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ABSTRACT 

GENETIC AND MECHANISTIC ANALYSIS OF RAT MAMMARY CANCER 

SUSCEPTIBILITY 

Jennifer Sanders 

June 9th, 2014 

Breast cancer is a complex disease, which is influenced by genetic, epigenetic and 

environmental components. Genetic susceptibility to breast cancer is made up o f high, 

moderate and low penetrance alleles. High and moderate penetrance alleles are rare and 

constitute only a small percentage of the genetic susceptibility. Most variation in genetic 

susceptibility is controlled by low- penetrance, common polymorphisms. Comparative 

genetics uses model organisms to study human disease. Rat strains exhibit different 

susceptibility phenotypes to chemical induced carcinogenesis. The Wistar-Furth (WF) rat 

strain is susceptible to chemically induced mammary carcinogenesis, while the Wistar-

Kyoto (WKy) and Copenhagen (COP) rat strains are resistant. Selective breeding and 

linkage analyses of these rat strains after treatment with 7,12-dimethylbenz[a]anthracene 

(DMBA) have been used to identify eight rat mammary cancer quantitative trait loci 

(QTLs) in the rat. This dissertation focuses on two of these QTLs, mammary carcinoma 

susceptibility loci 1b and 6 (Mcs1b and Mcs6). Mcs6 has been identified and physically 

confirmed using WF.WKy congenic animals and maps to a 33Mb region. This locus will 

have to be mapped to a narrower interval in order for functional studies to be practical. I 



 
 

v 
 

was able to map the Mcs6 locus to a region of 8.5Mb on rat chromosome 7. The Mcs1b 

locus maps to a region of 1.8Mb on r at chromosome 2. Mcs1b contains the rat 

orthologous region to a breast cancer risk associated region marked by SNP rs889312. 

This makes the Mcs1b congenic rat an ideal model for studying the mechanism of 

rs889312. The goal of my project is to identify all Mcs1b sequence variants between the 

two rat strains and test for gene regulatory functions. I was able to identify 70 SNPs and 2 

INDELs using next- generation sequencing. Three rat SNPs have gene regulatory 

function differences between the two rat alleles. Out of the seven human SNPs that tag 

SNP rs889312, four exhibit gene regulatory differences between the major and minor 

alleles, and therefore, may be functional orthologs to the rat Mcs1b candidate SNPs. 

Overall, I was able to fine map the Mcs6 region and identify several candidate rat and 

human Mcs1b/ MCS1B SNPs. 
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CHAPTER I 

INTRODUCTION 

Breast Cancer Statistics 

In 2013, approximately 232,340 ne w breast cancer cases was expected to be 

diagnosed, making breast cancer the most commonly diagnosed cancer among women 

(excluding skin cancer).  A woman’s lifetime chance of developing breast cancer in 2013 

was 1 in 8. The lifetime chance of developing breast cancer has risen since the 1970’s 

when a woman’s lifetime chance of being diagnosed with breast cancer was 1 in 11. This 

rise in breast cancer diagnoses is attributed to an increase in life expectancy and breast 

cancer incidence [1].   

Breast cancer is the second leading causing of cancer related deaths in women 

after lung cancer. However, for women between 20-59 years of age, breast cancer is the 

leading cause of cancer related deaths [2].  Due to improvements in awareness, screening 

and breast cancer treatments, the breast cancer death rate has dropped 34% between the 

years 1990-2010 [1]. However, approximately 39,620 women will have died of breast 

cancer in 2013, hi ghlighting the need for even better early detection and prevention 

methods.  

 

Breast Cancer Risk Factors 

Breast cancer is a co mplex disease, made up of environmental, epigenetic and 

genetic factors. A 12.5% lifetime chance of developing breast cancer is a population 
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based estimate and a woman’s individual risk may vary depending on breast cancer risk 

factors [1]. These breast cancer risk factors include age, gender, reproductive history, 

genetic and non- heritable factors [3]. Age and gender are the most important breast 

cancer risk factors and breast cancer risk increases for females with increase in age [1]. 

However, there are several environmental breast cancer risk factors. These include but 

are not limited to: radiation, estrogen exposure, smoking, high alcohol intake, unhealthy 

diets and environmental pollutants such as polycyclic aromatic hydrocarbons [4-12]. 

 

A. Radiation as a Risk Factor for Breast Cancer 

Radiation is one of the most potent inducers of breast cancer, since the mammary 

gland is sensitive to radiation induced carcinogenesis [13]. Timing of the radiation 

exposure is essential, with exposed women under the age of 20 having a higher risk of 

developing breast cancer than women exposed at an older age. This is likely due to the 

breast tissue being relatively undifferentiated before the age of 20 [13, 14]. Women are 

generally not exposed to high dosages of radiation; the few exceptions include survivors 

of the atomic bomb detonations in Japan during World War II and the nuclear disaster at 

Chernobyl. Breast cancer incidence data from these disasters suggests an increase in 

breast cancer risk after high radiation exposure that is more pronounced in women who 

were younger at the time of exposure and those who received higher the dose of radiation 

was [14, 15]. Women can also be exposed to low dosages of radiation, usually due to 

medical procedures. These include: 1) women being monitored for tuberculosis infection 

by X-rays; 2) women being treated for benign breast disease or acute post-partum 

mastitis; 3) childhood cancer survivors; 4) adult cancer survivors; 5) women treated for 
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benign disorders as children using radiation and 6) breast cancer screening through 

mammograms [7, 13]. Low dosage radiation exposure is considered carcinogenic but the 

benefits from radiation treatments outweigh the risks [7]. The breast cancer risk after low 

dose exposure increases if women are positive for a genetic mutation that increase breast 

cancer susceptibility [6].  

 

B. Estrogens as a Risk Factor For Breast Cancer 

The US National Toxicology Program of the Department of Health and Human 

Services categorizes estrogens as carcinogens [9, 16]. The involvement of estrogens in 

breast carcinogenesis was established through several key observations: 1)  hormonal 

replacement therapies, which increase circulating estrogens, also increase breast cancer 

risk; 2) bilateral oophorectomy (reduction in circulating estrogens) in both animals and in 

humans protects from breast cancer; 3) parity decreases breast cancer risk and 4) 

treatment with anti-estrogen drugs such as tamoxifen decreases chances of developing 

breast cancer [17-21].  

The main estrogen studied in breast cancer carcinogenesis is 17β-estradiol (E2); 

however, other estrogens include estrone (E1) and estriol (E3). E2 is secreted by the 

ovaries in pre-menopausal women and is synthesized by the aromatase enzyme in pre- 

menopausal and post-menopausal women [9]. E2’s role in breast carcinogenesis is 

complex and involves many different mechanisms and cellular pathways. E2 can bind 

and activate estrogen receptors (ER) α and β, which in turn act as transcriptional 

regulators of several genes involved in cell proliferation and cell cycle progression [9]. 

One example of this is the role of E2 in upregulating anti-apoptotic Bcl-2 and Bcl-Xl 
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genes in breast cancer cell lines and therefore preventing apoptosis [22]. Another 

example of a mechanism of E2’s involvement in breast cancer is the observation that E2 

increases the secretion of interleukin 8 (IL-8) and vascular endothelial growth factor 

(VEGF), both needed for the formation of blood vessels to growing tumors [23].  A more 

controversial mechanism by which estrogens may be involved in breast cancer is through 

initiating DNA damage.  Some evidence suggests that estrogens and their metabolites can 

cause direct and indirect DNA damage through the formation of free-radicals [18, 24]. 

The role of estrogens in breast cancer has been used to develop treatments 

specific to estrogen-responsive breast cancers that express ERα, since this makes up the 

majority of breast cancer cases (about 70%). Currently, there are three different types of 

treatments for ER-positive cancers that use the role of estrogens as their basis. The first 

type of treatment is selective estrogen receptor modulators (SERMs). These are synthetic 

chemical compounds that compete with estrogens for ERα binding, but inhibit 

transcriptional activity in a cell- type and promoter context. There are currently three 

SERMs on the market: raloxifene, toremifene and tamoxifen [9, 25]. Another type of 

treatment includes compounds that increase ER turnover in the cells. Fulvestrant is an 

example of a drug approved for this type of treatment [26]. A third type of breast cancer 

treatment that takes advantage of the role of estrogens in breast cancer is aromatase 

inhibitors. Aromatase is an enzyme needed for the synthesis of estrogen and is extremely 

important in post-menopausal women, since the synthesis of estrogen in the adipose 

tissue becomes the primary source of estrogen for obese women [9].   

 

C. Alcohol as a Risk Factor for Breast Cancer 
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The link between alcohol intake and breast cancer risk has been established. A 

meta-analysis of 100 e pidemiological studies identified a correlation between alcohol 

intake and breast cancer risk at high alcohol consumption (<45g/day) with RR of 1.46 

(95%CI= 1.33-1.61) compared to nondrinkers. This results in a 7.1% increase in breast 

cancer risk with every 10g/ day of alcohol consumption [11, 27]. Interestingly, low 

alcohol intake (1drink/day or 5-14g/day) is also associated with an increase in breast 

cancer risk in several meta-analyses (relative risk (RR) = 1.05, 95% CI 1.02-1.08 in one 

study) [11, 28].  Several mechanisms have been identified as to how alcohol is involved 

in breast carcinogenesis. These mechanisms include changes in hormone and hormone 

receptor levels, increased cell proliferation, DNA adduct formation, increased cyclic 

adenosine monophosphate (cAMP), changes in potassium channels and modulation of 

gene expression all due to alcohol or its metabolites [29]. Of important consideration is 

the alcohol metabolite acetaldehyde, which is a known carcinogen. Acetaldehyde 

promotes inflammation, can cause DNA damage and can inhibit DNA repair [30]. It is 

recommended for females to limit alcohol intake to ≤1 drink/day [11].   

 

D. Smoking as a Risk Factor for Breast Cancer 

Cigarette smoke contains thousands of chemicals, 69 of  which are known 

carcinogens, and 20 of  them are mammary carcinogens [10, 31].  Many of these 

carcinogens can be activated through enzymes and eventually lead to DNA adduct 

formation. Some of these carcinogens found in cigarette smoke reach the breast tissue 

[32].  
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The relationship between smoking and breast cancer remains complex. Recent 

studies have indicated that active smoking is associated with an increase in breast cancer 

risk, particular when age of smoking initiation was very early (before the age of 20) [10, 

31]. In one particular study, the risk of breast cancer associated with smoking was 

determined to have an odds ratio of 1.28 (95% CI= 1.17-1.39) [33]. The relationship of 

passive smoking and breast cancer remains even more elusive with several studies 

showing no r elationship while some studies suggest that even passive smoking can 

increase breast cancer risk [10]. A positive correlation between smoking and breast 

cancer risk has been established in a subset of people, who carry the NAT2 slow 

acetylation genotype, especially among post-menopausal women. In a meta-analysis of 

breast cancer risk, the relative risk (RR) was 1.27 (95%CI= 1.16-1.39) in people with the 

NAT2 slow acetylation genotype compared to a RR o f 1.05 (95%CI= 0.95-1.17) in 

people with the rapid NAT2 acetylation genotype [31, 34]. NAT2 is involved in 

detoxifying several carcinogens in tobacco smoke. A NAT2 slow acetylation genotype 

person is homozygous for a NAT2 variant, while a rapid NAT2 genotype is composed of 

a homozygous wildtype genotype  [34]. This indicates that there is interplay between 

genetics and the environment when it comes to smoking and increases in breast cancer 

risk.  

 

E. Environmental Pollutants as a Risk Factor for Breast Cancer 

The two environmental pollutants most often associated with breast cancer risk 

are polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). 

PAHs are generated during combustion. Exposure to PAHs can occur through several 
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ways. PAHs are present in smoked and grilled foods, air pollution, vehicular exhausts and 

in cigarette smoke [10, 12]. Several PAHs are known mammary carcinogens, including 

benzo(a)pyrene [12, 35]. PAHs form DNA adduct and subsequently cause DNA damage 

[12]. Polychlorinated biphenyls (PCBs) were used in electrical equipment until banned in 

the U.S. The main route of exposure to PCBs is through eating contaminated fish from 

contaminated rivers near industrial areas. High PCB levels can be found in breast milk 

post exposure since that PCBs accumulate in fat [12, 36].  PCBs can activate several 

hormone receptors and PCB metabolites can form DNA adducts leading to 

carcinogenesis [37].  

 

F. Diet and Breast Cancer 

Diet plays an important factor in influencing breast cancer risk. Increased breast 

cancer risk is associated with obesity, high fat intake in post-menopausal women and 

high total energy intake in both pre- and post-menopausal women [4, 38, 39]. Breast 

cancer risk is influenced by intake of different types of fats. High intake of saturated fats 

is associated with increase in breast cancer risk in post-menopausal women, while 

polyunsaturated fats increase breast cancer risk in both pre- and post-menopausal women. 

Monounsaturated fats seem to have no influence on breast cancer risk [4, 40]. In addition, 

a diet low in bread and fruits, as well as high in meat, fish, butter, other animal fats and 

margarine is associated with in increase in breast cancer risk (hazard ratio= 2.00, 95% CI 

1.30-3.09) [41]. It has been postulated that fats may increase E2 levels as a p ossible 

mechanism for the increase in breast cancer risk [42]. There are also several foods which 

have a p rotective effect against breast cancer. A diet rich in fiber reduces chances of 
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developing ERα+ breast cancer [43]. Also, a diet rich in soy is associated with a 

reduction in breast cancer risk, possibly due to some of the components of soy having 

anti-oxidant and anti-inflammatory properties [44]. The American Cancer Society 

suggests to reduce weight/ weight gain in overweight and obese people, to adopt a 

physically active lifestyle, to eat foods high in vegetables and fiber, and to reduce intake 

of fats to reduce the chances of developing breast cancer [45]. 

 

G. Epigenetic Factors and Breast Cancer Risk 

There are several pieces of evidence that suggest epigenetic factors are involved 

in breast cancer risk. One example is that in a meta-analysis of the effects of genistein, a 

compound in soy, on b reast cancer risk suggests that a d iet rich in genistein before 

puberty protects from breast cancer later [46]. Genistein’s breast cancer protective effect 

is thought to possibly act through the epigenetic effects of genistein [46]. Genistein is 

known to affect DNA methylation by both increasing methylation and by inhibiting DNA 

methyltransferase, resulting in a d ecrease in DNA methylation [47, 48]. Another study 

that identified a link between epigenetics and breast cancer risk showed that lower levels 

of DNA methylation of repetitive elements in white blood cells correlated with an 

increase risk of developing breast cancer. A decrease in DNA methylation in repetitive 

elements is associated with genomic instability. Some repetitive elements have the ability 

to integrate themselves into different genomic regions. This can potentially disrupt gene 

function, therefore repetitive elements are often highly methylated and therefore silenced 

[49-51]. Another piece of evidence for the link between epigenetics and breast cancer 

comes from the observation that the daughters of women given diethylstilbestrol (DES) 
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(a synthetic estrogen) during their pregnancy are more likely to develop breast cancer 

than women who haven’t been exposed. The generational jump in breast cancer risk 

suggests that there may be epigenetic factors at play, possibly through the disregulation 

of DNA methyltransferases expression levels [52, 53].  

 

Genetic Factors of Breast Cancer Risk 

A. General Introduction to Genetic Factors of Breast Cancer Risk 

The genetic contribution towards breast cancer has been approximated by 

comparing the concordance of cancer between monozygotic and dizygotic pairs of twins. 

The idea being that if there is a higher concordance of cancer between pairs of 

monozygotic twins than there is between dizygotic twins, breast cancer susceptibility has 

a genetic component. Overall, a monozygotic twin is more likely to be diagnosed with 

breast cancer if there is an affected twin, suggesting that there is a genetic component to 

breast cancer.  About 25-32% of breast cancer susceptibility can be attributed to genetic 

factors [54-56]. 

Breast cancer heritability is made up of three different classes of alleles. The first 

class is made up of  high penetrance risk alleles, such as BRCA1, BRCA2, STK11 and 

TP53. These alleles have a s trong effect on breast cancer risk, with relative risk >8. 

However, mutations in these genes are very rare and therefore, only a small percentage of 

the population is affected [57-59]. It is estimated that only 20-25% of genetic heritability 

of breast cancer can be explained by high penetrance risk alleles [60]. Family-based 

linkage analysis were used to identify these high penetrance breast cancer risk genes [59]. 
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Genome-wide association studies have not mapped any additional high penetrance risk 

alleles, suggesting that no further high-penetrance risk alleles exist [60].  

A second class of breast cancer risk alleles is made up of moderate risk alleles. 

These risk alleles have a relative risk of 2-8. Some of these breast cancer risk alleles were 

identified through targeted sequencing, usually of genes known to interact with BRCA1 

and BRCA2 or genes that are active in DNA repair pathways. Other breast cancer risk 

alleles in this class were identified through linkage analysis of families suffering from 

rare syndromes that include breast malignancies as a symptom [59]. Genes in this class of 

breast cancer risk alleles include PTEN, PALB2, CDH1, ATM, BRIP1, and CHECK2 [57-

60]. These moderate risk alleles are rare in the population and therefore, the contribution 

of this class of breast cancer risk alleles to the heritability of breast cancer is estimated to 

be only 3% [60].  

Since the majority of breast cancer heritability cannot be explained by high and 

moderate penetrance alleles, the majority of breast cancer heritability is thought to be 

made up of common, low penetrance risk alleles. These alleles make up the third class of 

breast cancer risk alleles. The risk allele frequencies of common, low penetrance risk 

alleles are >5% in a human population. This means this class of breast cancer risk alleles 

affects a l arge part of the respective population. The relative risk of this class of risk 

alleles is low and as of yet no risk allele in this group with a relative risk higher than 1.5 

has been identified [59]. Initially, this class of breast cancer risk alleles was identified 

through case- control, association studies using candidate genes. A more common and 

more fruitful method of identifying these risk alleles was developed in 2007 when the 

first genome-wide association study (GWAS) of breast cancer was published [59, 61]. 
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Since 2007, 72 c ommon, low penetrance risk alleles have been identified and the most 

recent study suggested that up t o 1000 c ommon, low penetrance risk alleles may exist 

[59, 62]. The 72 c ommon, low penetrance risk alleles identified so far only make up 

about 14% of the heritability of breast cancer. The remaining heritability may be made up 

of low penetrance risk alleles that have very low effect sizes that cannot be easily 

identified through GWA studies due to limits of detection. Alternatively, risk alleles that 

interact with each other and therefore cannot be identified through genome-wide 

association studies may make up the remaining heritability [59, 62]. GWA studies are 

designed to test a limited number of SNPs that tag enough SNPs to cover the whole 

genome. Tagged SNPs are found in areas of low recombination and are therefore 

inherited together with the GWA study SNP. Tagged SNPs are found at linkage 

disequilibrium blocks or haplotypes. The boundaries of LD blocks or haplotype blocks 

are delimited by recombination hot-spots. This means that a GWAS identified SNP may 

tag the actual SNP, but the causative variant(s) may not be the SNP tested in the GWA 

study [59]. Genes making up the three classes of genetic susceptibility and their minor 

allele frequency can be found in Figure 1. Discussion of breast cancer susceptibility 

genes will focus on germ line mutations in these genes. 

Surprisingly, high and moderate penetrance risk mutations are found in coding 

regions of their respective genes. This makes identifying the causative gene relatively 

easy. However, low penetrance risk alleles are generally found in non-coding or 

intergenic regions. This makes identifying the causative gene difficult, since the causative 

gene can be long distances away and may affect gene regulation through complex 

chromatin arrangements. Low penetrance risk alleles located in non-coding or intergenic  
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Figure 1: Architecture of genetic susceptibility to breast cancer. Adapted from 

Ghoussaini et al. (2013) [59]. Figure shows the genetic architecture of breast cancer risk. 

Relative risk and risk allele frequencies for breast cancer risk genes are shown. Breast 

cancer risk genes are subdivided into classes of level of risk.  

 

 

 

 

 

 

 



 
 

13 
 

regions are thought to be enhancers that affect the expression of genes long distances 

away. 

 

B. BRCA1 and BRCA2 

The first breast cancer gene was identified in 1990 and cloned in 1994. Breast 

cancer susceptibility 1 or BRCA1 was identified through a linkage analysis of 23 families 

with 146 cases of breast cancer.  BRCA1 was mapped to chromosome 17q21 [63, 64]. 

The BRCA1 protein contains 24 e xons and is 1863 amino acids long. BRCA1 is an 

extremely versatile protein, which interacts with several different proteins to form distinct 

complexes. Its most known function is DNA repair, however, the protein is also involved 

in cell cycle control and transcriptional regulation and generally acts as a t umor 

suppressor [65, 66].  Upon DNA damage, the DNA damage sensors ataxia telangiectasia 

mutated (ATM) and ataxia telangiectasia mutated rad3-related (ATR) will phosphorylate 

BRCA1 leading to the recruitment of BRCA1 to DNA damage foci that locate to sites of 

DNA damage. BRCA1 is involved in homologous recombination, an error-free pathway 

to repair double stranded breaks [67].   

BRCA1 is also known to be involved in cell cycle control. The protein interacts 

with cell cycle proteins E2F, CDC2 and cyclins. BRCA1 levels increase in late G1 phase. 

High levels of BRCA1 results in the upregulation of p21 and G1-S cell cycle arrest [65].  

BRCA1 is a known transcriptional regulator. The C-terminus of the BRCA1 

protein is known to interact with transcriptional activators and repressors. One protein 

BRCA1 is known to interact with is the RNA polymerase II holoenzyme and functions as 
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a transcriptional activator. BRCA1 is also known to interact with TP53 at the p21 gene, 

resulting in the upregulation of p21 [65]. 

The second major breast cancer susceptibility gene (Breast cancer 2, early onset 

or BRCA2) was identified in 1994 through a linkage analysis of 15 families with multiple 

cases of early onset breast cancer. BRCA2 was localized to a region on chromosome 13 

[68]. Like BRCA1, BRCA2 is involved in DNA damage repair, in particular, BRCA2 is 

involved in homologous recombination. BRCA2 interacts with several DNA damage 

repair proteins including RAD51, a protein known to cover single stranded DNA strands 

formed during homologous recombination [69].  

The risk of developing breast cancer by the age of 70 is as high as 85% in BRCA1 

and BRCA2 mutation carriers [67]. BRCA1 and BRCA2 mutations also increase the risk of 

being diagnosed with higher grade/ stage and ER negative tumors, and increase the risk 

of metastasis [67, 70]. In fact, the majority of breast cancers in BRCA1 mutation carriers 

are ER negative (70-90%), while the majority of breast cancers in BRCA2 mutation 

carriers are ER positive (60-75%) [71]. More than 2000 mutations have been identified in 

the BRCA1/2 genes [70]. The vast majority of BRCA1/2 mutations result in a truncated 

protein with only a small minority resulting in amino acids substitutions [67]. Male breast 

cancer is a rare disease with a ratio of 1:175 men to women developing breast cancer. 

BRCA1 and BRCA2 are known risk factors for male breast cancer with BRCA2 being 

more important in the genetic predisposition to male breast cancer [72]. The lifetime 

chance of men developing breast cancer is 1.8% for BRCA1 carriers and 8.3% for BRCA2 

carriers [71]. BRCA1/2 mutation carriers are often advised to take prophylactic measures 

to prevent developing breast cancer or ensuring early detection. These measures include 
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annual mammography or magnetic resonance imaging (MRI) starting at age 30. Other 

prophylactic measures include bilateral mastectomy, salpingo-oophorectomy and 

chemoprevention using the anti-estrogen tamoxifen [71, 73].  

 

C. TP53 and PTEN 

Another breast cancer predisposition gene is TP53. TP53 is implicated in Li-

Fraumeni syndrome, which is a rare autosomal dominant syndrome that is associated 

with an increase in childhood and adult cancers including breast cancer. TP53 is a tumor 

suppressor protein involved in cell cycle control and apoptosis [74]. Breast cancer is the 

most commonly found cancer in female TP53 mutation carriers. However, TP53 

mutations are rare and make up only 0.1% of all breast cancer cases [73]. 

Mutations in PTEN are associated with another rare autosomal dominant cancer 

syndrome called Cowden’s syndrome. Cowden’s syndrome is associated with an increase 

risk in several cancers including skin, bowel, thyroid and breast and the presence of 

pathognomonic physical features, including facial trichemmoma, acral keratoses and oral 

papillomatous papules. PTEN is a tumor suppressor protein and female PTEN mutation 

carriers have a lifetime chance of developing breast cancer that is 75% [74].  

 

D. FGFR2 

The breast cancer susceptibility genes discussed so far are high penetrance risk 

alleles and mutations in these genes increase a woman’s chance of developing breast 

cancer significantly. However, another set of risk alleles are associated with a much 

lower increase in breast cancer risk. Low penetrance risk alleles are found at a m uch 
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higher frequency in the population than high penetrance risk alleles and therefore are 

thought to make up the majority of genetic breast cancer risk. One of the earliest low 

penetrance risk alleles identified through a genome- wide association study is located 

within the fibroblast growth factor receptor 2 (FGFR2) gene and it has been confirmed 

through several other studies in multiple populations [61, 75-78]. It is also the most 

studied low penetrance breast cancer risk allele to date. SNPs associated with breast 

cancer risk are located on a 7.5kb linkage disequilibrium block (LD block) within intron 

2 of FGFR2 [61]. Several risk associated SNPs map to this locus and it is not known if 

there is a single causative variant, multiple independent or multiple interacting variants in 

this region. FGFR2 is expressed higher in homozygotes of the minor allele than the major 

allele, suggesting that these SNPs are involved in gene regulation of FGFR2 possibly 

through altering transcription factor binding sites [79]. Through electrophoretic mobility 

shift assays (EMSAs), several transcritiption factors including OCT-1, RUNX2, FOXA1 

and E2F1 were shown to bind to the minor and major alleles of the risk SNPs 

differentially. Furthermore, chromosome confirmation capture (3C) of the FGFR2 locus 

suggests that the FGFR2 risk SNPs are brought to close proximity of the FGFR2 

promoter through chromosomal looping [79, 80]. The FGFR2 locus provides the first 

mechanism into how low penetrance risk alleles that are located in intergenic or intronic 

regions can affect gene regulation of candidate susceptibility genes.  

 

E. MAP3K1 and rs889312 

The same study that identified a breast cancer risk SNP in the intron of FGFR2 

also found several other SNPs that associate with breast cancer risk in an European 
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population, one of them being rs889312 [61]. This SNP will be important for the majority 

of the studies reported here. The minor allele frequency (MAF) of rs889312 is about 30% 

in the European population. rs889312 increases breast cancer risk slightly with a per 

allele odds ratio of 1.13 (95%CI= 1.10-1.16) [61].  GWA studies using a wide variety of 

different populations confirmed previous findings for rs889312, indicating that this SNP 

is associated with breast cancer risk in several different populations. This included 

studies with populations of European, Korean, South American, Chinese and Tunesians 

[78, 81-84]. The SNP is also found to be associated with several breast cancer subtypes 

including ER+, ER- and triple negative [85, 86]. 

rs889312 is located in an intergenic region which is located within a linkage 

disequilibrium block (LD block) of 280kb. This LD block contains three genes, namely 

MAP3K1, SETD9 and MIER3. rs889312 is located closed to MAP3K1; therefore, it is  

referred to by that name in the literature. Initially, MAP3K1 was considered the most 

likely causative gene in this region due to its role in cell signaling. However, this does not 

mean that MAP3K1 is the causative gene, since rs889312 is located on a haplotype block 

with MAP3K1, SETD9 and MIER3, any of these genes could potentially be the causative 

gene. SETD9 is not expressed in human breast tissue and there is little conservation 

between human and rat SETD9. Therefore, SETD9 is an unlikely candidate for conferring 

the mammary carcinogenesis phenotype of the rs889312 region. However, MIER3 is 

expressed higher in breast tumors compared to normal breast tissue, suggesting that 

MIER3 might have a role in mammary carcinogenesis [87]. rs889312 is in linkage 

disequilibrium with at least six other SNPs at an r2 value of 0.8. All seven of these SNPs 

are located on the 280kb LD block. This means that any of these seven SNPs could be the 
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causative SNP. Therefore, rs889312 is not necessarily the causative SNP in this region 

but tags the causative SNP. It is currently not known which of the rs889312 correlated 

SNP is causative, or if multiple causative SNPs are present. Interestingly, with more and 

more genomes being sequenced, more SNPs that tag rs889312 may be identified. This 

also means that the causative SNPs for this region may not be in public databases yet. 

Figure 2 shows the map of the LD block containing rs889312.  

 

Animal Models of Breast Cancer 

Studying human polymorphisms that associate with breast cancer risk comes with 

a set of challenges. Studying these polymorphisms in humans directly is limiting. Crucial 

experiments cannot be performed in humans directly due to ethical and feasibility 

constrains.  

 

A. Human Breast Cancer Cell Lines 

Human cell lines have been used to circumvent the challenge of studying diseases in a 

human model. Human cells lines have several advantages. They can be immortalized and 

easily grown. They can be transfected with foreign DNA and exposed to chemicals. 

Genomic manipulation is also easily accomplished in human cell lines. However, there 

are disadvantages to using human cell lines. There is a broad range of human breast 

cancer cell lines that differ in their genomes and cell environments drastically. It is 

important to select the cell line that is most appropriate for the experiment. Human breast  
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Figure 2. LD block containing rs889312 and tagged SNPs. Blue lines indicate gene 

transcripts in this region. The LD block is 280kb in size. 
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cancer cell lines are prone to change genotypically and phenotypically with each passage, 

giving rise to subpopulations. This is especially the case if these cells lines have been 

used for long periods of time. Another problem with human cells lines is a high rate of 

false misidentification and contamination with different cells lines [88, 89]. These 

disadvantages have led to the identification of several non- human breast cancer animal 

models that can be used instead of or to enhance cell line studies. 

 

B. Canine Models of Breast Cancer 

The canine has been used as a b reast cancer animal model. Canines develop 

mammary cancer spontaneously. Canine mammary tumors are similar to human breast 

cancer biologically and clinically. In particular, several genes that are deregulated in 

mammary cancer are deregulated in both humans and canines. Problems with canine 

models include the relatively high costs of housing canines compared to rodents and 

ethical considerations of using animals commonly viewed as pets [90].  

 

C. Mouse Models of Breast Cancer 

Rodent breast cancer models have become increasing popular. The mouse model 

of breast cancer has been popular because of the ability to perform genetic manipulations 

in the mouse. There are several advantages of mouse models of breast cancer. The 

biology and development of the mouse mammary gland is well known and characterized. 

Mouse mammary glands develop mammary cancer spontaneously but mammary cancer 

can also be induced with carcinogens such as 7,12-dimethylbenz[a]anthracene (DMBA). 

With the identification of mammary gland specific promoters, many transgenic mouse 
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models of breast cancer have become available. It is also possible to transplant a mouse 

mammary gland [91]. Another advantage is that the mouse genome is very well 

characterized and mapped, especially compared to other rodent models such as the rat 

[92]. However, there are also disadvantages to mouse models of breast cancer. The 

biology of mammary cancer in mouse differs in some aspects from the biology of human 

breast cancer. While the majority of human breast tumors are responsive to estrogen 

(ER+), mouse mammary tumors are generally independent of estrogen. Also, the majority 

of human breast cancer metastases locate to the bone, while mouse mammary cancer 

metastasis locate to the lung [91].  

Several transgenic mouse models of breast cancer exist. These include mice that 

overexpress breast cancer genes such as C-myc or Ras. These genes are often under the 

control of the mouse mammary tumor virus long terminal repeat promoter (MMTV). This 

results in a strong, gland-wide expression of the oncogene resulting in multifocal 

tumorigenesis. This is in contrast to human, single focal point tumorigenesis [91, 93]. 

Also, mice carrying gene knock-outs have been used to study the function of several 

mammary gland tumor suppressors. Brca1 and Brca2 knock- out mice all have been 

established [94, 95]. In general, these mice develop mammary cancer with less 

multifocality than transgenic animals. Conditional knock-out mice, that exhibit gene 

knock-out only in targeted tissues, have been used to overcome negative effects from 

whole- organism knock-outs of genes such as embryonic lethality [91].  

Mice have also been used in experimental metastasis models of breast cancer. 

Here, human breast cancer cells are injected into the heart of immune- compromised host 

mice. This model has been used to study bone metastasis of human breast cancer cells in 
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a mouse, however, this model skips important steps in the metastasis pathway, such as 

cell-cell detachment, invasion of local tissue and intravasation. Several other 

experimental metastasis models exist that differ in injection site and site of metastasis  

[93].  

 

D. Rat Models of Breast Cancer 

Another popular rodent model of breast cancer is the laboratory rat. While mouse 

models of breast cancer have been very popular due to the fact that transgenic and knock-

out mice are readily available, the rat model has some advantages over the mouse models 

of breast cancer. Rats develop spontaneous mammary tumors, but chemical or oncogene 

induction is also possible [96]. Rat mammary tumors are more similar to human breast 

tumors than mouse mammary tumors are in etiology and biology. Mice often develop 

mammary tumors that are associated with a viral etiology unlike rat and human 

mammary tumors. [92]. Rat mammary tumors are hormone sensitive, which is the same 

with the majority of human breast tumors [97-99]. DMBA treatment of both rats and 

mice can be used for carcinogenesis. However, rats require only a single dose, develop 

more tumors and exhibit a shorter mean latency, which makes them easier to use in an 

experiment. DMBA induced tumors in the rat do not often metastasize and are localized 

to the mammary gland. However, in mice leukemias, skin, lung, ovarian and stomach 

cancers are common, resulting in early termination of experiments [99]. Rats develop 

spontaneous mammary tumors, but the tumor incidence rate, tumor grade and age of 

tumor onset vary with different inbred rat strains [100]. Also, inbred rat strains exhibit 

differential susceptibility to chemical, radiation and hormone induced carcinogenesis [96, 
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100].  A study using DMBA as a carcinogen showed that a single dose of DMBA is 

sufficient to induce multiple mammary tumors in the outbred Sprague- Dawley strain 

[101]. Subsequent studies with different inbred and outbred rat strains showed that rat 

strains differ in their susceptibility to DMBA carcinogenesis. The Sprague-Dawley and 

Wistar-Furth (WF) rat strains are highly susceptible to DMBA carcinogenesis, while the 

Long-Evans and F344 are resistant [102]. Other studies revealed that the Copenhagen 

(COP) and Wistar-Kyoto (WKy) are resistant to DMBA induced carcinogenesis [100, 

103, 104].  

 Differences in susceptibility to tumorogenesis after DMBA treatment are not due 

to a strain difference in the ability to metabolize DMBA [100]. This indicates that there is 

a genetic component to mammary cancer susceptibility in different inbred rat strains. 

These rat strains can be used to study genetic elements that determine genetic 

susceptibility to mammary cancer. This can then be translated back to humans, making 

the study of genetic elements of breast cancer possible.  

 

Mammary Cancer Quantitative Trait Loci (QTLs) in the Rat 

Several rat QTLs that associate with mammary cancer risk have been identified. 

The first study to identify mammary cancer QTLs in the rat used the susceptible WF and 

the resistant COP rat strains. Progeny from a (COP x WF)F1 x WF backcross were treated 

with DMBA and tumors were counted. A genetic linkage analysis using informative 

microsatellite markers between the two rat strains was performed. This resulted in the 

identification of one mammary cancer QTL, named Mammary Cancer Susceptibility 1 

(Mcs1) on rat chromosome 2, with a LOD score of 3.8 [105]. Several more Mcs loci were 



 
 

24 
 

identified in an extension of the original study. Here, two independent (COP x WF)F1 x 

WF backcrosses and a F2 generation were treated with DMBA and a linkage analysis was 

performed. This resulted in the confirmation of Mcs1 and the identification of Mcs2-4 

[106]. Mcs2-4 map to rat chromosomes 7, 1 and 8, respectively. While Mcs1-3 are 

associated with a decrease in tumor number, the Mcs4 locus is associated with an 

increase in tumor number in animals that carry the COP allele in the Mcs4 region [106]. 

In an additional study, a genetic linkage analysis using the susceptible WF and the 

resistant WKy strain was performed to identify additional Mcs loci. In this study, a 

(WFxWKy)F1 x WF backcross was used for the linkage analysis post DMBA treatment. 

This resulted in the identification of four more loci, named Mcs5-8. These loci are located 

on rat chromosomes 5, 7, 10 and 14 respectively. The WKy allele for Mcs5, Mcs6 and 

Mcs8 all reduce the susceptibility to DMBA induced carcinogenesis, while the WKy 

allele for Mcs7 increases susceptibility. In addition, a locus was identified that interacts 

with Mcs8, named Modifier of Mcs or Mcsm1 [107]. Mcs2 and Mcs6 overlap extensively, 

however it is currently not known if both QTLs map to the same locus [108].  

The most studied Mcs locus is the Mcs5 locus. The Mcs5 locus was initially 

confirmed and mapped to a region of 115Mb on rat chromosome 5 using congenic lines 

[109]. Congenic lines are generated by mating two rat inbred strains to generate a F1 

generation. One of the rat strains is considered the donor (in this case the COP or WKy 

resistant rat strains) and the other rat strain is the recipient (in this case the WF or 

susceptible rat strain). The F1 generation is then backcrossed to the recipient (in this case 

the susceptible WF rat strain) for up to ten generations. At each generation the genotype 

of the animals is determined and only animals that maintain the donor allele in the region 
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of interest are selected. This results in the introgression of the donor allele in to a 

recipient genetic background only in the region of interest. The phenotype of these 

congenic animals can then be compared to the inbred parent strain to identify if the 

genomic region of interest is involved in modulating the phenotype. A diagram of the 

technique is shown in figure 3. DMBA treatment of several more congenic lines for the 

Mcs5 locus resulted in the identification of three Mcs5 subloci, named Mcs5a, Mcs5b and 

Mcs5c. WKy alleles in the Mcs5a and Mcs5c regions decrease susceptibility, while a 

WKy allele in the Mcs5b region increases susceptibility [110]. Further fine mapping 

using congenic resulted in the identification of a synthetic QTL within Mcs5a, where at 

least one WKy allele has to be present on the same chromosome at two distinct loci 

within the Mcs5a locus. These distinct loci are named Mcs5a1 and Mcs5a2. Mcs5a1 and 

Mcs5a2 are located in close proximity to the genes Fbxo10 and Frmpd1. Mcs5a congenic 

animals show differential expression levels of Fbxo10 and Frmpd1 in thymus tissue 

compared to WF homozygous animals. Also, Mcs5a1 and Mcs5a2 contain the rat 

orthologous region to human genomic loci that associate with breast cancer risk, making 

this a great model to study the function of these human risk loci [111]. Mcs5a acts 

through the immune system and the WKy allele at the Mcs5a is associated with an 

increase of γδTCR+ T-cells in the mammary glands compared to WF homozygous rats 

[112]. Furthermore, chromatin looping of the Mcs5a region appears to be a mechanism 

by which the Mcs5a alleles affect Fbxo10 expression levels in T-cells and this 

mechanism appears to be conserved between the rat and human [113]. Overall, the Mcs5a 

locus exemplifies how the rat can be used as a model to study the mechanisms of breast  
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Figure 3. Generation of congenic animals. Adapted from Kim et al. [114]. Two inbred 

rat strains are mated to generate a h eterozygous F1 generation. The F1 generation is 

backcrossed to the recipient strain for ten generations. At each generation, the genotype 

of the animals is test to ensure donor DNA is present in region of interest. This method 

will introgress donor DNA into recipient genome only in regions of interest. Black bars 

indicate DNA from donor strain, while white bars indicate DNA from recipient strain.  
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cancer susceptibility in the human. Another set of rat mammary cancer QTLs were 

identified using DMBA treatment and a linkage analysis of crosses between the 

susceptible (SPRD-Cu3) and the resistant WKy rat strain. This resulted in the 

identification of Mcstm1 and Mcstm2 on rat chromosomes 5 and 18and two loci involved 

in modifying tumor growth rate, named Mcsta1 and Mcsta2 on rat chromosomes 10 and 

18 [115, 116].  

The mammary cancer loci discussed so far have all been identified through 

linkage analysis using DMBA as a method of carcinogenesis induction. However, several 

rat mammary cancer QTLs have been identified through using E2 as a method of 

inducing carcinogenesis. These studies used the August-Copenhagen-Irish (ACI) rat 

strain, which is susceptible to E2- induced carcinogenesis and the COP or Brown-

Norway (BN) rat strains, which are resistant to E2-  induced carcinogenesis. This resulted 

in the identification of several rat mammary cancer QTLs, named Estrogen induced 

mammary cancer loci or Emca1-2, Emca4-8 [117, 118].  

Several rat mammary cancer QTLs overlap; however, at this point it is not known 

if they map to the same loci. Further fine mapping studies using congenics are needed to 

determine if overlapping mammary cancer QTLs map to the same region. 

 

Mcs 6 

The work presented in this dissertation will involve two different mammary 

cancer susceptibility loci, Mcs6 and Mcs1b.  

Mcs6 was identified in a linkage analysis using the susceptible WF and the resistant WKy 

rat strain post DMBA treatment [107]. Mcs6 was confirmed using several WF.WKy 
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congenic lines spanning potential regions of the locus as shown in Figure 4 and Table 1. 

Congenic lines were generated in the same manner as depicted in Figure 3. WF.WKy 

congenic lines A, B and F all had a phenotype of fewer tumors compared to WF 

homozygous animals (3.5, 3.9, 3.4 a nd 7.3 tumors per rat respectively). This indicates 

that there is a genetic element in these lines that is modifying mammary cancer 

susceptibility and that these lines contain the Mcs6 locus. Lines C and E showed a similar 

tumor multiplicity when compared to WF homozygous animals (8.0, 7.2 and 7.3 tumors 

per rat respectively). This indicates that these lines do not contain the Mcs6 locus. This 

maps the Mcs6 locus to a region of 33Mb on rat chromosome 7, between bp 22,382,725 

and 55,364,398. Overall, the WKy allele at the Mcs6 locus results in a 55% reduction in 

tumor multiplicity. Interestingly, the Mcs6 locus overlaps the Mcs2 locus, which was 

confirmed and physically mapped using WF.COP congenic lines [108]. It is currently not 

known if both loci map to the same location and the phenotype results from the same 

genetic element(s) in both QTLs. There are 111 genes annotated in the Mcs6 region using 

the UCSC Rat Nov. 2004 (Baylor3.4/rn4) Genome Browser [119]. None of these 

annotated genes are known breast cancer susceptibility genes. Figure 5 contains all 111 

genes annotated in the Mcs6 locus.  

The human orthologous region of the Mcs6 locus maps to a contiguous region on 

human chromosome 12 between base positions 71,299,117 to 105,502,699. The human 

region is inverted with respect to the rat region. All genes annotated in the rat Mcs6 

region are also annotated in the human orthologous MCS6 region [108]. Therefore, the 

Mcs6 rat model can be used to study the human breast cancer susceptibility gene(s) in 

this region. Several potential breast cancer susceptibility SNPs that map to the MCS6 
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Figure 4. WF.WKy congenic lines that define the Mcs6 locus. Adapted from Sanders 

et al. (2011) [108]. Figure shows segment of rat chromosome 7 where the Mcs6 locus is 

thought to be located and congenic lines that led to the mapping of the locus. Informative 

markers between the WF and WKy rat strains used for genotyping are shown on r ight. 

Red bars indicate WF.WKy segments that resulted in a resistant phenotype of fewer 

tumors compared to WF homozygous animals. These congenic lines are thought to 

contain the Mcs6 locus. Yellow bars indicate WF.WKy segments that resulted in a 

susceptible phenotype of the same number of tumors compared to WF homozygous 

animals. These congenic lines are thought not to contain the Mcs6 locus. Grey bars 

indicate regions of recombination for which informative markers are missing. Brown bars 

indicate WF.WKy segments for the Mcs2 locus These congenic lines are thought to 

contain the Mcs2 locus. The Mcs2 and Mcs6 locus overlap extensively, however it is not 

known if the two loci map to the same region. Superscript letters next to congenic line 

name indicate congenic line of origin. Overall, using these congenic lines, the Mcs6 locus 

was mapped to a region of 33Mb on rat chromosome 7, as indicated by orange bar. 
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Figure 5. Annotated genes in the Mcs6 locus. Figure adapted from Sanders et al. (2011) 

[108]. Known an predicted transcripts annotated in the UCSC Rat Nov. 2004 

(Baylor3.4/rn4) Genome Browser. X- axis represents the region of rat chromosome 7 that 

contains the Mcs6 locus. Dashed lines mark ends of the Mcs6 locus. Color filled bars 

indicate congenic animals that have been tested for the Mcs6 locus. Grey bars indicate 

regions of recombination with no known genetic markers. Genomic markers between the 

WF and WKy rat strains are shown on the bottom.   
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locus have been studied in GWA studies of breast cancer. Five of these SNPs reached the 

final validation step of their respective GWA study, but did not reach genome-wide 

significance after the validation step. These are rs4146372, rs1154865, rs17740709, 

rs7310517 and rs10507088 [120-122].  A list of all GWAS identified SNPs for the 

MCS6 locus can be found in Table 2. rs1154865 had a p-value that was closest to 

reaching genome-wide significance at 6.6x10-7, with a p-value of 1x10-7 required for 

significance [120].  In a recent GWA study rs17356907 was identified to associate with 

breast cancer risk. This SNP is located with the human orthologous region to Mcs6. The 

p-value for the SNP is 1.8x10-22 and reached genome-wide significance. It is located in 

close proximity to the gene NTN4 [62].  

The Mcs6 locus is currently too large for a practical functional study. Fine 

mapping of this locus is needed to identify a smaller region and to identify candidate 

genes. However, the Mcs6 model is ideal for studying breast cancer susceptibility in the 

MCS6 region. The human orthologous region to the Mcs6 locus is located in a contiguous 

region on hum an chromosome 12. This results in less complexity when studying the 

locus. Also, the Mcs6 locus maps to a human orthologous region that contains several 

GWA study identified polymorphisms. Fine mapping of this locus will be the main goal 

discussed in this dissertation for the Mcs6 locus.  

 
Mcs1b 

The second part of this dissertation will discuss the Mcs1b locus. The Mcs1 locus 

was identified through a linkage analysis using the DMBA carcinogenesis susceptible  
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Table 2. Human SNPs in the Mcs6 Orthologous Region that Have Been Reported in 
Genome-Wide Association Studies as Potentially Associating with Breast Cancer 
Susceptibility. Adapted from Sanders et al. (2011) [108] 

SNP ID Human Chr Location Rat Chr Location OR P-value 

rs4146372 12q72131594 7q54588907 nr 7.0 x 10-5 

rs1154865 12q 72276104 7q54476579 nr 6.6 x 10-7 

rs17740709 12q83423340 7q43765270 0.91 0.002 

rs7310517 12q89149235 7q37548015 nr 1.04x10-3 

rs10507088 12q97879744 7q29148172 nr 5.12x10-4 

rs17356907 12q 96027759 7q30853605 0.91 1.8 x 10-22 

Chr, chromosome; OR, odds ratio; nr, not reported 

 

  

http://genome.ucsc.edu/cgi-bin/hgTracks?db=rn4&position=chr7:43765270-43765270�
http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000012.11?report=graph&v=96027259:96028259&content=5&m=96027759%21&mn=rs17356907&dispmax=1&currpage=1�
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WF rat strain and the resistant COP rat strain [106]. WF.COP congenic lines spanning 

different intervals of the Mcs1 locus revealed three subloci, named Mcs1a-c [123]. 

Subsequently, several WF.COP congenic lines for the Mcs1b locus were developed, that 

spanned different regions of the potential Mcs1b locus as shown in Figure 6. Five 

WF.COP congenic lines showed the same tumor multiplicity post DMBA treatment as 

WF homozygous animals and these lines have a susceptible phenotype. These congenic 

lines are K, F3, U2, W2 and I4. This indicates that these congenic lines do not contain the 

Mcs1b locus. Two WF.COP congenic lines resulted in fewer tumors post DMBA 

treatment as compared to WF homozygous animals and therefore have a r esistant 

phenotype. These congenic lines are T and N3. Line T and N3 resulted in a similar tumor 

multiplicity. This indicates that the Mcs1b is located within these congenic lines. This 

delimits the Mcs1b locus to a region of 1.8Mb on rat chromosome 2. The exact location 

for the Mcs1b locus is rat chr2:42,364,155-44,195,382. Animals homozygous for the 

COP allele in the Mcs1b locus showed a 56% reduction in tumor multiplicity compared 

to WF homozygous animal. An ectopic mammary gland transplant assay and subsequent 

treatment with DMBA revealed that the Mcs1b locus is acting in a mammary gland 

autonomous manner [87].   

Interestingly, the Mcs1b locus has a human ortholog. The human orthologous 

region to the Mcs1b locus is located on human chromosome 5. Its exact location is chr5: 

54,816,178-57,003,049. The human orthologous region to the Mcs1b locus maps to the 

GWAS identified risk locus defined by the SNP rs889312 at 5q11.2 that associates with 

an increase in breast cancer risk [61]. This risk locus is often referred to by the name 

MAP3K1 and has been previously discussed in this dissertation (see section E of Genetic  
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Figure 6. Map of congenic lines that define the Mcs1b locus. Adapted from denDekker 

et al. (2012) [87]. Map shows potential location for the Mcs1b locus on rat chromosome 

2. Dark grey bars are WF.COP congenic lines that resulted in fewer tumors compared to 

WF homozygous animals post DMBA treatment. These lines are thought to contain the 

Mcs1b locus. White bars are WF.COP congenic lines that have a phenotype similar to 

WF homozygous animals post DMBA treatment. These congenic lines are thought to not 

contain the Mcs1b locus. Informative markers between the two rat strains are shown on 

the right. Black bar is the location of the delineated Mcs1b locus. The Mcs1b is located 

on rat chromosome 2 and is about 1.8Mb in size.  
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factors of breast cancer risk and Figure 2). There are currently nine transcripts located 

within the Mcs1b locus that are expressed within the rat mammary gland. These are 

Gpbp1, Map3k1, MIER3, Ankrd55, Il6st, Il31ra, Ddx4, Slc38a9, and Ppap2a.  None of 

these transcripts have coding sequence variants between the COP and WF rat strains; 

therefore the causative genetic variant(s) is likely to be regulatory in nature [87].  

The Mcs1b locus is an ideal model for the 5q11.2 identified human breast cancer 

risk locus. As previously discussed, there are seven potential risk SNPs in the human 

MCS1B locus (see section E of Genetic factors of breast cancer risk and Figure 2). Since 

there are seven potential risk SNPs in the human rs889312 marked breast cancer risk 

locus, it is important to determine how many potential risk associated sequence variants 

there are in the rat Mcs1b locus. Therefore, identifying all sequence variants between the 

two rat strains in the Mcs1b locus and identifying potential mechanisms of their action 

will be my goal for the Mcs1b locus.  

 

Overall Goal 

The overall goal is to identify genetic elements within the Mcs6 and Mcs1b loci 

that modify mammary cancer susceptibility. The goal is then to determine the underlying 

mechanism and identify orthologous genetic elements within human breast cancer risk 

loci.  

 

Hypothesis and Aims 
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The hypothesis is that both the Mcs6 and Mcs1b contain genetic elements that 

control mammary cancer susceptibility. These genetic elements can be identified and act 

through regulation of gene expression within the Mcs6 and Mcs1b loci.  

 Aim 1: Fine map the Mcs6 locus to a smaller chr 7 defined chromosomal segment 

using congenic WF.WKy lines and DMBA- induced mammary carcinoma multiplicity 

phenotyping. 

 Aim 2: Map and annotate Mcs1b sequence differences between susceptible WF 

and resistant COP alleles using sequence capture, next-generation sequencing and in 

silico approaches. 

 Aim 3: Perform functional analysis on Mcs1b sequence variants and human 

tagged rs889312 SNPs. 

 Aim 4: Perform analysis of the overlap between rat genetic loci that associate 

with mammary cancer risk and human GWAS identified breast cancer risk SNPs. 
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CHAPTER II 

FINE MAPPING OF THE MCS6 LOCUS 

Introduction 

The Mcs6 locus was initially identified in a linkage analysis. The DMBA 

carcinogenesis susceptible WF rat strain and the resistant WKy were bred to generate a 

F1 generation. Subsequently, the F1 generation was backcrossed to the susceptible WF 

rat strain, generating an (WFxWKy)F1 x WF backcross. This was repeated to generate the 

F2 generation. Rats were then phenotyped for tumor multiplicity post DMBA treatment. 

This resulted in the identification of four loci controlling mammary cancer susceptibility 

in the WKy rat. These loci are Mcs5, Mcs6, Mcs7 and Mcs8 [107]. The Mcs6 locus was 

physically confirmed and mapped using congenic lines as shown in Figure 4. The locus 

currently maps to a region of 33Mb on rat chromosome 7. The exact location of the locus 

is between genetic markers D7Rat171 and gUwm64-3 (chr7:22,382,725-55,364,398). 

There are 111 transcripts annotated in this region using the UCSC genome browser and 

none of them are known breast cancer susceptibility genes. Importantly, all of the rat 

transcripts annotated in this region are also found in the human orthologous region to the 

Mcs6 locus [108]. Some of the MCS6 genes are expressed differentially between normal 

breast tissue and ductal breast cancer tissue using an Oncomine search. Out of the 111 

annotated genes, 14 genes show increased expression levels in breast cancer tissue 

compared to normal breast cancer tissue. Also, 9 genes are expressed lower in breast 

cancer tissue compared to normal breast tissue.
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One gene was both expressed higher and lower in breast cancer tissue, 

depending on which study was considered in the analysis. While there are 111 annotated 

genes in the Mcs6 region according to the UCSC genome browser, there were far more 

annotated genes in the Rat Genome Database (137 genes) and the Ensemble Genome 

Browser (215 genes) [108]. 

The human orthologous region to the Mcs6 locus is found contiguously on human 

chromosome 12. The human orthologous region is inverted with respect to the rat Mcs6 

region and is found at human chromosome 12: 71,299,117 to 105,502,699 [108]. The rat 

Mcs6 locus and human MCS6 orthologous region share 37.7% of the bases and the span 

99.9% of the size according to the UCSC genome browser. The human MCS6 region 

contains several SNPs that have been tested in GWA studies of breast cancer. Five of 

these SNPs entered the final validation step of their respective study but were found not 

to be genome-wide significant [120-122]. One SNP, rs17356907, was identified in a 

large breast cancer GWA study in 2013. The minor allele odds ratio is 0.91 (0.89–0.93), 

suggesting that the SNP has a protective effect on breast cancer [62]. The SNP was 

identified in a GWA study using a population of European decent. The SNP was then 

tested in a GWA study using a population of East Asian decent and similar results were 

seen [124].  It is located in close proximity to the NTN4 gene. This makes the Mcs6 rat 

model an ideal model for studying the mechanisms of breast cancer susceptibility that are 

present in the human MCS6 region.  

The Mcs6 locus as it is currently mapped is very large. There are over a hundred 

genes present in this region, making identification of a candidate gene difficult. Also, it is  
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difficult to target this region for DNA sequencing in both rat strains due to its size to 

identify candidate genetic variants between the rat strains. The goal for this locus is to 

fine map it to a region that is small enough in size to warrant functional analysis of this 

locus. 

To fine map the Mcs 6 locus, several WF.WKy congenic lines for the locus were 

developed that span different intervals of current Mcs6 locus. Developing congenic lines 

is a laborious process that involves the selective breeding of rats over a long period of 

time. It is currently the preferred method of identifying smaller intervals for rat QTLs. It 

would also be possible to perform RNA-seq for the genes in the targeted region. 

However, analysis of the expression levels of so many genes can be complex. It is also 

not known if the Mcs6 locus is autonomous to the rat mammary gland, and therefore 

selecting the right cell type would be a challenge. It is also possible to identify all genetic 

variation between the two rat strains in this region using whole genome sequencing. This 

would result in the identification of a lot of sequence variants and parsing out a potential 

candidate would be difficult. Another reason why fine mapping the Mcs6 locus is 

essential is because there is a possibility of several distinct QTLs may be present in this 

region, which will only be identified through fine mapping of this locus. Several Mcs loci 

have been mapped to distinct subloci upon fine mapping using congenic lines, including 

the Mcs1 and Mcs5 loci [110, 123]. This is particularly important since the Mcs6 locus 

currently spans a large portion of the chromosome. The Mcs6 locus would therefore 

benefit from fine mapping to a smaller region. None of the annotated transcripts in the 

Mcs6 region are known breast cancer susceptibility genes. Therefore, studying this locus 

can result in the identification of a novel breast cancer susceptibility gene.  
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The goal for the Mcs6 locus is to fine map the locus to a smaller region on rat 

chromosome 7. The hypothesis is that the Mcs6 locus is located within on of  three 

independent WF.WKy congenic lines that span the 33Mb of the locus.  

 

Methods 

A. Generating WF.WKy congenic animals for the Mcs6 locus 

All animals used for this study were housed by the University of Louisville 

Research Resources Center Animal Facility. All protocols were approved by the 

University of Louisville IACUC committee.  

Three WF.WKy congenic lines were developed to fine map the Mcs6 locus. These 

are lines D, H and I. WF.WKy congenic line D was developed through a backcross of the 

resistant Mcs6 congenic line B (Shown in Figure 4) to the WF rat strain (obtained from 

Harlan).  The resulting pups were genotyped for informative markers in the Mcs6 region 

and recombinants were determined. A recombinant would be any animal that showed a 

shorter WKy allele than the original line B. Recombinants were crossed again to WF 

animals to expand the line. Brothers and sisters containing the same recombinant WKy 

allele in the regions were mated to fix the new line. WF.WKy congenic lines H and I 

were generated through the same breeding scheme as shown in Figure 3. In short, WF 

and WKy inbred rats were obtained from Harlan and bred with each other. The resulting 

heterozygous F1 males were backcrossed to WF inbred females to generate a 

(WFxWKy)F1 x WF backcross. The resulting pups were genotyped to ensure a WKy 

present at the Mcs6 locus. The rats were then backcrossed seven more times until the N8 

generation. At each backcrossing the animals were genotyped to ensure the desired WKy 
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allele was still present. At the N8 generation, brothers and sisters that contained the same 

WKy allele were mated. The brothers and sisters used for this mating were heterozygous 

for the WKy allele of interest. Their pups will be 25% WF homozygous, 50% 

heterozygous and 25% WKy homozygous for the area of interest. The WF homozygous 

and WKy homozygous females were selected for phenotyping. Line I was also tested at 

the N9 generation. To get the N9 generation, the N8 generation was backcrossed to WF 

females. Brothers and sisters were mated and resulting homozygous offspring were 

tested.  

 

B. Genotyping of Animals 

Animals had to be 12 weeks of age for breeding. Pups were tail clipped at 5-8 

days of age and tattooed for identification. Tails were digested in genomic lysis solution 

supplemented with proteinase K at 15mg/ml. Tails were digested at 55°C overnight and 

extracted using protein precipitation solution (Qiagen) and an isopropanol- ethanol DNA 

extraction. DNA was amplified using GeneAmp Fast PCR Master Mix (Life 

Technologies) and primers for microsatellite markers between the two rat strains. PCR 

reactions were run on a 3% high resolution agarose gel (GeneMate) alongside PCR 

reactions of control DNA samples. SNPs between the two rat strains were also used for 

genotyping. DNA was amplified using a TaqMan Genotyping Master Mix (Life 

Technologies) and primers and probes specific for the SNP marker. Analysis was done on 

a StepOne Plus QPCR machine (ABI) using the StepOne software for genotyping 

analysis. Informative markers used to generate congenic lines for the Mcs6 locus are 

shown in Table 3.  
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C. Phenotyping of animals 

For each congenic lines, 18-65 female rats were tested. Female rats used in 

phenotyping experiments were housed in an all-female rat room to ensure no exposure to 

male rat hormones. The animals were administered DMBA at 50-55 days of age with a 

single dose of 65mg/Kg body weight through oral gavage. DMBA was prepared by 

suspension with sesame oil at 20mg/ml and then heated in a boiling waterbath for 20 

minutes. The experiment was stopped 15 w eeks post DMBA treatment and tumor 

multiplicity was determined by counting all mammary tumors ≥3x3mm. The spleens 

were removed for phenotyping using the method described above. The data was analyzed 

using Systat 13™. A  nonparametric Mann- Whitney U test was performed, comparing 

each congenic lines to the WF homozygous animals tested, after a significant Kruskal- 

Wallis test for congenic lines H and I. A nonparametric Mann-Whitney U test was 

performed comparing line D animals to WF animals tested alongside line D animals.  

 

D. Functional analysis of Mcs6 congenic lines  

Location and annotated genes of the possible Mcs6 locus were determined using 

the UCSC genome browser with the rat genome assembly Nov. 2004 (Baylor 3.4/ rn4) 

[119]. The human orthologous region to the Mcs6 locus was determined using the “In 

other genomes (convert)” function in the UCSC Genome Browser. To determine 

informative markers between the two rat strains, sequences for regions of interest were 

downloaded from the UCSC genome browser and manually scanned for regions of 

dinucleotide repeats. Primers against the repeats were designed and tested using WF and 

WKy control DNA as described in the genotyping methods section. SNPs between the 
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two rat strains were identified using the “SNPlotyper” function from the Rat Genome 

Database [125]. Primers were designed against potential SNP regions using Primer 3. A 

PCR reaction for WF and WKy control DNA was performed using Accuprime Taq (Life 

Technologies) and the resulting samples were run on a  1% agarose gel. PCR products 

were purified using a PCR Purification Kit (Qiagen). PCR products were then sequenced 

using the BigDye Terminator v3.1 Cycle Sequencing Kit (Life Technologies). Sequenced 

products were cleaned by adding Agencourt AMPure XL beads and 80% ethanol. Beads 

were washed with 80% ethanol and DNA was eluted using molecular grade water. 

Sequences were submitted to the University of Louisville DNA Core for analysis. To 

identify SNPs tagged by GWAS identified polymorphisms, the software Haploview 

version 2 was used. All SNPs with an r2 of 0.8 were considered tagged [126].  

 

Results 

A. Phenotyping of WF.WKy congenic line D 

The first WF.WKy congenic line tested was line D. Line D was initially tested at the 

University of Wisconsin- Madison in the Dr. Michael Gould lab. In total, 35 congenic 

line D females were tested in Wisconsin. These animals developed on average 5.6 tumors 

per rat with a standard deviation of 4.0. Nineteen WF homozygous animals tested 

alongside the line D congenic animals showed a tumor multiplicity of 7.3 tumors per rat 

with a standard deviation of 3.6. A statistical analysis resulted in a p -value of 0.049. 

Since this p-value is only marginally significant and there may be complexity to the Mcs6 

locus and more animals needed to be tested. Thirty more line D congenic animals and 22 

WF homozygous animals were tested at the University of Louisville. The line D congenic 
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females developed 5.1 t umors per rat with a standard deviation of 2.6, w hile the WF 

homozygous females developed 5.0 tumors pre rat with a standard deviation of 2.8. The 

data were then pooled: A total of 65 congenic females and 41 WF homozygous females 

were tested. Line D congenic females showed a tumor multiplicity of 5.4 tumors per rat 

with a standard deviation of 3.4. R esults are shown in Table 4. T he WF homozygous 

females showed a tumor multiplicity of 6.0 rats per animals with a standard deviation of 

3.3. The tumor multiplicity data for the WF females was lower than previously reported 

[107]. This may be due to differences in the environments at different animal care 

facilities. The tumor multiplicity between the line D congenic animals and the WF 

homozygous animals is not statistically significant (p-value 0.18). This suggests that the 

Mcs6 locus is not located within line D. The original mapping of the Mcs6 locus is shown 

in Figure 4. The Mcs6 locus was mapped to a region of 33Mb on rat chromosome 7. An 

updated congenic line map that includes line D is shown in Figure 7. Note, some of the 

congenic lines that are not needed to further fine map the Mcs6 locus have been removed 

from Figure 7. Line F as shown in Figure 7 spans the entirety of the originally mapped 

Mcs6 locus. Congenic line D overlaps line F extensively. Since the WF.WKy congenic 

line D has a susceptible phenotype and does not contain the Mcs6 locus, this splits the 

locus into two possible locations. The first possible location is the region of 

recombination for line D and F. There are no known genetic markers between the WF 

and WKy rat strains in this region. This region is 325Kb in size. The second possible 

location is the region on non-overlap between the congenic lines F and D. This region is 

8.5Mb in size. To test if the Mcs6 locus is located in one of these two possible locations,  
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Figure 7. Mcs6 congenic line map with the addition of WF.WKy congenic line D. 

Yellow bars indicated WF. WKy congenic lines have a susceptible phenotype. This 

means these animals developed the same amount of tumors as WF homozygous animals 

and the Mcs6 locus is not located within these genomic regions. The red bar (line F) 

indicates a WF.WKy congenic line that has a resistant phenotype. This means these 

animals developed fewer tumors compared to WF homozygous animals and the Mcs6 

locus is found in this genomic region. Tumor multiplicity and number of animals tested is 

shown inside congenic line. Line F spans the entirety of the previously mapped Mcs6 

locus. Grey bars indicate regions of recombination. Informative markers between the two 

rat strains are missing in these regions. Congenic line C spans a larger genomic region as 

shown in this figure. The entirety of line C can be seen in Figure 4. Congenic line D splits 

to Mcs6 locus into two possible locations indicated by orange bars.  
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two independent congenic lines spanning the regions of interest were developed and 

phenotyped. 

 

B. Phenotyping of WF.WKy congenic lines H and I 

Two separate WF.WKy congenic lines spanning the two possible location of Mcs6 were 

developed as described in Figure 3. The two independent congenic lines were named H 

and I and their genomic location are shown in Figure 8. Eighteen WF.WKy congenic line 

H animals were treated with DMBA and tumors were counted. Line H animals developed 

on average 6.6 t umors per animal with a standard deviation of 2.3 t umors. Eighteen 

animals were also tested for line I.  Line I animals developed on average 3.4 tumors per 

rat with a standard deviation of 2.2 tumors. The tumor multiplicity of these two congenic 

lines was compared to WF homozygous animals that were treated at the same time as 

congenic lines H and I. Overall, 20 W F homozygous animals were tested. The WF 

homozygous animals developed on average 7.7 tumors per rat with a standard deviation 

of 3.9 tumors. Results are shown in Table 4. Line H is not statistically different from WF 

homozygous animals with a p-value of 0.27. Line I is statistically significant with a p-

value of 0.0005. A WKy allele in the line I genomic region results in a 56% reduction in 

tumor multiplicity compared to WF homozygous animals. These results map the Mcs6 

locus to part of the line I genomic region. An updated congenic line map for the Mcs6 

locus is shown in Figure 9. T he map shows the new location of the Mcs6 locus. It is 

interesting that the tumor multiplicity phenotype for congenic lines I and F are identical, 

suggesting that the same genetic element may be acting in both congenic lines. The Mcs6 

locus was reduced in size from 33Mb to 8.5Mb on rat chromosome 7 using congenic  
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Figure 8. Mcs6 congenic line map showing the location of independent congenic lines 

H and I. Yellow bars indicated WF. WKy congenic lines have a susceptible phenotype. 

This means these animals developed the same amount of tumors as WF homozygous 

animals and the Mcs6 locus is not located within these genomic regions. The red bar (line 

F) indicates a WF.WKy congenic line that has a resistant phenotype. This means these 

animals developed fewer tumors compared to WF homozygous animals and the Mcs6 

locus is found in this genomic region. Tumor multiplicity and number of animals tested is 

shown inside congenic line. Line F spans the entirety of the previously mapped Mcs6 

locus. Grey bars indicate regions of recombination. Informative markers between the two 

rat strains are missing in these regions. Green bars indicate the location of the two 

independent WF.WKy congenic lines H and I. These lines were generated to map the 

Mcs6 locus to two possible locations indicated by orange bars. 
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Table 4. Summary of mammary carcinoma multiplicity phenotypes from WF.WKy 
congenic lines D, H and I used to map Mcs6 
 WF.WKy congenic line  

 
WF 

WF.WKy 
congenic line 

 
 

WF  H I D 
Congenic region 
Marker/Marker1 

~D7Rat171/ 
D7Rat182 

D7rat83/ 
D7Mgh6 

- rs13459010/ 
D7ARB16 

- 

Mean (SD4) mammary 
carcinomas per rat 

6.6 (2.3) 3.4 (2.2) 7.7 (3.9) 5.4 (3.4) 6.0 
(3.3) 

N 18 18 20 65 41 
p-value 0.272 0.00052 - 0.183 - 
 

1Markers spanning the maximal WKy or COP Chr 7 segment that was introgressed onto a 
susceptible WF genetic background are given. Note proximal end of line H is not known. 
2p-values are from Mann-Whitney nonparametric post hoc tests comparing each congenic 
line to the WF phenotype after a statistically significant Kruskal-Wallis test with a p-value 
0.0002 
3p-value is from Mann-Whitney nonparametric test comparing line D to the WF phenotype 
4Standard deviation 
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Figure 9. Mcs6 congenic line map of fine mapped Mcs6 locus. Yellow bars indicated 

WF.WKy congenic lines have a susceptible phenotype. This means these animals 

developed the same amount of tumors as WF homozygous animals and the Mcs6 locus is 

not located within these genomic regions. The red bars (line F and I) indicate WF.WKy 

congenic lines that have a resistant phenotype. This means these animals developed fewer 

tumors compared to WF homozygous animals and the Mcs6 locus is found in these 

genomic regions. Tumor multiplicity and number of animals tested is shown inside 

congenic line. Grey bars indicate regions of recombination. Informative markers between 

the two rat strains are missing in these regions. Phenotyping results from WF.WKy 

congenic lines map the Mcs6 locus to the region shown in orange. The locus was reduced 

in size from 33Mb to 8.5Mb using congenic lines D, H and I.  
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lines D, H and I. The location of the Mcs6 locus is now on r at chr7: 46,915,037-

55,364,398.  

Discussion 

The goal of aim 1 was to fine map the Mcs6 locus to a smaller genomic region. 

The Mcs6 locus was initially mapped to a region of 33Mb on rat chromosome 7 using 

WF.WKy congenic animals. The Mcs6 locus was fine mapped to a region of 8.5Mb using 

three WF.WKy congenic lines and DMBA- induced mammary carcinoma multiplicity 

phenotyping. The new location for the Mcs6 locus is chr7: 46,915,037-55,364,398. Fine 

mapping of the Mcs6 locus resulted in a 75% reduction in size of the locus. Previously, 

111 transcripts were annotated in the Mcs6 locus, making a functional analysis of this 

locus difficult [108]. The fine mapped Mcs6 locus contains 22 t ranscripts. These are 

shown in Figure 10. None of these genes are known breast cancer susceptibility genes, 

but all transcripts found in the rat Mcs6 locus are also found in the human orthologous 

region. Therefore, studying the Mcs6 locus can result in the identification of a novel 

breast cancer susceptibility gene. It is possible to perform RNA seq or design primers for 

RT-QPCR for the 22 genes annotated in this region. This could reveal any differences in 

the expression levels between the two rat strains and could help identify a candidate gene 

for the Mcs6 locus. However, it is necessary to determine if the Mcs6 locus acts in a 

mammary gland autonomous manner in order to determine which tissue type to use for 

RNA expression analysis.  

An Oncomine search revealed that several of the genes found in the Mcs6 locus 

are differentially expressed between normal human breast tissue and ductal breast cancer 

tissue. These genes are PPP1R12A, ZDHHC17, NAV3 and TSPAN [108]. PPP1R12A or  
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Figure 10. T ranscript map of the fine mapped Mcs6 locus. Yellow bars 

indicated WF. WKy congenic lines that resulted in a susceptible phenotype. This means 

these animals developed the same amount of tumors as WF homozygous animals and the 

Mcs6 locus is not located within these genomic regions. The red bar (line I) indicates a 

WF.WKy congenic line that has a r esistant phenotype. This means these animals 

developed fewer tumors compared to WF homozygous animals and the Mcs6 locus is 

found in this genomic region. Grey bars indicate regions of recombination. Informative 

markers between the two rat strains are missing in these regions. Congenic lines D, C and 

I map the Mcs6 locus to a 8.5Mb region shown in orange. Informative markers used to 

delineate congenic lines are shown at the bottom. Rat orthologous region to human breast 

cancer GWAS identified SNPs are shown on t op right. All annotated transcripts 

according to the UCSC genome browser Nov. 2004 (Baylor 3.4/rn4) assembly are shown 

in blue. The fine mapped Mcs6 locus contains 22 annotated transcripts.  
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Myosin Phosphatase- Targeting Subunit 1 (MYPT1) is a subunit of Myosin Phosphatase 

and is involved in smooth muscle contraction and possibly hypoxia [127]. MYPT1 is also 

involved in phosphorylation of RB1 leading to cell cycle progression [128]. ZDHHC17 

or Huntingtin- Interacting Protein 14 (HIP-14) is a protein involved in endocytosis and is 

implicated in Huntington’s disease [129]. NAV3 or Neuron Navigator 3 is a protein 

involved in axonal guidance. Chromosomal aberrations of chromosome 12 i n several 

cancers have resulted in the loss of the NAV3 gene. This implicates this gene in several 

types of cancers including colorectal cancer, T-cell lymphomas, neuroblastomas and 

squamous cell carcinomas [130-133]. TSPAN or Tetraspanin is part of a family of 

transmembrane proteins involved in cell signaling. Proteins in this family are involved in 

regulation of cell growth and motility. Members of the Tetraspanin family are implicated 

with a variety of cancers including ovarian carcinomas [134]. 

 Six human GWAS identified polymorphisms map to the rat orthologous region of 

the Mcs6 locus. A list of the SNPs can be found in Table 2. O ne of these GWAS 

identified polymorphisms reached genome-wide significance in its respective study. This 

SNP is rs17356907. The rat orthologous region of this SNP maps to the proximal end of 

WF.WKy congenic line D. The SNP was found to reduce breast cancer risk with an OR 

of 0.91 [62]. It is interesting that this polymorphism maps to a congenic line that has a 

susceptible phenotype and therefore does not contain the Mcs6 locus, indicating that 

rs17356907 may not be the human ortholog to the Mcs6 locus. It is possible that the 

Mcs6 locus is complex and that there are multiple genetic elements controlling mammary 

cancer susceptibility. It appears that there is at least one genetic element in congenic line 

I that modifies mammary cancer susceptibility. However, congenic line D is very large 



 
 

60 
 

and may contain phenotypically opposing genetic elements that mask the phenotype. To 

identify if there are opposing genetic elements located in congenic line D, recombinant 

congenic lines that span shorter intervals than line D need to be phenotyped.  

Two GWAS identified polymorphisms map to the rat orthologous region 

contained in congenic line I. These are rs1154865 and rs4146372. Both SNPs failed the 

last validation step in their respective study. rs1154865 was the closest to reaching 

genome-wide significance with a p -value of 6.6x10-7 when 1x10-7 is required for 

genome-wide significance. rs1154865 tags at least six other SNPs. There is no tagging 

information for SNP rs4146372 in the Haploview database. It is possible that one of these 

two identified SNPs or the SNPs they tag are the human ortholog of Mcs6. However, it is 

also possible that the MCS6 SNP has not been identified in a GWAS study or has not 

been made available in public databases yet.  

There are currently seventeen known SNPs between the WF and WKy rat strains 

in the Mcs6 region. These were identified using the SNPlotyper software at the Rat 

Genome Database [125]. The identified SNPs in the Mcs6 region are shown in Table 5. 

There are likely to be many more sequence variants between the two rat strains in this 

region. It is necessary to sequence both rat strains in the Mcs6 region to identify all 

sequence variants. However, sequencing technique for targeted sequencing currently 

available require smaller genomic regions for sequencing. Further fine mapping of the 

Mcs6 locus using recombinant congenic lines that originate from line I may be necessary 

to feasibly identify candidate Mcs6 sequence variants. 
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Table 5. Mcs6 SNPs between the WF and WKy rat strain. 
ID Position# Forward Primer Reverse Primer 
rs1349010 22613971 TGCTGAAACTGCATTCAAAGA TTGCATCTCTAACTCCTGGGT

A 
rs13457291 29833956 TCAACCTTTGCCCTTTCATT GGGTTGCAGAGGGATATACT

GA 
SNP2793282 40318750 TCCTTTTGCCCATGTTTCTC TCTTGATGGCTTCATGGACA 
rs63992414 41254704 AGGACAAAAGACATCCCCAGT CATGAATCTCAAAAGGAGCT

GTT 
SNP2793293 41716640 TGTCATTGCTTCCCCTCAAT AAGAGGCAGCGTTTAAGGTG 
SNP2793296 42001299 AAGAAAAGAAAATGTGGGAC

CTT 
CGGGCATGAAAATGTCAATC 

rs64625218 44306171 TTAGAAAAGGAAGCGGGTCA CAGCATTGAAAAGGAGATGG
A 

rs64542424 44669020 GGATAGGTCTAATCGTGG 
AGGA 

AGCGTCGCTGGTAGTGGTAG 

rs1348617 46124020 CCCACCCACTCTACCTCATC ACTGCCATGAATGGAAGGTC 
rs66070275 46166066 ATTGCATCAGTTCGCACAAG ATTCAGTGGCCTGGTTCATC 
rs65272077 46420580 ATGCTTGCGGTCTTTGTACC AATATGCCTGAGCCGTTTTG 
rs65052669 46915037 TGTGACTTGCACATCTCCATC TGGATACTGGCACCTCAATG 
rs13453157 47762262 CTGAAGGAACTCGTGGAGGA GGCCACAGGGGTACAGAGT 
rs66140753 51524725 TCTCAGTCTGGGACACCTCA CAACACCCCACAAGGAGACT 
rs63864648 51704903 AGAGCCCAGACTTCGTCCTT GCAATGACAGGGGTCTCAGT 
rs64230269 52093888 GCTTGCGTGCTGGTTTTACT TTTCTCGTGAATGGGGAAAG 
SNP2793378 53123731 GCTTTGAGCACTGATGCTTTC TGCGTGTACAATCCCAACAT 
#positions are on rat chromosome 7 using UCSC Genome Browser Nov.2004 (Baylor 3.4/rn4) 
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In conclusion, the Mcs6 locus was fine mapped from a region of 33Mb to a region 

of 8.5Mb. Previously, the locus contained 111 a nnotated genes, while the fine mapped 

Mcs6 locus contains 22 g enes. The fine mapped Mcs6 locus can be used to identify 

candidate genes by testing the differences in expression levels of the Mcs6 genes between 

the two rat strains.   

 

 

 

  



 
 

63 
 

CHAPTER III 

IDENTIFICATION OF MCS1B SEQUENCE VARIANTS 

 

Introduction 

The second part of this dissertation is focused on t he rat mammary cancer 

susceptibility locus Mcs1b. The Mcs1 locus was identified through a linkage analysis of 

the DMBA mammary carcinogenesis resistant COP rat strain and the susceptible WF rat 

strain [106]. The Mcs1 locus contains three subloci that were identified using several 

WF.COP congenic lines. These subloci are Mcs1a, Mcs1b and Mcs1c [123]. The Mcs1b 

locus was further fine mapped using congenic animals. It maps to a region of 1.8Mb on 

rat chromosome 2 [87]. A map showing the congenic lines defining the Mcs1b locus is 

shown in Figure 6. 

The Mcs1b locus has a human ortholog. The SNP rs889312 was identified in a 

breast cancer genome-wide association study in 2007. The SNP has an OR of 1.13 (1.10-

1.16), meaning that the minor allele of this SNP increases the chances of developing 

breast cancer [61]. rs889312 is in linkage disequilibrium with at least six other SNPs, 

meaning that any of these SNPs could be the actual causative SNP. rs889312 and the six 

SNPs it tags are located on a haplotype block that is 280kb in size. The haplotype block is 

shown in Figure 2.  There are three transcripts located within the rs889312 haplotype 

block. These are MAP3K1, SETD9 and MIER3. However, Setd9/ SETD9 is not expressed 
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in the rat mammary gland and human breast tissue [87]. There is the potential of more 

SNPs tagged by rs889312 being identified through ongoing sequencing studies such as 

the 1000 G enomes Project. This means that the causative SNP may not be located in 

public databases yet. This makes studying the genetic elements controlling genetic 

susceptibility to breast cancer in the human difficult. It is easier to study the genetic 

elements in the rat, since only two inbred rat strains need to be sequenced to identify all 

the genetic variation that is present between the two rat strains in this region. Since there 

are multiple candidate SNPs in the human, it is likely that there will be multiple genetic 

variants present in the rat. Note, only SNPs are used in human breast cancer genome-

wide association studies. It is possible that rs889312 tags an INDEL that is the actual 

causative genetic element. Therefore, SNPs and INDELs will be identified between the 

two rat strains in the Mcs1b region. It is not possible to identify copy number variation 

(CNV) with the sequence capture technique that was used for this aim. Sequence capture 

depends on a microarray chip and complementary primers, which introduces bias when it 

comes to sequence frequency. Identification of copy-number variation depends on t he 

analysis of sequence frequency across a region. 

 The goal for this aim is to identify all the genetic variants between the COP and 

WF rat strains in the Mcs1b region to generate a list of candidates. The hypothesis is that 

there are multiple genetic variants between the two rat strains in this region. 

 

Methods  

A. Sanger sequencing of rat orthologous region to rs889312 risk SNP bin 
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Figure 2 shows the human haplotype block that associates with breast cancer risk. 

The rs889312 correlated SNP are found in a SNP bin cluster within this haplotype block. 

The rat orthologous region to the rs889312 risk SNP bin was sequenced in the WF and 

COP rat strain using standard Sanger sequencing. This region is on rat chr 2: 43,168,806-

43,185,894. For this, the splenic DNA from a homozygous WF and homozygous COP 

animal was used. The region to be sequenced was divided into 14 f ragments and 

overlapping primers for each fragment were designed using Primer 3. DNA was 

amplified using Accuprime Taq (Life Technologies) and the resulting samples were run 

on a 1 % agarose gel (GeneMate) and stained with SybrGold (Life technologies). PCR 

products were purified using a QiaQuick PCR Purification Kit (Qiagen) or if multiple 

bands were present, the right size band was extracted using a QiaQuick Gel Purification 

Kit (Qiagen). PCR products were sequenced using the BigDye Terminator v3.1 C ycle 

Sequencing Kit (Life Technologies). Sequenced products were cleaned by adding 

Agencourt AMPure XL beads and 80% ethanol. Beads were washed with 80% ethanol 

and DNA was eluted using molecular grade water. Sequences were submitted to the 

University of Louisville DNA Core for analysis. Sequences were analyzed using the 

DNASTAR Lasergene 8 SeqMan program. 

 

B. Library preparation for sequence capture of the Mcs1b locus 

The targeted region for sequencing the Mcs1b locus is on rat chromosome 2: 

42,200,000- 44,500,000. The DNA sequence for this targeted region was identified by 

using the UCSC Genome Browser DNA function. The Nov. 2004 ( Baylor 3.4/rn4) 

assembly was used and this sequence is based on the Brown Norway (BN) rat strain. The 
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targeted DNA sequence was then submitted to NimbleGen. The sequence capture arrays 

were custom NimbleGen Sequence Capture Developer 385K Arrays. The custom 

NimbleGen sequence capture microarrays covered 88.9% of the targeted bases in the 

Mcs1b region. As a control, a human sequence capture microarray was used. The human 

practice array used was NimbleGen Sequence Capture Practice 385K Array. DNA 

libraries for the sequence capture were prepared using the GS FLX Titanium General 

Library Preparation Method Kit (Roche). DNA used was from a WF homozygous animal 

and a WF.COP line T congenic animal. DNA was extracted using the Blood and Tissue 

DNAeasy kit (Qiagen). Human genomic DNA (Bioline) was used for practice arrays. The 

libraries were prepared according to the library preparation manual. In short, the libraries 

were prepared by fragmenting 10μg of gDNA using a nebulizer and nitrogen gas for 1 

minute.  The fragmented DNA was run on a  1% low melting agarose gel (Lonza) and 

stained with SybrGold (Life technologies). Fragments between 800-500bps were gel 

extracted using a Gel Purification Kit (Qiagen). DNA quality was assessed using a DNA 

Bioanalyzer DNA 7500 LabChip (Agilent). DNA fragments were polished and adapters 

were ligated. DNA fragments were then immobilized on magnetic streptavidin-coated 

beads, via the biotin moiety of one of the adaptors. A fill- in reaction was performed to 

remove any nicks in the DNA. As a final step the library was melted off the beads, 

resulting in single stranded DNA. The quality and quantity of the ssDNA was determined 

using a Bioanalyzer RNA Pico 6000 LabChip (Agilent).  

 

C. Sequence capture of Mcs1b libraries 
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The prepared libraries were hybridized to the microarrays using the Titanium 

Optimized Sequence Capture Array Delivery Kit according the manufacturer’s 

instructions. In short, the pre-captured DNA was amplified using the GC-RICH PCR 

system dNTP pack (Roche) according to manufacturer’s instructions. PCR primers used 

are shown in Table 6. PCR products were purified using the QiaQuick PCR Purification 

Kit (Qiagen). DNA quality and yield were measured using a Bioanalyzer DNA 7500 

LabChip (Agilent). The amplified libraries were then annealed to the microarray 

sequence capture chips using the NimbleGen Hybridization System 4. The hybridization 

system was heated to 42°C for three hours prior to hybridization. 3µg human COT DNA 

(C0t) was added to the amplified libraries to get rid of repetitive DNA. Hybridization 

enhancing oligos were added to the amplified DNA and the DNA was denatured at 95°C 

for 10 m inutes. The DNA was loaded onto the microarray sequence capture chip and 

allowed to hybridize in the hybridization machine for 72 hours at 42°C. Microarrays were 

washed and captured DNA was eluted using 125mM NaOH. Captured DNA was purified 

using the Qiagen MinElute PCR Purification Kit. Samples were amplified using the same 

conditions as for the pre-captured LM- PCR. Samples were purified using the Qiagen  

QiaQuick PCR Purification Kit. Quantity and Quality of the captured DNA was 

determined using a Bioanalyzer DNA 7500 LabChip (Agilent) and NanoDrop 2000 

spectrophotometer. 

 

D. RT- QPCR on captured versus pre-captured samples to determine enrichment of 

libraries in Mcs1b DNA 
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To determine if the sequence capture was successful in enriching the post-

captured libraries in Mcs1b DNA, a RT- QPCR reaction can be performed on the pre-

captured versus the post- captured samples. For the QPCR reaction, SyrbGreen (Life 

Technologies) and 1ng of ssDNA was used. As a control, gDNA was used. Primers for 

the QPCR reaction are shown in Table 6. The RT- QPCR reactions were run on an ABI 

PRISM 7900HT Sequence Detection System. The Ct values for the post-captured 

samples were then subtracted from the Ct value of the pre-captured sample. A positive 

delta Ct value indicates enrichment.  

 

E. 454 next-generation sequencing, assembly of Mcs1b genomes for WF and COP 

rat strains and identification of genetic variants  

Mcs1b enriched WF and COP libraries were sent to the University of Kentucky 

for 454 next-generation sequencing. Two lanes of an 8- well plate were used for the WF 

library and 3 lanes were used for the COP library. The resulting sequences were aligned 

separately against the Rattus norvegicus (Brown- Norway) genome build 4.1 us ing 

SSAHA2 to generate BAM files. A pileup and BCF file were made for each position with 

a coverage of ≥1 on rat chromosome 2: 42,200,000-44,500,000. If the allele count of the 

non reference allele made up less than 25% of the total coverage, that record was flagged. 

An SQL query was used to select those positions from the database where either sample 1 

was different from the reference and had a total coverage of 20 or greater OR sample 2 

was different from the reference and had a total coverage of 15 or  greater AND that 

consensus call that had a sufficient enough coverage to pass was not flagged. After a 

position was selected, the calls for all samples at that position were retrieved. If the call 
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was heterozygous and one of the alleles had a count of 2 or less, it was converted into a 

homozygous call of the stronger allele. If both alleles had a count of 2 or less, it was 

converted to a N/N.  

 

F. Confirmation of Mcs1b genetic variants 

All 454 ne xt generation sequencing data was visualized using IGV 2.0 

(http://www.broadinstitute.org/igv/v2.0). The data were filtered using an SQL query to 

identify SNPs between the two rat strains. Also, the data was filtered to identify any 

INDELs between the two rat strains with a coverage of ≥5 for each sample. Primers were 

designed for each SNP and INDEL to be confirmed using Primer 3. In total, primers were 

designed for 130 potential SNPs and 13 INDELs. The WF and line T (COP) DNA used 

for confirmation of genetic variants was pooled from three homozygous animals each. 

DNA was amplified using Accuprime Taq (Life Technologies) and the resulting samples 

were run on a 1% agarose gel (GeneMate) and stained with SybrGold (Life technologies). 

PCR products were purified using an ExcelaPure 96-well UF PCR Purification kit 

(EdgeBio) or  QiaQuick PCR Purification kit (Qiagen). PCR products were sequenced 

using the BigDye Terminator v3.1 Cycle Sequencing Kit (Life Technologies). Sequenced 

products were cleaned by adding Agencourt AMPure XL beads and 80% ethanol. Beads 

were washed with 80% ethanol and DNA was eluted using molecular grade water. 

Sequences were submitted to the University of Louisville DNA Core for analysis. 

Sequences were analyzed using the DNASTAR Lasergene 8 SeqMan program. 

 

G. Sequencing of gaps using Sanger sequencing 
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There are several gaps in the Mcs1b sequencing data for the WF and COP rat 

strain. Sequencing gaps in the rat orthologous region to the rs889312 haplotype block 

were sequenced using standard Sanger sequencing (RNO2: 42,974,029-43,219,434). To 

identify gaps, the program IGV 2.0 was used to visualize the WF and COP assemblies. 

The rat orthologous region to the rs889312 was scanned manually for gaps between the 

two rat strains and location of gaps were noted. Primers surrounding the gaps were 

designed using Primer3. The DNA from three homozygous WF and three homozygous 

WF.COP line T animals were used for sequencing. DNA was sequenced as described 

above.  

 

H. Bioinformatic analysis of A46-SNP-A, A074-SNP-17 and A074-SNP-18 

The program Alternative Splice Site Predictor 

(http://wangcomputing.com/assp/index.html) was used to determine changes in splicing 

sites for the Map3k1 gene. The entire Map3k1 sequence was added to the program 

(RNO2: 43,062,252-43,102,501) and differences in the predicted splicing sites when 

changing the SNP alleles were determined.  

The program Variant Visualizer from the Rat Genome Database 

(http://rgd.mcw.edu/rgdweb/front/select.html) was used to identify the Mcs1b candidate 

SNP alleles in different rat strains. The program uses the RGSC Genome Assembly 3.4. 

The region of interest was entered into the program and all available rat strains were 

selected for analysis. Additionally, genotyping data for the WF/Nhsd and COP/NHsd rat 

strains were added since the program does not include the WF rat strain.  

http://wangcomputing.com/assp/index.html�
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The UCSC Genome Browser “in other genomes (convert)” function was used to 

identify the human orthologous region to the identified sequence variants between the 

two rat strains. When there was no orthologous region identified, the LAGAN alignment 

tool with the settings VISTA for CNS - window: 30 bp, min width: 30bp, CNS identity: 

60%, Min Y%: 50 was used. The UCSC Genome Browser uses a large window size to 

determine orthology resulting in no orthologous regions identified.  

The human orthologous region for A102-INDEL-2 was determined using the 

UCSC Genome Browser “in other genomes (convert)” function. Since the INDEL does 

not have a human orthologous region using the genome browser, additional surrounding 

sequence was added until an orthologous region was found. DNA was then downloaded 

from the genomes browser for the human orthologous region with an additional ±50kb of 

surrounding sequence. This was pasted into Microsoft Word and manually analyzed for 

repetitive elements.  

 

Results 

A. Identification of A046-SNP-A through Sanger sequencing of the WF and COP rat 

strain 

We initially sequenced the rat orthologous region to the human rs889312 SNP bin 

to identify any sequence variants between the WF and COP rat strain. The rat 

orthologous region to the rs889312 SNP bin is located on rat chromosome 2: 43,168,806-

43,185,894. This 17kb region was divided into 14 fragments and overlapping primers for 

the 14 fragments were designed. Out of the 14 f ragments, 11 w ere fully sequenced in 

both the WF and COP rat strain using Sanger sequencing. No PCR could be generated for 

fragments that did not yield sequence. Sequencing resulted in the identification of one 
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SNP named A046-SNP-A. This is located on rat chromosome 2: 43,175,144. The WF and 

Brown-Norway (BN) reference share the same allele, while the COP allele is different.  

 

B. Confirmation of Mcs1b enrichment after sequence capture 

Sequencing of the rs889312 SNP bin resulted in the identification of A046-SNP-

A. It is possible that there are more genetic variants that are located outside the 

orthologous region to the rs889312 SNP bin that are involved in the Mcs1b phenotype. 

Therefore, it is necessary to sequence the entire Mcs1b region. NimbleGen sequence 

capture arrays were used to sequence the 1.8Mb defining Mcs1b region, since it is not 

feasible to sequence the entire Mcs1b region using Sanger sequencing. This will result in 

the identification of every sequence variant between the two rat strains. The NimbleGen 

Sequence Capture mircoarrays can be used to enrich a DNA library in a targeted region. 

Compared to whole genome sequencing, sequence capture allows for less sequencing 

reactions to get a good coverage across the targeted region. A RT-QPCR reaction can be 

performed on t he pre-captured versus the post-captured sample to ensure that a D NA 

library has been enriched in the targeted region after sequence capture. The idea is that 

the post-captured sample should have a lower Ct value than the pre-captured sample. The 

post-captured sample is then subtracted from the pre-captured sample to get a delta Ct 

value. The delta Ct value should be positive if there is enrichment of the DNA library in 

the targeted region. Primers used for the QPCR reactions are shown in Table 6.  

The results of the RT- QPCR reactions are shown in Table 7. The NCS primers 

are recommended by NimbleGen. These primers are complementary to sequences that are 

found on e very NimbleGen Sequence Capture array and contain sequences that are 

universal among different species. Several primer pairs used were specific to the Mcs1b  
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Table 7. RT-QPCR results for enrichment in targeted regions of sequence capture libraries. 
NCS primers are used for every NimbleGen Sequence Capture array and are universal for 
different species. A50 primers are specific to the Mcs1b rat region and can therefore not be used 
on human control DNA.  
 Delta Ct value for sample 
Primer Human WF (susceptible) COP (resistant) 
NCS 0237 10.0 4.9 4.6 
NCS 0247 9.3 4.3 5.2 
NCS 0268 10.8 6.9 6.4 
NCS 0272 10.1 6.3 5.2 
A50 control inside 1  11.2 10.5 
A50 control inside 2  10.2 10.0 
A50 control inside 3  10.4 9.7 
A50 control inside 4  7.0 8.4 
A50 control outside 1  -1.7 -2.7 
A50 control outside 2  -0.6 -0.9 

   



 
 

75 
 

targeted region. Two primer pairs were located outside the Mcs1b locus and four pairs 

were located inside the targeted region. The delta Ct values are positive for all samples 

when using the NCS primers indicating that these targeted regions were enriched. NCS 

regions are included on all sequence capture microarrays. However, the Ct values for the 

WF and COP libraries are lower than for the human library. This could indicate that the 

human library is of better quality. However, all three libraries were prepared at the same 

time and should be of equal quality. NimbleGen recommends the NCS primers as being 

universal for different species. It is possible that there is a difference in the affinity of the 

primers to human versus rat DNA, resulting in lower delta Ct values.  

Primers that are located within the targeted Mcs1b region (A50 control inside 

primers) show a positive delta Ct value for both the WF and COP rat strains, indicating 

that the libraries were successfully enriched in the Mcs1b DNA. As a control, primers 

outside of the targeted region (A50 control outside primers) show no enrichment, 

indicated by a negative delta Ct value.  

 

C. Identification of Mcs1b genetic variants between the WF and COP rat strain 

The WF and COP libraries were sequenced using 454 next- generation 

sequencing. The goal was to get a coverage of at least 15X for both assemblies. The 

coverage for the WF rat strain was 20.0X and for the COP rat strain 15.7X. The average 

read length for the WF sequences was 328bp and for the COP sequences 317. Overall, 

the sequencing resulted in coverage for 91.7% of all the bases found in the targeted 

region. The WF and COP assemblies were filtered for sequence variants between the two 

rat strains and primers were designed to confirm potential sequence variants using Sanger 
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sequencing. Out of 130 potential SNPs, 67 S NPs were confirmed between the two rat 

strains. A list of the identified SNPs is shown in Table 8. N o PCR product could be 

generated for nine potential Mcs1b SNPs and therefore these SNPs could not be 

confirmed. A list of potential Mcs1b SNPs that could not be confirmed is found in Table 

9. Out of 13 INDELs that were tested between the two rat strains, two were confirmed 

using Sanger sequencing. A transcript map for the Mcs1b locus including the sequence 

variation in the locus is shown in Figure 11. Most of the sequence variation between the 

two rat strains is located at the extreme ends of the Mcs1b locus. WF.COP congenic 

animals that have a susceptible phenotype and do not contain the Mcs1b locus were 

genotyped using the new markers. These congenic lines extend to the ends of the markers 

located at the extreme ends of the Mcs1b locus. This means that all these sequence 

variants are ruled out as candidate causative sequence variants for the Mcs1b locus. The 

positions for the WF.COP susceptible congenic lines are shown in Figure 11. This leaves 

four potential sequence variants: A046-SNP-A, A074-SNP-17, A074-SNP-18 and A102-

INDEL-2. These potential genetic variants are marked in Figure 11 and bolded in Table 8. 

A046-SNP-A, A074-SNP-17 and A074-SNP-18 are located within the rat orthologous 

region to the human haplotype block containing the rs889312 SNP bin. A102-INDEL-2 is 

upstream of the Gpbp1 gene.  

 

D. Filling in gaps in the Mcs1b sequence using Sanger sequencing 

The Mcs1b sequence capture assemblies for the WF and COP rat strain contain 

gaps. These gaps are due to three different issues: 1) there are gaps in the Brown Norway 

rat reference sequence used to design the sequence capture microarrays. 2) There are gaps  
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Table 8. SNPs and INDELs between the WF and COP rat strains in the Mcs1b region. The 
SNPs are organized according to genomic location. The table also includes A046-SNP-A. INDELs 
are organized according to genomic location. Bolded variants are Mcs1b candidate sequence 
variants. 
Name  Location# Reference (BN) 

allele 
WF allele COP allele 

A074-SNP-1 42364375 A G A 
A074-SNP-65 42364706 C C T 
A074-SNP-2 42365768 G A G 
A074-SNP-3 42366362 T G T 
A074-SNP-4 42367078 A T A 
A074-SNP-5 42367311 C G C 
A074-SNP-6 42367553 G A G 
A074-SNP-66 42374226 A G A 
A074-SNP-7 42374481 T C T 
A074-SNP-64 42375050 C T C 
A074-SNP-8 42375207 A T A 
A074-SNP-9 42375271 A T A 
A074-SNP-10 42375321 C T C 
A074-SNP-67 42375547 G A G 
A074-SNP-11 42376800 A G A 
A074-SNP-12 42377178 C T C 
A074-SNP-13 42378143 C T C 
A074-SNP-14 42378758 C T C 
A074-SNP-15 42378793 C T C 
A074-SNP-16 42378804 C T C 
A074-SNP-17 43071787 C C A 
A074-SNP-18 43090006 C T C 
A046-SNP-A 43175144 C C T 
A074-SNP-19 44147176 C A C 
A074-SNP-20 44148139 G A G 
A074-SNP-21 44149528 G T G 
A074-SNP-22 44150206 T T G 
A074-SNP-23 44152022 A G A 
A074-SNP-24 44152126 G A G 
A074-SNP-25 44152673 A A G 
A074-SNP-26 44152745 A G A 
A074-SNP-27 44152882 T G T 
A074-SNP-28 44152995 T C T 
A074-SNP-29 44153181 A T A 
A074-SNP-30 44153277 G A G 
A074-SNP-31 44153858 G A G 
A074-SNP-32 44156135 G G A 
A074-SNP-33 44157354 T T G 
A074-SNP-34 44157459 C T C 
A074-SNP-35 44157568 C C T 
A074-SNP-36 44158255 G C G 
A074-SNP-37 44158391 G A G 
A074-SNP-38 44158578 G G A 
A074-SNP-39 44158871 G G T 
A074-SNP-40 44158875 C C T 



 
 

78 
 

Table 8 continued.  
A074-SNP-41 44161442 G G A 
A074-SNP-42 44165615 A T A 
A074-SNP-43 44167496 A T A 
A074-SNP-44 44167791 G C G 
A074-SNP-45 44170531 A A G 
A074-SNP-46 44170619 T T C 
A074-SNP-47 44170980 C T C 
A074-SNP-48 44171160 T C T 
A074-SNP-49 44172139 A G A 
A074-SNP-50 44192478 T T G 
A074-SNP-51 44193102 A G A 
A074-SNP-52 44196643 T C T 
A074-SNP-53 44199441 G A G 
A074-SNP-54 44201507 C G C 
A074-SNP-55 44201538 A T A 
A074-SNP-56 44205934 G A G 
A074-SNP-57 44206713 G A G 
A074-SNP-58 44206843 G A G 
A074-SNP-59 44207194 G A G 
A074-SNP-60 44207705 G A G 
A074-SNP-61 44208687 G A G 
A074-SNP-62 44209120 A G A 
A074-SNP-63 44209260 C C A 
A102-INDEL 1 42378873 TTG  TTG 
A102-INDEL 2 42709213 TAGA TAGA  
#rat chromosome 2. UCSC Genome Browser Nov. 2004 (Baylor 3.4/rn4) 
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Table 9. Potential Mcs1b SNPs that cannot be confirmed using Sanger sequencing.  
Position Reference 

(BN) allele 
WF allele COP allele WF 

coverage 
COP 
coverage 

43,775,309 G A/G A/G 16 10 
44,108,905 T C/T C/T 17 10 
44,108,908 T G/T G/T 17 10 
44,108,958 G A/C/G A/G 19 8 
44,108,967 A A/T A/T 28 13 
44,138,671 T A/T A/T 7 11 
44,138,675 T C/T C/T 8 11 
42,826,948 T C/T T 5 1 
42,672,597 T T C 24 1 
#rat chromosome 2. UCSC Genome Browser Nov. 2004 (Baylor 3.4/rn4) 
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Figure 11. Transcript map for the Mcs1b locus showing all genetic variation 

between the two rat strains. Pink bar indicated the length of the Mcs1b locus. Blue bar 

indicates the rat orthologous region to the human haplotype block containing rs889312 

tagged SNPs. Yellow bars indicate WF.COP congenic lines that have a susceptible 

phenotype and do not contain the Mcs1b locus. SNPs are shown in black, while INDELs 

are shown in red. Mcs1b transcripts are shown in black. Also shown are transcripts 

located within this region. 
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due to repetitive elements in the sequence. When designing the sequence capture arrays, 

NimbleGen will remove all repetitive elements and these regions will not be included on 

the arrays. 3) There are gaps due to some regions having a low coverage either in one of 

the rat assemblies alone or in both. We focused on f illing sequencing gaps in the rat 

orthologous region to the rs889312 haplotype block. There are 75 gaps in this region. The 

size of the gaps varies from 1-1200bps. Standard Sanger sequencing was used to fill in 

these gaps. Out of the 75 gaps, 45 (60%) were fully sequenced between the WF and COP 

rat strain. There were no additional sequence variants found between the two rat strains. 

Three gaps were only partially sequenced, meaning that the entire gap could not be 

sequenced. Out of the 75 gaps, 27 (36%) were not sequenced at all. The 75 gaps make up 

a total of 17,008bps. The gaps that were not sequenced make up 10,883bps or 64% of the 

gap bases that we attempted to sequence.  

 

E. Bioinformatic analysis of Mcs1b sequence variants 

A074-SNP-17 and A074-SNP-18 are located within introns of the Map3k1 gene. 

A074-SNP-17 is located in intron 11 and A074-SNP18 is located in intron 2 of Map3k1. It 

is possible that one or both of these SNPs result in a change in the splicing of the Map3k1 

gene. To test this, the program Alternative Splice Site Predictor 

(http://wangcomputing.com/assp/index.html) was used. This program scans sequences for 

consensus splicing sites. There are no changes in the splicing pattern between the WF and 

COP A074-SNP-17 and A074-SNP-18 alleles. This indicates that A074-SNP-17 and 

A074-SNP-18 do not change splicing of the Map3k1 gene. Previous QPCR experiments 

in the lab also revealed no additional Map3k1 splicing variants. 

http://wangcomputing.com/assp/index.html�
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To determine if the rat alleles for the Mcs1b candidate SNPs are common among 

different rat strains, the program Variant Visualizer from the rat genome database was 

used. This program allows for the identification of the sequence for all known SNPs 

among different rat strains. In total, there is information for 19 rat strains in this program. 

We added the genotyping information for the COP/NHsd and WF/NHsd rat strains, since 

these are not found using the program. Results from the analysis can be found in Table 

10. The variant allele for A046-SNP-A is found both in the COP and ACI rat strains. 

Since the COP and ACI rat strain differ in their susceptibility, it may be unlikely that 

A046-SNP-A is an independently acting variant for the Mcs1b phenotype. However, 

genetic susceptibility to mammary cancer is a complex trait and not all information about 

the genetic make-up of these two rat strains is known. The variant allele for A074-SNP-

18 is found in the DMBA carcinogenesis susceptible WF and SS (Salt-Sensitive) rat 

strains. Since the Mcs1b phenotype is due to the presence of the COP allele in the Mcs1b 

region, it is likely that the variant allele is found in the COP rat strain. Therefore, A074-

SNP-18 is not likely to be an independently acting variant for the Mcs1b phenotype. 

However, A074-SNP-17 is a rare polymorphism. The variant allele of A074-SNP-17 is 

found only in the COP or resistant rat strain. Since the causative Mcs1b variant is likely 

to be found in the COP rat strain and not common to rat strains with susceptible DMBA 

phenotypes, A074-SNP-17 is a strong candidate for the Mcs1b phenotype conferred. It is 

possible, however, that all three or a combination of the Mcs1b candidate SNPs are 

responsible for the Mcs1b phenotype.  

The sequencing of the Mcs1b region between the two rat strains resulted in the 

identification of one INDEL called A102-INDEL-2. This INDEL is located outside of the 
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Table 10. Sequence results for candidate rat SNPs in different rat strains using Variant 
Visualizer.  The Rat Genome Database program Variant Visualizer was used. Highlighted sequences 
show variant allele. 
Sensitivity to 
DMBA 
carcinogenesis 

Rat strain A074-SNP-17 A074-SNP-18 A046-SNP-A 

 
 

Resistant 

BN/NHsdMcwi C C C 
BN/SsN C C C 
COP/Crl A C T 
COP/NHsd A C T 
SHR/Olalpcv C C C 
Wky/N C C C 

 
Intermediate 

ACI/Eur C C T 
ACI/N C C T 
F344/N C C C 
Le/Stm C C C 

 
Susceptible 

Buf/N C C C 
SS/JrHsdMcwi C T C 
WF/NHsd C T C 

 
 
 

Unknown 

BN-Lx C C C 
FHH/EurMcwi C C C 
FHL/EurMcwi C C C 
GH/OmrMcswi C C C 
M520/N C C C 
MR/N C C C 
SHRSP/Gcrc C C C 
SR/JrHsd C C C 
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rat orthologous region to the rs889312 haplotype block. A102-INDEL-2 is located within 

a stretch of repetitive sequence. The INDEL repeat and surrounding sequences for A102- 

INDEL-2 are found in Table 11. The WF allele has one additional TAGA repeat that is 

shown in Table 11. T he three candidate Mcs1b SNPs have a human ortholog with the 

rs889312 SNP bin. To identify any human orthologous INDELs, we manually scanned 

the human orthologous region to A102-INDEL-2 and an additional ±50kb surrounding 

sequence for repetitive regions. To identify the immediate orthologous region for the 

INDEL, we had to go 500bp out on e ither side of the INDEL until a region that is 

conserved between humans and rats was found. No repetitive sequence was found in this 

region, suggesting that there is no human ortholog to A102-INDEL-2 or it is  located 

outside of the queried region. 

 

Discussion 

Sequence capture and 454 next-generation sequencing has proven to be a fruitful 

technique for the Mcs1b locus. The Mcs1b locus was initially mapped using WF.COP 

congenic lines to be 1.8Mb in size [87]. Using sequence capture, 69 variants between the 

two rat trains were discovered. A046-SNP-A was identified using standard Sanger 

sequencing. Another two SNPs in the Mcs1b region were previously known. These are 

A12-oo and A12-v. There are a total of 72 va riants between the two rat strains in the 

Mcs1b region. There are only two confirmed INDELs and the rest of the variants are 

SNPs. Most of these variants are located at the extreme ends of the Mcs1b locus. The list 

of potential candidate rat variants was further narrowed using WF.COP congenic lines for 

the Mcs1b locus. Genotyping of susceptible congenic Mcs1b lines indicated that  
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Table 11. Sequences for WF and COP alleles of A102-INDEL-2 and surrounding sequence. Red 
script indicates sequence variation between the two rat strains.  
Strain Sequence 
WF ATCCAGGGCAGATAGATGATAGATAGATAGATAGATAGATAGATAGATAG

ATAGATAGATAGATAGACAGACAGACAGACAGACAGACAGACAGACATAG
GAAAGAAGAGTGAGG 

COP ATCCAGGGCAGATAGATGATAGATAGATAGATAGATAGATAGATAGATAG
ATAGATAGATAGA---
CAGACAGACAGACAGACAGACAGACAGACATAGGAAAGAAGAGTGAGG 
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all of the sequence variants at the extreme ends of the Mcs1b locus are ruled out as the 

causative variants. That leaves four candidate Mcs1b sequence variants. 

The first candidate Mcs1b variant is an INDEL called A102-INDEL-2. However, 

analysis of the human orthologous region surrounding A102-INDEL-2 has not resulted in 

the identification of a human ortholog. This could be due to several reasons: 1) A102-

INDEL-2 might not have a human ortholog, since it has no functional activity and there is 

no evolutionary pressure to retain this region, 2) the human ortholog to A102-INDEL-2 

may be located outside of the region tested. When looking for the human orthologs, we 

restricted the region of interest to 100kb s urrounding the human orthologous region to 

A102-INDEL-2. Extending the search to a larger region may result in the identification of 

an ortholog. Because there is no know n human ortholog for A102-INDEL-2, the 

functional analysis of the Mcs1b variants will be focused on the candidate SNPs that were 

identified. However, WF.COP congenic lines that will test the involvement of A102-

INDEL-2 in the Mcs1b phenotype are currently being generated.  

Three candidate rat SNPs were identified in the Mcs1b region. These are A074-

SNP-17, A074-SNP-18 and A046-SNP-A. All three of these SNPs are located within the 

rat orthologous region to a human haplotype block that associates with breast cancer risk. 

The human haplotype block is marked by the SNP rs889312, which is in linkage 

disequilibrium with at least six other SNPs. We hypothesized that since there are multiple 

breast cancer associated SNPs in the human MCS1B region, there are multiple candidate 

SNPs in the rat Mcs1b region. This hypothesis is confirmed with the identification of the 

three Mcs1b candidate SNPs. Functional analysis of Mcs1b variants will focus on these 

three SNPs, since they have a human ortholog in the rs889312 correlated SNPs. An 
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analysis of the frequency of the SNP alleles in different rat strains revealed that the 

variant allele of A046-SNP-A is found in both DMBA carcinogenesis resistant and 

susceptible animals. This suggests that this SNP may not be independently acting on the 

Mcs1b phenotype. The variant allele for A074-SNP-18 is found in two different 

susceptible rat strains. The Mcs1b causative variant is likely found to be present in the 

COP rat strain and possibly other DMBA carcinogenesis resistant rat strains. This is due 

to the fact that the COP allele in the Mcs1b region modifies the Mcs1b DMBA 

carcinogenesis phenotype. This would suggest that the variant allele for A074-SNP-18 is 

not an independently acting functional genetic element. However, the variant allele for 

A074-SNP-17 is only found in the COP rat strain, making this an ideal candidate for the 

Mcs1b mammary cancer resistance. It is possible that all three or a combination of the 

Mcs1b candidate SNPs are involved in modulating mammary cancer susceptibility. 

Therefore, all three candidate SNPs will be included in a functional analysis of the Mcs1b 

candidate SNPs.  

A074-SNP-17 and A074-SNP-18 are located within two different introns of the 

gene Map3k1. However, analysis of the predicted splice sites for the Map3k1 gene 

revealed that the SNPs are not predicted to alter splicing sites. A046-SNP-A is located 

within an intergenic region downstream of the Map3k1 gene. It is possible that any one of 

these SNPs or a combination of them are involved in gene regulation of Mcs1b genes by 

being located in a regulatory element.  

There are gaps in the Mcs1b sequencing data. These gaps result from gaps in the 

rat reference genome used to make the sequence capture microarrays, from highly 

repetitive regions, which were not included on the microarray and from low coverage of 
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the sequencing data. To fill in some of these gaps, we focused on t he rat orthologous 

region to the rs889312 haplotype block. Out of 75 gaps in this region, we were unable to 

sequence 27 gaps. This means that we failed to sequence over 10,000 bases that we 

attempted to sequence in this region. Reasons why sequencing failed were problems with 

primer design in the regions and problems with getting PCR product in highly repetitive 

regions. Since there are over 10,000 bases unsequenced in this region, it is possible that 

there are more genetic variants. It is not possible to sequence these bases with the current 

techniques available; however, future sequencing techniques may be able to sequence 

across repetitive regions and can be used to sequence the last remaining bases in this 

region.  
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CHAPTER IV 

FUNCTIONAL ANALYSIS OF MCS1B GENETIC VARIANTS 

 

Introduction 

Sequencing of the Mcs1b region resulted in the identification of four candidate 

Mcs1b sequence variants. These are A102-INDEL-2, A046-SNP-46, A074-SNP-17 and 

A074-SNP-18. The Mcs1b SNPs A046-SNP-A, A074-SNP-17 and A074-SNP-18 are 

located within the rat orthologous region to a human haplotype block that is associated 

with breast cancer risk. These three rat SNPs are our candidate Mcs1b rat SNPs. The 

human haplotype block that is associated with breast cancer risk is shown in Figure 2 and 

is marked by the SNP rs889312 [61]. rs889312 is in linkage disequilibrium with at least 

six other SNPs as shown in Figure 2. This means that any one or a combination of these 

SNPs could be the causative one. However, since there are ongoing sequencing 

experiments such as the 1000 G enomes Project that are identifying new SNPs in the 

human, it is possible that the causative SNP is not in public databases yet. For this reason, 

the functional analysis of candidate sequence variants for this aim will mainly focus on 

the three identified rat SNPs, since all sequence variation between the two rat strains in 

the Mcs1b region is known. Note, the three Mcs1b rat SNPs have a human ortholog in the 

rs889312 correlated SNPs. There is no know n human ortholog for A102-INDEL-2. A 

manual search for regions of high repetitive sequences in the human orthologous region 

to the A012-INDEL-2 region did not yield any orthologs.
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Therefore, the functional analysis of Mcs1b sequence variants will focus on the three 

candidate rat SNPs identified.  

Genetic variants can be located in exons or introns of genes or they can be located 

in intergenic regions. SNPs can influence a given phenotype through several 

mechanisms. A SNP that is located within the coding region of a gene could have no 

effect on t he transcribed protein, result in amino acid substitutions or in truncated 

proteins. However, none of the Mcs1b candidate SNPs are located within the protein-

coding region of a Mcs1b gene and are therefore not involved in changing the amino acid 

sequence of a protein.  

Some SNPs are located within gene introns. These SNPs can change the splicing 

pattern of a gene, potentially resulting in a new splice product of a gene. Both A074-SNP-

17 and A074-SNP-18 are located within introns of Map3k1. However, an extensive 

analysis of potential splicing site changes revealed that neither the COP nor WF allele for 

both SNPs result in splicing site changes for Map3k1. Also there is no additional splice 

variants annotated in the USCS Genome Browser for Map3k1. Furthermore, no splice 

variants were identified using a QPCR based approcach. Therefore, it is unlikely that 

these two SNPs are involved in changing the Map3k1 splicing pattern.  

SNPs found in intergenic and intronic regions can be located in enhancer/ 

repressor and promoter regions. These genetic elements are all involved in regulating 

gene expression. Proximal promoters are typically located within 1kb of the transcription 

start site (TSS) and are involved in the basic transcriptional regulation of a particular 

gene [135]. None of the Mcs1b SNPs are located in close proximity to the TSS of any of 

the Mcs1b genes and are therefore not likely to be located in gene promoters. Enhancers 
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and repressors are genomic regions that are not in close proximity to transcription start 

sites but can either activate or repress gene transcription through long- range interactions. 

Enhancers/ repressors bind transcription factors that act to regulate gene expression. 

Enhancers/ repressors act independently of their location and orientation to a gene 

promoter. These gene regulatory elements can be over 1Mb away from the targeted gene. 

The formation of chromatin loops is thought to bring enhancers/ repressors in proximity 

of gene promoters. Enhancers/ repressors are often found within introns of genes they 

regulate or within introns of neighboring genes. However, they can also be found within 

intergenic regions [136, 137].  All three Mcs1b SNPs are located either in introns or 

intergenic regions and could be located within enhancers/ repressors.  

Several genes within the Mcs1b region are expressed differentially between the 

WF and COP rat strain. Mammary gland transcript levels of Mcs1b genes were compared 

between 12- week old WF and WF.COP line N3 congenic females. There was a 

significant expression difference for genes Gpbp1, Map3k1, Mier3 and Il6st between the 

two rat strains. When animals were treated with DMBA, a significant expression 

difference for Mier3 between the two rat strains was observed [87]. Since there is a 

difference in the regulation of Mcs1b genes between the two rat strains, it is possible that 

the Mcs1b SNPs are involved in regulating the Mcs1b genes. Because of their location in 

respect to the Mcs1b genes, it is likely that the Mcs1b SNPs are located within enhancer/ 

repressor regions. Because of this, any functional analysis of the three Mcs1b candidate 

SNPs will focus on potential roles in gene regulation.  

The goal of this aim is to perform functional analysis of the Mcs1b candidate 

SNPs in regards to their function in regulation of Mcs1b genes. The hypothesis is that the 
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Mcs1b candidate SNPs are located in enhancer/ repressor regions and regulate Mcs1b 

gene expression levels. The main functional analysis will focus on the rat Mcs1b 

candidate SNPs, since all candidate rat variants in this region are known. However, any 

positive results for the rat Mcs1b SNPs will be tested using the human rs889312 

correlated SNPs as well.  

 

Methods 

A. Cloning of candidate Mcs1b SNPs and human rs889312 correlated SNPs into 

pGL3- Promoter vector 

Luciferase assay constructs were designed for the WF and COP A074-SNP-17, 

A074-SNP-18 and A046-SNP-A alleles and the human major and minor rs889312, 

rs1862625, rs1862626, rs12697152, rs1910020, rs4700485 and rs961847 alleles. The rat 

SNP alleles were inverted, since the rat Mcs1b region is inverted with respect to the 

human MCS1B region. The constructs included the SNP nucleotide and 12bps flanking 

on either side for a total of 25bps. These 25bps were repeated in tandem five times to 

increase the signal strength of the luciferase assay. The constructs also included sticky 

Kpn1 and Xho1 restriction sites for cloning purposes. The constructs were generated by 

Integrated DNA Technologies (IDT) and included Kpn1 and XhoI compatible overhangs. 

The pGL3- Promoter firefly luciferase reporter vector was digested with Kpn1 and Xho1 

to generate sticky ends. The constructs were cloned into the multiple- cloning site 

upstream of the SV40 promoter. The pGL3- Promoter vector was selected because it is 

designed to test potential enhancer elements. Constructs were annealed at a concentration 

of 1pmol/μl using a 10mM Tris, 1mM EDTA and 50mM NaCl (pH 8.0) buffer. A Veriti 
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96-well thermocycler (Life Technologies) was used to anneal the constructs by heating 

them to 95°C and allowing them to cool down at a rate of 1°C/min for 70 minutes. The 

annealed constructs were then ligated to the linearized pGL3-Promoter vector using a 3:1 

insert: vector ratio and T4 DNA ligase (Promega). Top10 Chemically Competent Cells 

(Life Technologies) were used in the transduction reaction according to manufacture’s 

protocol. A screen for positive clones was performed using RV3 primers surrounding the 

multiple cloning site and a FastPCR reaction was performed as previously described. The 

PCR products were run on a  1% agarose gel and stained using SybrGold (Life 

Technologies). As a control the pGL3-Promoter vector was used. Clones were extracted 

using a Spin Miniprep kit (Qiagen) and sequenced to ensure the correct insert has been 

ligated. Finally, the plasmids were extracted using a PureYield Plasmid Midiprep Kit 

(Promega) and the entire plasmid was sequenced to ensure no s equence errors. The 

sequences for the constructs and RV3 primers can be found in Table 12. 

 

B. Cloning of multiple Mcs1b rat SNP alleles into the same pGL3-Promoter vector 

The rat alleles for A074-SNP-17 and A074-SNP-18 were cloned into the multiple 

cloning site upstream of the SV40 promoter in the pGL3-Promoter vector. The rat alleles 

for A046-SNP-A were cloned into the multiple cloning site downstream of the luciferase 

gene. Note, A074-SNP-18 was placed upstream of A074-SNP17. Constructing the A074-

SNP-18/A074-SNP-17 constructs was complex. IDT cannot manufacture constructs that 

are longer than 200bps. The A074-SNP-18/A074-SNP-17 constructs were each at least 

250bps in length. Therefore, the A074-SNP-18 and A074-SNP-17 constructs were 

designed separately with an internal BglII site. The A074-SNP-18 construct contained a  
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sticky Kpn1 site at the 5’ end and a sticky BglII site at the 3’ end. The A074-SNP-17 

construct contained a complementary sticky BglII site at the 5’ end and a sticky Xho1 site 

at the 3’ end. Both constructs had to ligate to each other and ligate into the plasmid to get 

a successful ligation reaction. All components were added to the same ligation reaction. 

The constructs for A046-SNP-A were designed as described previously, with the 

exception of the restriction enzymes used. The Sal1 and BamH1 enzymes were used. The 

sequences for the constructs can be found in Table 13. The pGL3- Promoter vector was 

digested with the Kpn1 and Xho1 enzymes first and the A074-SNP-18/A074-SNP-17 

constructs were cloned first. Cloning reactions and plasmid extractions were performed 

as previously described. Plasmids were extracted using the Spin Miniprep kit (Qiagen) 

and sequenced. The plasmids containing the A074-SNP-18/A074-SNP-17 constructs were 

digested with the Sal1 and BamH1 enzymes and the A046-SNP-A constructs were cloned 

into the vector. Cloning reactions and plasmid extractions were performed as previously 

described, with the exception of using the RV4 primers for analysis of positive clones. A 

list of constructs and primers used for cloning is shown in Table 13. 

 

C. Transfection of T47D and MDA-MB-231 cells and luciferase assays 

T47D and MDA-MB-231 were ordered from ATCC. T47D cells were grown in 

RPMI-1640 with the addition of 10% fetal bovine serum (FBS), antibiotics- 

antimycrobials (Anti-anti, Life Technologies) and 0.2 U nits/ml bovine insulin. MDA-

MB-231 cells were grown in DMEM medium with 10% FBS and anti-anti (Life 

Technologies). Plasmids were transfected into T47D and MDA-MB-231 cells using  
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Lipofectamine 2000 (Life Technologies) according to manufacture’s instructions. 24hrs 

prior to transfection, 20,000 cells were plated in a 96-well dish using media without 

Antibiotics- antimycotics and allowed to grow to 95% confluency. A total of 200ng/ well 

were transfected of the constructs containing plasmids and 10ng/ well of pRL-TK 

(Renilla expressing vector) were used for T47D cells. A total of 100ng/ well were 

transfected of the constructs containing plasmids and 5ng/ well of pRL-TK (renilla 

expressing vector) were used for MDA-MB-231 cells. Transfections were done in 

triplicate. The luciferase activity was determined 18-24hrs post transfection using the 

Dual- Luciferase Reporter Assay System (Promega) according to manufacturer’s 

instructions. The reaction products of the luciferase and renilla genes were read on a 

Biotek Synergy 2 Plate Reader. As a control, the luciferase and renilla activity of the 

pGL3-Promoter and pGL3-Basic vector were determined.  

 

D. Statistical analysis of luciferase activity 

Luciferase and Renilla values were downloaded into Excel. The luciferase activity 

was divided by the Renilla activity to account for differences in transfection efficiency. 

An average of the triplicate value was then determined. And the values were divided by 

the average of the pGL3-Promoter vector to adjust for differences between experiments. 

Adjusted values were then pooled. Each plasmid transfection had at least nine values 

from three independent experiments. A Kruskal-Wallis analysis was performed, followed 

by a Conover- Inman post hoc test to determine the p-values using SYSTAT 13.  

 

E. EMSAs and EMSA supershifts 
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Oligos used for electrophoretic mobility shift assays (EMSAs) were biotin labeled 

using the Biotin 3’ End DNA Labeling Kit (Thermo Scientific) according to the 

manufacturer’s protocol. In short, oligos were ordered from IDT and resuspended to a 

concentration of 100μM in water. The oligoes were diluted to a working concentration of 

1μM and incubated with TdT reaction buffer, Biotin-N4-CTP and TDT enzyme for 

30min at 37°C. The biotin labeled oligos were then extracted using a chloroform: isoamyl 

alcohol extraction. A list of the oligos used in the EMSA reactions are shown in Table 14. 

Oligos were annealed by adding equal amounts of forward and reverse oligo and 

incubating them in a thermocycler. The oligos were allowed to heat to 95°C and were 

cooled down at a rate of 1°C/ min for 70min.  

Nuclear extracts of T47D and MDA-MB-231 cells were performed using NE-

PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific) according to 

manufacturer’s protocol. Nuclear extracts were quantified using a Biorad protein assay 

kit. Nuclear extract aliquots were stored at -80°C.  

EMSAs were performed using the LightShift Chemiluminescent EMSA kit 

(Thermo Scientific) according to manufacturer’s protocols. In short, 1μL of biotin labled 

oligos were incubated with binding buffer, 2.5% glycerol, 100nM MgCl2, 50ng/μL 

Poly(dI•dC), 0.05% NP-40 and 10μg nuclear extract at room temperature for 20min. 

200x unlabeled cold probe was added as competitor. Note, for Figure 14B, 13x cold 

competitor probe was used. For Figure 18 an increase in cold competitor probe from 10x 

to 200x was used.  A 4 or 5% polyacrylamide gel was pre- run in 0.5% TBE at 100V for 

30min. 5μl loading dye was added to the binding reactions and the entire sample was  
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Table 14. List of oligos used in EMSA and EMSA supershift experiments. 
ID Sequence 
A90-A046-SNP-A WF (+) GAATGCACAGGTCCTGTAGAAGTTC 
A90-A046-SNP-A WF (+) GAACTTCTACAGGACCTGTGCATTC 
A90-A046-SNP-A COP (+) GAATGCACAGGTTCTGTAGAAGTTC 
A90-A046-SNP-A COP (+) GAACTTCTACAGAACCTGTGCATTC 
A118-A074-SNP17 WF (+) TGATGAGCTGCACATGTCATGGAAT 
A118-A074-SNP17 WF (-) ATTCCATGACATGTGCAGCTCATCA 
A118-A074-SNP17 COP (+) TGATGAGCTGCAAATGTCATGGAAT 
A118-A074-SNP17 COP (-) ATTCCATGACATTTGCAGCTCATCA 
A118-A074-SNP18 WF (+) GTTTTGGAGATATGTGCACATGGGC 
A118-A074-SNP18 WF (-) GCCCATGTGCACATATCTCCAAAAC 
A118-A074-SNP18 COP (+) GTTTTGGAGATACGTGCACATGGGC 
A118-A074-SNP18 COP (-) GCCCATGTGCACGTATCTCCAAAAC 
A90-rs1862626 major (+) GCATGGCTAGATTTCAGCCTGTGCT 
A90-rs1862626 major (-) AGCACAGGCTGAAATCTAGCCATGC 
A90-rs1862626 minor (+) GCATGGCTAGATGTCAGCCTGTGCT 
A90-rs1862626 minor (-) AGCACAGGCTGACATCTAGCCATGC 
A90-rs889312 major (+) GCTGGAGAAAGGAATGTGCAAATTA 
A90-rs889312 major (-) TAATTTGCACATTCCTTTCTCCAGC 
A90-rs889312 minor (+) GCTGGAGAAAGGCATGTGCAAATTA 
A90-rs889312 minor (-) TAATTTGCACATGCCTTTCTCCAGC 
A107-A046-SNP-A 1bp Deletion (+) GAATGCACAGGTCTGTAGAAGTTC 
A107- A046-SNP-A 1bp Deletion (-) GAACTTCTACAGACCTGTGCATTC 
A107-A046-SNP-A  3bp deletion (+)  GAATGCACAGGTGTAGAAGTTC 
A107-A046-SNP-A  3bp deletion (-) GAACTTCTACACCTGTGCATTC 
A107-A046-SNP-A  5bp deletion (+)  GAATGCACAGGTAGAAGTTC 
A107-A046-SNP-A  5bp deletion (-) GAACTTCTACCTGTGCATTC 
A107- A046-SNP-A  random insert 9bps (+) GAATGCACCGTCTCTGGAGAAGTTC 
A107- A046-SNP-A  random insert 9bps (-) CAACTTCTCCAGAGACGGTGCATTC 
A107- A046-SNP-A  random insert 13bps (+) GAATGCTTGTCGTCCATTTAAGTTC 
A107- A046-SNP-A  random insert 13bps (-) GAACTTAAATGGACGACAAGCATTC 
A107- A046-SNP-A  random insert 17bps (+) GAATGCTTTTACTGCCCGTACGTTC 
A107- A046-SNP-A  random insert 17bps (-) GAACGTACGGGCAGTAAAAGCATTC 
A118-A074-SNP-17 3bp deletion (+) TGATGAGCTGCTGTCATGGAAT 
A118-A074-SNP-17 3bp deletion (-) ATTCCATGACAGCAGCTCATCA 
A118-A074-SNP-18 3bp deletion (+) GTTTTGGAGATTGCACATGGGC 
A118-A074-SNP-18 3bp deletion (-) GCCCATGTGCAATCTCCAAAAC 
A124- E-box (+) GCGCTCCCCACGTGGCGGAGGG 
A124- E-box (-) CCCTCCGCCACGTGGGGAGCGC 
A124-ARE (+) CAGTCACAGTGACTCAGCAGAATCT 
A124-ARE (-) AGATTCTGCTGAGTCACTGTGACTG 
A124- random oligo (+) CGCCGGGCGATAGTGGAGTTAGTAG 
A124- random (-) CTACTAACTCCACTATCGCCCGGCG 
A128-PRE (+) GATCCTGTACAGGATGTTCTAGCTACA 
A128-PRE (-) TGTAGCTAGAACATCCTGTACAGGATC 
A128- NF1C (+) AGGTTGGCAAAAAGCCAAGG 
A128- NF1C (-) CCTTGGCTTTTTGCCAACCT 
A128- ARRE2 (+) gatcGGAGGAAAAACTGTTTCATACAGAAG

GCGT 
A128- ARRE2 (-) ACGCCTTCTGTATGAAACAGTTTTTCCTCC

gatc 
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loaded onto the gel. The gel was run at 100V for until the blue dye had migrated ¾ down 

the length of the gel (approximately 45min). The protein-DNA complexes were 

transferred to a Biodyne B Pre-cut Modified Nylon Membrane (Thermo Scientific) using 

a TransBlot SD Semi-dry Transfer Cell (Bio-Rad) at 25V for 10min. DNA and proteins 

were crosslinked using UV crosslinking instruments for 15min. Membranes were washed 

and chemiluminescence detected using Luminol/ Enhancer Solution, Stable Peroxide 

Solution and x-ray film. 

EMSA supershifts were performed as previously described. However, during the 

binding reaction 2μg of antibody was added to the reaction, allowed to incubate for  

30min before adding biotin labeled probes and incubating for 20 more minutes at room 

temperature. As a control 2μg of Negative Control for Rabbit IgG Ab-1 (Thermo 

Scientific) was used. The antibodies used are c-MYC, NRF2, PR, NFIC and ILF2 (Santa 

Cruz Biotechnology: sc-764x, sc-722x, sc-538x and Abcam: ab86570, ab28772).  

 

F. Luciferase assays of A074-SNP-17 SNP alleles co-expressed with protein 

expression vectors 

Luciferase assays in T47D cells were performed as described above. An 

additional 200ng/ well of the protein expression vector was added and luciferase activity 

was measured 18-24hrs post transfection. The c-MYC protein expressed is the human 

isoform and the plasmid backbone is the pWZL plasmid. The NRF2 expressed is human 

isoform and the plasmid backbone is the pCI- neo vector. As a control, the pc3.1 vector 

was used. The ARE control plasmids used for the NRF2 co-expression luciferase 

experiments contains the minimum promoter (164 bp) of the rat Glutatione S-transferase 
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A2 gene in the pGL3- Basic vector. Each experiment was performed in triplicate and the 

results from three independent experiments were pooled. Results were analyzed as 

previously described. 

 

G. Western Blot for c-Myc 

20μg of each protein extract were used in the Western Blot. Equal volume of 

Leammli buffer (Biorad) were added to the protein extracts and heated at 95°C for 5min. 

A prestained protein marker was used (New England Biolabs). Samples were run on a  

stacking polyacrylamide gel at 60V until samples reached stacking gels’ interface. 

Samples were then run at 100V until pink dye ran off the gel in running buffer (Tris-

glycine/ SDS). A PVDF membrane (GE Healthcare) was prepared by soaking in 

methanol for 20s, then water for 20s and then 10min in Towbin buffer (25 mM Tris, 192 

mM glycine, 20% (v/v) methanol (pH 8.3)). Samples were transferred in semi-dry 

apparatus for 40min at 15V. Membrane was blocked in PBS-tween + milk (0.1% Tween-

20, 5% milk) for 1hr. Membranes were incubated with 1/2000 c-Myc antibody (sc-764, 

Santa Cruz) and 1/4000 GAPDH antibody (A300-641-A, Bethyl) in PBS- tween + milk 

overnight at 4°C. Membranes were washed twice with PBS-tween and then four times for 

5 min. Goat anti-rabbit secondary antibody was added at 1/4000) in PBS-tween for 1hr 

while shaking. Membranes were washed twice with PBS- tween then three times for 

5min and once for 5min in PBS. Equal amounts of Pico reagents (Thermo Scientific) 

were added for 5min and membrane was exposed to X-ray film.  
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H. Identification of candidate proteins binding to A074-SNP-17 using TF search and 

Mass spectrometry 

To identify candidate proteins binding to the WF and COP alleles for A074-SNP-

17, we used the online program TF Search 

(http://www.cbrc.jp/research/db/TFSEARCH.html). The 25bp ol igos used for the A074-

SNP-17 EMSAs were used for the analysis. The parameters were set to “use all matrices” 

and the threshold score was set to 75. We noted all proteins that were predicted to bind 

the two alleles differentially. 

For DNA pulldowns, 30μl of Streptavidin Magnetic Particles (Roche) were 

washed three times with 100μl of TEN100 (10mM Tris-HCl), 1mM EDTA, 100mM 

NaCl, pH 7.5) on a rotator for 1min at room temperature. Particles were placed into a 

magnet and the liquid was removed. Particles were resuspended with 100μl TEN100 and 

3μg of the A074-SNP-17 COP, WF or 3bp deletion oligo was added. Oligos used have 

the same sequence as shown in Table 14, however, they were ordered from IDT with a 3’ 

biotin molecule. The samples were rotated for 10min at room temperature. Samples were 

washed twice with TEN1000 (10mM Tris-HCl, 1mM EDTA, 1M NaCl, pH 7.5). 

Samples were blocked with 0.5% milk in TEN100 for 15min on ice and washed once 

with TEN100. 750μg of T47D nuclear extracts and 700μl of TEN100 were added to the 

samples and incubated for 30min at room temperature with rotation. The liquid was 

removed and DNA was eluted using 40μl of buffer C (20mM HEPES, 1.5mM MgCl2, 

0.2mM EDTA, 25% v/v glycerol, pH 7.9). A control EMSA using the A074-SNP-17 

COP, WF and MUT was performed using the DNA pulldown and T47D nuclear extract 

as described previously. 5μl of the DNA pulldown and 3μl of the T47D nuclear extracts 

http://www.cbrc.jp/research/db/TFSEARCH.html�
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were used. The samples were submitted to the University of Louisville Mass 

Spectrometry Core and trypsin digestion followed by LC-MS/MS was performed. 

Proteins were identified through Proteome Discoverer and visualized using Scaffold 3.  

 

I. 5’ RACE of Mier3 and cloning of Mier3 promoter into pGL3 promoter vector 

We used the FirstChoice RLM-RACE Kit (Ambion) to perform 5’ Rapid 

Amplification of cDNA Ends (RACE) on the Mier3 gene according to the manufacturer’s 

instructions. The mammary gland total RNA from six 12-week old WF females was 

pooled for the analysis. 10μg total RNA was treated with Tobacco Acid Pyrophosphatase 

(TAP) for 1hr at 37°C. 5’RACE adapters were ligated and the RNA was reverse- 

transcribed using M-MVL Reverse Transcriptase. An outer 5’RML-RACE PCR was 

performed using Mier3 specific primers, followed by an inner PCR. Mier3 specific 

primers for 5’RACE are shown in Table 15. 5μl of the PCR reaction were run on a 2% 

high resolution agarose gel (GeneMate) and stained with SybrGold (Life Technologies). 

PCR products were cloned into a pCR2.1 TA cloning vector using the Original TA 

Cloning Kit (Life Technologies) and 17 clones were sequenced using the University of 

Louisville Sequencing Core. 

The splenic DNA of one WF animal was used for cloning of the Mier3 promoter. 

The PCR reaction was performed using the A buffer of the FailSafe PCR Premix 

Selection Kit (Epicentre), Accuprime PCR enzyme (Life Technologies) and the primers 

shown in Table 15. The PCR reaction was then cloned into the pCR2.1- TA vector using 

the Original TA Cloning Kit (Life Technologies). A clone was amplified and extracted  
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Table 15. Primers for 5’RACE and cloning of Mier3 promoter. 
ID Sequence 
A132- 5’RACE outer primer CATGTTGTGTTTGATCGTAAAGG 
A132- 5’RACE inner primer CATCTGAGAAGACTGGGTTTC 
A132- Mier3 specific 5’ primer GAAGGAAATATGCCTCTAGAAGAT 
A132- Cloning 3F GGAAGATCTGAACCTGTGGCAACTTGGAT 
A132- Cloning 3R CCCAAGCTTATGACTGGAGGGTGAAGACG 
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using the Qiagen Spin Miniprep Kit and sequenced. The PCR primers used contain BglII 

and HindIII restriction sites and the correct insert were excised using these two enzymes. 

The pGL3 promoter vector was digested with the BglII and HindIII enzymes to remove 

the SV40 promoter. The linearized vector was gel extracted using the QiaQuick Gel 

Extraction Kit (Qiagen). Excised insert and linearized pGL3 Promoter vector were ligated 

using T4 DNA Ligase (Promega) and cloned. Vectors were sequenced for correct insert 

and extracted using the Qiagen Midiprep Kit. T47D cells were transfected and luciferase 

activity was determined as described above.  

To identify transcription factors binding to the cloned Mier3 promoter, we used 

the online program TF SEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html). We 

set the parameters to a threshold score of 85 a nd used the vertebrate matrix only. The 

function of individual transcription factors was looked up us ing the online database 

UniProt (http://www.uniprot.org/uniprot/).  

 

J. Preparation of mammary epithelial cell enriched cell preps for 3C and bisulfite 

sequencing 

We extracted mammary epithelial cell enriched preps (MEC preps) from 18 rats 

in total. Six WF.COP Line N3 congenic and six WF/NHsd WF females received DMBA 

as previously described. Three WF.COP Line N3 and three WF/NHsd females did not 

receive DMBA. At twelve-weeks of age, the animals were euthanized. The D and E 

glands without lymph nodes were collected and pooled for each animal and placed into 

DMEM/F12 media (Life Technologies). Pooled glands were minced and placed into cell 

culture flask containing 10ml DMEM/F12 with 0.01g/ml collagenase type III 

http://www.cbrc.jp/research/db/TFSEARCH.html�
http://www.uniprot.org/uniprot/�
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(Worthington) and incubated for 2.5hr at 37°C with gentle horizontal shaking. 0.2μg/ml 

deoxyribonuclease I (Wothington) was added and the flasks were incubated for 10min at 

37°C with vigorous shaking. Cells were transferred to 15ml tubes and centrifuged for 

10min at 1000rpm. The layer of fat was removed and cells were washed once with 

DMEM/F12. The cells were suspended in 2ml HBSS (Life Technologies) with 0.025% 

trypsin (Worthington) and 6.8mM EDTA and incubated horizontally for 5min at 37°C. 

4ml of DMEM/F12 with 10% FBS was added to stop the reaction. Cells were centrifuged 

and resuspended in DMEM/F12 with 10% FBS. Cells were allowed to pass through a 

BD-40 filter and filters were rinsed with 2ml DMEM/F12 with 10% FBS. Cells were 

centrifuged and resuspended in 200μl PBS. Cells were counted using a hemocytometer 

using tryptan blue.  

 

K. Chromosome conformation capture 

MEC prep cells were diluted in 40ml of PBS and 1.7ml of 37% formaldehyde was 

added. Cells were left at room temperature for 10min. 2.7ml of 2M glycine was added 

and the cells were incubated for 5min at room temperature and then on ice for 15min. 

Cells were centrifuged for 10min at 800 x g and resuspended in 0.5ml of ice-cold lysis 

buffer (10mM Tris-HCl, 10mM NaCl, 0.2% NP-40 and Halt Protease Inhibitor Cocktail 

(Thermo Scientific)) for 15min. Cells were Dounce homogenized on ice for 15 strokes, 

incubated on i ce for 1min and then homogenized with an additional 15 strokes. Cell 

nuclei were centrifuged for 5min at 2,500 x g. Nuclei were washed with 0.5ml of BglII 

buffer (New England Biolabs) and resuspended in 362μl of BglII buffer. 38μl of 1% SDS 

was added and the solution was incubated at 65°C for 10min. 44μl of 10% Triton-X and 
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400U of BglII were added and the solution was incubated overnight at 37°C. 86μl of 10% 

SDS was added and incubated for 30min at 65°C. Solution was transferred to 15ml 

conical tubes and 745μl of 10% Triton-X, 745μl of 10x ligation buffer (500mM Tris-HCl, 

100mM MgCl2 and 100mM DTT), 80μl of 10mg/ml BSA, 80μl of 100mM ATP, 5960μl 

of molecular grade water and 4000U T4 Ligase (New England Biolabs) was added and 

incubated for 2hrs at 16°C. 33μl of 20mg/ml proteinase K (New England Biolabs) was 

added and solution was incubated overnight at 16°C. 33μl of proteinase K was added and 

incubated for 2hrs at 42°C. Solutions were transferred to 50ml conical tubes and an equal 

amount of phenol: chloroform: isoamylalcohol (P:C:I, 25:24:1) was added and vortexed 

for 30sec. The solution was centrifuged for 5min at 2,460 x g and extracted again using 

P:C:I, then with chloroform and precipitated with Ethanol/ Sodium acetate. Samples were 

placed at -20°C for 30min and centrifuged at 10,000 rpm for 30min. The pellet was 

washed with 70% ethanol and dissolved in 1ml of water. RNAse A (Promega) was added 

and incubated for 30min at room temperature. Samples were split into two tubes and an 

additional P:C:I and chloroform extraction was performed. Ethanol/ sodium acetate was 

added and pellets were washed five times with 70% ethanol. Pellets were dissolved in 

300μl TE buffer, incubated for 15min at 37°C and stored at -20°C. A BAC clone 

containing the entire Mcs1b region of interest was used as a positive control. The BAC 

used was Rattus norvegicus CH230-117D7 (Children's Hospital Oakland Research 

Institute (CHORI)). 20μg of the BAC was digested overnight at 37°C using BglII in 1x 

restriction enzyme buffer, 0.5μl BSA in a total volume of 50μl. The BAC was purified 

using P:C:I and chloroform extractions, followed by ethanol precipitation. The BAC was 

ligated using 5μl of 10x T4 DNA ligase buffer and 2U of T4 DNA ligase (Promega) and 
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was incubated at 16°C overnight. The BAC was then extracted using P:C:I and 

chloroform extraction followed by an ethanol precipitation. The BAC and DNA 

concentration was determined using band intensity quantification. 

The amount to use in a PCR reaction was determined empirically to be 50ng. The 

BAC concentration to use in the PCR reaction was determined empirically to be 0.4ng. 

The PCR reactions were prepared on ice by adding 50ng of DNA, 0.2mM of each dNTP, 

0.4μM of each primer, 1x Herculase reaction buffer and 0.3μl Herculase Enhanced 

polymerase (Agilent) in a total volume of 25μl. The reactions were run on a Veriti 96 

well fact thermal cycler (Applied Biosystems) with the following conditions: 95°C for 

1min, 34 cycles of 95°C 1min, 60°C for 45sec, 72°C for 2min and one cycle of 95°C for 

1min, 60°C for 45sec, 72°C for 8min. 10μl of Ficoll dye (15% Ficoll 400 in water) was 

added to the PCR reactions and 20μl was added to the wells. For the BAC 10μ of Ficoll 

dye was added and 10μl was loaded onto the gel. PCR reactions and 500ng of a 100bp 

DNA ladder were run on a 1% agarose gel. The gel was stained using 0.1ug/ml ethidium 

bromide for 25min and destained in water for 15min. A picture was taken using a GE 

Typhoon 9400. PCR products were analyzed using band intensity quantification with 

ImageJ and divided by the intensity of the PCR band using the BAC. A list of 3C primers 

used can be found in Table 16. 

 

L. Bisulfate sequencing 

We performed bisulfite sequencing on three different groups of rats. Each group 

contained three females. One group was treated with DMBA, the other two were not. All  
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Table 16. Primers used for 3C analysis. 
ID Sequence 
A136- Fixed 7 ATATAGCTTTCTGCCTGCGTGTAT 
A136-Moving B AGAGCTGACCGTTTGGTATTGTATAAC 
A136-Moving E ACTCCTGACTGTCTGTCTCCCTTTTA 
A136-Moving F GACACATCTATTTTATAGCCACAAACAC 
A136-Moving G AGTATCAGTGAGTGAGGTAGTTCAGAAA 
A136-Moving H AGATTATGGCATTACTGAGTCTGTCTAC 
A136-Moving I CTTGCTACTGGAGAATGTGATGATAAG 
A136-Moving J TAGAATTAAAGGCATATACCACCACAC 
A136-Moving K AGCATGGTCCTACAACTTTTAATACAG 
A136-Moving L ATTGAGAGTTCTTTCTTAGACCTGTAGC 
A136-Moving M CTAAAGTAGAAAATGCACATGGAGGAT 
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animals were 12- weeks old. MEC preps were prepared as described previously. DNA 

was extracted using the DNeasy Blood and Tissue Kit (Qiagen). DNA was bisulfate 

converted using the Cell-to-CpG Bisulfite Conversion Kit (Life Technologies) using 

manufacturer’s instructions. 2μg was used in the bisulfite conversion and samples were 

pooled using equal amounts. The bisulfite conversion was performed under the following 

conditions: 95°C for 3min, 65°C for 60min, 95°C for 3min, 65°C for 30min. PCR 

reactions contained 150ng bisulfite converted DNA, 0.2mM of each dNTP, 1x buffer, 

0.4μM of forward and reverse primers (list of primers can be found in Table 17), 0.5μl 

Easy A High- Fidelity PCR Cloning Enzyme (Agilent) in a total volume of 50μl. The 

PCR reaction were run using the following conditions: one cycle of 95°C for 15min, 18 

cycles of 94°C for 45sec, 65°C for 45s (-0.5°C/ cycle)and 72°C for 1.5min, 22 cycles of 

94°C for 45sec, 56°C for 45sec and 72°C for 1.5min, one cycle of 72°C for 8min. PCR 

reactions were run and visualized on a 1% agarose gel. PCR reactions were gel extracted 

using the Promega Wizard SV Gel and PCR Cleanup kit and cloned into a pCR-2.1 

vector using the the Original TA Cloning kit (Life Technologies). Ten clones for each 

PCR reaction were extracted using the Qiagen Miniprep or the DirectPrep 96 Miniprep 

kit and sequenced.  

 

M. CRISPR knockout of A074-SNP-17 

Guide sequences for the CRISPR knockout were designed to be in close proximity to the 

A074-SNP-17 targeted site and contained BbsI restriction sites. The guide sequences for 

target constructs are shown in Table 18. T he pX335-U6-Chimeric_BB-CBh-HSpCas9n 

(D10A) vector (Addgene) was digested with the restriction enzyme BbsI.  C onstructs 

were annealed and cloned as previously described. RBA cells were grown in RPMI 1640  
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Table 17. Primers for bisulfate sequencing of Mcs1b candidate SNPs 
ID Sequence 
A139- A074-SNP-17- a1 TTTTTTGAGAATTATTAGGTTAGGAAA 
A139- A074-SNP-17- a2 TTCTACAACTACCCTATCAAAACCTTC 
A139- A074-SNP-17- b1.1 TGGGTTAGATGGTATGTATTATGTAGTTT 
A139- A074-SNP-17- b1.2 ATTACTTCAACAACAATCTTCTAAAAA 
A139- A074-SNP-17- b2.1 TTTTTGTAGTTGTTTTGTTAGAGTTTTTT 
A139- A074-SNP-17- b2.2 AAACTACATAATACATACCATCTAACCCAT 
A139- A074-SNP-18- a1 AGGTTTTTTGGATTAAATTTGGGTA 
A139- A074-SNP-18- a2 TCCTTACAAAAAAACTAAATAATTCCT 
A139- A074-SNP-18- b1 ATTGTTTTTGTAAAGGGATTGAGTG 
A139- A074-SNP-18- b2 AACCTCTTAAACCAAATCTAAACACC 
A139- A046-SNP-A- a1 GGGTAGAGTTATAATTTTTGGTGTG 
A139- A046-SNP-A- a2 CATCCATTCTAATAAAAATACAAAATACCA 
A139- A046-SNP-A- b1 AAAAAGGTGTTTAGGATTATTGGTT 
A139- A046-SNP-A- b2 CACAACTCACTCATATAACATACCACA 
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Table 18. Constructs for CRISPR knockout of A074-SNP-17. 
ID Sequence 
A141-gSEQ Target 1 ON1 CACCGTTGTTGACCCAGTCGGAATTAAGG 
A141-gSEQ Target 1 ON2 AAACCCTTAATTCCGACTGGGTCAACAAC 
A141-gSEQ Target 2 ON1 CACCGCTGATGAGCTGCACATGTCATGG 
A141-gSEQ Target 2 ON2 AAACCCATGACATGTGCAGCTCATCAGC 
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(Life Technologies) with the addition of 10% FBS and anti-anti (Life Technologies). 

LA7 cells were grown in DMEM with the addition of 10% FBS, anti-anti, 4.5g/L 

glucose, 0.005 m g/ml insulin, 50 nM  hydrocortisone and 20 m M HEPES. 5x105 cells 

were plated into 6- well dishes 24hrs prior of transfection using media without anti-anti. 

Cells were transfected using Lipofectamine 2000 (Life Technologies) according to the 

manufacturer’s instructions. Cells were not transfected, transfected with 4μg of pEGFP-

C1, 2μg of target 1 and 2μg of target 2, or mock transfected with Lipofectamine 2000 

only. Media was changed every 24hrs. 72hrs post transfection, the cells were harvested 

with Tripsin- EDTA (Life Technologies), centrifuged for 5min at 500 x g and DNA was 

extracted using the DNeasy Blood and Tissue Kit (Qiagen). The PCR reactions were 

assembled on i ce and contained: 100ng of DNA, 1x Optimase buffer, 0.2mM of each 

dNTP, 0.4μM of each primer and 1μ Optimase Polymerase (Transgenomics) in a total 

volume of 50μl. A positive control included with the SURVEYOR Mutation Detection 

Kit (Transgenomics) was used in the PCR reactions. The PCR reaction was run on a  

Veriti 96 well fact thermal cycler (Applied Biosystems) under the following conditions: 

94°C for 2min, 35 cycles of 94°C for 30sec, 60°C for 30sec, 72°C for 1.5min and 1 cycle 

of 72°C for 5 m in. The PCR reactions were run on a  2% high resolution agarose gel 

including 500ng of a 100bp ladder and 5μl 1kb ladder (Promega) and the band intensities 

were quantified. 300ng of each PCR product was used for the heteroduplex formation 

under the following conditions: 95°C for 10min, 95°C- 85°C (-2.0°C/s), 85°C for 1min, 

85°C- 75°C (-0.3°C/s), 75°C for 1min, 75°C- 65°C (-0.3°C/s), 65°C for 1min, 65°C- 

55°C (-0.3°C/s), 55°C for 1min, 55°C-45°C (-0.3°C/s), 45°C for 1min, 45°C-35°C (-

0.3°C/s), 35°C for 1min, 35°C- 25°C (-0.3°C/s), 25°C for 1min. Heteroduplexed DNA 
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was then digested with SURVEYOR nuclease and run on a 2% high resolution agarose 

gel. Cells were visualized using fluorescent microscopy using a Olympus IX51 inverted 

research microscope at 10x.  

 

Results 

The goal of this aim is to perform functional analyses on the rat Mcs1b candidate 

SNPs and the human rs889312 correlated polymorphisms. The hypothesis is that these 

SNPs are located in regulatory regions that affect expression levels of Mcs1b/MCS1B 

genes. It is known that several Mcs1b genes are expressed differently in mammary glands 

of WF and COP females [87]. The SNPs are most likely located in enhancer/ repressor 

regions, due to their genomic location and proximity to the nearest gene. A reporter gene 

assay can be used to test if genomic regions are involved in gene regulation.  

 

A. Luciferase assays for rat Mcs1b candidate SNPs and rs889312 correlated SNPs 

To determine if the rat Mcs1b candidate SNPs and the rs889312 correlated SNPs 

are involved in gene regulation, a luciferase assay was used. Constructs containing the 

SNP nucleotide and 12bps flanking on e ither side were cloned into a pGL3-Promoter 

vector and the luciferase and Renilla activity was determined. Note, the 25bps of the SNP 

regions were repeated five times in tandem to increase signal strength. The pGL3-

Promoter vector was used, since genomic regions suspected of being enhancers/ 

repressors can be tested using this vector. The luciferase activity was tested in two 

different breast cancer cells lines: T47D and MDA-MB-231 cells. T47D cells are luminal 

A, estrogen receptor (ER) and progesterone receptor (PR) positive, while MDA-MB-231 
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cells are triple negative, ER, PR and human epidermal growth factor receptor 2 (HER2) 

negative [138]. rs889312 appears not to be subtype specific. It is associated with breast 

cancer risk in both ER positive and triple negative breast cancer subtypes [85, 86]. These 

two breast cancer cell lines were chosen, because they are examples of two opposing 

subtypes of breast cancer. A genotyping screen of 40 human breast cancer cell lines 

revealed that both T47D and MDA-MB-231 cells are heterozygous at SNP rs889312, 

which indicates they are also heterozygous at the six SNPs that rs889312 tags. The same 

study also revealed that the expression level of MAP3K1 is among the highest in T47D 

cells, while it is  among the lowest in MDA-MB-231 cells [139]. Therefore, we chose 

these two cell lines, since they represent two opposing states of gene expression of a 

MCS1B candidate gene, yet they have the same genotype, indicating that differences in 

the expression levels are likely due to differences in the cell environment. The luciferase 

activity for the WF and COP alleles for all three Mcs1b candidate SNPs and the major 

and minor alleles for all seven rs889312 correlated SNPs were determined in these two 

cell lines to test for any affects on gene regulation. 

The results for the rat Mcs1b candidate SNPs in T47D cells are shown in Figure 

12A. The luciferase activity is significant lower than the pGL3- Promoter luciferase 

activity for all SNP alleles except the COP allele of A074-SNP-18. This indicates that the 

three Mcs1b candidate SNPs may act as repressors, rather than enhancers, to reduce 

promoter activity. The luciferase activity is different between the COP and WF alleles for 

all three Mcs1b candidate SNPs. The luciferase activity for A074-SNP-18 and A046-SNP-

A is lower for the WF allele than for the COP allele. The luciferase activity for A074-  
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Figure 12. L uciferase assays for rat Mcs1b candidate SNPs. (      ) D ark grey bars 

indicate adjusted relative luciferase activity for the COP (resistant) allele. (     ) Light grey 

bars indicate adjusted relative luciferase activity for the WF (resistant) allele. Asterisks 

indicate luciferase activity that is significantly different between the WF and the COP 

alleles. All adjusted relative luciferase activities are at least nine values from three 

independent experiments. Errors bars indicate standard error from pooled experiments. 

As controls, the luciferase activity for the pGL3-Basic and pGL3-Promoter were 

determined. The pGL3-Promoter activity was used to adjust the relative luciferase 

activities to pool values from independent experiments. A) Luciferase activities in T47D 

cells. Luciferase activity is different between the two rat alleles for all three Mcs1b 

candidate SNPs. B) Luciferase activities in MDA-MB-231 cells. Luciferase activity was 

different between the two rat alleles for A074-SNP-17 and A074-SNP-18, but not for 

A046-SNP-A. 
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SNP-17 shows the opposite pattern, with the COP allele activity being lower than the WF 

allele activity. This pattern of gene regulation is the same as we see when looking at the 

expression levels of Mcs1b candidate SNPs between the two rat strains. Map3k1, Gpbp1 

and Mier3 are all expressed higher in the WF mammary gland compared to the COP 

mammary gland in 12-week old females [87]. This makes A074-SNP-17 a strong 

candidate for conferring the difference in expression levels of Mcs1b candidate genes 

between the two rat strains.  

The luciferase activities for the Mcs1b candidate SNPs in MDA-MB-231 cells are 

shown in Figure 12B. The luciferase activity for A074-SNP-17 shows a similar pattern as 

in T47D cells. The luciferase activity is lower in the COP allele than in the WF allele. For 

A074-SNP-18 the pattern is the same as in T47D cells. The luciferase activity for the 

COP allele is higher than for the WF allele. However, there is no statistical difference 

between the two rat alleles for A046-SNP-A. This SNP showed a luciferase activity that 

was different between the two alleles in T47D cells. This is likely due to a difference in 

the cellular environments of the two breast cancer cell lines.  

Next, we cloned the major and minor alleles for all seven rs889312 correlated 

SNPs into the pGL3-Promoter vector and measured the luciferase activity in both T47D 

and MDA-MB-231 cells. The luciferase activities for the rs889312 correlated SNPs in 

T47D cells are shown in Figure 13A. The luciferase activities between the major and 

minor alleles of four of the rs889312 correlated SNPs are statistically different in T47D 

cells. rs889312 and rs12697152 have luciferase activities that show higher major allele 

activities than the minor allele activities. The major and minor allele luciferase activities  
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Figure 13. Luciferase assays for human rs889312 correlated SNPs. (     ) D ark grey 

bars indicate adjusted relative luciferase activity for the major (resistant) allele. (     ) 

Light grey bars indicate adjusted relative luciferase activity for the minor (susceptible) 

allele. Asterisks indicate luciferase activity that is significantly different between the 

major and the minor alleles. All adjusted relative luciferase activities are at least nine 

values from three independent experiments. Errors bars indicate standard error from 

pooled experiments. As controls, the luciferase activity for the pGL3-Basic and pGL3-

Promoter were determined. The pGL3-Promoter activity was used to adjust the relative 

luciferase activities to pool values from independent experiments. A) Luciferase activity 

in T47D cells. Luciferase activity is different between the two major and minor alleles for 

four rs889312 correlated SNPs. B) Luciferase activity in MDA-MB-231 cells. Luciferase 

activity is different between the major and minor alleles for the same four rs889312 

correlated SNPs as seen in T47D cells. 
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for rs12697152 both are lower than the pGL3-Promoter luciferase activity, suggesting 

that this SNP may be located in a repressor element. rs889312 is the SNP used in several 

GWA studies that identified the human MCS1B region. Its luciferase activity is different 

between the major and minor allele with the major allele having a much higher luciferase 

activity than the minor allele. The luciferase activity for rs1862626 and rs1862625 are 

also different between the major and minor alleles. Both SNPs have a higher minor allele 

activity compared to the major allele activity. The major allele activity for rs1862626 is 

extremely low compared to the minor allele activity. However, the major allele activity is 

statistically different than the luciferase activity for pGL3-Basic, indicating that not all 

promoter activity is being repressed by the rs1862626 major allele. The pattern of gene 

regulation, with the major or resistant allele having a lower luciferase activity than the 

minor or susceptible allele is the same as with the expression level of candidate Mcs1b 

genes and with the rat Mcs1b candidate SNPs, A074-SNP-17. This makes rs1862626 a 

candidate functional ortholog for A074-SNP-17. Also, rs1862625 has the same pattern of 

gene regulation in the luciferase assay, but its activity is not as exaggerated as with 

rs1862626, therefore rs1862626 is considered the best candidate for a functional ortholog 

to A074-SNP-17. 

The luciferase activities for rs889312 correlated SNPs in MDA-MB-231 cells are 

shown in Figure 13B. Only SNPs that showed a statistically significant difference 

between the major and minor alleles are shown. All four human SNPs that showed a 

luciferase activity that is different between the major and minor alleles in T47D cells also 

do so in MDA-MB-231 cells. There are no changes in pattern or intensity of luciferase 

activities for SNPs rs1862625 and rs12697152 compared to T47D cells. However, while 
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the pattern of luciferase activity is the same for rs1862626 and rs889312 compared to 

T47D cells, the intensity of the major allele for rs889312 is much higher and the intensity 

for the minor allele for rs1862626 is much lower compared to T47D cells. This is likely 

due to differences in the cell environments between the two different cell lines. It is 

possible that different transcription factors bind to the SNPs in the two different cells or 

that transcription factors are expressed at different levels between the two cell lines.  

The differences in luciferase activities between the resistant and susceptible 

alleles for the rat Mcs1b candidate SNPs and rs889312 correlated SNPs are likely due to  

differences in transcription factors binding to the alleles. Therefore, we looked at the 

patterns of DNA binding proteins binding to the rat and human SNP alleles.  

 

B. EMSAs of rat Mcs1b candidate SNPs and rs889312 correlated SNPs 

We used electrophoretic mobility shift assays (EMSAs) to determine if there are 

any DNA binding proteins binding to the SNP regions and if any bind differentially 

between the WF and COP alleles. We initially focused on using T47D nuclear extracts 

since, the luciferase assays for all three Mcs1b candidate SNPs are different between the 

two alleles. The EMSAs for the three Mcs1b candidate SNPs using T47D nuclear extracts 

are shown in Figure 14 A and B. We used oligos that contained the SNP nucleotide and 

12bps flanking on e ither side, for a total of 25 bps. There are several DNA-protein 

complexes present for A046-SNP-A. One predominant DNA-protein complex (marked 

with arrow in Figure 14B) can be competed out with cold probe, indicating that this is a 

specific DNA –protein interaction. The EMSA results indicate that there might be a 

difference in the intensity of this band between the WF and COP allele, suggesting that  
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Figure 14. E MSAs for A074-SNP-17, A074-SNP-18 and A046-SNP-A using T47D 

nuclear extracts. DNA- protein complexes were run on a 5% polyacrylamide gel. 

Protein extracts were T47D nuclear extracts. A) EMSAs and competition EMSAs for all 

three Mcs1b SNPs. No competition EMSA for A046-SNP-A. Arrow indicates difference 

between WF and COP alleles for A074-SNP-17 B) Competition EMSA for A046-SNP-A. 

Arrow indicates band of interest for A046-SNP-A.  
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the protein might not bind as tightly to the WF allele. The same is true for A074-SNP-18. 

There are several specific DNA- protein interactions. There may be a d ifference in the 

intensity of the band between the WF and COP alleles. There are several specific DNA-

protein interactions for A074-SNP-17, however, one band is only found in the WF allele 

and not the COP allele (marked with arrow in Figure 14A). This suggests that this DNA-

protein interaction is unique to the WF allele and may represent a transcription factor that 

binds only to the WF and not the COP allele. This makes A074-SNP-17 a great candidate 

for the Mcs1b region, since it not only appears to be involved in gene regulation but it 

also shows a differential pattern of DNA binding proteins for the two rat alleles.  

We next performed the EMSA experiments using mutant oligos to determine if 

any of the DNA-protein binding complexes seen in Figure 14 are due to proteins binding 

directly to the SNP site and not to the rest of the oligo. We initially tested several 

different mutant oligos for A046-SNP-A to determine which would be the best in 

reducing specific DNA-protein interactions. We designed the oligos so that the SNP 

nucleotide was either deleted or replaced by random sequence. The results are shown in 

Figure 15. Overall, the 3bp deletion oligo worked the best at reducing the intensity of the 

band of interest for A046-SNP-A. A 3bp de letion oligo will be used in subsequent 

experiments which utilize mutant oligos for the Mcs1b candidate SNPs. Several oligos, 

including the 5bp de letion and 17bp r andom insertion oligos actually increased the 

intensity of the band of interest. It is not known, however, if the bands are due to the 

same DNA- protein complexes.  

To determine which DNA- protein complexes are due to proteins binding to the 

SNP nucleotide, we performed an EMSA experiment using the 3bp deletion oligos  
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Figure 15. E MSAs with mutant oligos for A046-SNP-A. EMSA were run on a 5% 

polyacrylamide gels. T47D nuclear extracts were used for the EMSA. Mutant oligos are 

shown above EMSA gel. COP wild type (WT) and WF wild type were added as controls. 

Arrow indicates band of interest. The 3bp deletion oligo worked best at reducing the 

intensity of DNA-protein interaction of interest (marked by arrow) and will be used in 

subsequence experiments. 
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described above. The results for the EMSA experiments using mutant oligos for all three 

Mcs1b candidate SNPs and T47D nuclear extracts are shown in Figure 16. Figure 16A 

shows the results for A074-SNP-17. The 3bp deletion oligo results in the loss of all DNA-

protein complexes, including the complex of interested (indicated by arrow in Figure 

16A). The results for A074-SNP-18 and A046-SNP-A indicate loss of the bands of interest 

(marked by arrow in Figure 16B) when using the 3bp deletion oligo. This indicates that 

all DNA-protein complexes for A074-SNP-17 are due to proteins binding to the SNP 

nucleotide, while only complexes of interest for A074-SNP-18 and A046-SNP-A are due 

to proteins binding to the SNP nucleotide. It is possible that DNA-protein complexes that 

are lost with usage of the 3bp deletion oligos are made up of transcription factors. 

We next performed the EMSA experiment using MDA-MB-231 nuclear extract as 

a comparison to the results using T47D nuclear extracts. The results are shown in Figure 

17. Note, instead of performing a competition EMSA to identify specific DNA-protein 

complexes, we used 3bp deletion oligos to determine complexes that bind directly to the 

SNP nucleotide. Overall, there are fewer DNA-protein complexes when compared to the 

amount of DNA-protein complexes when using T47D nuclear extracts. A074-SNP-17 and 

A074-SNP-18 show one predominant band that is lost when using the 3bp deletion oligo 

(arrow #2 in Figure 17). A046-SNP-A shows several DNA-protein complexes. The DNA-

protein complex marked with arrow #2 in Figure 17 has the same intensity in both the 

WF and COP allele, but is lost when the 3bp de letion oligo is used. This predominant 

band migrates at the same size as the predominant band for A046-SNP-A using T47D 

nuclear extracts (data not shown). There is a difference in the intensity of this band  
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Figure 16. EMSA of Mcs1b candidate SNPs using 3bp deletion oligos and T47D 

nuclear extracts. EMSA was run on a 5% polyacrylamide gel using T47D nuclear 

extract. Wild type COP and WF and 3bp d eletion probes were used to identify DNA 

protein complexes that are due to proteins binding to the SNP nucleotide. Arrows indicate 

bands of interest. A) EMSA for A074-SNP-17 using 3bp deletion oligo. Band of interest 

is marked with an arrow. All DNA- protein complexes are lost when the SNP nucleotide 

and 2bp surrounding nucleotides are deleted. B) EMSA for A074-SNP-18 and A046-SNP-

A using 3bp d eletion oligo. Bands of interest are indicated by arrow. Deleting SNP 

nucleotide results in the loss of the band of interest.  
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Figure 17. EMSA of Mcs1b candidate SNPs using 3bp deletion oligos and MDA-MB-

231 nuclear extracts. EMSA was run on a 5% polyacrylamide gel using MDA-MB-231 

nuclear extract. Wild- type COP and WF and 3bp deletion probes were used to identify 

DNA protein complexes that are due to proteins binding to the SNP nucleotide. Bands of 

interest are marked by arrows. One predominant band (marked by arrow 1) is found in all 

samples and cannot be competed out, indicating a non-specific interaction. A 

predominant band (marked by arrow 2) is found in all samples and can be competed out, 

indicating a specific interaction. 
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between the WF and COP allele when using T47D nuclear extracts, but the difference in 

intensity is lost when using MDA-MB-231 nuclear extracts. The luciferase activities for 

the COP and WF alleles of A046-SNP-A were different in T47D cells but the same in 

MDA-MB-231 cells. It is possible that a transcription factor is not present in MDA-MB- 

231 cells that is involved in binding to the A046-SNP-A SNP and functions as to regulate 

gene expression. Interestingly, an additional band is found in EMSAs using MDA-MB-

231 extracts (marked by arrow #1 in Figure 17). This protein complex binds to all three 

Mcs1b candidate SNPs and is not removed when using the 3bp d eletion oligos, 

suggesting that this is a non-specific interaction.  

We also determine the protein binding pattern for two of the four candidate 

rs889312 correlated human SNPs using EMSAs. We focused on rs1862626 because it 

has a similar pattern of luciferase activity as our candidate Mcs1b SNP A074-SNP-17. We 

also performed an EMSA experiment for rs889312 since it is the SNP used in the initial 

breast cancer GWA study and the major allele luciferase activity is affected greatly by the 

cellular environment. The results are shown in Figure 18. There is one predominant band 

in the rs1862626 EMSA for the major allele (Figure 18A, marked with arrow). This band 

can be competed out with increasing amounts of cold probe, indicating that this is a 

specific DNA- protein interaction. There is one predominant band when using the minor 

allele probe. This band can also be competed out with increasing amounts of cold 

competitor probe. There are four bands visible in the rs889312 EMSA. All of which can 

be competed out with increasing cold competitor probes (Figure 18B, marked with 

arrows #1- #4). There appear to be no DNA-protein complexes that are unique to one of  
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Figure 18. EMSAs for rs889312 correlated SNPs rs1862626 and rs889312. EMSAs 

were run on 5% polyscrylamide gel. T47D nuclear extracts were used. Cold competitor 

concentration was increased from 10x to 200x. A) EMSA for rs1862626 showing one 

predominant band marked with arrow. B) EMSA for rs889312 with several predominant 

bands that can be competed out. Bands of interest are marked with arrows.  
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the alleles in the rs889312 EMSA. It is possible that there is a difference in the intensity 

between the two alleles which indicates a difference in the affinity of a DNA binding 

protein for one of the alleles. There is one DNA-protein binding complex that is found in 

the rs1862626 EMSA for both the major and minor allele. It is possible that there is a 

difference in the intensity of this band between the two alleles, which would indicate a 

difference in the affinity of the DNA binding protein for the two alleles. It is possible that 

this DNA-protein complex is responsible for the differential luciferase activity between 

the major and minor alleles of rs1862626. 

 

C. Identification of candidate proteins binding to A074-SNP-17 

A074-SNP-17 shows a DNA binding protein pattern that is different between the 

WF and COP alleles. In particular, the WF allele for A074-SNP-17 shows an extra band 

in an EMSA using T47D nuclear extract, indicating there is a unique DNA- protein 

complex binding the WF allele (Figure 14A). Also, the luciferase activity between the 

WF and COP allele for A074-SNP-17 is different, suggesting that there might be different 

transcription factors binding to the two alleles. We wanted to identify which transcription 

factors bind to the WF and COP alleles for A074-SNP-17. We initially used the online 

program TF SEARCH to identify any DNA binding proteins that are predicted to bind the 

WF and COP alleles differentially. The results are listed in Table 19. We focused on two 

transcription factors, c-myc/max and Skn-1, an ortholog of the NRF1, 2 and 3 proteins, 

because of their role in breast cancer. C- MYC is an important transcription factors that is 

involved in regulating 15% of all human genes. It is a known proto-oncogene and is 

involved in cell growth, transformation, angiogenesis and cell- cycle control [140, 141].  
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Table 19. TF SEARCH results for A074-SNP-17. Scores indicate percentage of how close the 
sequence is to the consensus sequence. Multiple scores indicate multiple predicted binding sites. 
Protein Name  COP score WF score Function 
SN Snail - 86.4  
MyoD Myblast determining factor 79.8 86.2/79.1  
Skn-1 NRF1,2,3 ortholog 89/77 85.2 Transcription 

factor 
c-myc/max  - 85 Transcriptional 

activator 
USF Upstream transcription factor 1 - 83.8/82.6/78.3/75.9 

 
Transcriptional 
activator 

Mat alpha Mating factor alpha 2 - 83.5/77.2  
Cap Cap signal transcription 

initiation 
83.1/80 80.0/78.7  

N-Myc  - 78.4/76.3  
COUP-TF COUP-TF/HNF4 heterodimer 81.8 -  
CdxA  78.2 -  
E2F  77 - Transcription 

factor 
ROR alpha RAR related orphan receptor 

alpha 
76.9 - Transcriptional 

activator 
Cre-BP Cre binding protein 1/ c-jun 

heterodimer 
75.6 - Transcriptional 

activator 
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We performed an EMSA supershift assay to determine if c-MYC binds to the WF 

and COP alleles of A074-SNP-17. The results are shown in Figure 19. There is no 

supershift of any bands of the COP and WF A074-SNP-17 alleles, indicating that c-MYC 

does not bind to A074-SNP-17 (Figure 19A). However, there is also no supershift for the 

E-box positive control. E-box is the name of the c-MYC binding site consensus sequence. 

The consensus sequence is CAC(G/A)TG and is found in the positive control, which has 

previously been used successfully in a c-MYC supershift assay [142]. We tested our c-

MYC antibody (Santa Cruz, sc-764) in a Western blot to determine if it is functional and 

if c-MYC is expressed in T47D and MDA-MB-231 cells (Figure 19B). The antibody can 

be used in a western blot and the two breast cancer cell lines express nuclear c-MYC. It is 

possible that the antibody is not efficient for performing supershift assay and therefore 

we did not see any supershifts in the positive control. We co-transfected an expression 

vector containing the human c-MYC gene with the luciferase constructs for A074-SNP-

17. As shown in Figure 19C, there is no effect of c-MYC on the luciferase activity of the 

A074-SNP-17 alleles, further indicating that c-MYC probably does not bind to A074-

SNP-17.  H owever, it may also be possible that c-MYC is expressed at high levels in 

T47D cells and further overexpression does not have an effect on A074-SNP-17 

luciferase activity. 

We also tested another protein predicted to bind the WF and COP alleles of A074-

SNP-17. Both the COP and WF allele are predicted to bind the protein Skn-1, which is 

the C.elegans ortholog of the NRF1, 2, 3 p roteins. However, the A074-SNP-17 COP 

allele is predicted to bind this protein more often and with a higher affinity (Table 19). 

Nuclear factor (erythroid  derived)- like 2 (NRF2) is a known transcription factor 
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Figure 19. Analysis of c-MYC binding to A074-SNP-17. A) Supershift EMSA for c-

MYC binding to A074-SNP-17. Supershift EMSA was run on a 5% polyscrylamide gel. 

E-box oligo contains consensus site for c-MYC. No supershift for A074-SNP-17 rat 

alleles or for the E-box consensus sequence was observed. B) Western blot for c-MYC 

using T47D and MDA-MB-231 nuclear and cytoplasmic extracts. T47D and MDA-MB-

231 cells express c-MYC and the antibody is specific in a Western blot for c-MYC. C) 

Luciferase assays for co-expression of A074-SNP-17 luciferase constructs and c-MYC 

expression vector in T47D cells. (     ) Light grey bars indicate luciferase activity of 

A074-SNP-17 allele when co-expressed with empty expression vector. (    ) Dark grey 

bars indicate luciferase activity of A074-SNP-17 allele when co-expressed with c-MYC 

expression vector. Error bars indicate standard error. Ns indicates non- significance. 

Luciferase activity of the A074-SNP-17 allele co-expressed with the empty vector was 

compared to the luciferase activity of A074-SNP-17 co-expressed with the c-MYC 

expression vector. C-MYC does not have an effect on t he luciferase activity of A074-

SNP-17. 
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involved in cancer. Under normal conditions, NRF2 is kept in the cytoplasm by the 

protein KEAP1 and targeted for degradation. Under cellular stress, such as oxidative 

stress, KEAP1 releases NRF2 and NRF2 locates to the nucleus, where it acts as a 

transcription factor. There are basal levels of NRF2 found in the nucleus, even under 

normal conditions [143, 144]. NRF2 can act as a tumor suppressor and oncogene 

depending on t he context. NRF2 protects cells from cytotoxic stress but NRF2 also 

regulates genes that are involved in cell survival under stress conditions [144]. We 

performed a supershift EMSA to determine if NRF2 binds to the A074-SNP-17 alleles 

using T47D nuclear extract. The results are shown in Figure 20A. NRF2 binds to DNA 

sequences called Antioxidant Response Elements (AREs). We used a positive control for 

the NRF2 supershift that contains an ARE [145]. There is a supershift in the presence of 

NRF2 antibody (Santa Cruz, sc-722x) for all three oligos, marked by an arrow in Figure 

20A. This suggests that NRF2 binds both the COP and WF allele of A074-SNP-17. The 

band that is shifted upon addition of NRF2 antibody is of a high molecular weight. We 

ran the EMSA supershift on a  4% polyacrylamide gel to better visualize the band. 

However, in competition EMSAs for A074-SNP-17, this band could not be competed out, 

suggesting that this interaction is not specific (data not shown). We therefore designed a 

random 25bp oligo and performed a supershift EMSA for NRF2. As seen in Figure 20B, 

using the random oligo also results in a supershift for NRF2. This indicates that NRF2 

binds these oligos non-specifically or the antibody cross-reacts with another protein that 

binds the oligos in a non-specific manner. To ensure that NRF2 does not affect the gene 

regulation activity of A074-SNP-17, we performed a co -expression experiment using a 

NRF2 expression vector and pGL3 vectors containing an ARE and the COP and WF  
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Figure 20. A nalysis of NRF2 binding to A074-SNP-17. EMSAs were run on a  4% 

polyacrylamide gel. A) Supershift EMSA for NRF2 binding to A074-SNP-17. ARE oligo 

contains consensus site for NRF2. There is a supershift present for both rat alleles for 

A074-SNP-17 and the ARE consensus site (indicated by arrow) B) Supershift EMSA for 

a random oligo and NRF2. The NRF2 antibody supershifts a random oligo, indicating 

that the interaction between the oligos and NRF2 is not specific. C) Luciferase assays for 

co-expression of A074-SNP-17 luciferase constructs and NRF2 expression vector in 

T47D cells. Co-expression of pGL3 vectors and an empty expression vector is shown 

using light grey bars (     ).  Co-expression of pGL3 vectors with a NRF2  expression 

vector is shown with dark grey bars (    ). Luciferase activities of co-expression with 

empty vector was compared to luciferase activity of NRF2 co-expressed with pGL3 

vectors. Error bars indicate standard error. Asterisk indicates significance, while ns 

indicates non-significance. There is no effect of the NRF2 over-expression on the A074-

SNP-17 pGL3 luciferase activity. 
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A074-SNP-17 alleles. There results are shown in Figure 20C. The luciferase activity of 

the ARE containing luciferase vector is increased when NRF2 is overexpressed in T47D 

cells. However, the luciferase activities for A074-SNP-17 are not changed in the presence 

of NRF2, suggesting that this protein has no e ffect on t he gene regulation activity of 

A074-SNP-17. Note, NRF2 reduces the luciferase activity of the pGL3-promoter vector, 

possibly through regulation of another protein that binds the SV40 promoter. 

Since we were not able to identify any proteins binding to the A074-SNP-17 

alleles using TF SEARCH, we performed a DNA pulldown and mass spectronomy 

analysis. The DNA pulldown was performed using T47D nuclear extract and the A074-

SNP-17 COP, WF and 3bp deletion oligos that were used for EMSAs. We lost the DNA- 

protein complex that is unique to the WF allele in the process of the DNA pulldown (data 

not shown). This is likely due to the protein being of low abundance and getting removed 

during the stringent wash steps. We therefore concentrated on proteins that were found in 

both the COP and WF samples but not in the 3bp deletion sample. Results are shown in 

Table 20. This procedure resulted in the identification of many proteins binding to both 

the WF and COP alleles of A074-SNP-17. Therefore, results were filtered for proteins 

that are expressed in the nucleus, are expressed in T47D cells, have known transcriptional 

regulation function, have known DNA binding domain and are known to be involved in 

cancer. We chose to test three of these proteins in supershift EMSA experiments. These 

are the progesterone receptor (PR), nuclear factor 1 C -type (NFIC) and interleukin 

enhancer- binding factor (ILF2).  

The COP allele of A074-SNP-17 pulled down the progesterone receptor A 

isoform, while the WF allele pulled down the delta 3+ 6/2 isoform of the progesterone  
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Table 20. Mass spectrometry results for A074-SNP-17 using T47D nuclear extracts.  
ID Abbreviation DNA binding domain Function 
Isoform A of Progesterone 
receptor  

PR-A C4- type zinc fingers Transcriptional 
regulation 

Delta 3+6/2 progesterone 
receptor  

PR C4- type zinc fingers Transcriptional 
regulation 

Isoform 3 of Nuclear factor 
1 C-type  

NFIC CTF/ NF-1  Transcriptional 
regulation 

Interleukin enhancer-binding 
factor 2  

ILF2 DZF Transcriptional 
regulation 

Cell division cycle and 
apoptosis regulator protein 1  

CCAR1 SAP Transcriptional 
regulation 

RuvB-like 2  RUVBL2 - Transcriptional 
regulation 

Isoform 2 of Casein kinase I 
isoform delta  

CSNK1D - serine/threonine-protein 
kinase 

Superkiller viralicidic 
activity 2-like 2  

SKIV2L2 - mRNA splicing 
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receptor. The progesterone receptor is activated by progesterone and is involved in the 

regulation of various genes. Progesterone has proliferative and carcinogenic effects on 

breast tissue [146]. The progesterone receptor B differs from the A isoform through an 

additional 164 a mino acids at the N-terminal. These 164 a mino acids contain an 

additional transcription activation function. The two isoforms of the progesterone 

receptor have distinct functions and the isoform A has been shown to be a transdominant 

inhibitor of the B isoform and shows anti-estogenic effects [147]. The delta 3+ 6/2 

isoform of the progesterone receptor lacks exon 3 and 52bps in exon 6. I t is unknown 

how this affects the function of the protein [148].  T he progesterone receptor binds to 

progesterone response elements (PRE), which are characterized by the sequence 

5’GNAGANNNTGTNC’3 [149, 150]. We used an antibody that can recognize both A 

and B isoforms of the progesterone receptor for the supershift EMSA experiment (Santa 

Cruz, sc-538x). The results are shown in Figure 21A. There was a supershift detected for 

the PRE positive control (marked by arrow in Figure 21A), suggesting that the supershift 

worked correctly. However, there was no s upershift detected for the A074-SNP-17 

alleles, suggesting that the progesterone receptor does not bind to A074-SNP-17. 

We also performed a supershift EMSA for the nuclear factor 1 C (NFIC) protein. 

NFIC is part of the nuclear factor 1 family of transcription factors. Other members 

include NFIA, NFIB and NFIX.  T hese transcription factors bind to the sequence 5'-

TTGGCNNNNNGCCAA-3 [151]. A positive control has been generated from this 

sequence and is named NFIC consensus binding site in Figure 21B. No supershift was 

detected for the A074-SNP-17 and positive control oligos. There is a large band for the  
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Figure 21. Supershift EMSAs of PR, NFIC and ILF2 for A074-SNP-17. EMSAs were 

run on a  5% polyacrylamide gel. T47D nuclear extract was used for all EMSAs. A) 

supershift EMSA for the progesterone receptor (PR). There is a supershift for the positive 

PRE control oligo but not for the A074-SNP-17 alleles.  Arrow indicates supershift B) 

Supershift EMSA for nuclear factor I C (NFIC). There is no supershift detected for any of 

the oligos used. C) Supershift EMSA for interleukin enhancer binding factor (ILF2). 

There is no supershift detected for any of the oligos used.  
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NFIC positive control oligo. All four members of the nuclear factor 1 family bind to the 

same consensus sequence and it is possible that a supershift overlaps this large band. The 

antibody (Abcam, ab86570) used has not been tested for gel supershifts and may not be 

appropriate to use for this experiment. 

The A074-SNP-17 alleles pulled down the interleukin enhancer binding factor 2 

(ILF2) protein. ILF2 is the 45kda subunit of the nuclear factor of activated T-cells 

(NFAT) and forms a complex with interleukin enhancer binding factor 3 (ILF3). 

Together these proteins work as transcription factors for a variety of genes [152]. A 

positive control that contains a ILF2 consensus binding site was used for the supershift 

EMSA [153]. There were no s upershifts detected for any of the oligos, including the 

positive control oligo (Figure 21C). This may be due to the antibody used having not 

been tested in supershift EMSAs and may be inappropriate for this method (Abcam, 

ab28772). It is possible that ILF2 does not bind to the A074-SNP-17 alleles, however, this 

supershift EMSA is inconclusive. Note, there appears to be an extra band in the WF allele 

when ILF2 antibody is added. However, the ILF2 antibody gives off a background 

chemiluminescence (lane 1 of the supershift EMSA) that runs at the same size as the 

extra band for the WF allele. This means the extra band is likely to be background 

chemiluminescence from the ILF2 antibody.  We did not have access to expression 

vectors for the three genes tested and therefore could not perform any co-expression 

studies with protein expression vectors and the A074-SNP-17 luciferase assay vectors.  

 

D. Luciferase assays for Mier3 promoter  
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We previously performed luciferase assays for the three candidate Mcs1b SNPs in 

a pGL3- Promoter vector, which contains a strong SV40 promoter. We wanted to test 

how the Mcs1b candidate SNPs influence an endogenous promoter. We chose to use the 

promoter of the Mesoderm induction early response protein 3 (Mier3), since it is  the 

candidate gene for the Mcs1b locus. Mier3 is expressed higher in the mammary glands of 

12-week old WF compared to COP females both with and without DMBA [87]. There 

are multiple annotated Mier3 mRNAs in public databases, so we wanted to determine the 

transcription start site (TSS) for the Mier3 gene in WF mammary glands. There is no 

sequence difference in the Mier3 promoter between the WF and COP rat strains, 

therefore we focused on the WF rat strain only. We used 5’RACE to determine the TSS 

for the Mier3 gene. The only known annotated Mier3 gene products differ in their exon 1. 

Therefore, we considered exon 2 and beyond common to all Mier3 isoforms and designed 

primers against common regions. We used pooled RNA from the mammary glands of six 

WF females. Results are shown in Figure 22A. There was one predominant PCR product 

(marked by arrow) after 5’RACE PCR. Several other faint bands can be seen on the gel, 

indicating there may be multiple different splice forms of the Mier3 gene. However, after 

cloning the PCR reaction, only one splice form could be found, which corresponds in size 

to the predominant PCR product shown in Figure 22A. The alignment of the results from 

the 5’RACE and the annotated Mier3 isoforms are shown in Figure 22B. The predicted 

exons 1 of  the isoforms are highlighted in gray. The results from the 5’ RACE overlap 

the first annotated Mier3 transcript, except the 5’ untranslated region (UTR) is much 

shorter. The coding regions highlighted in the figure are predicted, it is possible that the 

coding regions starts downstream of the region highlighted here. There are several more  
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Figure 22. 5’RACE  results for the Mier3 gene. A) Results from outer and inner PCR 

specific to the Mier3 gene. PCR reaction results in one predominant PCR product marked 

with an arrow. Several other PCR products formed, however, none of them were found in 

the sequencing results. B) Results for the 5’RACE of Mier3. The two annotated rat 

versions of the Mier3 gene are shown. These versions were found in the Nucleotide 

NCBI database. The gray highlighted areas indicate predicted coding regions of the 

Mier3 gene.  
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“ATG” start codons that are in- frame with the one highlighted in the figure. It is likely 

that this initial “ATG” is not where translation starts, but that a downstream, in-frame 

“ATG” is used. The second annotated Mier3 transcript contains a much larger exon 1 and 

5’ UTR. Only regions that overlap with the first annotated Mier3 transcript are shown in 

Figure 22B. We used the results from the 5’RACE to determine which region to clone as 

the Mier3 promoter. We picked a region up t o 1.5kb upstream of the TSS determined 

from the 5’RACE results and 0.5kb downstream of the TSS.  W e excised the SV40 

promoter out of the pGL3 Promoter vector and replaced it with the 2kb r egion of the 

Mier3 promoter. Interestingly, there are two separate regions containing a string of 

thymidines in this region. We were not able to find a clone that contained the correct 

sequence for both regions. We picked two independent clones. Each clone contained the 

correct sequence for one of the regions and performed the luciferase activity with both 

clones to determine if there is a difference. The results are shown in Figure 23A. There is 

no significant difference in the luciferase activity of the two independent Mier3 promoter 

clones. This suggests that either one of the clones can be used for the analysis. However, 

there is a stark difference in the luciferase activity of the cloned Mier3 promoter and the 

original SV40 promoter. The luciferase activity of the cloned Mier3 promoter is much 

lower than the SV40 promoter activity. More importantly, there is no significant 

difference in luciferase activities between the cloned Mier3 promoter and the pGL3- 

Basic vector. This suggests that the region of the Mier3 gene that we cloned has no 

promoter activity. The cloned region is located on chr2: 43,002,349-43,004,390. We only 

cloned about 1.5kb ups tream of the Mier3 TSS. This is because there is a BglII site 

located at the 5’ end of this region, making it difficult to clone more of this region using  
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Figure 23. Luciferase assay results for the Mier3 promoter. A) Luciferase assay 

results for the Mier3 promoter. Results are pooled from three independent experiments. 

There is a significant difference between the SV40 and Mier3 promoter. There is no 

significant difference between the pGL3- Basic vector and the Mier3 promoter. B) 

Transcription factors that bind to the cloned Mier3 promoter using the program TF 

SEARCH. Transcription factors shown in green are known activators. Transcription 

factors shown in red are known repressors. Transcription factors shown in gold can act as 

both activators and repressors. The type of gene regulation is unknown for transcription 

factors in black. Marked on the figure are also the two thymidine stretches that could not 

both be sequenced correctly in a clone and the transcription start site (TSS). 
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this enzyme. Shown in Figure 23B are transcription factors predicted to bind to the 

cloned region using the program TF SEARCH. There are several well known activators 

predicted to bind this region, including AP-1 and E2F. However, there are also several 

known repressors predicted to bind this region that could overpower the effects of any 

activators binding to this region. However, it is more likely that this region is not 

sufficient in activating transcription and that important transcriptional elements are found 

either upstream or downstream of the cloned region. Because the cloned Mier3 promoter 

region did not have an effect on luciferase activity, we did not continue with cloning this 

region into the luciferase reporter vectors that contain the Mcs1b candidate SNP alleles. 

The Mcs1b candidate SNPs lower the luciferase activity of the SV40 promoter and we 

would therefore not be likely to detect any effects of the Mcs1b candidate SNPs on the 

cloned Mier3 promoter region, since the luciferase activity of this region is already so 

low. 

 

E. Luciferase assays for all three SNPs in the same pGL3-promoter vector 

We initially cloned the three Mcs1b candidate SNPs into the pGL3- Promoter 

vector individually (Figures 12). We wanted to know what happens if we clone all three 

Mcs1b candidate SNPs into the same pGL3- Promoter vector. The idea is that we wanted 

to test if the luciferase activity of any one of the SNPs will dominate the luciferase 

activity when all three SNP alleles are present. We cloned A074-SNP-17 and A074-SNP-

18 into the first multiple cloning site of the pGL3- Promoter vector, upstream of the 

SV40 promoter. We cloned A046-SNP-A into the second multiple cloning site 

downstream of the luciferase gene. We selected this configuration because it mimics the  
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physical location of these SNPs along rat chromosome 2. The configuration of 

this vector can be seen in Figure 24. The results for the luciferase assays can be seen in 

Figure 25. As a reference the luciferase assay results from each Mcs1b candidate SNP 

individually have been added to the figure. These are the same results as shown in Figure 

12. The results in Figure 25A show that in T47D cells there is no di fference in the 

luciferase activity between the WF and COP alleles when all three SNP alleles are cloned 

into the same vector. The COP allele activity for all three SNPs combined mimics the 

COP allele activity for A074-SNP-17 individually. The WF allele activity for all three 

SNPs combined is much lower than for any of the three SNPs individually. However, in 

all three SNPs individually the WF allele lowers the luciferase activity compared to the 

pGL3-Promoter vector by itself. It is possible that all three SNPs have an additive effect 

and the low luciferase activity we see for the WF allele when all three SNP alleles are 

present is due to a limit a s to how low the SV40 activity can be reduced. This would 

indicate that the SV40 promoter activity could not be reduced further than it already is by 

the presence of all three SNPs in the same vector. The results are similar when repeating 

the experiment in MDA-MB-231 cells (Figure 25B).  

Interestingly, there is no difference in the COP and WF luciferase activity when 

all three SNPs are present in the same vector, while there is a difference when all three 

SNPs are tested individually. This system is very artificial and all information on t he 

natural chromatin state within the cell is lost when using a plasmid- based system. It is 

possible that there is chromatin looping in this region, which could put one or more of the 

Mcs1b candidate SNPs in an insulator loop. It is also possible that one or more of these 

SNPs is located within a region that is methylated in the cell. Therefore, experiments will   
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Figure 24. p GL3- Promoter vector configuration for cloning all three Mcs1b 

candidate SNPs into same vector. A074-SNP-18 and A074-SNP-17 were cloned into the 

first multiple cloning site upstream of SV40 promoter. A046-SNP-A was cloned into 

second multiple cloning site downstream of luciferase gene.  
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Figure 25. Luciferase assay results for all three Mcs1b candidate SNPs in the same 

pGL3- Promoter vector. (    )  Dark grey bars indicate adjusted relative luciferase 

activity for the COP (resistant) allele. (   )  Light grey bars indicate adjusted relative 

luciferase activity for the WF (susceptible) allele. Asterisks indicate luciferase activity 

that is significantly different between the major and the minor alleles. All adjusted 

relative luciferase activities are the mean of nine values from three independent 

experiments. Errors bars indicate standard error from pooled experiments. As controls, 

the luciferase activity for the pGL3-Basic and pGL3-Promoter were determined. The 

pGL3-Promoter activity was used to adjust the relative luciferase activities to pool values 

from independent experiments. As a reference the luciferase activity of the COP and WF 

alleles for each of the Mcs1b SNPs individually is shown. These results are equivalent to 

Figures 12 a nd 13. A) Luciferase activity in T47D cells for all three Mcs1b candidate 

SNPs in the same pGL3- Promoter vector. There is no significant difference in the 

activity between the WF and COP alleles for all three Mcs1b candidate SNPs. B) 

Luciferase activity in MDA-MB-231 cells for all three Mcs1b candidate SNPs in the 

same pGL3- Promoter vector. There is no s ignificant difference in the activity between 

the WF and COP alleles for all three Mcs1b candidate SNPs. 
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have to be done that do not use a plasmid-based system to determine the nature of these 

SNPs in a less- artificial system. 

 

F. Chromosome conformation capture (3C) of the Mcs1b locus 

Chromatin looping is a potential mechanism by which intronic or intergenic SNPs 

can affect the regulations of genes. A study looking at the expression levels of MCS1B 

genes in different tissues of the cardiovascular system revealed that there is a high 

correlation in the expression levels of MIER3, MAP3K1 and GPBP1. The study also 

revealed that the expression level of SETD9 is inversely correlated with the other MCS1B 

genes in the tissues tested. This suggests that MIER3, MAP3K1 and GPBP1 are regulated 

by a similar mechanism and that there is the potential for a chromatin loop containing 

SETD9, which shields it from a common regulatory mechanism. Because of the position 

of SETD9 it is possible that this chromatin loop is formed in-between MAP3K1 and 

MIER3. The results of this study can be seen in Figure 26 [154]. The CCCTC- binding 

factor (CTCF) is a protein that is essential for the formation of long-range chromatin 

loops [155]. We therefore scanned the ENCODE project for CTCF sites within the 

MCS1B region, to provide evidence for a chromatin loop within the vicinity of the 

MIER3 and MAP3K1 genes. The results are shown in Figure 27. There are three CTCF 

binding sites within the region of interest that were identified using the ENCODE project 

data. It is possible that the MAP3K1 gene loops towards the MIER3 gene placing the 

MIER3 and SETD9 gene into a chromatin loop. We used the human ENCODE data as a 

guide to design a chromosome confirmation capture (3C) experiment to determine any 

chromatin looping within the rat Mcs1b region. The hypothesis is that there is a  
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Figure 26. Correlation of MCS1B transcript levels in different cardiovascular 

tissues. Adapted from Folkersen et al. (2010) [154]. Expression levels of MCS1B genes 

in different tissues of the cardiovascular system. The expression levels of MAP3K1, 

MIER3 and GPBP1 are correlated in different tissue types. However, in some tissues 

there appears to be an inverse correlation between the expression levels of SETD9 and 

other MCS1B genes. It is possible that SETD9 is located in a chromatin loop in some of 

these tissues and its expression is regulated through other mechanisms. 
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Figure 27. Location of human ENCODE identified CTCF sites. ENCODE predicted 

CTCF sites were identified using the UCSC Genome Browser. Location along human 

chromosome 5 is shown. Also, marked in blue are locations of MCS1B transcripts. 

ENCODE predicted CTCF sites were identified in a wide- array of human cell lines. The 

CTCF site inbetween MAP3K1 and MIER3 was identified in T47D cells.  
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chromatin loop forming between the Map3k1 gene and the Mier3 gene within the rat 

mammary gland epithelial cells, which would bring the Mcs1b candidate SNPs in close 

proximity to the Mier3 promoter. A diagram of the 3C hypothesis can be seen in Figure 

28A. We designed the 3C experiment in such as way that a chromatin loop between the 

Mier3 and Map3k1 gene can be tested. For this we selected a fixed primer downstream of 

one of the CTCF sites (Figure 28B). Ten moving primers were designed that move way 

from the fixed primer and span the distance between the Mier3 and Map3k1 gene. The 

setup for the 3C experiment can be seen in Figure 28B.  

We performed the 3C experiment using rat mammary epithelial cell enriched 

preps (MEC prep). It is known that the Mcs1b locus acts within the mammary gland [87]. 

We believe that the mammary epithelial cells are the causative Mcs1b cell type. We 

initially extracted the MEC preps from 18 different animals and divided them into six 

groups of three rats each. However, after performing a PCR titration with primers in close 

proximity to each other, we discovered that only three groups resulted in PCR product. 

We used two DMBA treated groups, one contained COP females, the other WF females. 

We also used one COP female group that did not receive DMBA. However, this group 

consisted of only two animals. We started our analysis by performing the PCR reaction 

using pooled DNA for each group. The results are shown in Figure 29A. There was no 

difference in the pattern of the relative interaction frequencies between the different 

groups. We therefore pooled the data from all three groups as shown in Figure 29B.  

There are two increases in the relative interaction frequency above background. 

The first one is seen with moving primer E. In a typical 3C experiment, there is an  

 



 
 

165 
 

 

 

 

 

 

 

 

 

 

 

Figure 28. Hypothesis and experimental design for the 3C experiment. A) Hypothesis 

for the 3C experiment. We used the human ENCODE data as a guide for the location of a 

potential chromatin loop in the rat Mcs1b region. The loop would place rat SNPs in close 

proximity to the Mier3 promoter. B) Experimental design for 3C in using rat mammary 

epithelial cell enriched preps. Shown are the location of the Mcs1b candidate SNPs, and 

shown in blue are the transcript locations for Mier3 and Map3k1. Black marks indicate 

the location of BglII sites within this region and the location of the 3C primers used. 

Marked in red is the fixed primer used. Note, the ID of the 3C primer is marked right 

underneath its location. As a reference, the rat orthologous regions to the ENCODE 

identified CTCF sites are shown. 
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Figure 29. 3C  results for the Mcs1b locus. A) 3C results for each group separately. 

Results are pooled from three independent PCR reactions. COP no DMBA contains 2 

females, while the other groups are made up of three females each. Relative interaction 

frequency is the band intensity of the sample divided by the band intensity of the BAC 

control for each primer pair. Error bars indicate standard error. B) Since there is no 

difference in the pattern of relative interaction frequencies among the groups, the results 

were pooled. Each value is the mean of nine separate data points. Error bars indicate 

standard error. Separation between each value indicates relative distances. The location 

of the fixed primer is indicated with an arrow and the location of moving primers is 

marked under x-axis.  
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increase in the interaction frequency when primers in close proximity to the fixed primer 

are used. Usually, primer pairs within 10kb of  each other have a higher relative 

interaction frequency than primers further apart, because the smaller the distance is, the 

more likely it is  that these fragments come together without the need of looping 

structures. Moving primer E is 13kb away from the fixed primer. It is possible that this 

interaction indicates a chromatin loop but it is also possible that this is a remnant of the 

higher interaction frequency due to close proximity of the primers. An additional 

experiment typically done after 3C is to perform chromatin immunoprecipitation (ChIP) 

for CTCF. This experiment would indicate if there is indeed a chromatin loop forming 

between the fixed primer and primer E. However, the second increase in relative 

interaction frequency at moving primer J indicates a chromatin looping structure. This 

chromatin loop is shown in Figure 28A. This chromatin loop would bring the Mcs1b 

candidate SNPs in close proximity to the Mier3 promoter and may indicate a possible 

mechanism as to how these SNPs act on the Mcs1b candidate genes. Interestingly, 

moving primer I is closest to the rat orthologous region to a CTCF binding site in the 

human, however, no l ooping is detected using moving primer I (Figure 28B). It is 

possible that an alternative CTCF site exists in the rat that is in close proximity to moving 

primer J. While the 3C makes a compelling case for a chromatin loop forming between 

the fixed primer and primer J, a follow-up ChIP experiment for CTCF is needed to verify 

that CTCF binds in this region and facilitates the formation of a chromatin loop. 

It is interesting that this chromatin looping would place Mier3 into the chromatin 

loop. Chromatin loops can both increase or decrease the expression levels of transcripts 

within them, but shield transcripts from the effects of elements outside of the loop. It is 
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unknown how the Mcs1b candidate SNPs would interact with a gene located within a 

chromatin loop. Overall, the 3C results indicate a chromatin loop between the Map3k1 

and Mier3 gene, which would bring the Mcs1b candidate SNPs in proximity to the Mier3 

promoter. 

 

G. Bisulfite sequencing of Mcs1b candidate SNPs 

A074-SNP-17 is located within a predicted CpG island. CpG islands are regions 

of high cytosine and guanine content. Cytosines in CpG pairs can be methylated. CpG 

islands are often found in gene promoter and promoter methylation is often associated 

with gene silencing [156]. We therefore wanted to test the methylation status of the 

Mcs1b candidate SNPs. As previously done with the 3C experiment, we focused on MEC 

preps, since we believe that the causative cell type is the mammary epithelial cell. We 

tested three different rat groups. One group contained females treated with DMBA. 

Results are shown in Figure 30. Overall, there is a h igh degree of methylation in these 

regions. There are differences in the methylation status among different groups for some 

of the CpG moieties tested. For A074-SNP-17 some CpG moieties are differentially 

methylated (1,6 and 8), with the COP females that were not treated with DMBA having a 

lower methylation status. One of the CpG moieties for A074-SNP-18 contains the SNP 

nucleotide, therefore the WF allele cannot be methylated. However, the COP allele is 

highly methylated. For A046-SNP-A there appears to be a lower degree of methylation in 

WF females compared to both of the COP groups. Overall, there is a high degree of 

methylation in this regions, however, some individual CPG moieties are differentially  
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Figure  30. Results for bisulfite sequencing of Mcs1b candidate SNPs. Black circles 

indicate individual CpG moieties within region tested. For each CpG moiety we 

sequenced 10 individual clones. Values indicate the percentages of clones that were 

methylated. Both the forward and reverse strands were sequenced. Arrows indicate the 

locations of individual SNPs. Red rectangles indicate CpG moieties where there is a 

difference in the methylation status among the groups tested. A) Methylation status of 

A074-SNP-17. Overall, there is a high degree of methylation in this region. A lower 

methylation status is observed in the COP groups for some of the CpG moieties. B) 

Methylation status of A074-SNP-18. The WF allele of A074-SNP-18 cannot be 

methylated, however, the COP allele is highly methylated. C) Methylation status for 

A064-SNP-A.  Overall, there is a high degree of methylation. There is a reduction in the 

methylation status in the WF allele compared to the COP allele.  
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methylated among the groups. Some of these CpG moieties are located in the vicinity of 

SNP sites. 

 

H. CRISPR knockout of A074-SNP-17 in rat mammary gland cell lines 

A074-SNP-17 is our most promising Mcs1b candidate SNP because of its 

apparent role in gene regulation through differential binding of DNA binding proteins. 

We wanted to know if gene editing of A074-SNP-17 can be achieved in rat mammary 

gland cancer cells, with the ultimate goal being genetic manipulation of A074-SNP-17 in 

WF and COP rats. We used the clustered regularly interspaced short palindromic repeats 

(CRISPR) system to try to knockout A074-SNP-17 in rat mammary tumor cell lines. This 

system uses single guide RNAs that guide the CAS9 nuclease to regions of interest 

resulting in the formation of double- stranded breaks [157]. We transfected two different 

cell lines with the A074-SNP-17 targeted CRISPR system. These were RBA and LA7 rat 

mammary tumor cell lines. Both cell lines were derived from the Sprague- Dawley rat 

strain and share the same genotype with WF rats at all three Mcs1b candidate SNPs. The 

cell lines were derived from DMBA induced mammary tumors. 

In order to determine the effectiveness of the A074-SNP-17 CRISPR system, we 

used the SURVEYOR mismatch- specific DNA nuclease, which can identity mismatched 

DNA regions due to INDELs and will cleave regions containing mismatches. The results 

are shown in Figure 31 A and B. If there is a successful induction of an INDEL in the 

A074-SNP-17 region, the A074-SNP-17 PCR product should be digested into two 

fragments of about 107 and 226bp. There was no formation of the two digested fragments 

visible for the two cell lines. A positive control, which contains plasmid DNA that have a  
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Figure 31. Results for CRISPR knockout of A074-SNP-17 in rat mammary cancer 

cell lines. A) and B) SURVEYOR nuclease results in RBA and LA7cells respectively. 

Fragmentation resulted in the positive control only (marked with arrows). Agarose gel 

was 2% high resolution stained with ethidium bromide. C) RBA cells transfected with 

GFP show high transfection efficiency. D) and E) RBA cells mock transfected or 

transfected with A074-SNP-17 CRISPR system. Few cells survive transfection with 

A074-SNP-17 CRISPR system.  
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single nucleotide mismatch should result in the formation of two fragments, which are 

217and 416bp in size. Figure 31 A and B shows that the positive control resulted in the 

formation of the appropriate fragments, indicating that the SURVEYOR enzyme was 

functioning properly. It is possible that we didn’t detect any A074-SNP-17 PCR 

fragments, because of low efficacy of the CRISPR system and not enough mismatches 

are formed to be detected with this system. Low efficacy can be due to the system not 

being specific enough or low transfection efficiency of the cells. Transfection efficiency 

was not a problem. We were able to transfect both cell lines using a GFP vector as can be 

seen in Figure 31C. Transfection of RBA cells with GFP resulted in high GFP 

expression. However, we did notice that within the 72 hours post transfection, a lot of the 

cells transfected with the A074-SNP-17 CRISPR vectors died when compared to cells 

that were mock transfected with Lipofectamine 2000 (Figure 31 D and E). Therefore, it is 

plausible that the extracted DNA used in SURVEYOR assays came from untransfected 

cells and these cells did not undergo genome editing. It is also possible that cells that 

were transfected with the A074-SNP-17 system died because of too much DNA damage 

that was induced with the CRISPR system and could not be repaired on time. There is no 

evidence that either one of these cells are deficient in DNA repair pathways, however, it 

is possible that the CRISPR system resulted in a lot of off- target DNA damage that could 

not be repaired before DNA extraction.   

 

Discussion 

Sequencing of the Mcs1b region between the WF and COP rat strain resulted in 

the identification of three Mcs1b candidate SNPs. Since none of the SNPs are found 
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within coding regions of genes, we hypothesized that the three SNPs are located within 

gene regulatory regions and affect the expression levels of neighboring genes. This idea 

is supported by the fact that Mcs1b candidate genes are expressed at different levels 

within the mammary glands of the WF and COP rat strains [87]. We tested the ability of 

the SNPs to regulate a luciferase gene in a reporter assay. All three candidate SNPs 

showed a l uciferase activity that was different between the COP and WF alleles. 

However, A074-SNP-17 is the only candidate SNP that had a pattern of gene regulation 

that mimics the gene expression data of Mcs1b candidate genes for the two rat strains. 

The Mcs1b locus has a human ortholog. Performing the same luciferase assay for all 

seven rs889312 correlated SNPs indicated that rs1862626 has a p attern of gene 

regulation that is the same as for A074-SNP-17. This indicates that rs1862626 may be the 

functional ortholog to A074-SNP-17. The luciferase activity for A074-SNP-17 is similar 

in T47D and MDA-MB-231 breast cancer cells. These two cell lines differ drastically in 

their cellular environments. This may indicate that A074-SNP-17 has a u niversal 

function. However, several other SNPs showed vastly different luciferase activities in the 

two cellular environments, which indicates that these SNPs may bind transcription factors 

that may be expressed differentially between the two cell lines. 

A search for transcription factors binding to candidate SNPs revealed that the WF 

allele of A074-SNP-17 binds a DNA binding protein complex that does not bind to the 

COP allele. This DNA binding protein may be involved in the regulatory function of this 

SNP region. Our EMSAs do not support rs1862626 being ortholog to A074-SNP-17, 

because both major and minor alleles of rs1862626 result in the same DNA binding 

protein shift pattern. However, rs1862626 could still be the functional ortholog, since the 
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two alleles appeared to show a differential affinity for binding a DNA binding protein. A 

hunt for DNA binding protein for A074-SNP-17 did not result in a positive identification 

of a transcription factor binding to this SNP. NRF2 does bind to this SNP; however, the 

binding appears to be non-specific. We focused on a small amount of transcription factors 

from our mass spectrometry data; studying more of the transcription factors may be 

fruitful. 

A luciferase assay of all three Mcs1b candidate SNP in the same luciferase 

reporter revealed that there is an additive effect of the suppressive activity of all three 

SNPs. This made us wonder how all three SNPs affect the expression of the same set of 

genes. We performed chromosome conformation capture and showed that there is a loop 

forming between the Map3k1 and Mier3 gene, which would bring the three candidate 

SNPs in close proximity to the Mier3 promoter. However, a follow-up experiment using 

ChIP of CTCF is needed to confirm the 3C results. A luciferase assay of 2kb of  the 

region just upstream and downstream of the Mier3 transcription start site revealed that 

there is no intrinsic promoter activity in this region. It is possible that DNA looping is 

required for the three candidate SNPs to get in close proximity to the Mier3 promoter and 

this is needed for promoter activation for the Mier3 gene.  

A074-SNP-17 is located with a p redicted CpG island. We therefore checked the 

methylation status of CpG moieties for the Mcs1b candidate SNPs. We tested the 

methylation status using DNA extracted from MECs. We found that overall, there was a 

high degree of methylation in these regions. There appears to be a difference in the 

methylation status for some of the CpG moieties in the regions between the WF and COP 

rats. For A074-SNP-17 there appears to be less methylation in the COP, while for A046-
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SNP-A there appears to be less methylation in the WF rat. A high degree of methylation 

indicates silencing of specific regions. This could indicate that both SNPs are located 

within important regions that may be involved in gene regulation and are tightly 

regulated. One of the CpG moieties located in the A074-SNP-18 region contains the SNP 

nucleotide. Therefore, the WF allele cannot be methylated, while the COP allele can. 

There is a high degree of methylation of this CpG moiety in the COP rat. This might 

indicate that this SNP does not have an effect in the COP rat because it is highly 

methylated and therefore silenced.  

Overall, we believe that A074-SNP-17 is a great candidate for the Mcs1b 

phenotype. In order to provide further evidence that A074-SNP-17 is the causative SNP 

for the Mcs1b region, we want to perform genome editing in the rat to knockout or 

exchange alleles for A074-SNP-17. We tested the ability of an A074-SNP-17 CRISPR 

construct to knockout the SNP region in rat mammary tumor cell lines. However, we 

were not able to knockout this region efficiently, likely because of the death of 

transfected cells. A different screening method or another method for genome editing 

such as TALENs or zinc fingers may prove to be more fruitful than the CRISPR system.  
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CHAPTER V 

SIGNIFICANT OVERLAP BETWEEN HUMAN GENOME-WIDE 

ASSOCIATION NOMINATED BREAST CANCER RISK ALLELES AND RAT 

MAMMARY CANCER SUSCEPTIBILITY LOCI 

Adapted from Sanders et al. (2014) [158]. See Appendix.  

Introduction 

Breast cancer is a complex disease characterized by environmental, genetic, and 

epigenetic factors. Due to the complexity of developing this disease a woman’s 

individual risk may vary greatly from population risk estimates. The familial relative risk 

of developing breast cancer increases with the number of affected relatives, suggesting 

that there is a strong genetic component associated with this disease [54, 159]. High-

penetrance breast cancer risk mutations such as those of BRCA1 and BRCA2 have been 

identified [63, 64, 160]. Population frequencies of mutations with high-penetrance toward 

risk are rare due to their severe effects on individuals; and thus, these mutations account 

for only a small percentage of population risk. Risk alleles with moderate penetrance and 

minor allele population frequencies of 0.005-0.01 (e.g. PALB2) are estimated to account 

for approximately 3% of risk. Therefore, a majority of population-based breast cancer 

risk is likely explained by low penetrance alleles with rare to common population 

frequencies [60]. Genome-wide association (GWA) studies have been used to identify 

several low penetrance breast cancer risk alleles [57]. Due to a need to control for 
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numerous multiple comparisons made in GWA studies, a Bonferroni correction based p-

value cut-off of ≤ 1x10-7 is typically required for an association to be considered genome-

wide significant. It has been suggested that this approach is too stringent as it may result 

in many false negative associations [161]. Furthermore, while GWA studies are unbiased 

approaches to identify genomic regions associated with breast cancer risk, these 

epidemiology- based approaches cannot easily determine risk genes or genetically 

determined mechanisms of susceptibility.  Currently, only a small percentage of breast 

cancer heritability is explained by published studies suggesting that considerable genetic 

variation associated with breast cancer risk remains to be identified [60, 162].  

Comparative genetics between rats and humans has also been used to identify 

breast cancer risk alleles [111]. In general, the laboratory rat is a good experimental 

organism to model breast cancer.  Compared to induced mammary tumors in mice, rats 

develop mammary carcinomas of ductal origin, which is similar to a majority of human 

breast cancers. Also, rat mammary tumors are responsive to estrogen, just as a majority 

of human breast tumors [97, 163]. Most importantly, the laboratory rat is a versatile 

organism to study breast cancer susceptibility, as experiments can be controlled at genetic 

and environmental levels.  Inbred rat strains exhibit differential susceptibility to 

chemically induced carcinogenesis using 7,12-dimethylbenz[a]anthracene (DMBA) [92, 

97, 98, 100]. Copenhagen (COP) and Wistar- Kyoto (WKY) rat strains are resistant to 

DMBA, N-Nitroso-N-methylurea (NMU), and oncogene induced mammary carcinomas, 

while the Wistar- Furth (WF) rat strain is susceptible. 

Previous genetic studies using rats have identified eight Mammary carcinoma 

susceptibility (Mcs) loci, named Mcs 1-8 [106-108, 123]. A ( WFxCOP)F1 x WF 
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backcross design was used to identify Mcs 1-4. Copenhagen alleles at Mcs 1-3 are 

associated with decreased mammary tumor multiplicity, while the Mcs 4 COP allele is 

associated with increased tumor development [106]. Further analysis of the Mcs1 locus 

using WF.COP congenic lines, spanning different regions of the quantitative trait locus 

(QTL), identified three independent loci associated with mammary carcinoma 

susceptibility, named Mcs 1a-c [123]. Another linkage analysis study using WF and 

WKY rat strains revealed four additional QTLs associated with mammary carcinoma 

susceptibility, named Mcs 5-8. Additionally, a modifier of Mcs8, Mcsm1, partially 

counteracts the resistance phenotype conferred by Mcs8 [107, 108]. Further analysis of 

the Mcs5 locus using WF.WKY congenic rat lines resulted in the identification of four 

subloci named Mcs5a1, Mcs5a2, Mcs5b and Mcs5c [110, 111]. Additional linkage 

analysis using the SPRD-Cu3 rat strain (DMBA-induced mammary carcinogenesis 

susceptible) and the resistant WKY rat strain resulted in the identification of three more 

rat QTLs associated with mammary cancer named Mcstm1, Mcstm2/Mcsta2 and Mcsta1 

[115, 116]. Several rat genomic regions that associate with mammary cancer 

susceptibility were identified using beta-estradiol instead of DMBA to induce 

carcinogenesis. These QTLs were identified using the August Copenhagen Irish (ACI) rat 

strain, which is susceptible to beta-estradiol carcinogenesis and the COP and Brown 

Norway (BN) rat strains, which are resistant. These loci are named Estrogen- induced 

mammary cancer loci or Emca 1-2 and Emca 4-8 [117, 118].  

Comparative genomics between human breast and rat mammary cancer risk 

alleles will continue to be warranted, especially if appreciable overlap in genetic 

susceptibility exists between these species. In this study, genomic locations of human 
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breast cancer risk GWA study-identified polymorphisms were compared to the rat 

genome to determine if positive associations were more often located at orthologs to rat 

mammary cancer risk loci than at randomly selected regions not known to be associated 

with rat mammary cancer susceptibility. The hypothesis is that positive associations map 

to orthologs of rat mammary cancer risk loci more often than to randomly selected rat 

genomic region. 

 

Methods  

A. Converting rat mammary cancer associated loci to human orthologous regions 

Previously published information on r at mammary cancer associated loci was 

used.  H uman orthologous regions of rat regions that associate with mammary cancer 

susceptibility listed in Table 21 were determined using the “In other genomes (convert)” 

function available at the UCSC genome browser [119]. Rat Nov. 2004 (Baylor 3.4/rn4) 

and human Feb. 2009 (GRCh37/hg19) genome assemblies were used. If a rat mammary 

cancer locus split into multiple human orthologous regions, we noted all orthologous 

regions until they reached less than 1% of the bases and spanned less than 1% of the 

original rat mammary cancer locus using the UCSC genome browser.   

 

B. Identification of random rat regions 

To determine if human GWA study identified polymorphisms map to rat 

mammary cancer loci more frequently than to random regions of the rat genome, we 

selected rat genome segments that have not shown an association with mammary cancer 

risk. These rat genomic regions were named “random rat regions” and are listed in Table  
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22. We initially focused on f ourteen Mcs/Mcsm regions with an average size of 

22,322,710 bp as these are generally smaller in size than other rat mammary cancer 

associated loci identified. Fourteen random rat genome regions, each 22,322,710 bps in 

size were used for comparison. Random rat regions were selected by picking a 

chromosome using a random number generator function of Microsoft Excel. The range of 

chromosomes entered into the random number generator function was 1 through 21 (rats 

have 21 chromosomes, including a sex chromosome). The start position for each random 

rat region was determined using a random number generator function of Excel. The rat 

genome is 2.75 Gb in size [166]; or, 130,952,381bp per chromosome if divided equally 

across chromosomes. Therefore, values for the rat genome start-position were chosen 

from 1-130,952,381 using a random number generator. Following, 22,322,709 bps were 

added to each random start position to obtain the desired full length. The 14 random rat 

genome regions were then entered into the UCSC genome browser, and the human 

orthologous regions were determined using the “in other genomes (convert)” function, as 

described above [119]. Randomly-generated rat genome segments were used as controls 

if the human orthologous segment did not contain sequence that was also orthologous to a 

known rat mammary cancer associated locus. We also verified, using the UCSC genome 

browser, that human orthologous regions to random rat regions were not located at 

human centromeric regions, as genetic variation in these chromosomal regions is 

underrepresented in GWA studies [167, 168]. Total sizes and percentages of rat genome 

covered by rat mammary cancer loci and random genome regions used are in Table 23.  

 

C. Determining human GWA study nominated polymorphisms 
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Table 22. Random rat genomic segments and human orthologous regions used.  

Rat Mcs locus Rat chr Region (UCSC rat 
assembly 2004) 

Human orthologous region 
(UCSC human assembly 2009) 

Random rat region 1 RNO9 20,000,000-44,322,711 Chr2: 97,158,323-106,711,249 
Chr6: 56,223,874-73,919,999 
Chr2: 189,182,486-189,878,065 
Chr13: 103,235,577-103,556,495 
Chr2: 128,848,569-129,254,860 

Random rat region 2 RNO15 60,000,001-84322711 Chr13: 53,226,266-74,878,291 
Chr13: 42,064,282-42,529,444 

Random rat region 3 RNO16 68,621,246-92,943,956 Chr13: 103,539,456-115,092,822 
Chr8: 36,627,241-42,308,840 
Chr8: 638,582-6,693,649 
Chr8: 42,690,588-43,056,179 
Chr13: 52,753,969-53,050,606 

Random rat region 4 RNO9 91,398,460-115,721,170 Chr5: 98,385,946-110,062,886 
Chr18: 612,848-9,957,727 
Chr2: 240,340,012-242,806,427 

Random rat region 5 RNO13 55,373,307-79,696,017 Chr1: 169,844,936-194,938,667 
Random rat region 6 RNO11 39,408,000-63,730,710 Chr3: 95,108,010-118,895,417 
Random rat region 7 RNO17 68,384,015-92,706,72 Chr10: 138,740-22,530,353 

Chr1: 236,673,870-240,084,642 
Random rat region 8 RNO3 12,585,543-36,908,253 Chr2: 140,246,548-155,465,845 

Chr9: 123,526,091-129,443,210 
Random rat region 9 RNO19 34,130,390-58,453,100 Chr16: 66,968,878-90,107,058 

Chr10: 33,502,588-35,153,585 
Chr1: 229,402,942-235,324,796 
Chr4: 150,548,912-150,855,848 

Random rat region 
10 

RNO12 18,203,110-42,525,820 Chr12: 110,503,298-120,870,994 
Chr12: 121,578,435-132,335,900 
Chr7: 66,878,689-71,941,664 
Chr7: 101,137,811-102,184,451 
Chr7: 99,995,220-100,350,712 
Chr7: 72,707,443-74,223,683 
Chr7: 75,027,443-76,145,496 

Random rat region 
11 

RNO20 30,416,373-54,739,083 Chr6: 101,086,446- 116,620,662 
Chr6: 117,266,139-123,147,126 
Chr2: 109,065,537-109,613,060 
Chr6: 116,688,407-116,905,609 

Random rat region 
12 

RNO13 955,085-25,277,795 Chr18: 58,351,906-63,553,937 
Chr2: 124,758,685-125,682,595 

Random rat region 
13 

RNO1 1,136,860- 25,459,569 Chr6: 128,011,342-150,185,813 
Chr6: 123,315,387-124,317,854 

Random rat region 
14 

RNO2 182,078,762-
206,401,472 

Chr1: 107,259,608-154,441,176 
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Table 23.  Total size and percentage of rat genome covered by rat mammary cancer loci and 
random rat regions 

Region Loci Total size (bases) Total 
overlapping 
bases 

Total unique 
bases 

Rat Genome 
Portion (based 
on total unique 
bases) 

Mcs/Mcsm 
only 

14 345,323,605 33,002,148 312,321,457 11.4% 

All known rat 
mammary 
cancer loci 

24 1,230,487,116 325,386,323 905,100,793 32.9% 

Random rat 
regions 

14 312,517,940 - 312,517,940 11.4% 
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Human breast cancer risk GWA studies considered were published through March 

2013. In the first round of analysis we picked GWA studies with a clearly defined study 

population of subjects of European descent. In the second round of analysis, the defined 

population was broader and included studies that tested populations of non-European 

descent. Studies that included non-European descent populations were subdivided into 

respective populations used. The GWA studies evaluated are listed in Tables 24 and 25.  

Results from GWA studies used consisted of multiple stages (2-4 stages) to evaluate 

breast cancer risk association. In our analysis, all SNPs that entered the final stage of 

their respective study were compared to the rat genome. A tested SNP was called either 

“associated” if it reached genome wide significance in its respective study or “potentially 

associated” if it failed to meet the respective study statistical criterion following the final 

stage of analysis. Conventionally, a p-value level for an association to be considered 

statistically significant in a GWA study is 1 x 10-7.  This stringency is to protect from 

false-positives due to multiple comparisons on a genome-wide scale. It has been argued 

that this low p-value requirement results in numerous false negative associations [161]. 

Therefore, we queried supplemental material of each published GWA study considered 

and picked polymorphisms that failed the validation stage in the respective study. We 

also included polymorphisms that did reach genome-wide significance. We considered 

533 SNPs from studies that included populations of European descent, and 285 S NPs 

from studies of non-European descent populations. Human genomic locations of 

polymorphisms were found using dbSNP (GRCh37 assembly) [169]. These were 

compared to locations of the human orthologous regions of rat mammary cancer loci and  
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random rat regions. If a polymorphism mapped to a region of interest, the name, location, 

odds ratio,95% confidence interval, and p-value were noted. 

 

D. Statistics 

The number of human polymorphisms that mapped to orthologous regions 

containing rat mammary cancer loci (observed) was compared to the number of human 

polymorphisms that mapped to random rat regions (expected) using a chi-square analysis 

with one degree of freedom.  Several rat mammary cancer loci overlap extensively and 

subsequently several human polymorphisms mapped to multiple rat loci. Currently, it is 

not known if these overlapping rat mammary cancer loci would fine-map to the same 

locus or independent loci. For this study, human polymorphisms mapping to overlapping 

rat mammary cancer susceptibility associated sequences were counted only once. For 

analysis of associated (passed genome-wide significance level) versus potentially 

associated (did not pass genome-wide significance level) associations, a logistic 

regression was performed using SYSTAT 13™ statistical software. A threshold of 

associated or potentially associated was used as the independent variable and outcome 

was either the SNP mapped to a rat mammary cancer locus or it mapped to a random rat 

region.   

 

Results 

A. Significantly more breast cancer risk GWA study nominated SNPs are located at 

orthologs of rat Mcs/Mcsm loci compared to random rat genomic regions 
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We picked 28 G WA studies of breast cancer risk in which well defined 

populations were analyzed (Table 21). Physical locations of polymorphisms that failed 

the final validation step and polymorphisms that reached genome-wide significance were 

determined using dbSNP [169]. We included SNPs that failed the final validation step of 

the respective study, because it has been suggested that many true associations are ruled 

out in a GWA study due to stringent statistical analysis methods [161]. We determined if 

sequences containing these polymorphisms were located at either a human genome 

region orthologous to a known rat mammary cancer locus or to a r andomly selected 

region of the rat genome. Our goal was to determine if GWA study-nominated 

potentially-associated (did not pass final validation) and associated (genome-wide 

significant) risk polymorphisms, together map more often to human orthologous regions 

of rat mammary cancer susceptibility loci than to randomly selected rat genome segments 

of similar size. If yes, it would suggest that human GWA information combined with rat 

genetic susceptibility information is broadly useful to determine true genetic associations. 

Overall, rat Mcs/Mcsm loci are mapped to shorter genomic segments than other rat 

mammary cancer risk loci; therefore, we first compared overlap between human GWAS 

nominated breast cancer risk SNPs and rat Mcs/Mcsm loci to overlap of human associated 

SNPs with randomly selected rat genomic regions not known to contain mammary cancer 

susceptibility loci (Figure 32). Human GWA studies were grouped by population of 

descent for comparison. There was a significant difference between the number of 

GWAS nominated SNPs mapping to rat Mcs/Mcsm loci compared to random rat regions 

in studies analyzing populations of European descent (66 SNPs to 51 SNPs respectively, 

p-value <0.05). This result supports previous studies indicating rat genetic susceptibility  
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Figure 32. Number of breast cancer risk GWA study nominated SNPs mapping to 

rat Mcs/Mcsm regions. Adapted from Sanders et al. (2014) [158]. Number of GWA 

study nominated SNPs mapping to orthologs of rat Mcs/Mcsm loci and rat random 

regions. (     ) Dark grey columns represent the number of GWA study nominated human 

SNPs mapping to the human orthologous regions of the Mcs/Mcsm loci. (     ) Light grey 

columns represent the number of GWA study nominated human SNPs mapping to the 

human orthologous regions of the random rat control regions. The difference between 

risk associated SNPs mapping to rat Mcs/Mcsm and random rat regions was statistically 

significant for European populations.  Asterisk indicates P-value <0.05 using chi-square 

analysis with number of SNPs mapping to Mcs/Mcsm set as the observed value and 

number of SNPs mapping to random rat regions as the expected value. 
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is useful to predict and study human breast cancer risk loci. There was no difference in 

Asian or African-American descent populations. This is likely due to a limited number of 

published population-based breast cancer risk genetic-association studies using these 

populations. 

 

B. Breast cancer risk GWA study nominated polymorphisms map more often to 

orthologs of all known rat mammary cancer loci than to randomly selected 

regions  

Next, we included additional rat mammary cancer susceptibility loci that have 

been identified, but span large genomic segments.  Loci added were Mcstm1, Mcstm2, 

Mcsta1, Emca1-2 and Emca4-8 [115-118]. The same random rat genomic regions used 

previously were used in this analysis to be consistent. Respectively, 179 and 51 GWA 

study nominated polymorphisms were located in human orthologous regions to rat 

mammary cancer loci and randomly selected rat regions (Figure 33A) when studies using 

populations of European descent were considered. This difference was statistically 

significant (P < 0.01).  Note, some rat mammary cancer loci identified in independent 

studies have long regions of overlap.  C onsequently, several human GWA study 

identified polymorphisms mapped to human sequence orthologous to overlapping rat 

susceptibility loci.  As it is not known if these rat loci contain unique sub-loci, human risk 

associated polymorphisms mapping to overlapping rat regions were counted only once. 

The size of the rat genome covered by all known rat mammary cancer susceptibility loci 

compared to control loci was disproportionate (Table 23).  However, the ratio of breast 

cancer risk associated human SNPs at orthologs to rat mammary cancer susceptibility loci  
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Figure 33. Number of breast cancer risk GWA study nominated SNPs mapping to 

orthologs of rat mammary cancer loci or randomly selected rat genomic segments. 

Adapted from Sanders et al. (2014) [158].    (      ) Dark grey columns indicate GWA 

study nominated SNPs that map to human orthologous regions of rat mammary cancer 

loci. (      ) Light grey columns indicate GWA study nominated SNPs that mapped to 

human orthologous regions of randomly selected rat genomic regions. A. Studies by 

population descent.  Asterisks indicate statistical significance (p < 0.01). The difference 

between risk associated SNPs mapping to rat mammary cancer loci and random rat 

regions in studies of European, Asian and African- American descent populations was 

significant (P-values <0.01 using chi-square analysis with number of SNPs mapping to 

rat mammary cancer loci set as the observed value and number of SNPs mapping to 

random rat regions as the expected value).  B.  Associated and potentially associated 

SNPs identified in populations of European descent that mapped to rat regions of interest 

were compared using logistic regression.  Threshold of association was not a significant 

predictor of whether a SNP mapped to an ortholog of a rat mammary cancer locus or a 

random rat region. “ns” indicates a comparison was not statistically significant. 
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to SNPs at random segments was higher than the ratio of susceptibility loci bases to 

random bases (3.5 vs. 2.9).  This result was relatively proportionate to the previous result 

when only rat Mcs/Mcsm loci were considered (1.29 for Mcs/Mcsm and 1.21 f or all 

susceptibility loci), suggesting a potential bias was not introduced by the increase in total 

genomic coverage. 

Not surprisingly, only 179 of 533 or  33.6% of the total human GWA study 

identified SNPs using populations of European descent were located at orthologs to rat 

mammary cancer associated loci. It is notable that 57 of  the 533 total SNPs evaluated 

were reported in more than one GWA study; a majority of these were potential 

associations that failed the final validation step of the respective study.  These results 

further suggest there are several breast cancer risk associated SNPs not reaching genome-

wide statistical significance in human population-based genetic studies.  

Since more breast cancer risk polymorphisms nominated from GWA studies of 

populations of European descent mapped to orthologs of rat mammary cancer loci than to 

randomly selected regions of the rat genome, we determined if this was the case for 

association studies using non-European descent populations. We queried the nine GWA 

studies of populations of non-European ancestry that are listed in Table 25. These were 

GWA studies using populations of African, African-American, Ashkenazi Jewish, and 

Asian descent; however, only polymorphisms from studies using African-American, 

Ashkenazi Jewish and Asian descent populations mapped to any of the human 

orthologous segments to rat genomic regions picked for this study.  First, results from all 

studies of non-European descent populations were combined (Figure 33A).  Eighty-nine 

risk associated SNPs mapped to orthologs of rat mammary cancer loci and 26 SNPs were



 
 

200 
 

located at randomly selected rat regions. Next, studies using populations of Asian, 

Ashkenazi Jewish and African-American descent were considered separately. This 

resulted in 64 A sian descent population SNPs mapping to orthologs of rat mammary 

cancer loci and 18 SNPs to random rat regions. Twenty-four SNPs identified in studies of 

African-American descent populations were located at orthologs to rat mammary cancer 

loci and eight SNPs in random rat regions. The difference between rat mammary cancer 

loci and random regions was statistically significant (p < 0.01) for both populations 

(Figure 33A).  Interestingly, one SNP from a study of an Ashkenazi Jewish population 

mapped to the human orthologous region of rat Mcsta1, but no GWA study nominated 

SNP from that study mapped to a rat random region [77]. The lack of human SNPs 

mapping to orthologs of rat mammary cancer loci from populations of African and 

Ashkenazi Jewish decent may be due to a limited number of studies conducted on these 

populations. On the other hand, it may indicate that susceptibility alleles different from 

those currently identified in laboratory rats are segregating in these populations.  Out of 

285 SNPs considered from studies using populations of non-European descent, 89 SNPs 

or 31% mapped to orthologs of rat mammary cancer loci. Fifteen risk associated SNPs 

were represented in more than one human GWA study.  

Next, GWA-study nominated variants from populations of European descent were 

separated by associated (reached genome-wide significance) and potentially associated 

(did not reach genome-wide significance after the final stage) variants (Figure 33B).  

Nineteen associated SNPs were located at rat mammary cancer loci compared to seven 

SNPs that mapped to random rat regions. Comparatively, 160 pot entially associated 

SNPs mapped to rat mammary cancer susceptibility loci compared to 44 SNPs that 
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mapped to random rat regions. A logistic regression was performed using threshold of 

association (associated or potentially associated) as the independent variable and rat 

genome location (ortholog of a r at mammary cancer risk locus or a randomly selected 

locus) as the dependent variable. Threshold of association was not a significant effect (P-

value = 0.54).  This result, that both associated and potentially associated breast cancer 

risk variants map more often to orthologs of rat mammary cancer risk loci than rat 

regions not associated with susceptibility, strongly supports that comparative genomics 

between humans and rats may be an effective integrative approach to determine which 

potential associations nominated by human association studies are true positives.  

Human populations have been studied more extensively for breast cancer genetic 

risk than have rat populations; therefore, it is not surprising that human studies have 

yielded a considerable number of genome-wide significantly associated SNPs in alleles 

where it is not known if the rat genome contains a concordant allele. Interestingly, seven 

strongly associated human SNPs were in sequences orthologous to the randomly selected 

rat genome regions that are not known to associate with rat mammary cancer based on 

studies evaluating specific rat strains; thus, it is possible that a portion of the rat genome 

used in this study as rat random-genome control regions may actually associate with 

unidentified rat mammary cancer susceptibility loci.  T hus, more rat genomic regions 

associated with mammary cancer risk may be identified with additional rat genetic 

studies. To date, only six inbred rat strains have been used to identify rat genomic regions 

associated with mammary cancer risk [106, 107, 115-118]. Therefore, it is highly likely 

that more mammary cancer susceptibility loci may be identified by incorporating 

additional rat strains.  I t is also possible that more extensive analysis of previously 
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studied rat strains may yield additional susceptibility loci by using a higher density of 

genetic markers for example.   

Twenty-one of the 24 known rat mammary cancer associated loci are orthologous 

to human loci containing SNPs that are either associated or potentially associated to 

breast cancer risk.  F ourteen of the known rat mammary cancer associated loci are 

orthologous to human risk alleles marked by GWA study nominated SNPs reaching 

genome-wide significance. Human GWA study designs do not  definitively determine 

causative genes or mechanisms. The laboratory rat is a versatile experimental organism to 

complement human studies of breast cancer.  For example, inbred rat strains provide a 

model with reduced genetic variation that can be genetically manipulated and 

environmentally controlled.  The overlap between human breast and rat mammary cancer 

susceptibility associated loci suggests rats can be used extensively to study genetically 

determined mechanisms and environment interactions that will translate directly to 

human breast cancer risk and prevention.   

 

C. Human GWAS nominated breast cancer risk SNPs map similarly to rat mammary 

cancer associated loci identified using 7,12-dimethylbenz[a]anthracene (DMBA) 

or beta-estradiol 

 Several rat mammary cancer loci used in this study were identified using DMBA 

to induce mammary tumors. These are Mcs1a-c, Mcs2-4, Mcs5a1, Mcs5a2, Mcs5b-c, 

Mcs6-Mcs8, Mcsm1, Mcstm1-2 and Mcsta1. The remaining rat mammary cancer loci 

considered were identified using beta- estradiol to induce mammary carcinogenesis. 

Estradiol associated susceptibility loci are Emca1-2 and Emca4-8.  While DMBA is 
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representative of environmental polycyclic aromatic hydrocarbons, this synthesized 

mammary carcinogen is not found in nature.  Conversely, estradiol is an endogenous 

environmental exposure associated with breast cancer risk.  H uman GWA study 

nominated SNPs mapping to orthologs of rat mammary cancer loci identified using 

DMBA were compared to those identified using beta-estradiol. We considered SNPs 

from all GWA studies, irrespective of the population used. We noted that many DMBA 

and beta-estradiol identified rat mammary cancer loci overlap. In fact, seven of the 14 

DMBA associated rat mammary cancer loci overlap at least one beta-estradiol associated 

rat mammary cancer risk locus, and five of the seven beta-estradiol loci overlap rat 

mammary cancer loci identified using DMBA.  To account for this overlap, human SNPs 

mapping to overlapping rat mammary cancer loci, one identified using DMBA and the 

other using beta-estradiol, were included once in the “DMBA” group and once in the 

“beta-estradiol” group. These results are shown in Figure 34. A relatively similar number 

of GWA study nominated SNPs mapped to orthologs of rat mammary cancer loci that 

were identified using DMBA (181 SNPs) and beta estradiol (146 SNPs).  This suggests 

that different mammary carcinoma induction methods can effectively identify rat 

susceptibility loci relevant to human disease risk, and it also suggests that a plethora of 

carcinogenesis mechanisms may be genetically determined.   

 

Discussion 

It has been suggested that the use of Bonferroni-based correction procedures to 

protect against multiple comparisons in genome-wide association studies is too stringent 

and results in an abundance of false negative associations with little recourse to sort these  
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Figure 34. Number of breast cancer risk GWA study nominated SNPs mapping to 

regions identified using DMBA or beta-estradiol. Adapted from Sanders et al. (2014) 

[158]. Number of GWA study nominated SNPs mapping to rat mammary cancer loci 

separated by method of mammary carcinogenesis induction. Slightly more SNPs mapped 

to orthologs of rat loci that were identified using DMBA than beta-estradiol.  
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from true-negative associations.  T herefore, we considered associated and potentially 

associated human SNPs from breast cancer risk GWA studies to determine if SNPs that 

failed validation and SNPs that reached genome- wide significance map to respective 

regions of the rat genome known to associate with rat mammary cancer risk more often 

than to regions of the rat genome that are not known to associate with susceptibility. 

Results presented here indicate that the rat genome is useful to prioritize and rank human 

alleles potentially associated with risk. The rat genome is useful regardless of the human 

population studied.  S ignificantly more SNPs from GWA studies of populations of 

European, Asian, and African-American descent map to human orthologous regions of 

rat mammary cancer loci than to human orthologous regions of randomly selected rat 

genomic regions not known to associate with mammary cancer susceptibility. This 

supports the general idea that there are SNPs associated with breast cancer risk that are 

missed due to conservative statistical methods used in GWA studies, and that the rat is 

useful to parse out important genetic variation in susceptibility to mammary 

carcinogenesis. 

Interestingly, we were unable to map GWA study nominated SNPs to three of the 

24 known rat mammary cancer loci.  These were Mcs1a, Mcs5a1, and Mcs5c.  However, 

using a genome-targeted population-based genetic association study, a human SNP 

associated with breast cancer risk has been identified at human MCS5A1 [111]. The risk 

associated SNPs at MCS5A1 are adjacent to a breast cancer risk associated SNP at 

MCS5A2, which was identified in two independent human population based studies [111, 

178]. Taken together, there is a h igh correlation between genetics of breast cancer 

susceptibility in humans and mammary cancer susceptibility in rats. Interestingly, there 
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are several human genomic regions that are human GWA study nominated hotspots (e.g. 

19q13, FGFR2) that are not known to have concordant rat orthologs. An explanation is 

that human breast and rat mammary cancer susceptibility are controlled by overlapping 

and non-overlapping genetic mechanisms. Another explanation is that there are rat 

genomic regions associated with mammary cancer risk yet to be discovered by using 

additional inbred strains, more extensive analysis of strains previously studied, and 

different methods of carcinogenesis induction.  
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CHAPTER VI 

CONCLUDING REMARKS 

Breast cancer is a complex disease, characterized by genetic, epigenetic and 

environmental factors. The laboratory rat has been used extensively as a model to study 

the genetic component of breast cancer. Several rat genomic regions have been identified 

that associate with mammary cancer risk. This dissertation focuses on two of these 

regions, Mcs6 and Mcs1b. The Mcs6 locus was initially mapped to a large region of about 

33Mb. This makes this locus too large for functional studies. We focused on narrowing 

this locus to a smaller interval using phenotyping of congenic animals. We were able to 

conclude that the Mcs6 locus is located in an 8.5Mb region on rat chromosome 2: 

46,915,037-55,364,398. This significantly reduced the size of this locus. Several GWAS 

identified SNPs map to this location, making it an important locus to study. Overall, we 

were able to generate the model needed to study this locus with this project. Studying this 

locus is highly relevant, because there are no known breast cancer susceptibility genes in 

this region and studying this locus may lead to the identification of a novel breast cancer 

susceptibility gene.  

The second rat genomic region, this dissertation focuses on, i s the Mcs1b locus. 

We used next-generation sequencing to identify 72 variants between the two rat strains in 

this region. Most of the variants are located at the extreme ends of the Mcs1b locus. We 

used genotyping of existing congenic animals to rule out most of the variants. This
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resulted in the identification of three candidate Mcs1b SNPs and one INDEL within this 

locus that have the potential of being responsible for the Mcs1b phenotypes. We focused 

on the Mcs1b candidate SNPs because there are known orthologous human SNPs that 

associate with breast cancer. Overall, we were able to use sequence capture using rat 

DNA, which to our knowledge had not been done previously and we were able to use 

sequencing, genetic analysis and bioinformatics to generate a l ist of candidate Mcs1b 

variants.  

Functional analysis of the candidate Mcs1b SNPs revealed that A074-SNP-17 

shows a gene regulatory pattern that mimics a gene regulatory pattern that is seen 

endogenously in the rat strains used for this analysis. Furthermore, a DNA binding 

protein analysis revealed that some protein complexes appear only to bind to the SNP 

allele of the mammary cancer susceptible rat strain, indicating that there is a difference in 

the DNA binding proteins that bind to A074-SNP-17. Based on these data, A074-SNP-17 

is considered the strongest candidate for conferring the Mcs1b phenotypes. Data from 3C 

experiments reveal that there appears to be a chromatin loop forming in the Mcs1b 

region, which would bring our candidate Mcs1b SNPs in close proximity to the Mcs1b 

candidate gene Mier3. There does not appear to be a difference in chromatin loop 

formation in the Mcs1b region between the mammary cancer resistant and susceptible rat 

strains used in our analysis.  

Overall, our model for the Mcs1b locus is that the Mcs1b candidate SNPs are 

located in enhancer regions and affect the transcriptional regulation of nearby genes. The 

luciferase activity for all three Mcs1b candidate SNPs is different between the susceptible 

WF and resistant COP allele, suggesting that all three SNPs act as transcriptional 
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regulators. A074-SNP-17 shows a luciferase activity pattern that is similar to the pattern 

of differential gene expression of Mcs1b candidate SNPs. This indicates that A074-SNP-

17 may be involved in regulating the expression levels of Mcs1b candidate genes. Also, 

analysis of DNA binding proteins revealed that a DNA binding protein binds to the WF 

allele of A074-SNP-17 but not the COP allele. This makes A074-SNP-17 the most likely 

candidate for conferring the Mcs1b phenotype. There is evidence that a chromatin loop 

forms in the Mcs1b locus, which brings the candidate Mcs1b SNPs in close proximity to 

one of the Mcs1b candidate genes. This would be a mechanism as to how A074-SNP-17 

can affect the expression level of the Mcs1b candidate gene.  

GWA studies have a great potential of identifying candidate SNPs associated with 

breast cancer. However, they provide no i nformation on t he causative gene, variant or 

what the underlying mechanism is. We were able to generate an animal model to study 

one GWA identified SNP, rs889312, and the SNPs it tags. We were able to study the role 

of these SNPs in gene regulation and provide a mechanism by which they could affect the 

transcript levels of candidate genes.  The only other GWA identified SNPs have been 

studied for function reside within the FGFR2 gene. Therefore, studying these SNPs will 

result in the identification of novel breast cancer susceptibility genes and will elucidate 

the mechanisms underlying genetic susceptibility to breast cancer.  

An analysis of the overlap between human breast and rat mammary cancer 

susceptibility revealed that there is extensive genomic overlap. The rat genome may 

provide utility to identify true-positive associations regardless of the human population 

used for a GWA study. The laboratory rat will continue to be an important model 

organism for researching genetically determined mechanisms of mammary cancer 
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susceptibility that may translate directly to human susceptibility. An appreciable number 

of GWA study nominated SNPs not meeting genome-wide significance levels have 

genomic overlap with rat mammary cancer susceptibility loci. This supports the general 

idea that Bonferroni-based multiple-comparison correction procedures are too stringent 

and complementary approaches that integrate rat genomics would be highly efficacious to 

prioritize breast cancer risk associated alleles. 
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