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Shichao Tang  

SPECIFICATION, ESTIMATION AND TESTING OF TREATMENT EFFECTS IN 

MULTINOMIAL OUTCOME MODELS: ACCOMMODATING ENDOGENEITY 

AND INTER-CATEGORY COVARIANCE  

 In this dissertation, a potential outcomes (PO) based framework is developed for 

causally interpretable treatment effect parameters in the multinomial dependent variable 

regression framework.  The specification of the relevant data generating process (DGP) is 

also derived.  This new framework simultaneously accounts for the potential endogeneity 

of the treatment and loosens inter-category covariance restrictions on the multinomial 

outcome model (e.g., the independence from irrelevant alternatives restriction).  

Corresponding consistent estimators for the “deep parameters” of the DGP and the 

treatment effect parameters are developed and implemented (in Stata).  A novel approach 

is proposed for assessing the inter-category covariance flexibility afforded by a particular 

multinomial modeling specification [e.g. multinomial logit (MNL), multinomial probit 

(MNP), and nested multinomial logit (NMNL)] in the context of our general framework.  

This assessment technique can serve as a useful tool for model selection. The new 

modeling/estimation approach developed in this dissertation is quite general.  I focus here, 

however, on the NMNL model because, among the three modeling specifications under 

consideration (MNL, MNP and NMNL), it is the only one that is both computationally 

feasible and is relatively unrestrictive with regard to inter-category covariance.  Moreover, 

as a logical starting point, I restrict my analyses to the simplest version of the model – the 

trinomial (three-category) NMNL with an endogenous treatment (ET) variable conditioned 

on individual-specific covariates only.  To identify potential computational issues and to 
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assess the statistical accuracy of my proposed NMNL-ET estimator and its implementation 

(in Stata), I conducted a thorough simulation analysis.  I found that conventional 

optimization techniques are, in this context, generally fraught with convergence problems.  

To overcome this, I implement a systematic line search algorithm that successfully resolves 

this issue.  The simulation results suggest that it is important to accommodate both 

endogeneity and inter-category covariance simultaneously in model design and estimation. 

As an illustration and as a basis for comparing alternative parametric specifications with 

respect to ease of implementation, computational efficiency and statistical performance, 

the proposed model and estimation method are used to analyze the impact of substance 

abuse/dependence on the employment status using the National Epidemiologic Survey on 

Alcohol and Related Conditions (NESARC) data.     

Joseph V. Terza, Ph.D., Chair 
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Chapter 1:  Introduction, Background, Significance, and Summary 

 The objective of most empirical economic research is to provide solid evidence that 

can be used to evaluate past, current and future policy.  Essential to this goal is rigorous 

specification and accurate estimation of parameters that characterize the key causal 

relationships. In this dissertation, I focus on the specification, estimation and testing of 

treatment effects in multinomial outcome models. The relevant treatment effect 

specifications and estimation method are developed in a potential outcomes (PO) 

framework so as to ensure the causal interpretability of the targeted effect parameters and 

their estimates. Based on that PO (structural) model, I show how, under certain conditions, 

possible endogeneity of the treatment variable can be accommodated in a multinomial 

outcomes model of the relevant data generating process (DGP).  Moreover, within this 

endogeneity-corrected multinomial outcomes DGP framework, a new modeling strategy 

that allows for inter-category covariance flexibility (ICF) is developed and evaluated.  

Conventional modeling approaches that do not accommodate ICF are subject to 

misspecification bias and yield counterintuitive predictions – such models are often 

plagued by the so-called independence from irrelevant alternatives (IIA) restriction.  To 

my knowledge, the modeling approach that is introduced in this dissertation is the first to 

accommodate both the endogeneity of treatment and ICF, simultaneously. 

 The remainder of the dissertation is organized as follows. I begin, in Chapter 2, by 

rigorously defining the ultimate estimation objective (the average treatment effect - ATE) 

in a well-defined PO framework for models with multinomial outcomes and binary 

treatment variables.  Therein, I also derive a corresponding consistent ATE estimator 

whose formulation follows from a given specification for the multinomial PO.  It is seen 
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that, in addition to the specification of the multinomial PO, implementation of this 

estimator requires a consistent estimate of the “deep” parameters of the model.  Chapter 3 

focuses on the details of development of this consistent estimator of the deep parameters 

of the relevant PO.  This novel estimation method is designed to accommodate both the 

endogeneity of the treatment variable and ICF.  A variety of versions of the model and 

estimator corresponding to different multinomial likelihood specifications are detailed.  An 

important component of this discussion is a comparison of the alternatives with respect to 

the degree to which each of them accommodates ICF. To make such assessments, a new 

standardized measure of ICF is proposed.  In Chapter 4, a thorough simulation study of the 

nested logit model with an endogenous treatment is conducted. The simulation results 

suggest that it is important to accommodate both endogeneity and inter-category 

covariance simultaneously in model design and estimation. In Chapter 5, I apply the nested 

logit model with endogeneity in the context of real data analysis – the effect of substance 

abuse (binary) on multinomial employment status (out of the labor force, unemployed, or 

employed).  The database used for this purpose is the National Epidemiologic Survey on 

Alcohol and Related Conditions (NESARC).  Chapter 6 summarizes and concludes. 
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Chapter 2: Fully Parametric Multinomial Outcome (FPMO) Models and Causal 

Inference 

 In this dissertation, the goal is to specify and estimate the causal treatment effect in 

an FPMO model while accommodating both endogeneity and ICF within the same model 

specification.  This chapter begins with a general review of the potential outcome (PO) 

framework as discussed by Terza (2018).1 Relevant specific concepts within the PO 

framework are detailed.  These concepts are then used to specify the average treatment 

effect (ATE) in the multinomial outcome (MO) context. It is important to cast the MO ATE 

in the PO framework because, by doing so, the conditions under which it is causally 

interpretable (CI) can be made explicit.  As Terza (2018) makes clear, the essential 

condition here is that, conditional on the relevant vector of control variables, the 

multinomial PO and the observed version of the causal treatment variable are stochastically 

independent.  I note here that some of the requisite regression control variables are 

unobservable. (This is the part of the specification that embodies the endogeneity of 

treatment.) This chapter continues by proposing a stylized consistent sample analog 

estimator of the MO ATE.  This estimator is a sample analog in the sense that mathematical 

expectation and deep population parameters are replaced by mathematical expectation and 

consistent parameter estimates, respectively.  The design of this estimator, at this point, 

                                                 
1 The main focus of this dissertation is comparison of specifications and estimators for the “deep” parameters 
(e.g., random utility parameters) of a multinomial outcome model while simultaneously allowing for 
endogeneity of treatment and inter-category covariance flexibility.  As will be seen, inclusion of these two 
modeling features adds considerable analytic and computational complication to the discussion.  For this 
reason, I have tried to keep other features of the model as simple as possible without substantial loss of 
generality.  For instance: 1) I only explicitly consider the simplest version of the treatment effect – the ATE 
– and leave discussions of other versions like the local average treatment effect, marginal treatment effect, 
average treatment effect on the treated and average treatment effect on the untreated  (see Heckman et al., 
2003 and Heckman and Vltlacil, 2005) to future research; 2) I focus on the trinomial case; and 3) I only 
consider model specifications involving observation-specific regressors that do not vary across alternatives 
(e.g. person-specific demographic and socio-economic characteristics).   
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assumes resolution of two key practical issues:  a) the essential fact that requisite elements 

of the relevant vector of regression controls are unobservable; and b) consistent estimation 

of the deep population parameters.  These are the main topics covered in Chapter 3.  

Chapter 2 concludes by explicitly specifying the generic form of the probability mass 

function (pmf) of the observed version of the MO conditional on the causal variable and 

the regression controls, including the unobservables, (under the conditional mean 

independence condition noted above).  This pmf formulation is a key component of the 

relevant data generating process (DGP) and, therefore, is essential to the discussion in 

Chapter 3 whose focus is resolving aforementioned issues (a) and (b). 

 
2.1 Specifying the Treatment Effect of Interest in the Potential Outcomes 

Framework2 

 The focus here is rigorous specification and accurate estimation of the ATE in a 

FPMO modeling context characterizing the causal relationship between a binary policy 

variable of interest ( pX ), which to some degree is (or can be brought) under the control 

of a policy maker, and a specified multinomial outcome of policy interest ( Y ).3 I first draw 

the distinction between two versions of the pX :4 

  

                                                 
2 See Terza (2018) for a detailed and more general discussion of the PO framework. 
3 pX  and Y are to be taken as global replacements for  the phrases “policy variable of interest” and 
“outcome of policy interest,” respectively. 
4 Henceforth I will adhere to the following notational conventions:  1)  uppercase letters for random variables 
(e.g., A); 2) lowercase letters for particular values in the support of the random variable in question (e.g., a) 
and 3) uppercase letters with an “i” subscript for the sampled version of the random variable in question (e.g. 
Ai with i = 1, …, n indicating the ith observation from a sample of size n). 
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pX  ≡ the binary random variable representing the observable (factual) version of the 

distribution of the pX  (The sampled values of the policy variable are drawn from the 

distribution of  pX .) 

and 

*
pX  ≡ the binary random variable upon which a policy relevant counterfactual is based 

(e.g., if the distribution of the pX  were that of *
pX , what would be the distribution of the

Y ?).5   Note *
pX  is, by design, independent of all other variates germane to the present 

discussion. 

 
Likewise I distinguish two versions of the Y : 

 

1 JY [Y . . . Y ]≡  ≡ the random vector representing the observable factual version of the 

distribution of the Y (The sampled values of the outcome are drawn from the distribution 

of Y.). Each of the individual elements of Y are binary variables and Y is a mutually 

exclusive and collectively exhaustive outcome 

and   

* * *
p p pX X 1 X JY [Y . . . Y ]≡  ≡ the random vector representing the distribution of potential 

outcomes, defined as the distribution of values of the Y  that would have manifested for a 

particular *
pX .  Stated as a relevant counterfactual. If the distribution of the pX  were *

pX  

                                                 
5 To clarify, I use the Free Dictionary definition of the term counterfactual – a conditional statement in which 
the first clause is a past tense subjunctive statement expressing something contrary to fact.  When I use the 
term counterfactual as an adjective in describing a random variable I mean to convey that it has been, can 
be, or will be used as a key component of a relevant counterfactual. 
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then the distribution of the Y  would be that of *
pXY .  *

pXY  denotes a multinomial outcome 

(i.e., a  mutually exclusive and collectively exhaustive categorical outcome), defined such 

that, for the jth  category, *
pX jY 1=  and all other elements of *

pXY  are equal to zero. 

 
Throughout the remainder of the discussion, I focus on the average treatment effect (ATE) 

defined in the above PO framework as 

 
 j 0 j 1jATE E[Y ] E[Y ]= −        (1) 

 
The ATE in (1) is configured so as to conform to the illustrative example (detailed in 

Chapter 5) in which the Y  is employment status [ES] (out of the labor force, unemployed, 

or employed) and the pX is substance abuse [SA] (current abuse and/or dependence on 

alcohol, marijuana, cocaine, heroin, sedatives, tranquilizers, opioids, amphetamines, 

solvents, hallucinogens, or other drugs).  In the context of this illustration, the causally 

interpretable (CI) parameter in (1) measures the potential impact on ES of a fully effective 

drug treatment policy designed to prevent and eliminate SA. The effect of the prevention 

component of the treatment policy is measured as the resultant change in the likelihood of 

being in a particular ES category.  For instance, in the illustrative example, the prevention 

effect is represented by the increase in the probability of being in the “employed” state as 

a result of “preventing” the non-abusers from becoming abusers (under the assumption that 

they would have become abusers).  The effect of the elimination component of the 

treatment policy is measured likewise.  For instance, in the illustrative example, the 



7 

elimination effect is represented by the increase in the probability of being in the 

“employed” state as a result of convincing all abusers to become non-abusers.6 

 
2.2 FPMO Models in the Potential Outcomes Framework 

 Parameters like (1) cannot be directly estimated from data because 1jY  and 0 jY  

are counterfactual and, therefore, do not represent observable statistical populations from 

which samples can be drawn.  Let us suppose, however, that the potential outcome *
pXY  

(defined in the previous section) has the following conditional probability mass function 

(pmf) given a vector of covariates C 

 

 
*X jp

* *p Xp

YJ* *
(Y | C) p j pX j 1

pmf (Y | C) f (X , C; τ) π (X , C; τ)
=
∏= =    (2) 

where *
p

*
j p X jπ (X , C; τ) Pr(Y 1 | C)= = is the jth category probability (of has known form) 

and τ is a vector of unknown parameters.7  Henceforth, I refer to the vector τ as comprising 

the “deep” parameters of the model.  It follows from (2) that all of the conditional moments 

of *
pXY  are of known form. In particular, for j = 1, ..., J the conditional mean of *

pX jY is 

 
 * *

p p

*
j pX j X jE[Y | C] Pr(Y 1| C) π (X , C; τ)= = = . (j = 1, ..., J)  (3) 

 

                                                 
6 I realize that the hypothetical policy that I  describe in this section is somewhat stylized and that the ATE 
as defined in (1) is best viewed as an upper bound on the relevant policy effect.  As mentioned in footnote 1, 
throughout the dissertation, in order to keep this aspect of the discussion as simple as possible (without 
substantial loss of generality), I maintain (1) as policy-relevant parameter of interest.  The focus of the present 
research is the development and comparison of methods for simultaneously dealing with possible 
endogeneity of the policy variable and a flexible covariance structure for the multinomial outcome categories. 
7 (A|C) (A,B,C;ψ)g denotes the pmf of A conditional on C, written as a function of A, B, C with 
parameter vector ψ. 
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Using the law of iterated expectations, combining (1) with (3)  

 
 j j jATE E[π (0, C; τ) ] E[ π (1, C; τ)]= −      (4) 

 
To this point in the discussion, not much about the role and composition of the vector of 

covariates C has been said.  For the remainder of the dissertation I assume that it can be 

partitioned as 

 
 o uC [X X ]=          (5) 

 
where oX  is a vector of observable controls (confounders – loosely speaking, variables 

that are correlated with both Y and pX ) and uX is a scalar composite of all relevant 

unobservable confounders.8   Note that uX is included so as to account for the potential 

endogeneity of pX .  The variate uX , in fact, embodies the endogeneity of pX  because it 

comprises all unboservables that are related to both Y and pX .  Given this specification of 

C in (5), (4) can be rewritten as 

 
 

uj X j o u j o uATE E E [π (0, X , X ; τ) π (1, X , X ; τ)] = −     (6) 
 
2.3 Estimating the Treatment Effect of Interest 

 uX  cannot be observed but, as seen later in this dissertation, I will formalize its 

aforementioned relationship with pX  and, given a consistent estimate of τ (say τ̂ ), this 

will be sufficient for consistent estimation of (6) using 

 

                                                 
8 See Terza (2018) for a more rigorous definition of the term “confounder.” 
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  { }u

n
j X j o u j o u

i 1

1 ˆ ˆATE E π (0, X ,X ; τ) π (1, X , X ; τ)
n=

∑  = −     (7) 

 
Asymptotic standard errors for the jATE  (j = 1, ..., J) can be obtained using the approach 

of Terza (2016a,b).9  Note that because (7) is consistent for (1), which is CI, results 

obtained from (7) are also CI.  As this discussion makes clear, two items are needed for the 

implementation of (7):  1) formalization of the relationship between uX  and pX ; and 2) a 

consistent estimator for deep parameters: τ. 

 
2.4 Towards Consistent Estimation of the Deep Parameters of the FPMO Model with 

an Endogenous Treatment 

 As is the case in any full information estimation context, in order to implement the 

relevant maximum likelihood estimator, the explicit specification of the pmf characterizing 

the data generating process (DGP) for p o u[Y X X X ]  is needed.   

 Without imposing certain conditions, the DGP does not directly follow from the 

PO model in (2).  Terza (2018) discusses the requisite conditions and I argue that these 

conditions are satisfied in the present context.   To summarize, these conditions are 

sufficient to ensure that, given oX  and uX , Y and pX  be conditionally independent, in 

which case the true data generating process (DGP) for p o u[Y X X X ]   is such that10 

 
 p o upmf (Y | X , X , X )  

  
* o uXp

(Y |X , X ) p o uf (Y,X , X , X ; τ)=  

 

                                                 
9 See Appendix A detailing the asymptotic standard errors for the ATE estimators in (7). 
10 See Appendix B 
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  j
J Y

j p o u
j 1

π (X , X , X ; τ)
=
∏=        (8) 

 
Expression (8) amounts to substitution of Y for *

pXY , and pX  for *
pX , in (2).  

 Equation (8) is important because it is the key for the estimation of the deep 

parameters to be discussed in the next chapter. Equation (8) bridges the gap between the 

potential outcome framework and the true DGP so that the casually interpretable ATEs and 

deep parameters in the potential outcome framework can be estimated using data.  
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Chapter 3:  General and Specific Versions of the FPMO Model with an Endogenous 

Treatment 

 Chapter 3 begins by detailing the random utility maximization (RUM) behavioral 

model underlying structure of the MO models to be considered in this dissertation.  It is 

shown how, in this RUM context, alternative structural specifications for the PO (and by 

implication the corresponding DGP) follow from the pmf formulation detailed at the end 

of Chapter 2 and alternative specifications for the random components in the RUM model.  

The underlying motivation for this discussion is assessment of the ICF afforded by such 

alternative specifications weighed against difficulty of implementation (Stata coding and 

computational efficiency). A fully generic version of the RUM-based MO is developed in 

the PO framework.  This generic model is one that imposes no ICF restrictions.  For 

simplicity of exposition, and without substantive loss of generality, the remainder of the 

dissertation focuses on the trinomial outcome case. A “standardized” version of this model 

is derived.  In order to better understand the implications of this standardized model, its 

fully restricted version is detailed (zero covariance among the MO categories).  Based on 

this standardized model, a method for assessing the inter-category covariance 

restrictiveness of a particular MO PO modeling specification is developed.  This 

assessment method allows direct comparison of the ICF afforded by chosen model 

specifications with the fully restrictive version of the generic standardized model.  At this 

point in the chapter, I note that three MO PO specifications will be considered in this 

dissertation – multinomial logit (MNL), multinomial probit (MNP) and nested multinomial 

logit (NMNL).  MNL is computationally easy to implement but affords no ICF (zero 

covariance among the MO categories).  MNP lies at the other extreme of the spectrum.  It 
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offers maximum ICF but is quite computationally challenging.  NMNL resides somewhere 

between MNL and MNP in that it allows some degree of ICF but is computationally 

practical.  

 At this point, I suspend more detailed discussions of the MNL, MNP and NMNL 

modeling approaches until later in the chapter, turning instead to a discussion of the 

resolution of items (a) and (b) mentioned at the end of Chapter 2 for a given MO PO 

specification – viz., (a) how to handle the unobservable controls; and b) how to consistently 

estimate the deep parameters of the model.  Following the general approach suggested by 

Terza (2009), I propose that item (a) be resolved by assuming a conventional parametric 

binary response specification for the causal treatment variable whose random component 

is a scalar comprising the unobservable controls needed for invoking conditional 

independence between the causal treatment variable and the MO PO.  Implicit is such a 

specification is an assumed distribution for the said random component.  For example, one 

can assume a probit model for the causal binary treatment model (as is done in the 

simulation and real data analyses conducted in chapters 4 and 5 – discussed later).  Implicit 

in this model is the assumption that the random component, which by assumption 

encompasses the requisite unobservable regression controls in the MO PO model) is 

standard normally distributed.  This resolves item (a).   

 Following the general modeling approach suggested by Terza (2009), using the 

assumed binary response model for the causal treatment variable (e.g. binary probit), and 

a given MO PO specification (e.g., MNL, MNP or NMNL), Chapter 3 then continues with 

a derivation of the pmf of the joint density of the MO PO and the causal treatment variable 

conditional on the observable regression controls and identifying instrumental variables 
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(IV). (The IV are needed to identify:  i) the deep parameters of the MO model that pertain 

to the causal treatment variable; and ii) by implication, the ATE of the causal treatment 

variable.)  Given the conditional mean independence of the MO PO and the causal 

treatment variable (i.e., conditional on the observable and unobservable controls), I derive 

the relevant joint pmf of the observed causal treatment variable and the observed MO 

conditional on the observed regression controls and the IV.  From this pmf follows the 

relevant log-likelihood function which can be maximized to obtain consistent estimates of 

the deep parameters of the model.  This resolved item (b). 

 As promised earlier, the remainder of Chapter 3 details the MNL, MNP and NMNL 

specifications for the MO PO conditional on the observable and unobservable confounders 

(regression controls).  In this part of the discussion, special attention is paid to the extent 

of ICF afforded by each of the alternative specifications.  In the main, ICF is characterized 

in terms of the independence from irrelevant alternatives (IIA) condition.  Models that are 

subject to the IIA condition are more likely to produce biased estimates of the targeted 

causal effects and yield counterintuitive predictions.  In the case of NMNL, in addition to 

discussing how this specification can avoid IIA, I demonstrate how the standardized 

measure (discussed earlier in this chapter) can be applied in the simplest version of the 

model. 

 
3.1 The General Formulation of the PO and DGP for the FPMO Model with an 

Endogenous Treatment 

 The PO specification in expression (2) [and by implication the DGP in (8)] requires 

an explicit form for *
j p o uπ (X , X , X ; τ) .  There are a number of alternative specifications 
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for these category probabilities; many of which are derived from a primitive behavioral 

model called the random utility model (RUM).11   In the RUM it is assumed that  

 
 *

pX

jth element

Y [0 . . . 1 . . . 0]
↑

≡   iff.  * *
p p

o o
X j X rY max{Y ; r 1, ..., J}= =  (9)  

 
where 

 *
p

o * o o o
p pr o or u ur rX rY X β X β X β ε= + + +       (10) 

 oX   a vector of observation-specific characteristics that do not vary across  

   alternatives) 

 uX   the scalar representing the unobservable confounders 

 o o o o
r pr or urβ [β β β ]′ ′=  is the vector of coefficient parameters for the rth utility 

index12 

and 1 2 Jε = [ε ε ... ε ]  is  a vector of random error terms having a constant mean vector 

and covariance matrix 

 

                                                 
11 It is not necessary that the multinomial category probabilities be based on an underlying RUM structure.  
As will be seen later in the dissertation, one can formulate a coherent multinomial probability structure that 
is not based on the RUM. 
12 Note here that there other types of relevant observable confounders that might, if available in the data, be 
included in the specification of (10); e.g., a vector of alternative-specific characteristics that do no vary 
across individuals, a vector of observable characteristics that vary across both individuals and alternatives 
and/or a vector of observable characteristics of the alternatives that are constant across the alternatives in 
each of a specified set of subgroups (nests) but vary across subgroups (nests).  I include only observation-
specific confounders that do not vary across alternatives for simplicity of exposition but without loss of 
substantive generality. 
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2
1 12 1J

2
12 2 2J

2
1J 2J J

σ σ σ

σ σ σΣ

σ σ σ

 
 
 =  
 
 
 





   



.       (11) 

 
Note that o

urβ  and the elements of o
rβ  vary across alternatives. 

 For simplicity of exposition, and without substantive loss of generality, let us focus 

on the trinomial case (J  = 3).  From the general version of the model given in (10) and (11) 

there are 

   
  3 coefficient parameter vectors for the utility indexes, viz., 

  o o o
p1 o1 u1[β β β ]′ ,  o o o

p2 o2 u2[β β β ]′  and o o o
p3 o3 u3[β β β ]′ . 

  
 3 variance parameters jσ  (j = 1,  2,  3)  

and  

 3 covariance parameters jσ


 (j,   = 1, 2, 3; j≠  ). 

 
In this framework, if the distribution of 1 2 3ε = [ε ε ε ]  is known, the multinomial 

outcome probability for the first category, as defined in equation (2), can then be written 

as13 

 *
p

*
j p X jπ (X , C; τ) Pr(Y 1 | C)= =  

 *
p

*
1 p o u o uX 1π (X , X , X ; τ) Pr(Y 1 | X ,X )= =  

                                                 
13 See Appendix C detailing similar derivations for the general multinomial model (arbitrary J)  
 



16 

  * *
2 2 3 3Pr(ξ V ,ξ V )= ≤ − ≤ −  

  * *
1 2 3G ( V , V )= − −        (12) 

 
 
and for categories j 2 or 3=  

 
 *

p

*
2 p o u o uX 2π (X , X , X ; τ) Pr(Y 1 | X ,X )= =  

  * * *
2 2 3 2 2 3Pr( ξ V , ξ ξ V V )= − ≤ − ≤ −   

  * * *
2 2 2 3G (V , V V )= −        (13) 

 
 *

p

*
3 p o u o uX 3π (X , X , X ; τ) Pr(Y 1 | X ,X )= =  

  * * *
2 3 3 2 3 3Pr(ξ ξ V V , ξ V )= − ≤ − − ≤   

  * * *
3 3 2 3G (V V ,V )= −        (14) 

where 
 
 * * * * *

j p pj o oj u ujV X β X β X β= + +        (15) 
 
 * o o

j j 1β = β β−  
 
  
 
 1G ( , )   denotes the bivariate cdf of 2ξ  and 3ξ  
 
 2G ( , )   denotes the bivariate cdf of 2ξ−  and 3 2ξ ξ−  
 
 3G ( , )   denotes the bivariate cdf of 2 3ξ ξ−  and 3ξ−  
and 
 
 j j 1ξ ε ε= − .         (16) 
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The exact formulations of 1G ( , )  , 2G ( , )   and 3G ( , )   follow from the assumed 

distribution of  1 2 3ε = [ε ε ε ] .  Note that an admissible reduction of the model is evident 

in (12), (13) and (14) because it allows the relevant probabilities to be expressed in terms 

of the J 1−  normalized coefficient parameter vectors of the form * *
l j[β β ] .14 

 I now turn to the derivation of the standardized versions of (12), (13) and (14).  I 

do this in order to gain insight regarding parametric identification and as a means of 

standardizing the characterization of covariance flexibility for the various FPMO models 

arising from alternative specifications for the distribution of 1 2 3ε = [ε ε ε ] .  In the 

trinomial case there are 2 unique utility differences 2ξ  and 3ξ .  This means that there are 

at most 2 identified variance parameters 

 
 * 2 2

j j j 1 1jvar(ξ ) ω σ σ 2σ= = + −       (17) 

 
for j = 2 or 3, and a one covariance parameter 

 
 * 2

2 3 23 23 12 13 1cov(ξ , ξ ) ω σ σ σ σ= = − − + .     (18) 

 
After standardizing the relevant random variables 2ξ , 3ξ  and 3 2(ξ ξ )−  by dividing by 

their respective standard deviations, the model can be admissibly reduced by 

 
 1) dividing *

jV  by *
2ω        (19) 

and 
 2) dividing *

jω  and *
23ω  by *

2ω       (20) 

 

                                                 
14 For the definition of an admissible reduction see Terza (1985). 
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for  j = 1, to obtain the following bivariate expressions 

 

 * s 3
1 p o u 1 2

3

Vπ (X , X ,X ; τ) G V ,
ω

 − = −
 
 

     (21) 

 
where  
 

 s
1 )G ( , =   the bivariate cdf of 2ξ  and 3

3

ξ
ω

 

 
*
j *

j p pj o oj u uj*
2

V
V X β X β X β

ω
= = + +       (22) 

 *
pj pj*

2

1β β
ω

=  

 *
oj oj*

2

1β β
ω

=  

 *
uj uj*

2

1β β
ω

=  

and 

 * *
3 3 2ω ω / ω= .  

 

The correlation matrix for 2 3[ξ ξ ]  (i.e., the covariance matrix of 2 3 3[ξ ξ / ω ] ) is 

 

23

3
1 2 3

23

3

ω1
ω

D [ξ ξ ]
ω 1
ω

 
 
 
= 
 
 
 

       (23) 

 
 
where * *

23 23 2ω ω / ω= .  Similarly, for j = 2 and 3, respectively,  
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 * s 2 3
2 p o u 2 2

3 23

(V V )π (X , X ,X ; τ) G V ,
1 ω 2ω

 − =
 + − 

    (24) 

and 
 

 * s 3 2 3
3 p o u 3

3 23 3

(V V ) Vπ (X , X ,X ; τ) G ,
1 ω 2ω ω

 − =
 + − 

    (25) 

where 
 

 s
2 )G ( , =   the bivariate cdf of 2ξ  and 3 2

3 23

ξ ξ

1 ω 2ω

−

+ −
 

 

 s
3 )G ( , =   the bivariate cdf of 2 3

3 23

ξ ξ

1 ω 2ω

−

+ −
 and 3

3

ξ
ω

. 

 
 
with respective correlation matrices 

 

23

3 23
2 2 3 2

23

3 23

1 ω1
1 ω 2ω

D [ξ (ξ ξ )]
1 ω 1

1 ω 2ω

− 
 + − − =  −
 

+ −  

   (26) 

and 

 

3 23

3 3 23
3 2 3 3

3 23

3 3 23

ω ω1
ω (1 ω 2ω )

D [(ξ ξ ) ξ ]
ω ω 1

ω (1 ω 2ω )

− 
 + − − =  −
 

+ −  

.  (27) 

 

Note that in all of the above expressions, 2ω  is normalized to be equal to 1. The full 

parameter vector in the standardized model is 

  
 p2 o2 u2 p3 o3 u3 3 23τ [[β β β ] [β β β ] ω ω ]′ ′= .    (28) 

 
In summary, in this trinomial case, the number of parameters is admissibly reduced from 
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nine (three random utility coefficient vectors, three variance parameters and three 

covariance parameters) to four (two identified random utility coefficient vectors one 

variance parameter and one covariance parameter).  The parameterization (28) for this 

standardized version of the general model, is identifiable in the sense that it is the result of 

admissible (and, therefore, requisite) reduction.  Moreover, as the above discussion makes 

clear, it accommodates unrestricted correlation amongst the elements of 1 2 3ε = [ε ε ε ]  

and, therefore, allows concomitant unrestricted correlation flexibility for 2 3[ξ ξ ] , 

2 3 2[ξ (ξ ξ )]−  and 2 3 3[(ξ ξ ) ξ ]− in that the off-diagonal elements of (23), (26) and (27) 

all freely range from -1 to 1.  As will be discussed later in the dissertation, such covariance 

flexibility will have a bearing on the generalizability of the estimation results. 

 Within this framework one can also examine the most covariance restrictive case 

in which the elements of 1 2 3ε = [ε ε ε ]  are assumed to be independently and identically 

distributed.  The relevant version of (11) for the trinomial case is 

 

 

2

2

2

σ 0 0

Σ 0 σ 0

0 0 σ

 
 

=  
  
 

.        (29) 

 
Correspondingly the following versions of (17) and (18) are 

 
 * 2

j jvar(ξ ) ω 2σ= =         (30) 

and 

 * 2
2 3 23cov(ξ , ξ ) ω σ= = .       (31) 
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After standardizing the relevant random variables 2ξ , 3ξ  and 3 2(ξ ξ )−  by dividing by 

their respective standard deviations, the model can be admissibly reduced by applying (19) 

and (20) to obtain the following bivariate expressions for the trinomial category 

probabilities.  For j = 1  

 
 ( )* s

1 p o u 1 2 3π (X , X ,X ; τ) G V , V= − −       (32) 
 
where 
 
 s

1 )G ( , =   the bivariate cdf of the standardized versions of 2ξ  and 3ξ  
 

 
*
j *

j p pj o oj u uj2

V
V X β X β X β

2σ
= = + +  (j = 2 or 3)    (33) 

 *
pj pj2

1β β
2σ

=  

 *
oj oj2

1β β
2σ

=  

and 

 *
uj uj2

1β β
2σ

= . 

  

 
The correlation matrix for 2 3[ξ ξ ]  in this case is 

 

 2 3

11
2D[ξ ξ ]

1 1
2

 
 

=  
 
  

.       (34) 
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Similarly for j = 2 and 3, respectively,  
 
 
 ( )* s

2 p o u 2 2 2 3π (X , X ,X ; τ) G V , (V V )= −      (35) 
and 
 
 ( )* s

3 p o u 3 3 2 3π (X , X ,X ; τ) G (V V ), V= −      (36) 
 
 
where, respectively 
 
 s

2 )G ( , =   the bivariate cdf of the standardized versions of 2ξ  and 3 2ξ ξ−  
 
 s

3 )G ( , =   the bivariate cdf of the standardized versions of 2 3ξ ξ−  and 3ξ . 
 
 
The corresponding correlation matrices are both identical to (34).  This model is completely 

correlation (covariance) restrictive in that the off-diagonal element of (34) is fixed at 1
2

. 

 Writing such FPMO models in standard form, as above, provides a “standardized” 

way of comparing alternative model specifications with respect to the degree of covariance 

restrictiveness.  The two models discussed above represent the extremes and are 

characterized in this regard by the specifications of (23), (26) and (27) for the least 

covariance restrictive case and by (34) for the most restrictive case.  Models that lie in the 

middle ground between these two extremes are usually specified via a parametric reduction 

of the unrestricted model comprising (10) and (11) –  say η  η(τ)=  , where τ is defined in 

(28) and the dimension of η is smaller than that of τ. Under such a reduction, using my 

standardization approach, the covariance (correlation) flexibility of the model can be 

characterized using the following version of (23) 
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23

3
1η 2 3

23

3

ω (η)1
ω (η)

D [ξ ξ ]
ω (η) 1
ω (η)

 
 
 
= 
 
 
 

      (37) 

 

and similarly rewritten versions of (26) and (27) { 2η 2 3 2D [ ξ (ξ ξ )]− −  and

3η 2 3 3D [(ξ ξ ) ξ ]}− −   wherein the functional forms of 3ω (η)  and  23ω (η)  are known.  

Given the known distribution of 1 2 3ε = [ε ε ε ]  and the known formulations of 3ω (η)  

and  23ω (η) , the ranges of the off-diagonal elements of 1ηD , 2ηD and 3ηD  over the domain 

of η can be traced.  This will yield a standardized relative measure of covariance flexibility 

vis-a-vis the two extreme cases discussed above. 

 As I have noted above, covariance flexibility will depend on the assumed 

distribution for 1 2 Jε = [ε ε ... ε ] .  In this dissertation, I discuss alternative specifications 

for this distribution and characterize them with regard to covariance flexibility using the 

standardization approach described above.  The most computationally tractable of the 

FPMO models is  multinomial logit (MNL).  MNL, while computationally simple, resides 

at the most covariance restrictive extreme of the spectrum because it is based on the iid 

assumption embodied in (29) [implying (34)].  Multinomial probit (MNP), on the other 

hand, affords full covariance flexibility as characterized by (11) [implying (23), (26) and 

(27)].  This model, however, has proven to be computationally intractable.  The third 

alternative, nested multinomial logit (NMNL), allows some covariance flexibility and is 

computationally feasible (in a relative sense).  For each of these model specifications, 

respectively, in sections 3.2, 3.3 and 3.4, I discuss their implications regarding an unwanted 
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consequence of covariance restrictiveness – the so-called independence from irrelevant 

alternatives (IIA) condition.  I now I turn to the analytic development of the generic form 

of the new modeling/estimation approach proposed in this dissertation. 

 One can readily see that if uX were observable, the maximum likelihood estimator 

(MLE) of τ based on (8) would be consistent.  By the same token, if uX is a confounder 

for Y and pX , a MLE based on (8) that ignores uX  (e.g., fixes its coefficient at 0) will be 

inconsistent.  This is an instance of classical endogeneity bias.  If uX is a confounder for 

Y and pX , failure to account for its role in (8), will result in spurious attribution of its 

influence on Y to pX .  In order to account for such potential endogeneity, I formalize the 

confounding relationship between uX  and pX  as follows: 

 
 p uX I(Wα X 0)= + >        (38) 

 
where W is a vector of observable regressors, α is vector of parameters conformable with 

W, the distribution of u(X | W) is known and I(C) is the indicator function whose value is 

1 if condition C holds and 0 if not.  Assume that oW [X W ]+= , where W+  is a vector 

of identifying instrumental variables (IV).  To qualify as a vector of IV, W must satisfy the 

following conditions 

 
 (1) uE[X | W] 0=  

 (2) Exclusion restriction: 
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p o u(Y|X ,X ,X ) p o uf (Y,X , X ,X ; τ)       

    p o upmf (Y | X ,X ,X )=      

     p upmf (Y | X , W, X )=  

   
p u(Y|X ,W, X ) p uf (Y,X , W, X ; τ)=  

 which implies 

  j p o u j p o uπ (X , X ,X ; τ) E[Y | X ,X ,X ]=  

   j p u j p uE[Y | X , W,X ] π (X , W, X ; τ)= =  
and  

 (3) pCOV(X , W)  is sufficiently different from zero.   (39) 

 
Condition (1) implies that W is not correlated with uX . Condition (2) is called the 

exclusion restriction because it articulates the fact that the IV in W+ play no role in [are 

excluded from] (8). Condition (3) is often paraphrased as “the IV must be strong”, where 

the metric for “strength” is the level of correlation between pX and W. 

 One cannot base an MLE for τ on (8) because uX is unobservable.  Following Terza 

(2009), combining (8) and (38) I can, however, obtain the joint pdf of Y and pX conditional 

on W as 

 

 
p p u(Y,X |W) p (Y,X ,X |W) p u uf (Y,X , W; τ, α) f (Y,X ,X , W; τ, α)dX

∞

−∞
∫=  

   
p u p u(Y|X ,W,X ) p u (X ,X |W) p u uf (Y,X , W,X ; τ, α)g (X ,X , W; τ, α)dX

∞

−∞
∫=

           (40) 
 
From (8) and the exclusion restriction in (39) it follows that 
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 j
p u

J Y
(Y|X ,W,X ) p u j p o u

j 1
f (Y, X , W, X ; τ) π (X , X , X ; τ)

=
∏= .   (41) 

 
Moreover, the joint pdf of p uX ,X given W is  

 
 p p

p u u u

X 1 X
(X ,X |W) p u u [X Wα] u [X Wα]g (X ,X , W; τ, α) (g(X ) ) (g(X ) ) −

>− ≤−=  (42) 

 
where g(   ) denotes the known pdf of u(X | W)  and [r]g(A)  represents  g(   ) subject to 

support restriction “r”.  Combining (40) through (42) yields 

 
 

p(Y,X |W) pf (Y,X , W; τ, α)         
  

 j p p
u u

J Y X 1 X
j p o u u [X Wα] u [X Wα] u

j 1
π (X , X , X ; τ) (g(X ) ) (g(X ) ) dX

∞ −
>− ≤−

=−∞
∏∫=   

  
p

j

X
J Y

j p o u u u
j 1Wα

π (X , X , X ; τ) g(X ) dX
∞

=−
∏∫

 =   
 

    
p

j

1 XWα J Y
j p o u u u

j 1
π (X , X , X ; τ) g(X ) dX

−−

=−∞
∏∫

 ×   
 (43) 

 
 
Using (43) the following sample log-likelihood function can be constructed 

 

  
p

n
i (Y,X |W) i pi i

i 1
ˆ ˆˆ ˆq(τ, α, Z ) ln f (Y ,X , W ; τ, α)

=
∑=     (44) 

 
where i i pi iZ Y X [ W  ]=  is the data vector. 

 Consistent estimates of τ and α can be obtained by maximizing (44). Note that as 

there are non-closed-form integrals in the log-likelihood function (44), Gauss-Legendre 

quadrature will be used to numerically approximate them, which adds more computational 

complexity into the implementation of the estimator. It is important to acknowledge this 
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because one criteria of assessing different models is their computational efficiency. 

Inference using these estimates can be conducted via standard asymptotic theory.  In 

particular, correct asymptotic standard errors for the MLE parameters τ̂  and α̂  can be 

obtained as the square roots of the elements of the diagonal of the estimated information 

matrix. 

 In the remainder of this chapter, I will detail the MNL, MNP and NMNL 

specifications for the MO PO conditional on the observable and unobservable confounders.  

 
3.2 Multinomial Logit and Independence from Irrelevant Alternatives  

 Suppose that 1 2 3ε = [ε ε ε ]  is i.i.d. log-Weibull distributed (i.e., the pdf of ijε  is 

j j jg(ε  exp[ ε) {exp ε }]= − − −  and is independent across j).  Under this assumption 

jE[ε ] γ= , where γ .5772≈  is the Euler-Mascheroni constant and 
2

2
j

Πσ var(ε )
6

= = .15  

As have been seen, the i.i.d. assumption implies that the covariance matrix of 

1 2 3ε = [ε ε ε ]  is (29).  Given the results from McFadden (1973) for this FPMO 

modeling specification, and the discussion supporting equations (29) through (36), the 

standardized version of this model yields the following relevant versions of (32), (35) and 

(36) 

 
 ( )* s

1 p o u 1 2 3π (X , X , X ; τ) G V , V= − −  
  

   
( )3

pr or u
*
p o u r

r=2

1

1 exp βX X Xβ β∑
=

+ + +
    (45) 

 

                                                 
15 For simplicity of exposition and without loss of substantive generality, I continue to focus on the trinomial 
case. 
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 ( )* s
2 p o u 2 2 2 3π (X , X , X ; τ) G V , (V V )= −  

 

   
( )

( )
p2 o2 u2

3
pr or ur

r

*
p o u

*
p

2
o

=
u

X X X

X X

exp β β β

1 exp β β X β∑

+

+
=

+

+ +
    (46) 

 
 
 ( )* s

3 p o u 2 2 2 3π (X , X , X ; τ) G V , (V V )= −  
 

   
( )

( )
p3 o3 u3

3
pr or ur

r

*
p o u

*
p

2
o

=
u

X X X

X X

exp β β β

1 exp β β X β∑

+

+
=

+

+ +
 .   (47) 

 
and jV  is defined as in (33).  The correlation matrices for this standardized MNL model 

are all identical to (34).  Therefore, this FPMO specification lies at the most restrictive 

extreme of the covariance flexibility spectrum. 

 As a result of such extreme covariance restrictiveness, the model can produce 

counterintuitive predictions.  This fact is well illustrated by the classic Red Bus - Blue Bus 

problem.  Suppose that initially commuters are faced with the three options (walk, car, red 

bus) with corresponding choice likelihoods as defined in (45) through (47).  Consider the 

addition of a fourth alternative -- blue bus.  Suppose that the blue bus alternative is identical 

to the red bus alternative in every respect except color -- an attribute that is assumed to 

have no influence on mode choice.  Let b
jP  denote the likelihood of the jth alternative before 

the introduction of the blue bus, where J = 3 with j =1 if walk, 2 if car and 3 if red bus.  

Likewise and let a
jP  denote the likelihood after the blue bus is introduced, where J = 4 and  

j =4 denotes the blue bus alternative. The expanded version of the model in this scenario 

comprises (45) through (47) with the summation in the denominators running from 2 to 4 
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and the addition of a blue bus (j = 4) category likelihood which is identical to (47) with the 

aforementioned denominator adjustment.   Logic dictates that a a b
3 4 3P P (1/ 2)P= = , 

a b
1 1P P= , and a b

2 2P P= .  It is, however, easy to show by example that this logical outcome 

is contradicted by the MNL model.  For example, let b b b
1 2 3P P P 1/ 3= = = .  It is easy to see 

that in the MNL model for all j and ℓ the ratio jP / P


 does not depend on the characteristics 

of alternatives other than j and ℓ.  In our example, this implies that jP / P 1=


for all pairs 

of alternatives both before and after the addition of the blue bus; in other words 

a a a
1 2 3P P P= = .  In addition, as mentioned earlier, according to logic a a

3 4P P= would be 

expect.  These conditions taken together, however, imply that the category probabilities 

after the introduction of the blue bus alternative must be such that a a a a
1 2 3 4P P P P 1/ 4= = = =

.  But this contradicts the logical result that the probabilities of walking and driving should 

both have remained equal to 1/3.  This example highlights the restriction imposed by the 

MNL specification that is commonly termed the Independence from Irrelevant Alternatives 

(IIA) condition. Formally, a RUM is said to be subject to the IIA condition if for all j and 

ℓ the ratio jP / P


does not depend on the characteristics of alternatives other than j and ℓ. 

 Because the MNL model is plagued by the IIA condition, alternative models that 

are more covariance flexible and, therefore, not subject to the IIA restriction have been 

developed.  In the following section I consider one such model, viz. the multinomial probit 

(MNP) model.  The MNP model lies at the least restrictive extreme of the covariance 

flexibility spectrum.  Unfortunately, the MNP has proven difficult to implement in 

empirical research due to the substantial computational burden it imposes and convergence 

problems related to practical identification issues. 
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3.3 Multinomial Probit and IIA 

 In the MNL model, it is assumed that the random components of the utility indexes 

are independently distributed.  It is this independence assumption that lies at the heart of 

the IIA problem plaguing the MNL model.  In the multinomial probit (MNP) model the 

IIA condition can be circumvented by specifying a covariance-flexible random utility error 

structure.  The MNP model is defined as in (9) and (10) with the additional assumption that 

1 2 Jε = [ε ε ... ε ]  is multivariate normal distributed with mean 0 and unrestricted 

covariance matrix Σ [as defined in (11)].  When J = 3, I can show that standardized version 

of the model comprises16 

 

 * 3 23
1 p o u 2 2

3 3

V ωπ (X , X , X ; τ) Φ V , ;
ω ω

 −
= − 

  
     (48)

 

 * 2 3 23
2 p o u 2 2

3 23 3 23

V V 1 ωπ (X , X , X ; τ) Φ V , ;
1 ω 2ω 1 ω 2ω

 − −
=  

+ − + −  
  (49) 

 * 3 2 3 3 23
3 p o u 2

3 23 3 3 3 23

V V V ω ωπ (X , X , X ; τ) Φ , ;
1 ω 2ω ω ω (1 ω 2ω )

 − −
=  

+ − + −  
. (50) 

 
where jV  is defined in (22), 3ω  and 23ω  are defined as in (23) and s 1 sΦ a ,  ...,  a[ ;  R]  

denotes the s-variate standard normal cdf with correlation matrix R evaluated at 

                                                 
16 In this case 2V  and 3V  are normally distributed because they are linear combinations of normal.  This, 

of course, implies that 2 3V V  is also normal and any pair of these three variates is bivariate normal; 

hence the appearance of  2Φ , ;    in (48) through (50).  The remaining details from those expressions 
follow from (21) through (27).  
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1 s(a ,  ...,  a ) .17  It is clear that all of the relevant correlation matrices in this model are 

unrestricted – i.e., the correlation coefficients range from -1 to 1. Therefore, this FPMO 

specification lies at the least restrictive extreme of the covariance flexibility spectrum. 

 Let’s now examine how the MNP model circumvents the IIA condition.  I begin by 

discussing the red bus/blue bus example introduced above.  As I noted earlier, intuitively I 

expect that after the introduction of the blue bus alternative a b
1 1P P= , a b

2 2P P= , and 

a b
3 3

1P P
2

= .  I can show that with the addition of the blue bus alternative18   

 a 3 3
1 3 2 1

3 3

V VP Φ V , , ,D
ω ω

 − − = −
  

      (51) 

where 

 

  

23 23

3 3

1

ω ω1
ω ω

D 1 1
1

 
 
 
 =
 
 
 
 

.      (52) 

 
But because the second and third arguments of (51) are equal and the 23th element of 1D  is 

equal to 1, the third integral is redundant so by (48) 

  

 a b3 23
1 2 2 1

3 3

V ωP Φ V , ; P
ω ω

 − = − =
  

.      (53) 

 

                                                 
17 To simplify exposition I have, for the bivariate expressions (48) – (50), replaced the correlation matrices 
(R) with the relevant correlation coefficient. 
18 See Appendix D detailing the MNP model for the J=4 case.  
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It can likewise be shown that a b
2 2P P= .  By (50)  

 

 b 3 2 3 3 23
3 2

3 23 3 3 3 23

V V V ω ωP Φ , ;
1 ω 2ω ω ω (1 ω 2ω )

 − −
=  

+ − + −  
   (54) 

 
and I can show that 

 

 a 3 2 3
3 3 3

3 23 3

(V V ) VP Φ , ,0;D
1 ω 2ω ω

 − =
 + − 

     (55) 

where 

  

3 23

3 3 23

3

ω ω1 0
ω (1 ω 2ω )

D 1 0
1

− 
 + − 
 =
 
 
 
 

.     (56) 

Therefore 

 

 a b3 2 3 3 23
3 2 3

3 23 3 3 3 23

(V V ) V (ω ω ) 1P Φ , ;   Φ(0) P
21 ω 2ω ω ω (1 ω 2ω )

 − − = =
 + − + − 

  (57) 

 
where Φ(•) denotes the univariate standard normal cdf.  Therefore, in the red-bus blue-bus 

scenario the MNP model is consistent with logic.  This example can easily be generalized 

to prove that the MNP model is not subject to IIA. 

 Although the MNP offers maximum covariance flexibility and, therefore, fully 

circumvents the IIA, it has not been widely implemented using the unfettered specification 

detailed above.  The main problematic issue encountered in implementing the MNP is the 
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fact that the formulations of the category likelihoods involve multi-dimensional integrals 

that do not have closed forms.  In trinomial models like the one described here, packaged 

and fairly accurate bivariate standard normal cdf numerical approximation algorithms are 

available.  For models with more than four categories, however, reliable and efficient 

numerical integral approximation algorithms are not generally available.  Moreover, even 

in the trinomial case, convergence problems are invariably encountered because of near 

non-concavities in the likelihood function (problems with so-called practical 

identification). 

 
3.4 Nested Multinomial Logit and IIA 

 I now consider a model that lies in the middle ground between the extremely 

covariance restrictive but computationally attractive MNL model and the unrestrictive but 

computationally burdensome MNP model -- the nested logit (NMNL) model.  The NMNL 

model is defined as in (9) and (10) with the additional assumption that 1 2 Jε = [ε ε ... ε ] is 

generalized extreme value (GEV) distributed.  For the purpose of exposition and without 

loss of generality with regard to the main conceptual points to be made I focus on the 

trinomial case in which the cumulative distribution function (cdf) of ε is the following 

member of the GEV class of distributions 
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1

1 ηεε
ε 1 η 1 η

1 2 3F(ε , ε , ε ) exp e e e

−
− −

− − −
      = − + +         

    (58) 
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where scalar η is the only parameter of the distribution and, in the most general case, can 

be any value in the nonnegative half of the real line aside from 1.19,20  I refer to η  as inter-

category covariance-related parameter.  First note that (58) can be factored in the 

following way 

 
 

1 2 31 2 3 ε 1 ε ε 2 3F(ε , ε , ε ) F (ε ) F (ε , ε )=       (59) 
 
where 
 
 1

1

ε
ε 1F (ε ) exp( e )−= −          (60) 

 
is the log-Weibull marginal cdf of 1ε , and 
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2 3

1 ηεε
1 η 1 η

ε ε 2 3F (ε , ε ) exp e e

−
− −

− −
    = − +      

     (61) 

 
is the joint marginal cdf of 2ε  and 3ε . The marginal distributions of 2ε  and 3ε  are also 

log-Weibull.21  Equation (59) embodies the dependence between 2ε  and 3ε  and 

independence of 1ε  from both of these variates.  In general, such GEV specifications for 

the errors in the random utility indices are appropriate for cases in which the multinomial 

outcome categories can be partitioned such that there is possible covariance among the 

categories within a partition but independence from categories in other partitions.  Such 

partitions are called nests.  

                                                 
19 See equation 3.27 of Maddala (1983). 
20 If 0 η 1< , the corresponding model specification is consistent with the RUM. 
21 I prove this in Appendix E. 
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 In the present trinomial example there are two nests – one that includes category 1 

only and the other comprising categories 2 and 3.  From this the relevant version of the 

generic error covariance matrix in (11) can be written as 

 

 

2

2
23

2
23

σ 0 0

Σ 0 σ σ (η)

0 σ (η) σ

 
 

=  
  
 

       (62) 

where 
2

2 Πσ
6

= , 23 2 3σ (η) cov(ε , ε )=  and Π denotes the well-known trigonometric 

constant.  The covariance parameter 23σ (η)  is a non-closed-form function of η.  As I noted 

in the discussion surrounding equation (37) above, a standardized measure of the 

covariance restrictiveness of this model by tracing the ranges of the off-diagonal elements 

can be obtained (which are correlations in the standardized model) of the following version 

of (37)22 

 

 

23
2

1η 2 3
23

2

3σ (η) 11
2ΠD [ξ ξ ]

3σ (η) 1 1
2Π

 + 
 =
 + 
 

    (63) 

 
 
and the following relevant versions of 2η 2 3 2D [ ξ (ξ ξ )]− −  and 3η 2 3 3D [(ξ ξ ) ξ ]− −  
 
 
 2 2 3 2D [ ξ (ξ ξ )]− − =  3 2 3 3D [ (ξ ξ ) ξ ]− −  
 
 

                                                 
22 See Appendix F detailing the derivations of (63) and (64). 
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1
223

2

1
223

2

6σ (η)11 1
2 Π

6σ (η)1 1 1
2 Π

 
  −   =  

   −    

.   (64) 

 
If I had a closed-form expression for the function 23σ (η) , I could evaluate the covariance  

restrictiveness of this NMNL model by varying η and thereby tracing the range of the 

relevant correlation functions in (63) and (64).  This would reveal the “practical” 

correlation range for this NMNL model vis-a-vis the unrestricted “ideal” model in which 

the relevant correlations can take on any values in the interval ( 1, 1)− .  Of particular 

interest in such an assessment would be evaluating the extent to which these relevant 

correlations can deviate from 1
2

 --  the correlation values for extremely covariance 

restricted models like MNL.  By the same token, I could evaluate how nearly this model 

represents extremely covariance flexible models like MNP. 

 Although I do not have a closed form expression for 23σ (η) , I can plot its values 

numerically.  I have that 

 

 
2 3

2
23 2 3 ε ε 2 3 2 3

0 0
σ (η) ε ε f (ε , ε ) dε dε γ

∞ ∞
∫ ∫= −      (65) 

 
where 

2 3ε ε 2 3f (ε , ε )  denotes the joint marginal pdf of 2ε  and 3ε .  I have shown that23 

 
 

2 3ε ε 2 3f (ε , ε )
 

                                                 
23 See Appendix G 
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3 3 32 2 2
1 η 2η η-1ε ε εε ε ε

1 η 1 η 1 η 1 η 1 η 1 η2 3ε ε ηexp e e e e e e
1 η 1 η

− − −
− − − − − −

− − − − − −
       +       = − + − + + +       − −              

 

           (66) 
 
Moreover, for a given value of η, (65) can be evaluated using bivariate Gauss-Legendre 

quadrature.  

 It is easy to see that the above NMNL model relaxes but does not entirely eliminate 

the IIA restriction. If 1 2 3ε = [ε ε ε ]  is GEV distributed as in (58) then the category 

likelihoods are represented by the following versions of (12), (13) and (14)24 

 
 * * *

1 p o u 1 2 3π (X , X , X ; τ) G ( V , V )= − −   

   
1

1 exp((1 η)I)
=

+ −
      (67) 

 
 
 ( )* * * *

2 p o u 2 2 2 3π (X , X , X ; τ) G V , (V V )= −  
 

   

* * *
p2* o2 u2

p o u
β β βexp X X X ηI

(1 η) (1 η) (1 η)

1 exp( (1 η)I)

 
+ + −  − − − =
+ −

  (68) 

 
and  
 
 ( )* * * *

3 p o u 3 3 3 3π (X , X , X ; τ) G (V V ),V= −  
            

    

* * *
p3* o3 u3

p o u
β β βexp X X X ηI

(1 η) (1 η) (1 η)

1 exp( (1 η)I)

 
+ + −  − − − =
+ −

 (69) 

 
where 

                                                 
24 See Maddala (1983) Sections 3.7 and 3.8. 
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* ** * * *
p2 p3* *o2 u2 o3 u3

p o u p o u
β ββ β β βI ln exp X X X ηI exp X X X ηI

(1 η) (1 η) (1 η) (1 η) (1 η) (1 η)

    
 = + + − + + + −       − − − − − −    

           (70) 

 
The component “I” defined in expression (70) is called the inclusive value.  

 It is easy to see that the above NMNL model relaxes but does not entirely eliminate 

the IIA restriction. Consider the following three possible ratios that can be formed using 

the category probabilities in (67) through (69) 

 

 1 p o u
* * *

2 p o u p2* o2 u2
p o u

π (X , X ,X ; τ) 1
π (X , X ,X ; τ) β β βexp X X X ηI

(1 η) (1 η) (1 η)

=
 

+ + −  − − − 

  (71) 

 
 

 1 p o u
* * *

3 p o u p3* o3 u3
p o u

π (X , X ,X ; τ) 1
π (X , X ,X ; τ) β β βexp X X X ηI

(1 η) (1 η) (1 η)

=
 

+ + −  − − − 

  (72) 

 

 

* * *
p2* o2 u2

p o u
2 p o u

* * *
3 p o u p3* o3 u3

p o u

β β βexp X X X ηI
(1 η) (1 η) (1 η)π (X , X ,X ; τ)

π (X , X ,X ; τ) β β βexp X X X ηI
(1 η) (1 η) (1 η)

 
+ + −  − − − =

 
+ + −  − − − 

. (73) 

 
 It is clear that, IIA holds for pairs of categories within nest but not for pairs in which 

one alternative is within nest and the other is not in the nest.   

 The MLE defined by (43) and (44) is designed to account for endogeneity in the 

generic FPMO -- i.e., regardless of the particular MO specification [ j p o uπ (X , X ,X ; τ) ] 

that is implemented.  In the remainder of the dissertation, I focus on the NMNL version of 
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the generic model [(43) and (44)] in which j p o uπ (X , X ,X ; τ)  is specified as in (67), (68) 

and (69) and u(X | W)  in (38) is assumed to be standard normal distributed.  As discussed 

earlier, this model/estimator, unlike MNL and MNP, promises to be both covariance 

flexible and computationally feasible.  To investigate how well the NMNL (with 

endogenous treatment) estimator delivers on these margins, I conduct a simulation study 

in Chapter 4. A real data illustration of the implementation of the estimator is discussed in 

Chapter 5. 
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Chapter 4:  Nested Logit with an Endogenous Treatment:  Computational Issues 

and a Simulation Study 

 The focus in this chapter is on NMNL because it lies in the middle ground between 

the extremely covariance restrictive but computationally attractive MNL model and the 

unrestrictive but computationally burdensome MNP model.  I implement (in Stata’s matrix 

language [Mata]) the trinomial version of the NMNL with an endogenous probit causal 

treatment variable (NMNL-ET).  The main challenge in this implementation is the 

development and incorporation of Mata code to numerically approximate the non-closed-

form integrals required for the calculation of the log-likelihood function. Such integrals 

appear in the log-likelihood formulation as a means of accounting for the unobservable 

regression controls.  Mata code implementing Gauss-Legendre quadrature was used for 

this purpose.  I then develop and code (in Mata) a novel and relatively simple NMNL data 

simulator which exploits a unique property of the model.  I also write Stata/Mata code for 

validating the accuracy of the data simulator.  The simulator is found to be valid.  Using 

data generated via the validated simulator and the newly developed NMNL-ET Mata 

software, I conduct a simulation study aimed at:  a) assessing the computational feasibility 

of the NMNL-ET estimator and corresponding Stata/Mata software; b) empirically 

validating the theoretical consistency of the estimator; and c) investigating potential gains 

in estimation accuracy associated with the more computationally challenging NMNL-ET 

estimator vs. the analogous MNL specification (MNL with an endogenous treatment 

variable – MNL-ET).    

 For item (a), I first code (in Mata) a conventional optimization algorithm for the 

log-likelihood function and apply it to datasets generated using the aforementioned 
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simulator under a variety of sampling designs.  For many of the sampling designs, the 

algorithm fails to converge.  It is determined that allowing the inter-category covariance-

related parameter to freely vary during the optimization iterations is the cause of the 

problem.  To remedy this, the Stata/Mata code is revised to include a systematic line search 

(SLS) on the culprit parameter.  At each iteration of the SLS, the revised algorithm 

optimizes the log-likelihood function at a fixed value of the parameter in question.  Over 

the SLS iterations, the algorithm searches for and finds the value of that parameter at which 

the series of such optima is maximized.  When this revised SLS algorithm is implemented, 

the convergence problems virtually disappear and the NMNL-ET estimator and 

corresponding code are shown to be feasible.  Thus objective (a) is accomplished.  

 I then choose a particular sampling design and use it to generate a sequence of 

samples of increasing size.  At each sample size, the deep parameters and the ATE are 

estimated.  The latter is compared to the true values of the ATE for the chosen sampling 

design.  As the sample size is increased, the estimated value of the ATE converges to the 

true value.  Thus objective (b) is accomplished. 

 In establishing objective (b), I show that the NMNL-ET estimator of the ATE is 

consistent.  A reasonable related question to ask is, “Is there substantive difference between 

this estimator and that obtained via the computationally simpler MNL-ET estimator which 

imposes severe covariance restrictions?”  To shed light on the answer to this question, 

using a particular sampling design, I generate samples of size n = 100,000 and vary the 

value of the covariance-related parameter.  NMNL-ET and MNL-ET estimates of the ATE 

are obtained for each sample.  I find the differences between these estimates to be 

potentially quite large.  This is in contrast to the results I obtain for ATE estimates obtained 
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by uncorrected (for endogeneity) NMNL and MNL estimators to samples simulated 

without endogeneity.  Thus objective (c) is accomplished. 

  
4.1 Simulating Data for the Simple Nested Logit Model with an Endogenous 

Treatment 

 In this section, I discuss the development of this simple NMNL data simulator and 

how this data simulator is validated.   

 In the NMNL model, the category probabilities can be decomposed into two simple 

binary logit probabilities. In addition, these two binary logit probabilities are effectively 

stochastically independent. The decomposition will simplify the otherwise difficult 

simulation task.  Therefore, equations (67), (68) and (69) are written in the following 

alternative way.  

Now let 

 
 * * * *

2 p p2 o o2 u u2B X β X β X β= + +   

and 

 * * * *
3 p p3 o o3 u u3B X β X β X β= + +  

Then 

 *
1 p o u

1π (X , X , X ; τ)
1 exp((1 η)I)

=
+ −

 

   Pr(Alternative 1 | Nest 1) Pr(Nest 1)=   

   
1(1)

1 exp((1 η)I)
=

+ −
      (74) 
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2

*
2 p o u

Bexp exp( ηI)
1 η

π (X , X , X ; τ)
1 exp((1 η)I)

 
− − =

+ −
 

   ( )
2Bexp

exp(I) exp ηI1 η
exp(I) 1 exp((1 η)I)

  
   −−  =
  + −
 
 

 

   Pr(Alternative 2 | Nest 2) Pr(Nest 2)=      

  

   

2Bexp
1 η exp((1 η)I)

exp(I) 1 exp((1 η)I)

  
  −  −  =    + − 
 
 

 .   (75) 

 

3

*
3 p o u

Bexp exp( ηI)
1 η

π (X , X , X ; τ)
1 exp((1 η)I)

 
− − =

+ −
. 

   Pr(Alternative 3 | Nest 2) Pr(Nest 2)=   

   

3Bexp
1 η exp((1 η)I)

exp(I) 1 exp((1 η)I)

  
  −  −  =    + − 
 
 

 .   (76) 

 Note that the independence property portrayed in (74), (75), and (76) is unique to 

the NMNL model, and it is this independence property that allows the generation of the 

data (the outcome variable) in the following two simple steps.  

-- Step 1 

 -- Generate the “within Nest 2 alternative” choice outcome 

 
  1 if Alternative 2 



44 

 N2 = 
  0 if Alternative 3. 
 

where 

 

3

1

Bexp
1 η

N2 [0, 1] >
exp(I)

  
  −  =
 
 
 

I U       (77) 

where I(   ) is the indicator function and 1[0, 1]U  is a uniform random variable whose 

support is the unit interval. 

--  Step 2 

 --  Generate the nest choice outcome  

  1 if nest 2 
 N =  
   0 if nest 1 
 
where 
 

 2
1N [0, 1] >

1 exp((1 η)I)
 

=  + − 
I U       (78) 

 
The simulated outcome then is generated as: 

 If      Then outcome = 

 N = 0      Alternative 1 

 N = 1 and N2 = 1    Alternative 2 

 N=  1 and N2 = 0    Alternative 3. 

 The variables needed to implement steps 1 and 2 are, oX , W+ , uX , and pX . oX  

and W+ are generated following a uniform distribution with certain values of mean and 
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variance. In keeping with the assumption that will be made about uX  for the real data 

analysis, I assume it is standard normal, so it is generated following a standard normal 

distribution. The endogenous variable pX  is binary, so it is generated using the following 

indicator function: p uX I(Wα X 0)= + > . The true parameter coefficients are displayed 

in the second column of Table 3.  In this dissertation, the outcome variable Y has three 

alternatives. In the simplest NMNL case, there are two nests: Nest 1 comprises the first 

alternative only, and Nest 2 comprises the second and the third alternatives.  

 To validate the accuracy of this simulation protocol, I need to have a valid data 

generator. Therefore the validation of the data generator is necessary for a simulation study. 

The validation includes two components: 1) Calculate the relative frequencies for p(X ,Y)  

pairs for a sample generated using fixed values of Wα  and o oX β ; and 2) Calculate true 

probabilities for p(X ,Y)  pairs for fixed values of Wα  and o oX β . If the relative 

frequencies for p(X ,Y)  pairs are consistent with the true probabilities for p(X ,Y)  pairs, 

then the data generator is valid. Table 1 and Table 2 show that the relative frequencies for 

p(X ,Y)  pairs match the true probabilities for p(X ,Y)  pairs very well. Therefore, the data 

generator is valid.  

 
4.2 Implementation of the Simple Nested Logit Model 

 In this section, I discuss the implementation of the simple NMNL model with an 

endogenous treatment using the simulated data generated by the protocol detailed in section 

4.1. Recall that, in general, the joint pdf of Y and pX conditional on W is given in (43) and 

the corresponding relevant log-likelihood function is (44). Combining that generic log-
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likelihood specification with the NMNL conditional category probabilities in (67) through 

(70) under the assumption that u(X | W)  is standard normally distributed yields the 

specific form of the log-likelihood function that I use for the simulation and real data 

analysis   

 Consistent estimates of τ and α can be obtained by maximizing this log-likelihood 

function. However, optimization of the log-likelihood is not easy. I encounter convergence 

problems when attempting optimization with η  (the inter-category covariance-related 

parameter) directly included one of maximization arguments. On the other hand, when η is 

held fixed and conventional optimization is conducted on the remaining elements of the 

parameter vector, those convergence problems disappear for the most part.  I therefore 

decide to take a “systematic line search” (SLS) approach to optimizing the likelihood 

function. 

 I introduce the SLS algorithm into the estimator and develop corresponding Mata 

code for maximizing the log-likelihood function. Most SLS algorithms are designed to find 

the maximum of a unimodal function of one variable whose domain is a bounded interval 

of the real line.  In the present context, the one-variable function to be maximized is that 

which represents the profile of optimized values of the log-likelihood function (optimized, 

that is, with respect to all parameters except η).  The SLS algorithm begins with a chosen 

interval in which η is expected to reside.  Denote this interval as [a, c] and at a particular 

iteration of the algorithm define the "interval of certainty." At the mth iteration, all SLS 

algorithms are designed to reduce the length of the interval of certainty and terminate if the 

interval of certainty is smaller in length than some specified tolerance. The typical SLS 

algorithm begins by choosing a point b within [a, c] thus forming a triple of "bracketing 
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points" such that q(a)< q(b) > q(c). Note that q(  ) is the log-likelihood function discussed 

in (44). Next the interval of certainty is reduced in length by choosing a fourth point τ and 

comparing the value of the function at that point to the values q(a), q(b), and q(c). There 

are four different cases in terms of the locations of the fourth point τ, which leads to new 

different bracketing triples. To complete the specification of the algorithm, two issues must 

be settled:  1) whether the new “fourth point” should be placed to the right or to the left of 

the interior point in the bracketing triple; and 2) the distance from the interior point at which 

to place the new point. In the present context, q(η) is the profile maximum value (with 

respect to the remaining parameters), written as a function of  η.   To summarize, the MLE 

algorithm that is used comprises two  steps: 1) For a given (fixed) value of the inter-

category covariance-related  parameter, maximize the likelihood function with respect to 

all other parameters of the model (the αs and βs ); and 2) Conduct a SLS across a relevant 

range of η  values to find the η -maximizer of all maxima obtained in the first step. The 

SLS algorithm successfully resolving the convergence problems that are encountered with 

conventional optimization in the estimation of the NMNL model with an endogenous 

treatment variable.  

 
4.3 Simulation Study 

 There are three objectives in this simulation study: a) assessing the computational 

feasibility of the NMNL-ET estimator and corresponding Stata/Mata software—I want to 

show that this NMNL-ET estimator that includes the SLS actually works well; b) 

empirically validating the theoretical consistency of the estimator—I will show that as the 

sample size increases, the estimated deep parameters and average treatment effect approach 

to the true values; and c) investigating potential gains in estimation accuracy associated 
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with the more computationally challenging NMNL-ET estimator vs. the analogous MNL 

specification (MNL with an endogenous treatment variable – MNL-ET)—I will 

demonstrate that it is important to accommodate the endogeneity and inter-category 

covariance simultaneously, which I will show by measuring the difference between the 

ATEs for NMNL-ET and MNL-ET estimators.  

 For the first two objectives, I choose η =.75 and the values of the other parameters 

are displayed in the second column of Table 3. Table 3 and Table 4 illustrate that as I 

increase the sample size, both the estimated deep parameters and ATEs get closer to the 

true values. The results in Tables 3 and 4 serve to empirically validate the consistency of 

the estimators.   

 To achieve the third objective, I choose a sampling design with sample size equal 

to 100,000 and the other parameters displayed in the second column of Table 3. I vary the 

value of η  in each single sample to investigate the potential gains in estimation accuracy.  

When the covariance-related parameter η  falls in the range [0, 1), the model conforms with 

the random utility model detailed in equations (9) and (10). As η  is close to 0, the 

correlation between the alternatives within the same nest is close to zero and the NMNL 

model will become the MNL model. As η  is close to 1, the correlation between the 

alternatives within the same nest gets larger. I want to know whether having a correct 

specification of the model matters as I change the value of η . Other than the range of [0, 

1], it is possible that η  may fall into other ranges (i.e., η  could be greater than 1 or less 

than 0). When η  is outside the unit interval, even though a model might not conform to the 

random utility model the model is still a legitimate probability model. In addition, in the 

real data analysis that will be discussed in chapter 5, the estimated η  is greater than 1, so 
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it is important for us to understand when η  is outside the unit interval, how the model 

would perform. I also want to know if endogeneity affects the choice of the model 

specifications. To evaluate how the change of the value of η  will affect the choice of model 

specification, I divide the values of η  into three regions: less than 0, [0, 1), and greater than 

1. I thus discuss the simulation results within the three regions. 

 I first start with model without endogeneity. To compare the NMNL with MNL, I 

use the data generator discussed in section 4.1 to generate a simulated dataset with sample 

size equal to 100,000. Note that I remove uX in the data generating process so that I will 

have a simulated dataset without endogeneity.  

 Table 5 illustrates that when η  is in the unit interval, the difference between the 

ATEs for NMNL and MNL are small though it shows a pattern of widening difference as 

η  is close to 1. This pattern is consistent with the theory because as η  is close to 1, the 

correlation between alternatives within the nest is getting larger and, as a result, the use of 

the NMNL specification may make a difference. However, it is interesting to see that the 

difference is quite small. This indicates that the NMNL model may not yield results that 

are very different from those obtained using the MNL model when there is no endogeneity.  

 As discussed in previous studies, η  must be within the unit interval so that the 

model is consistent with utility-maximizing behavior. Mathematically, however, it is 

possible that η  could be greater than one or less than zero. I therefore also discuss the 

difference between the ATEs for NMNL and MNL when η  is outside the unit interval.  

 Table 6 shows that when η  is greater than 1, the difference between the ATEs for 

NMNL and MNL gradually decreases as η  increases and is the largest when η  is close to 
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1. However, the difference between the ATEs for NMNL and MNL is not very large. Table 

7 illustrates that the difference decreases as η  decreases when η  is less than 0.  The 

difference is also quite small.  

 Tables 5, 6 and 7 demonstrate that the NMNL model specification may not provide 

different ATE estimates than the MNL model when there is no endogeneity across the three 

regions of the domain of η . This means that even though the true model is NMNL, the 

MNL appears to provide quite accurate ATE estimates.  

 I now discuss the case when there is endogeneity. I use the data generator discussed 

in section 4.1 to generate a simulated dataset with endogeneity. The sample size is 

100,000.Table 8 illustrates that the difference between the ATEs for NMNL-ET and MNL-

ET increases as η  increases within the unit interval. This is similar to the pattern in the 

case when there is no endogeneity but the differences in the present endogeneity case is 

much bigger. Specifically, when η  = .95, the difference between the ATES for NMNL-ET 

and MNL-ET in three categories are -54.62%, 3.98%, and 25.19%, while the differences 

are -0.6%, -0.52% and 0.49% in the case when there is no endogeneity. This suggests that 

it is important to have a correct model specification when there is endogeneity though it 

may not be important to do so when there is no endogeneity.  

 Table 9 shows the difference between the ATEs for NMNL-ET and MNL-ET when 

η  is greater than 1. I also find that the difference is the largest when η  is close to 1. For 

instance, when η  = 1.5, the difference between the ATEs for NMNL-ET and MNL-ET in 

the three outcome categories are -79.73%, -615.61% and 13.89%, while the differences are 

-0.06%, -4.03%, and -1.09% in the case when there is no endogeneity. I also find that as η  

increases, the difference becomes smaller.  For example, when η  = 7, the difference 
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between NMNL-ET and MNL-ET is quite small. It suggests that when η  is greater than 1 

and close to 1, it is important to have a correct model specification but when η  is greater 

than 1 and gets larger, there may not be  much difference between NMNL-ET and MNL-

ET.  

 Table 10 illustrates the difference when η  is less than zero. I also find a pattern 

similar to that which I found in the case when there is no endogeneity. However, the 

difference is much bigger when there is endogeneity, especially when η  is close to zero, 

the difference is the largest. However, as η  decreases, the difference becomes smaller.  

 Tables 8, 9, and 10 suggest that NMNL-ET may provide different estimates than 

MNL-ET when there is endogeneity. It is important to have a correct model specification 

when endogeneity is present. The evidence from this simulation study is also informative 

for the real data analysis. In real data analysis, if there is no endogeneity, both NMNL and 

MNL should provide similar results. If there is endogeneity, having a correct model 

specification is important and it is crucial to use the NMNL-ET instead of the MNL-ET.  
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Chapter 5: An Illustration:  The Effect of Substance Abuse/Dependence on 

Employment Status 

 Substance abuse/dependence has been a serious societal and economic problem for 

decades.  It not only causes trouble to individuals and families, but also leads to economic 

loss for the entire society.  Substance abuse/dependence is usually associated with more 

crime, and thus increases the incarceration costs.  A lot of health care resources are needed 

to treat patients with substance abuse/dependence.  Substance abuse/dependence also leads 

to productivity loss, which constitutes a major part of the economic loss.  Substance 

abuse/dependence decreases an individual’s work productivity by affecting his/her work 

performance, increasing absenteeism, work-related injuries, and risk of being fired or 

resigning from a job (Blum et al. 1993, Ames et al. 1997, Hoffmann & Larison 1999, Webb 

et al. 1994).  The recent epidemic of opioid use all over the U.S. shows that it is important 

to understand the impact of substance abuse/dependence.  

 The economic cost brought by substance abuse/dependence is substantial and 

productivity loss is the largest.  The National Institute on Drug Abuse (NIDA, 2017) 

estimates that substance abuse costs the country $740 billion a year.  The total economic 

cost of substance abuse/dependence can be further broken down into three categories: 

tobacco, alcohol, and illicit drugs.  This dissertation focuses on the costs of alcohol and 

illicit drugs. Sacks et al. (2015) estimates excessive drinking costs the U.S. $250 billion. 

The lost productivity cost was $179 billion.  The National Drug Intelligence Center (NDIC, 

2011) estimates the cost of illicit drug use was $193 billion and drug abuse costs the U.S. 

$120 billion per year in lost productivity.  The most significant portion of productivity loss 

caused by illicit drug abuse is reduced labor participation which can be as large as $49 
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billion.  From 2000 to 2015, deaths from opioid overdose increased dramatically, and the 

opioid overdose has become a serious public health crisis all over the country.  Prescription 

opioid misuse is the driving factor of deaths caused by opioid overdose, bringing a heavy 

burden to society.  Florence et al. (2016) estimates that the total economic burden imposed 

by prescription opioid abuse is $78.5 billion.  The productivity loss attributable to the 

opioid abuse is about $41.9 billion.  Krueger (2017) finds that the labor force participation 

rate is lower and fell more during the 2000s in areas of this country that have a higher 

volume of opioid medication prescribed per capita than in other areas.  

 It is crucial for us to better understand the effect substance abuse/dependence has 

on society and how large the potential treatment effect would be if substance 

abuse/dependence were treated or prevented.  

 Most of previous studies of the effects of substance abuse/dependence on 

employment status have considered alcohol only.25 Most studies have focused on how 

problem drinking affects employment status and the results are mixed. Some studies find 

that problem drinking increases the probability of unemployment (Mullahy & Sindelar 

,1996; Terza , 2002; Booth & Feng ,2002; MacDonald & Shields , 2004; Johansson et al. , 

2007) , while others find a positive relationship (Feng et al. ,2001; Asgeirsdottir & 

McGeary , 2009 ; Balsa & French , 2010 ). On the contrary, my definition of substance 

abuse/dependence includes alcohol and a number of illicit drugs (cannabis, cocaine, etc). 

 I illustrate my novel approach to modeling and estimation by examining the 

treatment effect of substance abuse/dependence on employment status. This application is 

well suited for my approach for two reasons: first, it is a multinomial outcome model (out 

                                                 
25The exceptions are Buchmueller and Zuvekas (1998) and Bray et al. (2000) 
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of the labor force, unemployed, or employed) where covariance flexibility among the 

alternatives is likely to be needed; second, the causal treatment variable (substance abuse) 

is binary. I argue that individuals who are unemployed or employed are actively involved 

in the labor market and have unobserved characteristics that are more aligned with each 

other than those who are out of the labor force.  Therefore, it would not seem appropriate 

to assume independence across these three alternatives. In the relationship between 

substance abuse/dependence and employment status, endogeneity can be present and thus 

precludes the use of conventional regression methods to obtain a credible causal estimate 

of the effect of substance abuse/dependence on employment status. For example, 

unobserved factors that determine both employment status and substance 

abuse/dependence status can confound the effect. These include psychiatric problems, 

chronic health problems, injuries, physical pain, problems with friends and family, and 

stress (Mullahy & Sindelar, 1996).  

 To simultaneously account for covariance flexibility (the IIA issue) and 

endogeneity, I use the NMNL-ET maximum likelihood estimator as discussed in Chapter 

4 with a NMNL specification for the category likelihoods (conditional on the observable 

and unobservable confounders; oX  and uX , respectively) and a probit specification for the 

binary endogenous treatment variable.  In this NMNL-ET model, therefore there are two 

nests. The first nest is a degenerate nest and includes only one alternative (out of the labor 

force). The second nest has two alternatives (unemployed and employed).  Figure 1 

displays the nest structure of the employment status.   
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5.1 Model Specification 

 Under standard normality of u(X | W) , (43) can be written as  

  
p(Y,X |W) pf (Y,X , W; τ, α)        
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 (85) 

 
where φ( )  denotes the standard normal pdf and the jπ ( )  functions are specified as in 

(67) through (70). The estimate of the average treatment effect at category j can be written 

as the following version of (6) 
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1 ˆ ˆATE π (0, X , X ; τ) π (1, X , X ; τ) φ(X ) dX
n

∞
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∑ ∫
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 (86) 

 
where τ̂  is the MLE of τ obtained by maximizing  the version of (43) that implements (85). 

 
5.2 The Data 

 The data comes from the National Epidemiologic Survey on Alcohol and Related 

Conditions (NESARC). I use wave 1 (NESARC I) of the data which was conducted from 

2001 to 2002.  NESARC is composed of data for adults aged 18 years and older taken from 

a random sample of U.S. households. NESARC I interviewed 43,093 individuals. I 

restricted the estimation sample to respondents aged 25 to 59;  respondents who are full-

time homemakers, permanently disabled, retired, and in school full-time or part-time are 

all excluded; I also exclude females from the sample. The final sample size is 10,551. 

 The endogenous variable pX is the indicator of substance abuse/dependence status.  

An individual is defined as a substance abuser or dependent if he meets the DSM-IV criteria 
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for current abuse and/or dependence in the past 12 months.26 The qualitative employment 

status variable jY has three categories (j = 1, 2, 3) where j =1 denotes the “out of the labor 

force” category, j = 2 denotes “unemployed,” and j = 3 denotes “employed.” The vector of 

observable confounders includes race, age, region of residence, living in an urban setting, 

education level, the quarter in which the interview took place, the number of problematic 

health conditions from which an individual currently suffers, and the state level 

unemployment rate.  Following Mullahy and Sindelar (1996) and Terza (2002), I use the 

following instrumental variables (IV): state beer excise tax rate per gallon, state cigarette 

excise tax rates per pack, quadratics of the two taxes, and whether the respondent’s 

biological father or mother is an alcoholic or problem drinker.  The full list of the variables 

and their definitions are given in Table 12. Table 13 and Table 14 present the descriptive 

statistics.  

 
5.3 Estimation and Results 

 I check the strength of the instrumental variables by using a joint likelihood ratio 

test. The results of the likelihood ratio test suggest that the IV are strong (see Table 15). I 

also find, however, no statistical evidence that a model that allows for ICF is needed (the 

null hypothesis that there is zero inter-category covariance is not rejected) (see Table 16).  

This means that the correlation between the category “unemployed” and “employed” is not 

strong. I conduct a likelihood ratio test of the null hypothesis that substance 

abuse/dependence is exogenous (Ho: u2 u3β β 0= = ) (see Table 17). Exogeneity is rejected 

at a 5% significance level. This shows that endogeneity is present in the relationship 

                                                 
26Details of the DSM-IV criteria are given in Table 11. 
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between substance abuse/dependence and employment. In the present modeling context, 

the above statistical tests indicate that the appropriate model may be MNL-ET 

(endogeneity corrected MNL).   

 The deep parameters estimation results can be found in Table 18. The average 

treatment effect for the three employment categories, as estimated in (84) in NMNL-ET, 

are reported in column 12 of Table 19.  Note that most of the deep parameter coefficients 

estimated by the NMNL-ET are not significant, but the estimated ATEs are significant. 

 Table 19 displays ATE estimation results obtained from different methods. The 

NMNL-ET is the only method that simultaneously accommodates both endogeneity and 

ICF. The NMNL accommodates ICF but not endogeneity. The MNL-ET tackles the 

endogeneity issue but ignores ICF. The MNL-ET accommodates neither endogeneity nor 

ICF. I also provide results obtained from linear models: OLS and linear IV to demonstrate 

the estimation difference between linear models and nonlinear models. The linear IV 

addresses endogeneity, while the OLS does not.  

 The comparisons between OLS and linear IV models, between MNL and MNL-ET 

models, as well as between NMNL and NMNL-ET models in Table 19, provide strong 

evidence that it is important to address endogeneity when estimating the treatment effect. 

The models that do not address endogeneity are downward biased in magnitude. In models 

that ignore endogeneity, I find the treatment effects in all three categories are quite small 

compared to other models that address endogeneity. This is consistent with prior studies of 

substance abuse/dependence and employment where results from using the IV method are 

usually significantly larger. When compared with linear IV, results obtained from the 

NMNL-ET are larger in magnitude and more significant. It is interesting to see that the 
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NMNL-ET yields different results than the MNL-ET, though the likelihood ratio test 

suggests that the NMNL-ET and MNL-ET is not significantly different.  After I group 

“unemployed” and “employed” into a nest and relax the IIA assumption, I find a significant 

and positive treatment effect on “employment,” a significant and negative treatment effect 

on “unemployed” and significant and negative treatment effect on “out of the labor force.” 

The MNL-ET, however, does not produce a significant treatment effect on “out of the labor 

force.”  

 In sum, the statistical tests indicate that the appropriate model may be MNL-ET.  

The MNL-ET-based ATE estimates imply that substance abuse/dependence treatment can 

both significantly reduce the probability of being unemployed and significantly increase 

the probability of being employed.  The latter result is consistent with that which was 

obtained by Terza (2002) using a different dataset.  The estimation did, however, reveal 

one somewhat puzzling result: the NMNL-ET ATE estimates were all statistically 

significant with intuitively correct signs, despite the fact that neither of the NMNL-ET 

estimated deep coefficient parameters for the substance abuse variables were significant.  
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Chapter 6:  Summary, Discussion and Conclusions 

 This dissertation focuses on a commonly encountered and very policy-relevant 

class of empirical contexts that has heretofore been virtually ignored in the econometric 

methodological literature – specification and estimation of endogenous binary treatment 

effects on multinomial outcomes with non-null inter-category covariance.  This work 

contributes to the literature in the following specific ways.  First, specification, estimation 

and inference for such models are placed in a PO framework, thereby making explicit the 

requisite conditions for causal interpretability of the treatment effect parameters and 

estimates.  Secondly, the general formulation of the log-likelihood function for estimation 

of the deep parameters of the model is derived and is shown to encompass three important 

specific versions that cover the inter-category covariance and computational feasibility 

spectra. As part of this discussion, a standardized measure of ICF is developed.  Third, a 

simulation study of one of the three highlighted models (NMNL-ET) is conducted.  This 

version of the model, unlike the other two, affords both ICF and computational feasibility.  

The simulation study validates that:  a) the model is computationally feasible; b) the 

estimator is consistent; and c) there are clear potential gains in accuracy with NMNL-ET 

vs. MNL-ET (the computationally feasible but inter-category restrictive alternative).  

Finally, for the purpose of illustration, the NMNL-ET model was applied to real data in 

estimating the potentially endogenous effect of substance abuse/dependence treatment on 

employment status. 

 This dissertation should be viewed as a first step toward the development and 

application of models for the estimation of endogenous causal effects in multinomial 

outcome contexts.  Subsequent topics for future research include:  extending the trinomial 
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NMNL-ET model and code to cases involving four or more categories; extending that 

model to accommodate multiple nests; exploring possible feasible inter-category 

covariance flexible MNP specifications; and investigating multinomial modeling strategies 

beyond the three considered here.  There are many other possible extensions of this work. 
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Chapter 7:  Tables and Figure 

7.1 Tables 

Table 1: True Probabilities 

 
pX = 0  pX =  1 

1Y  = 1 .0027884579 .0359185233 

2Y  = 1 .0632400465 .239131992 

3Y  = 1 .0007786969 .6581422834 

 

Table 2: Relative Frequencies 

 
pX = 0  pX =  1 

1Y  = 1 .00277565 .03592185 

2Y  = 1 .06312685 .2390688 

3Y  = 1 .0007804 .65832645 
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Table 3: Deep Parameters True Values and Estimates 

 

 

  Sample Size 

Parameters True 

Values 

1K 5K 10K 25K 50K 100K 500K 

oα  .25 .26 .25 .26 .25 .25 .25 .25 

wα +  .5 .48 .51 .49 .51 .50 .50 .50 

cα  .75 .71 .75 .76 .76 .75 .75 .75 

p2β  1 .49 .72 .94 .94 .97 .96 .96 

o2β  .25 .17 .28 .22 .32 .28 .26 .27 

c2β  1 1.48 1.03 .94 1.22 1.11 1.06 1.06 

u2β  -1 -.46 -.97 -1.08 -.83 -.89 -.94 -.97 

p3β  .25 -.43 -.16 -.11 .38 .31 .21 .24 

o3β  .75 .85 .98 .89 .71 .72 .76 .75 

c3β  2 2.72 2.25 2.28 1.99 2.01 2.05 2.02 

u3β  .5 1.55 1.11 .88 .33 .45 .56 .48 

η  .75 .75 .64 .66 .81 .79 .75 .77 
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 Table 4: True ATEs and Estimated ATEs 

 

 

   

  Category                                      

n 

Category 1 Category 2 Category 3 

Sample 

Size 

True ATE NMNL-ET 

ATE 

Bias (%) True ATE NMNL-ET 

ATE 

Bias (%) True ATE NMNL-ET 

ATE 

Bias (%) 

1000 

 

.0366408 .0052512 -85.67% -.1354145 -.1175852 -13.17% .0987737 .112334 13.73% 

5000 .0366408 .0179354 -51.05% -.1354145 -.1139384 -15.86% .0987737 .096003 -2.81% 

10000 .0366408 .0220933 -39.70% -.1354145 -.140299 3.61% .0987737 .1182057 19.67% 

25000 .0366408 .0407042 11.09% -.1354145 -.1335602 -1.37% .0987737 .092856 -5.99% 

50000 .0366408 .0381962 4.24% -.1354145 -.1341807 -0.91% .0987737 .0959845 -2.82% 

100000 .0366408 .0340311 -7.12% -.1354145 -.1340003 -1.04% .0987737 .0999692 1.21% 

500000 .0366408 .035323 -3.60% -.1354145 -.1339534 -1.08% .0987737 .0986304 -0.15% 
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Table 5: Proportional Difference between the ATEs for NMNL and MNL  

( 0 η < 1≤ , No Endogeneity) 

 

 

 

 

 

 

 

  

% difference 

              Category         

 

η  

 

Category 1  

 

Category 2 

 

Category 3 

.05 

 

-0.001% -0.004% -0.004% 

.25 -0.027% -0.08% -0.095% 

.5 -0.11% -0.10%   -0.10%   

 

.75 -0.32% -0.21% -0.17% 

.95 -0.6% -0.52% 

 

0.49% 
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Table 6: Proportional Difference between the ATEs for NMNL and MNL 

 ( η > 1 , No Endogeneity) 

  

% difference 

          Category           

 

η  

 

Category 1  

 

Category 2 

 

Category 3 

1.5 -0.06% -4.03% -1.09% 

2.0 -0.005% -4.31% -0.50% 

4.0 0.026% -0.22% 0.16% 

7.0 -0.003% -1.42% 1.45% 

10.0 -0.003% -0.33% 0.34% 
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Table 7: Proportional Difference between the ATEs for NMNL and MNL 

 ( η < 0 , No Endogeneity) 

 

  

% difference 

Category                     

 

η  

 

Category 1  

 

Category 2 

 

Category 3 

-1.5 0.015% 0.095% 0.12% 

 

-2.0 0.013% 0.083% 0.10% 

-4.0 0.011% 0.041% 0.043% 

 

-7.0 0% -0.11% -0.11% 

-10.0 0% 0.019% 0.02% 
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Table 8: Proportional Difference between the ATEs for NMNL-ET and MNL-ET  

( 0 η <1≤ , Endogeneity) 

  

% difference 

Category                     

 

η  

 

Category 1  

 

Category 2 

 

Category 3 

.05 

 

- 2.99%  0.04%  0.94%   

.25 -12.44%  0.2%  4.06%   

 

.5 -35%  0.86%  12.1%  

.75 -49.6%  2.06% 19.54%  

.95 -54.62% 3.98% 25.19% 
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Table 9: Proportional Difference between the ATEs for NMNL-ET and MNL-ET 

 ( η > 1 , Endogeneity) 

  

% difference 

Category                     

 

η  

 

Category 1  

 

Category 2 

 

Category 3 

1.5 -79.73% -615.61% 13.89% 

2.0 -60.95% -318.55% 

 

7.75% 

4.0 -15.67% -31.36% -3.33% 

7.0 -2.5% -2.46% -2.54% 

10.0 -1.59% -3.78% 0.5% 
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Table 10: Proportional Difference between the ATEs for NMNL-ET and MNL-ET 

 ( η < 0 , Endogeneity) 

  

% difference 

        Category                  

 

η  

 

Category 1  

 

Category 2 

 

Category 3 

-1.5 16.99% 0.41% -4.11% 

-2.0 15.79% 0.78% -2.44% 

-4.0 10.09% 0.65% -0.31% 

-7.0 5.13%   0.12% 0.11% 
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Table 11: The DSM-IV Criteria  

The American Psychiatric Association states that addiction is a maladaptive pattern of 
substance use, leading to clinically significant impairment or distress, as manifested by three 
(or more) of the following, occurring at any time in the same 12 month period. 
1. Tolerance, as defined by either of the following: 
     A. A need for markedly increased amounts of the substance to achieve intoxication or 
desired effect. 
     B. Markedly diminished effect with continued use of the same amount of the substance 
 
2.  Withdrawal, as manifested by either of the following: 
     A. The characteristic withdrawal syndrome for the substance 
     B. The same (or a closely related) substance is taken to relieve or avoid withdrawal 
symptoms 
 
3.  The substance is often taken in larger amounts or over a longer period than was 
      intended 
 
4.  There is a persistent desire or unsuccessful efforts to cut down or control substance 
     use 
 
5.  A great deal of time is spent in activities necessary to obtain the substance (e.g., 
     visiting multiple doctors or driving long distances), use the substance (e.g., chain 
     smoking), or recover from its effects 
 
6.  Important social, occupational, or recreational activities are given up or reduced 
     because of substance use 
 
7.  The substance use is continued despite knowledge of having a persistent or recurrent 
     physical or psychological problem that is likely to have been caused or exacerbated by 
     the substance (e.g., current cocaine use despite recognition of cocaine-induced 
     depression, or continued drinking despite recognition that an ulcer was made worse 
     by alcohol consumption) 
 
 
 
The preceding was reprinted form Landry (1997), Exhibit 2.1. 
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Table 12: Variable Definitions 

 
Dependent Variables 
olf: 1Y = 1 if out of the labor force, 0 otherwise.  

unemp: 2Y = 1 if unemployed, 0 otherwise.  

emp: 3Y = 1 if employed, 0 otherwise 
 
Endogenous Variable 
cdrgab : pX : 1 if substance abuse or dependent, 0 otherwise 
 
Variables Included in oX  
numphc: count of the number of health conditions that caused problems in the past year 
hhsize: count variable equal to the number of people in the household 
married: 1 if married, 0 otherwise 
black: 1 if black, 0 otherwise 
asian: 1 if asian, 0 otherwise 
hispanic: 1 if hispanic, 0 otherwise 
other: 1 if other ethnic groups, 0 otherwise 
nohschool: 1 if not high school graduate, 0 otherwise 
hschool: 1 if a high school graduate only, 0 otherwise 
somecol: 1 if some post secondary school education, 0 otherwise 
college: 1 if a college graduate or beyond, 0 otherwise 
midwest, south, west: 1 if resides in that region, 0 otherwise (northeast excluded) 
urban: 1 if living in an urban setting, 0 otherwise 
qtrdum2, qtrdum3, qtrdum4: 1 if interview was conducted in that quarter, 0 otherwise (first 

quarter excluded) 
ur: state unemployment rate 
age: age in years 
agesq: age squared 
 
Instrumental Variables (Included in W+  Only) 
bfdum:  1 if biological father was an alcoholic, 0 otherwise 
bmdum: 1 if biological mother was an alcoholic, 0 otherwise 
alctax:  state level alcohol tax 
alctaxsq:  alctax squared 
cigtax:  state level cigarette tax 
cigtaxsq:  cigtax squared 
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Table 13: Descriptive Statistics 

Variable Mean SD 
olf 0.01 0.10 
unemp 0.04 0.21 
emp 0.95 0.23 
cdrgab 0.14 0.34 
numphc 0.39 0.77 
hhsize 2.71 1.54 
married 0.63 0.48 
white 0.58 0.49 
black 0.16 0.36 
asian 0.04 0.18 
hisp 0.21 0.41 
other 0.02 0.13 
nohschool 0.13 0.33 
hschool 0.27 0.44 
somecol 0.29 0.46 
college 0.31 0.46 
northeast 0.19 0.39 
midwest 0.21 0.41 
south 0.36 0.48 
west 0.24 0.43 
urban 0.84 0.37 
qtrdum1 0.15 0.36 
qtrdum2 0.00 0.06 
qtrdum3 0.40 0.49 
qtrdum4 0.44 0.50 
ur 0.06 0.01 
age 41.03 9.13 
agesq 1,766.74 762.75 
bfdum 0.18 0.39 
bmdum 0.05 0.22 
alctax 0.25 0.22 
cigtax 0.75 0.47 
alctaxsq 0.11 0.23 
cigtaxsq 0.78 0.78 
n 10,551 10,551 
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Table 14: Descriptive Statistics by Substance Abuse Status 

Variable Non-abuser Abuser 
olf 0.01 0.01 
 (0.10) (0.11) 
unemp 0.04 0.06 
 (0.20) (0.24) 
emp 0.95 0.93 
 (0.22) (0.26) 
numphc 0.37 0.49 
 (0.75) (0.89) 
hhsize 2.75 2.44 
 (1.55) (1.51) 
married 0.65 0.49 
 (0.48) (0.50) 
white 0.57 0.63 
 (0.50) (0.48) 
black 0.16 0.15 
 (0.37) (0.36) 
asian 0.04 0.02 
 (0.19) (0.13) 
hisp 0.22 0.18 
 (0.41) (0.38) 
other 0.02 0.02 
 (0.12) (0.14) 
nohschool 0.13 0.12 
 (0.34) (0.32) 
hschool 0.26 0.30 
 (0.44) (0.46) 
somecol 0.29 0.32 
 (0.45) (0.47) 
college 0.32 0.26 
 (0.47) (0.44) 
northeast 0.19 0.18 
 (0.40) (0.39) 
midwest 0.20 0.26 
 (0.40) (0.44) 
south 0.37 0.31 
 (0.48) (0.46) 
west 0.24 0.24 
 (0.43) (0.43) 
urban 0.84 0.82 
 (0.37) (0.38) 
qtrdum1 0.16 0.13 
 (0.36) (0.34) 
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qtrdum2 0.00 0.01 
 (0.06) (0.08) 
qtrdum3 0.40 0.42 
 (0.49) (0.49) 
qtrdum4 0.44 0.44 
 (0.50) (0.50) 
ur 0.06 0.06 
 (0.01) (0.01) 
age 41.40 38.69 
 (9.10) (8.95) 
agesq 1,796.97 1,577.15 
 (764.50) (723.71) 
bfdum 0.17 0.27 
 (0.37) (0.44) 
bmdum 0.04 0.10 
 (0.20) (0.29) 
alctax 0.26 0.23 
 (0.22) (0.20) 
cigtax 0.75 0.76 
 (0.47) (0.45) 
alctaxsq 0.12 0.09 
 (0.24) (0.20) 
cigtaxsq 0.78 0.77 
 (0.78) (0.75) 
n 9,100 1,451 
   

Note:The numbers in parentheses are standard deviations 
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Table 15: Joint Likelihood Ratio Test of Instrumental Variables 

LR chi2(6) 84.57 

p-value <0.001 

Note: H0: The first stage probit regression without IVs is nested in probit regression with IVs 
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Table 16: Test of Inter-category Covariance-related Coefficient 

LR chi2(2) 0.61 

p-value 0.736 

Note: H0: η = 0 
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Table 17: Endogeneity Test in NMNL-ET Model 

LR chi2(2) 8.36 

p-value 0.015 

Note: H0: u2 u3β β 0= =  
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Table 18:  NMNL-ET Deep Parameters Estimation Results 

Variable Unemployed Employed 

 Estimate t-statistics Estimate t-statistics 
cdrgab -17.84 -.99 -2.29 -1.30 
numphc -.71 -1.35 -.19 -1.48 
hhsize -.37 -.99 -.00 -.04 
married 4.22 1.15 .05 .07 
black -2.81 -.97 .81 .60 
asian -3.09 -.90 .72 .65 
hisp -.81 -.63 .33 .61 
other -.53 -.22 1.28 .85 
hschool 2.89 1.24 .56 1.46 
somecol 3.96 1.25 .87 1.70 
college 5.95 1.28 1.28 2.01** 
midwest 1.51 .85 -.18 -.31 
south 1.15 .94 -.06 -.11 
west .99 .79 -.05 -.11 
urban -.18 -.17 .71 1.38 
qtrdum2 -4.34 -1.10 -.42 -.19 
qtrdum3 .57 .56 -.41 -.95 
qtrdum4 1.04 .88 -.18 -.43 
ur -73.15 -1.03 -14.14 -.80 
age .15 .54 .01 -.06 
agesq -.00 -.70 .00 .02 
constant  24.47 1.01 6.13 1.94* 
Xu 7.92 1.00 .84 1.08 
η  6.22 1.13 6.22 1.13 

Note: *** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level 
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Table 19:  Average Treatment Effect of Substance Abuse on the Employment Status 

Note: *** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level 
 
 
 
 
 
 
 
 

  
 
 

 OLS Linear IV MNL MNL-ET NMNL NMNL-ET 
        
 ATE t-statistics ATE t-statistics ATE t-statistics ATE t-statistics ATE t-statistics ATE t-statistics 
             
Out of Labor 
Force 

-0.001 -0.41 -0.178* -1.75 -0.001 -0.40 -0.032 -0.59 -0.001 1.96 -0.264* -1.67 

             
Unemployed -0.013* -1.90 0.032 0.46 -0.012* -1.92 -0.209* -1.78 -0.011 -1.44 -0.107*** -2.92 
             
Employed 0.014* 1.92 0.146* 1.96 0.013* 1.93 0.241** 2.26 0.012 1.12 0.371*** 2.54 
             
             
Sample size 10,551 10,551 10,551 10,551 10,551 10,551 10,551 10,551 10,551 10,551 10,551 10,551 
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7.2 Figure 

Figure 1:  The Nest Structure of the Employment Status 

Employment 
Status

Out of the 
Labor Force

In the Labor 
Force

Unemployed

Employed
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Appendix A 

 Terza (2016a, b) explains the way to obtain the asymptotic standard error for the 

commonly encountered two-stage optimization estimator (2SOE). In this dissertation, we 

can view the average treatment effect (ATE) as a 2SOE. 2SOE is the sample mean of a 

parametric data transformation of the following general form 

 

  
n i

i 1

ˆg(τ, X )γ̂
n=

∑=        (A-1) 

 

which is, under general conditions, consistent for 

 

  γ = E[g(τ, X)]        (A-2) 

 

where g(  ) is a specified (known) function; τ̂  is a estimate of τ, a vector of “deep” 

parameters and iX  denotes a vector of observed data on X, a vector of observable variates, 

for the ith member of a sample of size n (i = 1, ..., n).  Specifically, γ̂  representsjATE , g(  

) in (A-1) represents 
uX j o u j o uˆ ˆE π (0, X ,X ; τ) π (1, X , X ; τ) −   in  equation (7). iX  

represents p o uX ,X ,X in  equation (7).  

 The asymptotic property of γ̂  (in this dissertation it is the average treatment effect) 

is as the following 

  


( ) dn ˆ
a v

γ γ
ar

n(0,1)
γ( )ˆ

− →      (A-3) 
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 (A-1) is indeed a 2SOE has been established by Terza (2016 a and b).  It is also 

shown therein that because (A-1) is a 2SOE, under general conditions its asymptotic 

variance is 

 

  [ ] [ ]τ τ
2ˆa var(γ) E g( , X) AVAR( )Eˆτ τ τ ( τg( , X) ' E g( , X) γ) = ∇ ∇ + −   

           (A-4) 

 

which can be consistently estimated as 

 

  γ̂a var( ) A B= +

        

(A-5) 

 

where 

  ˆA C AVAR(τ)C′=  

 

 
( )

n 2
i

i 1
ˆ ˆg(τ, X ) γ

B
n

=
∑ −

=  

 

  

 

n
i

i 1
τ ˆg(τ, X )

C
n

=
∑ ∇ 

=  
 
 

 

 

where 
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 

n n
i i

i 1 i 1
τ τˆ ˆg(τ, X ) g(τ, X )

ˆA AVAR(τ)
n n

= =
∑ ∑

′   ∇ ∇   
=    
   
   

 

 

 
( )

n 2
i

i 1
ˆ ˆg(τ, X ) γ

B
n

=
∑ −

=  

 

 τg( )τ, X∇  ≡ the gradient of g(β, X) (a row vector) 

 iτ ˆg(τ, X )∇ ≡ τg( )τ, X∇ evaluated at iX  and τ̂  

and 

 AVAR(τ̂) ≡ the asymptotic covariance matrix of τ̂  

with  ˆAVAR(τ)  being a consistent estimator of AVAR(τ̂)  
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Appendix B 

 
By equations (3) and (5) we have 

 
 * *

p p

*
j pX j X jE[Y | C] Pr(Y 1| C) π (X , C; τ)= = = . (j = 1, ..., J)  (B-1) 

where   

 o uC [X X ]=         (B-2) 

 
Given the definitions of oX  and uX , it follows that 

 
 * *

p p
pX j X jE[Y | X , C] E[Y | C]= .      (B-3) 

 
Therefore, by Theorem 11 of Terza (2018), under some general conditions, (B-3) implies 

that 

 
 j p o u j p o u j p o uE[Y | X ,X ,X ] Pr(Y 1| X ,X ,X ) π (X ,X ,X ; τ)= = =  (j = 1, ..., J) 

           (B-4) 

 
which, in turn, implies that 

 
 p o upmf (Y | X , X , X )  

  
* o uXp

(Y |X , X ) p o uf (Y,X , X , X ; τ)=  

 

  j
J Y

j p o u
j 1

π (X , X , X ; τ)
=
∏= .       (B-5)  
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Appendix C 

Generalizing to the case in which j 1, ..., J , the J relevant pmf values can then be written 

 
 *

p

*
1 p o u o uX 1π (X , X , X ; τ) Pr(Y 1 | X ,X )= =  

  * * *
2 2 3 3 J JPr(ξ V ,ξ V ...ξ V )     

  * * *
1 2 3 JG ( V , V ..., V )          (C-1) 

 
 
and for j 2,..., J  

 
 *

p

*
j p o u o uX jπ (X , X , X ; τ) Pr(Y 1 | X ,X )= =  

  * * * * *
2 j j 2 j j J j j JPr(ξ ξ V V ,..., ξ V ,...., ξ ξ V V )           

  * * * * *
j j 2 j j JG (V V ,...,V ,....,V V )        (C-2) 

where 
 
  
 1G ( , . . ., )   denotes the multivariate cdf of 2ξ  , 3ξ  . . .  Jξ   
 
and 
 
 jG ( , . . ., )   denotes the multivariate cdf of 2 jξ ξ , ... jξ  ... J jξ ξ . 
 
 
The exact formulations of 1G ( , . . ., )   and jG ( , . . ., )   follow from the assumed 

distribution of 1 2 Jε = [ε ε ... ε ] .  The general form of the model detailed in (C-1) and (C-

2) has the following parameters 

 
  J  coefficient parameter vectors for the utility indexes, viz., 
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  * * *
p1 o1 u1[β β β ] , . . ., * * *

pJ oJ uJ[β β β ] . 

  
 *

jσ  -- J variance parameters (j = 1, …, J) 

and  

 *
jσ


 -- J(J-1)/2 covariance parameters (j,


 = 1, …, J). 

 
First note that an admissible reduction is evident in (C-1) and (C-2) because it allows the 

relevant probabilities to be expressed in terms of the J 1−  normalized coefficient 

parameter vectors of the form27 

 
 o o o o o o

pj p1 oj o1 uj u1[(β β ) (β β ) (β β )]    . 

 
Moreover, as we will see later when we discuss the “standardized” version of the model, it 

is typically possible to further admissibly reduce the model by normalizing on one of the 

J 1−  variance parameters of  2 J[ξ . . . ξ ] .  

 I now turn to the derivation of the standardized versions of (C-1) and (C-2).  I do 

this in order to gain insight regarding parametric identification and as a means of 

characterizing the covariance flexibility of the various FPMO models arising from 

alternative specifications for the distribution of 1 2 Jε = [ε ε ... ε ] .  I begin with the 

trinomial model in (12), (13) and (14).  As can be seen in (12), there are only two unique 

difference random variables, 2ξ  and 3ξ , so there can be at most three identified variance-

covariance parameters, namely *
2 2ω var(ξ )= , *

3 3ω var(ξ )=  and *
23 2 3ω cov(ξ ,ξ )=   We can 

                                                 
27 For the definition of an admissible reduction see Terza (1985). 
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write the standardized versions of (12), (13) and (14), respectively, as 

 
 *

1 p o uπ (X , X ,X ; τ)  
 

  
**

3 32 2
* * * *
2 2 3 3

ξ Vξ VPr  and 
ω ω ω ω

          
.    (C-3) 

 
 
and the correlation between 2ξ  and 3ξ  is 
 
 

 
*
23

1 2 2 * *
2 3

ωd corr(ξ , ξ )
ω ω

  .       (C-4) 

 
 
Similarly, for the remaining two trinomial categories j = 2 and 3, respectively, we have 
  
 
 *

2 p o uπ (X , X ,X ; τ)  

  
* **

3 2 2 32 2
* * * * * * * *
2 2 2 3 23 2 3 23

ξ ξ V Vξ VPr  and 
ω ω ω ω 2ω ω ω 2ω

              
 (C-5) 

 
 
with relevant correlation 
 
   

 
2

* *
2 23

2 2 3 2
* * * * *
2 2 3 2 23

ω ωd corr( ξ , ξ ξ )
ω ω ω 2ω ω


   

 
    (C-6) 

 
and 
 
 *

3 p o uπ (X , X ,X ; τ)  
 

  
* * *

2 3 3 2 3 3
* * * * * * * *
2 3 23 2 3 23 3 3

ξ ξ V V ξ VPr  and  
ω ω 2ω ω ω 2ω ω ω

               
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with relevant correlation 
 
 

 
2

* *
3 23

3 2 3 3
* * * * *
3 2 3 2 23

ω ωd corr(ξ ξ , ξ )
ω ω ω 2ω ω


   

 
.    (C-7) 

 
 
It is clear from (C-3) through (C-7) that the model can be further admissibly reduced (and, 

therefore must be admissibly reduced if the parameter vector is to be identified) by 

 
    1) dividing *

2V  and *
3V  by *

2ω  

and  

 2) dividing *
2ω , *

3ω  and *
23ω  by *

2ω . 

 
Under these additional normalizations we get 

 

 * s 3
1 p o u 1 2

3

Vπ (X , X ,X ; τ) G V ,
ω

        
     (C-8) 

  23
1 2 2

3

ωd corr(ξ , ξ )
ω

        (C-9) 

 
 

 * s 2 3
2 p o u 2 2

3 23

V Vπ (X , X ,X ; τ) G V ,
1 ω 2ω

         
    (C-10) 

  23
2 2 3 2

3 23

1 ωd corr( ξ , ξ ξ )
1 ω 2ω


   

 
    (C-11) 

 

 * * 3 2 3
3 p o u 3

3 23 3

V V Vπ (X , X ,X ; τ) G ,
1 ω 2ω ω

         
     (C-12) 

  3 23
3 2 3 3

3 3 23

ω ωd corr(ξ ξ , ξ )
ω (1 ω 2ω )


   

 
   (C-13) 

 



89 

 

where for j =1 
 
 

 s
1 )G ( , =   the bivariate cdf of 2ξ  and 3

3

ξ
ω

 (the cdf of the standardized version of 

    2 3[ξ ξ ] ) 
 
 
and for j = 2 or 3 
 
 

 *
j )(G , =    the bivariate cdf of jξ  and r j

*
r j 2

ξ ξ

var(ξ ξ ) / ω




 such that r ≠ j (the cdfs 

of    the standardized versions of 2 3 2[ ξ (ξ ξ )]   and 2 3 3[(ξ ξ ) ξ ] 
) 
 
with 

 
*

*2
2 p p2 o o2 u u2*

2

VV X β X β X β
ω

     

 
*

*3
3 p p3 o o3 u u3*

2

VV X β X β X β
ω

     

 * *
3 3 2ω ω / ω  

 * *
23 23 2ω ω / ω  

 *
pj pj*

2

1β β
ω

=  

 *
oj oj*

2

1β β
ω

=  

 *
uj uj*

2

1β β
ω

=  
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p2 o2 u2 p3 o3 u3 3 23τ [[β β β ] [β β β ] ω ω ]′ ′= . 

 
The exact formulations of s

1G ( , )  , s
2G ( , )   and s

3G ( , )   follow from the assumed 

distribution of 1 2 3ε = [ε ε ε ] .  In summary, in the J = 3 case, the number of parameters 

is admissibly reduced from 9 (3 random utility coefficient vectors and 6 variance-

covariance parameters) to 4 (2 identified random utility coefficient vectors and 2 identified 

variance-covariance parameters). 

In the general case there are J 1−  unique utility differences 2ξ , 3ξ , . . , Jξ .  This means 

that there are at most J 1−  identified variance parameters 

 
 *

j jvar(ξ ) ω          (C-14) 

 
and (J 1)(J 2)

2
− −  covariance parameters 

 *
j jcov(ξ , ξ ) ω

 

         (C-15) 

j, ℓ = 2, ... , J; j ≠ ℓ.  I can write a standardized version of this multinomial model analogous 

to that of the trinomial model in (C-3) through (C-7).  This multinomial model can be 

admissibly reduced by 

 1) dividing *
jV  by *

2ω  
and 
 2) dividing *

jω  and *
jω


 by *
2ω  

 
to obtain the following (J 1)− − variate analogues to (C-8) through (C-12) 
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 * * s 3 J
1 1 p o u 1 2

3 J

V VP π (X , X ,X ; τ) G V , , ...,
ω ω

 − − = = −
 
 

   (C-16) 

where  

 s
1 , , . . .G ( , ) =    the multivariate cdf of 2ξ  , 3

3

ξ
ω

 . . .  J

J

ξ
ω

 

 
*
j *

j p pj o oj u uj*
2

V
V X β X β X β

ω
     

 *
pj pj*

2

1β β
ω

=  

 *
oj oj*

2

1β β
ω

=  

 *
uj uj*

2

1β β
ω

=  

and 

 * *
j j 2ω ω / ω .  

 

The associated correlation matrix for 2 3 J[ξ ξ . . . ξ ]  is 

 1 2 3 JD [ξ ξ . . . ξ ]  
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23 2J

3 J

3J

3 J

J 2,J 1 J 2,J

J 2 J 1 J 2 J

J 1,J

J 1 J

ω ω1 ...
ω ω

ω1
ω ω

1 ... .
.

ω ω
1

ω ω ω ω

ω
1

ω ω
1



  

  





 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

   (C-17) 

 
where * *

j j 2ω ω / ω
 

  for j  .  Similarly, for the remaining three multinomial categories 

j = 2, . . ., J, respectively 

 
 

 j 2 j j J* * s
j j p o u j

j 2 j j j J jJ

(V V ) V (V V )
P π (X , X ,X ; τ) G ,..., ,...,

1 ω 2ω ω ω ω 2ω

               
 

           (C-18) 
 
where 
 

 s
j , , . . .G ( , ) =    the multivariate cdf of 2 j

j 2 j

ξ ξ

1 ω 2ω



 
, ... 

j

j

ξ
ω


 ... 

J j

j J J4

ξ ξ

ω ω 2ω



 
. 

 
 
The associated correlation matrix 

 
 j 2 j j J jD [(ξ ξ ). . . ξ . . . (ξ ξ ) ]− − −       (C-19) 
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 like 1 2 3 JD [ξ ξ . . . ξ ] , has 1's along the main diagonal.  To define the remaining elements 

of jD  I need only specify its upper triangle (excluding the diagonal, of course).  The 

elements of the upper triangle corresponding to correlations involving j j 1ξ = ε ε−  have 

the following general form 

 

  j j

j j j

(ω ω )

ω (ω ω 2ω )


 



 
. 

 
The remaining elements of the upper triangle of jD  are of the form 

 

 

j jm j m

j j j m jm

(ω ω ω ω )

(ω ω 2ω )(ω ω 2ω )
 

 

  

   
 

 
where j, ℓ, m = 2, ... , J; ℓ, m are not equal to j; m > ℓ.  Note that in all of the above 

expressions 2ω  is normalized to be equal to 1. The full parameter vector is 

  
 p2 o2 u2 pJ oJ uJ 3 j 23 24 (J 1)Jτ [[β β β ]. . . [β β β ] ω . . . ω ω ω . . . ω ]−

′ ′′ ′= . 

 
In summary, in the general case, the number of parameters is admissibly reduced from 

J(J 3)
2
+  (J random utility coefficient vectors, J variance parameters and J(J 1)

2
−  

covariance parameters) to 
2J J 4

2
+ −

 ( J - 1 identified random utility coefficient vectors, 

J 2−  identified variance parameters [recall the normalization on *
2ω ] and (J 1)(J 2)

2
− −  

identified covariance parameters). 
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Appendix D 

 When J = 4, there are only three unique utility differences, 2ξ , 3ξ , and 4ξ  so 

although there are 10 variance-covariance parameters in the primitive model, there can be 

at most 6 identified variance-covariance parameters, viz., 

 
 *

2 2var(ξ ) = ω , *
3 3var(ξ ) = ω , *

4 4var(ξ ) = ω  

 *
2 3 23cov(ξ , ξ ) = ω , *

2 4 24cov(ξ , ξ ) = ω , and *
3 4 34cov(ξ , ξ ) = ω . 

 
We can write a standardized version of this quadrinomial model that is analogous to that 

of the trinomial model in (C-3) through (C-7).  This quadrinomial model can be admissibly 

reduced by 

 
 1) dividing *

2V , *
3V , and *

4V  by *
2ω  

and  

 2) dividing *
2ω , *

3ω , *
4ω , *

23ω , *
24ω  and *

34ω  by *
2ω  

 
to obtain the following trivariate analogues to (C-8), (C-9) and (C-13) 

 

 * * s 3 4
1 1 p o u 1 2

3 4

V VP π (X , X ,X ; τ) G V , ,
ω ω

           
    (D-1) 
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23 24

3 4

34
1 2 3 4

3 4

ω ω1
ω ω

ωD [ξ ξ ξ ] 1
ω ω

1

 
 
 
 
 
   
 
 
 
 
  

 ≡ correlation matrix for 2 3 4[ξ ξ ξ ]  

           (D-2) 
 
 

 * * s 2 3 2 4
2 2 p o u 2 2

3 23 4 24

V V V VP π (X , X ,X ; τ) G V , ,
1 ω 2ω 1 ω 2ω

              
  

           (D-3)  

  2 2 3 2 4 2D [ ξ (ξ ξ ) (ξ ξ )]    

    

23 24

2 23 4 24

34 23 24

3 23 4 24

1 ω 1 ω1
1 ω 2ω 1 ω 2ω

1 ω ω ω1
(1 ω 2ω )(1 ω 2τω )

1

  
 
     
          
 
 
 
  

 

   ≡ correlation matrix for 2 3 2 4 2[ ξ (ξ ξ ) (ξ ξ )]    (D-4)

  

 

 * * s 3 2 3 3 4
3 3 p o u 3 3

33 23 3 4 34

V V V V VP π (X , X ,X ; τ) G , , ;D
ω1 ω 2ω ω ω 2ω

              
 

           (D-5) 

 

  3 2 3 3 4 3D [ (ξ ξ ) ξ (ξ ξ )]    
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3 23 3 24 23 34
2

3 23 3 4 343 3 3 23

3 34
2
3 3 4 3 34

ω ω ω ω ω ω1
(1 ω 2ω )(ω ω 2τω )ω ω 2ω τω

ω ω1
ω ω ω 2ω ω

1

    
 
      
    
   
 
 
  

 

   ≡ correlation matrix for 2 3 3 4 3[ (ξ ξ ) ξ (ξ ξ )]    (D-6)

  

 

 * * s 4 34 2 4
4 4 p o u 1

44 24 3 4 34

V VV V VP π (X , X ,X ; τ) G , ,
ω1 ω 2ω ω ω 2ω

             
  

           (D-7) 

  4 2 4 3 4 4D [ (ξ ξ ) (ξ ξ ) ξ ]        (D-8) 

  

4 23 24 34 4 24

4 24 3 4 34 4 42 4 24

4 34
2
4 4 43 4 34

ω ω ω ω ω ω1
(1 ω 2ω )(ω ω 2ω ) ω ω 2ω ω

ω ω1
ω ω ω 2ω ω

1

    
 
       
    
   
 
 
  

 

  ≡ correlation matrix for 2 4 3 4 4[ (ξ ξ ) (ξ ξ ) ξ ]     (D-9)

  

 
where for j =1 
 

 s
1 ,( ,G ) =    the trivariate cdf of 2ξ  , 3

3

ξ
ω

 and 4

4

ξ
ω

 (the cdf of the standardized 

   version of 2 3 4[ξ ξ ξ ] ) 
 
and for j = 2, 3 or 4 
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 s
j ,( ,G ) =    the trivariate cdf of 2 j

j 2 j

ξ ξ

1 ω 2ω



 
,  

j

j

ξ
ω


 and 4 j

j 4 j4

ξ ξ

ω ω 2ω



 
 

(the cdf     of the standardized version of 

2 j j 4 j[ξ ξ ξ ξ ξ ]− − − ) 
 
with 

 
*

*2
2 p p2 o o2 u u2*

2

VV X β X β X β
ω

     

 
*

*3
3 p p3 o o3 u u3*

2

VV X β X β X β
ω

     

 
*

*4
4 p p4 o o4 u u4*

2

VV X β X β X β
ω

     

 * *
3 3 2ω ω / ω  

 
 * *

4 4 2ω ω / ω   
 
 * *

23 23 2ω ω / ω   
 
 * *

24 24 2ω ω / ω   
 
 * *

34 34 2ω ω / ω  
 
 

 *
pj pj*

2

1β β
ω

=  

 *
oj oj*

2

1β β
ω

=  

 *
uj uj*

2

1β β
ω

=  
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and 

 

p2 o2 u2 p3 o3 u3 p4 o4 u4 3 4 23 24 34τ [[β β β ] [β β β ] [β β β ] ω ω ω ω ω ]′ ′ ′= . 

 
 In summary, in the J = 4 case, the number of parameters is admissibly reduced from 

14 (4 random utility coefficient vectors and 10 variance-covariance parameters) to 8 (3 

identified random utility coefficient vectors and 5 identified variance-covariance 

parameters). 

 Note that the MNP model will be a special case for the J = 4 case if the error terms 

are assumed to be multivariate normal distributed,  
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Appendix E 

 To get the marginal pdfs of 2ε  and 3ε  and the joint marginal pdf of 2ε  and 3ε  we 

need only focus on the joint marginal cdf of 2ε  and 3ε  as defined in equation (51) in the 

main text 

 

  
32

2 3

1 ηεε
1 η 1 η

ε ε 2 3F (ε , ε ) exp e e

−
− −

− −
    = − +      

.     (E-1) 

 
To be specific, these marginal pdfs can be derived as 

 

 2 3
2

3

ε ε 2 3
ε 2

2 ε

F (ε , ε )
f (ε )

ε
=∞

∂
=

∂
 

 2 3
3

2

ε ε 1 3
ε 3

3 ε

F (ε , ε )
f (ε )

ε
=∞

∂
=

∂
 

and 

 2 3
2 3

2
ε ε 2 3

ε ε 2 3
2 3

F (ε , ε )
f (ε , ε )

ε ε
∂

=
∂ ∂

. 

 
We have 

 

 2 3
2 3

ε ε 1 3
ε ε 1 3 1 3

2

F (ε , ε )
F (ε , ε ) C(ε , ε )

ε
∂

=
∂

  

where 

 
32 2

ηεε ε
1 η 1 η 1 η

2 3C(ε , ε ) e e e

−
− − −

− − −
   
   = +

  
  

 . 
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Now 
 

 
2

2 3 3

1 ηε
1 η

ε ε 2 3 ε
F (ε , ε ) exp e

−
−

−
=∞

    = −     

 

 
   ( )2εexp e−= −  

and 

 
2 2

3

ε ε( η)
1 η 1 η

2 3 εC(ε , ε ) e e
   
− − −   − −   

=∞

 
 =
 
 

 

 

   
2 2ε ε(η)

1 η 1 ηe e
   

−   − −   
 
 =
 
 

 

   
2 2ε η ε

1 η 1 ηe
 

− − − =  
 

   
2ε (1 η)
1 ηe

 − −
 − =  

 
   2εe−= . 
 
Combining these results yields 

 
 2

2

ε
ε 2 2f (ε ) exp ( e )exp( ε )−= − −  

  2 2exp ( ε exp( ε ))= − − −  

 
so the marginal distribution of 2ε  is log-Weibull.   
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Appendix F 

 
 From Appendix E and the discussion surrounding equations (58) and (59) in the 

text, we have that if 1 2 3ε = [ε ε ε ]  is GEV distributed as in (58), then its marginal 

distributions are log-Weibull.  From this we get 

 
 1 2 3E[ε ] E[ε ] E[ε ] γ    

and 

 
2

1 2 3
Πvar(ε ) var(ε ) var(ε )
6

   . 

 
Also, as we have defined in the text 

 1 2 1 3cov(ε , ε ) cov(ε , ε ) 0   

and 

 2 3 23cov(ε , ε ) σ (η) . 

 

We have then that 

 
 2

2 1 2 1E[ε ε ] E[ε ]E[ε ] γ   

 2
3 1 3 1E[ε ε ] E[ε ]E[ε ] γ   

 2
2 3 23E[ε ε ] σ (η) γ   

and 

 
2

2 2 2 2
1 2 3

ΠE[ε ] E[ε ] E[ε ] γ
6

    . 
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For the two relevant “difference” random variables,  2 2 1ξ = ε ε  and 3 3 1ξ = ε ε we have 

 
 2 3E[ξ ] E[ξ ] 0   

  
and for * 2

2 2 2ω var(ξ ) E[ξ ]   and * 2
3 3 3ω var(ξ ) E[ξ ]   and 

*
23 2 3 2 3ω cov(ξ , ξ ) E[ξ ξ ]   we get 

 
 * 2 2 2

2 2 2 2 1 1ω E[ξ ] E[ε ] 2E[ε ε ] E[ε ]     

  
2 2

2 2 2Π Πγ 2γ γ
6 6

      

  
2Π

3
  

and, likewise 

 

 
2

*
3

Πω
3

  

 
moreover 

 
 * 2

23 2 3 2 3 2 1 3 1 1ω E[ξ ξ ] E[ε ε ] E[ε ε ] E[ε ε ] E[ε ]      

  
2

2 2 2 2
23

Πσ (η) γ γ γ γ
6

       

  
2

23
Πσ (η)
6

  .       (F-1) 

 



103 

Applying the admissible and requisite reduction of the model we get 

 

 * *
3 3 2ω = ω / ω 1  

and 

 

2

23
* * 23

23 23 2 2 2

Πσ (η) 3σ (η) 16ω = ω /ω =
2Π Π

3


  . 

 

So we can write the relevant version of (23) in this case as 

 

 

*
23

23* * 22 3 23
1 2 3 *

23 2323
2* *

2 3

ω 3σ (η) 11 1ω ω 1 ω 2ΠD [ξ ξ ]
ω 1 3σ (η) 1ω 11 2Πω ω

                                    

 

           (F-2) 
 

 

Note also that from the above we get 

 

 * * *
3 2 2 3 2 3 23var(ξ ξ ) var(ξ ξ ) ω ω 2ω       

 

Applying the admissible and requisite reduction of the model we get the identified versions 

of these variances as 
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 23 23
23 2 2

3σ (η) 6σ (η)12(1 ω ) 2 1 1
2Π Π

              
 

  

So we can write the relevant versions of (26) and (27) in this case as 

 

* *
2 23

* * *
2 3 23

2 2 3 2 * *
2 23

* * *
2 3 23

ω ω1
ω ω 2ω

D [ ξ (ξ ξ )]
ω ω 1

ω ω 2ω

                    

 

   

   

* *
2 23

* * *
2 3 23

* *
2 23

* * *
2 3 23

ω ω1
ω ω 2ω

ω ω 1
ω ω 2ω

                  

 

 

   

23

23

23

23

1 ω1
2(1 ω )

1 ω 1
2(1 ω )

                

 

 

   

23
2

23
2

23
2

23
2

6σ (η)1 1
2 Π1

6σ (η)1
Π

6σ (η)1 1
2 Π 1

6σ (η)1
Π

                                          
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1
223

2

1
223

2

6σ (η)11 1
2 Π

6σ (η)1 1 1
2 Π

                              
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Appendix G 

For the joint marginal pdf of 2ε  and 3ε  we have 

 

 2 3
2 3

2
ε ε 2 3

ε ε 2 3
2 3

F (ε , ε )
f (ε , ε )

ε ε
∂

=
∂ ∂

   

 

3 3 32 2 2
1 η 2η η-1ε ε εε ε ε

1 η 1 η 1 η 1 η 1 η 1 η2 3ε ε ηexp e e e e e e
1 η 1 η

− − −
− − − − − −

− − − − − −
       +       = − + − + + +       − −              

. 
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