, cell surface 

expression of the integrins in the V AMP3 knockdown cells is not altered. This 

observation is not surprising, since our lab has shown that other v-SNAREs such as 

V AMP2 also mediates vesicle trafficking of integrins to the cell surface. 

Like other receptors, integrins at the cell surface are continually endocytosed from 

the plasma membrane, transported into endosomal compartments and then recycled back 

to the cell surface (38). Most endocytosed integrin molecules are recycled, rather than 

being targeted to lysosomes for degradation (3, 12). The endocytosis and recycling of 

integrins is particularly important during cell migration. In migrating cells, integrins act 

as the "feet" to support cell adhesion to the ECM. The net forward movement of the cell 

leads to an accumulation of integrins towards the cell rear. To provide a fresh source of 

integrins at the cell front, integrins are endocytosed and recycled to the leading edge (9, 

10). This thesis indicates that although cell surface expression of integrins in V AMP3 
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knockdown cells is not altered, cell migration is inhibited dramatically. These data are in 

accordance with recent findings from other groups showing that vesicle trafficking of 

integrins but not the levels of integrins at the cell surface plays a major role in cell 

migration (4). These data emphasize the importance of VAMP3-mediated integrin 

trafficking in cell migration. 

VAMP3 is over expressed III melanoma. To our knowledge, this is the first 

systematic study on the role of V AMP3 in migration of melanoma cells. Our data 

indicate that V AMP3 is required for chemotactic migration of melanoma cells in vitro. 

However, in vivo analysis using the experimental lung metastasis assay has yielded 

variable results. One experiment showed that V AMP3 knockdown inhibited melanoma 

metastasis to the lung, whereas another experiment showed no such effect. To 

metastasize to the lung, the B 16F 1 0 cells need to survive in the blood stream, migrate out 

of the blood vessels and form colonies in the lung. The fact that we detect pulmonary 

metastases of melanoma cells depleted of V AMP3 indicates that V AMP3 is not required 

for the aforementioned processes. More experiments are needed to determine if there is a 

quantitative difference of metastasis between wild type and V AMP3-depleted melanoma 

cells. 
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CHAPTER III: METHODS 

Cell culture 

BI6-FI0, H1299 and HeLa cells were obtained from the American Type Culture 

Collection (ATCC). BI6-FI0 cells were cultured in Dulbecco's Modified Eagle medium 

(DMEM) with 4.5 gil glucose and 10% fetal bovine serum (FBS). H1299 cells were 

cultured in RPMI medium 1640 with 2.5 giL glucose, 1 % sodium pyruvate, 1 mM 

HEPES and 10% FBS. HeLa cells were cultured in Minimum Essential Medium a 

(MEMa) media with 10% FBS. The cells were maintained at 37°C with 5% C02. All cell 

culture media were manyfactured by Invitrogen. 

To split cells, the culture medium was aspirated, and the cell culture dishes were 

washed once with PBS (150 mM NaCl, 10 mM sodium phosphate, pH 7.4) containing 0.5 

mM EDTA (PBS-EDTA). 2 ml of trypsin (0.05% in PBS-EDTA) was added to each dish. 

After incubation at 37°C for 3-5 min, 10 ml of complete medium was added to quench 

the trypsin reaction and the cells were dispersed by repeated pipetting. The cells were 

transferred to 15 ml conical tubes, and centrifuged at 200 g for 10 min. The medium was 

aspirated from the conical tubes and the cells were re-suspended gently in culture 

medium and plated. 

To store cells, cells were trypsinized and centrifuged as above, re-suspended at a 

density of lxl06-1x107 cellslml in FBS supplemented with 5% DMSO (Sigma), and 

transferred to cryovials. The vials were placed in a Nalgene Cryo freezing container, 
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frozen at -80°C for 24 h, and then transferred to a liquid nitrogen container. To recover, 

cells were thawed by warming the vials at 37°C until the frozen pellet had nearly melted. 

The cells were slowly added to a 15 ml conical tube containing 10 ml of culture medium. 

Cells were then centrifuged and plated as above. 

Transfection of plasmids and siRNAs 

The scramble shRNA, and the shRNAs 50011515 and 50011516 which target mouse 

V AMP3 were obtained from Sigma. A 21 nucleotide siRNA oligo that targets human 

V AMP3 sequence TCAAGCTT ACCT ACTGTTA was synthesized by Dharmacon 

Thermo Scientific. The AllStars Negative control siRNA was obtained from QIAGEN. 

The day before transfection, BI6-FI0, HeLa or Hl299 cells were seeded into 6-well 

plates (5 x 105 cells per well) or 24-well plates (5 x 105 cells per well). 1 Ilg of shRNAs 

were transfected into the cells grown in each well of 6-well plates using Lipofectamine 

2000 according to the manufacturer's instructions (Invitrogen). The control and VAMP3 

siRNAs were transfected at 10 nM using Lipofectamine RNAiMAX. 

Immunoblotting 

Whole celllysates were obtained by lysing cells in 2x SDS-PAGE sample buffer. 

45 III of whole cell lysates were loaded in each well of 15% SDS-PAGE gels. After 

electrophoresis, proteins were transferred to Hybond-LFP (PVDF) membranes 

(GEHealthcare) using 20V overnight at 4°C or to Trans-Blot Nitrocellulose Membranes 

(BIO-RAD) at 0.25A at room temperature for 2 h. The membranes were preincubated 

with 5% Milk in TBS (20 mM Tris-HCl pH7.6, 140 mM NaCl) with agitation overnight 
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4°C or 1 h at room temperature. The membranes were then incubated with rabbit 

polyclonal antibodies to V AMP3 (Synaptic Systems, 1: 1 ,000 dilution) for 2 h at room 

temperature. The membranes were washed three times with TBS and once with TBS-T 

(0.05% Tween-20 in TBS), and then incubated with HRP-conjugated goat anti rabbit IgO 

antibodies (Jackson ImmunoResearch Laboratories, 1: 10,000 dilution) for 1 h. After the 

antibody solution was removed, the membranes were washed as described above. Bound 

antibodies were detected with SuperSignal West Pico Chemiluminescent Substrate 

(Thermo Scientific Pierce). The membranes were exposed to Kodak BioMax 

autoradiography films, and films were developed using HOPE micro-max developer 

located in the Department of Biochemistry and Molecular Biology at the University of 

Louisville. The same membranes were labeled with a mouse monoclonal antibody to ~­

actin as loading control. 

Development of stable ceUlines that express V AMP3 shRNAs 

BI6-FI0 cells were transfected with the shRNA 50011515 using Lipofectamin 

2000. 72 h after transfection, the cells were splitted into selective DMEM medium 

containing 1 ug/ml puromycin. After two weeks, 24 clones were picked, transferred to 

24-well plates and grown in puromycin-containing medium. Whole celllysates of the 

clones were analyzed by immunoblotting for V AMP3 expression. Clones that had 

reduced V AMP3 expression were expanded. Clones 3 and 4 were chosen for further 

studies because they showed knockdown ofVAMP3, but not ~-actin. 
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Immunocytochemistry 

The day before transfection, cells were seeded on sterile 12-mm glass cover slips 

contained in 24-well plates. 72 h after transfection, the cells were fixed with 4% 

paraformaldehyde in PBS++ (PBS supplemented with 0.1 gil CaCl2 and 0.1 gl I MgCI2) 

for 10 min. Cells in some wells were permeabilized with 0.2% Triton X-I 00 in PBS++ 

for 5 min. After washing, the cells were blocked in 10% FBS in PBS++ for 30 min. 

Primary antibodies were incubated with the cells at the following dilutions: anti-~l 

integrin mouse monoclonal antibody P5D2, neat conditioned culture medium of the 

hybridoma cells; anti-a3 integrin mouse monoclonal antibody (Chemicon International), 

1 :50; anti-a5 integrin mouse monoclonal antibody (Chemicon International), 1 :50; anti­

a3 integrin goat polyclonal antibody (Santa Cruz Biotechnology), 1 :50; anti-a5 integrin 

rabbit poly clonal antibody (Santa Cruz Biotechnology), 1 :50. FITC-conjugated secondary 

antibodies (Jackson ImmunoResearch Laboratories) were used at a dilution of 1 :500. For 

double staining, cells were incubated first with Lyso Tracker© Red DND-99 (Invitrogen) 

(50 nM or 100 nM) for 45 minutes before fixation. Confocal images were collected at 

60x on an Olympus laser scanning confocal microscope located in the Department of 

Biochemistry and Molecular Biology. Images were processed with Adobe Photoshop 

software. 

Cell adhesion assay 

Cell adhesion assay was performed as described (35). Each well of 24-well 

plates was coated with 20 flg of fibronectin, Matrigel or laminin for 1 h at room 

temperature. The plates were washed once with PBS and blocked with 2% heat 
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inactivated BSA in PBS. 72 h after transfection, cells were harvested with trypsin/EDT A, 

counted with a hemacytometer and re-suspended in serum free medium supplemented 

with 0.5% BSA (SFM-BSA). 2x 105 cells were added to each well and allowed to adhere 

to the coated plates for various time at 37°C. After incubation, non-attached cells were 

removed by 3 gentle washes with SFM-BSA medium. Phenol red free medium and 

CellTiter 96 Aqueous One Solution Reagent (Promega) were then added to measure the 

number ofliving cells. After incubation at 37°C for 90 min, absorbance of the medium at 

490 nm was measured in a 96-well ELISA plate reader. Absorbance from we11s 

containing only the medium but no ce11s was taken as blank: reading. 

Transwell migration assay 

Transwell migration assay was performed as described (35).Serum-free medium 

(SFM) containing 20 Ilg/ml of growth factor-reduced Matrigel was added to the lower 

chambers of the 12-well format transwells (8 Ilm-pore, BD Biosciences) as 

chemoattractant. 72 h after transfection, cells were harvested with trypsin/EDT A, re­

suspended in SFM, and added to the upper chambers at 5x 104 cells per transwell. After 

24 h at 37°C, the transwells were fixed in methanol, and stained with Giemsa Stain 

solution (Sigma). The unmigrated cells were removed from the top of the membranes 

using cotton swabs. The membranes were detached from the transwells then affixed to 

glass slides using Permount mounting medium (Fisher Scientific). To quantify the 

number of migrated cells, five to ten random images were taken at lOx on a light 

microscope for each transwell. The number of migrated cells per image was counted 

using the Particle analysis function in ImageJ software. 
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Cell proliferation assay 

B16F10 cells or Clone 3 cells were seeded in 24-well plates at 5x104 cells per 

well. 0, 24, 48, and 72 h later, cell culture medium was replaced with phenol red free 

medium, and the CellTiter 96 Aqueous One Solution Reagent was added to measure the 

number of living cells. After incubation at 37°C for 90 min, absorbance of the medium at 

490 nm was measured in a 96-well ELISA plate reader. Absorbance from wells 

containing only the medium but no cells was taken as blank reading. 

Wound healing assay 

B16FlO cells or Clone 3 cells were seeded in 12-well plate at 5x104 cells per 

well. After 48 h, a cross wound was made in the cell mono layers using a 200 III pipette 

tip. The cells were washed once with cell culture medium to remove cellular debris and 

returned to 37°C culture. After 0, 6, 24 or 48 h, images of the wounded areas were taken 

using a light microscope. 

Experimental pulmonary metastasis assay 

The experimental pulmonary metastasis assay was performed as described (36) 

with modifications. 6 weeks old male nude mice were obtained from the National Cancer 

Institute and kept in barrier facility in the Delia Baxter Building. Wild-type B16-F10 and 

Clone 3 cells were detached from cell culture plates by trypsinization and suspended in 

PBS at 5 x 106 cells/ml. The cell suspension was injected into the tail's vein of nude mice 

using 27 gauge butterfly needles. Each mouse received approximately 0.1 ml of cell 
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suspension. The mice were checked every other day. After two weeks, the mice were 

euthanized and the lungs were harvested, examined and pictured for the presence of 

tumor metastases. Each experimental group consisted of 4-5 mice. 

Subcutaneous tumor growth assay 

Wild-type B16FlO and Clone 3 cells were injected subcutaneously into the 

anterior flank of nude mice at 1 x 106 cells/mice. The tumor diameters were measured 

once weekly with a calipers and the tumor volume was calculated using the formula: 

Tumor volume (mm3
) = 1I2(length x width2

) (39). Each experimental group consisted of 

5 mice. 
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