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ABSTRACT 

ROLE OF C-KIT IN THE GROWTH, MIGRATION AND DIFFERENTIATION OF 
HUMAN CARDIAC PROGENITOR CELLS 

Bathri N. Vajravelu 

April 14, 2015 

 

The belief that adult mammalian heart lacks regenerative potential was challenged by 

the identification of c-kit positive cardiac progenitor cells (CPCs) in the heart. A 

recent phase I clinical trial (SCIPIO), has shown that autologous c-kit positive CPCs 

improve cardiac function and quality of life when transplanted into ischemic heart 

disease patients. c-Kit is a type III receptor tyrosine kinase and a common stem cell 

antigen. Stem cell factor (SCF) is the only known ligand for c-kit. Although c-kit is 

extensively used as an invariable marker of resident CPCs and shown to be important 

in the context of different cell types, there is no information on its role in the 

regulation of cellular characteristics of CPCs. This led us to hypothesize that c-kit 

plays a role in the regulation of survival, growth and migration of human CPCs. To 

test this hypothesis, CPCs were grown under stress conditions (e.g., serum starvation 

and oxidative stress) in the presence or absence of SCF. The effects of SCF-mediated 

activation of c-kit on CPC survival/growth were measured using cell viability assay, 

BrdU labeling and caspase 3/7 activity assay. I observed a statistically significant 

increase in cell survival with SCF treatment compared to the untreated control when 

CPCs were subjected to serum depletion. However, SCF treatment did not lead to a
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significant increase in cell viability against 2,3-dimethoxy-1,4-naphthoquinone 

(DMNQ) or hydrogen peroxide (H2O2) induced oxidative stress. Furthermore, the pro-

survival effect of SCF was augmented by c-kit overexpression and abrogated by co-

treatment with imatinib, an inhibitor of c-kit, suggesting that necessity of c-kit activity 

for the effect of SCF. I then checked if activation of c-kit can promote migration of 

CPCs. I found that CPCs were highly chemotactic to SCF showing a statistically 

significant increase in cell migration after SCF treatment. The results of the 

differentiation study are not convincing and need further experiments to derive a 

conclusion. We also found that SCF treatment on CPCs activated the 

phosphoinositide 3-kinase (PI3K) and the mitogen activated protein kinase (MAPK) 

pathways. With the use of specific inhibitors, we confirmed that the SCF dependent 

survival and chemotaxis of CPCs are dependent on these two pathways. In 

conclusion, the results of our experiments suggest that c-kit promotes the survival, 

growth and migration of CPCs cultured ex vivo via the activation of PI3K and MAPK 

pathways. These results imply that the efficiency of homing of CPCs to the injury site 

as well as their post-transplantation survival may be improved by modulating the 

activity of c-kit. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

The report presented in this dissertation is a summary of my research on the 

role of c-kit in the growth, survival, migration and differentiation of human cardiac 

progenitor cells (CPCs). For a novice reader, it is essential to have an understanding 

about the cardiac progenitor cells, c-kit, the scientific evidences that guided the design 

of my study and the rationale behind our hypotheses. For this purpose, the first 

chapter is dedicated to educate the reader on the available information about CPCs, c-

kit and its most common biological functions that are relevant to the hypotheses of 

this project. I believe the results of this study will bring in new ideas and further 

research in establishing the critical role of c-kit and CPCs in cardiac regenerative 

therapy. 

 

c-Kit Positive Cardiac Progenitor Cells: 

Mammalian heart was considered as a terminally differentiated organ for a 

long time until the beginning of this century when several studies challenged the 

notion by reporting the renewal of cardiomyocytes [1-3]. These studies established the 

fact that adult mammalian heart has the inherent capacity to regenerate although to a 

limited extent.  The interesting discovery about the regenerative potential of the heart

 initiated a number of studies that investigated the presence of resident 

stem/progenitor cells in the heart that contribute to tissue maintenance and repair [4-

6].The results of these studies indicated that heart has a reserve of its own primitive 
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cell population that could contribute to the regeneration process upon injury. These 

stem cell populations were identified based on their expression of common stem cell 

antigens, such as c-kit [4, 7, 8] and Sca-1[9-11] or on their ability to efflux a 

fluorescent dye, Hoechst 33342 (“side population”) [12-14] or to form spherical 

bodies (“cardiospheres”) under a specific culture condition [15-17] or by the presence 

of a progenitor transcription factor islet-1(Isl1+ CPCs) [18, 19]. Among the above list 

of primitive cell populations, the c-kit positive CPCs were chosen as a subject for this 

study because of its proven efficacy in myocardial regeneration in animals [4, 20] and 

in humans [6]. 

A report by Beltrami et al. in 2003 was the first to demonstrate that heart 

harbors a group of cells with properties of cardiac progenitor cells (CPCs) identified 

by their expression of the stem cell marker, c-kit [4]. When these c-kit+ cells were 

isolated and grown in culture, they were self-renewing, clonogenic, and multipotent, 

being able to differentiate into cardiomyocytes, smooth muscle  and endothelial cells 

both in vitro and in vivo confirming their stemness. Upon isolation and analysis, they 

were found to be negative for the panleukocyte marker CD45 and hematopoietic 

marker CD34 indicating they did not originate from the bone marrow [4]. These cells 

expressed Ki67, a cell cycle marker indicating that these are proliferating cells and 

they also expressed certain cardiac transcription factors like GATA4, NKX2.5, MEF2 

suggesting their cardiomyogenic commitment. However, these were found to be 

negative for mature myocyte, endothelial, smooth muscle cell and fibroblast lineage 

markers and thus were characterized as lineage negative (Lin-).  
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Cardiac Progenitor Cell Niches:  

CPCs are found to be situated in specialized niches in the myocardium mostly 

in the apex and atrium of the heart and are less abundant at the base and in the 

ventricle [21]. They are connected to the surrounding cardiac cells through gap and 

adherens junctions [22]. These junctions facilitate communication between the cells 

and also anchor the CPCs to the surrounding microenvironment [23]. Sanada et al 

recently reported that based on the oxygen tension, the niches can be either hypoxic or 

normoxic [24]. While the normoxic niches contain actively dividing functional CPCs, 

the hypoxic niches are a storehouse of quiescent, non-dividing CPCs. The study found 

that the number of hypoxic non-dividing CPCs increase with aging, indicating that the 

aged heart has a greater accumulation of non-functional CPCs that do not participate 

in tissue repair. Interestingly, c-kit activation was found to reverse this balance and 

enrich the senescent heart with younger, actively dividing CPCs. When the authors 

injected SCF in the heart of aged mice they found a significant increase in the number 

of functional CPCs with a concomitant reduction in the number of quiescent CPCs. 

This indicates that SCF induced c-kit activation repopulated the senescent heart with 

functional CPCs similar to younger hearts. The study also established that these newly 

activated CPCs are derived from the quiescent CPC pool further supporting the 

importance of c-kit activation in maintaining functional CPC niches in the heart and 

its contribution to myocardial rejuvenation. 

 

Therapeutic Potential of Cardiac Progenitor Cells:  

Functionally, injecting these cells (marked by EGFP expression) in the border 

zone of infarcted hearts in rats significantly regenerated the myocardium when 

compared to the control animals. The regenerated myocardium was found to have 
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significant number of myocytes that were expressing EGFP confirming their origin 

from the injected cells [4]. Similarly, another study found that intracoronary injection 

of these cells in a rat model can reduce left ventricular remodeling after MI and also 

the infarct size by 29% compared to the control rats [25] adding more support to the 

role of these cells in cardiac regeneration. Although the mechanism by which these 

cells contribute to the regeneration process is still under investigation, co-culturing 

these CPCs with mature cardiomyocytes was found to induce their own differentiation 

to cardiomyocyte and also promoted the survival of the co-cultured cardiomyocytes 

[26] substantiating that these cells are essential for cardiomyocyte survival and 

regeneration. In summary, all the above findings strongly suggest that the c-kit 

positive cardiac progenitor cells have the capacity to differentiate in to cardiac cells 

and can regenerate the infarcted myocardium.  

Supported by the encouraging role of c-kit+ CPCs in cardiac regeneration in 

animal models, the therapeutic transplantation of these cells were tested in a phase I 

clinical trial “SCIPIO” (Stem Cell Infusion in Patients with Ischemic 

CardiOmyopathy) [6]. The study was conducted by the group directed by Dr. Roberto 

Bolli, Division of Cardiovascular Medicine in the University of Louisville, KY on 

patients suffering from ischemic cardiomyopathy. In this trial, CPCs were isolated 

from the atrial appendages of patients with heart failure secondary to myocardial 

infarction when they were undergoing coronary artery bypass grafting (CABG). The 

isolated cells were expanded and autologous transplantation of CPCs was performed 

via an intracoronary injection. The initial results of this clinical trial confirmed that 

autologous transplantation of c-kit+ CPCs can significantly improve the heart 

function and the quality of life in patients suffering from ischemic cardiomyopathy. 

The left ventricular ejection fraction (LVEF) which is a marker of LV function 
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improved by nearly 8% within 4 months after injecting these cells whereas there was 

no change in the LVEF in the untreated control patients . In the same period, the mean 

infarct size reduced by 24% after injecting these CPCs in the patients [6]. A more 

important finding of the study is that the regenerative effects of CPC transplantation 

were sustained in a majority of the treated patients a year after transplantation. The 

study reported that at the end of one year after CPC transplantation, the infarct size in 

the treated patients reduced significantly to about 30% lesser than the baseline, 

confirmed by an MRI. The results of this study clearly demonstrate the utility of c-

kit+ CPCs in cardiac regeneration in human beings.  

 

Recent Controversy on CPCs: 

Some of the studies published recently questioned the myogenic potential and 

the importance of c-kit+ CPCs in the regeneration of injured myocardium. For 

example, Berlo et al [27] used the Cre-lox based lineage tracing technique to analyze 

the fate of the c-kit+ cells. The results of this study demonstrated that although c-kit+ 

progenitors generate significant amount of endothelial cells, they contribute to less 

than 1% of the cardiomyocytes in the developing, adult and injured heart, questioning 

their functional importance. However the authors failed to address the caveats that are 

associated with their experimental design. For instance, the recombination efficiency 

in c-kit+ CPCs is largely ignored. Estimating the contribution of the c-kit+ CPCs to 

myogenesis is completely dependent on the expression of the reporter gene that will 

be turned on after effective recombination. Hence without this data, the results 

derived are largely inconclusive. Furthermore, no control was provided to show that 

the c-kit expression in the recombined cells is identical to the WT or the unmodified 

gene. Also Cre expression has been shown to be toxic to the cells [28] and the authors 
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failed to add information about the toxicity of Cre in their system. Without 

experimentally addressing these critical issues, the results obtained through this study 

by Berlo et al certainly do not support the conclusion that c-kit+ CPCs are not 

functionally important. Another study by Cheng et al [29] depleted the c-kit fraction 

of the cardiosphere derived cells (CDCs, another heart derived progenitor cell 

population) and demonstrated that the functional benefits of CDCs in an animal model 

of myocardial infarction is not compromised after depleting the c-kit+ cells, raising 

concerns about the relevance of resident c-kit+ CPCs in myocardial regeneration. The 

authors demonstrated that attenuation of left ventricular remodeling was greater in 

CD90 depleted CDCs and in double depleted (CD90 and c-kit depleted) population 

than the unsorted CDCs, while the c-kit depleted CDCs were similar to the unsorted 

CDC group. The authors also mentioned that the CDCs contained only a small 

fraction of c-kit+ cells (0.3% to 7.2%) and the percentage was highly variable from 

patient to patient. On the other hand, the CD90 expression varied broadly from 0.2% 

to 94.6% indicating that the CDCs contain a very high proportion of CD90+ cells and 

a minor population of c-kit+ cells. The results also showed that functionally, the 

unsorted CDCs are similar to the c-kit depleted CDCs and the CD90 depleted fraction 

in all cases is similar to the double depleted fraction. This further corroborates that the 

c-kit+ cells constitute a minor fraction of CDCs and therefore the results of this study 

cannot stand alone to invalidate the role of c-kit+ CPCs in cardioprotection.  

In contrast, diametrically opposed results have been reported by other studies 

that support the notion that c-kit+ CPCs are indispensable for remuscularization of the 

heart [25, 30, 31]. For instance, in an animal model of isoproterenol (ISO) induced 

MI, Ellison and colleagues [20] have shown that the endogenous CPCs are crucial and 

are sufficient to regenerate the myocardium after injury. The authors found 88% of 
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CPCs were BrdU+ at day 3 after MI and were maintained significantly higher up to 

28 days when compared to the uninjured control rats. Many of the c-kit+ CPCs 

expressed GATA4 and NKX2.5 indicating their commitment to cardiovascular 

lineage. They also found that starting at day 3, BrdU+ Ki67+ cardiomyocytes 

increased gradually in size and number from day 3 to day 28 suggesting active 

myogenesis. Using a tamoxifen inducible GFP expression system the authors 

demonstrated that the pre-existing cardiomyocytes and the bone marrow cells do not 

contribute to the myogenesis in the injured heart. To confirm the newly formed 

cardiomyocytes are from the endogenous CPCs, they used lentivirus to express YFP 

in the c-kit expressing cells of the heart and found that a significant proportion of 

cardiomyocytes originated from the CPCs identified by their YFP expression. 

To further ascertain that the CPCs are sufficient for myocardial regeneration, 

the authors eliminated the proliferating CPCs with the anti-mitotic agent 5-Fluouracil 

(5-FU). Next, they injected ISO followed by the injection of GFP+ CPCs or GFP+ 

cardiac fibroblasts in the tail vein. Only the CPCs injected group recovered from ISO 

induced cardiac failure at 2 months after injection. To confirm if the recovery was 

indeed because of the injected CPCs, the authors induced suicide of the injected cells 

that co expressed herpes simplex virus thymidine kinase (HSVTK) along with GFP by 

administering ganciclovir. Selective suicide of the transplanted CPCs recapitulated the 

cardiac failure phonotype confirming that the regeneration was exclusively due to the 

injected c-kit+ CPCs.  Among the injected GFP+ CPCs, around 68% formed 

cardiomyocytes while they also observed 13% of smooth muscle cells and 17% of 

endothelial cells originating from the injected cells. More interestingly, the 

transplanted GFP+ CPCs upon reisolation and testing were found to retain their stem 

cell properties. Taken together, these results unequivocally support the conclusion that 
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the endogenous c-kit+ CPCs are sufficient and are essential for the structural and 

functional regeneration of the infarcted heart.   

 

Survival of CPCs After Transplantation: 

 Cellular therapy for the regeneration of ischemic myocardium is a promising 

option but several studies identified poor survival of the transplanted cells limiting the 

treatment outcome. For example, in a study conducted by Hayashi et al, upon 

injecting the bone marrow cells in a rat model of acute MI, the investigators found 

that only 6% of the delivered cells survived at the end of 3 days [32].  Similarly, in a 

porcine model of MI, only 5% of the mesenchymal stem cells that were delivered via 

an intracoronary infusion survived at the end of 14 days after transplantation [33].  

Substantiating the findings of the above studies, Hong et al have recently shown that 

when CPCs were delivered via the intracoronary route after inducing MI in a mouse 

model, only 5% of the injected cells survived at the end of day 1 and only 1%  of the 

injected cells were detected at the end of 35 days in the heart [34]. The findings of the 

above studies indicate that regardless of the cell source, it is critical to improve the 

survival of the transplanted cells to achieve successful regeneration of the infarcted 

myocardium. Better survival of the grafted cells can be accomplished by improving 

the homing capacity of the cells or its growth or by reducing the death of the 

transplanted cells.  For this purpose, to achieve significant remuscularization of the 

ischemic myocardium with CPC based therapy, it is imperative to identify key 

regulators that can influence the cellular properties of CPCs.  

The search guided our laboratory to investigate if the stem cell marker c-kit 

can be the key protein regulating the growth, survival, migration and differentiation of 

CPCs because of the well-established mitogenic, chemotactic and pro-survival effects 
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of this protein in various cell types. Although c-kit so far has been only used as a 

surface antigen for identifying CPCs, it has been recognized to play a critical role in 

regulating survival, proliferation, differentiation, migration and engraftment of mast 

cells [35], melanocytes [36, 37], germ cells [38, 39] and hematopoietic stem cells 

[40]. A description on the role of c-kit in some of the above cell types is discussed 

later in this manuscript. In spite of an established role of c-kit in mediating the 

survival and migration benefits in a wide variety of cell types, to my knowledge, no 

studies so far have explored the role of c-kit in the regulation of cellular 

characteristics in CPCs. This directed us to design the study presented here in which I 

hypothesized that c-kit plays a role in the survival, growth, migration and 

differentiation of CPCs. To test this hypothesis, I measured the effect of SCF 

mediated activation of c-kit on the survival, growth, migration and differentiation of 

the CPCs and analyzed the mechanism through which these effects are mediated. 

Before discussing the experimental results on testing the effect of c-kit 

activation on the growth, survival, migration and differentiation of CPCs, it is 

essential to know the basic information about the protein c-kit and its ligand, the stem 

cell factor or SCF. A short description about the two proteins is given below.  

 

Introduction to c-Kit: 

Cellular Kit (c-kit) (also known as CD117 or stem cell factor receptor) was 

discovered in the year 1986 as the cellular homolog of the viral oncogene v-kit. It was 

identified to be the transforming gene of the Hardy-Zuckerman 4 feline sarcoma virus 

and hence named “kit”, an abbreviation for “kitten” [41]. The gene encodes a 145 kDa 

transmembrane glycoprotein that belongs to type-III receptor tyrosine kinase (RTK) 

family, which includes platelet derived growth factor receptor (PDGFR) and 
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macrophage colony stimulating factor 1 receptor (CSF-1) [41-43]. Soon after the 

discovery of c-kit, based on the phenotype of c-kit mutants, it was found that it is 

allelic with the dominant white spotting locus (W) of mice [44]. Similar phenotype 

was also found in the mice with mutation in the Steel (Sl) locus leading to the 

discovery of the only known ligand for c-kit called the steel factor or the stem cell 

factor (SCF), the product of Sl locus [45, 46].   

The c-kit protein has approximately 976 amino acids and the core protein is 

around 110 kDa in molecular weight. The protein undergoes N-linked glycosylation 

after translation increasing the weight of the mature protein to approximately 145 

kDa. Similar to other type III RTKs, the protein has five extracellular 

immunoglobulin (Ig) like domains followed by a single transmembrane helix and a 

short cytoplasmic transmembrane domain (Figure 1). The intracellular part of the 

protein has two kinase domains separated by a short kinase insert and ends in a 

carboxy terminus [41]. The c-kit gene was found to be located in the chromosome 

4q11 in humans. It has 21 exons covering around 34 kb of DNA [41, 47].  

 

 Functional Role of c-Kit: 

The idea of testing c-kit in the regulation of the growth, survival, migration 

and differentiation of CPCs is supported by extensive evidences that are available on 

this well characterized RTK. Besides being used as a stem cell marker, it is a proto-

oncogene and activating mutations in c-kit gene are frequently associated with various 

types of tumors, such as mast cell tumors, gastrointestinal stromal tumors (GIST), and 

leukemia [48-50]. In addition to its role as an oncogene, this protein is critical to 

maintain normal hematopoiesis [40, 51], pigmentation [36, 52], gametogenesis [53, 

54], immune response [55, 56], intestinal motility [57, 58], vasculogenesis [59], lung 
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compliance [60, 61], brain development [62], etc. Although it is beyond the focus of 

this manuscript to explain all the roles played by c-kit in detail, a brief description of 

few of them is given below. These reports on the cellular functions of c-kit directed us 

to test if the activation of c-kit can influence specific cellular properties and pathways 

in CPCs.  

 

Role of c-Kit in Melanocytes:  

c-Kit was originally identified when scientists attempted to find the key 

molecule that caused white spotting in mice. It was found to be due to a defective 

migration in melanocytes caused by a loss of function mutation in c-kit or its ligand 

SCF [47, 63]. Since then, the role of c-kit and SCF in the development, survival and 

migration of melanocytes has been extensively studied. For example, Luo et al have 

shown that SCF dependent activation of c-kit in cultured melanocytes induces the 

transcription of tyrosinase gene which is involved in melanogenesis [64]. Studies on 

the expression patterns of c-kit among different species have indicated that 

melanocytes are dependent on the activation of c-kit receptor for the migration of its 

precursors and also for their proliferation and survival [65]. It is interesting to note 

that the neural crest cells which are the precursors of melanocytes were found to 

express c-kit as early as embryonic day 9.5 in the head. These precursors then migrate 

towards the eyes, inner ears and into the second brachial arch [66, 67]. When there is 

a mutation in c-kit gene, this migration of melanocyte precursors is blocked and they 

undergo apoptosis resulting in depigmented patches.  Study on mouse hair follicle 

(HF) melanocytes showed that the proliferation of these melanocytes is dependent on 

c-kit activation [36, 68, 69]. Immunohistochemical analysis of HF melanocytes for 

Ki-67 and c-kit revealed that only the c-kit expressing subset was actively 



12 
 

proliferating.  SCF overexpression in mice significantly increased this actively 

dividing subset of melanocytes and using a c-kit blocking antibody significantly 

reduced the number of proliferating HF melanocytes indicating that the mitogenic 

effect observed was indeed mediated through the activation of c-kit [36]. Taken 

together, these results indicate that c-kit is an indispensable regulator of melanocyte 

biology by acting as a mitogen, pro-migratory and pro-survival agent.  

 

Role of c-Kit in Mast Cells:  

The role of c-kit in regulating the cellular characteristics of mast cells has been 

extensively studied. c-Kit has been reported as the key molecule regulating the 

proliferation, survival, migration, differentiation and secretory functions of mast cells. 

Mast cells are one of the cell types that maintain c-kit expression after maturation, in 

addition to the dendritic cells and natural killer cells. Mice with c-kit mutation (W/W
v) 

were found to have profound mast cell deficiency [70] indicating the critical function 

of c-kit in mast cell development. Published studies have shown that withdrawing 

SCF from the media in which mast cells are grown induce apoptosis within 48 hours, 

identified by DNA fragmentation. Replenishing the media with SCF in the same 

system could rescue the dying cells demonstrating the anti-apoptotic role of c-kit 

activation [71]. The mitogenic role of c-kit activation is well established in the bone 

marrow derived mast cells (BMMC) from mice. It was shown that upon activation of 

c-kit with SCF, BMMC doubled in number within 48 hours of incubation with the 

growth factor and the effect was further enhanced by the inclusion of serum [35]. In 

addition, the same group reported that SCF treatment is required for the BMMCs to 

enter cell cycle and its availability in the media is critical for the cells to complete the 

cell cycle and survive [35]. Interestingly, along with the other growth factor IL-3, 
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SCF could promote the differentiation of pro-mastocyte to mast cells [72]. c-Kit 

activation was found to promote the migration and mediator release by cutaneous and 

lung mast cells [73, 74]. Migration of mast cells along a gradient of SCF has been 

shown to be essential in regulating the mast cell biology [74].   In addition to its pro-

survival, mitogenic and chemotactic effects, SCF dependent c-kit stimulation in mast 

cells was found to cause degranulation and cytokine release. For example, it was 

shown that c-kit activation could enhance IgE dependent histamine and leukotriene 

C4 release from human lung mast cells [73] and histamine and prostaglandin release 

from human cutaneous mast cells [75].  When combined with the results on the role of 

c-kit in melanocytes, it is clear that c-kit has similar roles in different cell types, 

acting as a pro-survival, pro-growth and a chemotactic agent. 

 

Role of c-Kit in Hematopoietic Cells: 

SCF-c-kit axis has an essential role in maintaining normal hematopoiesis. 

Hematopoietic cells are found to express c-kit as early as day 8 post-gestation in the 

mouse embryonic yolk sac. The expression increases until day 15 post-gestation and 

then gradually decreases [76]. Any aberration in the normal expression of c-kit in the 

embryonic stage due to a homozygous c-kit mutation is lethal in mice due to severe 

anemia [77-79]. Studies have shown that transplanting the bone marrow of c-kit 

mutant white spotted (W/W
v mutant) mice could not replenish cellularity in irradiated 

hosts confirming that c-kit is essential for normal hematopoiesis [80]. The bone 

marrow of these mutants were found to have significantly lesser colony forming units 

spleen (CFU-S), colony forming unit erythroid (CFU-E) and colony forming unit-

granulocyte-macrophage (CFU-GM) when compared to their control littermates 

thereby affecting their capacity to reconstitute the bone marrow cellularity upon 
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transplantation into the hosts [81-84]. SCF-c-kit signaling plays a vital role in the 

development and function of both hematopoietic stem/progenitor cells as well as 

mature cells. For example, it was found that c-kit activation was able to promote the 

proliferation and survival of hematopoietic stem cells (HSCs) [85]. In a study by 

Leary et al SCF in combination with IL-3 was able to shorten the G0 phase of the 

HSCs and drive them to enter the cell cycle, suggesting a mitogenic role for c-kit in 

HSCs [86]. Furthermore, activation of the c-kit receptor by SCF treatment in an 

enriched population of long term repopulating HSCs has been shown to significantly 

increase its survival compared to the cells grown in the medium without SCF [85]. 

Interestingly, SCF was found to have a synergistic effect with other cytokines like 

erythropoietin (Epo), granulocyte colony stimulating factor (G-CSF), granulocyte 

macrophage colony stimulating factor (GM-CSF) and could promote the proliferation 

as well as the colony size of blood forming unit – erythroid (BFU-E), CFU-GM and 

colony forming unit - granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-

GEMM) [87-89].  Besides playing a crucial role in the maintenance and regeneration 

of HSCs, c-kit also plays a role in the interaction of HSCs with the niche cells like the 

endothelial cells and the stromal cells in the bone marrow. This interaction is essential 

for the motility, survival and proliferation of HSCs, as the bone marrow stromal cells 

and endothelial cells are an endogenous source of the kit ligand, SCF [90]. In addition 

to its role in steady state conditions, many studies have highlighted the function of c-

kit in the hematopoietic compartment under conditions of stress like ischemic cardiac 

injury. For example, Fazel et al have highlighted that there is an increase in the 

myocardial expression of SCF after ischemic cardiac injury which mobilizes and 

recruits c-kit+ hematopoietic progenitor cells to the site of injury and contribute to 

regeneration. In the same model, deletion of c-kit was found to cause cardiac failure 
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after the ischemic insult which could be rescued by transplantation of wild type bone 

marrow [91] indicating the critical role of SCF-c-kit signaling in cardiac regeneration. 

In summary, these results strongly suggest that the SCF-c-kit axis is an essential 

component of the hematopoietic compartment and is crucial for the growth, survival 

and migration of the hematopoietic cells under normal and also in conditions of stress.    
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Figure 1: Schematic representation of the structure of c-kit: The type III receptor 

tyrosine kinase has five extracellular Ig like domains, followed by a short 

transmembrane domain. The intracellular region has two kinase domain separated by 

a short kinase insert and ends in a carboxy terminus. 
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Steel Factor or the Stem Cell Factor: 

Stem cell factor (SCF), also known as steel factor or kit ligand is the only 

known ligand for c-kit. The gene encoding SCF is on chromosome 12 in humans and 

has 9 exons [92, 93]. The protein exists as a membrane bound isoform and a soluble 

isoform (Figure 2). The two isoforms differ in the presence or absence of exon 6 

which encodes a proteolytic cleavage site. Both isoforms when produced are attached 

to the cellular membrane. The membrane bound isoform has 220 amino acids and the 

soluble isoform has 248 amino acids [94]. The soluble isoform has exon 6 containing 

the cleavage site and hence gets cleaved by several proteases like matrix 

metalloproteases (MMPs), chymase-1 as well as ADAM family proteases to yield a 

shorter 165 amino acid containing soluble SCF [95-97]. Both the isoforms are 

biologically active; however, there are significant differences in the intensity and 

duration of c-kit activation induced by these isoforms [98]. When the cells were 

treated with soluble SCF, they were found to induce rapid internalization and 

degradation of the c-kit receptor whereas the membrane bound isoform was found to 

cause a much prolonged activation of the c-kit receptor and delay the receptor 

internalization and degradation [99]. It is well known that certain cells like the 

endothelial cells, fibroblasts and bone marrow stromal cells express SCF which is 

involved in regulating proliferation, survival, migration and differentiation of its own 

or the surrounding c-kit positive cells [46, 94, 100]. The regulation of SCF expression 

is found to be very less understood. Studies have shown that conditions like hypoxia 

and myocardial infarction can cause an increase in SCF expression [91, 101, 102]. 

Moreover, exposure to UVB light and follicle stimulating hormone (FSH) treatment 

were also found to have a similar effect [103, 104]. It is also regulated by post-
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translational modification as the protein was found to undergo both N-linked and O-

linked glycosylation [105].  
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Figure 2: Schematic representation of the structure of SCF: The ligand for c-kit, 

SCF has two isoforms; the membrane bound and the soluble isoform. Both are 

synthesized as a membrane bound form but the longer transcript gets cleaved by 

proteases due to the presence of the cleavage site, producing soluble SCF. 
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c-Kit Receptor Activation, Downregulation & Inhibition: 

Similar to other growth receptors like PDGFR and EGFR, c-kit dimerizes 

upon ligand binding causing autophosphorylation of its tyrosine residues resulting in 

receptor activation [106]. The extra cellular immunoglobulin (Ig) like domain is 

critical for ligand binding and dimerization. The ligand SCF binds to adjacent c-kit 

receptors at the first three Ig like domains inducing a conformational change in the Ig 

like domains 4 and 5 thereby bringing adjacent c-kit monomers in close proximity. 

When the receptor is inactive, the juxtamembrane domain interacts with the kinase 

domain and inhibits its enzyme activity [106-108]. However, upon ligand stimulation 

and dimerization, specific tyrosine residues (Tyr-568 and Tyr-570) in the 

juxtamembrane domain get phosphorylated causing a conformational change 

releasing its inhibitory configuration on the kinase domain. Upon resuming the 

enzyme activity, the kinase domain phosphorylates other tyrosine residues 

(autophosphorylation) resulting in receptor activation [108, 109].    

Down regulation of c-kit activity can occur through three main processes 1) 

Receptor internalization and degradation [110], 2) Negative regulation by protein 

kinase C [111], 3) Tyrosine dephosphorylation by phosphatases [112]. 

 Pharmacological or antibody mediated inhibition of c-kit is widely used to 

study the role of this protein in mediating cellular responses. For this study, I used the 

drug Imatinib mesylate (STI571 or Gleevec) to inhibit c-kit activation and to confirm 

its function in regulating the cellular properties of CPCs.  Imatinib was originally 

derived from a lead compound discovered to inhibit protein kinase C [113]. Drug 

optimizing experiments revealed that the inclusion of an amide group in the phenyl 

ring of the lead compound made it an effective inhibitor of the constitutively active 

tyrosine kinase BCR-ABL which is associated with chronic myeloid leukemia [114]. 
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In vitro screening experiments against a panel of related tyrosine kinases highlighted 

that this compound is also effective in the inhibition of two other tyrosine kinases, 

namely platelet derived growth factor receptor (PDGFR) and c-kit [115]. Since then, 

the compound is widely used in the treatment of cancers related to the expression and 

over activity of these tyrosine kinases.  

 Mechanistically, imatinib inhibits the function of its target tyrosine kinases by 

blocking the transfer of phosphate from ATP to the tyrosine residues on the enzyme 

substrates. It does this by binding to a specific region in the activation site of the 

enzyme that is involved in phosphoryl transfer. This binding locks the enzyme in an 

inactive confirmation and hence the loss of kinase activity [114].  

 As imatinib is not a specific inhibitor of c-kit and it also inhibits PDGFR that 

is expressed in cardiac cells, using this pharmacological agent in my experiments to 

inhibit c-kit could create a concern about the specificity of the inhibitor. I excluded 

this limitation by using serum free medium for my experiments which does not 

contain the ligand for PDGFR.  

 

Signal Transduction: 

In this study, I have also tested the activation of downstream signaling 

pathways upon SCF dependent c-kit stimulation. Although my analysis was only 

restricted to the activation of only the PI3K-AKT and MEK-ERK pathways, 

activation of c-kit can lead to the recruitment and subsequent activation of a number 

of downstream mediators (e.g., Grb2, PLD, p38 MAPK, SFK and PLCγ) [116-118]. 

Figure 3 shows an overview of these signaling molecules that are activated upon c-kit 

stimulation. It is important to remember that SCF-dependent activation of c-kit can 

lead to the activation of more than one of these pathways. The combination of 
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pathways activated and its downstream effects may differ depending on the cell type 

and species. A short description on the PI3K-AKT and MAPK pathways is given 

below as it is relevant to this study.  
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Figure 3: Signal transduction in SCF activated c-kit receptor: The ligand for c-kit, 

SCF binds to the c-kit receptor causing receptor dimerization and phosphorylation on 

key tyrosine residues. These residues act as a binding site for signal transduction 

molecules. 

 

 

 

 

 

 



24 
 

PI3-Kinase Pathway: 

The phosphoinositide 3 kinase or PI3K pathway is considered to be a major 

pathway activated upon c-kit stimulation. Studies on SCF mediated c-kit activation in 

mast cells, endothelial cells and melanocytes [59, 99, 119, 120] have shown that this 

is an important pathway regulating genes that are involved in cell survival, 

proliferation, migration and differentiation. There are four major classes of PI3Ks and 

the Class I is further divided into class IA and IB. Since much of the published reports 

are on class 1A PI3Ks the discussion in this section will be limited to this subtype. 

Class IA PI3K has a regulatory subunit p85 and an enzymatic subunit p110 which can 

phosphorylate phosphoinositides [121]. p85 has SH2 domains through which it can 

bind to phosphorylated tyrosine residues. Upon autophosphorylation on its tyrosine 

residues, c-kit binds and activates PI3K either directly [122, 123] through its tyrosine 

719 (in murine; Y721 in human) residue [124] or indirectly through the adapter 

protein GAB2 [125, 126]. This binding causes a conformational change thereby 

activating the enzymatic p110 subunit. PI3K is an intracellular lipid kinase which 

translocates to the membrane from the cytoplasm. Upon activation, it binds to and 

phosphorylates the 3’ hydroxyl group of the membrane bound phosphoinositol 4, 5 

bisphosphate (PIP2) to form phosphoinositol 3, 4, 5 trisphosphate (PIP3). PIP3 binds 

to proteins with plekstrin homology (PH) domains [127]. AKT, a serine/threonine 

kinase, binds to PIP3 through its PH domain and the kinase PDK1 phosphorylates 

AKT making it active. AKT has to be phosphorylated on both a serine and threonine 

residue to become fully active [128, 129]. Activated AKT phosphorylates and 

regulates many downstream signaling proteins that influence growth and survival 

[130]. For example, AKT promotes cell survival by the phosphorylation and 

inactivation of the pro-apoptotic protein BAD [111]. Phosphorylation of BAD 
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disrupts its interaction with the anti-apoptotic proteins Bcl-XL or Bcl-2 thereby 

antagonizing the pro-apoptotic BAX. Inhibition of BAX blocks cytochrome c release 

and hence apoptosis [131, 132]. AKT also promotes survival through the 

phosphorylation of forkhead transcription factor (FOXO) proteins by subjecting them 

to proteosomal degradation. Upon phosphorylation by AKT, FOXO proteins are 

retained in the cytoplasm and hence cannot promote the expression of pro-apoptotic 

genes [133]. AKT activation has been reported to be involved in the activation of 

mammalian target of rapamycin (mTOR) which in turn activates ribosomal S6 kinase 

leading to an increase in the transcription of pro-growth and anti-apoptotic genes 

[134, 135]. A schematic representation of this pathway is shown in Figure 4. 
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Figure 4: Schematic representation of the PI3K-AKT signaling pathway. 

Activation of the receptor by the ligand leads to the autophosphorylation of critical 

tyrosine residues and binding of the p85 subunit of PI3K through its SH2 domain and 

phosphorylation. Activation of PI3K phosphorylates and converts the membrane 

bound lipid PIP2 to PIP3 which binds and activates AKT. Activated AKT 

phosphorylates several downstream effectors including BAD, mTOR, FOXO 

regulating cellular proliferation, migration and apoptosis. 
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MAP Kinase Pathway: 

The Mitogen Activated Protein Kinase (MAPK) pathway was found to be an 

essential pathway promoting proliferation and survival of mammalian cells [136, 

137]. It is an important pathway that was found to be activated after c-kit stimulation 

in mast cells, melanocytes and hematopoietic cells [138-140]. Although c-kit 

activation can stimulate all four types of MAP kinases namely, ERK1/2, p38 MAPK, 

ERK5 and JNK, it is the ERK1/2 MAP kinase that has been studied extensively [141, 

142]. Studies in melanocytes, endothelial cells and hematopoietic stem cells have 

shown that SCF stimulated c-kit leads to the activation of the ERK1/2 kinase 

regulating vital cellular properties [37, 143]. The cascade of signaling events starting 

from the receptor activation are as follows. Ligand activated c-kit binds to the adapter 

protein Grb-2 which binds to the guanine nucleotide exchange factor (GEF) SOS. 

SOS interacts with the membrane bound protein Ras and catalyzes the exchange of 

Ras bound GDP against GTP. Activated Ras binds to several effector proteins 

including B-Raf and activates them. B-Raf activates the dual specificity kinase 

MEK1/2 which in turn phosphorylates and activates ERK1/2 [99]. Phosphorylated 

ERK1/2 in turn regulates several proteins downstream including retinoblastoma 

protein [144], ribosomal protein S6 [145], glycogen synthase kinase 3 (GSK3) [146] 

and microphthalmia associated transcription factor (MITF) [147] thereby regulating 

cell proliferation, survival, migration and development. A schematic representation of 

the MEK-ERK pathway is given in Figure 5. 
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Figure 5: Schematic representation of the MEK-ERK signaling pathway. 

Activation of the receptor by the ligand leads to the autophosphorylation of critical 

tyrosine residues and binding of the adapter protein Grb2.  The GEF protein SOS 

binds Grb2 and catalyzes the exchange of Ras bound GDP for GTP. Activated GTP 

bound Ras binds to and activates B-Raf which in turn phosphorylates and activates 

MEK1/2. MEK1/2 is a dual specificity kinase and phosphorylates ERK1/2 on its Thr 

and Tyr residues. Erk1/2 has a plethora of downstream effectors including Rb, MITF, 

c-fos and c-jun that are responsible for cell cycle regulation, survival and migration of 

cells. 
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Project Overview: 

With all the above evidences, it is clear that CPCs are a group of resident 

progenitor cells in the heart that is essential for cardiovascular regeneration both in 

animal models and in humans. Also, the activation of c-kit receptor is important for 

the proliferation, survival and migration of many c-kit positive cell types under steady 

state and stress conditions. Hence, in this work I focused on exploring the role of c-kit 

in regulating the different cellular characteristics of CPCs isolated from 

endomyocardial biopsy samples from the patients. I hypothesized that c-kit has a role 

in the proliferation, apoptosis, migration and differentiation of CPCs. In Aim I, I 

demonstrate that activation of the c-kit receptor with its ligand SCF promotes CPC 

proliferation, migration and reduces apoptosis under conditions of serum depletion. In 

Aim 2, with the use of specific pharmacological inhibitors, I demonstrate the 

involvement of the PI3K-AKT and MEK-ERK pathways in mediating the pro-

survival, pro-growth and chemotactic effects of SCF-c-kit axis in CPCs.  An overview 

of this work is depicted in Figure 6. 
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Figure 6: Schematic representation of the project: The goal of this project is to 

explore the role of c-kit in the proliferation, apoptosis, migration and differentiation of 

CPCs. Aim 1 tests the effect of SCF activated c-kit on the above cellular 

characteristics and aim 2 tests the involvement of PI3K-AKT and MEK-ERK 

pathways in mediating the SCF mediated cellular effects in CPCs. 
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CHAPTER II 

ROLE OF C-KIT IN THE GROWTH, MIGRATION AND DIFFERENTIATION OF 
HUMAN CARDIAC PROGENITOR CELLS 

 

Introduction: 

Cardiovascular diseases are the leading cause of morbidity and mortality in the 

Western World [148]. Myocardial ischemia or infarction that occurs due to 

compromised blood supply to the heart results in extensive tissue damage and loss of 

functional cardiomyocytes. This results in cardiac hypertrophy and ventricular 

dilatation contributing to heart failure with a poor clinical prognosis [149, 150].  In 

this context, several attempts have been made to regenerate the injured myocardium 

with the help of different stem/progenitor cell populations that are present exogenous 

or endogenous to the heart. Exogenous sources including hematopoietic 

stem/progenitor cells [91], embryonic stem cells [151] and induced pluripotent stem 

cells [152] have been used to regenerate the injured myocardium, although to a 

variable extent. Endogenously, at least seven different types of cardiac progenitor 

cells have been identified and used to regenerate the dead tissue of the myocardium. 

They are the c-kit+ CPCs, Sca1+ CPCs, side population (SP) cells, cardiosphere 

derived cells (CDCs), cardiac resident colony forming unit fibroblasts, cardiac 

mesangioblasts and Isl1+ cells [4, 7-19] [153, 154]. Among these cells, only two of 

them were tested clinically on humans. CADUCEUS trial injected autologous CDCs 

to patients with left ventricular dysfunction after myocardial infarction (MI)

and found that these cells are safe and capable of regenerating the infarcted 

myocardium [155]. In SCIPIO, intra coronary injection of patient derived c-kit+ CPCs 
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promoted cardiac regeneration in heart failure patients [6]. While the CDCs contain 

heterogeneous population of cells comprising of c-kit+ cells, CD90+ (Thy1) cells, 

endothelial cells (CD31+), endothelial progenitor cells (CD34+) that are negative for 

pan-hematopoietic marker CD45 [15, 156, 157], the SCIPIO trial injected only the c-

kit+ CPCs and found significant clinical improvement in the injected patients. The 

discovery of endogenous CPCs that has the potential to regenerate the injured 

myocardium opened new avenues of cardiac regenerative therapy. The use of CPCs in 

cardiac regeneration also led to the initiation of several studies aimed at finding 

methods and key proteins that are essential to optimize the efficiency of cellular 

transplantation. Although these CPCs provide excellent clinical improvement after 

transplantation, there are many challenges identified in the process. These cells have 

poor survival and nearly 95% of the cells viable at 5 minutes after injection are lost 

within a week after transplantation [34]. Also poor engraftment and homing of these 

cells are a major concern [34, 158-160]. A number of studies identified several 

cytokines, enzymes and signaling molecules and demonstrated enhanced survival and 

better homing of CPCs by targeting them [161, 162]. This area also intrigued us to 

find ways to improve the therapeutic outcome of CPC transplantation. In light of the 

essential role of c-kit in other cell types as discussed in chapter 1 of this manuscript, I 

studied the role of c-kit activation in regulating the growth, survival, migration and 

differentiation of CPCs. Even though studies on c-kit have established the antigen as a 

pro-survival, anti-apoptotic, mitogenic and pro-migratory agent in a variety of cell 

types [35-37, 40, 53, 163-165], the role of c-kit in CPCs remains elusive. Hence to my 

knowledge this is the first attempt to characterize the role of this receptor protein in 

the regulation of cellular properties in CPCs. 
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Materials and Methods: 

Isolation and culture of c-kit+ human cardiac progenitor cells 

Isolation and characterization of c-kit+/lin- human CPCs were done as 

described previously [7, 166]. Briefly, atrial appendages obtained from ischemic 

cardiomyopathy patients undergoing endomyocardial biopsy were enzymatically 

digested and cultured in complete growth medium (Ham’s F12 media containing 10% 

fetal bovine serum, 10 ng/ml bFGF [PeproTech], 0.005 U/ml human erythropoietin 

[Sigma], and 0.2 mM L-glutathione [Sigma]).  Media was changed every two days. 

MACS kit (Miltenyl Biotec) was used to enrich for c-kit+/lin- CPCs following the 

manufacturer’s instructions and as described previously [166]. Ham’s F12 media with 

0.2 mM L-glutathione was used as assay medium for all the experiments unless 

mentioned otherwise. 

 

Cell growth and viability 

Manual cell counting or PrestoBlueTM (Invitrogen) was used to assess cell 

growth and viability. For manual cell counting, approximately 50,000 cells were 

plated per well of a 24-well plate. CPCs were then serum starved for 24 hr and treated 

with or without 100 ng/ml SCF in serum free media. For bFGF and VEGF treatments, 

CPCs were incubated with 50 ng/ml bFGF (Peprotech) or 20 ng/ml VEGF 

(Invitrogen) either alone or in combination with SCF as indicated. After 3 days of 

growth factor treatment, cells were trypsinized and counted using a hemacytometer. 

For measurement of cell viability using PrestoBlueTM, 10,000 CPCs were plated per 

well of a 96-well plate. When indicated, CPCs were treated with 0.5 µM imatinib 

mesylate (Cayman Chemicals) for 2 hr prior to SCF treatment. PrestoBlueTM cell 

viability assay was performed 72 hr post-growth factor treatment according to the 
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manufacturer’s instructions. Briefly, the 10x reagent was mixed with an appropriate 

volume of serum free medium, added to the cells and incubated at 37 ºC for an hr. The 

viability was assessed by measuring the fluorescence at Ex/Em 560/590 nm.  

 

BrdU assay 

Approximately 10,000 cells per well were plated on a 96-well tissue culture 

plate. Cells were serum-starved for 24 hr followed by treatment with 20 µM BrdU for 

24 or 72 hr in the presence or absence of SCF in the assay medium. After BrdU 

labeling, cells were fixed and immunostained using anti-BrdU antibody (at 1 in 1,000; 

Sigma-Aldrich #B8434) and Alexa555-conjugated secondary antibody (at 1 in 1,000; 

Invitrogen). Images were captured using EVOS® FL Cell Imaging System (Life 

Technologies), and the BrdU-positive cells were counted manually.  

 

Caspase assay 

Apo-ONE® Homogeneous Caspase-3/7 Assay kit (Promega) was used to 

measure the caspase activity in CPCs according to the manufacturer’s instructions. 

Briefly, approximately 10,000 CPCs were plated per well. The next day, the medium 

was changed to serum free media or same media containing SCF. After 3 days of SCF 

treatment, the caspase activity in the cells was measured by adding the pro-fluorescent 

substrate and reading the fluorescence at Ex/Em 499/521 nm. The values were 

normalized to the untreated control.   

 

Oxidative stress by DMNQ and H2O2 

For DMNQ experiments, approximately 10,000 human c-kit+ CPCs per well 

were plated on a 96-well tissue culture plate. On the next day, cells were treated with 
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100 ng/ml SCF in serum free media. For the imatinib treatment groups, cells were 

treated with 0.5 µM imatinib for 2 hr prior to the SCF treatment. On the second day, 

CPCs were subjected to 8 µM DMNQ (dimethoxy-naphthoquinone; Sigma) treatment 

in the groups indicated. After 3 days of DMNQ treatment, cell viability was assessed 

using PrestoBlueTM. For H2O2 experiments, approximately 10,000 cells per well were 

plated on a 96-well tissue culture plate. On the next day, cells were treated with 100 

ng/ml SCF or 10 µg/ml insulin (Gibco) in serum free media. On the following day, 

CPCs were subjected to 0.5 mM H2O2 (EMD Chemicals) treatment for 1 hr. Cell 

viability was assessed 3 days later using PrestoBlueTM. 

 

Western blot analysis 

Cells were harvested with Laemlli buffer and heated for 10 minutes at 100 ºC. 

Protein concentration was estimated using bicinchoninic acid (BCA) assay kit 

purchased from Thermo scientific following manufacturer’s instructions. Before 

loading the samples on the gel, 3 µl of β-mercaptoethanol was added per 100 ul of 

sample and heated for 3 minutes at 100 ºC. Cell lysate (25 or 50 μg of protein) was 

loaded on 4-20% Tris-Glycine gel and separated by electrophoresis. The separated 

proteins were transferred to a PVDF membrane, blocked with 5% skim milk or 5% 

bovine serum albumin for 1 hr followed by probing with primary antibody overnight 

at 4 ºC. The blot was then incubated with HRP-conjugated secondary antibody for 1 

hr and developed using Amersham ECL Prime Western Blotting Detection Reagent 

(GE Healthcare). Primary antibodies used were anti-c-kit (1 in 500; abcam #32363), 

anti-phospho c-kit (Y703; 1 in 500; Cell Signaling #3073P) and anti-α-tubulin (1 in 

3,000; Sigma #T6074). 
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In vitro cell migration 

Boyden chambers containing transwells (24-well plate format) with 8 µm pore 

size were purchased from Corning. Typically, 30,000 – 40,000 cells were plated in the 

upper chamber of the transwell.  After 24 hr, the medium in the upper chamber was 

changed to assay medium and bottom chamber was filled with the same medium 

alone or medium containing 100 ng/ml SCF. For inhibition of c-kit activity, cells were 

pre-treated with 0.5 µM imatinib for 2 hr prior to the SCF treatment. After 24 hr, the 

cells migrated to the lower surface of the transwell membrane were fixed with 3.7% 

formaldehyde for 10 minutes, and the cells still remaining on the upper chamber were 

scraped off. The fixed cells were then permeabilized with 0.25% Triton X-100 in PBS 

for 10 minutes followed by incubation with 50 μg/ml propidium iodide solution for 

10-15 minutes. Images were acquired using EVOS® FL Cell Imaging System (Life 

Technologies), and the number of migrated cells was quantified using the NIS-

Elements (version 4.2) software. 

 

Clonogenicity assay:  

Individual cells were plated on a 96 well plate by limiting dilution method. 

Briefly, CPCs were diluted with appropriate volume of growth media to achieve 1 cell 

per 100 μl of medium and plated on a 96 well plate. Individual cells were screened 

and treated with 100 ng/ml SCF or left untreated. Medium was replacement every 5 

days and individual CPCs were followed up for 14 days for the formation of clones. 

The percentage clonogenicity was calculated from the number of individual cells 

tracked to the cells among them that formed clones.  
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Dexamethasone induced differentiation of CPCs: 

Approximately 100,000 CPCs were plated on a 12 well plate in growth media. 

24 hours after plating the cells, time 0 control (undifferentiated) was harvested with 

TRIzol following the manufacturer’s instructions. For the remaining cells, the media 

was changed to DMEM with 5% fetal bovine serum containing 10 nM dexamethasone 

or 100 ng/ml SCF or a combination of both or DMSO (control). Medium was 

replaced every alternate day up to 2 weeks (hCPCs) or 4 weeks (mCPCs) at the end of 

which the cells were harvested with TRIzol and stored at -80 0C until required. RNA 

was isolated from the samples stored at -800C using Qiagen’s RNEasy Mini Kit (Cat. 

74106) following manufacturer’s protocol and the concentration was measured using 

a nanodrop. 250 ng of RNA was used to perform cDNA synthesis using AffinityScript 

Multiple Temperature Reverse Transcriptase kit (Cat. 600105) following 

manufacturer’s instructions. Real-time PCR for different markers listed was 

performed with the harvested samples in a 10 μl reaction using the primers listed 

below, SYBR Green PCR master mix and Stepone Plus real-time PCR machine 

(Applied Biosystems). The results were analyzed using the Stepone software. 

 

Lentivirus production and transduction 

The lentivirus carrying mCherry or FLAG-tagged murine c-kit was produced 

by using the ViraPowerTM Lentiviral Expression System and pLenti6-V5 vector 

(Invitrogen) according to the manufacturer’s instructions. Virus was concentrated 

using the Lenti-X Concentrator (Clontech) and was stored at -80 ºC until its use. On 

the day of the experiment, CPCs were transduced with complete medium containing 

either mCherry or c-kit virus and 6 µg/ml polybrene (Sigma). On the following day, 
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the media was replaced with fresh complete media. Cells were cultured for 5 days to 

allow expression of mCherry or c-kit prior to being used for the experiments.  

 

Statistical analysis 

Statistical analysis was performed by Mann-Whitney U test using SPSS ver. 

17 software. Data are presented as mean ± SEM. SEM is an estimate of the precision 

of mean and often used in scientific studies. P value of <0.05 was considered as 

statistically significant. 

 

Results: 

c-Kit+ CPCs express functional c-kit receptors: 

First, I tested to confirm if human CPCs express functional c-kit receptors. 

Western blot analysis confirmed expression of c-kit in CPCs, and treatment of CPCs 

with the c-kit ligand SCF increased the level of tyrosine phosphorylation of the c-kit 

receptor (Figure 7). In addition, pre-treatment of the cells with the c-kit inhibitor, 

imatinib abolished the SCF-induced phosphorylation of the receptor as expected 

(Figure 7). This indicates that human CPCs express functional c-kit receptors that can 

be activated by its ligand SCF.  

c-Kit activation promotes growth and survival of human c-kit+ CPCs  

I then tested if SCF/c-kit signaling can act as a pro-growth or pro-survival 

pathway when CPCs are subjected to conditions of stress. I first examined if serum 

starvation could be an ideal condition to study the pro-survival or pro-growth effect of 

SCF by growing CPCs under different degrees of serum starvation in the presence or 

absence of the kit ligand SCF. I found that when CPCs are grown in conditions 

containing less than 10% serum, activation of c-kit increased the number of viable 
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CPCs compared to the untreated control (data not shown). I used serum free media for 

subsequent experiments to avoid the effect of known and unknown growth factors 

present in the serum which may influence CPC survival or growth. In the next step, I 

tested if c-kit activation could rescue the CPCs grown under serum starvation by 

treating them with or without SCF and measuring the cell number on each day until 5 

days post-SCF treatment (Figure 8A). Compared to the vehicle control, SCF treatment 

resulted in a significantly greater number of cells starting at day 3 and up to day 5. 

Moreover, the pro-survival or pro-growth effect of SCF on CPCs was dose-

dependent, and its effect plateaued at 100 ng/ml (Figures 8B and C). Hence, 100 

ng/ml concentration of SCF was chosen for all the subsequent experiments. Next, I 

compared the effect of SCF with those of other growth factors, including vascular 

endothelial growth factor (VEGF) and basic FGF (bFGF), either alone or in 

combination with SCF, in CPCs grown under serum starvation. Although the pro-

survival or growth effect of SCF was comparable to that of  bFGF in CPCs (Figure 

8D), I did not find any additional or synergistic effect when cells were treated with a 

combination of growth factors (Figure 6D), suggesting that they share similar 

downstream signaling pathways. To further confirm these findings, I overexpressed c-

kit (or mCherry as a control) in human CPCs using lentivirus and subjected the cells 

to serum starvation in the presence or absence of SCF (Figure 9A). As expected, 

overexpression of c-kit resulted in a further increase in the number of viable cells 

when treated with SCF (Figure 9B). Such effect was abolished by pre-treatment of 

cells with imatinib, the c-kit inhibitor, suggesting that the effect of SCF on CPCs is 

indeed mediated through c-kit receptor (Figure 9B). These results together indicate 

that SCF-mediated activation of c-kit enhance survival or growth of CPCs cultured 

under serum starvation.  
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Figure 7: Activation of c-kit by SCF in human c-kit+ CPCs. CPCs were either 

treated with SCF (100 ng/ml) alone for 10 minutes or co-treated with imatinib. Cell 

lysate was analyzed by Western blot for the indicated proteins. p-c-kit, 

phosphorylated (i.e., activated) c-kit (n=2). 
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Figure 8:  c-Kit activation promotes growth of human c-kit+ CPCs under serum 

starvation. A, The effect of SCF on cell growth. CPCs were serum starved for 24 hr 

and treated with SCF. The number of cells remaining was counted at the indicated 

time points (n=1). B, Dose-response relationship between SCF and CPC growth. 

CPCs were serum starved for 24 hr followed by treatment with varying concentrations 

of SCF, and the number of cells remaining after 3 days was determined (n=3). C, 

Representative DAPI nuclear staining images of SCF-treated CPCs described in panel 

C. D, Comparison of SCF with bFGF and VEGF in promoting growth of CPCs. CPCs 

were serum starved for 24 hr and treated with SCF, bFGF, or VEGF either 

individually or in combination, and the number of cells were counted on days 5 and 9 

of treatment (n=2). Values are presented as mean ± SEM. *, p<0.05.  
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Figure 9: c-Kit over expression further increases CPC survival under serum 

starvation.  A, Human c-kit+ CPCs were transduced with lentivirus expressing 

mCherry (control) or c-kit. Cell lysates were obtained at 4 days post-viral transduction 

and immunoblotted for c-kit and α-tubulin (loading control). B, mCherry or c-kit-

expressing CPCs were serum starved for 24 hr and cultured for 3 days in the presence 

(+) or absence (-) of SCF and/or imatinib as indicated. Cell viability was assessed 

using PrestoBlueTM as described. Values were normalized to the DMSO (vehicle) 

control (n=3). Values are presented as mean ± SEM. *, p<0.05. 
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c-Kit activation fails to rescue CPCs from oxidative stress  

I then tested if SCF can also prevent cell death induced by other stress 

conditions, such as oxidative stress, in CPCs. For this, CPCs were pre-treated with 

SCF for 24 hours followed by treatment with an oxidative stress inducer, dimethoxy-

naphthoquinone (DMNQ) or H2O2. Of note, DMNQ is a quinone that induces 

superoxide anion formation by redox cycling [167], whereas H2O2 undergoes Fenton 

reaction in the presence of iron and produces reactive oxygen species, causing cell 

injury and death [168]. As shown in Figure 10A, DMNQ treatment led to a significant 

decrease in the number of cells. However, pre-treating the cells with SCF failed to 

prevent the cell death induced by DMNQ treatment (Figure 8A). Correspondingly, 

SCF treatment of CPCs was not able to prevent or attenuate the cell death following 

H2O2-induced oxidative stress (Figure 10B). Similar results were obtained upon pre-

treating CPCs with varying concentrations of SCF ranging from 10 ng/ml to 200 

ng/ml (data not shown). In contrast, insulin pre-treatment (a positive control) was able 

to rescue CPCs from H2O2-induced oxidative stress (Figure 10B). Taken together, 

these results demonstrate that while SCF-induced activation of c-kit promotes survival 

of CPCs grown under serum depletion, it does not recue CPCs subjected to oxidative 

stress. 
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Figure 10: c-Kit activation does not rescue CPCs from oxidative stress. A, Human 

c-kit+ CPCs were pre-treated with SCF for 24 hr in serum free media and subjected to 

8 µM DMNQ treatment (n=2). B, Cells pre-treated with or without SCF received 1 hr 

treatment in 0.5 mM H2O2, followed by media change with or without SCF. Insulin 

was used as a positive control. Cell viability was assessed after 3 days using 

PrestoBlueTM. *, p<0.05 compared to the untreated control, #, p<0.05 compared to the 

H2O2 only control. NS, no statistical significance (n=2). Values presented are mean ± 

SEM.  
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c-Kit activation leads to increased proliferation of CPCs  

In order to test whether the observed increase in the number of viable cells 

was due to the mitogenic effect of SCF/c-kit signaling, I performed a BrdU labeling 

assay [169]. For this assay, I cultured the cells under serum starvation in the presence 

or absence of SCF and incubated them with BrdU for 24 hr starting at different time 

points. When compared to the control, SCF increased the BrdU labeling index in 

CPCs during days 2 and 3 of the treatment, suggesting that SCF treatment promotes 

proliferation in CPCs (Figure 11A). However, the difference between the two 

treatment groups did not reach statistical significance. Next, I treated the cells with 

BrdU continuously for 3 days with or without SCF. With continuous BrdU supply and 

SCF treatment, the percentage of BrdU-positive CPCs increased to 10.2 ± 3.9% (SCF-

treated group) from 3.9 ± 3.4% (untreated control group), significantly raising the rate 

of proliferation by more than 2-fold (Figure 11B). This demonstrates that SCF acts as 

a mitogen for CPCs under conditions that restrict their growth.  

 

c-Kit activation reduces apoptosis of CPCs under serum starvation. 

I then examined if SCF besides acting as a mitogen, can reduce apoptosis of 

CPCs grown under serum depletion conditions. For this purpose, I measured the 

activity of caspases 3 and 7 in CPCs after growing them under complete serum 

depletion for 3 days in the presence or absence of SCF. As shown in Figure 11C c-kit 

activation with SCF resulted in a significant reduction of caspase activity compared to 

the untreated control. Moreover, inhibiting c-kit with imatinib partially abolished this 

reduction in caspase activity (Figure 11C). These studies suggest that SCF dependent 

c-kit activation in addition to acting as a mitogen, also has an anti-apoptotic role in 

CPCs. 
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Figure 11: c-Kit activation induces proliferation and decreases apoptotic cell 

death in CPCs. Human c-kit+ CPCs were serum starved for 24 hr and labeled with 

BrdU in the presence or absence of SCF for 24 hr only for the indicated day (A, n=1) 

or continuously for 3 days (B, n=2). Cells were stained with anti-BrdU antibody, and 

the positive cells were expressed as the percentage of total nuclei. C, CPCs were 

grown in serum free media for 3 days. Activities of caspases 3 and 7 were measured 

and normalized to the untreated control (n=3). Imat – Imatinib. Values presented are 

mean ± SEM. *, p<0.05. 
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c-Kit activation promotes migration of CPCs 

For successful engraftment of the donor cells following transplantation, 

homing of the CPCs to the recipient myocardium and the injured area is required. 

Studies have shown that c-kit expression is important for the migration of several c-

kit+ cell types including melanocytes [52], human umbilical vein endothelial cells 

(HUVEC) [59] and germ cells [170]. Hence I tested if the SCF-c-kit axis contributes 

to the migration of CPCs. To test this, I implemented the Boyden chamber and used 

SCF as a chemo attractant. I found that SCF significantly promoted the migration of 

CPCs and was comparable to VEGF (Figures 12A and B), which has previously been 

shown to promote migration of CPCs [161]. To further confirm the result, I 

overexpressed c-kit in CPCs with mCherry as a control using lentivirus and performed 

the same migration assay. As expected, upon c-kit overexpression and SCF treatment, 

the number of migrated cells was further increased compared to the mCherry-

expressing control CPCs. Furthermore, inhibiting c-kit with imatinib abolished the 

pro-migratory effect of SCF/c-kit signaling observed (Figure 12C) suggesting that the 

chemotactic effect of SCF on CPCs are indeed mediated through the activation of c-

kit receptor. 

 

 

 

 

 

 

 

 



49 
 

B 

C 

A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

Figure 12: c-Kit activation promotes migration of CPCs. Boyden chamber assay. 

Human c-kit+ CPCs were plated in the upper chamber, and the indicated growth 

factors were used as a chemoattractant in the lower chamber. After 24 hr, the migrated 

cells were fixed, stained with propidium iodide, and counted. A, Comparison of the 

pro-migratory effect between SCF and VEGF (n=1). B, Representative images 

showing the cells migrated towards the indicated growth factors. C, CPCs transduced 

with lentivirus expressing mCherry (control) or c-kit were compared for their 

chemotaxis towards SCF in the presence (+) or absence (-) of 0.5 µM imatinib (n=3). 

Values presented are mean ± SEM. *, p<0.05. 
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c-Kit activation does not play an overt role in the differentiation of CPCs 

 One of the critical properties of stem/progenitor cells is their inherent ability to 

differentiate into cell types of multiple lineages [171]. It has been shown that c-kit+ 

CPCs are multipotent  and can differentiate in to cardiomyocytes, smooth muscle 

cells, fibroblasts and endothelial cells in vitro and in vivo [4, 5, 20]. I tested if the 

activation of c-kit contributes to the differentiation of CPCs (Figure 13). To test this, 

human CPCs were induced to differentiate with 10 nM dexamethasone (dex) 

treatment for 2 weeks and analyzed the expression of various endothelial (KDR), 

cardiogenic (Troponin-T, connexin-43, GATA4), mesenchymal/fibroblast (FSP1, 

DDR2, Vimentin) and smooth muscle cell markers (αSMA) (Figure 13A). We 

observed an increase in the mRNA expression levels of KDR and troponin-T in one 

sample (Patient 1) and DDR2 and FSP-1 in the other (Patient 2) when compared to 

the untreated control group. Also there was a decrease in the mRNA expression of 

other markers after two weeks of dex treatment. However, activation of the c-kit 

receptor with SCF did not significantly change the mRNA expression levels for most 

of the markers when compared to the untreated control group. As shown in Figure 

13A, the results were variable between biological replicates and in most cases did not 

reach statistical significance when compared to the untreated control. In order to 

account for the variability between biological replicates, our group also tested the 

activation of c-kit in the differentiation of mouse CPCs (Figure 13B). Interestingly, 

we found an increase in a number of cardiogenic markers including ANP, BNP, 

αMHC, βMHC, troponin-I and troponin-T, but other lineage markers did not change 

significantly compared to the untreated control. Also, adding SCF alone or in 

combination with dex did not additionally contribute to the differentiation of CPCs. 

Considering that dex treatment was not able to induce robust differentiation with both 
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human and mouse CPCs, my aim to test the contribution of c-kit activation to the 

differentiation of CPCs remains inconclusive.  

 

Activation of c-kit does not affect the clonogenicity and pluripotency of CPCs 

 c-Kit is widely known as a stem/progenitor cell marker but the contribution of 

c-kit activation to the clonogenicity and pluripotency of the stem/progenitor cells is 

not clear. To test this idea, first, I checked if c-kit activation can influence the 

clonogenicity of CPCs (Figure 14A). While we found that SCF dependent c-kit 

activation could promote the clonogenicity of CPCs cultured in the growth media 

containing 5% serum, the results were not reproducible. Similarly, my attempt to 

analyze the expression of pluripotent factors (Oct4, Nanog, Klf4, SOX2) upon c-kit 

activation did not yield significant results (Figure 14B). The expression of the 

pluripotent factors except for Klf4 at the mRNA level was undetermined. 

Additionally, c-kit activation or dex treatment did not change the klf4 expression 

significantly compared to the untreated control. In summary, my findings suggest that 

activation of c-kit does not affect the clonogenicity and pluripotency of CPCs.  
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Figure 13: c-Kit activation does not play a role in the differentiation of CPCs. 

Dexamethasone induced differentiation. A. Human c-kit+ CPCs were treated with 10 

nM dexamethasone (Dex) or vehicle (Untreated) or SCF or Dex+SCF continuously 

for 2 weeks and analyzed for the expression of different markers as indicated. B. 

Mouse c-kit+ CPCs were treated with 10 nM dexamethasone (Dex) or vehicle 

(Untreated) or SCF or Dex+SCF continuously for 4 weeks and analyzed for the 

expression of different markers as indicated. 
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Figure 14: c-Kit activation does not affect the clonogenicity and pluripotency of 

CPCs. A. Individual human c-kit+ CPCs in growth media with different serum 

concentrations were treated with vehicle (control) or SCF for 2 weeks and analyzed 

for clonogenic cells (n=2). B. Patient derived c-kit+ CPCs were treated with 10 nM 

dexamethasone (Dex) or vehicle (Control) or SCF or Dex+SCF continuously for 2 

weeks and analyzed for the mRNA expression of klf4, nanog, oct4 and sox2. Only 

klf4 was detectable (n=2). Values presented are mean ± SEM. *, p<0.05. 
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Discussion: 

In the study presented here, I have shown that activation of c-kit promotes the 

growth, survival and migration of CPCs cultured under serum deprived conditions. In 

addition, the data shows that the pro-growth/survival and pro-migratory effect is even 

more pronounced when c-kit is overexpressed and the same is abolished when c-kit 

activation is suppressed with imatinib. The results of this study imply that the SCF/c-

kit signaling pathway in CPCs can be exploited to overcome one of the major 

problems in the current field of cardiac cell therapy: poor survival and engraftment of 

the transplanted cells. 

Although this is the first study to establish the role of c-kit in the regulation of 

growth, survival and migration of CPCs, the present findings are consistent with 

previous studies that have emphasized the importance of c-kit activation in cardiac 

remodeling after MI. For example, a study by Xiang et al indicated that 

cardiomyocyte specific overexpression of SCF can enhance cardiac repair, heart 

function and the overall survival of the animal after myocardial infarction [172]. The 

overexpression of SCF in the cardiomyocytes significantly reduced cellular apoptosis 

in the peri-infarct area. The SCF overexpression was accompanied by a decreased end 

diastolic volume and better cardiac function compared to the control groups. 

Activation of the SCF-c-kit axis also attenuated MI-induced hypertrophy and 

significantly increased the capillary density in the peri-infarct area compared to the 

controls indicating that the pathway promotes angiogenesis and cardiac repair. 

Interestingly, SCF overexpression also increased the recruitment of endothelial 

progenitor cells in the peri-infarct area demonstrating the regenerative capacity of the 

activated SCF-c-kit pathway in an injured heart. Another study by Yaniz-Galende and 

colleagues substantiated the  above findings by demonstrating that  adenovirus-



57 
 

mediated gene delivery of the membrane-bound form of SCF to the myocardium can 

provide a long-term improvement in cardiac structure and function in an animal 

model of myocardial infarction (MI) by the recruitment of cardiac c-kit+ population at 

1 week post-MI  [173]. These reports support the findings of the study presented here 

and suggest an important role for SCF dependent c-kit activation in promoting the 

migration and survival of cells that are required for cardiac repair.  

The poor survival of the precursor cells can at least in part be attributed to its 

poor homing capacity affecting the outcome of transplantation cell therapy. Several 

factors may play a role in determining how efficiently the implanted cell can home to 

its intended target site. For example, migration of the cells can be affected by the 

route of administration of the cells.  Inefficient migration has been identified as a 

major problem especially when the cells are delivered via the intracoronary route, as 

cells must transverse through the endothelial barrier to enter into the interstitial space 

and migrate towards the infarcted area. In a recent study, our laboratory has shown 

that greater than 60% of the injected cells are lost during the first 5 min of 

intracoronary injection of CPCs [34], suggesting that the majority of the cells are 

immediately washed away by the coronary blood flow. Moreover, during the ensuing 

24 hour, greater than 85% of the cells remaining at 5 min are further lost [34]. Such 

rapid loss of the transplanted cells can be explained, at least in part, by inefficient 

homing and engraftment of the cells, which represents a major hurdle in the current 

CPC therapy. One of the findings in the present study is that activation of c-kit by its 

ligand SCF can stimulate migration/chemotaxis of human patient-derived CPCs. This 

implies that augmentation of the SCF/c-kit signal pathway represents an attractive 

mean to enhance CPC homing and engraftment in the context of cardiac cell therapy. 
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Previous studies have shown that the progenitor cells require a combination of 

cytokines for optimal growth. For example, a study by Lowry et al have shown that 

SCF in combination with colony-stimulating factor-1 (CSF-1), granulocyte CSF (G-

CSF), granulocyte-macrophage CSF (GM-CSF), interleukin -1α (IL-lα), and IL-3 

stimulated optimal colony growth of the murine hematopoietic progenitor cells [174]. 

In the same system, addition of SCF or the cytokine cocktail alone did not produce 

significant colonies suggesting that SCF has the ability to synergize with a 

combination of growth factors and stimulate the growth of the hematopoietic colonies 

[174]. Also in another study by Gabrilov et al, addition of SCF or basic FGF (bFGF) 

alone to myeloid progenitor cells did not promote its growth. But, when they are 

added in combination with GM-CSF, the growth of the progenitor cells was 

significantly increased. The effect was further enhanced when a combination of SCF 

and bFGF was added to GM-SCF further supporting the synergistic action of SCF 

with other growth factors [175]. Supported by the synergy of SCF in other progenitor 

cell populations, I tested if SCF has a combinatorial effect with bFGF or VEGF in 

augmenting the growth/survival of CPCs. The results of this study indicate that there 

is no additive effect of SCF with bFGF/VEGF in CPCs implying that these growth 

factors act through a common signal transduction pathway in CPCs. 

The findings of the present study demonstrate that activation of c-kit leads to 

increased proliferation and survival and induce migration/chemotaxis in human 

patient-derived CPCs grown under serum depletion. Serum starvation has been 

demonstrated to affect cell survival and growth by modifying proteins that regulate 

cell cycle and apoptosis. For example, culturing human ovarian carcinoma cell line 

under serum depleted conditions was found to arrest the cells in G1 phase of the cell 

cycle by the suppression of cyclin dependent kinases 2 and 4 (CDK 2, CDK4) that are 
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required to drive the cells from G1 to the S phase [176]. Interestingly, c-kit activation 

with SCF was found to release the cells from G1 arrest by upregulating the cell cycle 

protein cyclin D3 via the PI3K-AKT pathway [134]. The function of cyclin D3 is to 

phosphorylate and inactivate the retinoblastoma protein (Rb) that prevents the cells 

from progressing to the S phase [177].  In addition to arresting the cells at G1, serum 

starvation has been shown to induce apoptosis by enhancing the expression of pro-

apoptotic proteins BAX and PUMA [178] or by activating the apoptosis initiator 

protein, Ataxia telangiectasia mutated (ATM) [179]. In contrast, c-kit activation has 

been found to upregulate the expression of the anti-apoptotic proteins Bcl-2 and Bcl-

XL [180]. Bcl-2 functions to prevent the activation of the pro-apoptotic protein BAX 

thereby suppressing programmed cell death [181]. Though the presented study did not 

test the contribution of these effectors in the SCF-c-kit mediated survival/growth of 

CPCs, in support of the above discussed studies, it is tempting to speculate a similar 

mechanism is responsible for the pro-survival/growth response observed after c-kit 

activation in CPCs cultured in nutrient deprived conditions.  

This study also presents that in divergence to its role under serum deprivation,     

c-kit activation is not sufficient to rescue the cells that are subjected to DMNQ/H2O2 

induced oxidative stress. Studies in HSCs have shown that ATM and the Forkhead 

family of transcription factors (FOXO) are essential for the anti-oxidative stress 

response in progenitor cells. Loss of either of the proteins has been reported to cause 

accumulation of reactive oxygen species (ROS) resulting in a defective HSC pool 

leading to marrow failure [182, 183]. Moreover, the activation of certain signaling 

cascade like the PI3K-AKT pathway phosphorylates and inactivates FOXO 

transcription factors [184]. In light of the above reports, it is tempting to speculate that 

the activation of c-kit in CPCs inactivates the FOXO proteins through a similar 
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mechanism thereby suppressing the anti-oxidative stress response. When the cells are 

challenged with drug induced oxidative stress in addition to serum starvation, the 

inherent ant-oxidative stress mechanism may be overwhelmed and not sufficient to 

protect the cells. It is also possible that the SCF-c-kit signaling cascade may inhibit 

ATM thereby increasing the sensitivity of CPCs to drug induced oxidative stress.  

The cellular effects of c-kit activation upon SCF stimulation are produced by 

the dimerization and autophosphorylation of the receptor leading to the activation of 

signal transduction pathways that mediates the biological effects. The findings 

presented here invite an interesting question about the molecular pathways that are 

involved in mediating the pro-survival and chemotactic effects of SCF-c-kit axis 

which is addressed in the next chapter.  

In conclusion, with the results of this study it is evident that the activation of 

the c-kit receptor is involved in regulating proliferation, apoptosis and migration of 

CPCs. Targeting c-kit to manipulate the properties of CPC has the potential to lead to 

better treatment strategies and improve the therapeutic outcome of CPC 

transplantation. 

…………………… 
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CHAPTER III 

 
MOLECULAR PATHWAYS INVOLVED IN SCF-C-KIT MEDIATED HUMAN 

CARDIAC PROGENITOR CELL SURVIVAL OR GROWTH AND MIGRATION 
 

 

Introduction: 

The pleiotropic cellular responses of SCF dependent c-kit activation are 

mediated via the activation of multiple signaling pathways downstream. These 

pathways include the PI3K-AKT [119, 124], p38MAPK [138, 185], MEK-ERK [139, 

141], SFK [141, 186], phospholipase C [187] and JAK/STAT [126, 185] pathways. 

Among these, the PI3K-AKT and the MEK-ERK pathways often represent the major 

pathway activated upon c-kit stimulation in a wide variety of cell types [139, 188, 

189]. A detailed description of the PI3K-AKT and MEK-ERK pathways is given in 

the section under signal transduction discussed in Chapter I of this manuscript. 

Briefly, when the growth receptor is phosphorylated on their intracellular tyrosine 

domains after ligand binding the PI3K translocates and binds to the receptor directly 

or indirectly through the receptor substrates via the SH2 domain present in their 

regulatory subunit. This binding causes allosteric activation of the enzyme which 

leads to the phosphorylation of PIP2 to PIP3. As discussed earlier, PIP3 can activate 

AKT initiating the signaling cascade. Similarly, ligand activated growth receptor 

binds to the adapter protein Grb-2 which binds to SOS. SOS interacts with the 

membrane bound protein Ras and catalyzes the exchange of Ras bound GDP against 

GTP. Activated Ras binds to several effector proteins including B-Raf and activates 

them. B-Raf activates MEK1/2 which in turn phosphorylates and activates
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ERK1/2 initiating the signaling cascade [20]. 

Since the discovery of the c-kit receptor and its ligand SCF, several different 

gain of function mutations of c-kit that are associated with a number of diseases have 

been identified. A majority of these mutations involve the residues in the 

juxtamembrane region or in the second kinase domain [190]. For example, 

substitution of aspartic acid 816 (in humans) with valine (D816V) is a common gain 

of function mutation associated with c-kit. This mutation results in an increased 

kinase activity and constitutive phosphorylation on tyrosine residues independent of 

ligand binding, leading to cellular transformation [191, 192].  Several studies have 

reported that such gain of function mutation of c-kit cause constitutive activation of 

the PI3K-AKT and MEK-ERK pathways, contributing to uncontrolled proliferation 

and survival of the transformed cells [188, 193]. These pathways are not only 

involved in tumorigenesis but also found to be the key players in mediating the 

physiological functions in c-kit+ cell types. They are identified to play an important 

role in regulating the proliferation, migration and survival in melanocytes [36, 194], 

mast cells [139, 195], endothelial cells [59] and hematopoietic stem cells [196]. It has 

been reported that these two pathways are dependent on each other and the inhibition 

of the PI3K-AKT pathway leads to the inhibition of the MEK-ERK pathway, at least 

in melanocytes [120]. In the same cells, inhibition of these two pathways with 

pharmacological inhibitors has resulted in cellular apoptosis, indicating the 

indispensable role of the above two pathways in cell survival [120].  

The significance of the activation of any signaling molecule in a cell system 

can be elucidated using specific pharmacological inhibitors for the molecule. 

Similarly, pharmacological inhibition of the PI3K-AKT and MEK-ERK pathways can 

be used to analyze the involvement of these pathways in mediating the cellular 
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responses. In this study, I used Wortmannin the inhibitor of PI3K and PD98059 the 

MEK inhibitor to validate the participation of these two pathways downstream of c-kit 

activation. 

Wortmannin is a steroid metabolite isolated from the fungi Penicillium 

wortmannii [197]. It is a specific inhibitor of PI3K at the physiological pH [198]. A 

detailed description of the PI3K-AKT signaling cascade is given under the signal 

transduction section of chapter 1. Under physiological pH, Wortmannin binds 

covalently to p110 subunit of PI3K [198]. However, when the pH is increased to 8.5 

and beyond, it could also bind to the regulatory subunit. It was also found to bind non-

specifically to other related kinases at micromolar concentration. Substrates of PI3K 

like PIP2, ATP and ATP analogs were found to effectively compete with Wortmannin 

for their binding with PI3K, indicating that the binding of Wortmannin to the PI3K 

involves the ATP binding pocket. Site directed mutagenesis study by Wymann et al 

confirmed that the inhibition of PI3K by Wortmannin is mediated through the 

covalent modification of a critical lysine residue (Lys-802) involved in the transfer of 

phosphate moiety from ATP to the substrate of PI3K [198].  

As discussed earlier, activation of the MEK-ERK pathway requires the 

phosphorylation of ERK1/2 on a threonine and a tyrosine residue simultaneously, by 

MEK1/2, a dual specificity kinase [199].  MEK 1 and 2 are the two isoforms of MEK 

and share approximately 85% sequence similarity [200]. Dudley et al identified and 

demonstrated that the synthetic inhibitor, PD98059 [2-(29-amino-39-methoxyphenyl)-

oxanaphthalen-4-one], can effectively inhibit MEK1/2 thereby preventing the 

downstream activation of ERK1/2 and other substrates of the MEK-ERK pathway 

[201]. The effective inhibition of the MEK-ERK pathway resulted in the phenotype 

reversal of the transformed mouse fibroblast and rat kidney cells [201]. Studies have 
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shown that PD98059 is specific for MEK1/2 inhibition and it does not affect the 

kinase activity of ERK1/2 or other cellular kinases [201]. Mechanistically, it is a non-

competitive inhibitor of MEK1/2. Binding of PD98059 to MEK inhibits the 

phosphoryl transfer from ATP to ERK1/2 by an allosteric mechanism [201]. Such a 

non-ATP competitive mechanism was found to enhance the selectivity of this 

inhibitor over the ATP-mimetic inhibitors.               

Although the PI3K and the MAPK pathways are found to be important in 

mediating the downstream effects of SCF dependent c-kit stimulation in various cell 

types as discussed earlier, the role of these signaling pathways in regulating the 

survival, growth and migration of CPCs is completely unknown. Hence in this study, I 

tested if the pathways are activated upon c-kit activation and confirmed the 

involvement of these pathways in regulating the survival, growth and migration of 

CPCs using Wortmannin and PD98059. The findings of this study indicate that the 

PI3K-AKT and MEK-ERK pathways are activated upon c-kit activation and are 

essential for the survival or growth and migration of CPCs. A schematic 

representation of this chapter is given in Figure 15. 

 

 

 

 

 

 

 

 

 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Schematic illustration of chapter III. Activation of the c-kit receptor by 

the ligand SCF leads to the autophosphorylation of critical tyrosine residues and leads 

to the activation of the PI3K-AKT and MEK-ERK pathways, confirmed by Western 

blot analysis. Inhibition of either or both the PI3K-AKT pathway with Wortmannin 

(PI3K inhibitor) or the MEK-ERK pathway with PD98059 (MEK inhibitor) resulted 

in the suppression of survival and migration of CPCs after c-kit activation. 
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Materials and Methods: 

Western blot: 

Refer to methods and materials section in chapter II. Primary antibodies used 

were anti-c-kit (1in 500; abcam #32363), anti-phospho c-kit (Y703; 1 in 500; Cell 

signaling #3073P), anti-AKT (1in 1000; Cell signaling # 4691), anti-phospho AKT 

(Thr 308; 1 in 1000; Cell signaling # 13038), anti-ERK1/2 (1in 1000; Cell signaling # 

4695P), anti-phospho ERK1/2 (1 in 1000; Cell signaling # 4370P), alpha-tubulin (1 in 

3000; Sigma Aldrich # T6074). 

PI3K and MEK inhibitors 

Wortmannin and PD98059 were purchased from Cell Signaling Technology 

and used at 200 nM and 40 μM concentrations, respectively. For the Western blot 

analysis, CPCs were serum starved for 24 hours and pre-treated with the inhibitors for 

2 hr followed by 20 min of SCF (100 ng/ml) treatment. For the cell viability and 

migration assays, cells were pre-treated with the indicated inhibitors for 2 hours prior 

to being treated with SCF. 

 

Results:  

PI3K and MAPK pathways mediate the pro-growth and chemotactic effects of 

SCF/c-kit on CPCs 

A schematic representation of our experiments is given in Figure 16. First I 

examined if the PI3K-AKT and the MEK-ERK pathways are activated upon c-kit 

activation. I treated the CPCs with 100 ng/ml of SCF for varying duration from 5 

minutes up to 60 minutes and analyzed the changes in the phosphorylated (i.e., 

activated) AKT and phosphorylated ERK levels by Western blot. I found a significant 

increase in the level of phosphorylated AKT within 10 min after SCF treatment, while 
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the phosphorylated ERK levels increased as early as 5 min of SCF treatment (Figure 

17). These results suggest that both the PI3K-AKT and MEK-ERK pathways are 

indeed activated upon c-kit activation in CPCs. In order to understand the contribution 

of each of these pathways to the biological effects of SCF/c-kit signaling on CPCs, I 

utilized wortmannin, and PD98059 to inhibit the PI3K-AKT and the MEK-ERK 

pathways, respectively. As shown in Figure 18, Western blot analysis confirmed that 

both inhibitors were effective in down-regulating their corresponding pathways, 

indicated by a significant reduction in the levels of activated AKT or activated ERK 

in cells co-treated with SCF and the inhibitors. Interestingly, inhibition of the MEK-

ERK pathway also inhibited the PI3K-AKT pathway but not vice versa (Figure 18), 

suggesting that MEK-ERK pathway operates upstream of the PI3K-AKT pathway. 

As a next step, to test the participation of the PI3K-AKT and MEK-ERK 

pathways in the survival or growth and migration of CPCs, I pre-treated them with 

these inhibitors (i.e., Wortmannin and PD98059) either individually or in 

combination. While treating the cells with inhibitors alone did not affect their cell 

numbers, I found that the inhibitor pre-treatment abolished the pro-survival/growth 

effect of SCF when the CPCs were cultured under serum starvation (Figure 19A). I 

then tested if the pro-migratory effect of SCF is also dependent on PI3K-AKT and/or 

MEK-ERK pathways. While SCF alone stimulated cell migration (as shown earlier), 

pre-treatment of the cells with either one of the inhibitors or in combination, prior to 

the SCF treatment prevented CPCs from migrating towards the SCF gradient (Figure 

19B). These results strongly suggest that the PI3K-AKT and the MEK-ERK pathways 

are the major pathways that regulate both pro-survival/growth and migratory effects 

of c-kit activation in human CPCs. 
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Figure 16: Schematic representation of chapter III experimental approach. 

Investigating the mechanism of c-kit activation in mediating the survival, growth and 

migration of CPCs. A. Pharmacological inhibition of the PI3K-AKT and MAPK 

pathways. CPCs will be treated with inhibitors separately or in combination two hours 

before SCF treatment and harvested for cell viability assay at the indicated time point. 

B. CPC migration. CPCs will be treated with inhibitors separately or in combination 

two hours before adding SCF as a chemoattractant and the number of cells migrated 

are analyzed at the indicated time point. 
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Figure 17: SCF dependent c-kit stimulation activates the PI3K-AKT and MEK-

ERK1/2 pathways. Human CPCs were either untreated or treated with 100 ng/ml 

SCF for increasing duration. Activation of the pathways was determined by 

immunoblotting (n=1). 

 

 

 

 

 

 

c-kit 

p-c-kit 

Akt

p-Akt

5          10       20 30       45 60

SCF Treatment (min)

α-tubulin

Erk 1/2

p-Erk 1/2

U
n
tr

e
a
te

d



70 
 

 

 

 

 

Figure 18: Inhibition of the PI3K-AKT and MEK-ERK1/2 pathways with the 

inhibitors, Wortmannin (PI3K inhibitor) and PD98059 (MEK inhibitor). CPCs 

were pre-treated with the inhibitors for 2 hours followed by SCF (100 ng/ml) 

mediated c-kit stimulation for 20 minutes. Cells were harvested using laemlli sample 

buffer and immunoblotted (n=1). 
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Figure 19: Pro-survival and chemotactic effect of SCF was abolished by pre-

treatment with inhibitors. CPCs were serum starved for 24 hours and pre-treated 

with 200 nM Wortmannin (PI3K inhibitor) or 40 µM PD98059 (MEK inhibitor) for 2 

hours, followed by SCF treatment. A, The pro-survival effect observed under serum 

starvation upon SCF dependent c-kit stimulation was abolished with inhibitors pre-

treatment. Viability was assessed 3 days post-SCF treatment using prestoblue (n=3). 

B, 24 hours after plating CPCs on the transwells, they were pre-treated with the 

inhibitors for 2 hours followed by replenishing the media in the lower chamber with 

or without SCF. CPCs were fixed with 3.7% formaldehyde 24 hours later and stained 

with propidium iodide (n=2). C, Representative images of B. All values are 

normalized to the untreated control. All experiments were done in quadruplicates. 

Values are presented as mean ± SE. *, p<0.05 compared to the DMSO control, #, 

p<0.05 compared to SCF.  
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Discussion: 

Here, I identified for the first time the growth/survival and migration of CPCs 

are regulated by c-kit through the activation of the PI3K-AKT and MEK-ERK 

pathways. Firstly, I demonstrated the activation of the above two pathways after SCF 

mediated c-kit stimulation. Secondly, pharmacological inhibition of these pathways 

reduced the viability and chemotaxis of CPCs.  This indicates that the PI3K-AKT and 

MEK-ERK are the major pathways mediating the survival/growth and migration of 

CPCs upon c-kit activation. The findings of this study are well supported by the 

reports published by other investigators on the role of PI3K-AKT and MEK-ERK 

pathways in several c-kit+ cell types. For example, Haneline et al have shown that 

genetic inactivation of the regulatory subunit (p85) of PI3K affects the survival and 

proliferation of erythroid and myeloid progenitors [202]. The study reported that 

mouse fetal liver deficient in p85 had significantly lesser erythroid and myeloid 

progenitors compared to the wild type control. Additionally, upon stimulation with 

SCF, the p85 deficient progenitor cells were found to have a significantly lesser rate 

of proliferation when compared to the p85 sufficient cells [202], indicating the pro-

growth/survival effect of this pathway. Moreover, SCF treatment activated the MEK-

ERK pathway that was found to be essential for the proliferation and expansion of 

erythroid progenitors [203]. The study demonstrated that the treatment of serum 

starved erythroid progenitors with a combination of SCF and erythropoietin (Epo) 

induced activation of the MEK-ERK pathway, identified by immunoblotting.  

Furthermore, the SCF-Epo combination synergistically increased the number and size 

of the erythroid colonies. Inhibition of the MEK-ERK pathway with the MEK 

inhibitor PD98059 abolished the pro-growth effect of SCF-Epo combination further 

supporting the requirement of this pathway for erythropoiesis. Taken together, the 
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above results support the essential role of the PI3K-AKT and MEK-ERK pathways in 

regulating the survival/growth in progenitor cell population.  

Besides steady state conditions, SCF/c-kit signaling cascade is often activated 

and plays a vital role in various tissue injury conditions also [204-206]. For instance, 

Sun and colleagues have shown that SCF-c-kit axis is critical for the recruitment of 

progenitor cells to the injury site [204]. The authors introduced cryoinjury in a mouse 

brain model and observed a significant increase in SCF mRNA and protein levels at 

the injury site [204]. Microscopic analysis of the stained sections revealed that the 

induction of SCF expression occurred in the cells that are adjacent to the site of injury 

and the level of expression reduced with an increase in the distance from the injured 

area. The authors also established that SCF can induce the migration and recruitment 

of the c-kit+ neuronal stem cells in vitro and in vivo. Taken together, this study 

suggests a role for SCF-c-kit axis in mediating the migration of progenitor cells to the 

site of injury [204]. Corroborating the above findings, Lutz and co-workers showed 

that local intramyocardial injection of SCF improves myocardial homing of 

systemically delivered c-kit+ bone marrow-derived stem cells [11]. From the results 

of these studies, it is clear that SCF-c-kit signaling has an essential role in the 

mobilization and migration of c-kit+ progenitor cells to the wounded area and support 

regeneration [91, 207-209]. Interestingly, it was found that following cardiac injury, 

the membrane-bound form of SCF is cleaved by MMP-9 and released within bone 

marrow, facilitating the mobilization of bone marrow progenitor cells through the 

activation of c-kit [91, 95]. Adding more support to this notion, the mobilization of 

bone marrow-derived progenitor cells and their recruitment to the injured heart are 

severely compromised in the c-kit mutant   (Kit
W

/Kit
W-v) mouse [91], establishing that 

activation of c-kit is indeed necessary for homing of the bone marrow-derived 
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progenitor cells. In line with the above findings, the data presented here establishes 

that the SCF-c-kit axis induces the migration of CPCs by activating the PI3K-AKT 

and MEK-ERK pathways. 

In addition to its function as a chemotactic signal to recruit c-kit+ bone 

marrow progenitor cells, SCF also promotes adhesion of the recruited cells which is 

required for its homing to the injury site. For instance, activation of c-kit by SCF 

enhances the adhesion of c-kit+ bone marrow cells to fibronectin as well as to the 

activated vascular smooth muscle cells following vascular injury [208]. The adhesion 

was completely blocked by anti-SCF antibody. These observations suggest that 

SCF/c-kit signaling not only provides a chemotactic signal to recruit c-kit+ 

progenitors to the injury site, but also facilitates their engraftment. Although we have 

not examined whether activation of SCF/c-kit signaling can also promote adhesion of 

CPCs either to endothelium or injured myocardium, it is tempting to speculate that 

SCF/c-kit signaling also positively contributes to adhesion and engraftment of the 

transplanted c-kit+ CPCs to the injury areas in the setting of regenerative cardiac cell 

therapy.   

An interesting finding of the presented study is that the inhibition of the MEK-

ERK pathway also inhibited the PI3K-AKT pathway but not vice versa. This indicates 

that at least in CPCs, MEK-ERK functions upstream of PI3K-AKT. Although this is 

contrary to what was observed in melanocytes [120] where the inhibition of the PI3K-

AKT pathway with Wortmannin suppressed the activation of the MEK-ERK pathway, 

it supports the dependency of the pathways on each other and substantiates a similar 

role played by these two pathways in regulating the cellular responses in various c-kit 

positive cell types. While this study compared only the number of cells; treated and 

untreated with SCF; that survived at the end of 3 days in serum depletion conditions, 
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it has not tested the contribution of each of these pathways to CPC proliferation and 

apoptosis in particular. As this study evidenced the MEK-ERK pathway and the 

PI3K-AKT pathway shares a common signaling mechanism, it is very likely that the 

inhibition of one or both the pathways will equally affect growth and survival of 

CPCs. In order to confirm this, the proliferation and apoptosis of CPCs following c-

kit activation has to be measured after inhibition of the PI3K-AKT and/or MEK-ERK 

pathways. Also as discussed below it is essential to determine the downstream 

mediators of these pathways that are activated after c-kit stimulation to understand if 

any of them mediates predominantly a pro-survival or anti-apoptotic function.   

Although this study identified the involvement of the PI3K-AKT and MEK-

ERK pathway in regulating the migration, survival/growth of CPCs, the downstream 

effectors of either of the pathways are not explored.  Phosphorylation of AKT and 

ERK1/2 has been known to regulate a plethora of downstream mediators. For 

example phosphorylation of AKT on its serine and threonine residues regulates 

several proteins including pro-apoptotic proteins, Bcl-2-associated death promoter 

(BAD) [111] and FOXO [133], proteins that regulate protein synthesis like mTOR 

and ribosomal protein S6 kinase [134, 135], proteins that regulate cellular 

proliferation, migration, glucose synthesis like GSK3β [146]. Intriguingly, SCF 

dependent c-kit activation was found to phosphorylate and inactivate BAD in a PI3K-

AKT dependent manner, thereby preventing its interaction with the anti-apoptotic 

protein Bcl-2 [111]. Free Bcl-2 inhibits cytochrome c release and hence the caspase 

cascade thereby inhibiting apoptosis. Also SCF-c-kit axis has been indicated to 

promote the proliferation through the upregulation of the ribosomal protein S6 kinase 

(pS6K) via the activation of the PI3K-AKT pathway in germ cells [134]. pS6K 

induces the expression of the cell cycle regulating protein cyclin D3 and thus 
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promotes proliferation of cells. These evidences suggest that the pro-growth/survival 

effect mediated by the c-kit activated PI3K-AKT pathway in CPCs may involve one 

or more of the effectors mentioned above. Similar to AKT, ERK1/2 phosphorylation 

can regulate proteins such as the retinoblastoma protein (Rb) [210], microphthalmia 

associated transcription factor (MITF) [37], c-fos, c-jun, etc. For example ERK1/2, 

has been shown to phosphorylate and increase the activity of MITF which functions 

to regulate the expression of genes that are essential for the proliferation and survival 

of cells [211, 212]. Also treating the cells with SCF significantly upregulated the 

expression of MITF and hence the proliferation in mast cells supporting the pro-

growth effect of SCF-c-kit signaling. Altogether the above reports support the 

implication that these signaling molecules downstream of AKT and ERK1/2 

activation play a role in regulating cell cycle, protein synthesis and apoptosis in CPCs.  

Correspondingly, the migration of CPCs mediated by the PI3K-AKT and 

MEK-ERK can involve different downstream mediators. Migration studies in COS-7 

cells have shown that ERK1/2 phosphorylates and activates the myosin light chain 

kinase (MLCK) protein which in turn phosphorylates myosin light chain (MLC) 

[213]. Phosphorylation of MLC favors its interaction with actin promoting contraction 

of the cytoskeleton and cellular migration. Another study by Jeon et al has shown that 

SCF treatment of melanocytes can activate the PI3K-AKT and cause the 

phosphorylation of a group of proteins called ERM proteins (Ezrin, Radixin, Moesin) 

[194]. Phosphorylation of the ERM proteins is found to be essential in initiating actin 

polymerization and cell migration [213]. In light of the above reports, to have a better 

understanding of the SCF-c-kit mediated pro-growth/survival and chemotactic effects, 

it is essential to investigate the activation and specific role of these downstream 

effectors after the stimulation of the PI3K-AKT and MEK-ERK cascade. 
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In summary, I demonstrated that the PI3K-AKT and the MEK-ERK pathways 

are activated upon SCF dependent c-kit activation and play a role in regulating the 

survival/growth and migration of CPCs.  Biological function of these pathways 

activated upon c-kit stimulation in CPCs are inter dependent on each other with the 

MEK-ERK acting upstream of the PI3K-AKT.   

 

Conclusion and Future Directions: 

With the results of this study I demonstrated that c-kit with its ligand SCF is a 

key regulator of survival, growth and migration of CPCs. Although the study could 

not establish a relationship between c-kit activation and differentiation of CPCs, it 

informed that CPCs are partially differentiated by culturing them in the differentiation 

media for a longer duration and the dexamethasone dependent differentiation protocol 

has to be optimized to implement on CPCs. Mechanistically, my study also 

demonstrated the activation of the PI3K-AKT and MEK-ERK pathways downstream 

of c-kit activation and its vitality in promoting the survival/growth and migration of 

CPCs.  

The current data directs a series of future experiments that would aid in a 

better understanding on the role of c-kit and CPCs in cardiac regeneration. As 

discussed before, these cells provide significant therapeutic benefit besides their poor 

survival in vivo indicating a paracrine effect. It will be interesting to elucidate the 

release of any pro-growth/survival cytokines by CPCs and if the expression of c-kit 

has any role in regulating the secretory function of CPCs. As our laboratory has 

identified the expression of SCF by these cells (data not shown), it will be a wise start 

to ascertain the relationship between the expression of the c-kit receptor and its ligand 

to identify the presence of a feedback loop regulating their function. For this purpose, 
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the conditioned media in which the CPCs are grown can be collected and used to 

culture cardiomyocytes, smooth muscle cells, endothelial cells and fibroblasts 

followed by measuring their cellular properties. The concentrated and conditioned 

medium can be subjected to mass spectrometry to identify any released growth factor. 

Similarly, the contribution of the niche cells to the survival, growth and migration of 

CPCs is not known. To identify this, co-culturing CPCs with cardiomyocytes, 

endothelial cells or fibroblasts will be a useful system to recognize the existence and 

effect of juxtacrine and/or the paracrine signaling mechanisms exchanged between the 

cells on the growth and survival of CPCs. 

Constitutively active c-kit mutants have been implicated to cause uncontrolled 

proliferation in other c-kit positive cell types like the mast cells and HSCs [188, 214]. 

However, there is no information on the role of c-kit mutants in CPCs. As the 

presented study is the first attempt to characterize the role of c-kit protein in CPCs, 

future experiments to explore the role of c-kit mutants in the growth, survival and 

migration of CPCs may lead to methods optimizing the survival and/or growth of 

CPCs. For example, supposing the CPCs function through the paracrine effect, 

overexpressing the mutant c-kit may lead to more proliferation and prolonged survival 

of these cells in vivo enhancing the paracrine signaling. Also as mentioned earlier, it 

will be informative to analyze the induction of the pro-growth/survival effectors that 

are involved downstream of AKT and ERK using quantitative PCR and Western blot 

to delineate the specific role of each signaling pathway.  In the same line, exploring 

the key players of migration downstream of AKT and ERK, like the ERM proteins, 

MLCK will help to find mechanisms that synergize with SCF-c-kit axis.  

It is meaningful to check for the activation of other molecular pathways like 

the Src Family kinase pathway [124] and Wnt- β catenin pathways [173] that are 
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implicated to function in other c-kit+ cell types. Such an effort may lead to the finding 

of proteins that have more than one role in CPCs or that can be activated by more than 

one pathway. Also, discovery of other signaling mechanism in CPCs may guide to the 

discovery of growth factors that can synergize with SCF to further promote its cellular 

response. In the study presented here, I did not measure the ROS generation directly 

after serum starvation or drug induced oxidative stress. Designing experiments to 

measure the same in the presence or absence of c-kit activation will provide more 

information about the anti-oxidative role of SCF-c-kit signaling. Comparing the 

expression of different anti-oxidant enzymes like the catalase, superoxide dismutase, 

glutathione peroxidase in CPCs in contrast to other progenitors like the HSCs will 

help to identify the relative sensitivity of CPCs to oxidative stress induced by 

different ROS. Similarly, the deleterious effects and mechanistic aspects of serum 

starvation on CPCs can be tested by checking for the temporal expression of cell cycle 

and pro-apoptotic proteins with an increasing duration of serum depletion. 

It is critical to validate the in vitro findings of this study in an in vivo model. 

For this purpose, genetically engineered CPCs with low and high c-kit expression can 

be infused via the intracoronary and/or intramyocardial route in an animal model of 

MI. This will be followed by analyzing the growth, survival and migration of the 

infused cells at serial time points. Additionally, the regeneration of the injured 

myocardium, cardiomyogenesis, angiogenesis, functional improvement and survival 

of the animal in different groups can be compared. The results of the in vivo study 

will further corroborate c-kit as a target to promote the survival, growth and homing 

of CPCs leading to better treatment strategies. 
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