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Executive Summary

In the past two decades, macroeconomists have used panel data to study the merits of fiscal policy for

economic stabilisation. The datasets considered in these studies typically consist of a small number of time

series corresponding to countries. This configuration does not match with the archetypical survey-style panel

dataset for which a large literature concerning estimation and hypothesis testing exists. This PhD develops

an estimation methodology that is catered towards macroeconomists: in four self-contained chapters, we

develop a methodology for the estimation of dynamic models in the small N, large T framework in the

presence of cross-sectional dependence in the error term.

In the first chapter we examine the effect of factors on the point estimates of several commonly-used

estimators in the empirical literature and we find that these estimators are inconsistent. We also propose an

estimator that is consistent for the parameters for of the model studied in that chapter.

In the second chapter we develop consistent quasi-difference GMM estimators and inferential proced-

ures for the small N, large T dynamic panel data model with factor error structures. We also prove consist-

ency and mixed-normality of the estimator when the number of factors is over-estimated.

In the third chapter we consider the large N, large T framework and show the first eigenvalues of the

covariance matrix of an approximate factor model are dominated by the factors whereas the remainder is

controlled by the residual noise. We show that this result is the basis for any consistent inferential procedure

about R and continues to hold when R grows large, when the factors are weak and, importantly, in the large

N, large T interactive fixed effects model.

In the fourth chapter we study fiscal policy using the methods developed in the thesis. We estimate

vector autoregressions from European countries and restrict the impulse-response functions to adhere to the

Stability and Growth Pact. We find that this one-size-fits-all approach is not appropriate for stabilization of

the European economy.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

A number of studies have employed panel data methods in the fiscal policy literature in recent years. Ex-

amples of such studies include Ilzetski (2011), Ilzetski et al (2013), Bénétrix and Lane (2013) and Beetsma

and Guilidori (2010a, b, 2011). All these studies make use of econometric techniques that are designed

for microeconomic datasets with large cross-sectional (N) and small time (T) dimensions. However, when

considering country data, large N likely leads to significant cross-sectional heterogeneity because the fun-

damentals of the countries considered in the panel can differ substantially. For example, stabilization policy

in Finland, where government spending consists of approximately sixty percent of GDP, can be expected

to have different short and long-term effects than in the United States, where the corresponding figure is

closer to thirty-five. As a result, estimation results that impose slope parameter homogeneity in large N

country studies should be interpreted with caution and any efficiency advantages offered by a large dataset

can reduce the interpretability of the results when the dataset contains countries with very different charac-

teristics. In other words, careful selection of the countries combined in a panel data set is necessary for the

interpretability of the results a priori and this argument restricts the size of N.

A second particularity of many macroeconomic variables is that they share common effects when con-

sidering them as vector processes rather than individual series. Often, a large portion of the variability of

such a vector process can be modelled by a small and fixed number of unobserved variables and these unob-

servable variables are commonly referred to as factors (Bai, 2003). As an example, consider the traditional

Cobb-Douglas production function of a set of countries indexed by i = 1, . . . , N at time t:

yi,t = αki,t +(1−α) li,t +ui,t ,

in the above, yi,t is the logarithm of output, ki,t is the logarithm of capital, li,t the logarithm of labour, α is the

share of capital and ui,t is total factor productivity (TFP) particular to country i that is typically considered to

be random. For economically similar countries, i.e. those with similar levels of development, social welfare
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or as members of a monetary and/or fiscal union, it may then be reasonable to assume α is constant over

individuals and time (See, i.e., Barro and Sala-i-Martin, 1992). On the other hand, it seems unreasonable that

TFP is distinctly specific for each country at each t. Rather, for economically similar countries, it is likely

that TFP is instead a composite function of a common component and an individual specific component, i.e.

ui,t = λiFt + εi,t .

In this composite TFP representation, the vector Ft = [ f1,t , . . . , fR,t ]
′ consists of R variables which vary

over time and hit each yi,t with different intensity λi = [λ1,i, . . . , λR,i]. It is important to note that under this

specification, E (ui,tu j,t) 6= 0 and there is now cross-sectional dependence between the composite error terms

of countries i and j. We may think of the Ft as macro-shocks: they can be global business cycle events such

as financial crises that impact each country with different intensity, whilst the εi,t are shocks at the country-

level, for example the outcome of local elections or wage negotiations. As is customary in econometrics,

the ui,t are unobservable and estimation of α is now complicated by the unobservable Ft . The literature

has proposed alternative methodologies to account for factors and the approaches depend on the goal of the

study: in some studies, factors are introduced to capture variables that cannot be observed, and therefore

cannot be included directly in a regression model. In those studies, often an argument is made to use control

variables and whiten the regression residual ûi,t . In other studies, factors are used to reduce the curse of

dimensionality by reducing a vector of variables to one of lower dimension. Yet other authors take the

latter approach one step further and work only with the factor representation of data in an effort to combat

misspecification. In our opinion, the factor methodology provides a captivating way of dealing with the

problems of cross-sectional dependence, misspecification and unobservable variables found in traditional

economic time series.

In light of the above it is perhaps surprising that suitable estimation methods for small N, large T panels

are only sparsely developed and may further explain why workhorse macroeconomic techniques such as

vector autoregression (VAR) analysis are only rarely considered in a panel data framework. This in turn

suggests scope for the development of longitudinal methods designed specifically for macroeconomics, both

under the limitations of an acceptable homogeneity assumption and in the presence of unobservable factors.

The overall objective of the thesis is therefore to develop comprehensive estimation and inference pro-

cedures that can be applied to the parameters of the small N, large T dynamic panel data model with cross-

sectionally dependent errors. More specifically, in Chapter 2 we identify the problems with panel data

econometrics when factors are present in real data. We find that factors cause omitted variable bias in the

point estimates of certain popular estimators unless some very stringent assumptions are made. As a result,

we argue that empirical results based on panel data need to be interpreted with caution if no suitable ad-

justment is made for this omitted variable bias. A small Monte Carlo experiment shows that this bias can

be severely misleading, even pushing the coefficient estimate of a simple autoregressive model to unity and

thus falsely implying the presence of unit roots in the data.

In Chapter 3 we develop a comprehensive Method of Moments methodology that is robust to factor
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errors in dynamic models in the large T framework. We derive consistency and asymptotic normality of

the estimators, procedures to determine the correct number of factors and a battery of basic statistical tests

intended for the empirical researcher to apply to macroeconomic problems. This methodology is based on

the work of Ahn et al (2013) in the large N framework and the econometric theory developed in this chapter

offers formal justification for, and extensions to, results in that paper. Importantly, we derive a limit theory

for the estimator when the number of factors included in the procedure is too large. This limit theory shows

that inference about the slope parameters of the regression model remains valid even when the number of

factors is overestimated.

We then consider the problem of selecting the correct number of factors in large N, T models in Chapter

4. This is motivated by the fact that popular methodologies based on information criteria have only asymp-

totic justification and are known to be very imprecise in small samples. We instead focus on results from

Random Matrix Theory and apply these to the problem of selecting the correct number of factors in large

dimensional panel data models. Under the assumptions maintained in that chapter, the order of magnitude

of the eigenvalue distribution of the factors and the error covariance matrix differs. This fact can thus be

used to distinguish the eigenvalues related to the factors from the eigenvalues related to the usual residuals.

Furthermore, it allows us to place several consistent estimators of the number of factors in a class we call

“Scree plot” estimators. The chapter subsequently uses these arguments to determine the number of factors

in traditional factor models and interactive fixed effects models. It also shows that eigenvalue separation

continues to hold in so-called weak factor models and models where the number of factors goes to infinity

along with N and T under certain conditions.

The final chapter takes the methods developed in the thesis to the data and adds some new insights to

the fiscal VAR literature. More specifically, we provide a step-by-step description of how a panel data VAR

can be estimated in the presence of factor residuals. We then estimate three panel VARs from Eastern,

Southern and Western European panel data and identify structural shocks based on a new methodology

that incorporates both zero and sign-restrictions. The impulse-response functions of these VARs are further

identified to obey a structure with and without the Stability and Growth Pact imposed. With these results, we

contribute to the debate on the Stability and Growth Pact and its impact on the ability of fiscal stabilisation in

an environment where monetary policy is no longer catered to the needs of an individual country. Since the

content of Chapter 5 is applied macroeconomics, it is self-contained and includes a review of the empirical

literature on fiscal policy and its implications for economic growth.

The remainder of this introductory chapter is devoted to an extensive review of the econometrics liter-

ature related to panel data with cross-sectional dependence. There are several other reviews dealing with

cross-sectionally dependent data, such as Sarafidis and Wansbeek (2012) and Bai and Wang (2016); since

this thesis focuses on cross-sectionally dependent data with small N, large T, this review has a different

scope and it is intended to be complementary to the former reviews. Based on this review, we identify three

gaps in the literature which are as follows. First, whilst the consistency of conventional estimators has been

thoroughly examined in the case of large N and large N, T panel data models, consistency of conventional

estimators applied to the large T dynamic panel data model has not. This is problematic because several
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macroeconomists have employed such panel data methods anyway in recent years. Second, we conclude

that estimation of large T dynamic panel data with a small and fixed number of time series, i.e. countries,

cannot be directly undertaken with existing methodologies, although certain GMM estimators can be adap-

ted to the large T model. Third, even though determination of the number of factors is crucial for consistent

estimation of models with factor errors, the literature so far has focused only on determination of the number

of factors in particular types of models under very specific assumptions. As a result there is scope to make

a contribution to the analysis of the determination of the number of factors in other models.

1.2 Estimation of Models with Factor Errors

Model and Assumptions

Our review of the econometric literature is based on the following panel data model with multiple time-

varying effects:

yi,t = β
′xi,t +ui,t ; (1.1)

ui,t = λiFt + εi,t , for i = 1, . . . , N, t = 1, . . . , T,

where either N or T or both may be large depending on the context. In this thesis, we will refer to (1.1)

as an interactive fixed effects model. In model (1.1), yi,t is the dependent variable and xi,t is a P-vector

of regressors with representative element xp,i,t ; in macroeconomic models, we expect that xi,t will contain

lagged dependent variables. Furthermore, εi,t is an individual-specific disturbance term. The source of

the cross-sectional dependence is the interaction term λiFt in the composite error ui,t , which cannot be

observed: the vector Ft = [ f1,t , . . . , fR,t ]
′ consists of R variables which vary over time and hit each yi,t with

different intensity λi = [λ1,i, . . . , λR,i]. Throughout this thesis, the time series components will be referred

to as factors; the intensity parameters as loadings and their product as interactive fixed effects. Across the

literature, assumptions on the functional form and distribution of the λi and Ft vary and we purposefully

leave them unspecified to accommodate this, although with macroeconomic models in mind, we expect

them to be dynamic. Note further that we have not explicitly included a constant in model (1.1): this is

because, in our view, factor errors constitute a generalization of individual-specific constants. Clearly, a

constant can be included in Ft and as a result, the well-known individual-effects model is covered by model

(1.1) as a special case. Similarly, a time-effects component can be accommodated by setting λ1,i = λ1 for

all i = 1, . . . , N.

For now it is important to note that the λi and Ft are unobserved and estimation of β is thus complicated

by the presence of the factor structure, which has unknown dimension R. This is a classic omitted variable

problem, in the sense that if cov(xi,t , Ft) 6= 0, an OLS estimate of β will be inconsistent. If cov(xi,t , Ft) = 0,

OLS applied to (a transformation of) the data will be consistent and Generalized Least Squares (GLS) is

efficient. Much of the GLS literature dealing with factor errors is concerned with this specific setup, but we
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will ignore this specification because it is less general than when cov(xi,t , Ft) 6= 0.1 When cov(xi,t , Ft) 6= 0,

a particularly interesting problem arises for the theorist because the omitted variable will dominate the

variability of yi,t , particularly when N, T are large. Moreover, estimation techniques often depend on a

consistent estimate of Ft either implicitly or explicitly, which further complicates estimation, especially

when both dimensions of the data grow to infinity.

The fact that the interactive fixed effects are unobservable adds yet another complication: letting Λ =

[λ′1, . . . , λ′N ]
′and F = [F1, . . . , FT ], we have ΛF = ΛCC−1F for any invertible R×R matrix C. In other words,

there is an identification problem as a result of R×R free parameters in ΛF . These free parameters neces-

sitate the use of a normalization of the interactive fixed effects to achieve identification of any parameter

estimated from model (1.1). Bai and Ng (2013) discuss two such commonly used normalizations, although

one can conceive many more identification strategies. The first strategy consists of restricting FF ′/T = IR,

yielding R(R+1)/2 restrictions; a further R(R−1)/2 restrictions are imposed on (a function of) Λ. The

second methodology takes an R×R sub-matrix of either F or Λ and fixes this at IR. It is important to note

that such normalizations are only required for technical reasons and are generally immaterial for the inter-

pretation of estimation results. However, the adopted identification strategy does require being supported by

the data: for example, applying the second strategy is impossible if the sub-matrix designated to be fixed at

IR is singular and it is not difficult to envision similar objections to the first identification strategy in certain

contexts.

It is also important to note that if β = 0, model (1.1) collapses to a “pure” factor model:

yi,t =λiFt + εi,t , i = 1, . . . , N, t = 1, . . . , T. (1.2)

Such models further separate into (i) the strict factor model if cov(λiεi,t) = 0 and cov(Ftεi,t) = 0 and (ii) the

approximate factor model if cov(λiεi,t) 6= 0 and/or cov(Ftεi,t) 6= 0. Historically, model (1.2) has dominated

the attention of the literature and whilst this thesis is primarily concerned with model (1.1), in Chapter 4

we necessarily devote attention to model (1.2). Finally, a third generalization of (1.2) is the dynamic factor

model:

yi,t = λi (L)Ft + εi,t , i = 1, . . . , N, t = 1, . . . , T. (1.3)

where the “L” in (1.3) signifies a possibly infinite lag operator operating on Ft . In the remainder of this

review, we use model (1.2) to illustrate the evolution of estimation techniques capable of dealing with

parameter β in model (1.1) and the question of how to determine the dimension of Ft consistently. Moreover,

we mostly ignore model (1.3) in the remainder of this thesis, although we refer to the dynamic factor model

at various points because certain methodologies were initially designed for (1.3).

To make a meaningful comparison of existing estimation methods in what follows, it is necessary to

present a set of basic assumptions as a reference point and discuss estimation of β and subsequently R with

reference to these assumptions. Let c < ∞ be a generic constant that may differ depending on the context.

1See Sarafidis and Wansbeek (2012), section 4.1 for details.
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The following assumptions amalgamate those made in Bai (2003, 2009) and Moon and Weidner (2017):

ASSUMPTION 1: (i) R ≤ c, (ii) E ‖Ft‖4 ≤ c and T−1FF ′ →p ΣF > 0 and (iii) E ‖λi‖4 ≤ c and

N−1Λ′Λ→p ΣΛ > 0 for R×R matrices ΣF and ΣΛ.

ASSUMPTION 2: (i) let E (εi,t) = 0, E |εi,t |8 ≤ c for all i and t, (ii) let εt = [ε1,t , . . . , εN,t ]
′, ε =

[ε1, . . . , εT ]
′ and Ωε = plim

(
N−1εε′∨T−1ε′ε : Ωε > 0

)
and (NT )−1 tr(εε′) ≤ c, (iii) for all i, j, t and s,

plimT−1
∑

T
t=1 εi,tε j,s ≤ c and plimN−1

∑
N
i=1 εi,tε j,s ≤ c.

ASSUMPTION 3.1: εi,t is independent of Fs, λ j and xp, j,s for all i, j, p, s and t.

ASSUMPTION 3.2: (i) E
∥∥N−1/2

∑
N
i=1 εi,tλi

∥∥2 ≤ c and N−1/2
∑

N
i=1 λ′iεi,t →d N (0,V ) for all t and (ii)

E
∥∥∥(NT )−1/2 Fε′

∥∥∥2
and T−1/2

∑
T
t=1 Ftεi,t →d N (0,V ) for all i.

Assumption 1 states that the number of factors is finite and that the factors and their loadings have finite

fourth moments, in addition to requiring positive definite covariance matrices for either. This latter require-

ment implies (i) stationarity of the factors and (ii) that no factor can be written as a linear combination of the

others. In other words, the latter condition is analogous to ruling out collinearity of covariates in standard

regression theory. Assumption 2 is a set of moment conditions on the model error εi,t which permits weak

dependence in the cross-section and time dimensions. Assumption 3 is a composite assumption and the

choice of application depends on consideration of model (1.1) or (1.2). Assumption 3.2 permits weak cor-

relation between the errors and the factors and loadings and ensures an appropriate CLT applies depending

on the dimension of the data in the approximate factor model. For model (1.1), stricter assumptions are

required on the permitted correlation between the error and the (un-) observables for consistent estimation

of β and these are given in Assumption 3.1. Note that Assumption 3.1 implies strict exogeneity of the re-

gressors and the factors and loadings and this seems to be the maintained assumption throughout much of

the estimation literature dealing with interactive fixed effects models.

Estimation Methods

Inconsistencies in Traditional Estimators

Before we discuss estimators that are specifically designed to estimate model permitting some form of factor

structure, we note that there is a long tradition of investigating the consistency of more traditional estimators

under various conditions, both in terms of the specification of the model and the configuration of the panel.

Important contributions in this literature for dynamic panel data models are Nickel (1981) and Kiviet (1995),

who show that the Within estimator in the AR(1) panel data model is inconsistent for large N and fixed T

when individual-specific constants are present. These investigations have also spawned several studies into

the effects of cross-sectional dependence on the estimator β̂. Since this literature is generally concerned with

large N panel data models, in all cases, the model includes individual constants that give rise to so-called

“Nickel-bias.” For example, Phillips and Sul (2007) study the consistency of the pooled OLS estimator of

β in an autoregressive version of model (1.1) with R = 1 as N→ ∞ and N, T → ∞. In this paper, the factor
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is assumed to be i.i.d. over t; the loadings are i.i.d. over i and the εi,t are weakly exogenous, leading to

a simplification of our model (1.1). The conclusion is nonetheless that the factor error induces a random

inconsistency that does not vanish with N or T unless E (λi) = 0. Similarly, Sarafidis and Robertson (2008)

study the inconsistency of the instrumental variable (IV) estimator of β proposed by Anderson and Hsiao

(1981) in a stationary AR(1) model with an error structure that includes R = 1 autoregressive factor as

N → ∞. They find that the IV estimator is inconsistent and that the inconsistency cannot be eliminated by

using further lags to instrument the regressors. For some special cases however, they show that although this

operation cannot remove the inconsistency entirely, it can be reduced by cross-sectional demeaning of the

data at each t as long as E (λi) 6= 0.

Given that traditional estimators such as OLS, Within-Transformation and GMM estimators have been

found to be inconsistent in the presence of factor errors under large N or large N, T asymptotics, we believe

it is sensible to examine the consistency properties of such estimators in the fixed N, large T dynamic panel

data model. In Chapter 2 of this thesis, we investigate the inconsistency of the OLS, cross-sectionally

demeaned and CCE estimators with R = 1 in a dynamic panel data model. Whilst this model undoubtedly

is a simplification, we leave the factor process of (1.1) unspecified beyond a summability condition on the

autocovariance, thereby constituting a considerable generalization of some of the literature concerned with

inconsistencies of dynamic panel data estimators which assume the factor is white noise. As we will see, all

estimators under scrutiny are inconsistent in this regime unless some very stringent assumptions are placed

on the processes constituting the interactive fixed effect ΛF . As a result, these traditional estimators are

unsuitable for dynamic policy analysis using (fixed N) country data if factors are present.

Maximum Likelihood Estimation of Model (1.2)

From the presentation of the models in Section 3.1, it should be clear that (1.1), (1.2) and (1.3) are intimately

related. Historically however, the literature has focused on the estimation of pure factor models, i.e., model

(1.2) and the estimation of the remaining models constitutes a more recent development. Therefore, to give

a full account of the issues involved in estimating factor models, we start by reviewing classical and recent

methods for the estimation of model (1.2). In classical factor models, it is typically assumed that N is fixed

and that only T →∞ and solutions to this estimation problem go back to at least Anderson and Rubin (1956).

Estimation and inference are based on the following simplifying assumptions: ΣF = IR; Ft ∼ N (0, IR) and

that εt ∼ N (0, Ωε), see Anderson (2013), Anderson and Rubin (1956) and Lawley and Maxwell (1971).

Under these assumptions, yt = [y1,t , . . . , yN,t ]
′ is normally distributed with covariance matrix:

E
(
yty′t
)

: = Σ

= ΛΛ
′+Ωε

and the concentrated likelihood of the strict factor model is:

L (Λ, Ωε) =−N−1log
∣∣ΛΛ

′+Ωε

∣∣−N−1tr
[
Σ̂
(
ΛΛ
′+Ωε

)−1
]
,
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where Σ̂ = T−1
∑

T
t=1 yty′t . L (Λ, Ωε) is then jointly maximized with respect to Λ and Ωε. It should be noted

that the maximum likelihood (ML) estimators do not have an explicit solution and that iterative procedures

are required to find the corresponding estimators Λ̂, Ω̂ε. Now if it is further assumed that ΛΩ−1
ε Λ′ is diagonal

and Σ̂→p Σ, then it can be shown that Λ̂ and Ω̂ε are consistent, although a consistent estimate of Ft is not

available with fixed N. Furthermore, if
√

T
(
Σ̂−Σ

)
satisfies a CLT, then the ML estimators have a limiting

normal distribution.

An important generalization of the ML estimator is that normality in the errors or the factor component

is not necessary and non-normality can be accommodated by interpreting L (Λ, Ωε) as a quasi-maximum

likelihood (QML). For example, in the large N, T framework, Bai and Liao (2012) consider estimation of

a model with non-diagonal Ωε by QML using regularization of the covariance matrix. Similarly, Doz et al

(2011, 2012) model Ft are a finite-order vector autoregression and estimate a large N, T version of model

(1.2) using the Kalman Filter.

Principal Components Estimation of Model (1.2)

An alternative estimation procedure for model (1.2) to (Q)ML is the asymptotic principal components (PC)

estimator. Consider minimization of the following objective function:

Q(R) =(NT )−1
N

∑
i=1

T

∑
t=1

(yi,t −λiFt)
2

=(NT )−1 tr
[
(Y −ΛF)(Y −ΛF)′

]
, (1.4)

where Y = [y1, . . . ,yT ]. Under the normalization FF ′/T = IR, it can be shown that the estimate F̂ is equal

to
√

T times the eigenvectors corresponding to the R largest eigenvalues of YY ′ and Λ̂ =Y F̂ ′/T is the least-

squares projection on the estimated factors. The normalization FF ′/T = IR is useful when N > T and a

symmetric normalization and computation exists for Λ′Λ/N = IR when T > N. A convenient feature of PC

is that estimation is computationally less involved than ML because it only involves solving an eigenvalue

problem, which is straightforward on modern computers. Of course this does imply that the covariance

matrix of εt must now be estimated from residuals, requiring more moments of the error processes. For

fixed T and large N, Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986) prove that the

PC estimator of F is consistent up to a rotation and requires neither diagonal error components Ωε nor

cov(λiεi,t) = 0 and cov(Ftεi,t) = 0, i.e., a generalization to the approximate factor model. However, when

N, T → ∞ jointly, since (i) the smallest dimension of the panel now grows to infinity and (ii) the factors

and loadings are identified only up to a rotation H, proving consistency and normality requires non-standard

machinery. In this scenario, under Assumptions 1, 2 and 3.2, Bai (2003) proves that as N, T → ∞ and
√

N/T → 0, the PC estimator has the following limit distribution for each t = 1, . . . , T :

√
N
(
F̂t −HFt

)
→d N (0,VF) ,
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where VF is an estimable covariance matrix and H is the rotation matrix induced by the normalization

FF ′/T = IR. Instead if
√

N/T → c, for a constant c > 0,

T
(
F̂t −HFt

)
= Op (1) ,

which gives a rate on the consistency of the estimate of HFt . When instead
√

T/N→ 0, Bai (2003) further

shows that: √
T
(

λ̂i−λiH−1
)
→d N (0,VΛ) ,

for each i = 1, . . . , N and a covariance matrix VΛ. Similarly, if
√

T/N→ c,

N
(

λ̂i−λiH−1
)
= Op (1) (1.5)

for H following Λ′Λ/N = IR. These results should be interpreted as follows: whilst it is not possible to

estimate consistently the loadings and the factors, it is possible to estimate the factor-loadings space, which

is practically equivalent to the former for forecasting purposes as the following result shows. That is, as

N, T → ∞, regardless of the relative rates, the PC estimator satisfies:

min
(√

N,
√

T
)(

λ̂iF̂t −λiFt

)
→d N (0, 1)

and this is also the best possible rate, showing that consistency depends on the smallest dimension of the

panel (Bai, 2003). In terms of forecasting quality, Tanaka and Kurozumi (2012) present simulation evidence

suggesting that PC and MLE of pure factor models perform well even when N is small as measured by the

model coefficient of determination, thus offering no clear preference for either estimation procedure.

There are several extensions to the basic limit theory of the PC estimator: first of all, Bai and Ng (2013)

derive limiting distributions for other rotation matrices H and inferential procedures about the estimators

with the new identification strategies imposed. Second, Choi (2012) notes that the PC estimator is efficient

only if Ωε is a scalar multiple of the identity matrix and appropriately rescales Q(R) to accommodate non-

spherical errors to a “generalized” PC. Under certain restrictions on N and T, Choi (2012) shows that this

generalized estimator is more efficient than the ordinary PC estimator and has smaller forecasting errors.

Further limit theory extending instead the generating mechanisms of the model include estimation of a

factor model with non-stationary factors in Bai (2004); where R→ ∞ along with min(N, T ) in Li et al

(2017) using the normalization Λ/
√

R and weakly influential factors in De Mol et al (2008) and Onatski

(2012, 2015). In these latter papers, Assumption 1 is adjusted and the factor loadings are normalized such

NαΛ′Λ→ D, for a fixed matrix D. Onatski (2012, 2015) considers PC estimation of this model when α = 0

and finds that as long as the signal-to-noise is not too low, a consistent estimator exists. Similarly, de Mol

et al (2008) consider PC and Bayesian estimators for the model with 0 < α < 1. Both these papers however

restrict attention to the pure factor model and εi,t is assumed to be white noise over i and t. Finally, Forni and

Lippi (2001) and Forni et al (2000, 2004) present an estimation procedure for the dynamic factor model (1.3)
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by dynamic PC. This method is based on PC estimation of the eigenvalues of the spectral density matrix

Σ(θ) of (NT )−1YY ′ at each frequency θ ∈ [−π, π]. For the large N, T dynamic factor model, they show

that under certain conditions on the lag order L, the Dynamic Principal Components method of Brillinger

(1982) remains valid and can be used to filter the data matrix Y . Whilst the factors are assumed to satisfy

a version of Assumption 1 at each frequency θ, these authors assume strict exogeneity of the error process

with respect to the dynamic factors and εi,t is white noise, offering a trade-off in model complexity versus

permitted error assumptions.

ML Estimation of Model (1.1)

The development of the PC estimator for the approximate factor model also spurred results in the direction

of the interactive fixed effects model: realising that the residual of (1.1) constitutes an approximate factor

model, it is intuitive to first estimate β and then extract PC estimates of the factors and/or their loadings

from the covariance matrix of Û = [û1, . . . , ûN ]
′ , where ûi = [ûi,1, . . . , ûi,T ]

′ is the estimated residual vector

of the i-th individual. Following this procedure, Coakley et al (2002) propose augmenting a second-stage

regression of the yi,t on the Xi,t with the factors extracted from (NT )−1ÛÛ ′ in a first stage. However, whilst

this methodology is straightforward to implement, as Pesaran (2006) notes, if the regressors are correlated

with the factors and/or the loadings, it is not possible to consistently estimate the first-stage β, leading to

biased estimates of the factors and thus a biased second-stage regression as well. Bai (2009) presents a

consistent estimator of β in the presence of correlation between the factors and the regressors, for a model

with strictly exogenous regressors, factors and loadings. His estimator jointly solves (1.4) for the factors

and their loadings and the following least-squares estimator for β:

β̂IPC =

(
N

∑
i=1

X ′i MF̂Xi

)−1 N

∑
i=1

X ′i MF̂yi,

where Xi is a T × P matrix of regressors stacked over the time dimension; yi is a T -vector and MF̂ is

the orthogonal projection on the space of the estimated factors, which are obtained through PC applied to

(NT )−1ÛÛ ′. Numerically, this method is iterated from several starting points and for this reason we refer

to it as Iterative PC (IPC). Under Assumptions 1, 2 and 3.1 and the additional assumptions that ∑
N
i=1 X ′i MF̂Xi

has full rank and:

(NT )1/2
N

∑
i=1

X ′i MF̂εi→d N (0,V ) ,

for some variance matrix V, Bai (2009) shows that whilst the estimator for Λ and F preserve the distributional

properties of the PC estimator,

√
NT
(

β̂IPC−β

)
→d N

(
c1/2b1 + c−1/2b2,VIPC

)
, (1.6)
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as N, T → ∞ and T/N → c, where b1 and b2 are constant vectors and VIPC is a variance matrix. Thus,

although the estimator of β is consistent, it is not centred at zero when scaled with
√

NT if the errors admit

heteroskedasticity over i and t and/or auto- or cross-sectional correlation. Bai further shows that the estim-

ator is centred at zero only if either of these correlations is absent and in addition T/N → 0; If T/N → c,

Westerlund and Urbain (2015) show that the IPC estimator is biased regardless of any present error cor-

relations. Clearly, the consistency of the estimator depends crucially on the projection MF̂ , which in turn

depends on knowledge of R. As Bai (2009) points out (Remark 4), the
√

NT -consistency is obtained by

controlling the space of the factors and this suggests that over-estimating R should not affect the distribu-

tional result, although he does not produce theoretical support for this claim. The latter result is obtained by

Moon and Weidner (2015) who use eigenvalue-perturbation theory to show that the distribution of βIPC is

independent of the number of factors, as long as this number is no smaller than R.

The generalization to the inclusion of weakly exogenous regressors, e.g. lagged dependent variables in

Xi, is considered in Moon and Weidner (2017): these authors shows that a third bias term in the spirit of

Nickel (1981) enters the distributional result (1.6) additively, i.e. as c1/2b3. They replace Assumption 3.1

with a weak exogeneity assumption that conditions on the sigma-algebra generated by the interactive fixed

effects and the history of εi,t . Bai et al (2009) consider estimation of model (1.1) using a bias-corrected ver-

sion of the IPC estimator when the Ft and xi,t are (cointegrated) I (1) variables. Song (2013) further extends

the IPC estimator to dynamic models with heterogeneous slope parameters and obtains
√

T -consistency of

βIPC,i for each of i = 1, . . . , N sets of slope parameters as long as T/N2→ 0. Finally, Greenaway-Mcgrevy

et al (2012) stay closer to the method of Coakley et al (2002): these authors modify the IPC estimator by

projecting away not just the factors in ui, but also those in Xi. As they show, this approach gives consistency

of β̂ but also leads to more stringent conditions on the relative rates of N and T relative to which equation

(1.6) holds. In Chapter 4 of this thesis, we will see that in the selection of the number of factors in the in-

teractive fixed effects model, the dimension of the factor space corresponding to the Xi is indeed important,

particularly if the estimate of β is inconsistent.

Common Correlated Effects Estimation of Model (1.1)

An alternative approach to IPC for estimation of model (1.1) is the Common Correlated Effects (CCE)

estimator of Pesaran (2006). The CCE estimator makes, in our simplified notation, the following parametric

assumption on the xi,t :

xi,t = ΓiFt + vi,t , i = 1, . . . , N, t = 1, . . . ,T

where Γi is the P×R matrix of factor loadings corresponding to the Xi and vi,t a P-vector of corresponding

disturbances. Moreover, Pesaran (2006) considers both heterogeneous and common slope coefficient estim-

ators but we will only consider the latter for brevity.2 Pesaran endows λi and Γi with a random coefficient

2Pesaran (2006) also uses individual specific constants in both the xi,t and the yi,t . As we have argued before, our notation can
accommodate this by adding a unit-vector to Ft .
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assumption. These parametric assumptions imply that the system:

Yi,t :=

[
yi,t

xi,t

]
=

[
1 β′

0 IP

][
λi

Γi

]
Ft +

[
1 β′

0 IP

][
εi,t

vi,t

]
,

obeys an approximate factor model. Furthermore, under Assumptions 2 and 3.1, if E (εi,t) = E (vi,t) = 0,

this implies that the cross-sectional average of Yi,t at each t:

Y t :=N−1
N

∑
i=1

Yi,t =

[
1 β′

0 IP

][
λ

Γ

]
Ft +

[
1 β′

0 IP

][
εt

vt

]
:=DFt +op (1) when N→ ∞

can be used to proxy for the factor space. The averages can be modified to weighted averages subject to

some technical conditions. For practical purposes however, the simple average is the obvious choice in all

subsequently cited articles. Note that these proxies thus require large N and that no corresponding large-T

method exists. That is, the following projection:

Ft −
(
D′D

)−1 D′Y t →p 0, as N→ ∞. (1.7)

is valid as long as the rank(D) = R ≤ P+ 1. This condition implies that one must have at least R− 1

regressors to control for the factors using Y t . Furthermore, 1.7 combined with the Frisch-Waugh Theorem

suggests that a consistent estimate of β is available by augmenting a regression of yi,t on xi,t with Y t . The

(pooled) CCE estimator is then defined as:

β̂CCE =

(
N

∑
i=1

X ′i MY Xi

)−1 N

∑
i=1

X ′i MY yi,

where MY is the orthogonal projection on the cross-sectional averages at each t = 1, . . . , T using the gen-

eralized inverse of Y ′Y . Under Assumptions 1, 2 and 3.1 and in addition that the errors of xi,t and yi,t are

i.i.d. over i, Pesaran (2006) shows that as N, T → ∞ and T/N→ 0:

√
N
(

β̂CCE −β

)
→d N (0,VCCE) ,

where VCCE is a fixed matrix. It is important to note that this rate is slower than the corresponding rate of β̂IPC

although consistency of the estimator requires only N → ∞. If T is fixed however, the covariance matrix

VCCE depends on nuisance parameters and the bootstrap is required for inference about β̂CCE . Moreover,

when N, T → ∞, Pesaran claims that the rank condition on D is not necessary.

The basic CCE estimator requires independence of the εi,t and vi,t and several authors have analysed its

properties when this assumption is changed to weakly exogeneous regressors instead. For example, Harding

and Lamarche (2011) propose IV estimation based on the CCE estimator with endogenous regressors. De
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Groote and Everaert (2016) show that lagged dependent variables induce a Nickel bias in the fixed-T regime,

but that the CCE estimator remains consistent when both N and T are large. In De Vos and Everaert (2016),

a bias-correction procedure is proposed for the CCE that is valid for T fixed. A general distribution theory

for the CCE under weakly exogenous regressors, including lagged dependent variables, with N, T large is

given in Chudik and Pesaran (2013), whilst spatial correlation of the errors, but not cross-correlation of

the εi,t and vi,t , is considered in Pesaran and Tosetti (2011). Kapetanios et al (2011) prove consistency and

normality as N, T → ∞ when (some of) the Ft contain unit roots.

The CCE has subsequently received a lot of attention because (i) it is easy to compute and, in contrast

with IPC-based methods, apparently does not require knowledge of R when N, T → ∞. The estimator is

not without its criticism however: first of all, Westerlund and Urbain (2015) show that the CCE estimator is

actually biased when T/N → c under assumptions comparable to those presented here, as is the case with

β̂IPC. More crucially, Urbain and Westerlund (2013) show that the rank condition on D is more critical than

initially perceived by Pesaran (2006): if the rank condition is violated, an additional assumption is required

that rules out correlation between λi and Γ j for all i and j. This argument implies that one needs enough

regressors to control the factor space and, as a result, an estimate of R is at least implicitly required. These

authors further make the point that the CCE, under comparable assumptions as the IPC, can only allow for

more factors if more regressors are included in the regression equation and that these may not be available

or useful depending on the application under consideration. Compared to estimation through IPC, where

with enough data of a given set of regressors, one may just extract an additional principal component, the

requirement for the CCE may actually be more stringent. Karabyik et al (2017) also criticize the CCE for

use of the generalized inverse in MY . These authors show that the proof techniques on which the consistency

and normality of the CCE estimator are based are incorrect when P > R−1 because the generalized inverse

is not a continuous transformation of the data. They show that in this case additional bias terms persist when

T/N→ c, although consistency is unaffected whenever P = R−1 exactly, thus further stipulating the point

that the CCE does require (implicit) knowledge of R.

GMM Estimation of Model (1.1)

The fixed-T GMM literature has also spawned several consistent estimators of β in model (1.1). In the spirit

of designing well-behaved moment functions pioneered by Anderson and Hsiao (1981) and Arellano and

Bond (1991), these methods first transform the error ui,t to remove the factor structure. That is, one seeks a

matrix M such that

Mui = Mεi, i = 1, . . .N.

This transformation is known as quasi-differencing and the (T −R)×T matrix M depends on the context,

although the method assumes a transformation between time periods purges the error of the factor structure

at the cost of losing estimable equations. Furthermore, M will introduce additional nuisance parameters

required for the correction of the error ui and the dimension of these grows with R and T , so that the

method is not suitable for N, T large. In the current setup, these nuisance parameters will be (functions of)
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the Ft at each t = 1, . . . , T . As before, a normalization of the factor-loadings space is required to achieve

identification. Ahn et al (2013) use the following normalisation:

F =
[
F ′+, F ′−

]′ (1.8)

:=
[
F?′, IR

]′
.

As an example, consider the error term of model (1.1) with R = 1:

Mui =λi ( f+/ f−− f+/ f−)+(εi,+− εi,− f+/ f−)

:=[IT−1,− f ?]εi := Mεi, i = 1, . . .N.

where εi is partitioned conformably with F in the second line above. Note how M has removed the factor

structure but also introduced temporal dependence and reduced the dimension of the error, so that in this

example T ≥ 2 is required for the transformation to be possible. After transforming the error term, a suit-

able instrument vector zi correlated with xi but orthogonal to Mui at each i = 1, . . . , N is sought to form

moment conditions. Assuming an S-vector of strictly exogenous instruments at each t exists, we can form

the following moment conditions:

E (mi) := E (zi⊗Mui) = 0S(T−R)×1. (1.9)

It is then assumed that the empirical analogues of the moment conditions, appropriately scaled, satisfy a

Central Limit Theorem:

N−1/2
N

∑
i=1

(zi⊗Mui)→d N (0,V ) , (1.10)

where V is some full-rank matrix. Equations (1.9) and (1.10) imply that the parameter β may be recovered

by GMM. Letting φ =
[
β′, vec(F?)′

]′, a GMM estimator of φ solves:

QALS (φ|R) = argmin
φ∈Φ

[
N−1

(
N

∑
i=1

mi

)′
Ŵ

N

∑
i=1

mi

]
, (1.11)

where Φ is the parameter space of φ, Ŵ is a weight matrix and the residual vector ui is computed according to

(1.1) above. Ahn et al (2013) propose an algorithm to solve (1.11) in the case of strictly exogenous covariates

with homoskedastic εi,t which jointly solves for the parameter φ using an eigenvalue decomposition. Note

however that computing φ̂ as the minimizer of (1.11) with Ŵ1 = I and V̂ as the empirical variance of (1.10)

in a first step and then solving (1.11) again using Ŵ2 = V̂−1 also leads to an asymptotically efficient quasi-

difference GMM (QDGMM) estimator. Ahn et al (2013) argue that φ̂ is consistent and asymptotically

normal as N → ∞ by standard arguments in the GMM-estimator literature, although they do not formally

prove this proposition and use a different set of assumptions from Assumptions 1-3.1 above. Apart from
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a rank condition on the quasi-differenced gradient of E (mi) and the requirement that R < N, they assume

that (εi,t , xi,t |Λ) are cross-sectionally i.i.d. with finite fourth moments over i, allowing for random sampling

conditional on the interactive fixed effects. This i.i.d. assumption is not strictly necessary and, as long as the

conditioning argument holds, the errors can exhibit (weak) time-series correlation if this structure is known

or can be estimated. They further point out that the xi,t may be weakly exogenous, contain lagged dependent

variables and even unit roots with T fixed.

So far, the exposition has followed Ahn et al (2013), which is the most general version of QDGMM by

allowing estimation in the presence of R interactive fixed effects, although the methodology is by no means

new: for example Holtz-Eakin et al (1988) use the method to remove one interactive fixed effect from a

large N panel-VAR models; Nuages and Thomas (2003) consider dynamic panel data model estimation with

R = 1 by QDGMM and Ahn et al (2001) consider an efficient QDGMM estimator with R = 1, a special

case of Ahn et al (2013). Robertson and Sarafidis (2015) present an alternative Factor IV estimator (FIVE)

for the parameters of model (1.1) as N → ∞: instead of quasi-differencing the error term, they propose to

estimate the parameters of the following covariance structure

E (zi,tλi)Ft := δtFt

along with β at each t, so that ∆ = [δ1, . . . ,δT ] and δt = [δ1,t , . . . ,δR,t ]
′ and in our previous notation: φ =[

β′, vec(F)′ , vec(∆)′
]′.3 Using a normalization similar to Ahn et al (2013), they show that this Uniden-

tified FIVE is asymptotically equivalent to QDGMM because it exploits the same of information: where

the QDGMM deletes R estimating equations to remove the factors, the FIVE estimator instead estimates

additional parameters ∆, so that the degrees of freedom of both estimators are equivalent. Robertson and

Sarafidis (2015) further show that β̂ obtained from FIVE with normalization restrictions imposed has asymp-

totic distribution equivalent to an estimate without such restrictions imposed. How the resulting generalized

inverse of the unrestricted covariance matrix can have a non-degenerate distribution is not discussed how-

ever, which, for the same reasons as with the CCE above, is a problem that merits further exploration.

Furthermore, under the stronger assumption that E (λiεi,t) = 0 for each i and t, these authors also propose

an Identified FIVE which, by substitution of a constraint on ∆, yields a smaller estimable parameter vector.

As the exploited information remains the same as in the unidentified estimator but the parameter is of lower

dimension, it is easy to see that this I-FIVE is more efficient than FIVE and QDGMM. For this reason, the

authors further argue that I-FIVE is the most efficient in the class of estimators that make use of second

moments. Despite this, FIVE is also not without its problems: for example, Ahn (2015) argues that the

estimator of ∆ may not be consistent in the presence of cross-sectional heteroskedasticity over the individual

∆i, say. In that case, consistently estimating ∆i requires large T , thus inducing an incidental parameter prob-

lem which the QDGMM estimator is free of. Ahn (2015) also raises the concern that if F− in equation (1.8)

is a singular matrix and instruments are weakly exogenous, the spanning argument of equivalence between

restricted and unrestricted U-FIVE of Robertson and Sarafidis (2015) no longer holds. Whilst a consistent

3As with QDGMM, this method is only valid for fixed T , because the dimension of the parameter F diverges with T.
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estimate of β is still available, obviously the point estimate of δtFt in that case is inconsistent. However,

this argument is equally valid for the QDGMM estimator, suggesting that further research on the issue is

required.

The large N, T estimators of Bai (2009) and Pesaran (2006) generally require strictly exogenous covari-

ates for consistency and asymptotic normality. With dynamic panel data models in mind specifically, these

estimators therefore do not suffice unless a bias-correction approach is adopted which invariably depends

on knowledge of the structure of the inconsistency. Alternatively, taking a heterogeneous slope parameter

approach in the spirit of Pesaran (2006) or Song (2013) with a large N estimator will not do because there

is not enough cross-country data available to warrant such an estimation strategy and expect efficiency; nor

is a spanning argument parallel to equation (1.7) available with small N and large T. As a result, we take

the GMM-route in this thesis: in Chapter 2, we present a simple GMM estimator in the spirit of the CCE

that uses the razor-edge transformation of quasi-differencing with cross-sectional averages in the case of

a large T dynamic panel data model with a single factor, under the assumption that the data is stationary-

ergodic. In Chapter 3, we extend the QDGMM estimator of Ahn et al (2013) to the general fixed N, large

T dynamic panel data model with a multi-factor error structure. We show that the QDGMM approach can

be used to estimate models with homogeneous and heterogeneous slope parameters and provide a general√
T -consistency and asymptotic normality theory that requires (a) suitable mixing of the instrument-error

process, (b) independence of the factors and the errors and (c) fourth moments of certain underlying pro-

cesses. In line with the criticism of Ahn (2015) for the FIVE of Robertson and Sarafidis (2015), and as just

argued to hold equally for QDGMM in the paragraph immediately above, we provide a limit theory that is

in general a variance-mixture of normals whenever R̂ > R quasi-differences are used and normally distrib-

uted in the special case of when exactly R̂ = R quasi-differences are applied to the error. In either case, we

show that β̂ is
√

T -consistent but asymptotic normality of the (full) parameter vector φ̂ obtains only in the

latter. This mixed-normality of the QDGMM estimator is new to the literature and can be adapted straight-

forwardly to hold in the situation studied in the original paper by Ahn et al (2013). The mixed-normality

further implies that, if one is unsure about R, standard inference about β̂ remains valid as long as R̂≥ R. As

a tangent, our analysis also shows that the part of the Monte Carlo experiment in the original paper by Ahn

et al (2013) dealing with inference about β̂ is invalid because it ignores the impact of the estimated loadings

on the joint distribution of the random variable
√

N
(
φ̂−φ

)
and the mixed normality when R̂ > R.

1.3 Determination of the Number of Factors

Detecting Cross-Sectional Dependence

As we have seen in the previous section, in a model with factor errors, any consistent estimator of β depends

crucially on knowledge of R. However, a first step is to detect the presence of cross-sectional dependence.
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Sarafidis et al (2009) neatly summarize the problem with the following decision rule:

H0 : E (ui,tu j,t) = 0∀ t, i 6= j,

versus:

H1 : E (ui,tu j,t) 6= 0for some t and i 6= j.

The literature has spawned several tests that can be used to verify this hypothesis, for example the LM test

of Breusch and Pagan (1980):

LM = T
N−1

∑
i=1

N

∑
j=i+1

ρ̂
2
i, j,

where:

ρ̂i, j = ρ̂ j,i =
∑

T
t=1 ûi,t û j,t(

∑
T
t=1 û2

i,t

)1/2(
∑

T
t=1 û2

j,t

)1/2

is the Pearson correlation coefficient calculated from OLS estimates of ui,t . Under the null hypothesis of no

cross-sectional dependence, the statistic LM is distributed as χ2 {N (N−1)/2} as T → ∞ and N fixed and

diverges under H1. Similarly, Pesaran (2004) uses this test in the large N, T framework and shows that:

CD =

√
2T

N (N−1)

N−1

∑
i=1

N

∑
j=i+1

ρ̂i, j→d N (0, 1)

under the null hypothesis of cross-sectional independence. Pesaran (2004) shows that this test holds under a

variety of assumptions and model specifications and Monte Carlo simulations shows that the small sample

performance of CD is acceptable. However, note that Pesaran’s generalization will lose power when N is

large if (i) the λi are i.i.d. with mean-zero over i, or (ii) if the loadings are i.i.d. with unspecified mean and

time effects are added to the regression model.

Sarafidis et al (2009) propose a test for cross-sectional independence based on Sargan’s difference test in

the GMM framework with N→ ∞ and T fixed. For difference and system-GMM estimators, c.f. Anderson

and Hsiao (1981) and Arellano and Bond (1991), these authors specify two sets of moment conditions

using transformations of the data which hold under the null of no cross-sectional correlation. Under the

alternative hypothesis, only one of the sets of moment conditions hold so that the test has power against

the alternative. They show that standard J-tests and difference-in-J-tests follow a chi-squared distribution

under the null. To nest the tests in the null hypothesis however, these tests crucially rely on the assumption

that the instruments, i.e. lags of yi,t and xi,t , become cross-sectionally uncorrelated after demeaning these

variables over the cross-section. This requirement is equivalent to stating that cov(Λi, x j,t) = 0 for all i, j

and this seems a rather artificial additional requirement over Assumption 3.1. A simpler approach to testing

for cross-sectional dependence can instead be based on the fact that QALS (φ|R) is asymptotically distributed

as chi-squared with (S−R)(N−R) degrees of freedom. That is, one can easily test if the GMM estimator

with no quasi-differences rejects the null of no cross-sectional correlation, viz. acceptance of the test after
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estimating β with R̂ quasi-differences, holding constant the instruments in both setups.

Determination of the Number of Factors

After detecting the presence of cross-sectional dependence, a researcher has to make a decision on R: al-

though in certain cases the number of factors may be known, we expect that in general R has to be estimated.

There is now a large literature on consistent estimation of R particularly for large dimensional factor ver-

sion of model (1.2), yet there is very little on the same problem in the interactive fixed effects model (1.1).

The problem of determining R in a pure factor model goes back to Cattel (1966), who is credited with the

invention of the Scree plot.4 Cattel’s recommendation is that one should retain only the R̂ eigenvalues to

the left of the inflection point of the Scree plot. Of course, determination of R based on inspection of the

Scree plot is informal and subject to researcher scrutiny. However, as we will see in Chapter 4, this method

is nonetheless a consistent way of determining R in a factor model with both N and T large, although formal

proofs of the method are a much more recent phenomenon.

Under the assumption of a strict factor model with either N or T fixed, it is also possible to examine the

likelihood of a model with k and k+1 estimated factors and construct corresponding likelihood-ratio tests,

see Anderson (1984), Section 14.3.2. However, as is pointed out in Connor and Korajczyk (1993), such

tests depend too strongly on the normality assumption of the strict factor model and therefore may have

poor properties in practice. For the approximate factor model with T fixed, these authors instead assume

that the disturbance εi,t satisfies a cross-sectional mixing condition but is i.i.d. in the time dimension. They

then use a sub-sampling scheme to split their data and show that under the null of k factors, as N→ ∞,

CK = 2N1/2T−1
T/2

∑
t=1

N

∑
i=1

(
û2

i,2t − û2
i,2t−1

)
→d N (0,V ) ,

where the ûi,t are computed after subtracting k principal components from the data. Under the alternative

hypothesis, the statistic diverges to a positive constant. However, the problem with CK is that the support of

the normal distribution is unbounded and as a result, with T finite it is possible to give examples where the

influence of the k-th factor is not detectable using CK.

More recently the literature has cast its attention to the estimation of large dimensional factor models

and several authors have proposed consistent estimators of R in the approximate factor model (1.2). The

information criteria (IC) of Bai and Ng (2002) have proven to be a particularly popular method in empirical

work. Bai and Ng (2002) show that we can determine R consistently by minimizing:

R̂IC :


PCR̂ = argmin

k
Q(k)+ σ̂2kp(N, T ) ;

ICR̂ = argmin
k

log [Q(k)]+ kp(N, T ) ,

4The Scree plot is a graphical device that denotes the eigenvalues of a covariance matrix ordered from largest to smallest.
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where Q(k) is the objective function defined in equation (1.4), calculated using a generic number of factors

k; σ̂2 is an estimate of the model variance (NT )−1
∑

N
i=1 ∑

T
t=1 ε2

i,t and p(N, T ) is a penalty function that de-

pends only on N, T . The consistency of these IC follows from a result by Pötscher (1983), which links

the penalty function to the convergence rate of chi-squared random variables. Pötscher shows that ne-

cessary and sufficient conditions on the penalty function are, as N, T → ∞, that (i) p(N, T )→ 0 and (ii)

min(N, T )× p(N, T )→ ∞, where the latter condition is adapted to the large N, T framework following

Theorem 2 in Bai and Ng (2002). Provided that the penalty function satisfies these conditions, the res-

ulting probabilistic argument then yields a situation in which the probability of under- and overestimating

R converges to zero with the sample size. That is, the penalty function approximates the mean of the

chi-squared distribution as the significance level αT goes to zero with T . This machinery is remarkably

general and applied in virtually all circumstances of model selection to justify consistency of IC, for ex-

ample: ARMA-order selection in Pötscher’s original paper; rank estimation in Cragg and Donald (1997);

instrument selection in GMM models in Andrews and Lu (2001) and, indeed, determination of the number

of factors in Ahn, Lee and Schmidt (2014) and Robertson and Sarafidis (2015) in the large N, small T set-

ting. It should be noted that this consistency result is asymptotic and that any p(N, T ) satisfying Pötscher’s

condition is valid. In the paper of Bai and Ng, the penalty term is either (N +T )/(NT ) log [(NT )/(N +T )]

or (N +T )/(NT ) log [min(N,T )]. The logarithmic penalty originates from Schwarz (1978), where an IC

was derived as a second-order expansion to the likelihood of an AR model with uninformative prior. Note

that viz. the former arguments, in a factor model, this choice appears to be arbitrary other than that it

apparently works well in practice. However, especially with ICR̂, the log penalty does have a theoretical

justification in the sense that Q(k) is a scaled sum of min(N, T )− k chi-squared random variables under

the assumption of the strict factor model with unitary variances. Then, since the limit of exp [p(N, T )] as

specified in Bai and Ng (2002) is unity, the penalty function corresponds on average to the correct critical

value required for the removal of a chi-squared variable going from R to R+ 1 factors. When the strict

factor assumption does not hold however, this argument breaks down because Q(k) is now a non-central

chi-squared variable. This, together with the fact that any penalty function satisfying Pötscher’s condition is

consistent, is likely the reason why the performance of the IC of Bai and Ng (2002) is often found to be less

than satisfactory in Monte Carlo studies. This problem can at least in part be amended in the case where

max
(√

N,
√

T
)
/min(N, T )→ 0 by using the objective function of the Generalized Principal Components

estimator of Choi (2012) instead of (1.4), as the objective function of the Generalized Principal Compon-

ents is normalized to a sum of unitary variances. To our knowledge however, this strategy has not been

investigated further in the literature.

As an extension to the IC of Bai and Ng (2002), several authors have proposed group lasso algorithms

to determination of R in the approximate factor model. Hirose and Konishi (2013) present a group-lasso

estimator for fixed T , large N in the strict factor model but do not prove consistency of the method. For the

large N, T model, Caner and Han (2014) develop a group bridge algorithm that simultaneously estimates

the factor space and the number of factors. For the objective function (1.4) with normalization FF ′ = IR,
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their penalty function is of the form:

p(N, T ) =
ψ

min(N, T )

Rmax

∑
k=1

N−1

(
N

∑
i=1

λ
2
r,i

)c

,

where ψ is a constant and 0 < c < 1/2 that depends on the data. Note that this particular p(N, T ) is a

soft-threshold operator, forcing the loadings of the k-th factor to zero whenever a function of their norm is

less than ψ. Under Assumptions 1, 2, 3.2 and the additional regularity assumptions on the penalty term that

ψ/min
(√

N,
√

T
)
→ 0 as N, T → ∞ and ψ/min(Nc, T c)→ ∞ as N→ ∞, Caner and Han (2014) show that

the group bridge estimator satisfies (i) R̂→p R and (ii) that the estimated λr,i, λ?
r,i satisfy:

N−1∥∥λr,i−λ
?
r,i

∥∥2
= Op

[
max

(
N−1, T−1)] .

Comparing the above to equation (1.5), we see that estimation by the group bridge estimator preserves the

convergence rate of Bai and Ng (2002) when R is known, a manifestation of the so-called “oracle property”

of shrinkage-estimation. Presumably, by appropriately choosing ψ, the aforementioned problem with the IC

of Bai and Ng (2002) is alleviated, but it is not clear how the prescribed choice of ψ accomplishes this in

practice. Similarly, smudging of c by the researcher is possible.

Hallin and Liška (2007) provide an alternative solution to the unsatisfactory performance of the IC of

Bai and Ng: their key insight is that for any generic consistent IC, a correspondingly consistent IC can be

defined as:

IC = argmin
k

Q(k)+ kcp(N, T ) ,

where c is some constant. For the dynamic factor model (1.3), they show that R can be consistently estimated

by means of sub-sampling: using partitions of the data over N and T, they propose to conduct a grid-search

over c to find so-called “stability regions.” Such stability regions correspond to values of c where R̂ is

constant as measured by the empirical variance of R̂ over the sub-samples. Hallin and Liška show that the

first stability region beyond k = Rmax, for Rmax� R, corresponds to the true number of factors and Alessi et

al (2010) subsequently apply this method to the approximate factor model (1.2) but do not prove consistency.

As we will see in Chapter 4, there is a Random Matrix Theory argument to justify the method of Hallin

and Liška (2007) and several other authors have exploited a version of this argument to justify their estim-

ators of R. In these studies, Assumption 2 is replaced by an assumption that the model error is generated

as:

ε = G1/2uH1/2,

where, u is an N×T matrix consisting of i.i.d. random variables ui,t with variance σ2
u and bounded fourth

moments and G and H are (possibly random) matrices controlling cross-sectional and time series depend-

ence with finite maximal eigenvalues. Under these assumptions the eigenvalues of min
(
N−1, T−1

)
uu′ will

tend to the Marchenko-Pastur (1967, MP) distribution for which closed-form expressions are known, whilst
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the distribution of the eigenvalues of the general error process is not known. Letting ξ1 ≥ ·· · ≥ ξmin(N,T ) de-

note the eigenvalues of (NT )−1YY ′ ordered from largest to smallest, it can be shown that the contribution of

the error covariance matrix to the first R eigenvalues is negligible, whilst the remaining R+1, . . . , min(N, T )

eigenvalues are fully determined by the covariance matrix of the ε as N, T → ∞. Furthermore, under As-

sumptions 1 and 3 and the functional form of the error matrix ε replacing Assumption 2, it can be shown

that ‖ΛF‖2 = Op (NT ), whilst the ‖ε‖2 = op (NT ) as N, T → ∞. As we show in Chapter 4, this result de-

scribes the conditions under which the eigenvalues of a factor model exactly separate as originally foreseen

by Catell in the Scree plot.

Several authors have used this separation result to develop consistent estimators of R. For example,

Onatski (2010) adds the additional assumption that the eigenvalues of the matrices G and H satisfy non-

degenerate distributions with bounded support. Using this further assumption he shows that the distribution

of the eigenvalues of min
(
N−1, T−1

)
εε′ almost surely is non-degenerate and has bounded support. Since

the number of eigenvalues in the error covariance matrix is large, he argues that the distance between any

eigenvalue δ = ξk− ξk+1 for k = R+1, . . . , min(N, T )−1 should be stable in the error eigenvalues whilst

this distance diverges when k = R. Onatski then proposes an algorithm that can be used to estimate this cut-

off value δ based on OLS regression of a number of adjacent eigenvalues on the constant and the cardinality

of eigenvalues raised to a certain power. The algorithm consists of iterating the former OLS regression

starting at Rmax and stopping whenever:

R̂EDGE = argmax
k

{
k ≤ Rmax : ξ̂k− ξ̂k+1 ≥ δ̂

}
.

Onatski (2010) shows that this algorithm is consistent under the strong factor regime if Rmax/min(N, T )

→ 0 and Onatski (2012) argues that it may be consistent under a weak factor structure too. We note that it

is however not clear if the OLS regression estimate of the edge is consistent and Onatski does not motivate

it further than being based on the “square-root behaviour” of the eigenvalues at the edge of the support of

the spectral distribution. Irrespective of this caveat, the estimator is shown to perform well in Monte Carlo

studies under a variety of conditions on the factor process and the error process, although it is somewhat

sensitive to the implementation of the method as can be seen in the Monte Carlo studies in Ahn and Horen-

stein (2013), for example. These implementation issues are due to the choice of Rmax in the algorithm and

as a result the estimator can get stuck at some k > R.

Ahn and Horenstein (2013) also use the facts that ‖ΛF‖2 = Op (NT ), whilst the ‖ε‖2 = op (NT ) as

N, T → ∞ without making distributional assumptions on G and H to show consistency of the following
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tests:

R̂ER =argmax
k

{
ξ̂k/ξ̂k+1

}
;

R̂GR =argmax
k

 log
(

1+ ξ̂k/Q(k)
)

log
(

1+ ξ̂k+1/Q(k+1)
)
 , k = 1, . . . , Rmax.

Intuitively, both these tests operate on the observation that the ratio of the last eigenvalue of the factor matrix

to the first eigenvalue of the residual matrix will diverge, whilst all other ratios are expected to be constant.

Monte Carlo experiments show that these simple tests prove to be remarkably robust, although it is possible

to conceive examples where the tests do not work in finite samples: for example, if one or more factors have

extremely low or high variance so that the ratio tests explode at some k < R in finite samples. Similarly, it is

possible that the test cannot distinguish a maximal ratio at R when the signal-to-noise ratio is very low.

Consistent estimation of R is an area of ongoing research and we make several additions to this literature

in this thesis. In Chapter 3, we follow Ahn et al (2013) and Robertson and Sarafidis (2015) by showing that

IC based on the objective function (1.9) above are consistent for the QDGMM estimator applied to the large

T dynamic panel data model, with or without efficient weight matrices. We make the critical observation

that the problem is more complicated than just the determination of R and in fact entails jointly testing all

aspects of the GMM model. That is, in addition to the number of factors, also the validity of the regressors

and the included instruments. We show that this more general problem is however supported by the usual

consistency argument of IC. Moreover, Monte Carlo evidence verifies that especially IC based on Bayes

Criterion, albeit scaled with some data-dependent constant, have good finite sample properties. We also

show that rank tests as in Cragg and Donald (1993), Kleibergen and Paap (2006) and Al-Sadoon (2017)

can be fruitfully applied to obtain a consistent estimate of R. On the other hand, in Chapter 4 we abandon

the fixed N model in favour of the large N, large T model and explore determination of R in both models

(1.1) and (2.1) above. In that chapter we show that consistent estimation of R corresponds to the problem

of finding the elbow in the Scree plot. We show that this methodology is consistent under more general

circumstances than just the approximate factor model under Assumptions 1, 2 and the adjusted functional

form of ε above and derive formally eigenvalue separation phenomena in appropriately scaled weak factor

models and in a model where in addition to N, T , also R→ ∞ such that R/min(N, T )→ c. Moreover,

we show that the methodology of Hallin and Liška (2007) also fits in the class of estimators based on the

elbow of the Scree plot. We then present two new estimators of R and a Lasso-algorithm in the spirit of

Caner and Han (2014), that sets the constant ψ equal to a bound on the largest singular value of the error

covariance matrix (NT )−1
εε′, thus nesting the Lasso in the class of separation estimators rather than only

offering an asymptotic justification. Finally, we consider determination of R in the interactive fixed effects

model (1.1) with N and T large. To the best of our knowledge, this problem has been so far overlooked in the

literature and we show that eigenvalue separation continues to hold in this case, even when the estimate of β

is inconsistent. In that case, estimating R becomes equivalent to testing max(RY , RX), where the distinction
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depends on which of the xi,t and yi,t variables contain the most factors. Since many estimators of β are

consistent whenever R̂ ≥ R, this leads to an iterative testing procedure that will consistently determine R

regardless of whether the initial estimate of β is consistent or not.

1.4 Conclusions

As we have seen, the econometric literature has spent much attention on developing estimation and infer-

ential procedures for factor models and regression models with interactive fixed effects, particularly in the

large N and large N, T frameworks. On the other hand, whilst a number of macroeconomists have used panel

data to analyse fiscal policy inquiries, the consistency properties of traditional estimators in the presence of

cross-sectional dependence are not well understood in large T panels. This thesis is intended to begin and

fill this void: in the following three chapters, we first verify that traditional estimators of the parameters of

an interactive fixed effects model are inconsistent in the large T model; we present a comprehensive estim-

ation procedure for the dynamic interactive fixed effects model and develop several tests that can be use to

consistently estimate the number of factors both in the large N and large N, T models. In passing, we make

several contributions to the econometric literature and we mention the most important ones: first, the eco-

nometric theory of Chapter 3 verifies results anticipated in the original paper by Ahn et al (2013) in addition

to presenting some inconsistencies in that paper. Importantly, we show that inference about β̂ continues to

be standard if the number of factors is over-estimated. Second, in Chapter 4, we show that any consistent

estimator of R based on eigenvalue separation belongs in a class of estimators we refer to as “Scree plot

estimators.” In that paper, we also show that Scree plot estimators can be applied to the interactive fixed

effects model.
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Chapter 2

Fixed N, Large T Panel Data Estimation
with Cross-sectional Dependence

In this Chapter we study large T and sequential large T, N inconsistencies of parameter estimates

of several popular panel data estimators as a result of factor error structures in the data generat-

ing process. We show that common estimators in the empirical literature are inconsistent unless

very stringent assumptions are placed on the autocovariance of the factors and the covariance

of the factor loadings. We also present a consistent estimator based on quasi-differencing that

can be used to estimate a dynamic panel data model with a single factor in the error.

2.1 Introduction

Improved regulation of statistical bureaus around the world has aided the collection of macroeconomic time

series since the Second World War. As a result, macroeconomic models are increasingly estimated using

panel data in an effort to exploit efficiency advantages offered by large datasets. Important examples are

the studies of economic growth in Barro and Sala-i-Martin (1993) using a sample of 48 contiguous U.S.

states and Islam (1995) using the Summers-Heston dataset. More recently, Beetsma and Guiliadori (2011),

Bénétrix and Lane (2013) undertake panel data estimation to study fiscal multipliers and the stabilizing ef-

fects of fiscal policy in the European Monetary Union. Similarly, Ilzetski et al (2013) study fiscal multipliers

in sets of countries with relatively similar underlying fundamentals. In these latter studies, the number of

countries N, is fixed whereas the number of observations per country T, is large relative to the number of

countries. However, the estimators employed in these studies are designed for data with large N and fixed T

asymptotics, which raises concerns about the consistency of these estimators in these circumstances.

At the same time, phenomena such as global business cycles or preferences that vary over time are often

argued to be present in macroeconomic panels. When these phenomena are unobservable, they can lead

to cross-sectional dependence in the error and this is often modelled as a factor structure: in addition to

the usual equation-specific disturbance, a factor structure links individual cross-sectional equations by an
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unobserved process, albeit with different intensities. For example, in the Heston-Summers dataset, a shock

to the numeraire currency would affect all country-specific purchasing power parity measures with differing

intensity, as a result of proximity to, and trade with, the country holding the numeraire currency (Phillips

and Sul, 2003). When both the dependent variable and the regressors of a panel data regression are affected

by the factor, special attention is required to avoid inconsistency of the estimated regression coefficients.

There is a long history of studying the consistency of dynamic panel data estimators for models with

large N and fixed T, starting with Nerlove (1971): in that paper, simulation evidence is presented on the

bias of the coefficient estimates obtained by OLS, GLS and the Within estimator for a dynamic model with

correlated unobservable effects in both the time and cross-sectional dimension. Nickell (1981) presents

analytical results for the inconsistency of the autoregressive parameter obtained from the Within estimator

when N is large and T is small. Nickell’s results were extended by Kiviet (1995), who derives the bias of

the autoregressive parameter when T is small and obtains a bias-correction formula based on a second-order

expansion of the bias of the Within estimator applied to a model with correlated effects.

In recent years, several authors have investigated the inconsistency of a variety of estimators with specific

reference to the impact of cross-sectional dependence. For example, Philips and Sul (2007) derive the

inconsistency of the pooled OLS estimator for a dynamic panel data model under large N and fixed T

asymptotics when cross-sectional dependence is present, both with and without the presence of incidental

trends and/or unit roots. These authors model cross-sectional dependence as a factor structure consisting

of white noise loadings and factors and they conclude that cross-sectional dependence creates an additional

(random) source of bias in the OLS estimator. Similarly, Robertson and Sarafidis (2008) study several

popular IV and GMM estimators applied to a dynamic panel data model with individual-specific constants,

a single autoregressive factor error component and large N. They show that these estimators are always

inconsistent in this specification, regardless of the depth of the lags used as instruments in the moment

conditions of the model. Although the estimators are inconsistent, they suggest the bias can be reduced in

applications by using cross-sectionally demeaned data for estimation, provided that the mean of the factor

loadings is non-zero. Finally, Everaert and de Groote (2016) study the consistency properties of the Pooled

Common Correlated Effects (CCE) estimator of Pesaran (2006). The CCE estimator was originally designed

for static panel data models with cross-sectional dependence and these authors study the consistency when

the CCE estimator is applied instead to a dynamic panel data model with a single autoregressive factor

in addition to individual-specific constants. Under similar assumptions as Robertson and Sarafidis (2008),

they derive an expression for the inconsistency of the CCE estimator when T is fixed and show that this

inconsistency only vanishes when, in addition to N, also T passes to infinity.

Although cross-sectional dependence in the large N, fixed T (dynamic) panel data model has attracted

considerable attention, the same cannot be said for the fixed N, large T model. Motivated by the recent surge

in macroeconomic studies employing panel data, this paper analyses the consistency of several commonly

employed estimators in the large T environment. The estimators we consider are the pooled ordinary least

squares estimator (OLS), the OLS estimator with Time Effects (TE) and Pesaran’s CCE estimator. For these

estimators, we derive first-order asymptotic expansions of the inconsistency in both a static and a dynamic
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model as T → ∞ and T, N → ∞ sequentially. In each case, we find that bias stems from the variance

of the factor, the variance of the independent variable and the autocovariance of the factor. Furthermore,

analogously to the Within estimator in the large N panel data model, the bias is always proportional to the

variance (covariance) of the factor loadings if the model is dynamic (static). Based on these conclusions,

we find that these estimators are consistent only possible under very strong assumptions on the underlying

processes which are unobserved. Moreover, the direction of the bias cannot be predicted without further

knowledge of the underlying processes. These problems are serious and imply that if data is suspected to be

cross-sectionally dependent, estimation techniques other than the ones studied here have to be considered.

Several consistent estimators have been proposed for the factor error model with either large N or large N, T

asymptotics such as Bai and Ng (2003), Bai (2009) and Ahn, Lee and Schmidt (2014), but not for the large

T case with correlated cross-sectional effects. We therefore provide a simple consistent GMM estimator for

the small N, large T framework based on quasi-differencing the data.

The paper is organised as follows: In Section 2.2, we present a simple model and a set of basic assump-

tions comparable to those of Philips and Sul (2007), Robertson and Sarafidis (2009) and Everaert and de

Groote (2016). In Section 2.3, we derive asymptotic bias expressions for dynamic and static versions of the

model described in Section 2.2. In Section 2.4, we present a
√

T -consistent estimator that can be interpreted

as a restricted CCE estimator. Section 2.5 presents simulation evidence in support of the bias equations and

the consistency of the estimator of Section 2.4. Section 2.6 concludes. All proofs are in Appendix 2.1.

2.2 Basic Model and Assumptions

We consider the following dynamic panel data model with one additional covariate and one unobservable

interactive fixed effect:

yi,t = ρyi,t−1 +βxi,t +λi ft + εi,t , (2.1)

xi,t = γi ft + vi,t ,

where i = 1, . . . ,N and t = 1, . . .T . We assume that N is small and T is large, so that we work in the large

T asymptotic framework and initial conditions are negligible. The εi,t and vi,t are errors and the ρ, and

β are slope coefficients. The model contains one unobservable factor ft which we have purposefully left

unspecified. We view the factor structure as a generalization of the Fixed Effects model and we therefore

do not include an individual-specific constant in (2.1): such an effect would constitute a second factor with

zero temporal variation and this would unnecessarily divert attention from the problem at hand. The factor

enters into the i-th time series through the loading parameter λi directly and indirectly through γi and we

study the case of a single interactive fixed effect to avoid unnecessary complication of the derivations. To

focus on the impact of the interactive fixed effect we will set either ρ = 0 or β = 0 so that the model reduces

to a static or a dynamic panel data model with large T and fixed N.
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We make the following assumptions on process (2.1):

ASSUMPTION 1: { ft} is covariance stationary with E ( ft) = 0, E
(

f 2
t
)
= σ2

f and E
(

ft f|t−s|
)
= σ f ,s for

all s 6= t, with ∑
T
s=1

∣∣σ f ,s
∣∣< ∞ and σ f ,s > 0 for at least one s.

ASSUMPTION 2: The loadings are i.i.d. over i with E (λi) = µλ, E (γi) = µγ and finite (co)-variances

var(λi) = σ2
λ
, var(γi) = σ2

γ and cov(λi, γi) = σλγ.

ASSUMPTION 3: The εi,t and vi,t are (i) mean-zero i.i.d. with finite second moments σ2
ε , σ2

v and (ii)

independent of fs, λ j and γ j for all i, j, t and s.

ASSUMPTION 4: {yi,t} satisfies the stability condition |ρ|< 1.

Assumptions 1-4 are designed for macroeconomic applications where strict stationarity of the composite

process yi,t is deemed to be too strong. Assumption 1 imposes only mean-zero covariance stationarity with

absolutely summable autocovariances on the factor process. The requirement that at least one autocovari-

ance is non-zero avoids the trivial case where the OLS estimator is consistent with large T when β = 0.1

Absolute summability of the autocovariance process allows for convenient simplification of functions in-

volving the dynamic properties of the factor that aid the exposition. Similarly, the mean-zero assumption

is for convenience and weakening it does not substantially alter the results in what follows. The functional

form of the factor is further left unrestricted and can for example be moving average or autoregressive.

Assumption 2 states that the loadings are independently and identically distributed and that the loadings of

the xi,t and yi,t are finitely correlated. In analogy with the requirement that at least one autocovariance of

the factor is zero, the latter condition is required to avoid the case where OLS is consistent if ρ = 0 under

large N, T asymptotics. Furthermore, Assumption 3 requires that the εi,t and vi,t are mutually independent

i.i.d. with finite second moments across all i = 1, . . . , N and the εi,t and vi,t are independent of the factor and

the individual-specific loadings. These rather strong assumptions are imposed to avoid distracting from the

problem at hand, which is the impact of the factor on panel data estimation with large T. We could remove

the i.i.d. and zero-mean assumptions at the cost of higher moment conditions and more complicated deriv-

ations in what follows. Moreover, since yi,t is mean-zero by Assumptions 1-3, the Within Group estimator

of [β, ρ]′ is equivalent to the OLS estimator to first order. For that reason, the Within Group estimator is

not studied further in this paper. Finally, Assumption 4, is used to avoid unit-root asymptotics. Under the

requirement that yi,t satisfies the stability condition, with covariance stationary ft and i.i.d. errors over t, this

further implies that yi,t is also a covariance stationary process.

1But not efficient of course, one should use the GLS estimator.

35



2.3 Inconsistency of OLS, Time Effects and Common Correlations Estimat-
ors

It will be convenient to stack model (2.1) over the time dimension and write:

yi = ρyi,−1 +βxi +λi f + εi,

xi = γi f + vi,

where suppression of the time index now indicates T-vectors. We will analyse the inconsistency of three

estimators applied to the slope parameters of model (2.1) with either ρ = 0 or β = 0 as T → ∞ with N fixed

and as first T and then N → ∞, denoted as “T, N →seq ∞”. Let wi = xi ∨ yi,−1 depending on whether we

analyse a static or dynamic model; let α = β∨ρ depending on setting either ρ = 0 or β = 0 in model (2.1)

and let α̂(·) be the corresponding estimator. We will examine following estimators:

α̂OLS =
∑

N
i=1 w′iyi

∑
N
i=1 w′iwi

,

α̂T E =
∑

N
i=1 w̃′iỹi

∑
N
i=1 w̃′iw̃i

,

α̂CCE =
∑

N
i=1 w′iMyi

∑
N
i=1 w′iMwi

,

α̂OLS is the pooled OLS estimator, α̂T E is the cross-sectionally demeaned, i.e., Time Effects (TE) estimator

with ãi = ai−a, and a = N−1
∑

N
i=1 ai is the T-vector of cross-sectional averages of the matrix of time series

a. Finally, α̂CCE is the pooled CCE estimator of Pesaran 2006 with:

M = IT −Z
(

Z′Z
)−1

Z′,

where Z = [w, y].

Both the OLS and TE are widely used in empirical macro studies2 and as a result, obtaining expressions

of the inconsistency of these estimator in the presence of cross-sectional correlation is useful even in a simple

model such as (2.1). On the other hand, the CCE estimator of Pesaran was designed for static large N, T

data, but has been shown to be consistent for dynamic panel data models as long as N, T → ∞ sequentially

by Everaert and de Groote (2016). The CCE estimator exploits the observation that cross-sectional averages

proxy for the factors and can thus be used to project the factors from the estimator of α as long as the

number of factors is smaller than one plus the number of regressors. For example, under Assumptions 1-3

2Some recent examples include Bénétrix and Lane (2013) and Beetsma and Guiliadori (2010).

36



when ρ = 0

Z = [x, y]

= f
[
γ, βγ+λ

]
+Op

(
N−1)

:= f c+Op
(
N−1) .

We thus know a priori that the CCE estimator will be inconsistent for fixed N because of the Op
(
N−1

)
term which implies that the cross-sectional averages cannot proxy for the factor perfectly. Note however

that rank(c) = 1, so that the rank condition of Pesaran (2006) is satisfied. Finally, we have excluded the

Within Group estimator because a bias expression for that estimator would be equal to the bias of the OLS

estimator as there are no individual constants included in model (2.1) and E ( ft) = 0. We are now in a

position to analyse the inconsistency of all three estimators with first ρ = 0 and then β = 0 in (2.1) by means

of first-order asymptotic expansions.

Inconsistencies of β̂ when Model (2.1) is Static

Inconsistencies arising from cross-sectional dependence have serious consequences for applied work: since

interactive fixed effects are unobservable, a practitioner may fail to detect the effects and adequately correct

for them. As a result, it is not possible to conduct valid inference on the estimated model in the presence

of cross-sectional dependence. To understand the nature of such asymptotic biases in applied work, and to

understand exactly what assumptions may be required on the nature of cross-sectional dependence, we now

present expressions for the inconsistencies as propositions when ρ = 0 in model (2.1):

PROPOSITION 2.1. Inconsistency of OLS in Static Model: Under Assumptions 1-3, the inconsistency

of the OLS estimator with ρ = 0 is:

plim
T→∞

(
β̂OLS−β

)
=

σ2
f N
−1

∑
N
i=1 λiγi

σ2
f N−1 ∑

N
i=1 γ2

i +σ2
v

and the sequential limit is:

plim
T,N→

seq
∞

(
β̂OLS−β

)
=

σ2
f

(
σλγ +µλµγ

)
σ2

f

(
σ2

γ +µ2
γ

)
+σ2

v
.

The OLS estimator is inconsistent when ρ = 0 under cross-sectional dependence as long as (i) the dependent

and explanatory variables are correlated with the interactive fixed effect and (ii) the limits of N−1
∑

N
i=1 λiγi,

N−1
∑

N
i=1 λi and N−1

∑
N
i=1 γi are non-zero. The first source is the usual omitted variable bias: the economet-
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rician cannot observe the properties of the interactive fixed effect and therefore does not correct for them

appropriately. The second source of the inconsistency follows from the fixed effect portion of the interactive

fixed effects: even if the factor has zero variance but instead consists of a vector of ones, the numerator

consists of the sum of the product of the i factor loadings of the dependent and independent variables. When

N is small and fixed, even if this covariance is indeed zero in addition to the means, any realization of the

quantity N−1
∑

N
i=1 λiγi is equal to zero with probability zero for any continuous probability distribution and

this subsequently results in inconsistency of the OLS estimator. Only under the assumption of zero correla-

tion between the loadings of the dependent and independent variables and zero means of the loadings would

the OLS estimator be consistent when N is large in addition to T. Do note however that the magnitude of the

bias is negatively related to the variance of vi,t : the larger σ2
v is relative to σ2

f , the smaller the bias will be.

Similar conclusions follow for the TE estimator:

PROPOSITION 2.2. Inconsistency of TE in Static Model: Under Assumptions 1-3, the inconsistency

of the TE estimator with ρ = 0 is:

plim
T→∞

(
β̂T E −β

)
=

σ2
f N
−1

∑
N
i=1

(
λi−λ

)
(γi− γ)

σ2
f N−1 ∑

N
i=1 (γi− γ)2 +(1−N−1)σ2

v

,

and the sequential limit is:

plim
T,N→

seq
∞

(
β̂T E −β

)
=

σ2
f σλγ

σ2
f σ

2
γ +σ2

v
.

The inconsistency of the TE estimator with ρ = 0 is very similar to the inconsistency of the OLS estimator

and equal whenever µλ and µγ are identically equal to zero in the sequential large T, N-case. Of course, if

either the λi or γi or both are constant over i, then the TE estimator is consistent.3 Moreover, the direction of

the inconsistency depends crucially on the covariance between the loadings λi and γi, and will be non-zero

for fixed N due to N−1
∑

N
i=1

(
λi−λ

)
(γi− γ) in the numerator. With T, N →

seq
∞ however, we can give the

following characterisation of the sign of the bias of the TE estimator with ρ = 0:

−
σ2

f

(
σ2

γ

)2

σ2
f σ

2
γ +σ2

v
≤ plim

T,N→
seq

∞

(
β̂T E −β

)
≤

σ2
f

(
σ2

γ

)2

σ2
f σ

2
γ +σ2

v
. (2.2)

Therefore, as either σ2
f or σ2

γ increases without bound, the inconsistency will be proportional to
(
−σ2

γ , σ2
γ

)
and the empirical researcher has no hope of determining the sign of the inconsistency. Clearly, it can be

exactly zero if the covariance of the loadings is zero, but such an assumption is likely too strong in many

3This is the situation that the TE estimator is designed for.

38



applications.

It is also interesting to contrast the conclusions of Propositions 3.1.1 and 3.1.2 with the finding of Urbain

and Westerlund (2013) for the CCE estimator: in that paper it is shown that, unless σλγ = 0, the CCE estim-

ator of β is inconsistent under large N, T asymptotics whenever the rank condition on c is violated. Under

that assumption however, the OLS and TE estimators are consistent and do not require a rank condition. For

example in a model with R factors, let F be the T ×R matrix containing all factors at each t = 1, . . . , T ;

Let Λi = [λ1,i, . . . , λR,i]
′ and Λ = [Λ1, . . . , ΛN ] collect R mean-zero loadings for N individuals and similarly

define the loadings of the independent variable as Γi and Γ. Then the numerator of the inconsistency of the

TE and OLS estimators reads:

(NT )−1 trace
(
Γ
′F ′FΛ

)
≤N−1trace

(
ΛΓ
′)×T−1trace

(
F ′F

)
.

By assumption, the first term on the right vanishes and the OLS and TE estimators are consistent for R > 1

without requiring a comparable rank condition. This argument raises questions on the practical usefulness of

the CCE estimator in the static model: R is generally unknown and a sufficiently large number of regressors

is required to span the space of the factors. On the other hand, for unknown R if one assumes that the

loadings are uncorrelated, we might as well use OLS, TE or, indeed, GLS estimators, which are consistent

under the same assumptions.

We finish the section with a proposition on the inconsistency of the CCE estimator for the static model:

PROPOSITION 2.3. Inconsistency of CCE in Static Model: Under Assumptions 1-3, the inconsistency

of the CCE estimator with ρ = 0 is:

plim
T→∞

(
β̂CCE −β

)
= (

N−1σ2
ε

)
σ2

f N
−1

∑
N
i=1

(
λi−λ

)
(γi− γ)

σ2
f

(
σ2

vλ
2
+σ2

εγ
2
)
+N−1

(
σ2

εσ2
v−σ2

f σ
2
vλ

2
+σ2

εσ2
f

[
N−1 ∑

N
i=1 γ2

i −2γ
2])−N−2σ2

εσ2
v

,

and plim
T,N→

seq
∞

(
β̂CCE −β

)
= 0.

When N is fixed, the inconsistency of the CCE estimator is again directly proportional to the covariance

of the loadings λi and γi. Similarly to the TE estimator, if the loadings are constant for all i on either the

dependent or the independent variables or both, the CCE estimator is consistent with fixed N. However,

irrespective of these quantities, when N → ∞ too, the estimator is also consistent due to the term
(
σ2

ε/N
)

in the numerator. Consequently, for moderate N, we expect the estimator to perform better than either the

OLS or the TE estimators under our assumptions. Finally, as with the OLS and TE, the denominator is

always positive and the sign of the bias is determined by the covariance of the factor loadings. As a result,
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it is impossible in applied work to characterize the direction of the inconsistency without knowledge of this

quantity.

Inconsistencies of ρ̂ when Model (2.1) is Dynamic

Having seen that when ρ = 0, inconsistency of the OLS, TE and CCE estimators depends crucially on the

(assumptions placed on the) covariance of the factor loadings of xi,t and yi,t , we now analyse the impact of

the interactive fixed effect on the dynamic model with β = 0. To simplify notation, let us first introduce the

following quantity:

π = plim
T→∞

T

∑
s=1

ρ
s
σ f ,s

where we note that under Assumption 1 and 4, π < ∞ by the Cauchy-Schwarz inequality.

We can now analyse the inconsistency of the OLS estimator:

PROPOSITION 2.4. Inconsistency of OLS in Dynamic Model: Under Assumptions 1-4, the incon-

sistency of the OLS estimator with β = 0 is:

plim
T→∞

(ρ̂OLS−ρ) = 1−ρ2

ρ
× πN−1

∑
N
i=1 λ2

i

σ2
ε +
(

σ2
f +2π

)
N−1 ∑
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,

and the sequential limit is:

plim
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∞

(ρ̂OLS−ρ) = 1−ρ2

ρ
×

π
(
σ2

λ
+µ2

λ

)
σ2

ε +
(

σ2
f +2π

)(
σ2

λ
+µ2

λ

) .
The inconsistency of the OLS estimator in the dynamic version of model (2.1) depends on (i) the auto-

covariance of the factor and (ii) the sum of squares of the factor loadings. That is, the OLS estimator is

consistent if the factor has zero autocovariance, although not necessarily efficient. However, it does seem

rather restrictive to assume that only the interactive fixed effect is static when the model itself is dynamic.

Moreover, it is not possible to determine the direction of the inconsistency in the dynamic model as in both

the numerator and the denominator, the interplay of ρ and the autocovariance makes their respective signs

ambiguous.

As with the static model, the TE estimator is subject to a comparable inconsistency:

PROPOSITION 2.5. Inconsistency of TE in Dynamic Model: Under Assumptions 1-4, the inconsist-

ency of the TE estimator with β = 0 is:
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plim
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and the sequential limit is:
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f +2π

)
σ2

λ

.

Compared to the inconsistency of OLS, the difference is that if the factor loadings are constant, the incon-

sistency vanishes with N. As mentioned before, this is the scenario for which the TE estimator is designed,

but notice how the analogy with the Within Group estimator in a small T dynamic panel data model does

not hold: where the latter would be inconsistent under small T, large N when equation-specific constants

are included, the TE estimator does not suffer from the analogous problem. Indeed, the TE estimator is

consistent if λi = λ for all i even when N is small.

Finally, we present the inconsistency of the CCE estimator in the dynamic panel data model:

PROPOSITION 2.6. Inconsistency of CCE in Dynamic Model: Under Assumptions 1-4, the incon-

sistency of the CCE estimator with β = 0 is:
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and plim
T,N→

seq
∞

(ρ̂CCE −ρ) = 0.
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The CCE estimator is inconsistent when N is fixed as T → ∞ but consistent when T, N → ∞ sequentially.

This latter property is, similar to the static case, because the numerator is of lower order than the denomin-

ator: the expression that has κ1 as leading term is Op (N), whilst those with κ2 and κ3 as leading terms are

Op (1). For this reason, we expect the CCE estimator to perform better in samples with moderately large

N than the OLS and TE estimators. Furthermore, note that the CCE estimator inherits the property of the

TE estimator that if the λi = λ for all i, the estimator is consistent. As before, the sign of the bias depends

directly on quantities that may be positive or negative and therefore we will not try to sign the bias explicitly.

In summary, when a model exhibits cross-sectional dependence of the sort induced by interactive fixed

effects, all estimators we have studied are inconsistent as T → ∞, both in the static and dynamic case. The

expressions for the inconsistency depend crucially on the properties of the variances and covariances of

the factor loadings and disappears only when in addition to T, N → ∞ in the case of the CCE estimator.

However, N is typically small and the number of variables usually limited in macroeconomic applications

and as a result, it is unlikely that the interactive fixed effect is removed by the CCE. It thus seems difficult

to justify inference based on the estimators examined above, unless a set of very restrictive assumptions

are imposed on the correlation structure of the factors and the loadings. Moreover, the requirement of

uncorrelated factor loadings not only allows consistency of the CCE estimator, but also of the TE estimator

in the static case when T, N→
seq

∞.

2.4
√

T -Consistent Estimation of Dynamic Panel Data Models with an In-
teractive Fixed Effect

As we have seen in the last section, the CCE estimator is inconsistent when N is fixed and T → ∞ because

the averages cannot proxy for the factor exactly. Instead of using the sample averages to proxy for the space

of the factor however, we can also use them to exactly remove the factor parametrically from model (2.1):

yi,t −λ
?
i yt =ρ(yi,t−1−λ

?
i yt−1)+β(xi,t −λ

?
i xt)+ui,t , (2.3)

ui,t :=εi,t −λ
?
i εt , i = 1, . . . , N, t = 1, . . . , T,

and λ?
i := λi/λ. The transformed model (2.3) exploits the fact that λi ft −λ?

i ft = 0 although we now have

to estimate the factor loading λ?
i to remove the factor from ui,t . This quasi-difference transformation can

be achieved for every cross-sectional unit in (2.1) and we thus have to estimate N loadings in addition to

β and ρ. However, since the ft are unobservable, we cannot separately identify the λ?
i from the ft without

a normalization and we set λ = 1 in equation (2.3) to achieve identification. Moreover, we drop the N-th

equation to avoid a singular estimation problem and we thus estimate the parameters using only the first

N−1 cross-sectional units.
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We will estimate the parameters of (2.3) using the following non-linear moment conditions:

E (zi,tui,t) = 0S, (2.4)

where zi,t is an S×1 vector of instruments for all i = 1, . . . , N−1 errors of (2.3) at each t. With scalar ρ and

β, identification requires that S (N−1) ≥ 2+(N−1). Valid moment conditions for (2.4) can be generated

using yi,t−p, xi,t−(p−1), yt−p and xt−(p−1) for all i and p ≥ 1 and it should be clear from the transformed

model (2.3) that yt is not a valid instrument for (2.4). To conserve on notation, we now write α = [β, ρ]′ and

Λ? =
[
λ?

1, . . . , λ?
N−1
]′ and define the grand parameter set as φ = [α′, Λ?′]′ with parameter space Φ.

We will estimate the S (N−1) population moments (2.4) jointly using the sample moment functions:

T−1
T

∑
t=1

mt (φ) = T−1
T

∑
t=1

[
(z1,tu1,t)

′ , . . . , (zN−1,tuN−1,t)
′]′

and a GMM estimator solves φ̂ = argmin
φ∈Φ

Q(φ), where:

Q(φ) := T−1
T

∑
t=1

mt (φ)
′
[

T

∑
t=1

mt
(
φ̃
)

mt
(
φ̃
)′]−1 T

∑
t=1

mt (φ)

and φ̃ is an initial estimate of φ. We will refer to this estimator as the Quasi-difference CCE (QDCCE)

estimator to make explicit the quasi-difference operation underlying the moment conditions.

We require the following additional assumptions for consistency and asymptotic normality of the QD-

CCE estimator:

ASSUMPTION 4.A: (i) {εi,t , ft , xi,t} is an ergodic stationary process for each i = 1, . . . , N, (ii)

E (zi,tε j,t |εi,t−1, ft−1, xi,t−1, εi,t−2, . . .)= 0 is an adapted martingale difference sequence for all i, j = 1, . . . , N

and t = 1, . . . , T and (iii) E (εi,t | ft , xi,t−1, εi,t−1, ft−1, . . .) = 0 for all i = 1, . . . , N and t = 1, . . . , T .

ASSUMPTION 5: The parameter space Φ (i) is a compact and (ii) excludes an open ball B
(

λ = 0, η

)
with arbitrarily small radius η.

ASSUMPTION 6: V := E [mt (φ)m′t (φ)] is positive definite and G := E
(

∂mt(φ)
∂φ′

)
has full rank.

Assumption 4.A is made for convenience and is standard in textbook treatments of GMM in time series

models such as Newey and McFadden (1994). The same is true for Assumption 6 and the first part of As-

sumption 5, which is required for uniform convergence of the (derivatives of the) sample moments to the

population moments. The second part of Assumption 5 is necessary to quasi-difference model (2.1) using

sample averages and is not overly restrictive: unless λi = 0 for all i = 1, . . . , N , in a small sample, the

cross-sectional average of the factor loadings will not equal zero exactly with high probability even if its ex-

pectation is zero when generated by some distribution. The exclusion of B thus avoids this situation, whilst
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maintaining the compactness requirement of Φ. Note that this assumption is in line with the bias-reduction

procedure in GMM as presented in Robertson and Sarafidis (2008).

We can now present consistency and asymptotic normality results for the QDCCE as propositions:

PROPOSITION 2.7. Distributional Result for QDCCE: Let Assumptions 1-6 hold with 4.A instead of 4

and suppose we estimate model (2.1) by QDCCE. Then as T → ∞, the QDCCE estimator is consistent and

√
T
(
φ̂−φ

)
→d N

(
0,
(
G′WG

)−1 (G′WVWG
)(

G′WG
)−1
)
,

where W is a weight matrix and V = E [mt (φ)m′t (φ)].

We will not prove Proposition 4 but note that this follows from Theorem 2.6 of Newey and McFadden

(1994): that is, with compactness, ergodic stationarity and finite second moments, there exists a functional

with finite expectation that dominates mt (φ). Moreover, in the next chapter we will prove a version of the

proposition under more general conditions. Under the amended Assumptions 1-6 however, the conclusions

of Proposition 4 follow straightforwardly from the derivations in that chapter.

REMARK 4.1: As is customary with GMM problems, setting W = V−1 results in efficient GMM. By

standard arguments, efficient QDCCE has variance equal to
(
G′V−1G

)−1, which can be approximated by a

two-step procedure: in a first step, W is set to an identity matrix or the covariance matrix of the instruments;

in a second step, a weight matrix is constructed based on the first-step QDCCE. Under Assumption 4.A this

weight matrix can be consistently estimated by T−1
∑

T
t=1 mt (φ)m′t (φ).

REMARK 4.2: Compared to the conventional CCE estimator, a benefit of QDCCE can be that the num-

ber of parameters is increased only by the parameter λi. This adds N−1 parameters to the total parameter

count instead of augmenting the regression with a cross-sectional average for each of the independent vari-

ables. In a VAR framework for example, this may help to reduce the curse of dimensionality.

REMARK 4.3: Everaert and de Groote (2016) define a similar estimator which they call "Restricted CCEp".

However, because they do not take into account the endogeneity introduced by augmenting the regression

with the cross-sectional average in the composite residual ui, their estimator is inconsistent for small T.

Their estimator could in principle be made consistent for small T by introducing an instrumental variables

approach. In a recent paper, de Vos and Everaert (2016) instead provide a bias-corrected CCE estimator that

is consistent for the dynamic panel data model with a factor error structure under large N and fixed T.
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2.5 Monte Carlo Experiments

In this section we examine the finite sample properties of the OLS, TE, CCE and QDCCE estimators in

detail. As our derivations suggest, we are particularly interested in the impact of the (autoco-)variance of

the factor and the (co-)variance of the loading component of the interactive fixed effect. As we know that all

estimators save the QDCCE estimator are inconsistent, the experiments thus indicate on exactly how much

bias one should expect when estimating models without taking into account the interactive fixed effects.

We simulate 5000 Monte Carlo replications of model (2.1) above and include a single autoregressive

interactive fixed effect, i.e:

ft = ξ ft−1 +wt .

The baseline parameter values are:

β = 1, ρ = 0.5, ξ = 0.5,

σ
2
ε = 1, σ2

v = 1, σ
2
w = 1,

σ
2
λ
= 1, σ2

γ = 1, σλγ = 0.5,

µλ = 1, µγ = 1,

and as in the analysis we set either ρ = 0 or β = 0. We set N = 5, 10 and T = 100, 500 for the dimensions of

the panel: from a macroeconomic perspective, we think N = 5 would constitute a small panel whilst N = 10

would be a relatively large panel. Furthermore, we expect the performance of the CCE estimator to improve

over this increase in cross-sectional units. We set T = 100 because it is a typical size of macroeconomic

time series, constituting some 25 years worth of quarterly data. On the other hand, we expect that with

T = 500, the size of the time series is sufficient for our bias equations to be relatively accurate, as should

be our QDCCE estimator. The experiments entail varying the variance of the factor from 1 to 5 in the static

model and autoregressive parameter of the factor ξ to 0.9 in the dynamic model. In addition, we increase

the variance of each λi from 1 to 5. For the QDCCE estimator we use as instruments the contemporaneous

independent variable of all N time series for the static model whilst the first lag of all N time series is used

in the dynamic model. We now discuss the simulation results in turn.

Static Model, ρ = 0

The coverage of the bias expressions is always close to the true values for the simple OLS and TE estimators

regardless of the dimensions of the panels. For the CCE estimator, when T = 100, the bias equations

underestimate but approach the bias when T = 500 and N = 10. This implies that higher order effects are

present which are overlooked by our first-order expansions. The OLS and TE estimators always overestimate

β quite severely, whereas the CCE estimator is somewhat less biased: in the baseline model, the bias is some

25 percent of the true value of unity for the OLS and TE estimators, where the CCE bias is 15 percent. As
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expected, as the covariance of the factor loadings increases, the bias worsens to over 40 percent for the

OLS and TE estimators and to 20 percent for the CCE estimator regardless of the dimensions of the panel.

Similarly, as the variance of each λi is increased, and thus the correlation of the loadings reduced, the bias

reduces to some 11 percent for the OLS and TE estimators and 4.5 percent for the CCE estimator. These

results are in line with the predictions of the asymptotic expansions of the bias for the static model and

thus cast doubt on any empirical work where one may expect factors to be present in the data. However, as

expected, the QDCCE estimator is essentially unbiased in all specifications of the simulation exercise. In

terms of consistency and RMSE, it always outperforms by a wide margin the other estimators, regardless of

the model specifications.

Dynamic Model, β = 0

For the dynamic model, the conclusions drawn regarding the bias equations from the simulation exercise are

largely similar to the static model: as T increases, the coverage of the bias formulae is essentially exact for

the TE and OLS estimators. The coverage of the CCE estimator also approaches the true value but again

there are higher order effects present that only vanish as T becomes large and the bias tends towards the

quantity derived in Section 2.3.2.

Interestingly, increasing the variance of the loading and/or the autocorrelation of the interactive fixed

effect pushes the estimate of ρ by OLS or TE estimation towards unity, which opens the possibility that

standard unit root tests will mistake a model with interactive fixed effects for an integrated process in prac-

tice. This possibility is left for future research.

The QDCCE estimator now is not clearly the best estimator in terms of bias and RMSE in all configur-

ations of the model and dimensions of the panel and the CCE estimator performs similarly or even better

when N = 10. This finding is in line with Everaert and De Groote (2016), who find that the time dimension

does not matter for the small sample properties of the CCE estimator.

2.6 Conclusions

Recent research in panel data econometrics has yielded a wealth of information regarding the applicability

of panel data estimators under cross-sectional dependence in both the large N and large N, T setups but has

so far overlooked the fixed N, large T paradigm. Despite this shortcoming of the literature, several authors

have used estimators designed for large N in macroeconomic studies where the opposite asymptotics apply.

This paper has investigated the bias of such estimators in detail in simple static and dynamic models of cross-

sectional dependence: we derived expressions for the first-order bias of the OLS, TE and CCE estimators

under large T asymptotics only and shown not only that bias exists but that it may be quite severe. We

have subsequently designed a consistent and asymptotically normal estimator with the flavour of the CCE

estimator that uses quasi-differencing to remove the interactive fixed effect.

An extensive Monte Carlo study then verified our theoretical results: for a static model, the bias is
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proportional to the variance of the factor and the covariance of the factor loadings of the dependent and

independent variables. For a dynamic model by contrast, we find that the bias is proportional to the autoco-

variance of the factor and the variance of the factor loadings. Furthermore, we have found that the QDCCE

estimator typically outperforms all other estimators when T is sufficiently large, but that the CCE estimator

of Pesaran (2006) is a clear competitor whenever N is not too small: Indeed, when N is as small as 10, it

has reasonable finite sample performance, sometimes even outperforming the
√

T -consistent QDCCE es-

timator. Of course, in models with both weakly and strictly exogenous regressors, it is to be expected that

this conclusion regarding the CCE estimator no longer holds.

In conclusion, if interactive fixed effects are present in macroeconomic data, as they likely are, either

through unobserved components such as trends or business cycles or through omitted variable bias, then

the use of OLS and TE estimators is very difficult to justify as the biases can be quite large. The same

conclusion obtains for the CCE estimator of Pesaran (2006), when N is very small, or if the model has a

high parameter count so that degrees of freedom do not permit augmenting the model with the required

cross-sectional averages to proxy for the factors. As such, estimators that are designed for fixed N, large T

specifically should be used, such as the QDCCE estimator proposed in this paper.

Appendix 2.1 Proofs for Chapter 2

For the proof of the various propositions, we first compile some lemmas of the asymptotic representations

of second moments involved in the bias equations. After that, the proofs follow from combination and sim-

plification of these representations.

LEMMA A: Let Assumptions 1-3 hold, then when ρ = 0:

• A1

plim
T→∞

1
T

N

∑
i=1

x′ixi = σ
2
f

N

∑
i=1

γ
2
i +σ

2
v .

• A2

plim
T→∞

1
T

N

∑
i=1

x′i f λi = σ
2
f

N

∑
i=1

λiγi.

Proof:

Consider A1: Since E ( ftvi,t) = 0 for all i and t, we have:
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A2 follows in a similar fashion. �

Proof of Proposition 2.1:

Let:

E
(

β̂OLS−β

)
=

[
plim
T→∞

1
T

N

∑
i=1

x′ixi

]−1[
plim
T→∞

1
T

N

∑
i=1

x′i (xiβ+ f λi + εi)

]

The proof of Proposition 2.1 follows immediately from combining A1 and A2 and noting that plim
T→∞

1
T ∑

N
i=1 x′iεi =

0 by assumption. Dividing both terms by N and taking limits w.r.t. N then yields the desired result. �

LEMMA B: Let Assumptions 1-3 hold, then with ρ = 0:

• B1

plim
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• B2
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Proof:
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We again only show B1 and note that B2 follows similarly. Let:
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1
T

N

∑
i=1

(γ̃i f + ṽi)
′ (γ̃i f + ṽi)

=
N

∑
i=1

γ̃
2
i plim

T→∞

1
T

f ′ f +plim
T→∞

1
T

N

∑
i=1

ṽ′iṽi

= σ
2
f

N

∑
i=1

γ̃
2
i +plim

T→∞

1
T

N

∑
i=1

(vi− v)′ (vi− v)

= σ
2
f

N

∑
i=1

γ̃
2
i +

(
1− 1

N

)
σ

2
v ,

As E (vi) = 0, E
(
v2

i
)
= σ2

v and E (viv j) = 0 when T → ∞, since:

plim
T→∞

1
T

N

∑
i=1

(vi− v)′ (vi− v) = plim
T→∞

1
T

N

∑
i=1

v′ivi +plim
T→∞

1
T

v′v

−2plim
T→∞

1
T

N

∑
i=1

(
v′i

1
N

N

∑
i=1

vi

)

= plim
T→∞

1
T

N

∑
i=1

v′ivi +plim
T→∞

1
T

1
N

N

∑
i=1

v′i
1
N

N

∑
i=1

vi

−2
1
N

plim
T→∞

1
T

N

∑
i=1

v′ivi

=

(
1− 1

N

)
σ

2
v .

�

Proof of Proposition 2.2:

Similarly to the proof of Proposition 2.1, combination of B1 and B2 yields the result immediately after

noticing that plim
T→∞

1
T ∑

N
i=1 x̃′iε̃i = 0. The sequential result follows by dividing both numerator and denomin-

ator by N and noting that plim
N→∞

1
N ∑

N
i=1 λ̃iγ̃i = σλγ.�

Proof of Equation (2.2):

The probability limit of the bias of the TE estimator is:

plim
T,N→∞

(
β̂T E −β

)
=

σ2
f σλγ

σ2
f σ

2
γ +σ2

v
.
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Replacing σλγ with the definition of the associated correlation and remembering that the correlation coeffi-

cient is bound in (−1, 1), i.e. when λi =−γi and λi = γi for all i = 1, . . . , N, we have:

σ2
f σλγ

σ2
f σ

2
γ +σ2

v
, =

σ2
f corr(λi,γi)σ2

λ
σ2

γ

σ2
f σ

2
γ +σ2

v
,

−
σ2

f

(
σ2

γ

)2

σ2
f σ

2
γ +σ2

v
∧

σ2
f

(
σ2

γ

)2

σ2
f σ

2
γ +σ2

v
.�

LEMMA C: Let Assumptions 1-3 hold, then:

• C1

plim
T→∞

1
T

x′ixi = σ
2
f γ

2
i +σ

2
v ,

plim
T→∞

1
T

x′ix = σ
2
f γiγ+

1
N

σ
2
v ,

plim
T→∞

1
T

x′x = σ
2
f γ

2 +
1
N

σ
2
v .

• C2

plim
T→∞

1
T

y′y = σ
2
f

(
βγ+λ

)2
+

1
N

σ
2
vβ

2 +
1
N

σ
2
ε .

• C3

plim
T→∞

1
T

x′iy = γi

(
βγ+λ

)
σ

2
f +

1
N

σ
2
vβ,

plim
T→∞

1
T

x′y = γ

(
βγ+λ

)
σ

2
f +

1
N

σ
2
vβ.

• C4

plim
T→∞

1
T

x′ f λi = λiγσ
2
f ,

plim
T→∞

1
T

y′ f λi = λiλσ
2
f .

• C5

plim
T→∞

1
T

x′εi = 0,

plim
T→∞

1
T

y′εi =
1
N

σ
2
ε .

50



Proof:

We will give a proof of one of each of the five sub-lemmas, the others follow straightforwardly by replace-

ment of the single time series with the functional form of the cross-sectional average time series. Begin with

C1. By assumption we have that E (vi,tv j,s) = 0 and E (vi,t ft) = 0 for all i, j, t and s, and thus:

plim
T→∞

1
T

x′ix = plim
T→∞

1
T
(γi f + vi)

′ (γ f + v)

= γiγplim
T→∞

1
T

f ′ f +plim
T→∞

1
T

vi
1
N

N

∑
i=1

vi

= σ
2
f γiγ+

1
N

σ
2
v ,

since:

plim
T→∞

1
T

vi
1
N

N

∑
i=1

vi = plim
T→∞

1
T

vivi +
1
N

N−1

∑
j=1

viv j

= plim
T→∞

1
T

vivi.

Similarly, for C2 we have:

plim
T→∞

1
T

y′y =
1
T

[(
βγ+λ

)
f + vβ+ ε

]′ [(
βγ+λ

)
f + vβ+ ε

]
= σ

2
f

(
βγ+λ

)2
+

1
N

σ
2
vβ

2 +
1
N

σ
2
ε ,

since E (εi,t ft) = 0, E (vi,t ft) = 0 and E (εi,tvi,t) = 0.

For C3 we have:

plim
T→∞

1
T

x′y = plim
T→∞

1
T
(γ f + v)′

[(
βγ+λ

)
f + vβ+ ε

]
= γ

(
βγ+λ

)
plim
T→∞

1
T

f ′ f +βplim
T→∞

1
T

v′v

= γ

(
βγ+λ

)
σ

2
f +βplim

T→∞

1
T

(
1
N

N

∑
i=1

vi

)′(
1
N

N

∑
i=1

vi

)

= γ

(
βγ+λ

)
σ

2
f +βplim

T→∞

1
T

(
1

N2

N

∑
i=1

vivi

)

= γ

(
βγ+λ

)
σ

2
f +

1
N

σ
2
vβ.

In C4, we have:
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plim
T→∞

1
T

x̄′ f λi = plim
T→∞

1
T
(γ f + v)′ f λi

= λiγσ
2.

Finally, for C5 clearly, since E (εi,t ft) = 0 and E (εi,tvi,t) = 0, the first equality follows. For the second

equality:

plim
T→∞

1
T

y′εi = plim
T→∞

1
T

[(
βγ+λ

)
f + vβ+ ε

]′
εi

= plim
T→∞

1
T

ε
′
εi

= plim
T→∞

1
NT

N

∑
i=1

ε
′
iε j,

and the result follows because E (εi,tε j,s) = 0 for all i, j, t and s. �

Proof of Proposition 2.3:

Start from the probability limit of the bias:

plim
T→∞

(
β̂CCE −β

)
=

∑
N
i=1 E

(
x′iM f λi

)
∑

N
i=1 E

(
x′iMxi

) +
∑

N
i=1 E

(
x′iMεi

)
∑

N
i=1 E

(
x′iMxi

)
:=

A+B
C

, (2.5)

say. Note how all three terms in (2.5) consist of products of second moments. As T goes to infinity,

the probability limit of the products in A, B and C is equal to the product of their probability limits under

assumptions 1-3 and we can replace the quantities in (2.5) with their asymptotic counterparts. As an example

consider A:

N

∑
i=1

E
(
x′iM f λi

)
=

N

∑
i=1

E

(x′i f λi
)
−
[

x′ix x′iy
][ x′x x′y

y′x y′y

]−1[
x′ f λi

y′ f λi

]
=

N

∑
i=1

E
(
x′i f λi

)
−

N

∑
i=1

[ E (x′ix) E (x′iy)
][ E (x′x) E (x′y)

E (y′x) E (y′y)

]−1[
E (x′ f λi)

E (y′ f λi)

] .

The determinant associated with the projection matrix in curly brackets is a scalar constant and in anticipa-
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tion of the rather tedious algebra involved in the coming proof, rewrite A, B and C slightly, for example:

A =
N

∑
i=1

E
(
x′iM f λi

)
=

{
E
(
y′y
)

E
(
x′x
)
−E

(
x′y
)

E
(
y′x
)} N

∑
i=1

E
(
x′i f λi

)
−

N

∑
i=1

{[
E (x′ix) E (x′iy)

][ E (y′y) −E (x′y)

−E (y′x) E (x′x)

][
E (x′ f λi)

E (y′ f λi)

]}
.

Further expanding the quantity A, we find the following three asymptotic terms constituting A:

A1 = E
(
x′x
)

E
(
y′y
) N

∑
i=1

E
(
x′i f λi

)
−E

(
y′y
) N

∑
i=1

E
(
x′ix
)

E
(
x′ f λi

)
,

A2 = E
(
y′x
)

E
(
x′y
) N

∑
i=1

E
(
x′i f λi

)
−E

(
x′y
) N

∑
i=1

E
(
x′iy
)

E
(
x′ f λi

)
,

A3 = −E
(
x′y
) N

∑
i=1

E
(
x′ix
)

E
(
y′ f λi

)
+E

(
x′x
) N

∑
i=1

E
(
x′iy
)

E
(
y′ f λi

)
,

such that A = A1−A2−A3. Now substituting the quantities from Lemma C, we find:

A1 = σ
2
f σ

2
v

N

∑
i=1

λi (γi− γ)

[
σ

2
ε +β

2
σ

2
v +Nσ

2
f

(
λ+βγ

)2
]

1
N2 ,

A2 = βσ
2
f σ

2
v

N

∑
i=1

λi (γi− γ)
[
βσ

2
v +Nσ

2
f

(
λγ+βγ

2
)] 1

N2 ,

A3 =
(
σ

2
f
)2

σ
2
v

N

∑
i=1

λiλ(γi− γ)
(

λ+βγ

) 1
N2 .

Similarly for B, we find:

B1 = E
(
x′x
)

E
(
y′y
) N

∑
i=1

E
(
x′iεi
)
−E

(
y′y
) N

∑
i=1

E
(
x′ix
)

E
(
x′εi
)
,

B2 = E
(
y′x
)

E
(
x′y
) N

∑
i=1

E
(
x′iεi
)
−E

(
x′y
) N

∑
i=1

E
(
x′iy
)

E
(
x′εi
)
,

B3 = −E
(
x′y
) N

∑
i=1

E
(
x′ix
)

E
(
y′εi
)
+E

(
x′x
) N

∑
i=1

E
(
x′iy
)

E
(
y′εi
)
,

or, after replacing and summing over i:
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B1 = 0,

B2 = 0,

B3 = σ
2
εσ

2
f σ

2
vλi (γi− γ)

(
λ+βγ

) 1
N2 ,

so that the numerator of (2.5) is equal to A−B3 the numerator is:

A+B :=
1

N2 σ
2
εσ

2
f σ

2
v

N

∑
i=1

[
(γi− γ)

(
λi−λ

)]
We skip a similar proof for the denominator of (2.5) as the algebra is tedious. The expression for the

denominator is:

C :=

σ2
v

[
1
N σ2

f

(
λ

2
σ2

v + γσ2
ε

)
+ 1

N2

(
σ2

εσ2
v +σ2

εσ2
f ∑

N
i=1 γ2

i −λ
2
σ2

f σ
2
v−2γ

2
σ2

f σ
2
v

)
− 1

N3 σ2
εσ2

v

]
.

Using C, dividing and cancelling terms then leads to the result in Proposition 2.3. �

LEMMA D: Let Assumptions 1-4 hold, then for β = 0:

• D1:

plim
T→∞

1
T

N

∑
i=1

y′iyi = plim
T→∞

1
T

N

∑
i=1

y′i,−1yi,−1 =

N

∑
i=1

var(yi) =
1

1−ρ2

N

∑
i=1

[
λ

2
i σ

2
f +2λ

2
i π+σ

2
ε

]
• D2

plim
T→∞

1
T

N

∑
i=1

y′i,−1 f λi =
1
ρ

N

∑
i=1

λ
2
i π

Proof:

Consider first D1:
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plim
T→∞

1
T

N

∑
i=1

y′iyi = plim
T→∞

1
T

N

∑
i=1

(ρyi,−1 + f λi + εi)
′ (ρyi,−1 + f λi + εi)

N

∑
i=1

var(yi) =
N

∑
i=1

[
ρ

2var(yi,−1)+λ
2
i σ

2
f +2λ

2
i π+σ

2
ε

]
N

∑
i=1

var(yi) =
σ2

ε +
(

σ2
f +2∑

T
s=1 ρsE ( f ′t ft−s)

)
∑

N
i=1 λ2

i

1−ρ2 ,

by assumption, E (εi,tεi,s) = 0 for all s 6= t and furthermore the cross-term:

plim
T→∞

1
T

ρy′i,−1 f λi = plim
T→∞

1
T

ρ(ρyi,−2 + f−1λi + εi−1)
′ f λi

= plim
T→∞

(
1
T

λ
2
i ρ f ′−1 f +

1
T

λ
2
i ρ

2 f ′−2 f + . . .

)
= λ

2
i π,

which is infinitely summable by assumption of absolutely summable covariance stationarity and independ-

ent of the summand of ρ, which itself is square-summable by assumption that−1 < ρ < 1. Cauchy-Schwarz

then gives the π < ∞. D.2 is similarly derived. �

Proof of Proposition 2.4:

We have for the pooled OLS estimator:

plim
T→∞

(ρ̂OLS−ρ) = plim
T→∞

(
1
T

N

∑
i=1

y′i,−1yi,−1

)−1

plim
T→∞

1
T

N

∑
i=1

y′i,−1yi

=

(
plim
T→∞

1
T

N

∑
i=1

y′i,−1yi,−1

)−1

plim
T→∞

1
T

N

∑
i=1

y′i,−1 ( f λi + εi)

= I× (II + III) .

The proofs of I and II follow directly from Lemma D. III is by assumption, i.e:
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plim
T→∞

1
T

N

∑
i=1

y′i,−1εi = plim
T→∞

1
T

N

∑
i=1

(ρyi,−1 + f λi + εi,−1)
′
εi

=
1
ρ

N

∑
i=1

T

∑
s=1

E
(
ε
′
iεi,−s

)
= 0,

since E ( ftεi,s) = 0 and E (εi,tεi,s) = 0 for all s 6= t. The proposition then follows immediately from D1 and

D2.�

LEMMA E: Let Assumptions 1-4 hold, then for β = 0:

• E1:

plim
T→∞

1
T

N

∑
i=1

ỹ′iỹi = plim
T→∞

1
T

N

∑
i=1

ỹ′i,−1ỹi,−1 =

N

∑
i=1

var(ỹi) =
1

1−ρ2

N

∑
i=1

[
λ̃

2
i σ

2
f +2λ̃

2
i π+σ

2
ε̃

]
• E2

plim
T→∞

1
T

N

∑
i=1

ỹ′i,−1 f λ̃i =
1
ρ

N

∑
i=1

λ̃
2
i π

Proof:

Using ã = ai−N−1
∑

N
i=1 ai for a T-vector ai as before, consider E1:

plim
T→∞

1
T

N

∑
i=1

ỹ′iỹi = plim
T→∞

1
T

N

∑
i=1

(
ρỹi,−1 + f λ̃i + ε̃i

)′(
ρỹi,−1 + f λ̃i + ε̃i

)
N

∑
i=1

var(ỹi) =
N

∑
i=1

[
ρ

2var(ỹi,−1)+ λ̃
2
i σ

2
f +2λ̃

2
i π+σ

2
ε̃

]
N

∑
i=1

var(ỹi) =
σ2

ε +
(

σ2
f +2π

)
∑

N
i=1 λ̃2

i

1−ρ2 ,

by assumption, E (εi,tεi,s) = 0 for all s 6= t. E2 follows as D2, using the redefined variables in its place.�

Proof of Proposition 2.5:
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The proof is identical to the proof of 2.5. The sequential limit follows from noticing that plim
N→∞

1
N ∑

N
i=1 λ̃2

i =σ2
λ
.

LEMMA F: Let Assumptions 1-4 hold, then for β = 0:

• F1

plim
T→∞

1
T

y′i,−1yi,−1 =
σ2

ε +λ2
i

(
σ2

f +2π

)
1−ρ2 ,

plim
T→∞

1
T

y′i,−1y−1 =

1
N σ2

ε +λiλ

(
σ2

f +2π

)
1−ρ2 ,

plim
T→∞

1
T

y′−1y−1 =

1
N σ2

ε +λ
2
(

σ2
f +2π

)
1−ρ2 .

• F2

plim
T→∞

1
T

y′i,−1y =
ρ

1−ρ2

[
1
N

σ
2
ε +λiλσ

2
f +λiλ

(
1+

1
ρ2

)
π

]
,

plim
T→∞

1
T

y′−1y =
ρ

1−ρ2

[
1
N

σ
2
ε +λ

2
σ

2
f +λ

2
(

1+
1
ρ2

)
π

]
.

• F3

plim
T→∞

1
T

y′i,−1 f λi =
1
ρ

λ
2
i π,

plim
T→∞

1
T

y′−1 f λi =
1
ρ

λiλπ,

plim
T→∞

1
T

y′ f λi = λiλπ+λiλσ
2
f .

• F4

plim
T→∞

1
T

y′i,−1εi = 0,

plim
T→∞

1
T

y′−1εi = 0,

plim
T→∞

1
T

y′εi =
1
N

σ
2
ε

Proof:

As in the proof of Lemma C, we only derive one asymptotic representation of each sub-lemma. The other

representations can be easily derived using appropriate definitions of the variables involved. Focus first on
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the second element of F1:

plim
T→∞

1
T

y′i,−1y−1 = plim
T→∞

1
T
(ρyi,−2 + f−1λi + εi,−1)

′
(

ρy,−2 + f−1λ+ ε−1

)
= ρ

2plim
T→∞

1
T

y′i,−2y−2 +2λiλplim
T→∞

1
T

T

∑
s=1

β
s ( f ′t ft−s

)
+

λiλplim
T→∞

1
T

f ′ f +plim
T→∞

1
T

ε
′
iε.

Since plim
T→∞

1
T ε′iεi = plim

T→∞

1
T ε′i,−1εi,−1 and similarly for ft and thus yi,t .

For F2 we have:

plim
T→∞

1
T

y′i,−1y = plim
T→∞

1
T
(ρyi,−2 + f−1λi + εi,−1)

′
(

ρy,−1 + f λ+ ε

)
= plim

T→∞

1
T

ρ
2y′i,−2y−1 +λplim

T→∞

1
T

ρy′i,−2 f +

λiρplim
T→∞

1
T

f ′−1y,−1 +λiλplim
T→∞

1
T

f ′−1
f +

ρplim
T→∞

1
T

ε
′
−1y,−1,

by the assumptions E (εi,s fs) = 0 and E (εi,tεi,s) = 0 for all i, j, t and s, moreover,

λplim
T→∞

1
T

ρy′i,−2 f +λiλplim
T→∞

1
T f ′−1

f =
1
ρ

λiλπ,

λiρplim
T→∞

1
T

f ′−1y,−1 = λiλρplim
T→∞

1
T

f ′−1 f−1 +

λiρ
2plim

T→∞

1
T

f ′−1y,−2

= λiλρσ
2
f +λiλρπ,

and:

ρplim
T→∞

1
T

ε
′
−1y,−1 = ρplim

T→∞

1
T

ε
′
−1

(
ρy,−2 + f−1λ+ ε−1

)
= ρplim

T→∞

ε
′
i,−1ε−1

= ρ
1
N

σ
2
ε
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we then have finally:

plim
T→∞

1
T

y′i,−1y =
ρ

1−ρ2

[
1
N

σ
2
ε +λiλσ

2
f +λiλ

(
1+

1
ρ2

)
π

]
.

Regarding F3, let:

plim
T→∞

1
T

y′−1 f λi = plim
T→∞

1
T

(
ρy,−2 + f−1λ+ ε−1

)′
f λi

= λiplim
T→∞

1
T

ρy′,−2 f +λiλplim
T→∞

1
T

f ′,−1 f =
1
ρ

λiλπ.

Similarly,

plim
T→∞

1
T

y′ f λi = plim
T→∞

1
T

(
ρy,−1 + f λ+ ε

)′
f λi

= λiplim
T→∞

1
T

ρy′,−1 f +λiλplim
T→∞

1
T

f ′ f

= λiλπ+λiλσ
2
f .

Finally for F4, by assumption E (εi,s fs) = 0 and E (εi,tεi,s) = 0 for all i, j, t and s so that the first two terms

are obvious. For the third, we note that plim
T→∞

1
T ε′iε =

1
N σ2

ε . �

Proof of Proposition 2.6:

The proof employs exactly the same strategy as with Proposition 2.3: We start with the probability limit

of the bias of the CCE estimator and write:

E (ρ̂CCE −ρ) =
∑

N
i=1 E

(
y′i,−1M f λi

)
∑

N
i=1 E

(
y′i,−1Myi,−1

) +
∑

N
i=1 E

(
y′i,−1Mεi

)
∑

N
i=1 E

(
y′i,−1Myi,−1

)
:=

A+B
C

.

Again under assumptions 1-6, the probability limit of the product will equal the product of the asymptotic

representations of the second moments included in A, B and C. We will therefore proceed to write the three
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terms from expanding A as before:

A1 := E
(
y′y
)

E
(
y′−1y−1

) N

∑
i=1

E
(
y′i,−1 f λi

)
−E

(
y′y
) N

∑
i=1

[
E
(
y′i,−1y−1

)
E
(
y′−1 f λi

)]
,

A2 := E
(
y′−1y

)
E
(
y′y−1

) N

∑
i=1

E
(
y′i,−1 f λi

)
−E

(
y′−1y

) N

∑
i=1

[
E
(
y′i,−1y

)
E
(
y′−1 f λi

)]
,

A3 := −E
(
y′y−1

) N

∑
i=1

E
(
y′i,−1y−1

)
E
(
y′ f λi

)
+E

(
y′−1y−1

) N

∑
i=1

[
E
(
y′i,−1y

)
E
(
y′ f λi

)]
.

Replacing the expectations with their limits and simplifying we find that:

A1 =
N

∑
i=1

(
λ

2
i −λ

2
) ( 1

N σ2
ε

)
π

[( 1
N σ2

ε

)
+λ

2
(

σ2
f +2π

)]
ρ(ρ2−1)2 ,

A2 = −
N

∑
i=1

(
λ

2
i −λ

2
) ρ
( 1

N σ2
ε

)2
π

(ρ2−1)2 −

N

∑
i=1

(
λ

2
i −λ

2
)

λ
2 (

N−1σ2
ε

)
π
[(

1+ρ2
)

π+ρ2
]

ρ(ρ2−1)2 ,

A3 =
N

∑
i=1

(
λ

2
i −λ

2
) (N−1σ2

ε

)
π

ρ(ρ2−1)2 .

For B we find that:

B1 = E
(
y′y
)

E
(
y′−1y−1

) N

∑
i=1

E
(
y′i,−1εi

)
−E

(
y′y
) N

∑
i=1

[
E
(
y′i,−1y−1

)
E
(
y′−1εi

)]
,

B2 = E
(
y′−1y

)
E
(
y′y−1

) N

∑
i=1

E
(
y′i,−1εi

)
−E

(
y′−1y

) N

∑
i=1

[
E
(
y′i,−1y

)
E
(
y′−1εi

)]
,

B3 = −E
(
y′y−1

) N

∑
i=1

E
(
y′i,−1y−1

)
E
(
y′εi
)
+E

(
y′−1y−1

) N

∑
i=1

[
E
(
y′i,−1y

)
E
(
y′εi
)]
.

Since E
(
ε′i,tε j,s

)
= 0 for t 6= s and i 6= j, it is straightforward to see that B1 and B2 are zero. It is not

immediately straightforward to see that B3 is too, however note that since εi,t is i.i.d.:

B3 = −E
(
y′y−1

) N

∑
i=1

E
(
y′i,−1y−1

)
E
(
y′εi
)
+E

(
y′−1y−1

) N

∑
i=1

[
E
(
y′i,−1y

)
E
(
y′εi
)]

= − 1
N

σ
2
εE
(
y′y−1

)
E
(
y′−1y−1

)
+

1
N

σ
2
εE
(
y′−1y−1

)
E
(
y′y−1

)
= 0.

As a result, the numerator of the bias of the CCE estimator is equal to:
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A1−A2−A3 =

(
σ2

ε

)2
πN−1

∑
N
i=1

(
λi−λ

)2

ρ(1−ρ2)
.

The denominator is obtained in a similar fashion, but a proof is again omitted due to the tedious involved.

The denominator C is:

C =
κ1(σ2

ε/N)
[
(N−2)λ

2
+∑

N
i=1 λ2

i

]
+ρ2(σ2

ε/N)
2
[κ2N+({σ2

ε/N}+κ3)(N−1)]

{ρ(1−ρ2)}2 ,

with κ1, κ2 and κ3 defined in the main body of the text. Division and simplification then yields the result in

Proposition 2.3. �
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Appendix 2.2 Monte Carlo Results

Table 2.1: Simulation results for static model (2.1), baseline:
Bias Predicted Bias Predicted Bias Predicted Bias

of β̂OLS β̂OLS bias of β̂T E β̂T E bias of β̂CCE β̂CCE bias of β̂QDCCE

N = 5, T = 100
Bias 0.2644 0.262 0.2619 0.2498 0.1504 0.0762 0.0271

% Bias 26.4393 26.1995 26.1946 24.9836 15.0447 7.6235 2.7119
RMSE 0.1419 0.1568 5 0.0632 0.029

N = 5, T = 500
Bias 0.2685 0.2682 0.2595 0.2489 0.1462 0.1218 0.0097

% Bias 26.8475 26.8158 25.9451 24.8872 14.6218 12.18 0.9703
RMSE 0.139 0.149 0.0564 0.0104

N = 10, T = 100
Bias 0.2767 0.2763 0.276 0.2705 0.1517 0.0768 0.0327

% Bias 27.6672 27.6328 27.5996 27.0533 15.1704 7.6837 3.2673
RMSE 0.1142 0.1173 5 0.0432 0.0352

N = 10, T = 500
Bias 0.2752 0.2752 0.2729 0.2696 0.1547 0.1288 0.0133

% Bias 27.5173 27.5249 27.2948 26.9606 15.4667 12.8793 1.3317
RMSE 0.1112 0.1141 5 0.044 0.0116

Table 2.2: Simulation results for static model (2.1) with σλγ = 0.9
Bias Predicted Bias Predicted Bias Predicted Bias

of β̂OLS β̂OLS bias of β̂T E β̂T E bias of β̂CCE β̂CCE bias of β̂QDCCE

N = 5, T = 100
Bias 0.3949 0.3941 0.3908 0.3909 0.2047 0.0806 0.0358

% Bias 39.495 39.4055 39.0778 39.0882 20.4682 8.0642 3.5777
RMSE 0.2388 0.2528 0.0906 0.0359

N = 5, T = 500
Bias 0.3918 0.392 0.3882 0.39 0.2027 0.1554 0.0159

% Bias 39.1803 39.2032 38.8221 38.9953 20.2705 15.5414 1.5942
RMSE 0.2329 0.2466 0.0889 0.0159

N = 10, T = 100
Bias 0.3987 0.3988 0.3967 0.3972 0.2026 0.0796 0.0481

% Bias 39.8656 39.8820 39.6718 39.7153 20.2571 7.9590 4.8103
RMSE 0.2046 0.2070 0.0715 0.0490

N = 10, T = 500
Bias 0.4018 0.402 0.4001 0.4003 0.2045 0.1555 0.0216

% Bias 40.1766 40.1972 40.0117 40.0269 20.4463 15.5456 2.1646
RMSE 0.2029 0.2057 0.07 0.0213
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Table 2.3: Simulation results for static model (2.1) with σ2
λ
= 5:

Bias Predicted Bias Predicted Bias Predicted Bias
of β̂OLS β̂OLS bias of β̂T E β̂T E bias of β̂CCE β̂CCE bias of β̂QDCCE

N = 5, T = 100
Bias 0.1187 0.1181 0.1124 0.1053 0.044 0.0224 0.0074

% Bias 11.8722 11.8083 11.2362 10.5277 4.4035 2.2381 0.7403
RMSE 0.3056 0.3713 0.0833 0.0251

N = 5, T = 500
Bias 0.1056 0.1059 0.1031 0.0996 0.0415 0.0347 0.0028

% Bias 10.563 10.5865 10.3107 9.9636 4.1487 3.4696 0.2831
RMSE 0.3276 0.3919 0.0869 0.0149

N = 10, T = 100
Bias 0.1236 0.1237 0.1207 0.1188 0.0465 0.0229 0.0032

% Bias 12.3617 12.3654 12.0657 11.8834 4.648 2.2867 0.3186
RMSE 0.1765 0.1925 0.0415 0.0322

N = 10, T = 500
Bias 0.1137 0.1141 0.112 0.1088 0.0458 0.0379 0.0006

% Bias 11.3716 11.4102 11.1953 10.884 4.584 3.7883 0.0616
RMSE 0.177 0.1942 0.0424 0.0074

Table 2.4: Simulation results for dynamic model (2.1), baseline:
Bias Predicted Bias Predicted Bias Predicted Bias

of ρ̂OLS ρ̂OLS bias of ρ̂T E ρ̂T E bias of ρ̂CCE ρ̂CCE bias of ρ̂QDCCE

N = 5, T = 100
Bias 0.2238 0.2312 0.1778 0.1703 0.0077 0.0209 0.0142

% Bias 44.7512 46.2389 35.569 34.0696 1.5314 4.1786 2.8391
RMSE 0.0536 0.0366 0.0038 0.0052

N = 5, T = 500
Bias 0.231 0.2323 0.1847 0.1718 0.0194 0.0214 0.0078

% Bias 46.1932 46.4623 36.9488 34.3501 3.8825 4.2788 1.5535
RMSE 0.0549 0.0373 0.0023 0.0017

N = 10, T = 100
Bias 0.2294 0.2373 0.1893 0.1886 -0.0041 0.006 0.023

% Bias 45.8803 47.4605 37.8551 37.7247 -0.8281 1.2081 4.6039
RMSE 0.0554 0.0391 0.0012 0.0024

N = 10, T = 500
Bias 0.2368 0.2389 0.1957 0.1905 0.0044 0.0063 0.0086

% Bias 47.3624 47.7709 39.1322 38.0923 0.8815 1.262 1.7291
RMSE 0.057 0.0398 0.0005 0.0005
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Table 2.5: Simulation results for dynamic model (2.1), ξ = 0.9:
Bias Predicted Bias Predicted Bias Predicted Bias

of ρ̂OLS ρ̂OLS bias of ρ̂T E ρ̂T E bias of ρ̂CCE ρ̂CCE bias of ρ̂QDCCE

N = 5, T = 100
Bias 0.4317 0.4394 0.4018 0.3992 0.0159 0.0356 0.0118

% Bias 86.3377 87.8828 80.3549 79.8472 3.1744 7.1208 2.3629
RMSE 0.1877 0.1651 0.0076 0.0062

N = 5, T = 500
Bias 0.4407 0.4421 0.4118 0.4032 0.0316 0.035 0.0045

% Bias 88.1406 88.4206 82.3505 80.6371 6.3111 7.0046 0.9082
RMSE 0.1947 0.172 0.0065 0.0019

N = 10, T = 100
Bias 0.4362 0.4437 0.4137 0.417 -0.0085 0.0097 0.0287

% Bias 87.2444 88.7368 82.7306 83.4032 -1.7016 1.9339 5.742
RMSE 0.1912 0.173 0.0019 0.0026

N = 10, T = 500
Bias 0.4443 0.4459 0.4241 0.4218 0.0051 0.0089 0.0067

% Bias 88.8607 89.1799 84.8145 84.3625 1.0258 1.7858 1.3446
RMSE 0.1976 0.1805 0.0009 0.0004

Table 2.6: Simulation results for dynamic model (2.1), σ2
λ
= 5:

Bias Predicted Bias Predicted Bias Predicted Bias
of ρ̂OLS ρ̂OLS bias of ρ̂T E ρ̂T E bias of ρ̂CCE ρ̂CCE bias of ρ̂QDCCE

N = 5, T = 100
Bias 0.2605 0.269 0.2516 0.2527 0.0438 0.057 0.0424

% Bias 52.1014 53.806 50.3154 50.5399 8.7643 11.3905 8.4741
RMSE 0.0708 0.0668 0.011 0.0143

N = 5, T = 500
Bias 0.2673 0.2692 0.2582 0.2526 0.0564 0.0583 0.028

% Bias 53.4503 53.8459 51.6457 50.5295 11.2855 11.6562 5.5998
RMSE 0.0724 0.0682 0.01 0.008

N = 10, T = 100
Bias 0.2654 0.2745 0.2604 0.2664 0.0273 0.039 0.046

% Bias 53.0888 54.896 52.0732 53.2712 5.4538 7.8075 9.1931
RMSE 0.0731 0.0705 0.0074 0.0108

N = 10, T = 500
Bias 0.2729 0.2749 0.2678 0.2668 0.0375 0.04 0.0268

% Bias 54.5878 54.9725 53.557 53.3513 7.5 7.9998 5.3538
RMSE 0.0751 0.0724 0.0064 0.0066
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Chapter 3

Quasi-Difference Estimation of Fixed N,
Large T Panels with Multi-Factor Error
Structures

In this chapter we develop fixed N, large T quasi-difference GMM estimators for dynamic

panel data models with multiple time-varying individual effects. The estimators have a normal

limiting distribution when the number of factors is correctly estimated but a mixed-normal

limiting distribution when the number of factors is over-estimated. We also consider model

selection and specification testing.

3.1 Introduction

In recent years the econometric literature has devoted much attention to panel data models with cross-

sectional dependence in the error term. Such cross-sectional dependence is often modelled as interactive

fixed effects by which ’individuals’ respond with different intensities to unobserved common random pro-

cesses. These time-varying individual effects generalize the time-invariant individual effects that can be

found in the traditional panel data models and are known as factor structures. Economic theory gives rise

to many cross-sectionally dependent phenomena. For example in studies of economic growth, e.g. Mankiw

et al (1992), country data is cross-sectionally dependent as technology shocks are proliferated across the

world. In tests of the Purchasing Power Parity hypothesis such as Froot and Rogoff (1995), internationally

traded goods yield a dependence between countries. In empirical finance the processes that drive the returns

of security portfolios are modelled as factors, see e.g. Ross (1976) and Roll and Ross (1980). Factors are

also commonly used in macroeconomic applications such as business cycle modelling, cf. Sargent and Sims

(1977); the analysis of monetary policy in Bernanke et al (2005); forecasting exchange rates in Engel et al

(2014) and the transmission mechanism of country-wide shocks to intra-country sectors of production in
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Foerster et al (2011).

The econometric literature has developed several estimators that are robust to cross-sectional depend-

ence. Examples include the quasi-difference estimators of Holtz-Eakin et al (1988), Nauges and Thomas

(2001) and Ahn, Lee and Schmidt (2001, 2013). These authors generalize the GMM estimator of Arellano

and Bond (1991) for a dynamic panel data model with time-invariant individual effects to (multiple) time-

varying effects within the large N, fixed T framework. Pesaran (2006) proposes an estimator for the large

N, T time-varying individual effects model: the Common Correlated Effects (CCE) estimator is based on

the observation that cross-sectional averages can proxy for the factors when N is large. Furthermore, the

CCE estimator does not require knowledge of the number of effects and is simple to implement. These

favourable properties have led to extensive analysis of the conditions under which the CCE estimator is con-

sistent: Urbain and Westerlund (2013) and Westerlund and Urbain (2015) show that the CCE estimator is

inconsistent when the number of factors is larger than the number of regressors. Moreover, Everaert and de

Groote (2016) show that the CCE estimator is inconsistent when lagged dependent variables enter into the

regression model and T is fixed, although the inconsistency vanishes if T is also allowed to grow large. Bai

(2009) and Moon and Weidner (2015, 2017) present alternative estimators that are generalize the large N,

T Principal Components estimator of Bai and Ng (2002): they obtain consistent and asymptotically normal

Quasi-Maximum Likelihood estimators of the factors, loadings and slope parameters. Moon and Weidner

(2015) further show that the estimator is consistent and asymptotically normal as long as the number of

factors included in the model is at least as large as the true number of factors. However, these estimators

are inconsistent when the idiosyncratic error is correlated in the time and cross-sectional dimensions and/or

when lagged dependent variables enter the model. In either case, bias-correction methods are necessary.

Estimation techniques for panel data models with cross-sectionally dependent errors are thus typically

designed for data with large N, fixed T and large N, large T dimensions, whilst fixed N, large T models

have been largely ignored. This is relevant especially since improvements in the collection and quality of

country-level time series have since created a surge in panel data studies by macroeconomists. For example,

Beetsma and Giuliodori (2011) use the Within estimator to study fiscal multipliers in the European Monetary

Union (EMU) by means of a vector autoregression (VAR). As the number of countries in EMU is small, the

dimensions of their dataset are better represented by fixed N and large T. Moreover, the Within estimator

is inconsistent when the data contain time-varying effects that are correlated with the regressors. Similarly,

Ilzetski (2011) and Ilzetski et al (2013) compile data of approximately thirty countries and conduct VAR

analysis using the Within estimator. Whilst the dimensions of this dataset are characterized by large N

and T, the size of fiscal multipliers is analysed by splitting the sample along common characteristics of the

countries. Again, these split samples fit better in the small N, large T framework and the Within estimator is

inconsistent when the error is cross-sectionally dependent.

The need for estimation procedures that can handle cross-sectional dependence in fixed N, large T

panels is growing as more and more panel datasets of high quality become available to macroeconomists.

This chapter is intended to address that need: we present a GMM estimation procedure for large T dy-

namic panel data models with factor errors based on quasi-differencing as in Ahn, Lee and Schmidt (2001,

68



2013). Moreover, our estimators can accommodate individual-specific slope parameters. When the number

of factors is known or estimated correctly, our theory delivers
√

T -consistent and asymptotically normal es-

timators of the slope parameters. We also study in detail the estimation problem when too many factors are

assumed: we show that the quasi-difference GMM estimator of the slope parameters remains
√

T -consistent

and develop a novel mixed normal limit theory for that case. Finally, we formulate tests for various hypo-

theses about the model such as the number of factors and poolability of the parameters, in addition to the

usual tests for restrictions on parameters.

The paper is organized as follows: Section 2 describes the model, identification of the factor loadings

and our assumptions. Section 3 describes in detail the estimation procedure, consistency and asymptotic nor-

mality of the GMM estimators when the number of factors is correctly specified. Section 4 then develops a

novel mixed-normal limit theory for the case where the number of factors included in the estimation proced-

ure is larger than the true number of factors, whereas Section 5 deals with model selection and specification

testing. Section 6 presents an elaborate Monte Carlo study to evaluate the finite-sample properties of the

various estimators and test procedures, whilst Section 7 concludes. Finally, on notation: ‘:=’ denotes defin-

itional equality. A column vector a is written in small script, whereas an m× n matrix A is in capital. The

n×n identity matrix is In and the n×1 null-vector is 0n. "*" denotes the column-wise Khatri-Rao product,

"⊗" is the Kronecker product, "⊕n
i=1Ai" is the direct product, i.e., ⊕n

i=1Ai = diag(A1, A2, . . . , An)and ||A|| is
the Frobenius norm of A, i.e.: ||A|| =

√
tr(A′A), or the corresponding Euclidean norm of a vector a. For

a random matrix Ψt , we denote its expectation as E (Ψt) and the sample analogue as Ψ̂ := T−1
∑

T
t=1 Ψt .

Finally, the limit of some non-stochastic series is denoted ”→ ” , ”→p ” denotes convergence in probability

and ”→d ” convergence in distribution.

3.2 Basic Model and Assumptions

Basic Model

We will consider the following dynamic panel data model with individual specific regression coefficients

and a factor error structure:

yi = Xiβi +Fλi + εi, i = 1, . . . , N, (3.1)

where yi = [yi,1, . . . ,yi,T ]
′ is a T-vector of observations on the dependent variable for individual i, Xi = [Yi, Xi]

where Yi = [y−1,i, . . . , y−L,i] is a T ×L matrix whose columns correspond to the first L lags of yi and Xi =

[x1,i, . . . , xK,i] is a T ×K matrix that corresponds to K regressors and βi contains K +L slope parameters for

individual i. Furthermore, F = [ f1, . . . , fR] is a T ×R matrix containing R unobservable factors and λi is

a vector of individual-specific factor loadings. The first column of F may be a vector of ones so that our

model includes the well-known heterogeneous intercept model as a special case. Finally, εi is a T -vector of

idiosyncratic disturbances. We are interested in estimating the slope parameters βi for each i = 1, . . . , N and
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determining the value of R. We will further assume that N is fixed and T is large so that we can only use

fixed N, large T asymptotics.

Model (3.1) is quite general: for example, the model may describe N production functions, linked to-

gether by a common factor structure. This factor structure may correspond to global business cycles to

which individual producers respond with different intensities. Alternatively, if we impose slope homogen-

eity, i.e., restrict the βi = β for all i = 1, . . . ,N , model (3.1) can be used to describe the k-th equation of the

reduced form of a K +1-dimensional panel VAR with a cross-sectionally dependent error structure.

We now briefly describe the difficulty of estimating the slope parameters of (3.1) when factors are present

in the error. Since the εi and F cannot be observed, we have the following composite error term:

ui := Fλi + εi, i = 1, . . . , N

If the factors are static, i.e., not autocorrelated, and uncorrelated with all xk,i,t , the slope parameters of the

model can be estimated consistently and efficiently by GLS. However, since model (3.1) is dynamic, there

is a priori no reason to assume that the factors are static. If they are not, then correlation between the yi,t−1

and the ui,t will result in inconsistency of the OLS and GLS estimators for the slope parameters.1 A similar

argument applies if some of the xk,i,t are correlated with the factors.

It will be convenient to restate (3.1) as follows:

y = (β∗ IN)
′X+U,

U := ΛF ′+ ε. (3.2)

In (3.2), y = [y1, . . . , yN ]
′ is an N×T matrix and β = [β1, . . . , βN ] is (K +L)×N. The N (K +L)×T matrix

X = [Y ′, X ′]′ collects all regressors and these are stacked first over the cross-section and then by their label,

i.e. X =
[
X (1)′, . . . , X (K)′]′ with k-th block X (k) = [xk,1, . . . , xk,N ]

′ is N × T for k = 1, . . . ,K and likewise

for Y . Furthermore, Λ = [λ1, . . . , λN ]
′ is an N×R matrix and ε = [ε1, . . . , εN ]

′ and U = [u1, . . . , uN ]
′ are of

dimension N×T . Note that in the special case of slope homogeneity, β is a (K +L)×1 vector and model

(3.1) may be written compactly as:

y =
(
β
′⊗ IN

)
X+U. (3.3)

We will assume that model (3.3) is the true model and sometimes use the subscript “0” on β, Λ and R to

distinguish the true parameters from placeholders.

1As mentioned before, many studies nonetheless assume that the factors are not autocorrelated.

70



Restrictions on Λ

The Λ and F are unobservable and it is therefore not possible to identify them without imposing restrictions

on the factor structure because ΛF ′ = ΛCC−1F ′ for any R×R invertible matrix C. This is the well-known

"rotation"-problem. We require R2 restrictions on Λ and F to identify these components, see e.g. Jöreskog

and Goldberger (1975). Since N is fixed and T is large, we will estimate the Λ matrix and treat the F as

unobserved regressors and the restrictions are therefore imposed on Λ only.

Many studies achieve identification by restricting the last R×R sub-matrix of the Λ to be an identity

matrix, i.e., they partition Λ =
[
Λ′+, Λ′−

]′ and then restrict the loadings matrix as follows:

Λ
? :=

[
Λ
?′
+, IR

]′
= ΛΛ

−1
− , (3.4)

where the asterisk signifies the normalized version.2 As an example, consider applying this identification

strategy to the factor loadings of a model with R = 1:

[λ?
1, λ

?
2, . . . , 1]′ := Λ/λN =

[
λ1

λN
,

λ2

λN
, . . . ,

λN

λN

]′
. (3.5)

As noted by Bai and Ng (2013) however, a certain structure of the loadings is assumed in identification

strategy (3.4) which requires that det(Λ−) 6= 0. Note however that in empirical work it is possible that one

or several of the cross-sectional units are unaffected by (a subset of) the factors. Clearly, if λN = 0 in (3.5),

then the λ?
j are not defined and this argument extends to the multi-factor case when Λ− is singular.3

An alternative identification strategy to (3.4) is to force the loadings of each of the R factors to sum to

unity. To illustrate this strategy, consider again a model where R = 1 and normalize the loadings so that

[λ?
1, λ

?
2, . . . , λ

?
N ]
′ := Λ/

N

∑
j=1

λ j =

[
λ1

∑
N
j=1 λ j

,
λ2

∑
N
j=1 λ j

, . . . ,
λN

∑
N
j=1 λ j

]

and λ?
N = 1−∑

N−1
j=1 λ?

j . Note that this strategy allows λ?
j = 0 for any j ∈ {1, . . . , N} as long as ∑

N
j=1 λ?

j = 1.

When R > 1, normalizing each column of Λ to sum to unity delivers R restrictions and we therefore require

R(R−1) further restrictions. By restricting all off-diagonal elements of Λ− to zero, we obtain the following

generalization of the identification strategy for arbitrary R:

Λ
?
− :=


1−∑

N−R
j=1 λ?

j,1 0 . . . 0

0
. . . . . . . . .

. . .
. . . . . . 0

0 . . . 0 1−∑
N−R
j=1 λ?

j,R

 , (3.6)

2See for example: Robertson and Sarafidis (2015); Ahn, Lee and Schmidt (2013); PC3 in Bai and Ng (2013).
3In practice, a near-singular R×R unrestricted sub-matrix is problematic as well. Nonetheless, it may be possible to re-order

the cross-sectional units so that Λ− is not near-singular.
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and Λ?
+ is further unrestricted. The restrictions in (3.6) above thus circumvent the problem of singularity of

Λ−, although this will come at the price of increased computational complexity as we will see in the next

subsection.

Quasi-Difference Matrix M

In order to estimate the parameters of (3.1), i.e., the elements of β and Λ?, we will remove the factors from

the composite error term by linearly combining the columns of U . That is, we apply a transformation matrix

M to (3.1) such that:

MΛ = 0N−R,R. (3.7)

It should be noted that M is not uniquely defined by (3.7) and the researcher may desire to choose a trans-

formation matrix that delivers computational convenience. When the restrictions in (3.4) are used to identify

the model, it is convenient to define M as:

M :=
[
IN−R,−Λ

?
+

]
.

In the case of identification strategy (3.6) we have:

M :=
[
det
(
Λ
?
−
)
× IN−R,−Λ+

(
Λ
?
−
)†
]
,

where det
(
Λ?
−
)

and
(
Λ?
−
)† are the determinant and adjoint matrix of Λ?

−, respectively. Comparing both

identification strategies, it is clear that (3.4) allows for a transformation matrix that is linear in the elements

of Λ?, irrespective of the value of R. On the other hand, (3.6) entails non-linearity on M when R≥ 2.

To illustrate the different transformations, consider a model with K = 0, L = 1 and βi = β for all i =

1, . . . ,N and R = 1 and initially without normalisation imposed on Λ:

y = βY +Λ f ′+ ε.

As the identifying restriction will be imposed on Λ−, that is, on λN , we define the following quasi-difference

matrix:

M :=


λN 0 . . . 0 −λ1

0 λN
. . . . . . −λ2

. . .
. . . . . . 0 . . .

0 . . . 0 λN −λN−1

 . (3.8)
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Examining the j-th row of My = βMY +Mε, for each j = 1, . . .N−1, we find:

M jy = β(λNy−1, j−λ jy−1,N)+λNε j−λ jεN .

We see that by using quasi-differencing, we have removed the unobservable factor from the model at the

expense of introducing cross-sectional dependence (of a known form) in the error terms. Next, restricting

λN to unity as per identification strategy (3.4) gives:

y j−λ
?
jyN = β

(
y−1, j−λ

?
jy−1,N−1

)
+ ε j−λ

?
jεN . (3.9)

On the other hand, identification strategy (3.6) yields:

λ
?
Ny j−λ

?
jyN = β

(
λ
?
Ny−1, j−λ

?
jy−1,N−1

)
+λ

?
Nε j−λ

?
jεN , (3.10)

with λ?
N = 1−∑

N−1
j=1 λ?

j . Comparing the quasi-differenced models (3.9) and (3.10), it is clear that even in the

case of R = 1, identification strategy (3.6) yields a more complicated structure with M as above, although

both transformed models are linear in the loadings.

When R > 1 however, the use of (3.6) with a transformation matrix as defined in (3.8) involves polyno-

mials of the form ΠR
r=1

(
1−∑

N−R
j=1 λ?

j,r

)
and this quickly leads to computational complications.

Finally, note that transformation matrices that conform to (3.8) are chosen for convenience but we can

conceive of other transformation matrices that remove the factors from the data parametrically. For example,

for the AR(1) process above with R = 1, consider:

M :=



λ2 −λ1 0 . . . . . . 0

0 λ3 −λ2 0 . . . . . .

. . . 0
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . 0

0 . . . . . . 0 λN −λN−1


.

Compared to the above specifications, this transformation matrix is more symmetric by taking quasi-differences

in neighbours. On the other hand, a generalization of this structure becomes complicated when R > 1 and

makes the problems associated with normalization of R intractable.

Assumptions

Before we can state our assumptions, we have to introduce some additional notation: let Xt = [Y ′t , X ′t ] be

an N× (K +L) matrix that stacks the observations on all regressors for all N individuals at time t and let

xi,t be a K-vector with observations on all covariates xk,i,t for the i-th individual at time t and k = 1, . . . , K;

furthermore, let yt , ut and εt be N-vectors at each t consisting of elements yi,t , ui,t and εi,t for i = 1, . . . , N
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and note that ft is the 1×R vector of observations on the factors with representative element ft,r; we also

let zi,t = [z1,i,t , . . . , zS,i,t ]
′ denote an S-vector of instruments for each i = 1, . . . , N and t = 1, . . . , T and Zt an

N×S matrix with all instruments of all individuals at time t. Finally, depending on whether one considers

model (3.2) or (3.3), denote the parameter vector as φ =
[
vec(β)′ , vec

(
Λ′+
)′]′ or φ =

[
β′, vec

(
Λ′+
)′]′ and

define the parameter space Φ⊂ Rdim(φ) such that φ ∈Φ.

Recall that it is not necessary to remove all factors from U in model (3.2). That is, any static factor in

ut that is uncorrelated with the Xt can be absorbed in εt . Similarly, note that factors that affect Xt but are

uncorrelated with ut cannot be removed from model (3.2) by quasi-differencing but do cause the yi,t to be

cross-sectionally dependent. Let Ft be the σ-field generated by all random unobservable factors. Then

F0 ⊂ F1 ⊂ ·· · ⊂ Ft−1 ⊂ Ft

is the history of all logically distinct factors that affect the N equations of the model either directly or

indirectly up to time t.

We impose the following assumptions on model (3.2):

ASSUMPTION 1:
{(

vec(Zt)
′ , vec(Xt)

′ , ε′t , ft
)′} is strong mixing of size −d/(d−2), d > 2 for all t.

ASSUMPTION 2: (i) E (zi,tε j,t |Ft , Gt−τ) = 0 for all i, j = 1, . . . , N, all τ > P+ 1 < ∞ and adapted

σ-fields Gt = σ(Xt , Xt−1, . . .) where Xt :=
(
vec(Zt)

′ , vec(Xt)
′ , ε′t
)′
, t = 1, 2, . . . ; (ii) E (εi,t |Ft , Gt−τ) = 0

for all i = 1, . . . , N, all τ > P+ 1 < ∞ and t = 1, 2, . . . ; (iii) E
∣∣zs,i,tε j,t

∣∣d+δ
<4 < ∞ for some δ > 0 and

all s = 1, . . . , S, i, j = 1, . . . , N and t = 1, 2, . . . ; (iv) E
∣∣zs,i,txk, j,t

∣∣d+δ
< 4 < ∞ for some δ > 0 and all

k = 1, . . . , K, s = 1, . . . , S, i, j = 1, . . . , N and t = 1, 2, . . . ; (v) E |zs,i,t ft,r|d+δ <4 < ∞ for some δ > 0 and

all r = 1, . . . , R, s = 1, . . . , S, i = 1, . . . , N and t = 1, 2, . . .

ASSUMPTION 3: The parameter space Φ is totally bounded.

ASSUMPTION 4: The matrices T−1
∑

T
t=1
[
E (z1,tM1Xt)

′ , . . . , E (zN−R,tMN−RXt)
′]′ and

T−1
∑

T
t=1
[
E (z1,t ft)

′ , . . . , E (zN−R,t ft)
′]′ have full column rank.

ASSUMPTION 5: rank [E ( f ′t ft)−E ( f ′t )E ( ft)] = R < N.

Our assumptions are designed with macroeconomic applications in mind and allow for data that exhibit

both dependence and heterogeneity over time. In particular, by assuming that the individual time series

are strong mixing, Assumption 1 allows the data to be heterogeneously distributed across both individuals

and time. Furthermore, Assumption 2(i) allows for “P-dependence” of the products of the instruments and

the errors. Assumption 2(ii) requires mean independence of the errors and the factors. Note that although

the sigma-fields generated by the factors ft and those generated by the vectors
(
vec(Zt)

′ , vec(Xt)
′ , ε′t
)′

have been defined separately, there will in general be correlation between the factors and (some of) the re-

gressors. The moment requirements on products of the ft,r, xk,i,t , zs,i,t and εi,t in Assumption 2(iii)-(v) are

needed for consistent estimation of the optimal weight matrix used by GMM under P-dependence. Exist-

ence of 2d + δ-th order moments of the elements of the vectors
(
vec(Zt)

′ , vec(Xt)
′ , ε′t
)′ is sufficient for
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Assumption 2(iii)-(v) to hold. These moment requirements can be reduced to (i) finite fourth moments

under ergodic stationarity and (ii) finite second moments by assuming both ergodic stationarity and condi-

tional homoskedasticity. On the other hand, the P-dependence in Assumption 2(i) can be relaxed at the cost

of making stronger moment assumptions, cf. White (2001, Section 6.4). Finally, note that cross-sectional

dependence of the εi,t is permitted under Assumptions 1 and 2.

Assumption 3 is a technical condition required for the uniform convergence of the objective function

used in GMM estimation of model (3.1), cf. Andrews (1992). This assumption implies that ‖φ‖ < ∞ for

all i = 1, . . . ,N which is a natural requirement for an interpretable model. Note that total boundedness is

a weaker condition for uniform convergence than the standard requirement of compactness in the case of

stationary or i.i.d. data, cf. Newey and McFadden (1994).4

Assumption 4 is similar to Assumption BA.4 in Ahn et al (2013) and consists of two identification

conditions: it requires that the part of the gradient matrix corresponding to β has rank K + L and that

T−1
∑

T
t=1
[
E (z1,t ft)

′ , . . . , E (zN−R,t ft)
′]′ has rank R. The former condition is needed to identify β, whilst

the latter requires correlation between the factors in ft and (some of) the instruments in Zt which allows

us to identify and interpret R. Note however that Assumption 4 is restrictive and rules out certain types of

exact multicollinearity. First, Assumption 4 can be violated if time-invariant regressors are included and

the model contains unobservable time-invariant individual effects. As an example consider lΓ regressors

Γ that vary over individuals but not over time. Then, since rank(Λ?) = R and the largest dimension of

Λ? is N, identification of the parameters requires that rank [Λ?, Γ] ≤ N, implying that at most lΓ ≤ N−R

time-invariant regressors Γ are permissible to pin down Λ? uniquely. Now partition Γ = [Γ1, Γ2] so that

rank [Λ?, Γ] = N whereas the column-dimension of [Λ?, Γ] is lΓ1 + lΓ2 +R > N and assume that lΓ1 +R = N.

In that case, the matrix [Λ?, Γ] contains lΓ2 linearly dependent columns and rank(MΓ) = rank(MΓ1), thus

violating the first component of Assumption 4. Of course, R is unknown and has to be estimated and it

is a priori not clear how many-time invariant regressors are permissible in the model. As a result, we

recommend to either leave them out entirely, or to add them after the number of factors is determined.

Similarly, if the regressors include a variable xt that varies over time but not over individuals and a column

of Λ is a multiple of the unit vector, then any quasi-difference matrix M that removes the factor component

from ut will also remove xt from Xt . The result is that the first matrix in Assumption 4 is not of full rank.

Note that this argument holds for both the homogeneous and heterogeneous parameter model and for that

reason “observable factors” are not permitted as regressors.

Finally, Assumption 5 is an identifying assumption that requires that the true number of factors that

are correlated with the instruments, R, is smaller than the number of cross-sectional units. The assump-

tion further requires that the factors are not perfectly collinear, which is comparable to the no-collinearity

assumption in estimation problems with observable regressors.

4Recall that a compact space is bounded and closed, but that total boundedness is stronger than boundedness. Boundedness
requires a finite η-cover of the space, whereas total boundedness requires a finite number of η-covers of differing radii η. For this
reason, total boundedness is also referred to as pre-compact.
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3.3 Quasi-Difference GMM Estimation when R̂ = R

In this section we discuss estimation of models (3.2) and (3.3) using GMM under the assumption that the

number of factors R is known. We first present the QDGMM moment conditions and objective function and

then derive consistency and asymptotic normality. We also consider an alternating least squares algorithm

that can be used estimate the model.

Moment Conditions and Objective Function

The GMM estimator of φ0 will exploit moment conditions based on the quasi-differenced error of system

(3.2):

M
[
Y − (β∗ IN)

′X
]
= MU,

which, if the model is correctly specified, implies that

Mut = Mεt , t = 1, . . . , T.

We now introduce an S-vector of instruments z j,t for all j = 1, . . . ,N−R quasi-differences M jεt for which

the following moment conditions hold:

E [mt (φ0|R)] :=E
[
(z1,tM1ut)

′ , . . . , (zN−R,tMN−Rut)
′]′ (3.11)

=0S(N−R)×1,

where the dependence on correct specification is made explicit. Note that model (3.2) involves N (K +L)+

R(N−R) parameters and identification requires that the following order condition is satisfied:

S (N−R)≥ N (K +L)+R(N−R) .

If instead slope parameter homogeneity is imposed, identification of the parameters requires at least (K +L)+

R(N−R) instruments. It should be clear from the structure of (3.11) that the quasi-difference operation does

not affect the time series properties of (3.11) and that instruments that valid for quasi-differencing once are

also valid for quasi-differencing R times. Moreover, relevant instruments for (3.11) depend on the length

of the time series, the strength of the autocorrelation in F and y and slope parameter homogeneity. This

implies that valid moment conditions for the j-th quasi-difference can be generated using current and lagged

values of X j,t and y j,t−l at each t = 1, . . . ,T . Furthermore, identification of the factor loadings requires that

the matrix T−1
∑

T
t=1 z j,t ft has full rank for all j and this implies that all current and lagged values of Xt are

valid instruments for each of the M jεt . However, since T is large, the number of instruments based on lags

can diverge rapidly and must be truncated to avoid a singular covariance matrix. To limit the number of in-

struments, we therefore recommend using (i) current and lagged regressors X j,t for the j-th quasi-difference
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and (ii) the regressors of those individuals whose error is linearly combined through M j as instruments.

A quasi-difference GMM estimator then solves the following minimization program:

φ̂ = argmin
φ∈Φ

Q̂(φ|R) ,

where:

Q̂(φ|R) :=T

[
T−1

T

∑
t=1

mt (φ|R)

]′
Ŵ

[
T−1

T

∑
t=1

mt (φ|R)

]

and Ŵ is a positive semi-definite weight matrix. We will construct an efficient two-step GMM estimator by

following Newey and McFadden (1994, section 6): first, an initial consistent estimator φ̃ is obtained using a

conformable positive semi-definite matrix Ŵ = W̃ and this estimator is referred to as the one-step QDGMM

estimator. Suitable one-step weight matrices are the identity matrix or the weight matrix that is optimal

when R = 0 and the εi,t are a scalar multiple of the identity matrix. In that case the optimal weight matrix is

the inverse of:

⊕N−R
j=1

(
T−1

T

∑
t=1

z j,tz′j,t

)
.

The efficient two-step QDGMM estimator φ̂ is then obtained by minimizing Q̂(φ|R) with Ŵ
(
φ̃
)

computed

from φ̃. It is also possible to optimize Q̂(φ|R) directly using Ŵ
(
φ̃
)

:= W (φ) as in Hansen, Heaton and

Yaron (1996) by continuous updating GMM. However, such a procedure would be numerically unattractive

due to the non-linear nature of the objective function and for this reason we consider multi-step estimators

only.

It is important to note that the moment conditions are correlated up to lag P by Assumption 4(i) and the

covariance matrix of T−1
∑

T
t=1 mt (φ0|R) thus consists of a sum of P autocovariance matrices. A suitable

estimator of the optimal weight matrix under this assumption is the inverse of:

T−1
T

∑
t=1

[
mt
(
φ̃|R
)

mt
(
φ̃|R
)′] (3.12)

+T−1
P

∑
p=1

T

∑
t=p+1

[
mt
(
φ̃|R
)

mt−p
(
φ̃|R
)′
+mt−p

(
φ̃|R
)

mt
(
φ̃|R
)′]

.

The weight matrix (3.12) is positive semi-definite by construction for small P. Moreover, Ŵ
(
φ̃
)

is valid for

cross-sectional dependence and autocorrelation in the ε, but may be simplified if such dependence is known.

If the weight matrix is not positive semi-definite it can also be estimated by the methods of White (2001,

pp. 153-154) and Newey and West (1988) by introducing a weighting scheme in the second term of (3.12)

at each p.
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Identification, Consistency and Asymptotic Normality

We will henceforth specialize M to the identification strategy (3.4) and we note that analogous results can

be obtained for strategy (3.6) at the cost of more complicated notation. Using (3.4), the moment function

can be written compactly as a function of vec(Λ?
0):

m̂(φ0|R) :=T−1
T

∑
t=1

mt (φ|R) := m̂ZU − ĜΛvec(Λ?
0) ,

where:

m̂ZU :=T−1
T

∑
t=1

[
(z1,tu1,t)

′ , . . . , (zN−R,tuN−R,t)
′]′ ;

ĜΛ :=T−1
T

∑
t=1

[
⊕N−R

j=1 (z j,tuN−R+1,t) , . . . ,⊕N−R
j=1 (z j,tuN,t)

]
,

and m̂ZU and ĜΛ are of dimensions S (N−R)×1 and S (N−R)×R(N−R) respectively. Equivalently, the

moment functions can be written as a function of β0:

m̂(φ0|R) := m̂ZY − Ĝββ0,

with S (N−R)×1 vector:

m̂ZY := T−1
T

∑
t=1

[
(z1,tM1yt)

′ , . . . , (zN−R,tMN−Ryt)
′]′

and in the case of the homogeneous parameter model (3),

Ĝβ :=T−1
T

∑
t=1

[
(z1,tM1Xt)

′ , . . . , (zN−R,tMN−RXt)
′]′ ,

of dimension S (N−R)× (K +L) and the appropriate definition of Ĝβ for the heterogeneous parameter

model is contained in Lemma 1 in the Appendix. Under identification strategy (3.4) we thus see that the

moment functions permit a dual representation:

m̂t (φ0|R) :=m̂ZY − Ĝββ0 = m̂ZU − ĜΛvec(Λ?
0) (3.13)
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which implies that the objective function Q̂(φ|R) is bi-convex in φ.5 Now letting:

G :=−E

(
T−1

T

∑
t=1

∂mt (φ|R)
∂φ′

∣∣∣∣
φ=φ0

)
:= E

[
Ĝβ, ĜΛ

]
,

local identification of φ follows from the dual representation above as the following proposition makes pre-

cise:

PROPOSITION 3.1: Local Identification of QDGMM: Suppose Assumptions 1-5 hold and normalize

Λ?
0 =

[
Λ?′

0+, IR
]′. Then

E
[
mt
(
β, Λ

?
0+|R

)]
= 0 i f f β = β0 and

E [mt (β0, Λ|R)] = 0 i f f vec(Λ) = vec
(
Λ
?
0+
)

if G has full rank.

Proof: See Appendix.

REMARK 3.1: The identification condition holds only when the number of factors estimated R̂ = R. When

R̂ < R, the GMM estimator cannot remove the factors completely. As a result, the corresponding objective

function Q
(
φ| R̂
)

diverges to infinity. When R̂ > R, the system is under-determined and infinitely many solu-

tions to the moment conditions exist, implying that E
(
ĜΛ

)
cannot be full rank. In this situation, a consistent

estimate of β0 is however still available.

Given identification, we need measurability of the moment function with respect to the data Xt and Ŵ

to be positive semi-definite for consistency:

PROPOSITION 3.2. Consistency of QDGMM Estimators when R̂ = R: Suppose Assumptions 1-5 hold.

Assume further that the weight matrix Ŵ →p W is positive semi-definite. Then φ̂→p φ0 as T → ∞.

Proof: See Appendix.

REMARK 3.2: The proof follows Andrews (1992) by showing that a stochastic Lipschitz condition holds

on the moment conditions, which implies stochastic equicontinuity. Stochastic equicontinuity then takes

pointwise weak convergence of the objective function Q̂(φ|R) to uniform weak convergence. The result of

Andrews (1992) covers weaker assumptions than techniques which rely on a dominance condition on the

moment function such as in Theorem 2.6 of Newey and McFadden (1994), whereas the stated result also

5For a set C ⊂ A×B, a function ξ(a, b) : C→ R is bi-convex if ξ is convex in a holding constant b and vice versa, see Gorski
et al (2007).
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covers i.i.d. and/or strictly stationarity processes.

Asymptotic normality of QDGMM estimators readily follows from standard results in the M-estimator lit-

erature:

PROPOSITION 3.3. Asymptotic Normality of QDGMM Estimators when R̂ = R: Let Assumptions

1-5, let E
[
supφ∈Φ ||∑T

t=1
∂mt(φ|R)

∂φ′ ||
]
< ∞, G have full rank, Ŵ →p W and

1√
T ∑

T
t=1 mt (φ0|R)→d N

(
0S(N−R)×1,V

)
for a positive definite matrix V. Then:

1. √
T
(
φ̂−φ0

)
→d N

(
0,
(
G′WG

)−1 G′WVWG
(
G′WG

)−1
)
,

where

V := E

[
T−1

P

∑
p=−P

T

∑
t=|p|+1

mt (φ0|R)mt−p (φ0|R)′
]
.

2. Furthermore, if W =V−1, then:

Q̂
(
φ̂|R
)
→d χ

2 {(S−R)(N−R)−dim(β)} .

Proof: See Appendix.

REMARK 3.3: As is typical for GMM estimators, setting W =V−1 yields the efficient QDGMM estimator

by standard arguments. The variance estimator V, corresponds to the cross-product matrix of the quasi-

differenced residuals Mut = Mεt and the instrument matrix Zt over the lag window p = 1, . . . , P. When the

same instruments are used for all equations so that zt is an S-vector and P= 1 however, the covariance matrix

can be simplified to MΩM′⊗E (ztz′t), where Ω = var(εt). These matrices can be consistently estimated by

sample moments.

The moment conditions (3.13) are non-linear in parameters and numerical optimization is required to find

argmin Q̂(φ|R) over φ. We will exploit the bi-convexity of Q̂(φ|R) to solve for the QDGMM estimator.

That is, the dual representation of the moment conditions implies that the quadratic form Q̂(φ|R) is strictly

convex in β, holding fixed vec(Λ) and vice versa. This property can be used to compute estimates of β0 and

vec(Λ?
0) respectively as the following set of conditional least squares solutions of argmin Q̂(φ|R):

β̂|Λ =
[(

Ĝβ|Λ
)′

Ŵ
(
Ĝβ|Λ

)]−1 (
Ĝβ|Λ

)′
Ŵ (m̂ZY |Λ) , (3.14)

vec
(
Λ̂
)
|β =

[(
ĜΛ|β

)′
Ŵ
(
ĜΛ|β

)]−1 (
ĜΛ|β

)′
Ŵ (m̂ZU |β) (3.15)
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for any conformable weight matrix Ŵ . The conditional strict convexity of the solutions (3.14) and (3.15)

to Q̂(φ|R) motivate the use of an alternating least squares (ALS) algorithm to solve the optimization prob-

lem.6 Such an algorithm is attractive because it is simple to implement and fast compared to more elaborate

optimization routines. An ALS algorithm for the homogeneous parameter model using W̃ in the first step is:

ALGORITHM 3.1. Alternating Least Squares Computation of QDGMM Estimator:

1. For b = 1, . . . , B

(a) If b = 1 set Ŵ = W̃ ; if b≥ 2 compute Ŵ from formula (3.12) using Ûb−1 =Y −
(

β̂b−1⊗ IN

)′
X.

(b) For c = 1, . . . ,C

i. draw random numbers to initialize the ALS algorithm: for example, β̂0 ∼U (ς2− ς1) in a

user-specified interval [ς1, ς2];

ii. using β̂0, compute vec
(
Λ̂1
)

according to equation (3.15); then, using vec
(
Λ̂1
)
, compute β̂1

according to equation (3.14);

iii. continue step (ii) D times and collect φ̂c :=
[
β̂D′, vec

(
Λ̂D
)′]′

and the corresponding Q̂c.

(c) Set Q̂b = argmin
c

(
Q̂c
)

and φ̂b corresponding to Q̂b.

2. Repeat step 1 B times.

REMARK 3.4: The ALS algorithm requires choosing the number of steps of the GMM estimator, B; the

number of initializations of the algorithm, C; the distributional parameters of the initial conditions, i.e., ς1, ς2

and finally the maximum number of iterations D of each of the initializations C. We recommend setting both

C and D large to allow for the exploration of the (local) minima of Q̂(φ|R). As an alternative to using D

large one can also specify a convergence criterion such as
∣∣φ̂d− φ̂d−1

∣∣/dim
(
φ̂
)
< η for η small, which can

speed up the algorithm considerably. To initialize the algorithm, we recommend exploiting the properties of

the parameter space: for example, to estimate an AR(1) model, we would restrict the starting value of the

parameter β to be within the unit circle in accordance with the mixing of Assumption 1.

REMARK 3.5: It is important to note that solutions found by iterating Algorithm 3.1 do not necessarily

correspond to a global minimum, as can be seen from the Hessian of Q̂
(
φ̂|R
)
:

∂2Q̂(φ|R)
∂φ′∂φ

∣∣∣∣
φ=φ̂

= 2×

[
Ĝ′

β
Ŵ Ĝβ Ĝ′

β
Ŵ ĜΛ +ξ(m̂)′

Ĝ′
Λ
Ŵ Ĝβ +ξ(m̂) Ĝ′

Λ
Ŵ ĜΛ

]
, (3.16)

6Defining the solutions as in (3.14) and (3.15) above is more insightful than the solution method of Ahn, Lee and Schmidt
(2013), who would use the Rayleigh coefficient to solve for Λ?. The Rayleigh coefficient formulation has no tractable form and
thus masks the fact that the Λ̂ are estimated parameters, which is clearly inconvenient. In contrast, solution (3.15) can be used
directly to obtain point and variance estimates of the Λ̂?, which will be useful in what follows.
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where ξ(m̂) is a conformable matrix whose columns consist of partial derivatives of Ĝ that are proportional

to the moment functions. The matrices on the block-diagonal are clearly positive semi-definite (PSD) if Ĝ

is full rank and Ŵ is PSD for any choice of φ. However, as can be seen from the Schur complement of

(3.16), the Hessian matrix can be negative semi-definite depending on the terms proportional to m̂ on the

off-diagonal blocks, implying that the objective function is not globally convex in φ. On the other hand, by

Propositions 3.1 and 3.2, if φ̂→p φ0 and thus m̂→p 0, the Schur-complement of the Hessian is proportional

to: (
Ĝ′ΛŴ 1/2MŴ 1/2Ĝβ

Ŵ 1/2ĜΛ

)
,

where MŴ 1/2Ĝβ
is the orthogonal projection on the space of Ŵ 1/2Ĝβ. This matrix is clearly PSD since

M(·) is idempotent and Ĝ is full rank by Proposition 3.1, so that the global minimum indeed occurs at

φ0. Moreover, bi-convexity of Q̂(φ|R) and total boundedness of Φ guarantee that all sequences of iterates

φ̂d =
[
β̂d′, vec

(
Λ̂d
)′]′

will converge to a local critical point (cf. Grippo and Sciandrone (2000), Propositions

4, 5). The results of Grippo and Sciandrone (2000) imply that repetition of the algorithm D times with D

large should in practice yield a reasonable approximation to the global minimizer of Q̂(φ|R) as long as the

resulting approximation has a Hessian matrix that is PSD. If concerns about the solution exist, we can further

follow Andrews (1997) and use the J-statistic to determine if the estimated minimum is close to the global

minimum. That is, according to Proposition 3.3, Q̂
(
φ̂|R
)

is chi-squared distributed in a
√

T -neighbourhood

of φ0 and this rules out very large values of the objective function.

REMARK 3.7 Hayakawa (2016) claims that the QDGMM estimator has identification problems and that

the algorithm proposed by Ahn et al (2013) converges to critical points not necessary equal to the global

minimum. We believe this criticism is unsubstantiated: first, GMM objective functions are in general not

convex except in some special cases, see for example Hayashi (2000, p. 468). As a result, this criticism is

not exclusive to the QDGMM estimator above nor Algorithm 3.1 or that of Ahn et al (2013). Moreover, in

light of the analysis of the Hessian in Remark 3.4, the problem can be avoided entirely if the definiteness of

the Hessian is evaluated at all critical points found by the QDGMM estimator. Practically, this can be done

by computing the condition number of the Hessian at each critical point, i.e., the ratio of the largest to the

smallest eigenvalue, and consider only critical points corresponding to relatively small condition numbers as

candidates for the global minimizer.7 Indeed, applying this analysis to the examples presented in Hayakawa

(2016) reveals that the incorrect critical points correspond to the Hessian having (near-) zero eigenvalues,

whereas the condition number of the correct critical points is several orders of magnitude smaller than that

of the inflection points, thus separating inflection points and minima very clearly.

7"Relatively small" can be qualified by the researcher based on the observed Hessian.
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3.4 Quasi-Difference GMM Estimation when R̂ > R

In the previous section we have assumed that R is known and this allowed us to derive a limit theory for

QDGMM in the standard non-linear GMM framework. Of course, in practice R is unknown and must be

replaced by an estimate R̂. We have argued in Remark 3.1 that a consistent estimator of φ does not exist

when R̂ < R, although a consistent estimator of β0 does exist when R̂ > R. The objective of this section is

therefore to extend the results of Section 3 to the case of R̂ > R.8

When R̂ > R, the Rank-Nullity theorem implies that the matrix MR̂>R no longer constitutes a basis

for the (left) nullity of Λ0. As a result the QDGMM estimator is not identified and an infinite number of(
N− R̂

)
×N quasi-difference matrices MR̂>R exist which belong to the set:

M =
{

MR̂>R|MR̂>RΛ0 = 0 ∧ rank
(
MR̂>R

)
= N− R̂

}
.

However, as the following intermediate result makes precise, β0 can still be consistently estimated using a

QDGMM estimator β̂ for any given MR̂>R ∈M :

Proposition 3.4: Consistency of QDGMM with R̂ > R and fixed MR̂>R ∈ M : Suppose Assumptions

1-5 hold. Assume further that some MR̂>R ∈M is known and the weight matrix Ŵ →p W is symmetric

positive semi-definite. Then β̂→p β0 as T → ∞.

Proof: Given MR̂>R ∈ M , identification requires E
(
Ĝβ

)
being full rank. Proposition 3.2 then immedi-

ately follows by repeating the steps of the proof with M replaced by some fixed MR̂>R ∈M . �

Proposition 3.4 covers the case of fixed MR̂>R, but not when Λ?
0 is estimated along with β0 and R̂ > R.

The proposition does however imply that a consistent estimate of GΛ is available, although the structure

of GΛ depends on the chosen identification strategy. We will analyse the QDGMM estimator which uses

the ‘identifying restrictions’ Λ
? =

[
Λ
?′
+, IR̂>R

]′, where Λ
?
+ is of dimension

(
N− R̂

)
× R̂ and the underscore

signifies R̂ > R. Similarly partitioning the true loadings as Λ0 =
[
Λ
′
0+, Λ

′
0−
]′ so that Λ0+ is of dimension(

N− R̂
)
×R, we observe that incorrect restrictions lead to the estimation of

(
R̂−R

)(
N− R̂

)
excess load-

ings. In other words, over-estimating R can be thought of as padding Λ0+ with a zero matrix of the same

dimension. The identification problem then manifests in the gradient of the moment function corresponding

to vec
(
Λ
?
+

)
:

ĜΛ :=T−1
T

∑
t=1

[
⊕N−R̂

j=1

(
z j,tuN−R̂+1,t

)
, . . . ,⊕N−R̂

j=1 (z j,tuN,t)
]

=T−1
T

∑
t=1

[
⊕N−R̂

j=1

(
z j,t ftλN−R̂+1

)
, . . . ,⊕N−R̂

j=1 (z j,t ftλN)
]
+Op

(
T−1/2

)
.

8Analogous results for the large N, fixed T model of Ahn, Lee and Schmidt (2013) can be obtained straightforwardly.
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Note that ĜΛ is now linearly dependent with rank(GΛ) = R
(
N− R̂

)
since Λ0− is of dimension R̂×R and

thus Λ
′
0−v = 0 for some v 6= 0. As a result the matrix G′WG is singular and Proposition 3.1 cannot hold.

To circumvent the linear dependence of ĜΛ we define an R̂
(
N− R̂

)
× R̂

(
N− R̂

)
matrix H such that (i)

ĜH := ĜΛH and GH := E
(
ĜH
)

have full rank and (ii) the resulting estimator of vec(ΛH) := H−1vec(Λ?)

satisfies span(ΛH) = span(Λ0+). To this end we re-define the moment functions as:

m̂
(

φ, R̂
)
=m̂ZU − ĜΛHH−1vec(Λ?)

:=m̂ZU − ĜHvec(ΛH) , (3.17)

where φ :=
[
β
′, vec(Λ?)′

]′
is of dimension dim(β)+ R̂

(
N− R̂

)
. Under these conditions the factors can

be removed from U whilst the design matrix of the QDGMM estimator can be inverted. This implies that

E
[
m̂
(

φ, R̂
)]

= 0 and the QDGMM estimator is defined. It should be clear that many choices of H are

available since Λ
? is not identified and we will henceforth construct H based on the identifying restrictions

(3.4) applied to the bottom R×R block of Λ0−. In particular, we normalize Λ
?
0− =

[
Λ?′

0×, IR
]′ and use Λ?

0×
to denote the

(
R̂−R

)
×R partition of the (true) loadings matrix which is used to quasi-difference too often.

Imposing this normalization then allows us to focus on scaling matrices H := H
(
Λ?

0×
)

with the following

structure:

H :=

[ √
T IR̂−R 0(R̂−R)×R

−
√

T Λ?′
0× IR

]
⊗ IN−R̂ := [H1, H2]⊗ IN−R̂,

where H1 and H2 are of dimension R̂×
(
R̂−R

)
and R̂×R respectively.9 Although we cannot observe either

Λ0 or Λ0−, such a normalization is possible regardless because the matrix H is immaterial for the moment

condition (3.17).

Post-multiplying the gradient ĜΛ by H and taking limits yields:

GH =
[
⊕N−R̂

j=1 ψN−R̂+1, j, . . . ,⊕
N−R̂
j=1 ψN−R, j,

⊕N−R̂
j=1 E (z j,t ftλN−R+1) , . . . ,⊕N−R̂

j=1 E (z j,t ftλN)
]

:=[G×, G−] ,

where G× has dimensions S
(
N− R̂

)
×
(
R̂−R

)(
N− R̂

)
, G− has dimensions S

(
N− R̂

)
× R

(
N− R̂

)
and

our specification of H has normalized the collinear columns of GΛ to be in G×. Moreover, H has quasi-

differenced and scaled the linearly dependent columns of GΛ and instead formed random S-vectors ψr, j for

each r = N− R̂+ 1, . . . ,N−R and j = 1, . . . ,N− R̂. Letting H1,r be the r-th column of H1 and εt the last

9Note that this matrix is unique up to a sign change in H1 under identifying restrictions (3.4).
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R̂×1 sub-vector of εt , the random vectors are defined as:

ψr, j =T−1/2
T

∑
t=1

z j,tH ′1,rεt →d N

[
0S, var

(
T−1/2

T

∑
t=1

z j,tH ′1,rεt

)]
, (3.18)

by the CLT for heterogeneous dependent variables, cf. White (2001, page 130). Since normally distributed

random variables are zero with probability equal to zero, this implies that the matrix G× has full rank almost

surely. By contrast, G− is unaffected by H and corresponds to the linearly independent columns of the

original matrix G, e.g., the R×
(
N− R̂

)
true factor loadings.

Now letting H = diag
[
Idim(β), H

]
, the re-scaled gradient of the full parameter vector

GH := E
(
ĜH

)
thus has full rank almost surely because the dependent columns of GΛ are replaced with a matrix consisting

of normally distributed random variables. We are now in a position to analyse the QDGMM estimator when

R̂ > R and we denote the scaled estimator by φ̂
H
=
[
β̂
′
H
, vec

(
Λ̂H
)′]′

. Of course, φ̂
H

is infeasible because

we cannot observe H. The infeasible estimator is however useful in analysing the feasible unscaled estim-

ator φ̂ =
[
β̂′, vec

(
Λ̂
)′]′

. We further partition the
(
N− R̂

)
× R̂ matrix of estimated factor loadings without

rescaling as Λ̂ =
[
Λ̂×, Λ̂+

]
where the excess loadings Λ̂× are of dimension

(
N− R̂

)
×
(
R̂−R

)
and Λ̂H is

partitioned conformably. Finally, the true loadings under normalization (3.4) are Λ
?
0 =

[
Λ
?′
0+, Λ?′

0×, IR

]′
and

we extend the dimension of the (true) parameter space by padding Λ
?
0+ with an

(
N− R̂

)
×
(
R̂−R

)
matrix

of zeros on the left to match the dimension of the estimators of Λ̂ and Λ̂H . As a result the model parameters

are extended to φ
0
=
[
β′0, 0′, vec

(
Λ
?
0+
)′]′. The following presents a limit theory for QDGMM when R̂ > R:

THEOREM 3.1: Mixed Normal Limit Theory of QDGMM when R̂ > R: Let Assumptions 1-5 hold

and assume that Ŵ →p W is positive definite. Then conditionally on H
(
Λ?

0×
)
:

1. The infeasible QDGMM estimator φ̂
H

is consistent:

φ̂
H

:=

 β̂
H

vec
(
Λ̂H×

)
vec
(
Λ̂H+

)
→p

 β0

0

vec
(
Λ
?
0+
)


and mixed normal:

√
T
(

φ̂
H
−φ

0

)
→MN

[
0,
(
G′H WGH

)−1 G′H WVRWGH
(
G′H WGH

)−1
]
,
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where:

VR := var

[
T−1/2

T

∑
t=1

mt

(
φ

0
|R
)]

.

2. The feasible QDGMM estimator of the slope parameter is consistent: β̂→p β0; vec
(
Λ̂
)

is inconsistent

and degenerate: [
vec
(
Λ̂×
)

vec
(
Λ̂+

) ]→d

[
0

vec(Λ0+)

]
+

[
IR̂−R⊗ IN−R̂

−Λ?′
0×⊗ IN−R̂

]
ΨΛ,

where ΨΛ is defined in the Appendix. The joint distribution of φ̂ is singular mixed normal:

diag
[√

T Idim(β), IR̂(N−R̂)

]
× φ̂→d MN

(
φ

0
, GVRG ′

)
,

where:

G :=


(

G′
β
W 1/2MW 1/2GH \β

W 1/2Gβ

)−1
G′

β
W 1/2MW 1/2GH \β

W 1/2

HΛ×,1

(
G′×W 1/2MW 1/2GH \Λ×

W 1/2G×
)−1

G′×W 1/2MW 1/2GH \Λ×
W 1/2

 ;

VR is as above; MW 1/2GH \(·) is the orthogonal projection on the columns of W 1/2GH excluding the

(·)-th block and HΛ×,1 = T−1/2H1⊗ IN−R̂ is a fixed matrix of dimension R̂
(
N− R̂

)
×
(
R̂−R

)(
N− R̂

)
.

3. The J-statistic with Ŵ = V̂−1
R satisfies:

Q̂
(

φ̂| R̂
)
→d χ

2{(S− R̂
)(

N− R̂
)
−dim(β0)

}
.

Proof: See Appendix.

REMARK 4.1: Theorem 4.1 states that φ̂
H

is
√

T−consistent even when R̂ > R. Of course φ̂
H

is less

efficient than the QDGMM estimator with R̂ = R because it estimates an excess of
(
R̂−R

)(
N− R̂

)
zero

loadings and this leads to mixed normality. Moreover, since H is unobservable, φ̂
H

is infeasible and the

researcher estimates φ̂ instead when R̂ > R. In that case the parameters of the model display mixing rates

of convergence and even though β̂ remains
√

T -consistent, the Λ̂ converge slower than β̂. Crucially, the Λ̂

now converge in distribution to a singular combination of the true loadings Λ0+ and a mixed normal random

vector ΨΛ. The lack of identification of Λ̂× thus implies that the joint distribution of φ̂ is singular mixed

normal because the matrix HΛ×,1 is of larger row dimension than G×.

REMARK 4.2: It is also interesting to note that the distribution of the QDGMM estimator with R̂ > R

depends on moment conditions based on only R quasi-differences as if we had started the estimation prob-

lem with a dataset consisting of only N−
(
R̂+R

)
dependent variables. Lemma 6 in the Appendix however
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shows that V̂ is consistent for VR, even in the case of estimation with R̂ > R. The combination of Lemma

5 and 6 in the Appendix then implies that the J-statistic has the usual chi-squared distribution when R̂ > R

if the optimal weight matrix is used. Furthermore, inference about β̂ when R̂ > R is feasible even if we

over-estimate R because the conditional distributions of
√

T
(

β̂−β0

)
and
√

T
(

β̂
H
−β0

)
are equivalent in

the limit, provided that the optimal weight matrix is used.

REMARK 4.3: Theorem 3.1 is related to results of Caner (2008) for nearly-singular GMM estimation:

in that paper the covariance matrix of the moment conditions is assumed to be singular and therefore cannot

be inverted. Caner assumes that a rescaled version of V can be inverted and obtains asymptotic normality,

albeit at a reduced rate. By contrast, in our paper, the non-invertibility of the design matrix stems from linear

dependence in the columns of the gradient. Our results are closer to the partially identified simultaneous

equation model of Phillips (1985) and especially collinear regression in Phillips (2016). In that latter paper,

the distribution of IV estimators based on asymptotically collinear regressors is derived and shown to ex-

hibit diverging rates and mixed normality. Theorem 3.1 can thus be seen as a generalization of the results of

Phillips (2016) to panel GMM with unobservable regressors.

Example

We now make the implications of the Theorem 3.1 more concrete by presenting an example with R = 1 but

R̂ = 2. The gradient is GH :=
[
Gβ, G×, G−

]
, where the S (N−2)× (N−2) partitions corresponding to the

loadings are defined as:

G× :=
[
⊕N−2

j=1 ψN−1, j

]
;

G− :=
[
⊕N−2

j=1 E (z j,t ft)
]
,

where the ψN−1, j are as in equation (3.18) above and GH is thus of full rank. Since β̂
H

is consistent by

Proposition 4, the point estimates of vec
(
Λ̂H
)

are:

[
vec
(
Λ̂H×

)
vec
(
Λ̂H+

) ]=

(

Ĝ′×Ŵ 1/2MŴ 1/2ĜH \Λ×
Ŵ 1/2Ĝ×

)−1
0

0
(

Ĝ′−Ŵ 1/2MŴ 1/2ĜH \Λ−
Ŵ 1/2Ĝ−

)−1

×
 Ĝ′×Ŵ 1/2MŴ 1/2ĜH \Λ×

Ŵ 1/2Ĝ−vec
(
Λ
?
0+
)

Ĝ′−Ŵ 1/2MŴ 1/2ĜH \Λ−
Ŵ 1/2Ĝ−vec

(
Λ
?
0+
)
+Op

(
T−1/2

)

→p

[
0

vec
(
Λ
?
0+
) ] , (3.19)

where MŴ 1/2ĜH \Λ×
is the orthogonal projection on all columns of GH except those in G× and similarly

for MŴ 1/2ĜH \Λ−
. Equation (3.19) makes explicit that scaling the loadings with an appropriate matrix H−1
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ensures that Λ̂H× converge to a zero vector of length (N−R) and that the Λ̂H+ converge to the first (N−2)

elements of Λ
?
0 =

[
Λ
?′
0+, Λ?′

0×, IR

]′
.

In practice we can only form φ̂ and we now analyse the singular distribution of the unscaled loadings

when R̂ = 2 and R = 1. Pre-multiplying Λ̂H by H we find the limit of Λ̂ as:[
vec
(
Λ̂×
)

vec
(
Λ̂+−Λ

?
0+
) ]→d

([
1

−λN−1

]
⊗ IN−2

)
ΨΛ.

The Λ̂ thus converge in distribution to a singular combination of a random vector ΨΛ and the Λ
?
0+ without

appropriate scaling. Furthermore, using the optimal weight matrix in the proof of Theorem 3.1 shows that

ΨΛ is a covariance mixture of normals:

ΨΛ ∼MN

[
0,
(

G′×V−1/2
1 M

V−1/2
1 GH \Λ×

V−1/2
1 G×

)−1
]
.

Note that M(·) in the above is a constant matrix and mixed normality comes solely from the occurrence of

the matrix G× on the left and right sides of the variance formula. However, since both the moment condition

T 1/2
∑

T
t=1 mt

(
φ̂, R

)
and G× are quasi-differenced using the last R individuals, there is correlation between

these random variables and inference based on the wald principle is not valid for Λ̂.

On the other hand, we know from Proposition 3.4 that β̂ is consistent if MR̂>R ∈M when R̂ > R. The

latter condition is easily seen to hold by evaluating the quasi-difference operation on Λ?
0:

MR̂>RΛ
?
0 =

[
IN−2,−ΨΛ,−

(
Λ
?
0+−λ

?
N−1ΨΛ

)]
Λ
?
0 = 0,

with the normalization λ?
N = 1. Furthermore, β̂ is actually conditionally normally distributed:

√
T
(

β̂−β0

)
→d N

[
0,
(

G′
β
V−1/2

1 M
V−1/2

1 GH \β
V−1/2

1 Gβ

)−1
]
.

That is, G× occurs only in the annihilator M(·) and idempotent matrices have eigenvalues strictly equal to

zero and unity. As a result, the randomness of G× does not affect affect the conditional distribution of β̂

despite correlation with T 1/2
∑

T
t=1 mt

(
φ̂, R

)
. Moreover, the distribution of β̂ is equivalent to that of β̂

H
because H only operates on the blocks of the gradient corresponding to the factor loadings. These latter

arguments imply that standard Wald and t-statistics constructed from β̂ are valid even when R̂ > R.

3.5 Inferential Procedures for the Quasi-Difference GMM Estimator

The following section provides inferential procedures about the QDGMM estimator. These involve test-

ing basic (non-) linear hypotheses about the estimated parameters φ̂ and testing poolability of the model
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parameters. After a brief discussion of standard hypothesis testing, we then move on to the question of

estimating the correct number of factors R. We will henceforth use R0 to denote the true number of factors

and use R as a placeholder.

When R0 is known, the QDGMM estimator is a standard non-linear GMM problem and simple linear

hypotheses about φ̂ can be tested by the t-ratio. Under H0 : φ̂ j = φ j, using a hypothetical parameter value φ j

for some j = 1, . . . ,dim
(
φ̂
)
, the t-ratio is defined as:

√
T
(
φ̂ j−φ j

)√(
Ĝ′V̂−1Ĝ

)−1
j, j

→d N (0, 1) .

The proof is by standard GMM theory and follows from Proposition 3.3 applied to an efficient QDGMM

estimator with Ŵ = V̂−1. Similarly, (non-) linear q-composite hypotheses

H0 : a
(
φ̂
)
= 0,

can be tested using the Wald principle and we assume that ∂a
(
φ̂
)
/∂φ̂′ = A where A is a full rank matrix

of dimension q× dim
(
φ̂
)

with rank equal to the number of hypotheses. Under the null-hypothesis, the

Wald-statistic:

Ta
(
φ̂
)′ [

A
(
Ĝ′V̂−1Ĝ

)−1
A′
]−1

a
(
φ̂
)
→d χ

2 (q)

and diverges under the alternative. The Wald-test is again standard in GMM theory and the distributional

result under the null follows from the Continuous Mapping Theorem applied to the transformed random

variable a
(
φ̂
)
. Theorem 3.1 further implies that inference about β̂ is valid when R > R0 and we make this

precise for the Wald-statistic in the following proposition:

Proposition 3.5: Inference about β̂ when R > R0: Let Assumptions 1-5 hold, let R > R0 and assume:

H0 : a
(

φ̂

)
= A

(
β̂

)
= 0

holds. Then:

T A
(

β̂

)′[
A
(

Ĝ′
β
V̂−1/2MV̂−1/2ĜΛ

V̂−1/2Ĝβ

)−1
A′
]−1

A
(

β̂

)
→d χ

2 (q)

as T → ∞.

Proof: See Appendix.

REMARK 5.1: Valid inference about β̂ when R > R0 is facilitated by the fact that the conditional dis-

tributions of β̂
H

and β̂ are equivalent under the null hypothesis and this implies that inference on β̂ can

commence as if H were known. This result is reassuring because the researcher is typically interested in
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β0 alone. On the other hand, when R0 is known, the QDGMM estimator is a standard non-linear GMM

estimator and equivalent Lagrange Multiplier and Likelihood Ratio tests will exist under the null-hypothesis

a
(
φ̂
)
, cf. Proposition 7.11 in Hayashi (2000).

REMARK 5.2: The above tests are asymptotic and small sample performance may be improved through

a bootstrap methodology as in Bun (2004) and Giersbergen and Kiviet (2002). It is not difficult to see that a

parametric bootstrap, using estimates of the quasi-differenced residuals MU = Mε, is feasible as long as any

temporal and/or cross-sectional dependence in ε is known, so that appropriate blocking can be implemented.

From an empirical point of view, poolability tests are particularly important in simultaneous equation mod-

els because if they hold true, they allow for simplification of the empirical model and thus a reaping of

efficiency rewards (Zellner, 1962). Two relevant poolability considerations for QDGMM can be framed as

Wald-tests: first, slope homogeneity of the β0 can be tested with the following null hypothesis:

H0 : Aβ̂ = 0,

where

A =



IK+L −IK+L 0 . . . . . . 0

0 IK+L −IK+L 0
. . . . . .

. . . 0
. . . . . . . . . . . .

. . .
. . . . . . . . . . . . 0

0 . . . . . . 0 IK+L −IK+L


.

This leads to the following Wald-test:

T
(

Aβ̂

)′[
A
(

Ĝ′
β
V̂−1/2MV̂−1/2ĜΛ

V̂−1/2Ĝβ

)−1
A′
]−1

Aβ̂→d χ
2
{

dim
(

β̂

)
(N−1)

}
.

Similarly, the question of whether the model is generated by a Time Effects model can also be answered by

means of the following null-hypothesis:

H0 : Avec
(
Λ̂
)
= 0
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with (N−2)× (N−1) restrictions matrix:

A =



1 −1 0 . . . . . . 0

0 1 −1 0
. . . . . .

. . . 0
. . . . . . . . . . . .

. . .
. . . . . . . . . . . . 0

0 . . . . . . 0 1 −1


.

Under the null, there is only one factor and λi = λ for all i = 1, . . . ,N, so that the loading parameter is

fixed at unity and although the QDGMM estimator is consistent, more efficient estimators available for the

Time-Effects model. The corresponding Wald-test for equality of the loadings vector is:

T
[
Avec

(
Λ̂
)]′[

A
(

Ĝ′ΛV̂−1/2MV̂−1/2Ĝβ
V̂−1/2ĜΛ

)−1
A′
]−1 [

Avec
(
Λ̂
)]
→d χ

2 (N−2) ,

Although it is clearly not necessary to estimate the model with more than R0 = 1 factors included to test

this hypothesis, the case of R > 1 is estimable and asymptotically chi-squared distributed under the null as a

special case:

PROPOSITION 3.6: Poolability of the Factor Loadings when R > 1: Let Assumptions 1-5 hold, let

R > R0 and let

H0 : Avec
(
Λ̂
)
= 0,

hold, where:

A = 11×R⊗



1 −1 0 . . . . . . 0

0 1 −1 0
. . . . . .

. . . 0
. . . . . . . . . . . .

. . .
. . . . . . . . . . . . 0

0 . . . . . . 0 1 −1


is of dimension (N−R−1)×R(N−R−1). Then the Wald-test satisfies:

T
[
Avec

(
Λ̂
)]′[

A
(

Ĝ′ΛV̂−1/2MV̂−1/2Ĝβ
V̂−1/2ĜΛ

)−1
A′
]−1 [

Avec
(
Λ̂
)]
→d χ

2 (N−R−1)

as T → ∞.

Proof: See Appendix.

An important condition for asymptotic normality of φ̂ is that the number of factors R0 in models (3.2) and
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(3.3) is estimated correctly. In what follows, we will provide a treatment of the estimation of R0 following

Ahn, Lee and Schmidt (2013) and generalize their results through a series of remarks. Their methodo-

logy revolves around the properties of the QDGMM objective function Q̂(φ|R), which is the J-Statistic of

Hansen (1982). Using Proposition 3.3 and Theorem 3.1 the asymptotic behaviour of Q̂(φ|R) is summarized

as follows:

1. Q̂
(
φ̂| R̂
)
→
p

∞ if R̂ < R0;

2. Q̂
(
φ̂| R̂
)
→
d

χ2
{(

S− R̂
)(

N− R̂
)
−dim(β)

}
if R̂≥ R0.

In the above enumeration, item (1) is due to under-identification which makes it impossible to entirely

remove the factors from U . As a result, Q
(
φ̂, | R̂

)
diverges to infinity for any φ̂. On the other hand, item

(2) is the well-known result of Hansen (1982), which states that an efficient GMM objective function of

a correctly specified model converges to a chi-squared distribution, extended to the case where R̂ > R0 by

Theorem 3.1.

These characteristics of Q̂
(
φ̂, | R̂

)
suggest that we may estimate R0 by sequentially evaluating the J-Test

at R = 0, 1, 2, ....Rmax, where Rmax ≤ N.10 By (2), the number of factors is then estimated at the first R̂

where Q
(
φ| R̂
)
≤ c
(
χ2, R̂, αT

)
and c(·) is the critical value associated with a chi-squared random variable

with degrees of freedom equal to
(
S− R̂

)(
N− R̂

)
−dim(β) at the significance level αT . However, since the

test is sequential, the significance level αT must vary with the sample size to account for type-I errors. The

following proposition yields weak consistency for the sequential J-Test if certain conditions on the signific-

ance level are met:

PROPOSITION 3.7. Consistency of the Sequential J-Test: Under Assumptions 1-5, the sequential J-

Test yields R̂→p R0 if (1) the significance level αT → 0 and (2) −T−1log(αT )→ 0 as T → ∞.

Proof: See Appendix.

REMARK 5.3: Proposition 3.7 is based on an asymptotic result due to Pötscher (1983). This result links

the significance level αT to the convergence rate of a chi-squared variable Q(φ|R) and this is necessary to

bound the probability of R̂ > R at zero. Note however that the proposition is silent about the functional form

of αT and this implies that different choices of αT may result in different R̂ in finite samples.

REMARK 5.4: It should be noted that instead of estimating R̂ only, the test also depends on the specification

of the slope parameter model and the relevance of included instruments z j,t for all t and j = 1, . . . ,N− R̂. To

make this precise, let L be an index set of all possible (mixed) lag order specifications ranging from zero to

Lmax; Let Z be a set containing all distinct combinations of candidate instruments and let R := 0, 1, . . .Rmax

be the set of possible R we are willing to test. Finally, define by T := {L ∪R ∪Z}6= the set that contains

10We set M = IN when R = 0, resulting in a pooled GMM procedure without quasi-differencing.
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the union of all logically distinct elements of the individual components. Then, using the definition of T , an

easy corollary to Proposition 3.7 follows from repeating the proof with R̂ replaced by T̂ . As a result, testing

only R̂ is conditional on the others being correctly specified. On the other hand, treating the specification

aspects simultaneously through T makes the test difficult to interpret.

We can also estimate R̂ using information criteria based on the weak consistency result in Theorem 3.1

of Cragg and Donald (1997). To this end define a family of information criteria as:

ICT (R) := Q(φ|R)+π(R)×θ(T ) , (3.20)

where π(R) and θ(T ) are functions of the estimated number of factors and T respectively. The interpretation

of ICT (R) is the usual one: the reduction in Q(φ|R) from adding additional parameters is compensated by

increases in the penalty function π(R)× θ(T ). As a result, model parsimony is preferred unless the sum

of the aforementioned effects is negative. Application of these criteria is computationally straightforward:

for R = 0, 1, . . . , Rmax, compute the QDGMM estimators and their corresponding criteria and estimate R̂

corresponding to argmin ICT (R) over R. The family of possible ICT (R) is large, although several familiar

functional forms are available for the problem at hand. For example:

• BIC: θ(T ) = log(T ) and π(R) =−4×{(S−R)(N−R)−dim(β)}

• HIC: θ(T ) = log log (T ) and π(R) =−4×{(S−R)(N−R)−dim(β)}

and 4 is a user-specified constant. Note that we have specified π(R) to depend on the degrees of freedom

of the GMM estimator rather than just the number of estimated parameters. This is common when informa-

tion criteria are applied to GMM problems because the objective function Q
(
φ| R̂
)

is a chi-squared random

variable with mean equal to the degrees of freedom under correct specification of the model. This form of

π(R) is inconsequential when the number of instruments is fixed when searching over R , but not when the

instrument set depends on the number of factors: for example, if the number of instruments of each equation

grows with R, then it may be that certain sequences of π(R) have (i) extrema and/or (ii) duplicates over the

search space R . Such information criteria will always favour less parsimonious models. These considera-

tions lead to weak consistency of ICT
(
R̂
)

under certain conditions:

PROPOSITION 3.8. Consistency of ICT
(
R̂
)
: Let (1) θ(T )→ ∞, (2) T−1θ(T )→ 0 as T → ∞ and (3)

∂π(R)/∂R > 0 for all R = 1, . . . , Rmax ∈ R , then under Assumptions 1-5 R̂ = argmin
R

ICT (R)→p R0 .

Proof: See Appendix.

REMARK 5.5: Both remarks 5.3 and 5.4 apply equally to Proposition 3.8. Specifically, Proposition 3.8

holds for any choice of 4 and this may result in different finite sample estimates R̂. Similarly, an easy

corollary obtains for the problem of searching over T instead of just R . It is also interesting to note that
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the consistency proof techniques are very similar for both estimation procedures, with the correspondence

between the significance level and the critical value of the chi-squared distribution now played by θ(T ).

REMARK 5.6: In contrast to Proposition 3.7, determining R0 through ICT
(
R̂
)

does not require an efficient

weight matrix in Q(φ|R) and information criteria can be applied to one-step estimators as was observed

by Ahn, Lee and Schmidt (2013) and stated as a Theorem in Sarafidis and Robertson (2015). This offers

flexibility to information criteria over test procedures that depend on the chi-squared approximation. Fur-

thermore, it is possible that estimation of R0 is actually easier with one-step estimators, because differences

in Q̂(φ|R) as a function of R are much more pronounced in the region R < R0.

REMARK 5.7: Note that Akaike’s information criterion (AIC) is not a member of the family of inform-

ation criteria defined in Proposition 3.8. That is, in AIC, θ(T ) := θ = 2 does not depend on T and therefore

does not satisfy condition (1) of the proposition.

We can also cast estimation of R0 in the rank-testing framework of Al-Sadoon (2017) and construct a test

based the gradient of the factor loadings. This is convenient because if β̂→p β0,

ĜΛ = T−1
T

∑
t=1

[
⊕N−R?

j=1 (z j,t ftλN−R?+1) , . . . ,⊕N−R?

j=1 (z j,t ftλN)
]
+Op

(
T−1/2

)
is consistent for any R? ≥ R0 and does not directly depend on the identification status of the Λ0+. However,

ĜΛ consists of R? block diagonal matrices and we would like to reduce this sparsity. We will reduce the

dimension of ĜΛ by averaging over the instruments of each quasi-difference equation:

B1ĜΛB2 :=T−1
T

∑
t=1

[
zt ûN−R?+1,t , . . . , Zt ûN,t

]
,

where:

B1 = 1′N−R?×1⊗ IS,

B2 = IR?⊗1(N−R?)×1 (N−R?)−1

and zt is the cross-sectional average over each z j,t for j = 1, . . . , N−R?. Now note that:

B1ĜΛB2 = T−1
T

∑
t=1

(
zt ftΛ′−

)
+Op

(
T−1/2

)
is of dimension S×R? because Λ− is of dimension R?×R0. Estimating R0 is now equivalent to testing for
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any R:

H0 : rank
(
B1ĜΛB2

)
= R against H1 : rank

(
B1ĜΛB2

)
> R.

That is, although the column dimension of B1ĜΛB2 is R?, the number of non-zero singular values under H0

is R whilst the remaining R?−R singular values tend to zero. This hypothesis can be verified by constructing

(S−R)×S left and R?× (R?−R) right null space estimators Ξ̂
(R)
1 and Ξ̂

(R)
2 such that:

Ξ̂
(R)
1

(
B1ĜΛB2

)
Ξ̂
(R)
2 →p Ξ

(R)
1 (B1GΛB2)Ξ

(R)
2 = 0(S−R)×(R?−R). (3.21)

Pre- and post-multiplication by the null space estimators thus amounts to demeaning ĜΛ by annihilating

the factors and Al-Sadoon (2017) shows that the null space estimators can be obtained from various matrix

decompositions such as the SVD, LU and spectral decompositions applied to (B1GΛB2). Furthermore, since

the components of B1ĜΛB2 consist of sample averages, we can appeal to a suitable CLT to construct a test

statistic based on the vectorization of (3.21). Before we can construct a test statistic based on B1ĜΛB2

however, note that ĜΛ is calculated using a preliminary estimator of β0 and we must make a correction. To

see this let u−,t be the last R? elements of the N-vector ut and let X−,t correspond to the bottom R?×(K +L)

sub-matrix of Xt , then:

B1ĜΛB2 =T−1
T

∑
t=1

ztu′−,t −T−1
T

∑
t=1

zt

(
β̂−β0

)′
X′−,t .

The second term above corresponds to the QDGMM sampling error of β̂ and must be taken into account

in any test statistic based on
√

T B1ĜΛB2. Proposition 3.3 and Theorem 3.1 imply that we can estimate

the sampling error of β̂ consistently and a correction can be made on the variance of
√

T vec
(
B1ĜΛB2

)
or

directly on B1ĜΛB2. We will use the latter so that for each t = 1, . . . , T :

Ĝ?
Λ,t =

[
⊕N−R?

j=1 z j,t ûN−R?+1,t , . . . ,⊕N−R?

j=1 z j,t ûN,t

]
+[

⊕N−R?

j=1 z j,t

(
β̂−β0

)′
X′N−R?+1,t , . . . ,⊕N−R?

j=1 z j,t

(
β̂−β0

)′
X′N,t

]
and thus Ĝ?

Λ
= T−1

∑
T
t=1 Ĝ?

Λ,t
, where we note that Ĝ?

Λ
= GΛ +Op

(
T−1/2

)
. Now re-defining the null space

estimators to B1Ĝ?
Λ

B2, we will determine R0 using the random variable:

√
T vec

(
Ξ̂
(R)
1 B1Ĝ?

ΛB2Ξ̂
(R)
2

)
=
√

T
(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
B1Ĝ?

ΛB2
)
. (3.22)
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To construct a test statistic based on (3.22) we will also need an estimate of the variance:

V̂Ĝ?
Λ

=T−1
T

∑
t=1

[
vec
(
B1Ĝ?

Λ,tB2
)

vec
(
B1Ĝ?

Λ,tB2
)′]

+

T−1
P

∑
p=1

T

∑
t=p+1

[
vec
(
B1Ĝ?

Λ,tB2
)

vec
(
B1Ĝ?

Λ,t−pB2
)′
+vec

(
B1Ĝ?

Λ,t−pB2
)

vec
(
B1Ĝ?

Λ,tB2
)′]

. (3.23)

The proof of the following proposition shows that (3.23) is consistent for the variance of the random

variable
√

T vec
(
B1Ĝ?

Λ
B2
)
.

Proposition 3.9. Rank Test of H0 : rank
(
B1Ĝ?

Λ
B2
)
= R0 against H1 : rank

(
B1Ĝ?

Λ
B2
)
> R0: Let Assump-

tions 1-5 hold and let β̂0→p β0. Then under H0:

1. √
T
(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
B1Ĝ?

ΛB2
)
→d N

[
0,
(

Ξ
(R)′
2 ⊗Ξ

(R)
1

)
VG?

Λ

(
Ξ
(R)
2 ⊗Ξ

(R)′
1

)]
,

where VG?
Λ

is the limit of (3.23).

2. The Rank Test

RKR0 := T
[(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
B1Ĝ?

ΛB2
)]′ [(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
V̂G?

Λ

(
Ξ̂
(R)
2 ⊗ Ξ̂

(R)′
1

)]−1
×(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
B1Ĝ?

ΛB2
)
→d χ

2 {(S−R0)(R?−R0)} .

and diverges under the alternative.

Proof: See Appendix.

The Rank Test thus constructed is a Wald-test and Proposition 3.9 shows that it approaches the chi-squared

distribution when rank
(
B1Ĝ?

Λ
B2
)
= R0 and diverges when it is under-estimated. To operationalize a proced-

ure that can be applied in practice however, we have to develop a sequential version of the Rank Test:

PROPOSITION 3.10. Consistency of the Sequential Rank Test: Let Assumptions 1-5 hold. Then the

sequential Rank Test is weakly consistent if (1) β̂→p β0 can be calculated using some R? ≥ R0, (2) the

significance level αT → 0 and (3) −T−1log(αT )→ 0 as T → ∞.

Proof: Immediate from Proposition 3.9 and the proof of Proposition 3.7.

REMARK 5.8: The consistency of the sequential Rank Test derives from the same mechanic as the sequen-

tial J-Test but requires an extra assumption. As a result, the test will loose power when the approximation of

β̂ is poor because the sampling error inflates both the variance and the numerator. This consideration is also

the reason to bias-correct the numerator instead of the denominator of the test: inflating the denominator
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would result in a further loss of power if the sampling error is large in any finite sample realization of the test.

REMARK 5.9: One can construct the null space estimators using any appropriate method in the literature

and these include but are not limited to: SVD as in Kleibergen and Paap (2006); LU in Cragg and Donald

(1996) and by finding the nearest rank R matrix by norm minimization as in Cragg and Donald (1997). We

have experimented with several of these and found little qualitative differences other than computation time.

For that reason we will apply the SVD in what follows.

REMARK 5.10: Several algorithms can be conceived to estimate R0 based on Propositions 3.9 and 3.10.

For example, we can form GΛ with R? = 1 and then test R = 0, if the test rejects we calculate GΛ with R? = 2

and test R = 1. We then estimate R̂ as the first time the test cannot reject at significance level αT . We can

also estimate GΛ with R? close to N and then testing up as before holding R? constant. In all cases however,

it is advisable to use R? large enough and hope to estimate β0 precisely: after an estimate of the sampling

error of β0 is obtained, one can always re-compute the gradient using a smaller R?.

3.6 Monte Carlo Experiments

We will now examine the small sample properties of the one-step, efficient two-step QDGMM estimators

and the test procedures of Section 5 applied to a simple AR(1) model with factor error residuals. We first

compare the performance of the QDGMM estimators in terms of bias and RMSE with several popular

estimators in the empirical macroeconomics literature, namely the Pooled OLS estimator, the Fixed Effects

(FE) estimator and the Correlated Common Effects (CCE) estimator of Pesaran (2006). The finite sample

behaviour of these estimators further illustrates the degree of bias in the point estimates when the data

contains factor residuals. We now briefly describe the alternative estimators. The Pooled OLS estimator is

defined as:

β̂OLS =

(
N

∑
i=1

X′iXi

)−1 N

∑
i=1

X′iyi.

The OLS estimator is constructed by averaging N individual components in the numerator and denominator

and we know a priori that E (X′iF) 6= 0 unless F is not dynamic and therefore plim
(

β̂OLS−β0

)
6= 0 as

T → ∞. We also consider the Fixed Effects estimator:

β̂FE =

(
N

∑
i=1

X′iMιXi

)−1 N

∑
i=1

X′iMιyi,

with the within transformation Mι = IT − ι(ι′ι)−1
ι′ = IT − T−1ιι′ and ι is a T-vector of ones. The FE

estimator thus corrects each observation by subtracting a time series average from each cross-sectional

equation. As with Pooled OLS, E (X ′i MιF) 6= 0 for all i = 1, . . . ,N unless F has zero temporal variation

and we thus anticipate a bias of the coefficients generated by this estimator in a model with factor error
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components. Finally, the CCE estimator is defined as:

β̂CCE =

(
N

∑
i=1

X′iMX Xi

)−1 N

∑
i=1

X′iMX yi,

where MX = IT −X
(

X ′X
)−1

X ′ and X =
[
y, X

]
is a matrix of cross-sectional averages of the dependent

and independent variables, i.e., y = N−1
∑

N
i=1 yi and similar for the components of X. We study the CCE

estimator because it is related to QDGMM when R0 = 1 and, as Everaert and de Groote (2016) show,

applying the CCE to the parameters of a dynamic panel data model with factor errors yields consistent

parameter estimates when both N and T are large. Moreover, their simulations further suggest that the bias

does not depend much on N or T when either N or T are fixed.

The basic model we consider is a dynamic panel data model with common coefficients and a factor error

structure:

yi,t = yi,t−1β+ ftλi + εi,t , i = 1, . . . , N, t = 1, . . . , T, (3.24)

where we fix β = 0.5, the εi,t are standard normal over all i and t and the loadings are generated as λi ∼
N (ιR, IR) for each i = 1, . . . , N. Although the loadings are estimable parameters and could be held fixed,

we deliberately disadvantage the QDGMM estimator by allowing for the possibility of the normalization on

Λ?
0− to be ill-behaved. This structure is chosen to make the simulation more realistic. The factors in (3.24)

are generated as:

f ′t = ϑ f ′t−1 +νt , t = 1, . . . , T,

where ϑ= 0.5, νt ∼N (0, IR) and we only consider R= 1 or R= 2 for brevity. As the focus of the study is on

large T samples with small cross-sections, we begin the study by using combinations of N ∈ {R+1, 5, 10}
and T ∈ {50, 100, 200, 400}. The smallest cross-section we can study is 2 by Assumption 5, whereas in the

largest we have a configuration of 10×400 observations where we expect our large sample results to hold.

In all experiments we generate a sample of 1000 observations and only use the last T observations as our

sample to allow for a sufficiently long burn-in period and guarantee stationarity of the process (3.24).

For the QDGMM estimators, we use the following instrument set to identify each of the j = 1, . . . , N−R

equations:

z j,t = [y j,t−1, yN−R+1,t−1, . . . , yN,t−1]
′ .

The argument for using these instruments specifically is that they provide a compromise between the many

instruments problem on the one hand and identification of the factors on the other, cf. the discussion in

Section 3.1. Note that when N ≤ 3, this choice of z j,t implies that the model is just-identified, whereas

a degree of over-identification is present when N > 3. We study the performance of one-step QDGMM

estimators with W = IS(N−R) and efficient two-step estimators. By homoskedasticity of the ε j,t , the optimal
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weight matrix is estimated as the inverse of the empirical counterpart of:

V =


M1ΩM′1×E

(
Z1,tZ′1,t

)
. . . M1ΩM′N−R×E

(
Z1,tZ′1,N−R

)
. . . . . .

MN−RΩM′1×E
(

ZN−R,tZ′1,t
)

. . . MN−RΩM′N−R×E
(
ZN−R,tZ′N−R,t

)
 ,

since Ω is diagonal. Furthermore, identification of the factor loadings is based on the identification strategy

(3.6) in Section 2.2 when R = 1 and on the identification strategy (3.4) when R > 1. The point estimates

are obtained by iterating Algorithm 1 using 500 random initializations β1 ∼U (−1, 1) at each of the two

QDGMM steps and every iteration is terminated whenever
∣∣φd−φd

∣∣/ [1+R(N−R)] < 10−5 or D = 200

iterations occurred. We compute the condition number of the Hessian at each critical point φc and the

estimator φ̂ is chosen as the smallest value of Qc
(
φ̂, R̂

)
over all c = 1, . . .C with condition number smaller

than 100.

We first evaluate the average bias and RMSE of the estimators described above based on 5000 Monte

Carlo replications for the process (3.24) and Appendix 2 summarizes the simulation results. As expected,

in the simulations of R = 1, both the OLS and FE estimators are severely biased, with RMSE of over forty

percent of the value of β0. OLS is less biased than the FE estimator and the mean estimate is strictly less than

unity, but the latter estimator suggests that β0 is approximately equal to unity and thus that the model is non-

stationary. This finding has important implications for empirical modelling where this estimator wrongly

suggests the presence of unit roots whilst the process is actually stationary, but has a factor residual. On

the other hand, the CCE estimator in the one-factor case is essentially unbiased with very low RMSE, al-

though this bias is increasing in T. This finding is surprising because the CCE is a quasi-difference estimator

with an invalid instrument set when N is small and we therefore expected the point estimates to be biased.

Reassuringly, the one and two-step specifications of the QDGMM estimator perform very well in terms of

bias and RMSE: for any N and any T, they outperform the CCE estimator by quite a large margin apart

from the case of N = 10 and T = 100, where we observe very large RMSE of the one-step estimator. The

one-step QDGMM estimator typically outperforms the theoretically efficient QDGMM estimator by a small

amount as measured by mean bias, although they perform equally well in terms of RMSE. This difference

is typically less than one percent of the value of β0 and due to finite sample bias in the first step spilling into

the second-step QDGMM estimator.

In the experiment with R = 2, both OLS and FE are again severely biased in all specifications of N and

T: the OLS estimator exhibits more bias and RMSE than when R = 1, whereas the FE estimator remains

stable with mean bias centred on, or very close to, unity, again suggesting a non-stationary model. As

expected, since the CCE estimator is a quasi-difference estimator for a model with R = 1, the CCE is now

severely biased upwards when R = 2. We have also simulated one and two-step QDGMM estimators using

R̂ = 1 quasi-differences as a benchmark, which are denoted with (*) in the table. These estimators, similar

to the CCE, are severely biased. On the other hand, the finite sample performance of the one and two-step

QDGMM estimators using R = 2 quasi-differences is very good in all circumstances, provided that T > 50
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or N > 3. Moreover, as in the experiment with R = 1, the one-step estimator typically performs marginally

better than the two-step estimator, presumably because of first-step biases entering W . We further observe

that the largest bias of one-step QDGMM is approximately eight percent when N = 3 and T = 50, whilst

the bias of the two-step estimator is always smaller. In conclusion, the QDGMM estimators behave very

well in all specifications we have considered here of the simulated process (3.24) and strongly outperform

alternative estimators in terms of both mean bias and RMSE.

We also simulated the behaviour of Wald-tests about the slope parameter β0 when the true number of

factors is one but we incorrectly allow for two factors in the QDGMM procedure. Table 3.6 in appendix

3.2.2 summarizes the results when N = 5. As can be seen from the table, the null-hypothesis of β = 0 is

almost always rejected, whilst the null-hypothesis of β = β0 often is accepted. We do note however that

empirical size does not approach the theoretical size in the sample sizes we consider. It is likely that this is

a manifestation of the identification problem at hand and that, as a result, larger samples are required. As in

the experiments in Ahn et al (2013), we find that the estimator of β0 is consistent and suitably close in mean

to the estimators using the correct number of factors.

The next experiments evaluate the small sample performance of the poolability tests of Section 3.5.

First, we have simulated a Time Effects model with λi = λ for all i = 1, . . . ,N and generate λ randomly

from N (1, 1). Note that in order to identify the model, this is equivalent to setting λ = 1, regardless of the

realization of λ. Clearly, to compute the Wald-test for poolability of Λ, the smallest N = 3, which allows the

test to distinguish between two loadings. We thus set N ∈ {3, 5, 10} and further leave the experimental setup

as in the previous simulations. Appendix 3 summarizes 5000 Monte Carlo replications of the Wald-test for

the null hypothesis that the model is generated by a Time Effects model. The reported acceptance rates show

that regardless of the dimensions of the panel data model, the test behaves very well: even when T = 50,

the reported acceptance rates are always at least as large as the nominal size and tend towards unity when T

becomes large.

To evaluate the poolability test of the βi, we first apply heterogeneous parameter QDGMM to the homo-

geneous parameter model (3.24) with R = 1 and identification strategy (3.5). This results in an inefficient

QDGMM estimator as the poolability hypothesis is true, but the average coefficient bias and RMSE’s are

of separate interest in showing the consistency of heterogeneous parameter QDGMM estimation. The ex-

periments are based on N ∈ {2, 5, 10} and we must therefore extend the instrument set to accommodate

the additional parameters and ensure over-identification of the moment conditions. To this end we include

one additional lag of the instruments of each of the j cross-sectional units and the last equation used to

quasi-difference. This yields the following instrument set for each j = 1, . . . ,N−1 quasi-differences at each

t:

z j,t = [y j,t−1, y j,t−2yN,t−1, yN,t−2]
′ .

To conserve space, the first panel of Appendix 4 only reports the first, the last and, where appropriate, the

middle coefficients, i.e., β1, βN and βmiddle respectively. The simulations show that, as T gets large, the

estimator is again virtually unbiased as long as N > 2. The price of estimating heterogeneous parameters
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is of course that the resulting RMSE is now high compared to the pooled parameter estimator for the first

and middle coefficients, but not the last, which gains efficiency from pooling, viz. Ĝβ,2 in Lemma 1 in the

appendix. The second panel of Appendix 4 reports empirical acceptance rates of the poolability tests against

theoretical size of the chi-squared distribution. Since the number of estimable parameters excluding the Λ

under the homogeneity restriction is one, whereas the heterogeneous model has N parameters, the number

of restrictions of the Wald-test is N − 1. When T is large, the Wald-statistic is practically exactly sized,

regardless of the size of N. Only when T is small, and N > 2 is the Wald-statistic somewhat oversized.

However, even when N = 2 and T = 50, the Wald-statistic is still remarkably well-sized.

In the remainder of the section we test the adequacy of the model selection procedures in finite samples.

Following the discussion in Remark 5.4, we would like our Monte Carlo experiment to focus only on the

number of factors and not on the validity of the instruments and the factors jointly. To accomplish this we

extend the number of instruments for each individual moment function to:

z j,t = [y1,t−1, . . . , yN,t−1]
′ .

which ensures that the number of instruments is fixed for each moment condition as a function of R. We

generate 5000 replications of model (3.24) with T as above but fix N = 5 to conserve space. The model

is estimated with R = 0, . . . , 4 and we compute one and two-step versions of AIC, BIC and HIC using the

following balancing constants:

4one-step = log (N)×Nν1

4two-step = log (N)×Nν2

Specifically, for AIC we set v1 = 1 and v2 = 0 in the penalty function; for BIC v1 = 0 and v2 = −1 and

finally for HIC v1 = 1 and v2 = 0. The results can be summarized as follows: although no information

criteria selects R0 = 2 exactly even as the sample size gets large, the results show that all information

criteria approach R̂ ≥ R0 with T . This result is surprising particularly for AIC, which does not satisfy the

conditions of Proposition 3.8. Another interesting observation is that one-step information criteria typically

outperform two-step information criteria when the sample size is relatively small. This is due to the fact

that the objective function of one-step GMM is strictly larger than the objective function of two-step GMM,

implying that it becomes harder to find significant differences in Q̂(·) as a function of R.

We also construct the sequential RK-test using β̂ computed at R = 3 and subsequently form the gradients

at R? = 1, . . . , 4. This thus allows us to test the hypotheses R = 0, 1, 2, 3 in a sequential fashion for some αT

satisfying Proposition 3.10. To demonstrate the different finite sample results anticipated in Remark 5.3 we

generate the significance level of the sequential J and RK-tests according to the following two functions:

αT =4N/T,

αT =0.5
√

N/T
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and the critical values for the J and RK-tests correspond to the (1−αT )-th quantile of the chi-squared

distribution with (S−R)(N−R) and (S−R)(R?−R) degrees of freedom. Note that these functions satisfy

the conditions of Propositions 3.7 and 3.10 and both are calibrated to approximately five percent when

T = 400. The performance of neither the RK nor the J-test is competitive relative to the information criteria

unless the sample size is very large. In that case, the J-test estimates R0 correctly with the highest proportion,

despite still under-estimating more often than the information criteria. Furthermore, the RK-test always

performs worse than the J-test although the proportion does rise with the sample size. In either case, the

convergence appears to be too slow to be of practical use, and we recommend using BIC in moderate

samples.

3.7 Conclusions

A plethora of macroeconomic phenomena can be modelled as dynamic systems of individual time series,

linked together by an unobserved factor structure in the residual. This factor structure captures phenomenon

that are typically difficult to approximate empirically, but when present, will distort point estimates obtained

by classical econometric methods. Furthermore, the empirical literature has spawned several papers that

use panel data in macroeconomics which employ classical methods known to be inconsistent when a factor

residual is present in the data and the results obtained are therefore difficult to interpret.

This paper develops an estimation and testing procedure for macro-panels when factors are (expected to

be) present in the data, without making strong assumptions on the specification and distribution of the factor

structure. To this end, we adapt the quasi-difference methodology of Holtz-Eakin et al (1989), Nauges and

Thomas (2001) and Ahn, Lee and Schmidt (2001, 2013) to small N and large T dynamic panel data models

with both homogeneous and heterogeneous parameter structures. We develop an extensive QDGMM limit

theory for the case when the number of factors is known and also for the case when the number of factors is

unknown and too many factors are included in the model. The limit theory for the case of over-estimating

the number of factors is entirely new to the literature and supports the simulation results of Ahn, Lee and

Schmidt (2013), which suggest that consistent estimation of the slope parameters is still possible even when

R̂>R0. Moreover, our results show that inference about the slope parameters remains valid when the number

of factors is over-estimated is re-assuring. We also provide basic inferential procedures such as model-

selection and specification testing procedures that, as our Monte Carlo experiments show, work reasonably

well.

Future research in this topic could develop along several directions. First, it is possible to cast the

estimation procedure in the Lasso-framework: by penalizing the ALS algorithm on the blocks corresponding

to excess loadings, it is expected that the approximation to the minimizer of the objective function can be

improved. Second, since R0 is unknown to the researcher, it would be prudent to conduct inference about

the parameters using the bootstrap to approximate the finite sample distribution of the model when R̂≥ R0.

Further useful extensions to this chapter can be an analysis of structural breaks in the factor model estimated

by QDGMM and the behaviour of the QDGMM estimator when unit roots are present in the data, either in
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the factors or the quasi-differenced model would be interesting extensions to the large T dynamic panel data

with factor error residuals.

Appendix 3.1 Proofs

LEMMA 1. Definition of Ĝβ for the heterogeneous Parameter Model:

Let Ĝβ :=
[
Ĝβ,1,−Ĝβ,2

]
, where Ĝβ,2 := T−1

∑
T
t=1

[
⊕N−R

j=1 z j,tX′j,t
]

with:

X j,t :=
[
X ′j,t , Y ′j,t−1, . . . , Y ′j,t−L

]′ ; j = 1, . . . ,N and

X−,t :=
[
X′N−R+1,t , . . . , X′N,t

]′
.

Furthermore,

Ĝβ,2 := T−1
T

∑
t=1

[(
z′1,t , . . . , z′N−R,t

)′× (Λ+ ∗X′−,t
)]

= T−1
T

∑
t=1

 λ1,1z1,tX′N−R+1,t . . . λ1,Rz1,tX′N,t

. . . . . .

λN−R,1zN−R,tX′N−R+1,t . . . λN−R,RzN−R,tX′N,t


and the Khatri-Rao product in the second-last line is understood to operate on the blocks corresponding to

all regressors of each of the last R cross-sectional units.

Proof of Proposition 3.1:

Proving local identification is immediate from the bi-convexity of the problem: given β0, E (mt) = 0 iff

Λ = Λ?
0 and similarly for β holding fixed Λ?

0. Furthermore, a solution φ is a minimum only if the Hessian of

Q(φ|R) evaluated at E (mt) = 0 is positive definite and this holds whenever G :=
[
Gβ, GΛ

]
is full rank for

any PSD weight matrix. �

LEMMA 2. Generic Uniform Convergence of Q
(
φ̂, .
)

to Q0 (Andrews 1992, Theorem 1):

If (i) Q
(
φ̂
)
→
p

E
[
Q
(
φ̂
)]

, (ii) φ ∈ Φ with Φ totally bounded and (iii) Q(·) is stochastically equicontinu-

ous, then:

sup
φ∈Φ

|Q(φ)−E [Q(φ)] | →
p

0

and:
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∣∣φ̂−φ0
∣∣→

p
0

Proof: See Andrews (1992). �

LEMMA 3. Stochastic Equicontinuity (Andrews 1992, Definition on page 244):

Let B(T ) be a function of the data and T alone, p(Φ) a function of the parameter space and φ, φ? ∈ Φ.

If:

sup
φ,φ?∈Φ

|Q(φ)−Q(φ?) | ≤ B(T ) p(φ, φ
?)< ∞

then Q(φ) is stochastically equicontinuous.

Proof: See Andrews (1992). �

Proof of Proposition 3.2:

To prove consistency of QDGMM with R̂= R, we follow Theorem 1 of Andrews (1992). Using Lemmas 2-3

and given Assumptions 1-5, we first show pointwise convergence of Q̂
(
φ̂|R
)
→
p

Q
(
φ̂|R
)

and then uniform

convergence of Q̂ [(·) |R] by means of stochastic equicontinuity. Given those conditions and Proposition 1,

the convergence of φ to φ0 then occurs uniformly for any φ ∈Φ.

To prove pointwise convergence, let m(·) := E [m̂(·)] and write for any PSD matrix Ŵ :

sup
φ∈Φ

∣∣Q̂(φ)−E
[
Q̂(φ)

]∣∣≤2
∥∥[m̂(φ)−m(φ)]′Ŵ [m̂(φ)−m(φ)]

∥∥+
2
∥∥m(φ)′Ŵ [m̂(φ)−m(φ)]

∥∥
≤2sup

φ∈Φ

‖m̂(φ)−m(φ)‖2∥∥Ŵ∥∥+
2sup

φ∈Φ

‖m̂(φ)−m(φ)‖
∥∥Ŵ∥∥ sup

φ∈Φ

‖m(φ)‖ ,

where the first inequality follows from the Triangle-inequality and the second by Cauchy-Schwartz. Note

104



that:

m̂(φ) =m̂(φ0)− Ĝ† (φ−φ0)

=m̂(φ0)−G(φ−φ0)+op (1)

and

m(φ) =m(φ0)−G† (φ−φ0)

=m(φ0)− Ĝ(φ−φ0)+op (1) ,

where G† is the gradient evaluated at an intermediate value φ† that may differ from row to row. Further note

that since G and Ĝ are differentiable at φ0, for any ‖φ−φ0‖< η with η→ 0:

sup
φ∈Φ,‖φ−φ0‖<η

∥∥Ĝ−G
∥∥= sup

φ∈Φ,‖φ−φ0‖<η

dim(φ)

∑
i=1

∥∥∥∥ ∂

∂φ′
G†

i (φ−φ0)

∥∥∥∥
≤

dim(φ)

∑
i=1

∥∥∥∥ ∂

∂φ′
G†

i

∥∥∥∥‖φ−φ0‖= op (1) , (3.25)

where ∂

∂φ′G
†
i is the derivative of the i-th column of G with respect to φ for all i = 1, . . . , dim(φ) and ∂

∂φ′G
†
i

does not depend on φ. As a result, we have that:

‖m̂(φ)−m(φ)‖= ‖m̂(φ0)−m(φ0)‖+op (1) = op (1)

because m̂(φ0)→p m(φ0) = 0 as T → ∞ by Proposition 3.1. Furthermore,

‖m(φ)‖= ‖m(φ0)−G(φ−φ0)‖ ≤ ‖G‖‖φ−φ0‖= op (1) ,

if ‖G‖ is bounded. Noting that G =
[
Gβ, GΛ

]
, we have

‖G‖ ≤
∥∥Gβ

∥∥+‖GΛ‖

and letting Xk,t be the k-column of Xt we have:

∥∥Gβ

∥∥= K+L

∑
k=1

N−R

∑
i=1

S

∑
s=1

T

∑
t=1
|zs,i,tMiXk,t |2 = Op (1)

by Assumption 2.(iv) and total boundedness of Λ?
+ in Assumption 3. Similarly,

‖GΛ‖=
R

∑
r=1

N−R

∑
i=1

S

∑
s=1

T

∑
t=1
|zs,i,t ft,r|2 = Op (1) .

As a consequence of (3.25) and the above, a uniform weak law of large number will go through on G since
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the components have sufficient moments for mixing random variables. Combining results, this implies that:

sup
φ∈Φ

∣∣Q̂(φ)−Q(φ)
∣∣= op (1) . (3.26)

To obtain uniform convergence of the objective function, we next show stochastic equicontinuity of

Q̂(·). Let φ̃, φ? ∈Φ and proceed as above:

∣∣Q̂(φ̃)− Q̂(φ?)
∣∣≤∥∥∥[m̂(φ̃)− m̂(φ?)

]′Ŵ [
m̂
(
φ̃
)
− m̂(φ?)

]∥∥∥+
2
∥∥m̂(φ?)′Ŵ

[
m̂
(
φ̃
)
− m̂(φ?)

]∥∥
≤
∥∥m̂
(
φ̃
)
− m̂(φ?)

∥∥2∥∥Ŵ∥∥+
2
∥∥m̂
(
φ̃
)
− m̂(φ?)

∥∥∥∥Ŵ∥∥‖m̂(φ?)− m̂(φ0)‖+

2
∥∥m̂
(
φ̃
)
− m̂(φ?)

∥∥∥∥Ŵ∥∥‖m̂(φ0)‖ ,

for any PSD matrix Ŵ . We now have:

∥∥m̂
(
φ̃
)
− m̂(φ?)

∥∥=∥∥Ĝ† (
φ̃−φ

?
)∥∥≤ ∥∥Ĝ†∥∥∥∥φ̃−φ

?
∥∥

=‖G‖
∥∥φ̃−φ

?
∥∥+op (1) ,

‖m̂(φ?)− m̂(φ0)‖=
∥∥m̂(φ0)−G† (φ?−φ0)− m̂(φ0)

∥∥
=‖G‖‖φ?−φ0‖+op (1)

and

‖m̂(φ0)‖=T−1tr

[
T

∑
t=1

m̂t (φ0) m̂t (φ0)
′
]

:= tr
(
V̂
)

‖G‖=Op (1) ,

given Assumptions 1 and 2. This gives for any η→ 0:

sup
‖φ̃−φ?‖<η

∣∣Q̂(φ̃)− Q̂(φ?)
∣∣≤

‖G‖
∥∥Ŵ∥∥{tr(VT )+‖G‖

∥∥φ̃−φ
?
∥∥+‖G‖|φ?−φ0|

}∥∥φ̃−φ
?
∥∥

:=BT
∥∥φ̃−φ

?
∥∥ , (3.27)

establishing Lemma 3 since BT = Op (1).

Given uniform convergence of Q̂(·) to Q(·), consistency of φ̂ to φ0 now follows from the first order

condition:

−ĜŴ m̂
(
φ̂|R
)
= 0.
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Substituting a mean-value expansion of m̂ at the true parameters gives:

(
φ̂−φ0

)
=
(
ĜWĜ

)−1
ĜŴ m̂(φ0|R)

=op (1)

since E [m̂(φ0|R)] = 0 by Proposition 3.1 and the gradient evaluated at a mean-value φ̂ < φ† < φ0 converges

to G. �

LEMMA 4. Consistency of Sample Covariance Matrix: Under Assumptions 1-5 and for fixed P, the

sample covariance matrix:

V̂
(
φ̂|R
)
=T−1

T

∑
t=1

m̂t
(
φ̂
)

m̂t
(
φ̂
)′
+

T−1
P

∑
p=1

T

∑
t=p+1

[
m̂t
(
φ̂
)

mt−p
(
φ̂
)′
+mt−p

(
φ̂
)

m̂t
(
φ̂
)′]

→p V (φ0|R) =E
[
m̂t (φ0) m̂t (φ0)

′]+
P

∑
p=1

{
E
[
m̂t (φ0)mt−p (φ0)

′]+E
[
mt−p (φ0) m̂t (φ0)

′]} ,
Proof:

A mean-value expansion of m̂t around φ0 gives

m̂t
(
φ̂
)
= m̂t (φ0)− Ĝ†

t
(
φ̂−φ0

)
= m̂t (φ0)− Ĝt

(
φ̂−φ0

)
+op (1) ,

where Ĝt and Ĝ†
t are the gradients evaluated at each t. Then we can write:

T−1
T

∑
t=1

[
m̂t
(
φ̂
)

m̂t
(
φ̂
)′]

=

T−1
T

∑
t=1

[
m̂t (φ0)− Ĝt

(
φ̂−φ0

)]
×
[
m̂t (φ0)− Ĝt

(
φ̂−φ0

)]′
=

T−1
T

∑
t=1

m̂t (φ0) m̂t (φ0)
′−T−1

T

∑
t=1

m̂t (φ0)
[
Ĝt
(
φ̂−φ0

)]′−T−1
T

∑
t=1

Ĝt
(
φ̂−φ0

)
m̂t (φ0)

′

+T−1
T

∑
t=1

Ĝt
(
φ̂−φ0

)[
Ĝt
(
φ̂−φ0

)]′
:= I + II + II′+ III.

This expansion implies

T−1
T

∑
t=1

[
m̂t
(
φ̂
)

m̂t
(
φ̂
)′]→p E

[
m̂t (φ0) m̂t (φ0)

′] ,
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if II and III vanish. Writing:

T−1vec
T

∑
t=1

m̂t (φ0)
[
Ĝt
(
φ̂−φ0

)]′
=T−1

T

∑
t=1

[
Ĝt ⊗ m̂t (φ0)

](
φ̂−φ0

)
,

T−1vec
T

∑
t=1

Ĝt
(
φ̂−φ0

)[
Ĝt
(
φ̂−φ0

)]′
=T−1

T

∑
t=1

[
Ĝt ⊗ Ĝt

]
vec
[(

φ̂−φ0
)(

φ̂−φ0
)′]

,

we note that both terms go to zero in probability by consistency of φ̂ provided that

T−1
T

∑
t=1

[
Ĝt ⊗ m̂t (φ0)

]
= Op (1)

T−1
T

∑
t=1

[
Ĝt ⊗ Ĝt

]
= Op (1) .

By Cauchy-Schwartz, for the first line above:

T

∑
t=1

[
Ĝ⊗ m̂t (φ0)

]
≤

√
T−1

T

∑
t=1

∣∣Ĝt
∣∣2⊗√T−1

T

∑
t=1
|m̂t (φ0)|2,

where the absolute value and power are understood as operating element-wise.

Similarly, for fixed P and if P/T → 0,

T−1 (T −P)(T −P)−1
T

∑
t=p+1

[
m̂t
(
φ̂
)

mt−p
(
φ̂
)′]

=

(T −P)−1
T

∑
t=p+1

[
m̂t (φ0)− Ĝ

(
φ̂−φ0

)]
×
[
mt−p (φ0)−Gt−p

(
φ̂−φ0

)]′
=

(T −P)−1
T

∑
t=p+1

[
m̂t (φ0)mt−p (φ0)

′]−(T −P)−1
T

∑
t=p+1

m̂t (φ0)
[
Gt−p

(
φ̂−φ0

)]′
−(T −P)−1

T

∑
t=p+1

Gt−p
(
φ̂−φ0

)
mt−p (φ0)

′+(T −P)−1
T

∑
t=p+1

Ĝ
(
φ̂−φ0

)[
Gt−p

(
φ̂−φ0

)]′
:=I + II + II′+ III.

and II and III vanish as before:

(T −P)−1 vec
T

∑
t=1

m̂t (φ0)
[
Gt−p

(
φ̂−φ0

)]′
=(T −P)−1

T

∑
t=1

[Gt−p⊗ m̂t (φ0)]
(
φ̂−φ0

)
,

(T −P)−1 vec
T

∑
t=1

Ĝt
(
φ̂−φ0

)[
Gt−p

(
φ̂−φ0

)]′
=(T −P)−1

T

∑
t=1

[
Gt−p⊗ Ĝt

]
vec
[(

φ̂−φ0
)(

φ̂−φ0
)′]

,
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implying that:

T−1
T

∑
t=1

[
m̂t
(
φ̂
)

mt−p
(
φ̂
)′]→p E

[
m̂t (φ0)mt−p (φ0)

′] . �
Proof of Proposition 3.3:

Distributional theory for correctly specified QDGMM is obtained in a standard way, cf. Theorem 3.2 of

Newey and McFadden (1984). The distribution of the vector of moment conditions follows from a CLT

applied to the random sums T−1/2
∑

T
t=1 z j,tM jεt for each j = 1, . . .N−R because ft is removed at the true

parameters.11 Under Assumptions 1, 2, 3 and 4, a CLT for mixing variables goes through because measur-

able functions of mixing variables are also mixing and we assume sufficient moments are finite, cf. Theorem

5.20 of White (2001). The distribution of the moment vector is then:

1√
T

T

∑
t=1

m̂t (φ0|R)→d N
(
0S(N−R)×1,V

)
with V defined in Proposition 3.3. Conclusion (2) now follows immediately by standard arguments: since

T−1/2V−1/2
∑

T
t=1 m̂t (φ) converges to a multivariate standard normal of the same dimension, the correspond-

ing quadratic form converges to a chi-squared random variable as T →∞. This implies that setting W =V−1,

the objective function Q̂(φ|R) follows a chi-squared distribution, with degrees of freedom equal to the num-

ber of instruments sans the parameter count of the homogeneous or heterogeneous slope parameter model,

i.e., (N−R)(S−R)−dim(β).

For conclusion (1) we use standard GMM limit theory by substituting the mean-value expansion:

m̂
(
φ̂
)
= m̂(φ0|R)− Ĝ† (

φ̂−φ0
)
,

where Ĝ† is the gradient evaluated at φ̂≤ φ† ≤ φ0, into the first order conditions:

√
T
(
φ̂−φ0

)
=
(
ĜŴ Ĝ†)−1

G†′Ŵ
√

T m̂(φ0|R) .

Since φ̂ is consistent, the gradients evaluated at φ̂ and φ† will converge in probability to G and the stated

result follows. �

LEMMA 5: Suppose Assumptions 1-5 hold and R̂ > R. Then there exist sequences of matrices HT such

that:

m̂
(
φ̂| R̂
)
= m̂(φ0|R)− Ĝ†

H

(
φ̂H −φ

0

)
,

where φ
0
=
[
β′, 0′, vec

(
Λ
?
0+
)′]′ and Ĝ†

H is full rank.

11Note that the normality results under weaker assumptions on the dependence of the model also readily follow.
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Proof:

The result follows from a mean-value expansion about φ
0
:

m̂
(
φ̂| R̂
)
=m̂

(
φ

0
|R
)
− Ĝ†

(
φ̂−φ

0

)
=m̂

(
φ

0
|R
)
− ĜH H −1

(
φ̂−φ

0

)
+op (1)

=m̂
(

φ
0
|R
)
− Ĝ†

H

(
φ̂H −φ

0

)
,

where Ĝ† and Ĝ†
H are evaluated at intermediate values of φ

0
which may differ from row to row and it is

noted that G†
H is of full rank. �

LEMMA 6: Suppose Assumptions 1-5 hold, R̂ > R and P fixed. Then the optimal weight matrix is con-

sistent if φ̂H →p φ
0
:

V̂
(

φ̂| R̂
)

:=T−1
T

∑
t=1

mt

(
φ̂| R̂
)

mt

(
φ̂| R̂
)′
+

T−1
P

∑
p=1

T

∑
t=p+1

[
mt

(
φ̂| R̂
)

mt−p

(
φ̂| R̂
)′
+mt−p

(
φ̂| R̂
)

mt

(
φ̂| R̂
)′]
→p

V
(

φ
0
|R
)

:=E
[

mt

(
φ

0
|R
)

mt

(
φ

0
|R
)′]

+

P

∑
p=1

{
E
[

mt

(
φ

0
|R
)

mt−p

(
φ

0
|R
)′]

+E
[

mt−p

(
φ

0
|R
)

mt

(
φ

0
|R
)′]}

.

Proof:

The proof makes use of Lemma 5 and is very similar to the proof of lemma 4. As a result we only show

consistency of the leading term.

Using the expansion in Lemma 4 at each t, then squaring, summing and dividing by T gives:

T−1
T

∑
t=1

mt

(
φ̂| R̂
)

mt

(
φ̂| R̂
)′

=T−1
T

∑
t=1

mt

(
φ

0
|R
)

mt

(
φ

0
|R
)′
−

T−1
T

∑
t=1

mt

(
φ

0
|R
)(

φ̂H −φ
0

)′
Ĝ′H ,t −T−1

T

∑
t=1

ĜH ,t

(
φ̂H −φ

0

)
mt

(
φ

0
|R
)′
+

T−1
T

∑
t=1

ĜH ,t

(
φ̂H −φ

0

)(
φ̂H −φ

0

)′
Ĝ′H ,t := I + II + II′+ IV.
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Since II = II′, the claim follows if we can show that II, IV = op (1).

For II we have:

vec

[
T−1

T

∑
t=1

mt

(
φ

0
|R
)(

φ̂H −φ
0

)′
Ĝ′H ,t

]
=T−1

T

∑
t=1

[
ĜH ,t ⊗mt

(
φ

0
|R
)]
×

vec
[(

φ̂H −φ
0

)′]
.

So II vanishes by consistency of φ̂H if the first term is Op (1). As in the proof of Lemma 4 we have by

element-wise Cauchy-Schwartz:

T−1
T

∑
t=1

[
ĜH ,t ⊗ m̂

(
φ

0
|R
)]
≤√

T−1
T

∑
t=1

∣∣ĜH ,t
∣∣2⊗√T−1

T

∑
t=1

∣∣∣mt

(
φ

0
|R
)∣∣∣2,

which are finite by Assumptions 1 and 2.

For IV we similarly have:

T−1
T

∑
t=1

[
ĜH ,t ⊗ Ĝ′H ,t

]
×vec

[(
φ̂H −φ

0

)(
φ̂H −φ

0

)′]
= op (1)

We conclude that:

T−1
T

∑
t=1

mt

(
φ̂| R̂
)

mt

(
φ̂| R̂
)′
→p E

[
mt

(
φ

0
|R
)

mt

(
φ

0
|R
)′]

.

The P autocovariance terms are derived similarly, thus proving the consistency of V̂
(

φ̂| R̂
)
. �

Proof of Theorem 3.1:

To establish uniform convergence of Q̂
(

φ| R̂
)

for all φ ∈ Φ, we proceed as in Proposition 3.2 by follow-

ing Lemma 1 and 2. By replacing Ĝ and G by ĜH and GH , pointwise convergence readily follows since
‖G×‖ = Op (1) by Assumption 2. Thus establishing stochastic equicontinuity as in equations (3.26) and

(3.27) in the proof of Proposition 3.2.

Consistency of φ̂H then follows from the first-order condition of the QDGMM optimization program

and substitution of the expansion in Lemma 4:(
φ̂H −φ

0

)
=
(
Ĝ′H Ŵ ĜH

)−1
Ĝ′H Ŵ m̂

(
φ

0
|R
)
= Op

(
T−1/2

)
.

Since ĜH =
[
Ĝ′

β
, Ĝ′×, Ĝ′−

]′
, continuity of the normal distribution implies that Ĝ× consists of realizations
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exactly equal to zero with probability zero and thus that the matrix ĜH has full rank almost surely. As a

result, the solution above exists and is consistent. Note further that:

m̂ZU =

[
⊕N−R̂

j=1 T−1
T

∑
t=1

(z j,t f1,t) , . . . ,⊕N−R̂
j=1 T−1

T

∑
t=1

(z j,t fR,t)

]
vec
(
Λ
?
0+
)
+[

T−1
T

∑
t=1

(z1,tε1,t)
′ , . . . , T−1

T

∑
t=1

(
zN−R̂,tεN−R̂,t

)′]′
+Op

(
T−1/2

)
=Ĝ−vec

(
Λ
?
0+
)
+

[
T−1

T

∑
t=1

(z1,tε1,t)
′ , . . . , T−1

T

∑
t=1

(
zN−R̂,tεN−R̂,t

)′]′
−[

⊕N−R̂
j=1 T−1

T

∑
t=1

(
z j,tεN−R̂+1,t

)
, . . . ,⊕N−R̂

j=1 T−1
T

∑
t=1

(z j,tεN,t)

]
vec
(
Λ
?
0+
)
+Op

(
T−1/2

)
=Ĝ−vec

(
Λ
?
0+
)
+ m̂

(
φ

0
|R
)
,

where we have used the normalization Λ− = IR0 in the first and second lines. We then have by the block-

inverse formula that:

vec
(
Λ̂H×

)
=
(

Ĝ′×Ŵ 1/2MŴ 1/2ĜH /×
Ŵ 1/2Ĝ×

)−1
Ĝ′×Ŵ 1/2MŴ 1/2ĜH /×

Ŵ 1/2m̂ZU

=0(R̂−R)(N−R̂)×1 +Op

(
T−1/2

)
(3.28)

and

vec
(
Λ̂H+

)
=
(

Ĝ′−Ŵ 1/2MŴ 1/2ĜH /−
Ŵ 1/2Ĝ−

)−1
Ĝ′−Ŵ 1/2MŴ 1/2ĜH /−

Ŵ 1/2m̂ZU

=vec
(
Λ
?
0+
)
+Op

(
T−1/2

)
,

where MŴ 1/2ĜH /Λ×
is the orthogonal projection on the columns of Ŵ 1/2

[
Ĝ′

β
, Ĝ′−

]′
and similarly for MŴ 1/2ĜH /Λ−

.

The above makes explicit (i) the loss of information due to overestimating R and (ii) that overestimating still

removes the factors, facilitating a consistent estimate of β0.

For the distribution of
(

φ̂
H
−φ

0

)
, note that:

√
T m̂
(

φ
0
|R
)
∼ N

[
0,V

(
φ

0
|R
)]

and therefore as T → ∞:

√
T
(

φ̂H −φ
0

)
∼

MN
[
0,
(
G′H WGH

)−1 G′H WV
(

φ
0
|R
)

WGH
(
G′H WGH

)−1
]

The mixed normality in the above is due to the occurrence of G× in GH , which is correlated with m(·).
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For part (2) of the Theorem, first note that:

H =

[
IR̂−R⊗ IN−R̂ 0(R̂−R)×R⊗ IN−R̂

−Λ?′
0×⊗ IN−R̂ IR⊗ IN−R̂

] √
T IR̂−R⊗ IN−R̂ 0(R̂−R)×R⊗ IN−R̂

0R×(N−R̂)⊗ IN−R̂ IR⊗ IN−R̂


:=HΛ××H√T .

In light of (3.28), the partition of H implies:

H√T H−1vec
(
Λ̂
)
=

[ √
T vec

(
Λ̂H×

)
vec
(
Λ̂H+

) ]

and it follows that:

HH−1vec
(
Λ̂
)
=HΛ×H√T H−1vec

(
Λ̂
)
→d

[
ΨΛ

vec
(
Λ?

0+
)
−
(
Λ
?′
0×⊗ IN−R̂

)
ΨΛ

]
,

where

ΨΛ ∼
(

G′×W 1/2MW 1/2GH /×
W 1/2G×

)−1
G′×W 1/2MW 1/2GH /×

W 1/2
√

T m̂
(

φ
0
|R
)

is a mixed normal random variable exhibiting correlation between G× and the limit of
√

T m̂(·). The joint

distribution of φ̂ in partitioned form is obtained as follows. Let:

HΛ× =
[
HΛ×,1, HΛ×,2

]
,

Ĝ =


(

Ĝ′
β
Ŵ 1/2MŴ 1/2ĜH /β

Ŵ 1/2Ĝβ

)−1
0

0 HΛ×,1

(
Ĝ′×Ŵ 1/2MŴ 1/2ĜH /×

Ŵ 1/2Ĝ×
)−1

×
 Ĝ′

β
Ŵ 1/2MŴ 1/2ĜH /β

Ŵ 1/2

Ĝ′×Ŵ 1/2MŴ 1/2ĜH /×
Ŵ 1/2

 .
then:

diag
[√

T Idim(β), IR̂(N−R̂)

](
φ̂−φ

0

)
=Ĝ
√

T m̂
(

φ
0
|R
)
→d MN

[
0, GV

(
φ

0
|R
)

G ′
]
.

It should be clear from the dimensions of HΛ×,1 that the unscaled parameter vector has a degenerate random

limit and this is due to the fact that we are using more parameters than necessary to estimate the (span of

the) loadings.

Finally, we show that the J-statistic continues to have a chi-squared distribution even when R̂ > R. Using
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the first order conditions in the expansion of Lemma 4, we have:

m̂
(

φ̂| R̂
)
=m̂

(
φ

0
|R
)
− ĜH

(
Ĝ′H Ŵ ĜH

)−1
Ĝ′H Ŵ m̂

(
φ

0
|R
)

=
[
I− ĜH

(
Ĝ′H Ŵ ĜH

)−1
Ĝ′H Ŵ

]
m̂
(

φ
0
|R
)

=Ŵ−1/2MŴ 1/2ĜH
Ŵ 1/2m̂

(
φ

0
|R
)
.

Then by Lemma 5 setting Ŵ = V̂−1, the quadratic form

m̂
(

φ̂| R̂
)′

V̂−1m̂
(

φ̂| R̂
)
=m̂

(
φ

0
|R
)′

V̂−1/2MV̂−1/2ĜH
V̂−1/2m̂

(
φ

0
|R
)

→dχ
2{(S− R̂

)(
N− R̂

)
−dim(β)

}
,

since (i), V̂ →V , (ii) V̂−1/2m̂
(

φ
0
|R
)
→d N (0, 1) and (iii) MŴ 1/2ĜH

is idempotent.

Proof of Proposition 3.5:

Let ∂a/∂φ = A = [A,0], let a
(

φ̂

)
= A

(
β̂

)
and note that AH = A. Then by Theorem 3.1, under H0, a

mean-value expansion gives

√
T a
(

φ̂

)
=
√

T a
(

φ
0

)
+
√

T AH H −1
(

φ̂−φ
0

)
=
√

T A
(

φ̂
H
−φ

0

)
∼MN

[
0, A

(
Ĝ′H V̂−1ĜH

)−1
A′
]

=N
[

0, A
(

Ĝ′
β
V̂−1/2MV̂−1/2ĜH

V̂−1/2Ĝβ

)−1
A′
]
,

since (i) a
(

φ
0

)
= 0 and (ii) the random matrix G× is in the annihilator M(·) and projection matrices have

eigenvalues equal to zero and unity. As a result, the quadratic form in the proposition is chi-squared distrib-

uted with rank(A) degrees of freedom. �

Proof of Proposition 3.6:

In the special case that λi = λ, we may apply the normalization that λi = 1 for all i = 1, . . . ,N. We have by

Theorem 3.1:

vec
(
Λ̂
)
→d

[
ΨΛ

1N−R−
(
1′R−R0

⊗ IN−R
)

ΨΛ

]
,

114



and thus Avec
(
Λ̂
)
= 0(N−R−1)×1. To obtain the distributional result, note that:

A
(
H−1H

)(
Ĝ′ΛV̂−1/2MV̂−1/2Ĝβ

V̂−1/2ĜΛ

)+ (
HH−1)′ Ĝ′ΛV̂−1/2MV̂−1/2Ĝβ

V̂−1/2m̂ZU =

AH
(

Ĝ′HV̂−1/2MV̂−1/2Ĝβ
V̂−1/2ĜH

)−1

Ĝ′HV̂−1/2MV̂−1/2Ĝβ
V̂−1/2m̂ZU ,

where now

H =

[
IR−1⊗ IN−R 0(R−1)×1⊗ IN−R

−11,R−1⊗ IN−R IN−R

]
.

As a result we have

AH =
[
01×(R−1),1

]
⊗



1 −1 0 . . . . . . 0

0 1 −1 0
. . . . . .

. . . 0
. . . . . . . . . . . .

. . .
. . . . . . . . . . . . 0

0 . . . . . . 0 1 −1


,

so that

Avec
(
Λ̂
)
= AHH−1vec

(
Λ̂
)
=



1 −1 0 . . . . . . 0

0 1 −1 0
. . . . . .

. . . 0
. . . . . . . . . . . .

. . .
. . . . . . . . . . . . 0

0 . . . . . . 0 1 −1


vec
(
Λ̂H+

)
= 0,

since λ?
j = 1 for all j = 1, . . . , N−R and we arrive at the distributional result:

Avec
(
Λ̂
)
→d N

[
0, A

(
G′−V−1/2

R0
MV̂ 1/2ĜH /−

V−1/2
R0

GΛ

)−1
A′
]
,

so that the quadratic form

[
Avec

(
Λ̂
)]′[

A
(

G′−V−1/2
R0

MV̂ 1/2ĜH /Λ−
V−1/2

R0
GΛ

)−1
A′
]−1

Avec
(
Λ̂
)
→d χ

2 (N−R−1) .

�

Proof of Proposition 3.7:

We follow Theorem 5 of Cragg and Donald (1997). These authors note that it is not possible to bound the

probability of overestimating without conditions (1) and (2) on the significance level function αT . These re-

quirements are from Pötscher (1983), who derives a convergence rate on the difference between chi-squared

variables with k and l degrees of freedom where k < l.
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Let ER be the event of rejecting the null hypothesis of R factors based on the J-test and let ĒR the

probability of accepting a null hypothesis of R factors. The probability of estimating any R factors is then:

P(E1∩·· ·∩ER−1∩ ĒR) = P(E1∩·· ·∩ER−1)P(ĒR|E1∩·· ·∩ER−1) ,

so that for R < R0,

P(R < R0)≤ P(ĒR) = 1−P(ER) ,

and

P(ER) = P
[
Q(φ, R)> c

(
χ

2, R, αT
)]
,

where for R < R0, Q(φ, R) = Op (T ) since ‖ΛF ′v‖ = Op (T ) for any conformable vector v and, using

−T−1log(αT )→ 0 of the proposition, T−1c
(
χ2, R, αT

)
→p 0, leading to:

P(ER) = P(Op (1)> op (1))→p 1,

yielding that limP(R < R0) = 0.

For R > R0, we have

P(R > R0)≤ P(ER0) = P
[
Q̂
(
φ̂, R0

)
> c
(
χ

2, R0, αT
)]
,

which is the type-I error. To bound this, fix η > 0 and let4> 0 be some constant. Then, as T →∞, αT → 0

and c
(
χ2, R0, αT

)
→ ∞, there will be some T > T for which4< c

(
χ2, R0, αT

)
and:

P
[
χ

2 {(S−R0)(N−R0)−dim(β)}>4
]
= η.

But Q̂
(
φ̂, R0

)
→d χ2 {(S−R0)(N−R0)−dim(β)} so by construction there is a T > T̃ such that

∣∣P[Q(φ̂, R0
)
>4

]
−P

[
χ

2 {(S−R0)(N−R0)−dim(β)}>4
]∣∣≤ η,

which implies that

P(R > R0)≤ P
[
Q
(
φ̂, R0

)
>4

]
≤ 2η

for T > max
(
T , T̃

)
by construction since the second term in the display in the previous line is bounded at

η. Since η is arbitrary and fixed, we have limP(R > R0) = 0 and thus limP
(
R̂ = R0

)
= 1. �

Proof of Proposition 3.8:

We follow Theorem 3 of Cragg and Donald (1997).

Start with the case when R < R0:
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P(R < R0) = P [ICT (R)≤ ICT (R0)]

Replacing ICT (R) and ICT (R0) with their specifications and rearranging, we obtain:

P
[
Q̂
(
φ̂|R
)
− Q̂

(
φ̂|R0

)
≤−θ(T ){π(R)−π(R0)}

]
.

Here, Q̂
(
φ̂|R
)
→p ∞ and Q̂(φ|R0) →d χ2, so that Q̂

(
φ̂|R
)
− Q̂

(
φ̂|R0

)
→ ∞ as T → ∞, but note that

T−1
{

Q̂
(
φ̂|R
)
− Q̂(φ|R0)

}
= Op (1) by the argument in the proof of Proposition 5. On the other hand,

if R0 < R and θ(T )→ ∞ as T → ∞, we have that T−1θ(T ){π(R)−π(R0)} → 0, so that P(R < R0) =

P(Op (1)< 0) and thus limP(R < R0) = 0. Note that this argument applies not only to BIC and HIC, but

also AIC.

Next consider the case where R > R0:

P(R > R0) = P [ICT (R0)> ICT (R)] .

Similarly, expand and rearrange:

P
[
Q̂(φ|R0)− Q̂(φ|R)≥ θ(T ){π(R)−π(R0)}

]
,

then since Q̂
(
φ̂|R0

)
→
p

Q0 (φ0|R0) = Op (1) uniformly under Proposition 2 and Q̂
(
φ̂|R
)
= Op (1) by The-

orem 1, we have that Q(φ|R0)−Q
(

φ|R
)
= Op (1). Furthermore, since π is strictly increasing in R,

π(R)−π(R0)> 0 so that θ(T ) [π(R)−π(R0)]→ ∞ and thus limP(R > R0) = 0. �

Proof Proposition 3.9:

To prove the proposition note first that B1Ĝ?
Λ

B2 consists of sample averages and therefore, by Theorem

5.20 of White (2001), a CLT will operate on:

√
T vec

(
B1Ĝ?

ΛB2
)
→d N

[(
B′2⊗B1

)
vec(GΛ) ,VGΛ

]
,

since E
(
B1Ĝ?

Λ
B2
)
= (B1GΛB2). We will estimate the variance

√
T vec

(
B1Ĝ?

Λ
B2
)

as:

V̂GΛ
= T−1

T

∑
t=1

[(
B′2⊗B1

)
vec
(
ĜΛ,t

)
vec
(
ĜΛ,t

)′ (
B′2⊗B1

)′]
+

T−1
P

∑
p=1

T

∑
t=p+1

[(
B′2⊗B1

)
vec
(
Ĝ?

Λ,t
)

vec
(
Ĝ?

Λ,t−p
)′ (

B′2⊗B1
)′

+
(
B′2⊗B1

)
vec
(
Ĝ?

Λ,t−p
)

vec
(
Ĝ?

Λ,t
)′ (

B′2⊗B1
)]

.
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The first term is:

(
B′2⊗B1

)
T−1

T

∑
t=1

[
vec
(
ĜΛ,t

)
vec
(
ĜΛ,t

)′]
=T−1

T

∑
t=1

vec
(
zt û′−,t

)
vec
(
zt û′−,t

)′
=

T−1
T

∑
t=1

vec
(
ztu′−,t

)
vec
(
ztu′−,t

)′−T−1
T

∑
t=1

vec
(
ztu′−,t

)
vec
(

zt

(
β̂−β0

)′
X′−,t

)′
−T−1

T

∑
t=1

vec
(

zt

(
β̂−β0

)′
X′−,t

)
vec
(
ztu′−,t

)′
+T−1

T

∑
t=1

vec
(

zt

(
β̂−β0

)′
X′−,t

)
vec
(

zt

(
β̂−β0

)′
X′−,t

)′
=I + II + II′+ III.

Now I converges to a constant matrix by a weak law of large numbers for mixing variables in light of

assumptions 1 and 2. For II and III, observe that

vec
(

zt

(
β̂−β0

)′
X′−,t

)
= (X−,t ⊗ zt)

(
β̂−β0

)
and thus II:

vec

{
T−1

T

∑
t=1

vec
(
ztu′−,t

)[
(X−,t ⊗ zt)

(
β̂−β0

)]′}
=

T−1
T

∑
t=1

[
(X−,t ⊗ zt)⊗vec

(
ztu′−,t

)](
β̂−β0

)
converges to zero in probability since for each l = 1, . . . , dim(β), each r = N − R? + 1, . . . , N and each

s = 1, . . . , S, E |xl,r,tzs,t | and E |ur,tzs,t | are finite by Assumptions 1 and 2 and β̂ is consistent. Similarly, for

III we have:

vecT−1
T

∑
t=1

(ztX−,t⊗)
(

β̂−β0

)(
β̂−β0

)′[
zt

(
β̂−β0

)′
X′−,t

]′
=

T−1
T

∑
t=1

[
(X−,t ⊗ zt)

′⊗ (X−,t ⊗ zt)
]
vec
[(

β̂−β0

)(
β̂−β0

)′]
=

T−1
T

∑
t=1

(
X′−,tX−,t ⊗ z′tzt

)
vec
[(

β̂−β0

)(
β̂−β0

)′]
=,

and III converges to zero in probability since for each l = 1, . . . , dim(β), each r =N−R?+1, . . . , N and each

s = 1, . . . , S, E |xl,r,tzs,t | is finite. This shows that the first term in the variance formula V̂GΛ
is consistent and

by similar method the remaining P terms can be also shown to be consistent. The result is that V̂ĜΛ
→p VGΛ

.

Now note that consistency implies that B1Ĝ?
Λ

B2−B1GΛB2→p 0 and that B1Ĝ?
Λ

B2−B1GΛB2 =Op
(
T−1/2

)
by the above. Furthermore, since rank(B1GΛB2) = R0 but the column dimension is R?, there exist decom-
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positions of B1GΛB2 and B1Ĝ?
Λ

B2 such that:

Ξ
(R0)
1 B1GΛB2Ξ

(R0)
2 = 0(S−R0)×(R?−R0),

Ξ̂
(R0)
1 B1Ĝ?

ΛB2Ξ̂
(R0)
2 = 0(S−R0)×(R?−R0)

and by Theorem 13.5.1 of Gohberg et al (2006):

max
[∥∥∥Ξ̂

(R0)
1 −Ξ

(R0)
1

∥∥∥ , ∥∥∥Ξ̂
(R0)
2 −Ξ

(R0)
2

∥∥∥]≤4∥∥B1Ĝ?
ΛB2−B1GΛB2

∥∥ ,
for a constant 4 that depends only on B1Ĝ?

Λ
B2. Now since B1Ĝ?

Λ
B2−B1GΛB2→p 0, the above inequality

implies that the null space estimators at R0 are consistent and thus that:

Ξ̂
(R0)
1 B1Ĝ?

ΛB2Ξ̂
(R0)
2 →p Ξ

(R0)
1 B1GΛB2Ξ

(R0)
2 = 0(S−R0)×(R?−R0).

This further implies that the variance of vec
(

Ξ̂
(R0)
1 B1Ĝ?

Λ
B2Ξ̂

(R0)
2

)
at R = R0,

(
Ξ̂
(R0)′
2 ⊗ Ξ̂

(R0)
1

)
V̂GΛ

(
Ξ̂
(R0)
2 ⊗ Ξ̂

(R0)′
1

)
→p

(
Ξ
(R0)′
2 ⊗Ξ

(R0)
1

)
VGΛ

(
Ξ
(R0)
2 ⊗Ξ

(R0)′
1

)
,

is of full rank and its smallest eigenvalue is bounded away from zero in probability. As a result, the distri-

butional results under H0 in items (1) and (2) of Proposition 3.9 hold.

To show that RK diverges under H1we have to show that:

Ξ̂
(R)
1 B1Ĝ?

ΛB2Ξ̂
(R)
2 →p 4

for some4> 0 and that the smallest eigenvalue of:(
Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
V̂GΛ

(
Ξ̂
(R)
2 ⊗ Ξ̂

(R)′
1

)
is bounded away from zero in probability so that the inverse is continuous. For the first requirement note

that since rank(B1GΛB2) = R0 it has R0 non-vanishing singular values and the matrix can be factored by

SVD as:

B1GΛB2 =
[

Ξ
(R0− j)′
1,⊥ , Ξ′

( j)

1,⊥, Ξ′1

][
Θ

0

] Ξ
(R0− j)′
2,⊥
Ξ
( j)′
2,⊥

Ξ′2

 ,
where Θ is an R0×R0 diagonal matrix consisting of the singular values of B1GΛB2 and the rows of Ξ(·) are

unitary and therefore orthogonal. Now setting Ξ̂
(R0− j)
1 =

[
Ξ̂′

( j)

1,⊥, Ξ̂′1

]′
and Ξ̂

(R0− j)
2 =

[
Ξ̂′

( j)

2,⊥, Ξ̂′2

]′
we have:

Ξ̂
(R0− j)
1

(
B1Ĝ?

ΛB2
)

Ξ̂
(R0− j)
2 →p

j

∑
i=1

Ξ
′(i)
1,⊥θi (B1GΛB2)Ξ

′(i)
2,⊥ = Op (1)
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since B1Ĝ?
Λ

B2 is consistent with R0 singular values θi. For the second requirement, note that:(
Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
z j,tu′−,t

)
=
(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
Zt ftΛ′−

)
+
(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
ztε
′
−,t
)

=
(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
(Λ−⊗ IS)vec(zt ft)+

(
Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
vec
(
ztε
′
−,t
)

=

 (Ξ̂
(R)′
2 Λ−⊗ Ξ̂

(R)
1

)
0

0
(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

) vec
[
zt ft , ztε

′
−,t
]
.

Note that the S (R0 +R?)-vector vec
[
zt ft , ztε

′
−,t
]

is non-degenerate normally distributed and that the block

matrix pre-multiplying vec
[
zt ft , ztε

′
−,t
]

is an affine transformation if it is of full rank smaller or equal than

S (R+R?). Using the facts that for a block diagonal matrix A = diag(A11, A22), rank(A) = rank(A11)+

rank(A22); that rank(A11⊗A22) = rank(A11) rank(A22) and that orthogonal matrices are full rank, we have

that the (S−R)(R?−R)×SR? matrix
(

Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
in the second block is full rank. For the first block, note

that rank
(

Ξ̂
(R)′
2 Λ−

)
= min(R?−R, R0), but that the dimension of

(
Ξ̂
(R)′
2 Λ−⊗ Ξ̂

(R)
1

)
is (R?−R)(S−R)×

R0S. This means that the matrix pre-multiplying vec
[
zt ft , ztε

′
−,t
]

can only be an affine transformation if

(R?−R)≤ R0. In that case, (
Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
VGΛ

(
Ξ̂
(R)′
2 ⊗ Ξ̂

(R)
1

)
is symmetric positive definite and thus invertible and since an invertible matrix has all eigenvalues positive, it

implies that its inverse must be Op (1). Now since the numerator and denominator are bounded, multiplying

the quadratic form of the Rank Test at R̂ < R0 by T implies it diverges. �
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Appendix 3.2. Simulation Results

Appendix 3.2.1. Monte Carlo Results: Bias and RMSE of QDGMM

Table 3.1: Monte Carlo results for model (3.24) with R = 1 and β0 = 0.5, mean and RMSE over 5000
replications:

N T1 OLS FE CCE QD 2-step QD 1-step

2

50
mean 0.696 0.983 0.506 0.488 0.479

RMSE 0.220 0.514 0.138 0.053 0.026

100
mean 0.700 0.991 0.524 0.504 0.498

RMSE 0.217 0.510 0.107 0.034 0.034

200
mean 0.707 0.995 0.531 0.507 0.504

RMSE 0.220 0.505 0.089 0.060 0.060

400
mean 0.710 0.998 0.535 0.508 0.506

RMSE 0.221 0.503 0.079 0.028 0.028
N T OLS FE CCE QD 2-step QD 1-step

5

50
mean 0.718 0.990 0.495 0.530 0.530

RMSE 0.232 0.503 0.077 0.028 0.043

100
mean 0.724 0.997 0.510 0.529 0.508

RMSE 0.232 0.504 0.062 0.034 0.040

200
mean 0.728 0.999 0.515 0.514 0.501

RMSE 0.233 0.502 0.053 0.027 0.008

400
mean 0.729 0.998 0.518 0.507 0.500

RMSE 0.233 0.500 0.049 0.038 0.035
N T OLS FE CCE QD 2-step QD 1-step

10

50
mean 0.723 0.992 0.485 0.539 0.500

RMSE 0.235 0.502 0.051 0.039 0.052

100
mean 0.731 0.997 0.495 0.531 0.501

RMSE 0.237 0.502 0.035 0.056 0.126

200
mean 0.735 0.998 0.501 0.519 0.501

RMSE 0.239 0.501 0.026 0.021 0.003

400
mean 0.737 0.999 0.503 0.507 0.500

RMSE 0.240 0.500 0.021 0.006 0.008

1OLS is pooled OLS, FE is the Fixed Effects Estimator, CCE is the Common Correlations Estimator and finally QD 1- and
2-step are QDGMM estimators.
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Table 3.2: Monte Carlo results for model (3.24) with R = 2 and β0 = 0.5, mean and RMSE over 5000
replications.

N T2 OLS FE CCE QD 2-step* QD 1-step* QD 2-step QD 1-step

3

50
mean 0.812 1.011 0.668 0.589 0.582 0.469 0.456

RMSE 0.328 0.511 0.231 0.144 0.140 0.136 0.136

100
mean 0.817 1.002 0.686 0.610 0.600 0.498 0.490

RMSE 0.331 0.502 0.234 0.145 0.137 0.029 0.029

200
mean 0.825 0.996 0.696 0.619 0.608 0.509 0.504

RMSE 0.336 0.496 0.238 0.145 0.135 0.019 0.020

400
mean 0.823 0.999 0.699 0.621 0.612 0.516 0.512

RMSE 0.334 0.499 0.240 0.146 0.136 0.039 0.039

N T OLS FE CCE QD 2-step* QD 1-step* QD 2-step QD 1-step

5

50
mean 0.819 0.969 0.698 0.607 0.591 0.510 0.481

RMSE 0.333 0.469 0.244 0.147 0.134 0.088 0.084

100
mean 0.824 0.993 0.711 0.626 0.607 0.521 0.500

RMSE 0.336 0.493 0.249 0.153 0.134 0.097 0.096

200
mean 0.828 1.012 0.717 0.633 0.612 0.515 0.502

RMSE 0.337 0.512 0.252 0.155 0.134 0.011 0.035

400
mean 0.828 0.999 0.717 0.635 0.611 0.509 0.501

RMSE 0.337 0.499 0.251 0.155 0.132 0.006 0.007

N T OLS FE CCE QD 2-step* QD 1-step* QD 2-step QD 1-step

10

50
mean 0.723 0.827 0.973 0.718 0.617 0.518 0.476

RMSE 0.235 0.339 0.473 0.258 0.152 0.109 0.030

100
mean 0.731 0.829 1.000 0.726 0.635 0.524 0.492

RMSE 0.237 0.339 0.500 0.261 0.158 0.061 0.017

200
mean 0.735 0.829 0.998 0.733 0.642 0.516 0.499

RMSE 0.239 0.339 0.498 0.266 0.161 0.019 0.018

400
mean 0.737 0.829 1.004 0.734 0.644 0.506 0.498

RMSE 0.240 0.337 0.504 0.266 0.162 0.013 0.013

2OLS corresponds to pooled OLS, FE is the Fixed Effects Estimator, CCE is the Common Correlations Estimator, and finally
QD 1- and 2-step are QDGMM estimators, where (*) denotes estimation with R = 1.
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Appendix 3.2.2 Monte Carlo Results: Wald-Tests for Time Effects Model

Table 3.6: Wald-Test for Poolability of the factor loadings, acceptance rates for true null of Time Effects
model, 5000 replications of model (3.24):

Wald-Statistic Acceptance rates1 Acceptance rates
N T 10% 5% 1% N T 10% 5% 1%

50 95.4 97.8 99.5 50 96.1 97.9 99.4
3 100 95.8 98.3 99.8 5 100 97.5 98.9 99.7

200 95.5 98.5 99.9 200 97.3 99.1 99.9
400 94.6 97.8 99.7 400 96.4 98.4 99.8

Acceptance rates
N T 10% 5% 1%

50 93.1 95.4 97.9
10 100 97.5 98.7 99.7

200 98.4 99.4 99.9
400 98.2 99.3 99.9

Table 3.7: Acceptance rates for Wald-Tests about the slope parameter β0 where R0 = 1 but R = 2, 5000
replications of model (3.24):

Wald-Statistic acceptance rates2 β = 0 β = 0.5
N T 10% 5% 1% 10% 5% 1% mean

50 4.21 6.92 15.12 82.5 89.0 95.9 0.468
5 100 0.7 1.2 2.4 82.1 87.6 95.6 0.493

200 0.3 0.5 0.8 88.8 89.3 95.1 0.499
400 0.3 0.3 0.6 85.0 90.1 95.7 0.502

1Acceptance rates using critical values from the chi-squared distribution with N−1 degrees of freedom.
2Acceptance rates using critical values from the chi-squared distribution with 1 degree of freedom.
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Appendix 3.2.3 Monte Carlo Results: Heterogeneous Parameter Model

Table 3.8: Monte Carlo results for heterogeneous specification of parameter model (3.24) with R = 1 and
βi = 0.5, 5000 replications:

N T β1
1 βmiddle βend N T β1 βmiddle βend

50 mean 0.464 0.464 0.463 50 mean 0.479 0.484 0.480
RMSE 1.146 1.146 2.251 RMSE 0.644 0.470 0.122

2 100 mean 0.505 0.505 0.442 5 100 mean 0.476 0.502 0.490
RMSE 2.330 2.330 1.790 RMSE 1.851 2.229 0.080

200 mean 0.536 0.536 1.353 200 mean 0.510 0.480 0.494
RMSE 1.845 1.845 58.263 RMSE 0.384 1.770 0.053

400 mean 0.533 0.533 0.487 400 mean 0.509 0.513 0.498
RMSE 3.134 3.134 0.386 RMSE 0.578 0.546 0.037

N T β1 βmiddle βend
50 mean 0.499 0.502 0.491

RMSE 0.526 0.585 0.137
10 100 mean 0.501 0.510 0.496

RMSE 0.624 0.433 0.080
200 mean 0.520 0.515 0.498

RMSE 0.512 0.319 0.050
400 mean 0.505 0.506 0.499

RMSE 0.248 0.231 0.035

Table 3.9: Wald-Test for Poolability, acceptance rates for true null hypothesis of parameter homogeneity
βi = β, 5000 replications:

Wald-Statistic Acceptance rates2 Acceptance rates
N T 10% 5% 1% N T 10% 5% 1%

50 90.9 95.7 99.5 50 94.1 97.6 99.8
2 100 90.4 95.6 99.3 5 100 92.7 96.7 99.6

200 90.9 95.7 99.1 200 91.1 96.0 99.4
400 90.4 95.4 99.2 400 90.4 95.5 99.2

Acceptance rates
N T 10% 5% 1%

50 98.5 99.5 100.0
10 100 95.4 98.4 99.9

200 93.6 97.2 99.6
400 91.6 96.0 99.3

1β(·) computed by QDGMM.
2Acceptance rates using critical values from the chi-squared distribution with N−1 degrees of freedom.
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Appendix 3.2.4 Monte Carlo Results: Determination of R0

Table 3.10: Determination of R0 = 2 by information criteria and sequential test procedures. Reported are
acceptance rates at R = 0, . . . , 4 based on 5000 Monte Carlo replications and in all cases N = 5.

One-step Two-step
T/R̂ 0 1 2 3 4 0 1 2 3 4

AIC

50 4.4 24.5 47.9 19.7 3.5 14.1 63.4 18.9 3.4 0.2
100 2.7 17.2 51.5 24.4 4.1 1.9 50.7 37.3 9.4 0.8
200 0.8 9.2 56.2 28.4 5.4 0.0 16.8 58.3 22.8 2.1
400 0.0 3.4 57.1 32.6 6.9 0.0 2.3 64.2 29.7 3.8

BIC

50 2.0 17.6 47.0 26.9 6.4 2.9 35.7 36.1 21.9 3.4
100 2.1 15.5 51.0 26.7 4.7 0.5 33.9 43.1 19.6 2.8
200 1.1 10.2 56.9 26.9 4.9 0.0 15.4 57.9 24.3 2.3
400 0.2 4.8 61.0 28.7 5.3 0.0 3.7 68.8 24.9 2.6

HIC

50 8.9 32.6 44.3 12.3 1.9 39.5 57.3 3.2 0.1 0.0
100 9.1 27.1 49.0 13.6 1.2 13.0 76.7 10.1 0.2 0.0
200 6.2 20.4 56.6 15.5 1.4 0.7 60.7 36.8 1.7 0.0
400 2.2 9.7 64.8 20.8 2.4 0.0 16.8 73.1 9.7 0.3

αT = 4(N/T ) αT = 0.5
√

N/T
T/R̂ 0 1 2 3 0 1 2 3

J-Test

50 7.7 48.1 24.4 13.0 23.6 63.8 9.7 2.3
100 3.0 57.8 28.8 8.0 5.3 70.4 20.2 3.5
200 0.1 35.9 52.5 10.2 0.1 40.6 49.8 8.4
400 0.0 8.6 75.3 14.9 0.0 8.1 75.3 15.3

RK-Test

50 19.0 24.0 25.5 23.2 39.4 29.4 20.7 8.6
100 19.2 27.6 35.2 15.1 26.3 31.6 33.0 8.0
200 10.6 28.3 47.8 11.9 11.5 30.5 47.3 9.5
400 5.1 23.9 61.4 8.3 4.9 23.4 61.3 9.0
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Chapter 4

Determination of the Number of Factors in
Cross-Sectionally Dependent Data:
Redemption for the Scree Plot

This paper presents a unifying framework for the determination of the number of factors in large

dimensional factor models. We show that consistent estimation of the number of factors follows

from separation of the eigenvalues of the data covariance matrix into a portion corresponding

to the factor structure and a portion corresponding to the residual noise, formally justifying the

Scree plot. We further show that eigenvalue separation continues to hold for the estimated error

covariance matrix of regression models with interactive fixed effects and present several new

consistent estimators of the number of factors in approximate factor models.

4.1 Introduction

Factor models have become a staple of applied economics: in financial economics, factors are used to model

the exposure of security portfolios to the risk characteristics of the market (Chamberlain and Rothschild,

1983). In macroeconomics, factor models are utilized to reduce the curse of dimensionality in large datasets

and are found to provide superior time series forecasts, see for example Bernanke et al (2005) or Engel

et al (2014). Further examples of applications of factor models beyond economics are in genome analysis

(Price et al, 2006) and by participants in the so-called Netflix Challenge.1 Extensive statistical theory for the

estimation of pure, approximate and dynamic factor models in addition to regression models with interactive

fixed effects has been developed, see for example Bai (2009), Bai and Ng (2002, 2008). Typically, consistent

estimation of the parameters of a factor model is conditional on knowledge of the number of factors in the

1In this public contest, the online video-streaming service Netflix tasked computer scientists with the objective of finding an
efficient way to recommend video content to subscribers based on the ratings awarded to other videos by themselves and peer
subscribers, see for example Feuerverger et al (2012).
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model and for that reason, determination of the correct number of factors is still an active area of research.

This is motivated further by the observation that popular methodologies based on information criteria as in

Bai and Ng (2002) have poor finite sample properties in relevant data configurations, see for example Hallin

and Liška (2007), Onatski (2010) and Ahn and Horenstein (2013) (AH). Onatski (2010) and AH develop

alternative estimators that are considerably more successful at determining the correct number of factors.

These methodologies model the error covariance matrix of a factor model as a sequence of large random

matrices and inference is based on the eigenvalue structure of such matrices, making use of results from a

field of mathematical statistics known as Random Matrix Theory (RMT).

RMT studies the properties of large random matrices and the seminal contribution is Marchenko and

Pastur (1967) (MP). In that paper, the distribution of the eigenvalues of a large random matrix with inde-

pendent and identically distributed mean-zero entries is characterised and since then, much work has been

done on extending that result.2 Relevant extensions for econometricians are matrices with dependent entries

as studied in Bai and Zhou (2008), Pfaffel and Schlemm (2012), Liu et al (2015); whereas distributional

results for autocovariance matrices of data ensembles with dependent entries are given in Li et al (2014)

and Wang et al (2015). Important for the determination of the number of factors in a factor model are the

extreme values of the support of the MP distribution: Yin et al (1988) and Bai et al (1988) derive the limit

of the largest eigenvalue of the MP distribution, whilst Bai and Yin (1993) study the smallest eigenvalue.

Another important result is the phenomenon of eigenvalue separation in Bai and Silverstein (1999) and Paul

and Silverstein (2008): these authors show that if data is generated by some distribution, then the probability

that the eigenvalues of the sample covariance matrix deviate from the eigenvalues of the population covari-

ance matrix tends to zero with the sample size. The combination of these results is crucial for consistent

estimation of the number of factors: if (the error term of) a statistical model consists of a factor and a noise

component, then knowledge of the support of the eigenvalue distribution of the covariance matrix of the

latter can be used to separate eigenvalues related to the factors from the noise eigenvalues estimated from

the overall model covariance matrix. This argument is used by Onatski (2010) and AH in the econometrics

literature. In the mathematical statistics literature, eigenvalue separation is applied to static factor models

by Lam and Yao (2012) and to determine the lag order of dynamic factor models in Li et al (2014).

In this paper we use the eigenvalue separation result to derive new estimators of the number of factors in

large dimensional factor models and these estimators are shown to have better small-sample properties than

existing methodologies based on information criteria. In doing so, we make an argument for redemption of

the Scree plot: we show that any estimator based on eigenvalue separation is a numerical implementation of

the Scree plot. This argument also allows us to place the so-called "tuned" information criteria of Hallin and

Liška (2007) and Alessi et al (2014) in the class of Scree plot estimators. We then show that the separation

result holds in models where the number of factors goes to infinity along with the sample size and in so-

called weak factor models with appropriate scaling. Importantly, we also derive a version of eigenvalue

separation for the covariance matrix calculated from the estimated regression residuals of an interactive

2The interested reader is referred to the book of Bai and Silverstein (2010).
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fixed effects model, which holds regardless of the consistency of the slope parameter estimator.

The paper is structured as follows: Section 4.2 discusses the basic approximate factor model and the

assumptions we impose. Section 4.3 presents the main eigenvalue separation theorem and presents several

extensions as corollaries. Section 4.4 presents several new estimators for the number of factors in approx-

imate factor models that follow from eigenvalue separation, whilst Section 4.5 extends the eigenvalue sep-

aration result to the interactive fixed effects model. Section 4.6 explores the small-sample properties whilst

Section 4.7 concludes. All proofs are in Appendix 4.1. Finally, on notation: a column vector a is written in

small script, whereas an m×n matrix A is in capital. We write A > 0 to designate that A is positive definite,

i.e. that all eigenvalues of A are positive, and ||A|| is the Frobenius norm of A, i.e., ||A||=
√

tr(A′A), or the

corresponding Euclidean norm of a vector a. Finally, ”→ ” is the limit of a non-stochastic sequence and

”→p ” denotes convergence in probability.

4.2 Basic Model and Assumptions

Consider the following approximate factor model:

yi,t = ΛiFt + εi,t ; i = 1, . . . , N, t = 1, . . . , T,

where yi,t is the dependent variable, Ft = [ f1,t , . . . , fR,t ]
′ consists of R factors that can be both dynamic

and static and the Λi = [λ1,i, . . . ,λR,i] are the factor loadings of the i-th individual. Neither the factors

nor the loadings can be observed and R� N. Lastly, the εi,t is an idiosyncratic error which can exhibit

autocorrelation and/or cross-sectional dependence made precise below. Stacking the model over all i =

1, . . . , N variables and t = 1, . . . , T observations we obtain the following matrix representation:

Y = ΛF + ε, (4.1)

where Y and ε are now matrices of dimension N × T , Λ is of dimension N × R and F is of dimension

R× T . We assume that both N and T are large and we restrict the dimensions of the panel such that

N/T → γ ∈ (0, 1]. This is to conserve on notation and the results of the paper apply equally if the opposite

restriction holds by a mirror argument.

We will estimate Λ and F in model (4.1) using the Principal Components estimator (PC) of Bai and Ng

(2002) and this method involves solving an eigenvalue problem. When N < T and R is known, it can be
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shown that the PC estimator solves:

Q(R) :=min
F,Λ

(NT )−1
N

∑
i=1

T

∑
t=1

(
yi,t −

R

∑
r=1

λr,i fr,t

)2

s. t. Λ
′
Λ/N = IR

=
N

∑
i=R+1

ξ̂i,

where the ξ̂R+1 ≥ ·· · ≥ ξ̂N are the N−R smallest eigenvalues of the covariance matrix Ξ̂ := (NT )−1YY ′.

Since the factors are unobservable and consistent estimation depends crucially on knowledge of the rank of

ΛF , the practitioner is posed with a more general problem. That is, for any fixed k, minimization of Q(k) is

equivalent to deleting the k largest eigenvalues from:

tr
(
Ξ̂
)

:=tr
[
YY ′/(NT )

]
=tr
[
ΛFF ′Λ′/(NT )

]
+ tr

[
εε
′/(NT )

]
+2tr

[
ΛFε

′/(NT )
]

=
N

∑
i=1

ξ̂i.

The objective of the paper is therefore to determine the true number of factors from a set of candidates
{0, 1, . . . , Rmax}, where Rmax is chosen by the practitioner. We will denote an estimate of the number of

factors by R̂.

The following assumptions are necessary to (i) consistently estimate model (4.1) by PC and (ii) obtain

eigenvalue separation in Ξ̂:

ASSUMPTION 1: (i) R is finite and N/T → γ ∈ (0, 1] as N, T → ∞; (ii) For r = 1, . . . , R, 0 < vr < ∞

where vr [ΛFF ′Λ′/(NT )] denote the eigenvalues of ΛFF ′Λ′/(NT ) in descending order.

ASSUMPTION 2: (i) T−1
∑

T
t=1 FtF ′t →p ΣF > 0, E ‖Ft‖4 < ∞ for all t and E

∥∥Fε′/
√

NT
∥∥2

< ∞; (ii)

N−1
∑

N
i=1 Λ′iΛi→p ΣΛ > 0, E ‖Λi‖4 < ∞ for all i and E

∥∥∑
N
i=1 εi,tΛi/

√
N
∥∥2

< ∞ for all t.

ASSUMPTION 3: (i) ε = G1/2uH1/2, where G1/2 and H1/2 are the symmetric square roots of N×N

and T × T matrices G > 0 and H > 0 and u is N × T ; (ii) The ui,t are i.i.d. random variables over i

and t with mean zero, variance σ2
u and finite fourth moments; (iii) The largest eigenvalues ω1 (G) < g+

and ω1 (H) < h+ and the smallest eigenvalues ωN (G) > g−, ωT (H) > h−, uniformly in N and T for some

0 < g(·) < ∞ and 0 < h(·) < ∞.

Assumptions 1-3 are from Bai and Ng (2002) and AH and imply that Y obeys an approximate factor struc-

ture in the sense of Chamberlain and Rothschild (1983). In particular, since the rank of both F and Λ is R

at most, Assumption 1 requires the covariance matrix of the factors and their loadings to jointly have finite

second moments by restricting the largest eigenvalue of their product to be finite and the smallest to be non-

133



zero. This is strengthened in Assumption 2, by requiring that the individual covariance matrices of Ft and

Λi converge to positive-definite matrices. The remainder of Assumption 2 defines the approximate factor

model by accommodating (bounded) correlation of the εi,t and the factors and loadings, resulting in the

requirement of finite fourth moments of the factor structure. Assumptions 1-2 are sufficient for consistency

of the PC estimator. Note that Assumptions 1-2 rule out (i) non-stationary factors and (ii) a scenario where

the factors are perfectly collinear. Non-stationary factors could be accommodated by considering an appro-

priate scaling δ > 1 such that T−δ
∑

T
t=1 FtF ′t →p ΣF > 0 and similarly rescaling Ξ̂, but we abstract from this

complication for brevity. The second scenario cannot be accommodated because if ΣF ≥ 0, it is not possible

to guarantee that the R-th eigenvalue of Ξ̂ does not vanish with N and T. Furthermore, Assumptions 1 and 2

correspond to "strong" factors in the sense of Onatski (2010, 2015). Weak factors, that is, factors for which

T−δ
∑

T
t=1 FtF ′t →p ΣF > 0 using some reduced rate 0≤ δ < 1, do not yield eigenvalue separation under the

maintained definition of Ξ̂. However, in the next section we show that if 0 < δ < 1, the weak factor model

does yield eigenvalue separation if Ξ̂ is rescaled appropriately and the above assumptions are modified ac-

cordingly. Finally, the conditions in Assumption 3 ensure that the error covariance matrix Ω̂ := T−1εε′ has

well-defined limiting eigenvalues ωi (Ω) for which we can derive parametric bounds. To accommodate this

we assume that the error matrix ε can be decomposed in a matrix that controls autocorrelation (H1/2), a

matrix that controls for cross-sectional dependence (G1/2) and a random component u. Positive definiteness

of the matrices G and H ensures that the grand covariance matrix is also positive definite, whilst the condi-

tions on u allow for an appeal on RMT. Note however that Assumption 3 is restrictive because divergence

of the eigenvalues under Assumptions 1-2 requires only that ξ̂R+1 = op (1). In this context Assumption 3 is

used to bound the largest and smallest eigenvalues of Ω and subsequently the error covariance matrix.3 Note

also that the specification implied by Assumption 3 is weaker than that of Onatski (2010) who requires that

both G and H have well-defined spectral distributions. The assumption does however allow the error to be

generated by common examples of DGPs. For example, if the elements of ε are stationary, i.i.d over i and

first-order autocorrelated, i.e εi,t = ρεi,t−1 +ui,t , with common variance σ2
u = 2, then we have G = IN and H

Toeplitz with:

H =
1

1−ρ2


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

ρ2 ρ 1 . . . ρT−3

. . . . . . . . . . . . . . .

ρT−1 ρT−2 ρT−2 . . . 1

 ,

and autoregressive parameter ρ = 0.5 and the variance of ε is thus var(εi,t) = 8/3 for all i = 1, . . . ,N. Then,

following Grenander and Szegö (1958), the largest eigenvalue of H converges to 1+ρ

1−ρ
, which is finite as long

as ρ 6= 1.

3See also the discussion in Onatski (2010).
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4.3 Eigenvalue Separation and the Link to Information Criteria

In this section we study the empirical distribution of the eigenvalues of Ξ̂. We will see that under Assump-

tions 1-3, the eigenvalues of Ξ̂ separate into disjoint intervals corresponding to the factor structure and the

error. The remainder of the section is devoted to studying spectral separation under modified assumptions.

All later results are corollary to the following theorem on the convergence of the eigenvalues of Ξ̂:

THEOREM 4.1. Eigenvalue Separation in the Approximate Factor Model: Under Assumptions 1-3,

as N, T → ∞:

1. ξ̂r = (NT )−1 vr (ΛFF ′Λ′)+Op
(
T−1/2

)
and vr [ΛFF ′Λ′/(NT )] = Op (1) for all r = 1, . . . , R. Fur-

thermore, the first eigenvalue of Ξ̂ is bounded above:

ξ̂1 =(NT )−1 v1
(
ΛFF ′Λ′

)
+Op

(
T−1/2

)
≤ v1 (ΣF)v1 (ΣΛ)+Op

(
T−1/2

)
and the R-th eigenvalue of Ξ̂ is bounded below:

ξ̂R =(NT )−1 vR
(
ΛFF ′Λ′

)
+Op

(
T−1/2

)
≥vR (ΣF)vR (ΣΛ)+Op

(
T−1/2

)
.

2. Nξ̂i = ωi
(
Ω̂
)

and ξ̂i = op (1) for all i = R+ 1, . . . , N. Moreover, the R+ 1th eigenvalue is bounded

above:

Nξ̂R+1→pω1 (Ω)≤
(

1+ γ
1/2
)2

σ
2
uc+ (4.2)

for some c+ > 0 and the N-th eigenvalue is bounded below:

Nξ̂N →pωN (Ω)≥
(

1− γ
1/2
)2

σ
2
uc−. (4.3)

for some c− > 0.

Proof: See Appendix.

The message of Theorem 4.1 is that the eigenvalues of the covariance matrix of a factor model will separate

exactly into R non-vanishing eigenvalues and N−R remaining eigenvalues that tend to zero as N, T → ∞.

An interesting implication of Theorem 4.1 is that the eigenvalues of the covariance matrix of a factor model
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under Assumptions 1-3 exactly describe a Scree plot as envisioned by Cattell (1966): the Scree plot is a

graphical device that plots the eigenvalues of a data matrix ordered from largest to smallest as a function

of their position in the ordering, see for example figure 1.4 Theorem 4.1 thus justifies why choosing the

"elbow" of the Scree plot results in a consistent estimate of R under Assumptions 1-3: the inflection point

corresponds to a threshold that separates the factor eigenvalues from a bulk of error eigenvalues. In fact,

Theorem 4.1 makes precise that the only way to determine R consistently is to estimate the elbow of the

Scree plot. For this reason, the consistent estimators of Onatski (2010), AH and the estimators below all

depend on verification of (a version of) Theorem 4.1 and thus constitute various numerical implementations

of the Scree plot. That is, they belong to a class of “Scree plot” estimators.

Figure 4.1: Eigenvalues of Ω̂, σ2
u = 1 and R = 2 AR(1) factors

Another message of Theorem 4.1 is that methods that do not explicitly capture the separation of the sup-

port of the eigenvalue distribution may be of little value to practitioners, even if an asymptotic justification

for the converse exists. The Information Criteria (IC) of Bai and Ng (2002) fall in this category and their

asymptotic validity follows from a theorem by Pötscher (1983), which has been used extensively to justify

4The Scree plot shown is computed from a particular realization of model (4.1) with R = 2, N = 100, N = 500 and T = 600 and
autocorrelation in the factors: generated by Ft = κFt−1 +υt , where κ = diag(0.9, 0.5), for each t = 1, . . .T andυt ∼ N (0, IR); the
loadings are Λr ∼ N (0, IN) for each r = 1, . . . , R and the individual specific residual is εt ∼ N (0, IN) for each t = 1, . . . ,T .
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IC methodologies in a variety of settings.5 In the notation of our paper, IC’s have the following structure:

R̂IC = argmin
k

Q(k)+ k× p(N, T ) , (4.4)

where Q(k) is defined above and p(N, T ) is a penalty function satisfying (i) p(N, T )→ 0 and (ii) min(N, T )×
p(N, T )→∞ as N, T →∞. Setting p(N, T ) =

(N+T
NT

)
log
( NT

N+T

)
σ2

ε , we recover R̂PCp1 of Bai and Ng (2002)

and a feasible version minimizes:

R̂PCp1 = argmin
k

N

∑
i=k+1

ξ̂i + k
(

N +T
NT

)
log
(

NT
N +T

)
σ̂

2
ε ,

where σ̂2
ε is the ML estimate of the average error covariance and corresponds to ∑

N
i=Rmax+1 ξ̂i. Bai and Ng

(2002) also present a logarithmic version:

R̂ICp1 = argmin
k

log

(
N

∑
i=k+1

ξ̂i

)
+ k
(

N +T
NT

)
log
(

NT
N +T

)
.

It is important to note that Potscher’s argument is designed for objective functions that tend to the chi-

squared distribution. Similarly, the logarithmic penalty function has a theoretical justification through a

Taylor expansion of the log-likelihood as shown in Schwarz (1978), which is also chi-squared when correctly

specified. However, Q(k) is non-central chi-squared unless G and H are identity matrices and, for general

G and H, it is unlikely that scaling by the diagonal elements of (NT )−1
εε′ only will sufficiently purge Q(k)

towards the chi-squared distribution in R̂PCp1 . On the other hand, whilst the logarithmic transformation in

R̂ICp1 renders the variance estimate a negligible constant, the origin of the log-penalty function is unclear

other than that it apparently works well in finite samples. In both cases, the use of the logarithmic penalty

function is arbitrary and chosen only because it is (i) commonly used and (ii) subject to the requirements

of Pötscher (1983). In fact, an infinite set of penalty functions will satisfy these requirements and it is

therefore no surprise that R̂PCp1 and R̂ICp1 are found to severely overestimate R in Monte Carlo studies, see

e.g. Onatski (2010) and AH. This indeterminacy is a result of the lack of structure on the penalty function

and we know from Theorem 4.1 that any consistent IC should delete eigenvalues from Q(k) until the deleted

eigenvalues are no larger than the edge of the noise matrix (4.2). Comparing functional forms, it is clear

that the logarithmic penalty function is not appropriate for this unless Q(R) tends to the central chi-squared

distribution.

The poor finite sample performance of IC based on Pötscher’s asymptotic results are well known in the

literature and Hallin and Liška (2007) develop a data-driven method to improve the accuracy of IC for the

dynamic factor model. This “tuning” methodology was further adapted to the approximate factor model by

5For example, ARMA-order determination in Pötscher’s original article; Instrument selection in GMM by Andrews and Lu
(2001); Rank estimation in Cragg and Donald (1997) and, indeed, to justify IC methods in factor models as in Bai and Ng, Ahn et
al (2013), Sarafidis and Robertson (2015) and Chapter 3 of this Thesis.
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Alessi et al (2010). Compared to (4.4), the IC is modified as follows:

R̂IC = argmin
k

Q(k)+ k× c× p(N, T ) , (4.5)

where c is a constant that depends on the data. It should be clear that IC (4.5) is a special case of (4.3) above

with c = 1 and that Pötscher’s argument continues to hold for any finite c > 0. Hallin and Liška (2007)

propose a cross-validation scheme where R̂ = J−1
∑

J
j=1 R̂ j is estimated according to (4.5) over sub-samples

Yj where j = 1, . . . , J. That is, Yj = A jY , where A j is a selection matrix that truncates the original data matrix

Y by deleting the last rows of Y incrementally into sub samples of length N1 < N2 · · · < NJ = N. The key

insight of Hallin and Liška (2007) is that there are choices of c where the variance of the estimator R̂,

S =
1
J

J

∑
j=1

(
R̂ j−

1
J

J

∑
j=1

R̂ j

)2

,

is minimized over all R j as calculated over the truncated samples Yj. There are two boundary cases: first, if c

is too small, too little penalization implies Rmax factors will be selected with S = 0. Second, if c is too large,

no factors will be estimated and S will also be zero. Hallin and Liška (2007) argue that a second interme-

diate stability region of S, as measured from Rmax, provides penalization that corresponds to estimating the

number of factors correctly in finite samples. Theorem 1 can be used to formalize this "tuning" procedure

and the following corollary thus provides a proof to the informal treatment in Alessi et al (2010):

COROLLARY 4.1. Eigenvalue Separation in Tuned Information Criteria: Let Assumptions 1-3 hold

and define constants c1-c4 that may depend on N and T such that:

c1 =
(

N
−1/2−T

−1/2
)2

σ
2
uc−; c2 =

(
N
−1/2

+T
−1/2
)2

σ
2
uc+;

c3 = vR (ΣF)vR (ΣΛ) ; c4 = v1 (ΣF)v1 (ΣΛ) .

Then, there exist families of ICR̂ with penalty functions where if:

c× p(N,T ) ∈ [0, c1) : S = 0, ICR̂ = Rmax; (4.6)

c× p(N,T ) ∈ [c1, c2] : S > 0, ICR̂ = R̂ > R; (4.7)

c× p(N,T ) ∈ (c2, c3) : S = 0, ICR̂ = R; (4.8)

c× p(N,T ) ∈ [c3, c4] : S≥ 0, ICR̂ = R̂ < R; (4.9)

c× p(N,T ) ∈ (c4, ∞) : S = 0, ICR̂ = 0 (4.10)

and penalty functions calibrated to (c2, c3) give Information Criteria that select ICR̂→p R as N, T → ∞.

Proof: See Appendix.
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Corollary 4.1 provides a link between tuned IC and the Scree plot: by bounding the eigenvalues of the

sub-samples, it implies that tuning an IC towards the interval (c2, c3) is equivalent to finding the partition

of the real line where the eigenvalues of the data covariance matrix separate at the end point of the factor

covariance matrix on the one hand and the noise covariance matrix on the other. As a result, we find that

tuned IC procedures also belong in the class of Scree plot estimators.

The remainder of the section is dedicated to proving eigenvalue seperation in the approximate factor

model (4.1) under different assumptions than Assumptions 1-3. These extensions involve alternative models

which were proposed to explan the empirical phenomenon that the distinction between factor and error ei-

genvalues is often not as sharp as predicted by Theorem 4.1. For example, Onatski (2012) analyses asymp-

totics for so-called weakly influential factors by modelling the factor loadings as converging to a matrix

analogue of the Pitman drift, i.e. Λ′Λ−ΣΛ → 0. Similarly, De Mol et al (2008) consider a weak factor

model in which Λ′Λ = Op
(
Nδ
)

with 0 < δ < 1 in the situation where N > T .

To accommodate the asymptotic regime of the latter, we need to modify our basic assumptions to weak

factors (W) as follows:

ASSUMPTION W1(i): R is finite, N = N (T ) such that N/T → γ ∈ (0, 1] and there exists a constant

1/2 < δ < 1 such that N/T 1−δ→ ∞ as N, T → ∞.

ASSUMPTION W2(i): T−δ
∑

T
t=1 FtF ′t →p ΣF , E

(
T 1−δ ‖Ft‖4

)
< ∞ for all t, E

∥∥Fε′/
√

NT
∥∥2

< ∞ and

Ξ̂δ = YY ′/
(
NT δ

)
.

Assumption W2(i) defines our weak factor regime. Since we assume that N < T , our model reduces the

rate of the factors rather than the loadings. This particular regime is stronger than the corresponding re-

gimes considered in De Mol et al (2008) and Onatski (2012) but maintains the permitted correlation of the

errors and the factors. Weaker factors, as measured by δ, are permitted by appropriately restricting this

correlation. For example, in both De Mol et al (2008) and Onatski (2012), the errors are restricted to be

independent of the factors. Eigenvalue seperation in the weak factor regime then follows from rescaling

Ξ̂δ and by restricting the relative rates of N and T in Assumption W1(i). That is, given δ, N must grow

sufficiently fast to maintain a divergence of rates. With these modifications we can now specialize Theorem

4.1 to the weak factor regime:

COROLLARY 4.2. Eigenvalue Separation in Approximate Factor Models with Weakly Influential
Factors: Let Assumptions 1-3 hold with 1(i) and 2(i) replaced by W1(i) and W2(i) respectively, then as

N, T → ∞:
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1. For i = 1, . . . , N, the ξ̂i
(
Ξ̂δ

)
separate as in Theorem 4.1:

ξ̂R
(
Ξ̂δ

)
= vR

[
ΛFF ′Λ′/

(
NT−δ

)]
+Op

(
T 1/2−δ

)
,(

N/T 1−δ

)
ξ̂R+1

(
Ξ̂δ

)
→p ω1 (Ω)≤ (1+

√
γ)2

σ
2
uc+,

2. The tuning result of Corollary 4.1 holds: for p(N,T ) ∈ (c2, c3), R̂IC→p R and S = 0.

Proof: See Appendix.

Corollary 4.2 shows that exact separation obtains in the weak factor model if and only if the conditions on

δ apply and the covariance matrix is rescaled appropriately. In that case, the first R eigenvalues are strictly

determined by the covariance matrix of the factor component and not by any terms involving products of the

error and the factor components. The requirement that δ > 1/2 is restrictive for the permissible weakness

of the factors however and not necessary for the weaker result that ξ̂k = Op (1) for k = 1, . . . , R. That is, the

cross-terms do not vanish from the first R eigenvalues when δ < 1/2, although they continue to have no ef-

fect on the R+1, . . . , N remaining eigenvalues since the cross-terms have rank R. On the other hand, δ can be

arbitrarily close to zero if we follow De Mol et al (2008) Onatski (2010) and restrict the correlation between

the factors and errors to zero. These considerations imply that separation obtains when considerably weaker

factor processes are considered as long as T 1−δ/N = o(1) and this condition is satisfied when, for example,

N = δ1T with 0 < δ1 < 1. As a result, the condition that T 1−δ/N = o(1) is necessary and sufficient for

eigenvalue separation because it ensures that the eigenvalues of the noise matrix are of smaller order than

those of the factors. It also implies that progressively larger N is necessary to compensate the weakness of

the factors and afford appropriate scaling to the eigenvalues of the error covariance matrix without violating

N < T .

The second extension of model (4.1) was recently studied by Li et al (2017): these authors consider

estimation of a factor model where in addition to N, T → ∞, also R→ ∞ in a certain way. We will consider

a version of the large-R (L) factor model by amending our assumptions as follows:

ASSUMPTION L1(i): R/T → τ ∈ (0, 1), N/T → γ ∈ (0, 1] and τ < γ as R, N, T → ∞.

ASSUMPTION L2(i): (a) F = G1/2
F νH1/2

F , where ν is R×T a matrix consisting of zero-mean i.i.d. random

variables νr,t over r and t with variance σ2
ν and finite fourth moments, GF and HF are T × T and R×R

matrices respectively with gF− < vt (GF) < gF+ and hF− < vr (HF) < hF+ uniformly in r and t for some

0 < g(·) < ∞, 0 < h(·) < ∞; (b) E (ui,tνr,t)< ∞ such that E
∥∥Fε′/

√
NT
∥∥2

< ∞.

Assumptions L1(i) defines the rate at which R is allowed to grow in relation to N and T : clearly if R

grows too fast, the factors would dominate the smallest dimension of the covariance matrix Ξ̂ and eigen-

value separation is impossible. Assumption L2(i) imposes structure on the factor covariance matrix that is

similar to Assumption 3 above. This allows us to bound the smallest factor eigenvalue even when R→ ∞
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and R/T → τ.6 The following corollary shows that the eigenvalue separation holds in the large-R model

under these conditions:

COROLLARY 4.3. Eigenvalue Separation in the Large-R Approximate Factor Model: Let Assump-

tions 1-3 hold with 1(i) and 2(i) replaced by L1(i) and L2(i) respectively. Then, as R, N, T → ∞:

1. For i = 1, . . . , N, the ξ̂i
(
Ξ̂
)

separate as in Theorem 4.1:

ξ̂R =vR

[
(NT )−1

ΛFF ′Λ′
]
+Op

(
T−1/2

)
≥
(
1−
√

τ
)2

σ
2
uF

cF−,

Nξ̂R+1→pω1 (Ω)≤ (1+
√

γ)2
σ

2
uc+.

2. The tuning result holds: for p(N,T ) ∈ (c2, c3), R̂IC→p R and S = 0.

Proof: See Appendix.

According to Corollary 4.3, the first R eigenvalues of Ξ̂ are fully determined by the large-R factor struc-

ture and the remaining N − R eigenvalues by the error process as in Theorem 4.1. However, although

ξ̂R+1 = op (1) and bounded above by the quantity in the corollary, this bound is no longer tight when R is

large. This is because ξ̂R+1 is sandwiched between the first and R+1-th eigenvalue of (NT )−1
εε′. On the

other hand, the scaling of Ξ̂ is exactly sufficient for the first R eigenvalues, although we note that these are

now op (R) by analogy. The former implies that any consistent estimator of R based on eigenvalue separation

can be consistent if R→ ∞ as long as R/T → τ ∈ (0,1] and τ < γ. Furthermore, the first R eigenvalues are

now are spaced with distance R−1 on average and form a smoothly declining sequence in the Scree plot.7

Corollary 4.3 can thus be used to explain why eigenvalue separation does not obtain as clearly as posited

by the approximate factor model satisfying Assumptions 1-3 in empirical work. For example, consider a

model with relatively low signal-to-noise ratio: if the number of factors grows with the sample size and

the eigenspacing is relatively smooth in both the factor and error components, then it may be difficult to

detect separation of the eigenvalues in a finite sample. This is shown in figures 2 and 3 below, where the

model is as in figure 1 above but the number of factors is generated as R = 0.1N and the autoregressive

parameter for the r-th factor is generated as 0.9r for r = 1, . . .R: in figure 2 below, the signal-to-noise is low

at var(εi) := σ2
ε = 1 for all i = 1, . . . ,N and separation clearly obtains when both N = 100 or N = 500, but

now the eigenvalues corresponding to the factors form a smoothly declining function. By contrast, figure 3

presents a Scree plot of the same factor model when the signal-to-noise is very high at σ2
ε = 50. The result

is that the separation of the eigenvalues of Ξ̂ is now much less clear, especially with N relatively small.

6Comments similar to those following Assumption 3 apply.
7Compare Figures 1 above and 3 below.
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Figure 4.3: Eigenvalues of Ξ̂ when R = 0.1×N AR(1) factors and σ2
ε = 50:

Figure 4.2: Eigenvalues of Ξ̂ when R = 0.1×N AR(1) factors and σ2
ε = 1:

In summary, the interplay of the number of factors, the strength of the factors and the signal-to-noise ratio

may well provide a rationale for the empirical phenomenon that eigenvalue separation is often hard to detect.
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4.4 Consistent Estimation of R based on Eigenvalue Separation

In Section 4.3 we have shown that consistent estimators of the number of factors in model (1) are numerical

implementations of the Scree plot. However, despite the fact that all Scree plot estimators operate on the

mechanism of eigenvalue separation, their finite sample performance will likely differ. For example, the AH

test may have difficulties in finite samples when at least one eigenvalue relating to the factors is sufficiently

larger or smaller than the others, causing their ratio to diverge at R̂ < R. Similarly, the threshold estimator of

Onatski (2010) and the tuned IC of Hallin and Liška (2007) are known to be sensitive to the implementation

of the procedure. As a result, it is useful to have more modes of comparison and we now present three

further estimators to assist the practitioner in determining R.

We first present an estimator based on bound (4.1). Kapetanios (2004) also develops such an estimator

and, in our notation, considers all eigenvalues larger than

N−1 (1+
√

γ)2 +δ =

(
1√
N
+

1√
T

)2

+δ

to correspond to factors, using some δ set by the practitioner. However, given bound (4.2), it should be

clear that this approach is only valid for G and H equal to identity matrices without an appropriate tuning

mechanism for δ. Instead, we propose to estimate a feasible version of bound (4.2) for general σ2
u, G and H

and estimate R as the number of eigenvalues larger than this bound. The following algorithm can be used to

estimate R:

ALGORITHM 4.1. Eigenvalue Difference Rule (EDR):

1. Order the N eigenvalues of Ξ̂ from largest to smallest;

2. For the k-th eigenvalue of Ξ̂ starting at k = Rmax, any eigenvalue satisfying the below is an eigenvalue

corresponding to a factor:

ξ̂k > ξ̂
+ :=

(
1√
N
+

1√
T

)2

ĉkσ̂
2
k for k = Rmax, Rmax−1 . . . , 1,

where:

σ̂
2
k =

NT
NT − k (N +T )

N

∑
i=k+1

ξ̂i,

is the ML estimate of σ2
u whenever R̂ = R and:

ĉk = J−1
J

∑
j=k

ξ̂ j

σ̂ j
2N−1

(
1+
√

γ
)2 ,

is a moving average estimate of c+ at the edge of the spectrum using σ2
j analogously defined to σ2

k

and J is a bandwidth parameter.
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3. Repeat step 2 and stop the whenever:

ξ̂k− ξ̂
+ ≤ δ,

for δ small.

EDR is a generalization of the method of Kapetanios (2004) and specializes the bound for general correl-

ation matrices of the error G and H. Note that in addition to choosing Rmax, the practitioner must set the

moving average bandwidth J and this is very similar to setting the number of eigenvalues on which the

regression of the Edge estimator of Onatski (2010) is based. Furthermore, the mechanism of estimating the

edge of the eigenvalues of the error covariance matrix is very similar to that of the Edge estimator and for

this reason, we expect these estimators to behave similarly in finite samples. The consistency of EDR is

established in the following proposition:

PROPOSITION 4.1. Consistency of EDR: Let Assumptions 1-3 hold, let J/N→ 0 and δ = O
(
N−(1+a)

)
with a > 0 and small. Then setting R̂EDR according to Algorithm 1 gives R̂EDR→p R.

Proof: See Appendix.

The consistency follows immediately from the fact that any eigenvalue approximated by the feasible ver-

sion of the bound (4.2) at k ≥ R vanishes whilst for k < R, the approximated eigenvalue is Op (1). This

is facilitated by the fact that the moving average estimate of c+ operates as a smoother on the eigenvalue

bound estimate and results in rejecting any non-smooth estimate of c+ due to non-vanishing eigenvalues. As

a result, as long as J is small and fixed, any factor eigenvalue in the estimated bound does not vanish with

N, T .

Our second test is motivated by the shape of the Scree plot: from figure 1 above, notice that before

k = 2, the Scree plot declines rather sharply whilst beyond k = 2, the Scree plot is relatively flat and slowly

approaches zero as N → ∞. This is because the number of eigenvalues of the error covariance matrix

eigenvalues is large and their support shrinks to zero. As a result, the difference between any ξ̂R+k and

ξ̂R+k+1 is small, whilst the spacing between the factor eigenvalues is more erratic. These observations lead

to the following estimator:

Minimum k-Test (MKT) :

R̂MKT = argmin
k

k× ξ̂k where k ∈ {1, . . . , Rmax} .

We know from Theorem 4.1 that a local maximum exists in k× ξ̂k whenever k ≤ R because vk = Op (1) for

all k = 1, . . .R. However, at which k this maximum occurs depends on the data and Theorem 4.1 is of no help

without further restrictions on the factor-loadings product. Another local maximum obtains at some k > R

because even though ξ̂R+k = op (N) for k = R+ 1, . . . , N, the atomistic spacing of consecutive eigenvalues
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implies that the functional k× ξ̂k is increasing between neighbours as long as

ξ̂k > k
(

ξ̂k+1− ξ̂k

)
and decreasing thereafter. The above inequality is reversed at some k by the same logic and this leads to a

degenerate minimum at the end of the support of ξ̂i. This phenomenon is a consequence of the Courant-

Fisher Theorem applied to partial traces, which states that the sum of the largest eigenvalues is a convex

function whereas the sum of the smallest is concave. At the point where the Op (1) eigenvalues transition

into op (1), therefore, the estimator k× ξ̂k has a minimum over the range of eigenvalues, provided that we do

not choose Rmax too large. This implies that we may estimate the number of factors by finding the minimum

of k× ξ̂k:

PROPOSITION 4.2: Consistency of MKT: Let Assumptions 1-3 hold and let Rmax/N→ 0. Then R̂MKT =

argmin
k

(
k× ξ̂k

)
−1 and R̂MKT →p R as N, T → ∞.

Proof: See Appendix.

MKT offers a consistent estimate of the elbow of the Scree plot which only requires the practitioner to

choose Rmax and this property makes MKT far simpler to implement than EDR or the Edge estimator.

However, since the support of the error covariance matrix eigenvalues has an inflexion point, it might be

necessary to tune Rmax in order to avoid a corner solution at Rmax in applications.

In the remainder of this section we develop a Group-Lasso algorithm in the spirit of Tibshirani (1996)

and Yuan and Lin (2006). The Lasso is a modification of IC (4.5) above and implements a soft cut-off which

sets to zero any coeficient that does not exceed a user-specified threshold. As a result, Lasso algorithms

estimate and select models jointly. The Group-Lasso extends this method by instead of searching over

individual variables, blocks of variables are either estimated or set to zero jointly. Selection of the number

of factors naturally fits in this framework: for any k ≤ R, we want both factors and loadings to exceed

the threshold and be estimated, whilst for any k > R, we want to ignore them. The Group-Lasso has been

applied to the factor model before by Hirose and Konishi (2012) and Caner and Han (2014), although the

former authors do not derive consistency whilst the latter prove asymptotic consistency as an extension of

the theorem attributed to Pötscher above. By contrast, we will base consistency of the Group Lasso on

Theorem 4.1.

These considerations lead to the following Group-Lasso objective function:

V (k)Lasso = min
λi,Ft

1
NT

N

∑
i=1

T

∑
t=1

(yi,t −λiFt)
2 +2

φ√
NT

k

∑
r=1

N−1 ‖λr fr‖ ,

where φ is a user-selected threshold that sets to zero all factors and loadings for which ‖λr fr‖< φ. Maxim-

izing V (k)Lasso with respect to the loadings of the r-th factor and using the normalisation that Λ′Λ/N = Ik,
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we get:

f ′r =
(

1− φ

‖Y ′λr/
√

NT‖

)
+

Y ′λr
N , (4.11)

where (a)+ := max(0,a) is the soft threshold operator. Equation (4.11) is a special case of the usual least-

squares estimate of the r-th factor as in Bai and Ng (2002), which can be seen by setting φ = 0.8 Moreover,

the quantity in the norm in the threshold operator is the k-th singular value of the covariance matrix Ξ̂:

from Theorem 4.1, we know that the eigenvalues related to the factors are Op (1) whilst the remaining

r + 1 are op (1) and this carries over to the singular values straightforwardly. This suggests that setting

φ =
√

N−1ω1 (Ω) yields a consistent estimate of the number of factors. We can now concentrate out the

estimated factors to obtain the following criterion function:

V
(
k | F̂

)
Lasso = −tr(Λ′YY ′Λ)+ 2

φ√
NT

Rmax

∑
k=1

∥∥Y ′λk
∥∥ . (4.12)

Criterion function (4.12) is similar to the concentrated criterion function of Bai and Ng (2002), although the

Lasso inflates the point estimate of the loadings of the r-th factor. This can be seen from the solution using

a sequence of Lagrangian multipliers µr for each loading in the constraint Λ′Λ/N = IR:

λ
′
rYY ′λr = N−1

λ
′
r

[
µr +φ

∥∥∥Y ′λr/
√

NT
∥∥∥]λr

:= N−1
λ
′
rψrλr.

Here, ψr is an auxiliary eigenvalue that corresponds to the solution of the standard Principal Component

estimator of Bai and Ng (2002). The Group-Lasso thus works only on the OLS estimates of the factors but

leaves the estimates of the λr unaffected. We implement the Group-Lasso Estimator through the following

algorithm.

ALGORITHM 4.2. Group-Lasso:

1. For k = 1, . . . ,R1
max calculate the eigenvalues of Ξ̂;

2. Estimate the upper bound ξ̂+, as in Algorithm 1 at R1
max;

3. Starting from R1
max, for any s = R1

max, R1
max− 1, . . . for which 1− (ξ̂+)

1/2

‖Y ′λk/
√

NT‖ ≤ 0, set f ′s = 0 and

update R2
max = R1

max−1;

4. Repeat steps 2-3 1, 2, . . . , m times until convergence.

Consistency of the Group-Lasso procedure is established in the following Proposition:

8Lemma 6 in the Appendix collects the steps involved in deriving equations (14) and (15) below.
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PROPOSITION 4.3. Consistency of the Group-Lasso Estimator: Under Assumptions 1-3 above, as

N and T → ∞,

1. R̂→
p

R;

2. For any k > R, f ′k = 0.

Proof: See Appendix.

Proving the consistency of the point estimate of the factors and the loadings can be done by the meth-

ods of Caner and Han (2014). Since this estimator jointly estimates the factors, the loadings and R based

on a consistent estimate of the edge of the spectrum, it is clear that this procedure has Oracle properties.

That is, it jointly estimates R and the parameters consistently. However, as we have provided an estimate for

φ directly, we have negated the need for Lasso-type machinery for the consistency of the model selection

portion of such a proof. As a result, the post-Lasso estimator, that is, the Principal Component estimator

using the R̂ eigenvalues of Ξ̂ where R̂ is computed using the Group-Lasso procedure, is consistent for any

rotation of the factors and their loadings.

4.5 Eigenvalue Separation in Interactive Fixed Effects Models

In this section we extend the eigenvalue separation result to the interactive fixed effects model studied in

Bai (2009) and Moon and Weidner (2015, 2017). This is important, because although determination of the

number of factors in the approximate factor model has received a lot attention, the same cannot be said

for the extension to traditional regression models with factor error structures. The interactive fixed effects

model is defined as:

yi,t = Xi,tβ+ΛiFt + εi,t , i = 1, . . . , N, t = 1, . . . , T. (4.13)

Compared to model (4.1) above, the difference is the addition of the term Xi,tβ: the vector Xi,t involves L

observable regressors Xi,t = [x1,i,t , . . . , xL,i,t ] and β collects L slope parameters which correspond to the xl,i,t

for l = 1, . . .L. The Xi,t may include both strictly and weakly exogenous variables (i.e., lagged dependent

variables) so that model (4.13) is a generalization of the well-known fixed effects panel data model in the

large N, T framework. We will consider the matrix representation of (4.13) by stacking the model over all i

and t:

Y =
(
I⊗β

′)X +ΛF + ε,

where X = [X1, . . . , XN ]
′ is an LN×T matrix where each individual T ×L matrix Xi = [X1,i, . . . , XL,i] collects

L regression variables at each t = 1, . . . , T .

It is important to note that the focus of model (4.13) often differs from the approximate factor model

(4.1) above: in applications, the researcher is typically interested in β alone and estimation of β is thus com-

plicated by the presence of the factor error structure: if ΛiFt has non-vanishing correlation with (some of) the
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independent variables Xi,t , then the estimator β̂ will be inconsistent if the factor structure is unaccounted for.

For example, in a pure time series model with factor errors, an inconsistency arises if at least one factor is

autocorrelated. On the other hand, if a model consists only of exogenous covariates, inconsistencies follow

if the Xi,t are correlated with a (sub-) set of the Ft . In fact, for all i and t, the Xi,t may be correlated with

a superset of Ft , denoted Et and in that case we have rank(E) = S > R. In each case, inconsistent slope

parameter estimates may well lead to incorrect conclusions in the application under consideration, whilst

consistent estimation of the slope parameters typically depends on knowledge of R.

To study eigenvalue separation in the interactive fixed effects model, we will consider the estimated

covariance matrix of the regression residual Ψ̂ = ŴŴ ′/(NT ), where:

Ŵ :=Y −
(

I⊗ β̂
′
)

X = ΛF−
(
I⊗ ϒ̂

′)X + ε.

We thus assume that ignorance of (the dimension of) the factor structure leads to a linear inconsistency ϒ̂

in the estimator β̂ and that plim
(
ϒ̂
)
= ϒ. The literature has proposed several consistent estimators for β in

model (4.13) and we will not worry ourselves with consistent estimation of β.9 Instead we will impose some

high level assumptions on the inconsistency of β̂ and show that an eigenvalue separation result continues to

hold for Ψ̂ regardless of R̂.

Before we can extend our assumptions to accommodate the covariates in X however, we must introduce

some additional notation: let X (l) = [Xl,1, . . . , Xl,N ] collect all N time series on the l-th regressor for l =

1, . . . , L, let yi be the T-vector of dependent variables of the i-th individual and let MF = IT −F (F ′F)F ′ be

the orthogonal projection on the column space of the factors.

We introduce the following additional assumptions:

ASSUMPTION 4: As N, T → ∞, (i) (NT )−1
∑

N
i=1 X ′i Xi > 0, (ii) (NT )−1

∑
N
i=1 X ′i MFXi > 0 and (iii) the

factor component of X, E has rank(E) = max(R, S), with R, S finite.

ASSUMPTION 5: As N, T → ∞, (i) tr
[
X (l) (ΛF)′

]
= Op (NT ) and (ii) tr

(
X (l)ε′

)
= op (NT ) for all

l = 1, . . . ,L .

ASSUMPTION 6: plim
(

β̂

)
= β + ϒ with (i)

∥∥ΛF−X ϒ̂
∥∥2

= Op (NT ) and (ii), tr
[(

I⊗ ϒ̂′
)

Xε′
]
=

op (NT ) as N, T → ∞.

Assumptions 4 and 5 amalgamate the assumptions in Bai (2009) and Moon and Weidner (2015, 2017).

Assumption 4(i) is standard in the regression literature: it rules out multicollinearity in the Xi and ensures

that the inverse of (NT )−1
∑

N
i X ′i Xi exists. Note that in the case of lagged dependent variables, this implies

that model (4.13) must be ergodic stationary or mixing. The addition of 4(ii) rules out certain types of "low-

rank" regressors. Examples of low-rank regressors are time-invariant or cross-sectionally invariant common

9For example: Pesaran (2006); Bai (2009) when R is known and Moon and Weidner (2015, 2017) when R̂ ≥ R under certain
conditions. For consistent estimation of β in the case of fixed T, see Ahn, Lee and Schmidt (2014) and Robertson and Sarafidis
(2015) when R is known. For the case of fixed N and R̂≥ R, the previous chapter of this thesis.

148



regressors and these regressors do not have enough variation to separate them from the space spanned by

the loadings and/or factors respectively. Our results can be adapted to account for these regressors by incor-

porating further high level assumptions of Moon and Weidner (2017), but we will ignore this complication

for brevity. Assumption 4(iii) allows the Xi,t to contain more unobservable factors than the composite error

of the yi,t process by fixing the rank of the factor component of X at max(R, S). Typically, the literature

assumes that R = S. Assumption 5 restricts the cross-correlation of the regressors and the composite error

term: 5(i) requires that the correlation of each regressor and the factors is finite. Assumption 5(ii) restricts

the error to be weakly dependent, so that lagged dependent variables are permitted as regressors. Finally,

Assumption 6 is a new high level assumption which requires some justification. The assumption asserts that

we consider estimators which contain a linear (first-order) inconsistency. The idea of the specification of

ϒ is twofold: first, it retains the properties of the correlation of the regressors with the error components.

Second, the inconsistency is concentrated in the portion of the regression error associated with the factor

component, not the idiosyncratic error. Note that Assumption 6 covers consistent estimators with ϒ̂ = op (1)

as a special case. Furthermore, Assumption 6 only makes claims about the first-order properties of β̂. This

is convenient because it is known that the estimators of Bai (2009) and Moon and Weidner (2015, 2017) are

biased to order (NT )1/2 even when R̂ = R and by considering first-order effects we can avoid higher-order

complications. Assumption 6 must be verified on a case-by-case basis and we now discuss two examples of

situations where it holds. Consider first a pooled OLS regression of the parameters of model (4.13) under

Assumptions 1-6:

plim β̂OLS =plim

(
N

∑
i=1

X ′i Xi

)−1

plim
N

∑
i=1

X ′i yi

=β+ plim

(
N

∑
i=1

X ′i Xi

)−1

plim
N

∑
i=1

X ′i (ΛiF)′+Op

(
1/
√

NT
)

:=β+ϒOLS +op (1) ,

and ϒOLS satisfies Assumption 6 as N, T → ∞ which can be seen by squaring and summing the second term

over i:

N

∑
i=1

ΛiF (ΛiF)′−2
N

∑
i=1

ΛiFXiϒOLS +
N

∑
i=1

(XiϒOLS)
′XiϒOLS

=‖ΛF−XϒOLS‖2 := ‖ΛFMX‖
2

≤‖ΛF‖2 = Op (NT ) ,

where MX is an orthogonal projection on the columns of X = ∑
N
i=1 Xi. As another example, Moon and

Weidner (2015, 2017) show that their estimator β̂QML →p β under Assumptions 1-5 whenever R̂ ≥ R, so

that one obtains ϒQML = 0L and Assumption 6 is trivially satisfied. Furthermore, the OLS estimator can be

interpreted as a special case of the QML estimator of Bai (2009) and Moon and Weidner (2015, 2017) with
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R̂ = 0. It is therefore expected that the QML estimator of β with 0 < R̂ < R will similarly contain inconsist-

encies satisfying Assumption 6. The implications of the former for the eigenvalues of Ψ̂ are summarized in

the following theorem:

THEOREM 4.2. Eigenvalue Separation in the Interactive Fixed Effects Model: Let Assumptions 1-

6 hold. Then, as N, T → ∞:

1. ξi
(
Ψ̂
)
= Op (1) for i = 1, . . . , max(R, S) and ξi

(
Ψ̂
)
= op (1) for i = max(R, S)+1, . . . , N.

2. If ϒ̂=Op (1), then ξi
(
Ψ̂
)
→p vi

[
(ΛF− (I⊗ϒ′)X)(ΛF− (I⊗ϒ′)X)′ /(NT )

]
for i= 1, . . . , max(R, S)

and Nξi
(
Ψ̂
)
→p ωi (Ω) for i = max(R, S)+1,. . . , N.

3. If ϒ̂ = op (1), then ξi
(
Ψ̂
)
→p vi [ΛFF ′Λ/(NT )] for i = 1, . . . , max(R, S) and Nξi

(
Ψ̂
)
→p ωi (Ω) for

i = max(R, S)+1, . . . , N.

Proof: As in Theorem 4.1, see appendix for details.

Theorem 4.2 states that the eigenvalues of the estimated covariance matrix of the residual Ŵ separate in

exactly the same way in an interactive fixed effects model satisfying Assumptions 1-6 as in the approximate

factor model. This result is to be expected for a model of which β̂ is first-order consistent, because the error

Ŵ itself constitutes an approximate factor model. Interestingly however, the separation result continues to

hold if the first-order inconsistency does not vanish, although with the qualification that the inconsistency

of β̂ introduces the factors that enter the regressors into Ψ̂. In that case, it is possible that the number of

eigenvalues that separate from the bulk is larger than R if rank(E) ≥ rank(F), although the remaining ei-

genvalues eigenvalues ξmax(R,S)+i vanish and those at the edge of the support converges weakly to the largest

eigenvalue of N−1Ω.

An implication of Theorem 4.2 is that the Scree plot drawn from the eigenvalues of Ψ̂ will continue to

summarize the eigenvalue separation result as in Section 4.3. In fact, generating the Scree plot Rmax times

using the corresponding estimators β̂ will yield a consistent estimate of R as long as 0 ≤ R ≤ Rmax even

when the estimate of β is inconsistent at some R̂. An example of the aforementioned is pictured in figure (4)

below.

In this figure, we have generated model (4.13) above as an AR(1) model with β= 0.5 and the factor structure

is as in figure (2), i.e. with R = 2 AR(1) factors, which are thus correlated with the regressor.10 The

individual Scree plots are displayed as follows: blue-starred corresponds to R̂ = 0; green to R̂ = 1; red

to R̂ = 2; yellow to R̂ = 3 and finally black-circled corresponds to R̂ = 4. The figure can be summarized

as follows: regardless of the choice of R̂, the separation result clearly shows with two eigenvalues being

substantially larger than the others which tend to zero as predicted by Theorem 4.2. Furthermore, the

magnitude of the first R eigenvalues varies depending on whether R̂< R or R̂≥ R: when R̂≥ R, the estimator

10We have used the algorithm of Bai (2009) to compute an estimate of β and calculate the eigenvalues of (NT )−1 ŴR̂Ŵ ′
R̂

based

on β̂QML setting R̂ = 0, 1, . . . ,4 using T = 600 and N = 100 and N = 500. See Section 6 for computational details.
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Figure 4.4: Scree plot of Ω̂ of an AR(1) Interactive Fixed Effects Model with R = 2 AR(1) factors and
σ2

ε = 1, and R̂ = 0,1, . . . , 4:

β̂ filters Ŵ sufficiently to first order: as a result, Ψ̂ is the sample covariance matrix of an approximate

factor model and the conclusions of Theorem 4.1 holds. This argument corresponds to the three Scree plots

clustering at approximately ten in figure 4. By contrast, when R̂ < R and since β > 0, Ŵ contains the term

ΛF −
(
I⊗ ϒ̂′

)
X < ΛF and Theorem 4.2 predicts that a product of this matrix will have correspondingly

smaller eigenvalues than products based on ΛF as shown by the two Scree plots starting between three and

four.

The implications for determining R in an interactive fixed effects model are therefore clear and summar-

ized in the following proposition:

PROPOSITION 4.4: Let Assumptions 1-6 hold, then any consistent method of determining the number

of factors based on eigenvalue separation in Ξ̂ is also consistent when applied to the eigenvalues of Ψ̂ in the

sense that R̂→p max(R, S).

Proof: Immediate from Theorem 4.2 and the proofs of the individual tests.

Following Proposition 4.4, the EDR and MKT estimators of Section 4 all estimate R consistently in the

interactive fixed effects model, regardless of bias in β̂. This argument further extends to the tests of AH,

Hallin and Liška (2007), Alessi et al (2010) and Onatski (2010). Furthermore, an additional strategy for de-

termining the number of factors is available in the interactive fixed effects model relative to the approximate
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factor model: instead of estimating R only once, we can now compute Rmax +1 estimates of the covariance

matrix Ψ̂ and estimate R̂ = max(R, S) based on the eigenvalue distribution of each covariance matrix. By

Theorem 4.2, each of these estimates yields a consistent estimate of max(R, S) and this procedure will con-

verge to the correct number of factors because, as soon as β̂ is consistent, Ψ̂ is the covariance matrix of an

approximate factor model with rank(F) = R.

4.6 Monte Carlo Experiments

In this section we study the finite sample performance of the proposed estimators of R in Section 4 and

demonstrate eigenvalue separation in the interactive fixed effects model following Section 5. We first com-

pare the newly presented estimators with several competing estimators, which we now introduce briefly.

The first is the ratio estimator of AH:

R̂AH = max
k

ξ̂k/ξ̂k+1 for k = 1, . . . , Rmax

AH estimate the edge of the spectrum using Theorem 1: since the first R eigenvalues are Op (1) and the

remaining R+ 1, . . .N eigenvalues are op (1), the ratio at k = R will explode whereas it is expected to be

roughly constant at all other values of k 6= R. This simple idea is shown to be a good alternative to more

complicated estimation strategies in finite samples and has the desirable property that it requires no tuning

apart from the choice of Rmax.

The second estimator is ICp1 of Bai and Ng (2002), which we denote as BN:

R̂BN =argmin
k

log

(
N

∑
i=k+1

ξ̂i

)
+ k
(

N +T
NT

)
log
(

NT
N +T

)
over k = 0, 1, . . . , Rmax.

Although several estimators are presented in their paper, BN is found to be most effective and therefore we

only report results for this estimator. As discussed before, BN is a classical IC methodology applied to the

determination of R and we know it tends to severely overestimate R in finite samples.

The third estimator is the Edge Estimator of Onatski (2010):

R̂ON = max
k

{
k ≤ Rmax : ξ̂k− ξ̂k+1 ≥ δ

}
,

where δ = 2 |β| is a threshold estimated from a regression of the eigenvalues at some value k on the constant

and the cardinality of the eigenvalue raised to the power 2/3 yielding the slope parameter β.11 Then, all

ξ̂k − ξ̂k+1 < δ are considered to belong to the error covariance matrix and the process is repeated at the

11See Onatski (2010) for details.
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newly estimated edge of the spectrum until the process converges, that is, when no more changes in the edge

occur. The ON estimator is shown to have very good properties but is also sensitive to tuning issues through

the choice of Rmax and the choice of how many eigenvalues should be used in the regression at each iteration.

We follow the recommendation of Onatski (2010) by using five eigenvalues to estimate the spectral edge.

We now compare the former estimators with EDR and MKT. Since GL is an implementation of EDR,

we do not consider this estimator in our finite sample comparison. Finally, in all cases we have set Rmax = 20

and in the case of EDR, δ = 1/N, so that we estimate R̂ whenever:

R̂EDR = min
k

{
k ≤ Rmax :

(
1/
√

N +1/
√

T
)2

ĉkσ̂
2
k < δ

}
and experimentation with other values of δ yields qualitatively similar results.

To evaluate the estimators in finite samples, we use a version of the factor model (4.1) as used by Bai

and Ng (2002), Onatski (2010) and AH in their respective Monte Carlo experiments. The basic model is:

Yi,t =ΛiFt +
√

θηεi,t , i = 1, . . . N, t = 1, . . . , T, where:

η =
1−ρ2

1+2Jα2 , εi,t = ρεi,t−1 + vi,t + ∑
1≤| j|≤J

αvi− j,t .

Furthermore, λr,i, fr,t and vi,t are all distributed as N (0, 1) and α, θ, ρ and J are parameters we adjust to

mimic different models. Following AH, the term η is used to normalize the variance of the noise component

in Yi,t to unity regardless of the specification of the error term. Note that this specification implies that:

tr
(
Y ′Y
)
=tr
(
Λ
′
ΛFF ′

)
+θηtr

(
ε
′
ε
)

=R× (NT )+θ× (NT )

:=signal+noise,

so that θ controls the signal-to-noise ratio (SNR) for given R as R/θ. We will adjust the strength of the

factors through θ, making it more difficult to estimate R when θ is larger. Furthermore the parameter ρ

is used to introduce (first-order) autocorrelation in the error, whereas α and J introduce cross-sectional

correlation. For every characteristic, specified through adjusting the model parameters, we simulate models

with symmetric dimensions in N and T, ranging from N, T = 50 to N, T = 400 and intermediate cases

with N < T , i.e. N = 50, T = 50; N = 50, T = 100; N = 100, T = 100 and so on. In all experiments, we

centre the data by subtracting time and cross-sectional averages. Finally, the models are simulated using

R ∈ {1, 5, 10} on the basis of 1000 Monte Carlo trials, for which we report (i) the fraction of the number

of times the estimator selected the correct number R over all trials, (ii) the mean R to measure consistency,

and (iii) the root mean-squared error of the estimated number of factors relative to the true number. Our

Monte Carlo is divided into into four parts: first, we study the performance of the estimators when there is

no temporal or cross-sectional correlation in the error by reducing the approximate factor model to an exact
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factor model and we subsequently analyse the impact of cross-sectional and time series correlation in the

errors when θ = 1. In the second part, we increase θ to ten and evaluate the estimators with and without

correlation in the error. In the third and fourth parts, we adjust SNR by fixing the variance of one factor at

ten or 1/6th respectively and simultaneously introducing correlation structures in the error.

Table 4.1 summarizes the Monte Carlo experiments without temporal or cross-sectional correlation in

the error and the results can be summarized as follows: regardless of the dimensions of the panel or the

number of factors, all estimators behave similarly as long as R/N is not too large. When this is the case,

MKT loses efficiency relative to the other estimators because it becomes harder to find the appropriate local

maximum to the right of the edge of the spectrum. The other estimators however determine R correctly in es-

sentially hundred percent of the cases, yielding very good finite sample properties whenever the exact factor

model assumption holds. It is often argued that the pure factor model is too strong for empirical applications

because the errors of the data exhibit some form of correlation. We now relax the pure factor model by in-

troducing autocorrelation in the errors by setting ρ = 0.5 and repeat the experiments as reported in table 4.2.

The experiments reveal that autocorrelated errors make it more difficult for the eigenvalue-based estimators

to correctly determine the number of factors in small samples: whilst AH remains practically unbiased for

all panel configurations and R, EDR and ON now require samples larger than N, T = 50 to estimate the edge

of the spectrum with hundred percent certainty, especially when R = 10. This conclusion extends to BN and

MKT more strongly, although MKT always outperforms BN and converges more rapidly to hundred percent

success rate when the sample size becomes large and over-estimates R far less often, resulting in higher

efficiency as measured by RMSE. In conclusion, all estimators suffer from the introduction of time series

correlation in the error and we contrast this finding with the introduction of cross-sectional dependence in

the error by setting α = 0.5 and J = max(10, N/20). Note that this specification constitutes cross-sectional

correlation that grows with N and this implies that Assumption 3 is violated because the maximal eigenvalue

of G is now unbounded. However, we will follow the literature by examining this construct. The results in

table 4.3 show that under cross-sectional correlation of the errors, we find even more difficulty to determine

R consistently: whilst AH, ON and EDR tend to hundred percent success rates as N, T get large, BN and

MKT are considerably less successful and actually fail to approach exact success rates in all samples with

R > 1. In fact, with strong cross-sectional correlation, BN always estimates Rmax, reinforcing the point of

Section 3 that the penalty term is inappropriate in finite samples when the error exhibits dependence in either

N or T. On the other hand, the AH and EDR estimators now require at least N, T = 100 to approximate the

correct number of factors whilst ON falls behind and requires even larger samples. These conclusions are

reinforced when we set both α = 0.5 with J = max(10, N/20) and ρ = 0.5 in the Monte Carlo experiment

summarized in Table 4.4: it appears that the detrimental effect of correlation structures in the error on the

performance of the estimators is driven mostly by the cross-sectional correlation. As before, AH, ON and

EDR approach exactly correct determination of R as N and T grow large, whilst BN always strictly overes-

timates the number of factors in all configurations of the model. By contrast, although MKT suffers from

the correlation structures when R > 1, it does not over-estimate as strongly as BN resulting in far smaller

RMSE.
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In practical situations, the separation of factors and residual eigenvalues is often far less pronounced as

in the model with θ = 1. To approximate this phenomenon, we now dramatically reduce the SNR in the

following experiments by setting θ = 10. Initially, we adhere to the assumptions of the pure factor model

and these results are summarized in table 4.5. Compared to the baseline model in table 4.1, all estimators

again reach exact identification of the number of factors as the sample size increases, now requiring instead

N, T = 100 to approach exact identification. AH, ON and EDR all require the smallest panel dimensions

to approach hundred percent correct estimation and it is not obvious which estimator is superior in this

experiment. Furthermore, when R/N is large, both BN and MKT suffer as in the baseline model with the

latter never reaching exactly hundred percent success rates. The excellent performance of AH, ON and EDR

in the pure factor model with θ = 10 is dramatically altered when we also introduce cross-sectional and time

series correlation as before: as the results in table 4.6 show, all estimators now fail to consistently select R

unless the sample size is very large at N, T = 400 and only then do AH and EDR reach at least ninety percent

success at all choices of R; ON consistently estimates the factors with success rate approaching unity in the

case of R = 1, 5, whilst MKT only approaches hundred percent in the case of R = 5. Finally, BN always

overestimates at Rmax.

So far we have held the variance of the individual factors constant even though it is unlikely that this

specification is realistic empirically. Moreover, this specification implicitly favours AH. For this reason we

now change the variance of one factor to be substantially higher or lower than the remaining factors and

assess the ability of the estimators to select R consistently. The results of these experiments are reported

in tables 4.7-10 and we first set the variance of the first factor equal to ten, considering the baseline spe-

cification without correlation in the error. As expected, AH now suffers in the smallest configurations of the

panels, whilst the other estimators have essentially exact determination percentages, apart from MKT, which

requires R/N to not be too large. AH however only requires the sample size to be N, T = 100 to approach

exact determination results. As we further introduce correlation in the error however, this conclusion no

longer holds and AH requires very large samples to approach exact determination of R, exhibiting very poor

performance in smaller samples. ON behaves better than AH, but still requires larger samples than EDR,

which approaches exact determination from N, T = 100. Furthermore, with correlation in the error, as be-

fore, BN strongly over-estimates the number of factors, with zero acceptance and average rates of correct

R. MKT is somewhere in between BN and AH, requiring large samples to correctly estimate R, otherwise

severely over-estimating. When instead we fix the variance of one factor at 1/6, a similar pattern occurs.

Without correlation in the error, all estimators perform very well when R = 1. However, when R > 1, MKT

and especially AH require larger samples to reach exact determination, whilst BN, ON and EDR continue to

determine R correctly in essentially hundred percent of the experiments using the pure factor model. When

we subsequently introduce correlation structures in the error, this effect is exacerbated: in line with the

previous results, BN never selects R with high probability, whereas the other estimators approach hundred

percent correct R only as N, T are very large in the case when R = 1. When R > 1, only EDR eventually

reaches good finite sample properties.

In practice, the data is likely to be a mixture of the experiments considered in this section and the Monte
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Carlo results stipulate that it is very important to analyse the properties of the data so that a reasonable

estimate of R can be made. The new estimators, particularly EDR, are in all cases very competitive with AH

and ON and often more robust to the complications examined in this section.

The remainder of Section 4.5 is dedicated to studying finite sample eigenvalue separation in the interact-

ive fixed effects model and the determination of R in that situation. We initially study the following AR(1)

model with AR(1) factor error components:

yi,t =βyi,t−1 +ΛiFt + εi,t ,

Ft =κFt−1 +υt , i = 1, . . . , N, t = 1, . . . , T

where the autoregressive parameter β = 0.5, the loadings are distributed as λi ∼ N (1R, IR) and the errors

are εi,t ∼ N (0, 1). For the factors, we set κ = 0.9 and υt ∼ N (0R, IR). Note that because Ft is dynamic, the

composite error of Yi,t , i.e. ΛiFt + εi,t , is autocorrelated and thus requires explicit treatment of the factors to

obtain a consistent estimate of β. In the following experiments, we use the QML estimator of Bai (2009) for

this purpose. To compute β̂, we use the algorithm of Bai (2009) using twenty random starting values drawn

from U (−1, 1) and iterate until
∣∣∣β̂ j− β̂ j−1

∣∣∣ < 0.01, where j is the iteration index corresponding to each of

the starting values. After twenty trials, we choose β̂ corresponding to the smallest value of the objective

function computed as tr
(
Ψ̂R̂

)
, where Ψ̂R̂ = (NT )−1ŴR̂Ŵ ′R̂ at some R̂. The dimension of each panel under

consideration is as above and we run 1000 Monte Carlo trials for each combination of N and T. Summary

statistics of these experiments are printed in tables 4.11-14 where each contains two results: the first table

summarizes consistency and RMSE statistics for β̂; the second table reports results on determination of

R. To conserve space, we report only AH and EDR applied to the eigenvalues of the resulting residual

covariance matrix Ψ̂R̂.12

Initially, we set R= 2 and Rmax = 3 and the results are reported in table 4.11. Regarding bias of the QML

estimator: as long as R̂≥ 2, the estimator is virtually unbiased with very low RMSE provided that T ≥ 100.

On the other hand, when R̂ = 0, the resulting OLS estimator suggests a non-stationary model with β̂ ≈ 1.

Furthermore, both AH and EDR determine R correctly with high probability in all samples considered, even

when R̂ = 0. Only when N, T = 50 does EDR perform slightly worse than AH. This pattern is repeated

when we set R = 5 and Rmax = 7: whilst both bias and RMSE are now larger in the smallest samples, the

results are essentially the same as in the situation with R = 2 when T ≥ 200. The estimators of R on the

other hand behave qualitatively the same as before, with very good properties in every sample of our Monte

Carlo study, selecting R correctly with success rates approaching unity rapidly.

In the pure AR(1) model of tables 4.11 and 4.12, the number of factors is necessarily equal in the

dependent variables and the regressors. However, as we have seen in Theorem 4.2, the regressors may

contain more or less factors than the dependent variable, and if the number of factors in the regressors is

larger, these will dominate additional eigenvalues of Ψ̂ beyond the first R when ϒ̂ 6= op (1). To demonstrate

12When R̂ = 0, the QML estimator collapses to the OLS estimator, see Section 4.5 for discussion.
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this complication, we extend the baseline model at the top of this section to the following static interactive

fixed effects model:

Yi,t =Xi,tβ+ΛiFt +
√

θηεi,t , where:

Xi,t =τ1,iFt + τ2,iZt +υi,t ,

η =
1−ρ2

1+2Jα2 ,

εi,t =ρεi,t−1 + vi,t + ∑
1≤| j|≤J

αvi− j,t .

In this model, we have introduced an independent variable Xi,t that is composed of the factors Ft and an

additional factor Zt . We will leave the distributional assumptions of the factors as at the top of this section

and now generate [F ′t , Z′t ]
′ ∼ N (0R+1, IR+1). Since the OLS estimator is consistent in the large N, T model

if corr(Λi, τ1,i) = 0, we want to impose the need for QML estimation. The former is achieved by specifying

perfectly correlated loadings of the Yi,t and Xi,t processes as Λi = 2τ1,i, where
[
τ′1,i, τ2,i

]′
∼ N (0R+1, IR+1).

Finally, the error process εi,t is defined as above, the υi,t ∼ N (0, 1) and β = 1.

We first study the finite sample performance based on the model with no correlation in the errors and the

results are printed in table 4.13. Compared to the time series model, the QML estimator is now essentially

unbiased with RMSE approaching zero at all panel configurations as long as R ≥ 2. Furthermore, when

we estimate β with R̂ = 0, the estimator is biased severely as anticipated by the introduction of correlation

between the loadings of Yi,t and Xi,t . When R̂ = 2, 3 both AH and EDR determine R consistently at any

sample size, only having small RMSE in the panel of size N, T = 50. When R̂ = 0 however, both estimators

converge to R̂= 3, as predicted by Theorem 4.2, although initially, larger values of R̂ are observed with fairly

high variation as measured by RMSE. However, since the estimators perform very well whenever R̂ > R, we

expect that iterating the estimators over R̂ will in practice result in consistent β̂.

For the final experiments, we introduce cross-sectional and time series dependence by setting ρ = 0.5,

α = 0.5 and J = 8 as in the experiments with the approximate factor model at the top of this section.

As can be seen from table 4.14, the QML estimator is also consistent in this specification of the model

and essentially unbiased as long as R̂ ≥ R and N, T > 50, showing the robustness of the QML estimator

to correlated errors. As for estimation of R, the impact of the correlation structure of the errors on the

eigenvalues now makes it more difficult to correctly find R, especially so for AH: whilst EDR estimates R

with probability approaching unity whenever R̂≥ R in panels of dimension N, T ≥ 100, AH requires at least

N, T ≥ 200. On the other hand, when R̂ = 0, neither AH nor EDR consistently find R̂ = 3, with AH strictly

under-estimating and EDR strictly overestimating R. As N, T become big however, the overestimation of

EDR will eventually lead to a consistent estimate of the number of factors because it is consistent when

R̂≥ R, whilst AH falsely selects a smaller number of factors in this scenario.
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4.7 Conclusions

In this paper we have made an argument for redemption of the Scree plot. We show that the eigenvalues of

the covariance matrix of an approximate factor model that correspond to factors dominate the eigenvalues

that correspond to the error process. As a result, the eigenvalues of the covariance matrix separate into

distinct sets that differ in orders of magnitude. This mechanism is exactly captured by the Scree plot and

thus any consistent estimator, including the tuned IC of Hallin and Liška (2007) but not the IC of Bai and

Ng (2002), belongs to the class of Scree plot estimators. We have further shown that the separation result

continues to hold in the weak factor model with appropriate scaling and in a model where the number

of factors to goes to infinity with N and R/T → (0, 1). Based on spectral separation, we develop two

new estimators of R and a Group Lasso algorithm that estimates R and the parameters of the model jointly.

Extensive Monte Carlo experimentation confirms that these estimators have competitive properties to several

other estimators of R, with especially EDR coming out as very robust in relation to the competitors we

considered.

Our paper also extends the eigenvalue separation result to the interactive fixed effects model, even when

a point estimate of the slope parameter is inconsistent. In that case, separation of the eigenvalues of the

covariance matrix of the regression error may depend on the rank of the factor component of the regressors,

rather than the composite error of the dependent variable. On the other hand, the result of the approximate

factor model goes through without further complications when the estimate of the slope parameters is con-

sistent. This result is important, because although determination of R in the approximate factor model has

received a lot of attention, the same cannot be said for this problem in the interactive fixed effects model. It

also implies that estimators that depend on eigenvalue separation continue to be consistent in the interactive

fixed effects model. This conclusion is reassuring, because it implies that there is no immediate need to de-

velop new estimators for the problem of determining R in those models. Instead, one can estimate the model

using an appropriate estimator Rmax times and compute R̂ using the point estimate at each of these. Theorem

4.2 then tells us that as long as the estimator of the slope parameters is consistent, this will subsequently

lead to consistent determination of R and thus consistent estimation of β in the large N, T interactive fixed

effects model, as long as at least one R̂≥ R is included in the algorithm.

Appendix 4.1 Proofs for Chapter 4

LEMMA 1: Let U be an N×T random matrix with i.i.d. elements ui,t . Assume ui,t has zero mean, variance

σ2 and finite fourth moments. Then as N, T → ∞ and N/T → γ ∈ (0, 1):

ξ1
(
T−1UU ′

)
→p (1+

√
γ)2

σ
2;

ξ1
(
T−1UU ′

)
→p (1−

√
γ)2

σ
2
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where ξ1 ≥ ξ2 ≥ ·· · ≥ ξN are the eigenvalues of T−1UU ′.

Proof: See Bai and Silverstein (2010, Theorem 5.11). �

LEMMA 2: For symmetric positive semi-definite p× p matrices A and B:

ξi (A)≤ξi (A+B) ;

ξi+k−1 (A+B)≤ξi (A)+ξk (B)

for i+ k ≤ p+1.

Proof: See Anderson and Das Gupta (1963, Theorem 2.3). �

LEMMA 3: For symmetric positive semi-definite p× p matrices A and B:

ξi (AB)≤ξ j (A)ξk (B) ;

ξp−i+1 (AB)≥ξp− j+1 (A)ξp−k+1 (B)

for j+ k−1≤ i.

Proof: See Anderson and Das Gupta (1963, Corollary 2.2.1). �

LEMMA 4: For a symmetric positive definite matrix A of dimension p× p:

ξ1 (A)≤tr(A) ;

ξp (A)≥1/tr(A) .

Proof: For the first inequality, we have from Lemma 3

ξ1 (A)≤
p

∑
i=1

ξi (A) = tr(A) ,

For the second inequality, note that symmetric positive semi-definite matrices can be diagonalized, i.e.

A = QDQ−1, where D is a matrix with the eigenvalues of A on the diagonal and Q is orthogonal such that

A−1 = QD−1Q−1. Since A is positive definite, it has all eigenvalues greater than zero. This implies that the

reciprocal of the largest eigenvalue of A−1 corresponds to the smallest eigenvalue of A and vice versa:

ξp (A) =ξ1
(
A−1)= 1/ξ1 (A) ,
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using this and multiplying out the first inequality implies gives the desired result:

1/tr(A)≤ 1/ξ1 (A) = ξp (A) .

�

LEMMA 5: For symmetric p× p matrices A and B,

max
i
|ξi (A)−ξi (B)|2 ≤ ‖A−B‖2 = tr(A−B)(A−B)′ .

Proof: See Hallin and Liska (2008), Lemma A.1.

LEMMA 6: Hoeffding’s Lemma: for a random variable x with bounded support (a, b) and mean µ,

P(x−µ > c)≤ exp
[
2c2/(b−a)

]
.

Proof: See Hoeffding (1963).

LEMMA 7: Derivation of equations (4.11) and (4.12):

To derive (4.11), note that the first order condition with respect to f ′r after concentrating out Λ′Λ/N = IR is:

∂V
∂ f ′r

=

(
N +

φ
√

NT
‖ fr‖

)
f ′r−Y ′λr.

Holding fixed fr,

f ′r =

(
N +

φ
√

NT
‖ fr‖

)−1

Y ′λr,

which implies that:

‖ fr‖ =

(
‖ fr‖

N ‖ fr‖+φ
√

NT

)∥∥Y ′λr
∥∥

⇔

N ‖ fr‖2 +‖ fr‖φ
√

NT = ‖ fr‖
∥∥Y ′λr

∥∥
‖ fr‖ = N−1∥∥Y ′λr

∥∥−N−1
φ
√

NT .

The last line above can be rewritten to substitute
∥∥∥ Y ′λr
√

NT

∥∥∥ for ‖ f r‖ and yield (4.11), i.e.
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Y ′λr =

(
N +

φ
√

NT
N−1 ‖Y ′λr‖−N−1φ

√
NT

)
f ′r

= N
(

1+
φ
√

NT
‖Y ′λr‖−φ

√
NT

)
f ′r

f ′r =
Y ′λr

N

(
1+

φ
√

NT
‖Y ′λr‖−φ

√
NT

)−1

.

For equation (4.12), note that the matrix containing all f ′r may be written as:

F ′ =
Y ′Λ
N



(
1− φ

‖Y ′λ1/
√

NT‖

)
+

0 . . . 0

0 . . . . . .

. . . . . . 0

0 . . . 0
(

1− φ

‖Y ′λr/
√

NT‖

)
+


:=

Y ′Λ
N
− Y ′Λ

N
A.

Then expanding the objective function using the normalisation Λ′Λ/N = IR and noting that trace(AΛ′YY ′ΛA)

= R×φ, which is independent of the optimization variables, then yields the result.

Proof of Theorem 4.1:

We first show that the first R eigenvalues of Ξ̂ are converge to (NT )−1
ΛFF ′Λ′ in probability. To this end we

present the conclusions of Lemma A.10 and A.11 of Ahn and Horenstein (2014). Under the normalization

that N ≤ T , the first k = 1, . . . ,R largest eigenvalues are bounded by:

R

∑
k=1

ξ̂k ≤
R

∑
k=1

vk
[
FF ′ΛΛ

′/(NT )
]
+Op

(
T−1)+Op

(
T−1/2

)
R

∑
k=1

ξ̂k ≥
R

∑
k=1

vk
[
FF ′ΛΛ

′/(NT )
]
+Op

(
T−1)+Op

(
T−1/2

)
.

By Lemma 3, we have:

vR
(
FF ′/T

)
vR
(
Λ
′
Λ/N

)
≤ vR

[
FF ′ΛΛ

′/(NT )
]

≤ v1
[
FF ′ΛΛ

′/(NT )
]
≤ v1

(
FF ′/T

)
v1
(
Λ
′
Λ/N

)
,
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which immediately implies that the ξ̂k (YY ′) = Op (NT ) for all k = 1, . . . ,R, since by Lemma 4:

1/tr
[
FF ′ΛΛ

′/(NT )
]
≤vR

[
FF ′Λ′Λ/(NT )

]
≤v1

[
FF ′Λ′Λ/(NT )

]
≤ tr

[
FF ′ΛΛ

′/(NT )
]
.

Furthermore, since the Ft and Λi have finite second moments, R is finite, tr [FF ′ΛΛ′/(NT )]=Op (1) and thus

1/tr [FF ′ΛΛ′/(NT )] =Op (1). Since eigenvalues are continuous functions of the elements of the data matrix

and T−1
∑

T
t=1 FtF ′t →p ΣF > 0 and similarly for ΣΛ by Assumption 2, the continuous mapping theorem

implies ξ̂k→p vk (·) for k = 1, . . . , R. This gives (4) and (5) of Theorem 1.

For k = R+1, . . . ,N, using Lemma 2, we can show:

ξ̂R+1
[
YY ′/(NT )

]
≤ ξ̂R+1

[
ΛFF ′Λ′/(NT )

]
+ ξ̂1

[
εε
′/(NT )

]
= ξ̂1

[
εε
′/(NT )

]
,

since rank(ΣF) = R, vR+ j (ΣFΣΛ) = 0 a.s. for j = 1, 2, . . . . Similarly:

ξR+1
[
Ω̂/N

]
≤ ξR+1

[
ΛFF ′Λ′/(NT )+ εε

′/(NT )
]

= ξR+1
(
Ξ̂
)
= ξ̂R+1

[
εε
′/(NT )

]
,

which implies that:

ξ̂R+1
[
εε
′/(NT )

]
≤ξR+1

(
Ω̂/N

)
≤ ξ̂1

[
εε
′/(NT )

]
.

Alternatively we can show that:

ξ̂R+i
[
εε
′/(NT )

]
= ξ̂R+i

[
εMFε

′/(NT )+ εPFε
′/(NT )

]
≤ ξ̂i

[
εMFε

′/(NT )
]
+ ξ̂R+i

[
εPFε

′/(NT )
]

= ξ̂i
[
εMFε

′/(NT )
]
,

for matrices such that PF = F ′ (FF ′)−1 F , MF = I−PF and ξR+i [εPFε′/(NT )] = 0 for i≥ 1 since the rank

of PF is R. Similarly for any i > R,

ξ̂i
[
εMFε

′/(NT )
]
≤ ξ̂i

[
εMFε

′/(NT )+ εPFε
′/(NT )

]
= ξ̂i

[
εε
′/(NT )

]
,
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so that we obtain the bound above again:

ξ̂R+i
[
εε
′/(NT )

]
≤ ξ̂i

[
εMFε

′/(NT )
]
≤ ξ̂i

[
εε
′/(NT )

]
and for the N-th eigenvalue we have also:

ξ̂N
[
εε
′/(NT )

]
≤ ξ̂N

[
ΛFF ′Λ′/(NT )+ εε

′/(NT )
]
≤ ξ̂N−R

[
εε
′/(NT )

]
.

Then, since R/N → 0, these bounds are tight and we have shown that all R+ ith eigenvalues of NΞ̂ are

bounded by those of Ω, i.e. for i= 1, . . . ,N, ω̂i [εε′/T ] . This result then leads immediately to ξ̂R+1
(
NΞ̂
)
→p

ω1 (Ω). Note that:

ω1
[
εε
′/(NT )

]
=ω1

[
G1/2uHu′G1/2′/(NT )

]
≤N−1

ω1
(
uu′/T

)
ω1 (G)ω1 (H) ,

by repeated use of Lemma 3. Now taking limits in this bound gives the required result:

N−1limω1
(
uu′/T

)
ω1 (G)ω1 (H) =N−1 (1+

√
γ)2

σ
2
ucG+cH+

:=N−1 (1+
√

γ)2
σ

2
uc+ = O

(
N−1)

by Lemma 1 and Assumption 3.13 For the smallest eigenvalue, similarly:

ωN
[
εε
′/(NT )

]
=ωN

[
G1/2uHu′G1/2′/(NT )

]
≥N−1lim

[
ωN
(
uu′/T

)]
ωN (G)ωN (H)

:=N−1 (1−
√

γ)2
σ

2
uc− = O

(
N−1) ,

and c− := cG−cH−. The above inequalities thus bound the spectrum of εε′/(NT ) and prove that the eigen-

values vanish as N, T → ∞, yielding (2) and (3) in the theorem. �

Proof of Corollary 4.1:

From Theorem 4.1 we have that for k = 1, . . . , R,

ξk
[
YY ′/(NT )

]
= vk

[
FF ′ΛΛ

′/(NT )
]
+op (1) ,

13Lemma A.1 of AH is not strictly correct for the assumptions they provide: They posit that for an i.i.d. matrix, λ1 (N×Ω)→
p(

1+
√

N
T

)2
. From Lemma 1, we can see that this is only true when σ2

u = 1.
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and since FF ′ΛΛ′/(NT ) is PD by assumption, all eigenvalues are non-negative. Then for any sample

Y i ∈ Y j with Ni ≈ N j, let A correspond to the matrix equal to the rows deleted from Y j when going from

sample j to i and b(·)k be the eigenvector corresponding to the k-th eigenvalue based on the (·)-th sub-sample.

By variational characterization of eigenvalues, the mini-max theorem then gives:

vi
k
[(

FF ′ΛΛ
′−AA′

)
/(NiT )

]
=bi′

k
[(

FF ′ΛΛ
′−AA′

)
/(NiT )

]
bi

k

≤b j′
k

[
FF ′ΛΛ

′/(N jT )
]

b j
k−b j′

k

[
AA′/(N jT )

]
b j

k,

≤v j
k

[
FF ′ΛΛ

′/(N jT )
]
.

This gives immediately that vi
k (·)≤ v j

k (·)≤ ·· · ≤ vJ
k (·) and, using Lemma 2, we have that S = 0 and R̂ = 0

for any penalty function larger than c5 where

vJ
1
[
FF ′ΛΛ

′/(NT )
]
≤ v1 (ΣF)v1 (ΣΛ)< c5

By the same argument we have that:

vR (ΣF)vR (ΣΛ)≤ v1
R
[
FF ′ΛΛ

′/(NT )
]
,

where v1
R (·) is the last factor eigenvalue of the smallest sub-sample. Furthermore, by Lemma 5 we have for

any i and j:

max
k=1,...,R

∣∣∣v j
k− vi

k

∣∣∣2 ≤∥∥∥FF ′
(
ΛΛ
′)

j /(N jT )−FF ′
(
ΛΛ
′)

i /(NiT )
∥∥∥2

≤
∥∥(FF ′/T

)∥∥2
{∥∥∥(ΛΛ

′)
j /N j−ΣΛ

∥∥∥2
+
∥∥ΣΛ−

(
ΛΛ
′)

i /Ni
∥∥2
}

=op (1) ,

since (i) rank [FF ′ΛΛ′/(NT )] = R, (ii) FF ′/T →p ΣF and (ΛΛ′) j /N j →p ΣΛ for any j as min jN j, T → ∞

and (iii), ‖A‖2 = tr(AA′) ≤ tr(A)2 for square matrices A. Taking expectations in the above, the Markov

inequality then implies that there is N j and T such that for any k = 1, . . . ,R,

P
(∣∣∣v j

k− vi
k

∣∣∣> c
)
→ 0

for any fixed c independent of T. The former implies that for any penalty function in the interval (c3, c4) we

have that R̂ < R and S≥ 0, with strict equality in the limit.

For c3, first note that by the Cauchy-interlacing Lemma, we have that ω
j
k+1 (·) ≤ ωi

k (·) ≤ ω
j
k (·) for the

principal minors of covariance matrices constructed from Y i ∈ Y j ∈ ·· · ∈ Y J . This fact combined with the
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bounds in Theorem 4.1 gives:

N−1
1 (1+

√
γ1)

2
σ

2
uc+ ≤N−1

2 (1+
√

γ2)
2

σ
2
uc+

≤·· ·< N−1
J−1 (1+

√
γJ−1)

2
σ

2
uc+ ≤ N−1 (1+

√
γ)2

σ
2
uc+.

Since each residual eigenvalue is op (1), whilst the smallest factor eigenvalue is Op (1) regardless of the

subsampling in the limit, the stability interval with R̂ = R and S = 0 is bounded by:

N−1 (1+
√

γ)2
σ

2
uc+ < c3 < v1

R
[
FF ′ΛΛ

′/(NT )
]
.

By a similar argument to the above we have by Theorem 4.1 that:

0≤ c1 < N−1 (1−
√

γ)2
σ

2
uc− ≤ N−1

J−1 (1−
√

γJ−1)
2

σ
2
uc−

≤·· · ≤ N−1
1 (1−

√
γ1)

2
σ

2
uc−,

suggesting an interval where R̂ = Rmax and S = 0.

For c2 note that the support of the residual eigenvalues shrinks as a result of the bounds above with

the principal minor under consideration. Denote by s(·) the supports corresponding to covariance matrices

based on Y 1 ∈ ·· · ∈ Y j ∈ ·· · ∈ Y J and let σ = E
(

ω
j
i

)
be the grand mean of the residual eigenvalues,

where it is observed that σ = limN,T→∞tr
[
εε′/

(
N2T

)]
= O

(
N−1

)
is independent of the sub-sample under

consideration. By Hoeffding’s Lemma, the probability that any i-th eigenvalue of the j-th sample is larger

than c is bounded by:

P
(

ω
j
i −σ > c

)
≤ exp

[
−2c2/s j

]
.

Note that the probability above goes to zero for any i, j and c because s j = Op

(
N−1

j

)
on account of the

limits of the bounds of the eigenvalues of each sub-sample. This implies that in the limit, no instability

interval c2 exists. However, since s j = Op
(
N−1

)
we have furthermore that:

P
(√

N j

{
ω

j
i (·)−σ

}
> c
)
≤ exp

[
−2c2/(N js j)

]
:= η j

and observe that η1 ≤ ·· · ≤ ηJ as a result of the scaled bound N js j. Now for the result that R̂ > R with S = 0,

we require the following probability over J sub-samples to approach unity for some N j, T and c:

P

(
J

∑
j=1

I√N j{ω
j
i (·)−σ}>c

)
≤min jP

(√
N j

{
ω

j
i (·)−σ

}
> c
)
= η j 6= 1

since c is fixed and N js j = Op (1). �

Proof of Corollary 4.2:
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The proof of the second claim follows if we can show that the first R eigenvalues are Op (1) and the re-

mainder are op (1). The first claim follows immediately if we can show that Lemmas A.8 and A.10 of

AH hold using the appropriate scaling. For the latter, let B be an eigenvector of Ξ̂, normalized so that

B′B = I×N, then we have for the first k = 1, . . . ,R eigenvalues:(
N2T δ

)−1 ∣∣tr(B′ΛFε
′B
)∣∣≤T 1/2−δ

∥∥∥B/N1/2
∥∥∥2∥∥∥Λ/N1/2

∥∥∥∥∥∥Fε/(NT )1/2
∥∥∥

=Op

(
T 1/2−δ

)
.

The first term is unity, and the second and third terms are bounded by Assumption 2, so the cross-term

vanishes as long as δ > 1/2. Furthermore we have:(
N2T δ

)−1
tr
(

B′εF ′
(
FF ′

)−1 Fε
′B
)
=T 1−2δtr

[(
BB′/N

)(
εF ′/
√

NT
)

Op (1)
(

Fε
′/
√

NT
)]

≤T 1−2δ

∥∥∥B/N1/2
∥∥∥2

Op (1)
∥∥∥Fε/(NT )1/2

∥∥∥2

=Op

(
T 1−2δ

)
,

where the Op (1) in the middle of the first line is by assumption of the weak factor process, T−δ
∑

T
t=1 FtF ′t →p

ΣF . Note that both these cross-terms are rank R and will dominate the first R eigenvalues if δ ≤ 1/2 only,

showing separation continues to hold in that situation.

For Lemma A.8, we have from the proof of Theorem 1 that:

ξR+i

[
εε
′/
(

NT δ

)]
≤ ξi

[
εMFε

′/
(

NT δ

)]
≤ ξi

[
εε
′/
(

NT δ

)]
.

Setting N = N (T ) and T 1−δ = o(N), this implies that:

ξi

[
εε
′/
(

NT δ

)]
=T/

(
NT δ

)
ξi
[
εε
′/T
]

≤T 1−δ/N (1+
√

γ)2
σ

2
uc+

=O
(

T 1−δ/N
)
,

so that the eigenvalues of the error covariance matrix vanish only when T 1−δ = o(N). �

Proof of Corollary 4.3:

For the first part, we proceed as in the proof of Theorem 4.1. We use the inequalities of Lemma 3 to
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show convergence in probability of the factor eigenvalues to:

ξ̂1
[
Ξ̂
]
=v1 [ΣFΣΛ]+Op

(
T−1/2

)
and

ξ̂R
[
Ξ̂
]
=vR [ΣFΣΛ]+Op

(
T−1/2

)
Since

√
NΛ is an eigenvector of YY/(NT ), without loss of generality we normalise it to be orthonormal,

i.e., Λ′Λ/N = IN . With this normalization it is immediate from the above that the first R eigenvalues of Ξ̂ are

completely determined by the eigenvalues of the R−dimensional covariance matrix FF ′/T . Since R→ ∞,

R/T → τ and F = GFuFHF by assumption, the eigenvalues of the limiting matrix ΣF are then bounded by:

vk
(
T−1FF ′

)
= vk

(
T−1G1/2

F uFHFu′FG1/2′
F

)
R
(
1∓
√

τ
)2

σ
2
uF

cF∓,

for k = [R, 1], where we have used the trace inequality repeatedly and used Lemma 1 for uFu′F/T →p(
1∓
√

τ
)2

σ2
uF

. Clearly, vk = Op (1) for k = [R, 1]. On the other hand, the bound on the extremal eigenvalue

of the noise matrix is as in the proof of Theorem 4.1 with the modification that, as R→ ∞, the R+ 1-th

eigenvalue is no longer tightly bounded at the largest eigenvalue of Ω, but rather only bounded above by

N−1ω1 (·), i.e.:

ξ̂R+1
[
εε
′/(NT )

]
≤N−1

ωR+1
(
Ω̂
)
≤ ξ̂1

[
εε
′/(NT )

]
.

Since R/T → τ and R < N < T , the lower bound on NξR+1 (·) can be far detached from the edge ω1 (Ω).

For the second claim, first note that since R→ ∞, but R/T → τ and N = N (T ), we now have R eigen-

values in a finite support, so that the spacing between the eigenvalues shrinks to zero with R. This leads to

an argument in congruence with the interval (c1, c2) in Theorem 4.1 for the factor portion of the eigenvalue

structure and stability regions no longer exist. To show that a separating region exists, note that the R-th

eigenvalue of Ξ̂, corresponding to the factors, based on J subsamples is bounded below by the smallest

subsample:

(
1−
√

τ
)2

σ
2
uF

cF− >(1−
√

τJ−1)
2

σ
2
uF

cF− > · · ·> (1−
√

τ2)
2

σ
2
uF

cF−

>(1−
√

τ1)
2

σ
2
uF

cF− > c3 = Op (1) ,

where τ j = R/Tj with j = 1, . . . , J since T = N−1 (T ) for any truncated sample. Applying Hoeffding’s

inequality again as in the proof of Corollary 4.1 gives the result for the interval (c3, c4) and ICR̂ with

p(N, T ) ∈ (c2, c3) consistently estimates R as claimed. �

Proof of Proposition 4.1:
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First note that the estimator of the bound can be deconstructed as:

ξ̂
+ = J−1

(
ξ̂k +

σ̂2
k

σ̂2
k+1

ξ̂k+1 +
σ̂2

k

σ̂2
k+2

ξ̂k+2 · · ·+
σ̂2

k

σ̂2
k+J

ξ̂k+J,

)

and that the variance estimates are all Op (1). Consistency of σ̂2
k for the trace element of the estimator is by

standard arguments which means that c+ is tautologically defined by the bound.

The proof then follows immediately from Theorem 4.1: for any k < R, we have that ξ̂k− ξ̂+ = Op (1),

whereas δ = op (1), giving that P
(

ξ̂k− ξ̂+ < δ

)
→ 0. For k > R, first note that Nξ̂R+1→p ω1 (Ω) = Op (1)

and Nξ̂N →p ωN (Ω) = Op (1) by Theorem 4.1. Now since δ = O
(
N−(1+a)

)
, we have that:

P
(

ξ̂R+1− ξ̂
+ > δ

)
= P

[
N
(

ξ̂R+1− ξ̂
+
)
> Nδ

]
= P

[
Op (1)> Op

(
N−a)]→ 1

and thus P
(
R̂ = R

)
→ 1. �

Proof of Proposition 4.2:

From Theorem 4.1, we have for k < R that k×ξk = Op (1) and k×ξk = op (1) for k > R. Then by definition

of argmin, we have that P(k < R)→ 0. For k > R, note that this implies that MKT is declining at a point

larger than R+1, i.e. (R+2)ξR+2− (R+1)ξR+1 < 0 or that:

NξR+1 < (R+2)N (ξR+1−ξR+2)⇒ Op (1)< (R+2)op (1) ,

since N (ξR+1−ξR+2) = [NξR+1−ω1 (Ω)]+ [ω1 (Ω)−NξR+2] < δ for arbitrary δ as long as R/N→ 0 and

this implies that P(k > R)→ 0. In other words, MKT must be increasing at R+1 and thus P
(
R̂ = R

)
→ 1. �

Proof of Proposition 4.3:

For the first part, first consider the case when k > R, we want to show that

P(k > R)→ 0

as N, T → ∞. Let

P(k > R) =P


1− φ∥∥∥λ′

R̂
Y/
√

NT
∥∥∥

+

> 0


=P
(∥∥∥λ

′
kY/
√

NT
∥∥∥> φ

)
,
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when k = R+ s > R, using Lemma 3 we have that:

ξk

[
(NT )−1

ΛF ′FΛ
′+(NT )−1

εε
′
]
≤ ξR+1

[
(NT )−1

ΛF ′FΛ
′
]
+ξs

[
(NT )−1

εε
′
]

for s = 1, . . .N. Since rank
[
(NT )−1

ΛF ′FΛ′
]
= R, ξR+s

[
(NT )−1

ΛF ′FΛ′
]
= 0 , the k-th eigenvalue of

YY ′/(NT ) is no larger than the bound on N−1ω1 (Ω) by Theorem 4.1. This implies that:

P
(
ξs > ξ

+
)
→ 0.

as N, T → ∞.

For the converse we want:

P(k < R) =P

([
1− φ∥∥λ′kY/

√
NT
∥∥
]
+

≤ 0

)
=P
(∥∥∥λ

′
kY/
√

NT
∥∥∥≤ φ

)
,

as N,T → ∞. Since
∥∥λ′kY/

√
NT
∥∥= Op (1), we have by Lemma 3:

ξk

[
(NT )−1

ΛF ′FΛ
′+(NT )−1

εε
′
]
≤ξk

[
(NT )−1

ΛF ′FΛ
′
]
+ξ1

[
(NT )−1

εε
′
]

=Op (1)+op (1)

when k ≤ R, implying that

P(k < R) =P(Op (1)< op (1))→ 0.

The second part of the Proposition is then a consequence of Algorithm 4.2 in conjunction with the proof of

part 1.�

Proof of Theorem 4.2:

We first expand the covariance matrix of Y −
(

I⊗ β̂′
)

X :

(NT )−1ŴŴ ′ =(NT )−1 [
ΛF−

(
I⊗ ϒ̂

′)X + ε
][

ΛF−
(
I⊗ ϒ̂

′)X + ε
]′

=(NT )−1
ΛF (ΛF)′− (NT )−1

ΛF
[(

I⊗ ϒ̂
′)X
]′
+(NT )−1

ΛFε
′

− (NT )−1 (I⊗ ϒ̂
′)X (ΛF)′+(NT )−1 (I⊗ ϒ̂

′)X
[(

I⊗ ϒ̂
′)X
]′

− (NT )−1 (I⊗ ϒ̂
′)Xε

′+(NT )−1
ε(ΛF)′− (NT )−1

ε
(
I⊗ ϒ̂

′)X

+(NT )−1
εε
′.
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Taking traces, this simplifies to:

(NT )−1 tr
(
ŴŴ ′

)
=(NT )−1 tr

(
Λ
′
ΛFF ′

)
+(NT )−1 tr

([
I⊗ ϒ̂

′]X
[(

I⊗ ϒ̂
′)X
]′)

−2(NT )−1 tr
(

ΛF
[(

I⊗ ϒ̂
′)X
]′)

+(NT )−1 tr
(
εε
′)+2(NT )−1 tr

(
ΛFε

′)−2(NT )−1 tr
[(

I⊗ ϒ̂
′)Xε

′]
=(i)+(ii) .

Using Theorem 4.1 and Assumptions 5 and 6, (i) is Op (1), whereas (ii) are op (1). The latter follows from

the fact that rank
(
ŴŴ ′

)
= N but that rank(i) = max(R, S). This implies by Lemmas 3 and 4 above for

k = max(R, S)+1, . . . , N that:

(NT )−1
ξk
(
ŴŴ ′

)
= (NT )−1

ξk
(
εε
′+2ΛFε

′−2
[
I⊗ ϒ̂

′]Xε
′) ,

by repeating the steps of the proof of Theorem 4.1. All these terms are op (1) by a combination of Assump-

tions 5 and 6 and the proof of Theorem 4.1. This gives the first part.

For the second and third claims, note that the rank of the combined first three terms is equal to max(R, S)

if ϒ̂ = Op (1) or R if ϒ̂ = op (1). This can be seen by noting that for k = 1, . . . , max(R, S):

(NT )−1
ξk
(
ŴŴ ′

)
= (NT )−1

ξk

(
Λ
′
ΛFF ′+

[
I⊗ ϒ̂

′]X
[(

I⊗ ϒ̂
′)X
]′

−2ΛF
[(

I⊗ ϒ̂
′)X
]′)

+op (1) ,

the first term is of rank R; the second term is rank S and the third term is rank min(R, S) by analogy of the

argument in Theorem 4.1. As a result, the eigenvalues of the error covariance matrix are dominated by the

eigenvalues corresponding to the factor and the factors in X that stem from the inconsistency of β̂ induced

by underestimating R leading to max(R, S) non-vanishing eigenvalues. Finally for the third claim, note that

if ϒ̂ = op (1), the W collapses to the approximate factor model as in Theorem 4.1, so that the result follows.

�

Appendix 4.2. Simulation Results
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Chapter 5

Fiscal Multipliers and the Stability and
Growth Pact: A Panel-VAR Analysis of
Europe

This chapter analyses the size of fiscal multipliers in three panels of European Countries. We

develop a novel methodology to estimate vector autoregressions in the presence of factor er-

rors and use a combination of sign, zero and equality restrictions to identify prototypical fiscal

shocks. We find evidence for Ricardian Equivalence in all three panels in the sense that unless

the government matches expenditures with increased taxation, the Euro-zone does not strongly

or prolongedly benefit from fiscal stimuli.

5.1 Introduction

The European Monetary Union (EMU) is largely considered a success: monetary unification caused no dis-

ruptions in financial markets and the introduction of Euro coins and notes was surprisingly smooth despite

the daunting logistic challenges. Furthermore, the common market, currency and monetary policy all had

their share in the integration of the Euro zone since its conception (Beetsma and Guilidori, 2010a). Despite

these successes, economists and politicians alike voiced concerns on the ability of European national gov-

ernments to stabilise the downturns following the global mortgage crisis and the Hellenic debt crisis under

the regulations of EMU. These concerns are a direct result of the consequences of monetary unification for

the adopting member states: first of all, the adoption of a single currency means that national policy makers

can no longer rely on currency depreciation to fuel exports of their national economies. Entwined with

the common currency is the constitution of the supra-national European Central Bank (ECB) in 1998. The

supra-nationality of the ECB is intended to guarantee independence of national interests in governing the

common currency and price level, but also prevents national governments from stimulating investment in
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downturns by reducing interest rates.

Monetary unification also has consequences for the fiscal autonomy of current and aspiring EMU members

since the signing of the Maastricht Treaty and these are codified in the Stability and Growth Pact (SGP)

of 1997. The SGP is a blueprint for responsible fiscal policy and consists of three provisions: the first

provision requires all member states to accord to a public surveillance system that is designed to prevent

countries from breaching the treaty and, as Buiter (2006) argues, is intended to ‘name-and-shame’ offending

member states. However, even if such a peer-pressure mechanism is credible for aspiring EMU members,

its potency is lost once a member has entered EMU because it cannot be evicted involuntarily. The second

provision requires that members strive for medium term sustainable public finance goals, that is, on-balance

or surplus net public finance and decreasing debt to a sustainable level of typically sixty percent of GDP.

This provision is intended to enhance economic convergence and ensure the fiscal sustainability of member

states, but is also largely homogeneous over heterogeneous member states across Europe: for example,

relatively low-debt members can temporarily sustain higher deficits than others, whilst long-term economic

growth and convergence to the EU average in certain member states can only be achieved by large public

investment which increases in the stock of debt without supranational redistribution.

Finally, the third provision is intended to enforce the second provision and requires that the overall

budget deficit of a member state must under no circumstance exceed three percent of GDP and if it does,

immediate corrective action must be taken. If no corrective action is undertaken, the Excessive Debt Pro-

cedure (EDP) initiates sanctions until the deficit is within the bound of the SGP again, unless the cause of

the deficit increase is outside the control of the government and/or real GDP fell by at least two percent

in the reporting year. This provision is restrictive for the day-to-day operation of public finance and has

therefore attracted much criticism for both political and economic reasons. For example Eichengreen and

Wyplosz (1998) point out that no country experienced a fall of (more than) two percent of GDP during the

conception period of the SGP and that the third provision is therefore too ambitious. This argument fore-

shadowed a revision of the original 1997 SGP: following a downturn in the start of the twenty-first century,

fiscal policy in France and Germany had exceeded the conditions of the third provision of the SGP and

should have elicited sanctions from the EDP, but none were imposed. Over the following year the EDP was

suspended and, despite a court ruling against the suspension, new negotiations led to a revision of the SGP

in 2005. Under the amended version, sanctions are suspended not just when economic growth is negative

two percent, but also when an economy is below potential output for a prolonged period of time. Moreover,

the key condition of the reasons for the deficit being outside the control of the affected member state is no

longer included in the definition and it is therefore likely that fines will never be levied, especially since such

levies would further increase the deficit (Buiter, 2006). The third provision of the SGP is also seen as being

a one-size-fits-all cure for potential irresponsible fiscal policy of national governments regardless of past or

expected economic conditions. This rigidity can make fiscal policy more pro-cyclical and thereby reduce

the effectiveness of automatic stabilizers. In addition, since political decision makers are in office only for

a short time, the SGP incentivizes a shift of public expenditure towards short term goals that may help the

politician be re-elected when the fiscal constraints bind, but away from long run public investment projects.
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Whilst such policy is in accordance with the SGP, it is expected to reduce long term economic growth and

shifts wealth from future to current generations (Balassone and Franco, 2000).

A substantial body of evidence on the potential merits and demerits of EMU and the SGP has emerged

since the conception of the Maastricht Treaty, but questions related to the ability of fiscal multipliers to sta-

bilise recessionary periods and to which degree fiscal tightness affected economic growth in different areas

of the Euro-area have so far been largely unaddressed. This paper intends to fill that gap: we estimate vector

autoregressions (VAR) based on panel datasets compiled from Eastern, Northern and Southern European

countries and analyse the dynamics of key macroeconomic variables induced by fiscal shocks with and

without the SGP imposed. Using VARs to study fiscal multipliers has a long history in macroeconomics

and our paper thus also adds to the evidence on the (im-)potency of fiscal policy of individual countries in a

monetary union. Our results show that fiscal constraints have been especially tight in Eastern and Southern

European member states, where fiscal stimulus is strong. On the other hand, we find that fiscal stimulus is

relatively impotent in the West and stricter fiscal rules reduce this potency further. We also find that unless

expenditure is matched by increases in taxation, the data suggests that fiscal policy does not make a lasting

contribution to economic growth. This finding further points to complicated dynamics where commitment

to higher expenditure and growth must be initiated by structurally higher taxes. In other words, a form of

Ricardian equivalence.

The remainder of the paper is structured as follows: In Section 5.2, we present an extensive review

of empirical studies on EMU and the size of fiscal multipliers in general. In Section 5.3 we present a

methodology to study the implications of the SGP on the wider Euro-area, using panels of Eastern, Northern

and Southern European countries and show how to obtain consistent estimates of a panel VAR model in the

presence of common factors. Section 5.4 gives the empirical results and several robustness tests whilst

Section 5.5 concludes.

5.2 Literature Review

When the Maastricht Treaty was first signed, no data on the empirical implications of the SGP was available

and some authors have instead tried to learn from the experience of the US. For example, Bayoumi and

Eichengreen (1995) argue that similarly to EMU member states, individual US states are subject to consti-

tutional and statutory restrictions on the level of debt and deficits they hold. Stabilization policy in the US is

however undertaken by the federal government, whereas such policy is undertaken primarily by individual

members in the Euro-area and this asymmetry suggests that unification through EMU can destabilize the

Euro-area if member states cannot exercise counter-cyclical fiscal policy under the restrictions of the SGP.

Gali and Perotti (2003) address this concern and explore the cyclicality of fiscal variables as EMU came

into existence and contrasts these findings with a sample of OECD countries. They show that the auto-

matic stabilisers of EMU members were not impeded by binding SGP-constraints but actually shifted from

significantly pro-cyclical to counter-cyclical fiscal policy since the advent of EMU. However, even though

EMU members moved towards counter-cyclicality, the transition lagged behind an OECD-wide trend and
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the restrictions of the SGP thus hampered counter-cyclical fiscal policy at least relatively. More recently,

Fatas and Mihov (2010) present cross-country comparisons of the fiscal policy of twenty-two OECD coun-

tries with data until 2007. These authors find that fiscal policy has not differed substantially across the

OECD and that the introduction of the Euro has not led to significant change in fiscal policy in the Euro-

area. The aforementioned is due to the fact that counter-cyclical adjustment in Europe is largely undertaken

by automatic stabilisers, whilst the impact of discretionary pro-cyclical policy is negligible. On the other

hand, Bénétrix and Lane (2013) measure the change in cyclicality of fiscal variables due to the conception

of EMU using a panel of eleven EMU countries in the period of 1980 to 2007. Their analysis implies both

a weakening of the feedback of outstanding debt and increasing pro-cyclicality of fiscal balances since the

shift to EMU. This is extended in Beetsma and Guiliodori (2010b) who argue that deviations from fiscal

planning show how policy makers deal with new information. These authors include fiscal forecasts in the

study of cyclicality and show that substantial differences between plans and implementation exist and that

such differences drive the cyclicality of fiscal variables, especially so in recessionary periods.

The cyclicality of fiscal variables is closely linked to the potency of fiscal policy to correct the cycle. That

is, if the constraints of the SGP bind in down-swings, it is unlikely that fiscal policy can dampen recessions.

Moreover, by constraining discretionary fiscal policy, impact multipliers of changes in the fiscal stance on

macroeconomic indicators such as GDP are likely constrained too. The estimation of fiscal multipliers is

a prickly issue in the profession because it is inherentily difficult to identify truly exogenous fiscal shocks.

This is because changes to fiscal variables are typically debated in parliament and reported on in real-time.

As a result, changes in the fiscal stance are internalized by agents almost immediately.

Economists have developed two competing methods to identify fiscal shocks: the first method is the so-

called ‘narrative’ approach pioneered by Ramey and Shapiro (1998). In this study it is argued that defense

spending in times of war is truly exogenous to the economy and pinpoint three such episodes for the US.

They conclude that output rises in response to such defense shocks; consumption and investment initially rise

but fall over time; interest rates decline but move back to baseline; input prices rise and finally product wages

fall. These episodes are not without criticism themselves however: first of all, times of war are rare and the

robustness of results based on the methodology with respect to less radical changes in the fiscal stance is

questionable. Second, due to real-time media attention to events as rare as open war, the exogeneity of the

episodes might not be as clear-cut as is presented by Ramey and Shapiro (Ravn et al, 2007). An alternative

narrative method is presented in Romer and Romer (2010): this paper aggregates records of presidential

speeches and reports by the House of Representatives to separate changes in the tax regime of the US in

the post-war era from non-policy changes due to the business cycle. Romer and Romer (2010) find robust

negative (positive) effects of increases (decreases) in taxes on US GDP as large as three percent.

The second method of identifying exogenous fiscal shocks is based on the VAR methodology and sev-

eral identifying strategies have been put forward. The seminal contribution is Blanchard and Perotti (2002)

(BP), who estimate a trivariate VAR based on US data that includes taxes, government spending and output

as endogenous variables. Fiscal shocks are identified by the observation that taxes and government expendit-

ure typically do not respond to outside shocks in the same quarter and by exploiting outside information on
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elasticities of government spending and taxation with respect to the remaining variables to restrict the con-

temporaneous covariance matrix. BP find that increasing government spending raises output and increased

taxes decrease output. Decomposing output further, they find that government spending raises private con-

sumption, crowds out investment and decreases imports and exports. Importantly, they find that spending

multipliers are typically smaller than unity. Perotti (2004) extends the BP VAR model with inflation and

interest rates and compares estimates of five OECD countries. He finds that spending shocks have positive

effects on GDP although considerable heterogeneity is present in impact multipliers among the countries.

Similarly, spending has a positive effect on interest rates in the last decades of the sample, but fiscal variables

have no effect on inflation. Perotti further finds that tax multipliers range from positive to negative impact

on output (insignificant in the US). Apart from this heterogeneity of responses to fiscal shocks, Perotti also

shows that the potency of fiscal policy weakened substantially over time in the OECD. Favero and Giavazzi

(2007) and Chung and Leeper (2007) make the important observation that a VAR that does not include a

feedback of net government spending to debt will yield an explosive debt sequence. They show that the BP

identification strategy is improved by the inclusion of a feedback of government debt to ensure stability of

the fiscal variables. With this specification, they show that fiscal variables have a large impact on the US

interest rate through debt dynamics. Furthermore, they show that fiscal shocks have a significantly smaller

impact on GDP relative to the original BP identifying restrictions because government debt is now non-

explosive. Favero et al (2011) take the debt-augmented BP VAR to a panel of fifteen OECD countries and,

in accordance with the results in Perotti (2004), find substantial heterogeneity in responses to fiscal shocks,

depending on the degree of openness and debt dynamics in the individual countries. Ilzetski (2011) uses the

BP specification to study fiscal multipliers in panels of developed and developing countries and concludes

that developed countries have positive spending multipliers but insignificant effects of tax shocks. In con-

trast, this finding is reversed in developing countries: taxes have significantly negative effects, but spending

has no effect on output.

An alternative method of identifying fiscal shocks in a VAR is through a recursive ordering: for example,

Fatas and Mihov (2001) estimate fiscal shocks with quarterly data of US data with spending, a component of

private consumption or wages, GDP, GDP deflator, taxes and the interest rate as endogenous variables. They

find that a spending shock yields increases in GDP, consumption, investment, taxes, wages, employment

and the interest rate follow whilst the price level falls. Responses to tax shocks are not studied. Similarly,

Beetsma and Giuliodori (2005) study the effects of fiscal policy spillovers through the trade channel: using

recursive VARs for France, Germany and Italy, they find evidence that tax reduction has a positive effect

on GDP in Germany, whilst increasing spending is more effective in France and Italy. Ilzetski, Mendoza

and Vegh (2013) use the Cholesky decomposition to identify fiscal shocks in a panel dataset consisting

of quarterly data for forty-four countries. These authors use sample splits to show that the multiplier of

government expenditure is larger in industrialized countries than in developing countries, large in closed

economies but small in open economies, negative in high-debt countries and finally zero under flexible

exchange rates. This exercise is repeated using annual data for the EU by Beetsma and Guiliodori (2011),

who find a government multiplier of GDP of over one percent. Furthermore, their results show that trade
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balances decline as a result of expenditure shocks in open economies and, as a result, the multiplier is

therefore far weaker.

A third methodology of identifying fiscal shocks in VARs was developed in response to criticism on the

practice of imposing zero restrictions on contemporaneous responses of fiscal variables. In this methodology

sign restrictions are placed on the shape of the impulse response functions to preserve a degree of agnosti-

cism with respect to the data generating process without commitment to a single identification strategy. For

example, Mountford and Uhlig (2009) use sign-restrictions to identify deficit, revenue, and balanced budget

shocks. The results they obtain for the US are largely complementary to the aforementioned studies but

differ in that deficit-financed fiscal shocks, i.e. pure tax and expenditure shocks with no direct co-movement

of the other fiscal variable, leave consumption and GDP unchanged within a year. Canova and Pappa (2007)

study the impact of fiscal policy on price differentials in monetary unions and impose sign-restrictions on

the contemporaneous covariance matrix of a panel VAR obtained from annual US state and EU country

data. Their methodology also identifies pure tax, government and balanced budget shocks and shows pos-

itive output responses to spending shocks. On the other hand, output multipliers of tax shocks are found to

be larger in the EU than in the US and balanced budget shocks yield negative responses. Similarly, Pappa

(2009a) studies the impact of fiscal policy on the US labour market and finds strongly positive effects of

fiscal expansions in both aggregate and disaggregated data. Pappa (2009b), again using sign-restrictions,

presents a cross-country comparison of the impact of government spending shocks on key variables. She

concludes that considerable heterogeneity is present in responses but that the signs typically are similar to

the aforementioned studies.

Caldara and Camps (2008) compare the various identification schemes above and find that the signs of

spending shocks are largely the same over all identification strategies as long as the specification of the VAR

contains the same variables and the same country is studied with data at the same frequency. They argue that

the observed differences in responses found from fiscal VARs is due mostly to the proportion of the fiscal

variables that responds automatically to business cycle movements and not to the identification scheme

applied: the larger these automatic stabilizers are, the more distortionary their effects are. This is echoed in

Auerbach and Gorodnichenko (2012): using the BP-specification, they estimate a smooth transition time-

varying VAR that uses a measure of the business cycle as an indicator for the system across states of the

economy. Their results give a further qualifier that fiscal multipliers operate most strongly at the bottom of

the cycle. This evidence corroborates the concerns of Bayoumi and Eichengreen (1995): if the SGP is too

rigid, it would harm the ability of automatic stabilizers to operate in EMU. Moreover, since certain countries

in EMU were hit harder than others, cross-country heterogeneity is expected to be exercerbated by the cycle

when studying EMU fiscal multipliers.
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5.3 Methodology

Data

We will study the effects of the SGP on the size and strength of fiscal multipliers in EMU using panel

data methods. However, as the studies in Perotti (2004), Pappa (2009b) and Favero et al (2011) suggest,

there is substantial heterogeneity present in VAR estimates of fiscal multipliers across OECD countries.

This finding seriously limits the scope for the econometric benefits of panel data and implies that we must

build datasets consisting of countries that we can reasonably expect to be similar a priori. We believe the

greater Euro-area provides a case study where such pooling can be fruitfully undertaken: the Euro zone

shares a common market for goods and services and, since the signing of the Maastricht Treaty, nineteen

EMU countries adopted the Euro. Furthermore, convergence in the Euro-area has been impressive: by

2017, all EMU members are classified by the World Bank as high income whereas the peripheral countries

are higher middle income (World Bank 2018). On the other hand, important differences do persist: whilst

Northern Europe admits a culture where tax collection is accepted, Southern Europe struggles to collect

taxes; Northern Europe consists of comprehensive welfare state regimes whilst the provisions for pensions

are less generous in Southern Europe. Finally Southern European countries struggled under the debt crisis as

investors were nervous about their ability to settle government debt whilst the North did not directly. These

differences provide an argument for a case study that compares the impact of the SGP on Northern and

Southern European economic growth and how these countries cope with the fiscal restrictions of the SGP,

especially in the aftermath of the Hellenic Debt Crisis. We consider only those countries in Southern Europe

who held the Euro since its inception, for we do not wish to murk the results with further transitory effects

of adopting the Euro at a later point in time. Furthermore, Ireland is included in the Southern European

block for reasons of financial instability, whilst we exclude Sweden, Denmark and the United Kingdom

from the panel of Western European countries for their staggered ascendance to, or indeed, opting-out

of, EMU. Moreover, since the conditions for admission into EMU carry over to use of the Euro directly,

(aspiring) EMU members in Eastern Europe make a third candidate pool for comparison, particularly since

all these countries have economic fundamentals deriving from membership of the Warsaw Pact during most

of the build-up leading to EMU. Table 5.1 below summarizes the countries in the three samples under

consideration:

Table 5.1: Samples:
Eastern Europe Northern Europe Southern Europe

Bulgaria Austria Greece
Czech Republic Belgium Italy

Hungary Finland Ireland
Latvia France Portugal

Lithuania Germany Spain
Poland The Netherlands

Coverage: 2001Q1-2013Q4 2000Q1-2013Q4 2001Q1-2013Q4
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For these samples, we collect quarterly data on total government expenditure G, total government rev-

enues R, government net debt, the price level as defined by Europe’s HICP, interest rates paid on long-term

government bonds I and population numbers spanning at most the beginning of 2000 through the end 2013.

The data is obtained from Eurostat with the exception of interest rates for certain Eastern European coun-

tries, which are from the World Bank Financial Statistics database. All data is seasonally adjusted using the

X-12 Arima routine available from the Office of National Statistics and linearly de-trended. Finally, all vari-

ables are in logarithms after being transformed to per capita to allow for the best possible comparison and

we subsequently construct the debt-to-GDP ratio D and inflation π as the first difference of the logarithm of

the HICP. The only series that are not in logarithmic form are thus the debt-to-GDP ratio D and the interest

rates which are in percentages.

Some justification regarding the fiscal variables and their frequency is required: quarterly data is pre-

ferred for two reasons. First, using quarterly over annual data makes the datasets large enough to apply

classical econometric methods in a panel data context and more importantly, we follow the identifying

assumption of Blanchard and Perotti (2003) that fiscal variables take time to respond to changes in the eco-

nomic environment. That is, we assume that a fiscal variable does not respond to news about the other

within the same quarter and occurs with implementation lags. Furthermore, our VARs are estimated using

total government expenditure and revenues as response variables because the SGP is defined in terms of

these variables, which means that fiscal variable shocks include automatic stabilisers in the data. Similarly,

the inclusion of net debt and country-specific interest rates in the VAR is motivated by Favero and Giavazzi

(2007): these variables will provide feedbacks that ensure that government expenditure cannot induce ex-

plosive, unsustainable, debt dynamics.

VAR Model

We will estimate the following VAR model for all three samples:

Xi,t =
P

∑
p=1

ApXi,t−p +
P

∑
p=1

BpDi,t−p +Ui,t , i = 1, . . . , N, t = 1, . . . , T (5.1)

where Xi,t = [Gi,t , Ri,t , Yi,t , πi,t , Ii,t ]
′, Xi,t−p and Di,t−p are lags with coefficient matrices Ap and Bp for each

p = 1, . . . ,P and the K-vector Ui,t contains equation-specific errors for each i = 1, . . . , N. We also let Cp =[
A′p, Bp

′]′ and Wi,t−p =
[
X ′i,t−p, D′i,t−p

]′
for notational brevity. In what follows, we set P = 4 because we

have at most 54 observations for each country. Furthermore, whilst Xi,t is endogenous, we will not estimate

an equation for the debt-to-GDP ratio Di,t : given Gi,t and Ti,t , the debt-ratio Di,t is implied tautologically

based on the past, the interest rate Ii,t , the growth rate of output and πi,t . This means that the number of

equations estimated is five, whilst we have twenty-four VAR parameters to estimate for each equation. We

follow Favero and Giavazzi (2007) in using the intertemporal government budget constraint to ensure the
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stability of fiscal balances. That is, the debt-to-GDP ratio in a country i at time t is defined as:

Di,t =
1+ Ii,t

(1+πi,t)(1+4Yi,t)
Di,t−1 +

exp(Gi,t)− exp(Ri,t)

exp(Yi,t)
, i = 1, . . . , N, t = 1, . . . , T,

with Di,0 calibrated at the start of the sample. The stock of debt in country i at time t is thus equal to the sum

of (i) the value of the debt at time t− 1, corrected for the time t real interest rate and (ii) the time t budget

deficit. The attractive feature of a methodology based on this identity is that we can simulate the stock

of debt over time without having to estimate the underlying process in the presence of the aforementioned

multicollinearity. Since the containment of government debt, or at least the stability thereof, is a primary

concern of the provisions of ERM and the SGP, this debt-augmentation methodology provides a convenient

tool to study the dynamics of debt under the SGP and variations thereof. However, since we use a panel data

methodology, we are forced to use the average debt in the sample under consideration:

Dt =
1+ It

(1+πt)
(
1+4Y t

)Dt−1 +
exp
(
Gt
)
− exp

(
Rt
)

exp
(
Y t
) , t = 1, . . . , T,

where Dt is the cross-sectional average over all Di,t and similarly for the other variables. Using Dt will

still give an indication of the stability of debt under various policy scenarios in the three samples under

consideration.

Estimation

To estimate the reduced form (5.1), we make an argument about the underlying processes that govern the

observed variables in the reduced form: we do not assume that our regression model is correctly specified

in the sense that it contains all relevant variables. Instead we assume that the co-movement of the omitted

variables can be summarized by unobserved factors which affect each cross-sectional element and equation

possibly with different intensity. Recent contributions in macroeconomics have stipulated the relevance

of factors in forecasting macroeconomic time series and forecasts based on these factors often outperform

forecasts based on traditional time series models using autoregressive processes, see i.e. Stock and Watson

(2002) and Banarjee et al (2008). The use of factor models for forecasting is now widespread and the factor

model has also been combined with traditional time series analysis to obtain factor-augmented estimators

(Bai and Ng, 2006). Furthermore, the Euro-area has by now sustained a substantial degree of convergence

in terms of open markets, open borders, a common currency and supranational legislation. As a result, it

is likely that the Euro-area is hit by the same outside shocks and a similar argument holds for the (Eastern-

European) EMU candidates in various stages of ERM. Moreover, the empirical contributions on EMU and

the SGP that exploit panel data by Beetsma and Guiliodori (2010b) explicitly mention the significance of

time effects for their regression equations. These considerations suggest that the presence of factors in the

data under consideration and we will assume that a realistic view of the economic system dictates that factors

are present, although we are agnostic on their origin. Factors may correspond to unobserved shocks that hit
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EMU from outside or stem from omitted variable bias because the VAR is under-specified.

In particular, we assume that the error of the k-th equation of (5.1) can be decomposed as follows:

Uk,t = ΛkFt + εk,t k = 1, . . . , K, t = 1, . . . ,T, (5.2)

where Uk,t = [uk,1,t , . . . , uk,N,t ]
′ is the N-vector stacking the composite errors of all N individuals in the k-th

equation, i.e. uk,i,t ; Λk =
[
λ′k,1, . . . , λ′k,N

]′
contains N×R factor loadings and Ft is an R-vector of factors for

the k-th equation of (5.1). We will also be agnostic about the factors that affect the i-th individual of the k-th

VAR equation. That is, we allow for the possibility that relative to the l-th composite error, there may be

more or less factors in Uk,t and these factors may or may not be correlated with those in Ul,t . Furthermore,

note that if Ft = 1 for all t and some k, then we have a fixed effects model and similarly for a time effects

model if Ft = ft with Λk fixed over i. In this sense, our model thus generalizes common panel data models

and contains either as a special cases. Finally, the N-vector of errors εk,t = [εk,1,t , . . . , εk,N,t ]
′ is assumed to

be i.i.d. over t such that E
(
εk,i,tεk, j,s

)
= 0, but E (εk,i,tεl,i,t) 6= 0 for all for i 6= j, k, l and t 6= s. Furthermore,

we let the K×K model covariance matrix E
(
εi,tε

′
i,t
)
= Ωi for each i. We will further assume that the factors

are persistent in time, that the factors and equation-specific idiosyncratic errors are ergodic stationary and

that lagged dependent variables are exogenous to the individual specific error εk,i,t .

It is not possible to estimate the system subject to the error structure (5.2) consistently without a suitable

correction if factors have persistent effects on the data. We will follow Ahn, Lee and Schmidt (2013) and

particularly Chapter 3 of this thesis by applying a parametric correction to remove the factors from (5.2).

That is, for each k we treat the loadings matrix Λk as estimable parameters and find an (N−R)×N matrix

Mk such that:

MkUk,t = Mkεk,t .

Since ΛkFt is not observed, we have to apply a normalization to separately identify its components. We will

assume that Λk =
[
Λ?′

k , IR
]′ for each k. Such a normalization is immaterial and just serves to simplify the

estimation procedure as long as the determinant of the bottom R×R block of Λk is non-zero. In that case

M can be easily constructed from the nullity of Λk as Mk =
[
IR,−Λ?

k

]
which implies a linear transformation

of Uk,t irrespective of the rank of Λk. Letting Ck,p be the k-th row of Cp at each p = 1 . . . , P and Ck =

[Ck,1, . . . ,Ck,P]
′, we can now use the method of moments to estimate the parameters of (5.1) by solving the

following orthogonality conditions for each k:

E [(Mkεk,t)⊗Zk,t ] = 0. (5.3)

In equation (5.3), each of the N−R elements of Mkεk,t is multiplied by an S-vector of instruments and the

moment vector of the k-th equation thus consists of S (N−R) orthogonality conditions and the corresponding

estimator Ĉk is known as the QDGMM estimator. Since εk,i,t is assumed to be i.i.d. over t and the regressors

are exogenous to the idiosyncratic error, this implies that all lags of all K equations are valid instruments

198



for (5.3). The intuition of equation (5.3) is that we have replaced the unobserved factors with products of

the observed data, for which we can find instruments in a standard method of moments setting. This is

convenient because the solution of (5.3) does not require estimation of the factors or imposition of structure

on the factors beyond stationarity in the current specification, although we do have to estimate Λk. Note that

we cannot estimate the factors and we therefore do not know what they are. However, since we are interested

in dynamic responses of macroeconomic variables to fiscal shocks, questions relating to the former are

beyond the scope of this study and this is not a downside in our view.

To estimate the model we use the ALS algorithm of Chapter 3. This algorithm is based on condi-

tional minimisers of the blocks of slope parameters and factor loadings which allows estimation of the VAR

equation-by-equation with little numerical difficulty. However, we cannot guarantee global convergence of

such an algorithm and only local fixed points are guaranteed if the parameter space is convex.1 A helpful

numerical insight from experimenting with artificial data is that for the algorithm to work effectively, the

VAR is required to be stable whilst bounds on the factor loadings are unknown. This implies we can choose

starting values of all VAR slope parameters in the unit disk and apply the following algorithm for the k-th

equation:

ALGORITHM 5.1:

1. Draw initial values for Ck from the uniform distribution on the interval (−1, 1);

2. a) Using the initial values generated in 1, compute Λ̂v
k;

b) Using Λ̂v
k compute Ĉv

k ;

c) Using the Ĉv
k compute Λ̂

v+1
k ;

c) Repeat 2.a-c until the difference between Λ̂v
k and Λ̂

v+1
k , Ĉv

k and Ĉv+1
k is small in Euclidean norm and

record the resulting value of the QDGMM objective function, Jw, say;

3. Repeat steps 1-2 many times and select the parameter set that corresponds to argmin
w

(Jw) from the set

of Jw’s with w = 1, . . . ,W .

We will subsequently assume that the global minimum is found after sufficient repetitions of the algorithm

and this is also the approach taken with many practical (non-convex, non-linear) GMM problems in the

literature. For the problem at hand, we have set W = 5000 for each equation of the VARs and typically

find convergence to occur with differences less than 10−4 in Euclidean norm scaled by the total parameter

count of the VAR equation both with simulated and real data. Finally, in accordance with Andrews (1997),

we apply Algorithm 1 three times to obtain an approximation to the efficient GMM estimator. The first

estimator uses a conformable identity matrix as weight matrix whereas the following two use the inverse

covariance matrix of the previous estimators as weight matrices.

The moment conditions in (5.3) can hold only if we know the true number of factors in the data and

we will use a generalization of the ratio estimator of Ahn and Horenstein (2013) to estimate this number: if
1See i.e Bertsekas (1999), section 2.7 or Grippo and Sciandrone (2000)
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the estimator of Cp is consistent, then the residual of the first block of (5.1) stacked over all i = 1, . . . , N is

the residual (5.2). The key insight of Ahn and Horenstein (2013) is that the factors component of (5.2) is

of different order than the usual error component εk,t as measured over T−1
∑Uk,tU ′k,t and as we know from

Chapter 4, this property carries over to the ordered eigenvalues of the covariance matrix of the residual of a

regression equation. We therefore evaluate the ratio λi/λi+1 for each equation of the VAR of each sample

and choose the number of factors where it is largest.

The final ingredient needed for impulse-response analysis is an estimate of the covariance matrix of

the VAR (5.1) of each subsample. Direct estimation based on Ûk,t = Xl −∑
P
p=1Ck,pW−p yields an estimate

of the covariance matrix that paints an incorrect picture of the idiosyncratic component of the covariance

matrix because the factors are not removed from that matrix. We will therefore estimate the average factor-

corrected covariance matrix Ω as follows: define Rmax = max [R1, . . . ,RK ] to be the largest number of factors

estimated across all K equations and define the orthogonal projector associated with the Λk of the N−Rmax

cross-sectional elements as Mk and the one associated with Λl of the N−Rmax cross-sectional elements as

Ml . Using these projectors and the N−Rmax residuals Uk,t , we can get estimates of the k diagonal elements

of Ω = ∑
N−Rmax
i=1 Ωi as follows:

E
{

Mk [ΛkF + εk,t ] (Mk [ΛkF + εk,t ])
′} = MkE

{
εk,tε

′
k,t
}

Mk

= MkΦkMk,

where Φk = diag(Ωk,1, . . . , Ωk,N) is the cross-sectional covariance matrix of the k-th VAR equation which

is diagonal by assumption. Taking the trace and dividing by N−Rmax, we find the k-th diagonal element of

Ω as:

1
N−Rmax

trace(MkΦkMk) =
1

N−Rmax
trace(MkΦk)

=
N−2R

N−Rmax
trace(Φk)

= (N−2R)Ωk,k,

and thus:

Ωk,k =
1

N−2R
trace

(
Mk

[
1

N−Rmax
Φk

]
Mk

)
.

Off-diagonal elements are constructed in a similar fashion. Let Ml = IN−Rmax−Pl and let the cross-sectional
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covariance matrix between the k-th and l-th equations be Φk,l = diag(Ωk,l,1, . . . , Ωk,l,N), then:

1
N−Rmax

trace(MkΦk,lMl) =
1

N−Rmax
trace(MlMkΦk,l)

=
1

N−Rmax
trace(Φk,l) trace(MlMk)

=
1

N−Rmax
trace(Φk,l) trace([IN−Pk] [IN−Pl])

=
1

N−Rmax
trace(Φk,l) [N−Rk−Rl + trace(PkPl)] ,

so that

Ωk,l =
1

[N−Rk−Rl + trace(PkPl)]
trace

(
Mk

[
1

N−Rmax
Φk,l

]
Ml

)
.

We can estimate both the on and off-diagonal elements of the VAR covariance matrix from sample analogues

and make use of the fact that the cross-sectional correlations do not matter. This is in line with estimation of

Ω based on standard OLS VARs. Note however that estimation of the covariance matrix in this fashion puts

a further restriction on the number of factors one can estimate: where estimation of the VAR coefficients

requires the number of factors to be smaller than the number of cross-sectional units, estimation of the

covariance matrix requires N > 2Rmax.

Structural VAR Identification

Before we can discuss identification of the fiscal shocks we must first consider the implications of the SGP.

Technically, the SGP imposes the following condition on the annual government deficit of each country:

4×s

∑
t=4×s−3

(Gi,t −Ri,t)

Yi,t
≤ 0.03∀i = 1, . . . ,N, t = 1, . . . ,T and s = 1, . . .S, (5.4)

where s is used to indicate the start of all S fiscal years in the sample. Since the SGP has been in operation in

the sample of countries we consider, the model we estimate is conditional on being within the bounds of the

SGP, especially when a debt-feedback is included. For that reason we will also examine a stronger version

to the SGP. That is, we consider a strict version of the SGP by linearly interpolating the annual SGP over its

corresponding quarters as averaged over N:

Gt −Rt

Y t
≤ 0.0075 t = 1, . . . ,T (5.5)

The crucial point is that strict interpretation of the SGP imposes a contemporaneous link between G and R

at any time t and this has implications for the identification of impulse response functions of the estimated

VAR. Similar studies seeking "kinked" dynamics are the monetary VAR models at the zero lower bound

in Peersman (2011) and Schenkelberg and Watzka (2013). In these papers, (sign) identification in "non-
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standard" times is derived from a theoretical model at an otherwise unobservable real zero-lower bound on

the interest rate and compared with "normal times," where the difference stems from identification based on

the dynamics of a model at, and away from, the zero lower bound. We offer a similar argument by treating

the strict interpretation of the SGP (5.5) as "non-standard" times.

We have argued above that fiscal shocks are inherently difficult to identify and it is therefore problematic

to impose a lot of structure on both the impact and the dynamic responses of the system to fiscal shocks. For

this reason, we will follow Mountford and Uhlig (2009) by implementing a set of zero and sign-restrictions

that deliver prototypical fiscal shocks to our model whilst maintaining the assumption that fiscal variables do

not contemporaneously respond to one another. Table 5.2 summarises the identified shocks and restrictions:

Table 5.2: Shocks and sign-restrictions to identify model (5.5):
Shocks G R Y P I G−R

Y

Fiscal
Revenue Shock 0 < 0 . . . . . . . . . ≤ SGP for t = 1, 2, . . . , τ

Balanced budget Shock G = R > 0 . . . . . . . . . 0 for t = 1 :≤ SGP for t > 1
Expenditure Shock > 0 0 . . . . . . . . . ≤ SGP for t = 1, 2, . . . , τ

Other
Liquidity Shock . . . . . . . . . . . . > 0 ≤ SGP for t = 1, 2, . . . , τ

Business Cycle Shock . . . > 0 > 0 . . . . . . ≤ SGP for t = 1, 2, . . . , τ

The shocks in table 5.2 are directly adapted from Mountford and Uhlig (2009), apart from the liquidity

shock. The other new restriction is the requirement that
(
Gt −Rt

)
/Y t ≤ SGP for t = 1, 2, . . . , τ: The SGP

thus operates as an additional constraint on the impulse response functions over the full forecast horizon,

and when SGP = 0.0075, it mimics the quarterly approximation to the true annual SGP as discussed above.

In all cases, the response variables that have signs imposed by a particular shock are restricted to maintain

that sign for at least four quarters and are thereafter unrestricted, other than the SGP-constraint which binds

over all forecasting periods up to τ. On the other hand, when dynamics are unrestricted, they are denoted by

” . . .”.

The pure revenue and expenditure shocks in table 5.2 correspond to archetypical fiscal shocks found in

many studies employing conventional restrictions on the covariance matrix of model (5.1) but do not employ

unrealistic contemporaneous zero-restrictions on any of the non-fiscal response variables Y, π and I by

leaving both their impact and dynamic responses fully unrestricted. On the other hand the zero restriction on

the mirror fiscal variable in the pure shocks is consistent with the argument of BP that one fiscal variable will

not affect another fiscal variable in the same quarter. As such, this identification strategy harmonizes sign-

restrictions with the BP-identification above and further separates them from the balanced budget shock: the

balanced budget shock is another special case where taxes finance expenditure exactly in the first period,

in addition to both fiscal variables being larger than zero for the first four periods. We consider such a

shock to be prudent fiscal stimulus to the economy which is intended to show if net-expenditure stimulates

the economy. We also identify two non-fiscal shocks because, as Mountford and Uhlig (2009) argue, non-

fiscal shocks are required the fiscal shocks in order to identify the fiscal shocks and this means they must

be causally prior. The first is a liquidity shock which yields a one-off increase in the interest rate on the
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remainder of the system. Such a shock may result in acute refinancing problems and we imagine it has

detrimental effects on a country under refinancing constraints. We also identify a business cycle shock to

disentangle fiscal from "other" shocks hitting the system: the business cycle shock has direct impact on tax

receipts and GDP, but has otherwise unspecified dynamics. Such a shock is consistent with the notion of

automatic stabilization: when output increases, so do tax receipts.

Implementation of both sign- and zero-restrictions is done by the methodology of Arias et al (2018)

which entails finding orthogonal matrices Q which are uniformly distributed with respect to the Haar Meas-

ure on O(K). This technically necessary condition implies a unique mapping of measure one and is invariant

under rotations and reflections, thus leaving the distributional properties of the data unchanged. Zero restric-

tions, or equality restrictions in the case of the balanced budget shock, are found by imposing linear restric-

tions on the random matrix Q and then projecting onto the null-space of the previous columns by means

of the QR-decomposition, rather than imposing non-linear constraints on the system directly, which is a

substantially more difficult problem. Finding such matrices is a generalization of the usual sign-restrictions

algorithm as in Rubio-Ramirez, Waggoner and Zha (2010) and is straightforwardly implemented on the es-

timated covariance matrix of a VAR: let Ω be the reduced form covariance matrix of equation (5.1) and Ω
1/2

its Cholesky factor so that Ω
1/2

Ω
1/2′

= Ω. Then, for conformable Q and by orthonormality, QQ′ = IK , so

that Ω
1/2

Q
(

Ω
1/2

Q
)′

= Ω
1/2 and exploration of the space of Q matrices is equivalent to exploration of valid

sign-restrictions on the impulse-response functions with zero-restrictions in place. Drawing many matrices

Q and storing those satisfying the sign-restrictions thus yields an impression of the possible models that can

be generated from the estimated VAR without committing to a fixed identification pattern like Cholesky or

indeed the BP-VAR.

We now replace Cp, Λk and Ω by estimates and assume the εk,i,t are normally distributed. Then condi-

tional on the Ĉp, Λ̂k and Ω̂, the following Monte Carlo procedure is used to obtain a distribution about the

impulse response functions:

ALGORITHM 5.2:

1. Draw residuals εv
t from the estimated and centred Ω̂ and simulate the data using the starting values of

the data, the exogenous variable D and the estimated K× (K× (1+P)−1) VAR slope parameters Ĉp

for p = 1, . . . ,P;

2. Estimate the reduced form VAR (5.1) by panel OLS and record the Ω̂
v

and Ĉv
p for p = 1, . . . ,P;

3. Draw w = 1, . . . ,W random orthonormal matrices matrices Q that satisfy the zero restrictions and

simulate impulse response functions, save those which satisfy the sign restrictions;

4. Repeat steps 1-3 v = 1, . . . ,V times to obtain a distribution about the impulse response functions with

sign and zero restrictions imposed.

Algorithm 5.2 is a bootstrap analogue of the Bayesian methodology developed in Arias et al (2018) and is

asymptotically equivalent to a Bayesian re-sampling scheme conditional on the QDGMM parameters using
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a fixed prior for the covariance matrix Ω. Note that for each OLS repetition, we draw W orthonormal

matrices Q rather than until a certain number of Q satisfy the sign restrictions. This means that the weight

given to models with many Q satisfying the sign restrictions is high and, following Arias et al (2018), needed

for correct posterior inference.

5.4 Results

On Estimation of the Model and the Number of Factors

We estimate the three VARs for Eastern, Southern and Western Europe using the tools developed in the

previous section. Since we deal with quarterly data, the number of lags is set at P = 4 and we absorb

constants and trends in the factor space. In estimating model (5.1), we have used all cross-sectional units

of all equations as instruments for the GMM procedure after applying the quasi-difference procedure to the

data. To keep the number of instruments as low as possible we have only used the first four lags of all cross-

sectional units as instruments in each equation: this is the least required number of instruments to estimate

the corresponding VAR parameters consistently. However, as a result of the choice of instruments, the

weight matrices of the second and third step estimators are no longer positive semi-definite and we are forced

to use a generalized inverse instead to weight the estimator. Estimation is subsequently undertaken using

Algorithm 5.1, where we have started the algorithm 5000 times until convergence for each step of a three-

step QDGMM estimator. We find the same parameter convergents over the search space with differences no

larger than 10−4 in individual parameters using different seeds of the random number generator. All VARs

we estimate are stable in the sense sense that no eigenvalues of the companion form constructed from the

coefficients of the endogenous variables lie outside the unit circle.

We then apply Algorithm 5.2 with V = 5000 and W = 10000 to obtain a bootstrap distribution about the

impulse-response functions. The yield of permissible models under the imposed sign-restrictions is typically

in the range of one-hundredth to one percent of each bootstrap iteration and we thus obtain a distribution

about the models that is larger than the number of bootstrap iterations. This means that we study jointly

more than one identified model and the result is that some of the impulse-response functions are more noisy

than those typically reported in the literature. Since all data apart from the interest rates on long government

paper are in logs, the interpretation of the impulse responses is that the percentage change in one variable

leads to percentage change in another variable.

Finally, tables 5.6-8 in Appendix 5.1 contain the number of factors we find in the data of all three VAR

models using the specification of a testing-up procedure as discussed before. When the number of factors

is unclear, we estimate the model again but quasi-differencing once more and then analyse the eigenvalue

ratios of the covariance matrix T−1
∑

T
t=1Uk,tU ′k,t for the k-th equation and the largest eigenvalue ratio is then

subsequently taken to be the number of factors. We find clear evidence of factors driving at least part of the

residual of many of the VAR equations. Particularly, the I and π equations contain at least one factor in all

three models, but up to two factors not uncommon in many models. In other VAR equations however, the
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results are less clear as can be seen from the tables and the testing-up procedure is followed to the outcome

of the number of factors in the final columns of the table for each equation in each sample.

Interpretation of Impulse-Response Functions without the Strict SGP Imposed

Appendix 5.2 contains the impulse-response functions based on the QDGMM estimator without the strict

SGP imposed on the three panels. The impulse-response functions show the 16th, 50th and 84th percentiles

of the distribution obtained from algorithm 5.2.

Table 5.3: Percentage QDGMM impact multipliers to fiscal shocks without strict SGP.
Western Europe Southern Europe Eastern Europe
Y P I Y P I Y P I

Balanced budget shock 0.49* -0.01 0.00 1.58* -0.53* -0.33 0.22 0.03 -0.01
Expenditure shock 0.09 -0.01 0.01 -0.02 0.00 -0.03* 0.21* 0.03 0.00

Revenue shock -0.03 0.02 0.00 0.32 -0.18* 0.25 0.03 0.03 0.01
(*) implies the impact multiplier is within the confidence bands.

We consider first the balanced budget shock. The balanced budget shock yields strong sustained re-

sponses in all three models and the fiscal variables slowly move back to zero over a period of over three

years. As can be seen from table 5.3 above, the response of GDP on impact is significant in Western and

Southern Europe but not in Eastern Europe. The strength of the impact multiplier especially in Southern

Europe is striking, as these countries suffered the most from the crisis in the period of the sample and suggest

that responsible stimulus is not only desired but has strong effects on the economy. Over time, the response

to a balanced budget shock is always positive and strongest in Western and Southern Europe where the pos-

itive effect on GDP persists for up to three years. In Eastern Europe, the admissible models are much wider

and the balanced budget shock takes almost three years to become significant. Inflation responses are insig-

nificant in Eastern and Western Europe but fall on impact in Southern Europe and rise as output increases.

The response of the rate on government paper to a balanced budget shock is also insignificant in Western

Europe, as we expect investors to not respond to the fiscal policy choices of well-perceived governments

in Western Europe much. In Eastern Europe, by contrast, a small rise in the interest rate is perceived after

about two years when the response of tax collection becomes insignificant and the spending component of

the shock is no longer matched. The interest rate on Southern European debt visibly decreases over time

when the balanced budget shock hits the system and both receipts and spending are significantly different

from zero. This also suggests that investors in Southern government paper value responsible fiscal policy

in the South of Europe strongly in a sample period that includes both the Financial and Debt crises. The

debt-to-GDP ratios fall in the short run in all three regions although its effects are rather modest and return

to parity within five quarters. The dynamics are characterised as follows: whilst the budget deficit is small

and GDP grows, the stock of debt is discounted and its per capita value is reduced.

The own-responses of a pure government expenditure shock are very similar across the regions and the

shock dies out within five and twelve quarters respectively. Only in Eastern Europe is the impact multiplier
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of output significantly different from zero. In Southern and Western Europe, the output multiplier instead

is insignificant and neither taxes nor output move on impact. In Western Europe, the expenditure shock is

followed by a dip in taxes and output around the tenth quarter, whilst output and taxes rise with a delay of

about five quarters in Sourthern Europe. By contrast, expenditure is matched by taxes in Eastern Europe and

GDP rises for four quarters as a result. Eastern and Western Europe have insignificant responses of inflation

to the government spending shock, whilst inflation increases with output in Southern Europe and persists

for another ten quarters. The interest rate is insignificantly affected by the spending shock in Eastern and

Western Europe, although it falls slightly as output rises in Southern Europe. Finally, it should be expected

that the debt-to-GDP ratio rises directly as a result of the spending shock and does so most strongly in

Western and Southern Europe as a result to a pure expenditure shock. This effect occurs with a delay in

Eastern Europe as revenues rise with output in the short run.

An unanticipated tax shock dies out within five quarters in Southern and Western Europe and does not

have a significant impact multiplier of output. On the other hand, a tax shock raises government expenditure

with a time lag, which in turn stimulates the economy. This effect is strongest in the Eastern European coun-

tries and weakest in Southern Europe, where the effect is insignificant in all but the third quarter following

the shock. Of all the fiscal shocks, indeed, Eastern Europe seems to be benefited most by fiscal policy which

first raises a firm basis in tax collection before trying to stimulate the economy with fiscal spending. On

the other hand, the effect of the revenue shock on inflation is small and insignificant in Eastern and Western

Europe, only rising somewhat as output rises in response to tax-stimulated government expenditures. In the

Southern region by contrast, inflation falls significantly in the first year following the shock and a slowdown

of inflation appears to be linked to tax receipts. The interest rate is again insignificantly affected in the

West, although the model now suggests that rising taxes point to falling costs of government borrowing,

with the impulse response broadly mirroring that of the expenditure shock. In Eastern and Southern Europe

the tax shock has opposite effects on the interest rate: in Eastern Europe, after initial fiscal balancing, the

very strong and persistent effect on government expenditure pushes the interest rate up after six quarters for

a period of roughly fifteen quarters. In Southern Europe by contrast, the interest rate lags behind the tax

receipts and falls as a result. However, as the tax shock dies out and spending rises, the interest rate also

moves back up to its initial value. The debt-to-GDP ratios of Eastern and Western Europe fall initially for

up to twenty quarters following the tax shock. In Eastern Europe, the rising interest rate thereafter pushes

the ratio to a level slightly higher than before the shock occurred although not significantly so. In Western

Europe, the result is an indefinite reduction in the debt-to-GDP ratio: for the duration of the shock, the West

runs a surplus, whilst the interest rates are not affected much and output growth and inflation experience a

slight increase, thus eroding the debt. In Southern Europe by contrast, the debt-to-GDP ratio is unaffected

by a revenue shock, which implies that the countries in the sample are debt-constrained: even as taxes rise,

the debt does not fall significantly.

The effects of a business cycle shock has somewhat similar effects on all three regions under consider-

ation: the increase in taxes brought about by the economic upturn persists for at least eight quarters whilst

output also stays positive for at least six quarters. The effect on government expenditure is somewhat dif-
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ferent across the blocks however: in Eastern Europe, government expenditure sees a small but persistent

increase, which further amplifies the upswing on output and receipts. In Southern Europe by contrast, gov-

ernment expenditure initially falls, reflecting the times of crisis that the Southern region has been exposed

to the in the past decade. In the West, government expenditure is initially unaffected by the cycle although it

turns significantly positive for approximately two years afterwards. As expected, inflation moves with rising

output in Eastern and Western Europe with a delay. In Southern Europe, we observe a temporary deflation

linked to increased tax receipts. Regarding the interest rate in Western Europe, we find very little response

of these variables to the business cycle. In Eastern Europe, we observe a temporary hike after approximately

two years occurs in response to rising deficits. Significantly different dynamics are observed in Southern

Europe: the combination of an initial government surplus on impact, coupled with positive economic growth

yields a sharp and significant reduction in the rate on government paper. However, as soon as the growth

declines and the surpluses move towards deficits, the interest rate actually rises to above its original level

before returning to parity. As we would expect, in the short to medium run, debt-to-GDP ratios in all three

regions decline but move up in the medium run to approximately their initial levels. The reason is clear: as

deficits fall or become surpluses and economic growth erodes the cost of servicing debt, debt-to-GDP ratios

fall.

Finally, regarding the shock to interest rates on government bonds, it is clear that the responses to this

shock are poorly estimated in Eastern and Western Europe: either the confidence bands are very wide,

suggesting that many models fit the estimated reduced form, or they are centred around zero, or both. The

response of all variables to a liquidity shock is typically insignificant, both on impact and over the forecast

horizon, which suggests that government expenditure does not respond to the cost of repaying the debt much

in the short run. This is not unreasonable, as no countries in these samples have had re-financing difficulties

over the course of the sample period. In the case of Southern Europe however, the story is quite different: as

interest rates rise, both expenditures rise and revenues fall which result in an increase in output. The interest

rate keeps rising however whereas the response of the fiscal variables dies out within a year and induces a

surplus, after which the variables move back to their initial values over time. This result is puzzling, although

it is consistent with the following arguments: first, the shock may not actually identify a liquidity shock but

instead an irresponsible fiscal policy shock. That is, slashing revenues and raising expenditure stimulates

the economy, but also makes investors nervous. The result is rising interest rates and as governments in

the South fear they cannot service their debt, they quickly move into surpluses again. Second, as Southern

European countries become increasingly unable to service their debt, the European Union offered collateral

which gives breathing room to national governments in the South. This implies that rising interest rates

actually operated as short-run stimuli to debt-constrained countries in the South, through the mechanism of

guarantees by the European Union.
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Discussion

It is difficult to directly compare our results with the existing literature: most studies focus solely on the

US and the identification approach is often either recursive or using the BP approach. Moreover, the exact

specification of the VARs is different and/or only a subset of the shocks and their responses is studied and,

as we have seen before, these differences can be quite substantial. However, as we have noted, the fiscal

shocks in the BP identification scheme can be interpreted as being either pure tax or government expenditure

shocks. Similarly, the first shock of a recursive scheme with either taxes or expenditure ordered first can be

interpreted as a pure shock in either variable. On the other hand such schemes lack a balanced budget shock,

which we have identified as the most important shock for all three regions in Europe.

BP (2002) study the effects of tax and spending shocks in the US and their results show that a positive

tax shock reduces output significantly and government spending falls slightly, whilst a spending shock raises

taxes and eventually GDP. These findings are essentially echoed in Fatas and Mihov (2001) who study a re-

cursive VAR of the US economy. Compared to our findings for the three European regions, these results are

quite different however: instead, we find that government expenditure has positive (auto-) correlation with

the tax shock and this interplay may actually increase output. Regarding the effect of a positive spending

shock, we do not find an unequivocal increase in output in all European region. Rather, the strength and

persistence of the shock are actually closely linked to the sustainability of the response as matched by suf-

ficient tax receipts. This finding is in agreement with a form of Ricardian Equivalence: in countries with

strong automatic stabilizers, the economy will not resond to fiscal stimulus much unless it does not come at

the cost of future taxes. We offer two points that may help explain these differences: first of all, we have

aggregated macroeconomic data of relatively short time series, a time of considerable uncertainty with two

large area-wide crises and overall uncertainty about the sustainability of EMU where countries gave their

national monetary policy abilities over to the supranational ECB. The second point is that drawing inference

for economies across the world based on only the US might lead to rather incorrect conclusions. Indeed, in

Perotti (2004) some nuance is added to these conclusions by studying several OECD countries individually

and the effects of negative tax shocks on GDP can actually be negative. Comparing the results of a positive

government expenditure shock in Ilzetzki et al (2012), we immediately run into the problem of the division

of data: the countries in all three regions are classified as high-income in that paper, where by contrast we

find substantially different dynamics between the regions, thus suggesting that the aggregation in Ilzetzki et

al masks these differences. Moreover, whilst the impact multipliers of the spending shock are comparatively

small, we do not find significantly positive responses in all three regions. Beetsma and Guiliodori (2011),

using annual data, find strongly increasing output dynamics and falling taxes on impact in their recursive

panel VAR based on fourteen original EU members, including Denmark, Sweden and the United Kingdom.

We attribute the differences in estimation results to the use of annual data, which obscures quarterly effects,

whilst the pooling of two completely different regions, as well adding in several countries that are not mem-

ber states of EMU, will aggregate, or indeed, amplify the strongly positive effects of the spending shock in

the South compared with insignificantly small effects in the West.
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Regarding fiscal VARs that are identified with sign-restrictions, the balanced budget scenario as identi-

fied for the US in Mountford and Uhlig (2012) yields the exact opposite of our findings: Where we see the

strongest increases in GDP, Mountford and Uhlig find a significantly negative effect, reflecting the fact that

taxation is low and the taxation multiplier strongly negative, whilst the government multiplier is comparat-

ively small in the US. A further point relates to their definition of government revenues and expenditures,

which is not as comprehensive as our measure. Such findings are also broadly in line with Canova and

Pappa (2005) and the results in Pappa (2009) for the US. Moreover, Pappa’s results for an aggregated meas-

ure of EU macroeconomic data also confirm our findings regarding the fiscal shocks, although we do not

distinguish between government consumption and investment but instead aggregate these series.

We have seen that the effect of fiscal shocks on the interest rate has a strikingly strong correlation with

the ability to increase the tax revenues of the European periphery, whilst the interest rate of Western Europe

is largely unaffected. It is not difficult to argue that the strength of the Western European economies makes

their governments be perceived as credible and trustworthy borrowers, so that financial markets do not

require compensation when unanticipated fiscal shocks occur in that region. This result is broadly similar to

the results from Fatas and Mihov (2002), Pappa (2005) and Perotti (2004) for Europe, at least when spending

shocks are considered. Giuliodori and Beetsma (2005) find similar results for France and Germany in their

VAR results, specifically with insignificant responses of the interest rate variable. Contrarily, in Eastern

and Southern Europe, we see the interest rates on government paper rise when the revenue basis for fiscal

expansion erodes. The extreme example is Southern Europe: when taxes are increased, a sharp decline in

the interest rate is observed. This has to do with the nervousness of creditors to those countries, whose

perception of improvement fiscal stances comes with substantial refinancing rewards. However, as soon as

the tax shock dies out, the interest rate hikes up again, sometimes to higher values than before because the

revenue shock did little for repayment of outstanding debt. Again, Giuliodori and Beetsma (2005) find a

similar result for Italy using their single-country VAR. This idea is also complimentary with the argument

of Fernandez-Villaverde et al (2015), who explain such unexpected responses of interest rate and price

variables by means of periods of fiscal uncertainty.

The result that inflation does not move significantly with fiscal shocks in Western Europe conforms with

the findings of Giuliodori and Beetsma (2005) for Italy and Germany and Fatas and Mihov (2004) for the US.

Interestingly, the sign restrictions of Mountford and Uhlig (2012) show insignificant responses of inflation

to fiscal shocks only when they are anticipated. When they are surprise shocks, they have opposite effects:

negative for expenditure and positive for taxation shocks. Furthermore, only when a positive business cycle

shock hits the system does inflation move significantly in their specification. With monetary policy out of

the hands of the individual countries of Western Europe yet possibly somewhat biased towards that region

by the ECB, we would expect only minimal responses to fiscal shocks in the region. This finding is in line

with the result of Mountford and Uhlig (2012) for the US, although we do only find a small peak at the

fourth quarter but do not observe an eventual significant rise as they do after some ten quarters. The finding

that inflation drops significantly and strongly as a result of rising taxes in Southern Europe is somewhat

surprising at first glance. However, we must remember that the sample contains both the mortgage and debt
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Table 5.4: Percentage OLS impact multipliers to fiscal shocks without strict SGP.
Western Europe Southern Europe Eastern Europe

Y P I Y P I Y P I

Balanced budget Shock 0.57* -0.06 0.02 0.72* -0.16 -0.16 0.54* 0.04 -0.03
Expenditure Shock -0.04 -0.02 0.01 -0.10 0.00 -0.09 0.51* 0.03 -0.01

Revenue Shock 0.08 0.01 -0.01 0.04 0.01 0.02 0.18* 0.02 -0.02
(*) implies the impact multiplier is within the confidence bands.

crises, which forced strong negative wage renegotiations in some of these countries. Thus, as taxes rise

and disposable income falls, inflation must fall to compensate for bloating inventories. On the other hand,

Southern Europe does not control its monetary policy anymore due to EMU and therefore could not slash

interest rates to try to spur growth and inflation. In times of financial turmoil, strained means to fight these

recessions thus yielded falling inflation when tax revenues are increased. Such fiscal volatility has been

studied in Fernandez-Villaverde et al (2015) and indeed they find that increasing fiscal uncertainty yields

falling prices.

Comparison with Panel OLS Results

We have also estimated the three VARs using panel OLS to compare with our QDGMM methodology: we

know that factors are present in the data of all three VARs but we want to get a sense of the potential differ-

ences/bias from estimating the model when ignoring the factors. We have experimented with deterministic

terms and found that there is little difference in the dynamics of models estimated with no constant, a con-

stant or fixed effects. Therefore, to conserve both space and degrees of freedom, Appendix 5.3 only reports

OLS results without any deterministic terms and as before we have set the number of lags equal to four

and subsequently calibrated the debt-to-GDP ratio. The VARs for Eastern and Western Europe are stable as

measured by the eigenvalues of the VAR companion matrix, whereas the VAR for Southern Europe is not.

As can be seen from table 5.4, impact multipliers of fiscal policy shocks on output are smaller and

often non-significant with panel OLS, although all impact multipliers of output for Eastern Europe are now

significant. Moreover, the confidence bands on OLS are quite wide for the fiscal variables and in general

OLS responses have more often insignificant impulse-response functions than the QDGMM results and

many more rotations fit the data. These findings show that not accounting for the factors leads to substantial

bias in the results and that interpretation of such results is very prone to error.

Regarding Western Europe, we see that OLS responses are typically far less accurately estimated than the

QDGMM responses. Compared to the OLS estimates, the QDGMM response of output is less persistent than

the one obtained through OLS. This is because the own-response of the fiscal variables is less pronounced.

As a result, the debt-to-GDP ratio is structurally higher in the OLS calibration. The spending shock never has

significant effects on taxes and output in the OLS estimates and is very poorly estimated. A broadly similar

effect is observed for the tax and business cycle shocks in both OLS and QDGMM responses, although the

timing is different and more delayed in the QDGMM results. The response of the debt-to-GDP ratio derived
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from the OLS estimator is always in the same direction as the QDGMM estimator, but larger for the OLS

responses. Inflation is broadly similar in shape in both estimators, but the response of the interest rate is

very different, although insignificant in both.

The signs of the fiscal shocks in Eastern Europe are also broadly similar in the OLS and QDGMM

responses, although the QDGMM responses are far more persistent. Because the covariance matrix estim-

ated from OLS responses is far larger in magnitude, the debt ratio behaves far more erratically, although

the shape of the response is broadly similar. The OLS responses show increases in the interest rate after

about six quarters in all fiscal shocks as the tax basis for fiscal expansion deteriorates. This is similar to

the QDGMM responses although those are not significantly estimated as such. Broadly similar behaviour is

found for the business cycle and interest rate shocks where we note that the business cycle shock yields far

less persistent responses of all the variables in the system.

Since the panel OLS estimates yield an unstable VAR for Southern Europe, the responses of fiscal

variables are far more persistent as compared to those obtained by QDGMM. OLS results suggest that a

balanced budget shock yields strongly negative government expenditure after an initially positive spending

response in addition to strongly positive tax receipts. This coupled with positive GDP growth yields an

unrealistically large and sustained decline in the debt-to-GDP ratio and only the price response appears

broadly similar. The government expenditure shock is much stronger on impact but appears to have the

same shape and sustain. However, since taxes do not move in response to the spending shock, output is

insignificant over the whole forecast horizon. This would suggest a similar dynamic as with the QDGMM

estimates, although this finding is far less clear. Furthermore, since the median response of tax receipts is

now negative (but insignificant), the debt-to-GDP ratio now explodes. A similar effect occurs with the pure

tax shock, mirroring negatively the spending shock. The business cycle shock has an insignificant effect

on impact for the spending variable which turns somewhat negative over time. This is very different from

the negatively oscillating effect found with QDGMM. The effect of the output and tax variables is however

somewhat similar and only for the restricted first four quarters are they positive. As a result, the debt-to-

GDP ratio again violently drops over the entire forecast horizon. Finally, the interest rate shock has similar

dynamics in both models, but the effect on output now is slightly negative after about two years. The fiscal

variables display an initially positive spending and insignificant revenue effect, but revenues actually fall

with the interest rate over time again. As a result of the falling revenues, now the debt again explodes.

Impulse-Response Function with the SGP Imposed

We have argued in Section 5.3 that the SGP is an additional constraint on the impulse-response functions,

in addition to the sign and zero-restrictions in the previous section. This means that the impulse-response

functions that satisfy the SGP and the sign-restrictions are a subset of the impulse-response functions that

satisfy only the zero and sign-restrictions. As a result, imposing the SGP is straightforward and the com-

parison is direct. Studying that subset then allows us to study if ‘responsible’ fiscal policy as measured by

an SGP-type rule suggests better stimuli and at the same time asses how the one-size-fits-all nature of the
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Table 5.5: Percentage QDGMM impact multipliers to fiscal shocks with strict SGP imposed.
Western Europe Southern Europe Eastern Europe
Y P I Y P I Y P I

Balanced budget Shock 0.58* -0.01 0.02 1.83* -0.59* -0.34 0.19 0.06 -0.03
Expenditure Shock 0.05 -0.01 0.00 -0.02 0.00 -0.04 0.19* 0.00 0.00

Revenue Shock 0.04 0.03 0.01 0.35 -0.17* 0.23 0.10 0.01 0.03
(*) implies the impact multiplier is within the confidence bands.

policy works out in the regions. Another important point is that the SGP has been operational over the full

length of the sample in the EMU countries and imposing the SGP based on equation (5.4) is expected to

have little impact on the impulse response functions. This is indeed the case: when drawing the distribution

and identification structures of the impulse-response functions in the previous section we find them to be no

different than the impulse-response functions found with the SGP imposed. However, as one would expect,

the strong interpretation of the SGP as a quarterly constraint does have some impact. Since the constraint

implies either government expenditure or taxation is directly changed to satisfy the SGP, compensatory

movement of the fiscal variables spread out over four quarters is no longer possible and we expect to see a

reduction in the ability of fiscal policy to stimulate the economy; The impact multipliers are summarized in

table 5.5 whereas impulse-response functions are in Appendix 5.4.

The subset of the impulse-response functions that are restricted to satisfy the strict SGP, lead to the

following conclusions. First of all, the Southern European responses are qualitatively the same as those

without the strict SGP imposed. This finding implies that Southern Europe has been forced into extremely

prudent fiscal policy over the sample period as a result of being hit hardest by both the mortgage and debt

crises as investors were nervous about their ability to service government debt in addition to a response

through the EDP. These constraints further offer an explanation as to why both balanced budget and pure

government expenditure shocks stimulate the economy so strongly in Southern Europe: since the scope for

fiscal stimuli is limited, any stimulus improves the condition of the economy over a prolonged period of

time and any shock that increases taxes reduces the interest rate, thus further alleviating immediate pressure

on repayment of the government debt.

The impulse-response functions for Eastern Europe are also largely similar, reflecting their attempts to

ascend into EMU in a decade that was riddled by crisis. Only in the case of the revenue shock does strictly

adhering to the SGP yield a significantly different dynamic: when expenditure is restricted to be within the

bound of the SGP, output becomes significantly positive in approximately two rather than five quarters and

so does the rate on government paper. As we have seen before, the Ricardian equivalence argument works

strongest in the East and it is therefore not surprising that prudence is valued in the region. This also has

an effect on the debt-to-GDP ratio, which after an initial dip rises faster because government expenditure is

higher in response to the initially higher taxes.

Finally, in Western Europe, the strict SGP makes balanced budget shocks far less capable of stimulating

the economy. That is, although the impact multiplier is still positive and significant, as taxes fall after
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approximately three years, the compensating fall in expenditure pushes output into the negative. Whilst the

effect on the interest rate is still insignificant in the first two years, it rises marginally as the fall in tax receipts

leads the fall in expenditure. This outcome has an important effect on the calibration of the debt-to-GDP

ratio, which now rises more strongly with the balanced budget shock. Something opposite is found with

the revenue shock: whilst revenue clearly moves first, the need to compensate subsequent expenditure with

revenues reduces the power of fiscal stimuli on GDP than in a scenario where the strict SGP is not imposed

and output thus rises far less. However, the erratic behaviour of the government expenditure variable reverses

the shape of the median interest rate and, as a result, rather than observing a fall in the debt-to-GDP ratio,

we find that it increases now. The responses of the government expenditure, business cycle and interest

rate shocks actually differ very little in either case, showing how Western European governments apparently

follow a very strict interpretation of the SGP when compensating variables in accordance with the SGP. The

only difference between the two identification strategies is that the interest rate is either slightly higher or

lower and as a result, so is the debt-ratio.

In summary, several remarks regarding a strict interpretation of the SGP are in order. Although the

crisis has constrained Southern Europe to adherence to very strict fiscal policy rules, we find that strict rules

impede on the ability of Western Europe to stimulate the economy. On the other hand, in Eastern Europe,

we find that a stronger SGP may actually help strengthen the effects of fiscal stimulus, a result we could

interpret as giving credibility to the policy makers there. These results suggest that one single rule to govern

EMU fiscal policy may not be the best way to restrict local governments from overspending. Moreover,

we have used the debt-to-GDP ratio to assess the degree to which the SGP brings thrift to the Euro zone.

As we have seen, the effect of either a weak or strong SGP has ambiguous effects on the debt-ratio and

may actually exacerbate the negative effects of rising debt-ratios, something that the SGP was designed to

explicitly avoid.

5.5 Conclusions

In this paper we have given an extensive overview of the empirical evidence on fiscal policy and the SGP

specifically. The empirical literature fears that the adoption of the SGP will deny the union from access

to fiscal stabilization and will make fiscal policy more pro-cyclical. On the other hand, the VAR literature

has spent considerable effort on finding “the” effect of fiscal shocks on the economy. Various identification

strategies have been applied to VARs estimated from data of varying countries and periods. From a bird’s

eye perspective, results based on differing identification strategies are broadly similar in terms of signs and

shapes of the responses, although substantial differences exist when comparing VARs of different countries

and/or periods of time. These results are further complicated by the strength of automatic stabilisers in the

country and period under scrutiny and the definition of fiscal variables in the study at hand. As has been

noted by others, it is therefore difficult to conclusively characterise the strength and shape of fiscal impulse-

response functions in the general case. We have subsequently developed a methodology to estimate panel

VARs in the presence of factors: we assume, and subsequently find, that factors are present in the panel
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data under consideration and correct omitted variable bias due to the factors by using a quasi-difference

methodology, which is then estimated through non-linear GMM. Our stance towards the factors is therefore

a purely practical one, regardless of what they are, their presence requires us to take them into account to

improve the precision of our inference. Our estimator furthermore holds the cross-section fixed in an effort

to reduce excessive cross-sectional heterogeneity and thereby justify pooling of the datasets. The results

we then find are quite different from pooled OLS estimates: the impact multipliers of the shocks are larger

for the QDGMM estimator and the shapes of the responses also differ substantially, suggesting that not

correcting for the factors leads to rather wrong inference on the estimated VARs.

Our results show that there is relatively little evidence for the theoretical concern of intentional violation

of the SGP by member states, at least on average. Instead, we find that Southern European countries have

been under the threat of debt-default which results in a strict adherence to the SGP. In Eastern Europe by

contrast, more responsible fiscal policy as measured by an SGP-type rule can actually improve the potency

of fiscal stimuli. Finally, only in Western Europe do we observe a reduction in potency of fiscal policy

for stabilizing the cycle. In all cases, such a rule does very little to reduce debt burdens in the Euro-

zone. This finding is complementary to the view that one-size-fits-all is not the best way to constrain

individual governments from overspending in EMU. We interpret these findings as corroborating the call for

a supranational tax and transfer system in the Euro-zone. Regarding the debate on volatility and cyclicality

of fiscal policy in EMU, we note that whilst the VAR methodology we have developed cannot account for

such characteristics directly, it does appear to numb fiscal policy in Western Europe whilst Southern Europe

is severely constrained in its policy choices by forces outside of the SGP. This result is taken as further

evidence of sterilization of fiscal stimulus in Europe due to EMU, although other countries stand to gain

from more credible fiscal policy as we have seen is the case in Eastern Europe. This observation together

with the fact that our sample contains two large economic crises thus seems to suggest that the SGP has not

been very helpful to European stability.

Placing our results in the wider body of fiscal VARs, we echo the observation that heterogeneity in res-

ults based on the countries studied is very clearly visible in our findings. Compared to the mostly US-based

evidence in the literature, we find that in Europe the best recipe for fiscal stabilisation or indeed stimulation

is when government increases taxes along with expenses to develop a strong basis for a subsequent expan-

sion. In Eastern Europe, this effect is especially pervasive and an increase in taxes yields so strong a tax

basis to finance government expenditure for a prolonged period of time and subsequently stimulates output

substantially. Moreover, it would appear that a Ricardian Equivalence argument can be put forward to pure

government expenditure shocks in the sense that the economy does not move much but instead anticipates

either taxes to rise in response or that the shock is transitory. On the other hand, in Southern Europe and

Ireland, a balanced budget and pure expenditure shocks yield extensive output growth. Since these countries

were were hit most by the crisis and severely constrained in discretrionary fiscal policy by outside sources,

it is therefore no surprise that their economies thus move accordingly even without a tax basis to finance

expansionary fiscal policy.

As for future research, it would be very interesting to apply the QDGMM methodology to other VAR
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problems. More specifically, we can imagine that panel VARs estimated from Atlantic, Asian and South

American countries would be an important extension to the study undertaken in this paper and the compar-

ison with the results in this paper would shed further light on the strength and persistence of fiscal multipli-

ers in a variety of economic circumstances and systems. That is, working under the factor hypothesis with

VARs estimated from suitably similar countries, using data collected with similar definitions could aid our

understanding of what determines effective fiscal policy and if there are circumstances where fiscal policy

is not.

Appendix 5.1 Eigenvalue Ratio Tests for the Number of Factors

Table 5.6: Western Europe
λi/λi+1

Equation: 1 2 3 4 5 # Factors
G 2.29 2.06 2.56 2.01 1.17 1
R 2.14 1.23 1.77 1.44 1.41 1
Y 6.73 1.38 2.43 1.47 1.19 1
P 3.79 1.94 1.36 1.89 1.59 1
I 15.50 6.61 1.35 1.26 1.88 2

Table 5.7: Eastern Europe
λi/λi+1

Equation: 1 2 3 4 5 # Factors
G 1.43 1.60 1.26 2.28 1.64 2
R 1.85 1.63 1.46 1.30 1.19 2
Y 3.00 2.17 1.31 1.78 1.16 2
P 4.87 1.54 1.49 1.35 2.00 1
I 4.48 1.76 1.35 1.35 1.24 2

Table 5.8: Southern Europe
λi/λi+1

Equation: 1 2 3 4 # Factors
G 1.28 1.72 2.35 2.31 2
R 1.07 2.54 3.03 1.01 2
Y 2.46 3.89 2.85 1.18 2
P 3.74 1.91 1.48 1.56 1
I 2.91 4.78 1.65 2.57 2
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Appendix 5.2 Impulse-Response Functions for Quasi-Difference Vector Autoregressions
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Appendix 5.3 Impulse-Response Functions for OLS Vector Autoregressions

219



220



221



Appendix 5.4 Impulse-Response Functions for Quasi-Difference Vector Autoregressions with SGP Im-
posed
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