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Yan Yang 

EFFECT OF SUGAR-SWEETENED BEVERAGE CONSUMPTION ON 

CHILDHOOD OBESITY – CAUSAL EVIDENCE 

Communities and States are increasingly targeting the consumption of sugar-

sweetened beverages (SSBs), especially soda, in their efforts to curb childhood obesity. 

However, the empirical evidence based on which policy makers design the relevant policies 

is not causally interpretable. In the present study, we suggest a modeling framework that 

can be used for making causal estimation and inference in the context of childhood obesity. 

This modeling framework is built upon the two-stage residual inclusion (2SRI) 

instrumental variables method and have two levels – level one models children’s lifestyle 

choices and level two models children’s energy balance which is assumed to be dependent 

on their lifestyle behaviors.  

 We start with a simplified version of the model that includes only one policy, one 

lifestyle, one energy balance, and one observable control variable. We then extend this 

simple version to be a general one that accommodates multiple policy and lifestyle 

variables. The two versions of the model are 1) first estimated via the nonlinear least square 

(NLS) method (henceforth NLS-based 2SRI); and 2) then estimated via the maximum 

likelihood estimation (MLE) method (henceforth MLE-based 2SRI). Using simulated data, 

we show that 1) our proposed 2SRI method outperforms the conventional method that 

ignores the inherent nonlinearity [the linear instrumental variables (LIV) method] or the 

potential endogeneity [the nonlinear regression (NR) method] in obtaining the relevant 

estimators; and 2) the MLE-based 2SRI provides more efficient estimators (also consistent) 

compared to the NLS-based one. Real data analysis is conducted to illustrate the 
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implementation of 2SRI method in practice using both NLS and MLE methods. However, 

due to data limitation, we are not able to draw any inference regarding the impacts of 

lifestyle, specifically SSB consumption, on childhood obesity. We are in the process of 

getting better data and, after doing so, we will replicate and extend the analyses conducted 

here. These analyses, we believe, will produce causally interpretable evidence of the effects 

of SSB consumption and other lifestyle choices on childhood obesity. The empirical 

analyses presented in this dissertation should, therefore, be viewed as an illustration of our 

newly proposed framework for causal estimation and inference.  

 

Joseph V. Terza, Ph.D., Chair 
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Chapter 1: Background and Significance 

 The US childhood obesity rate has risen from 5% in 1971-74 to 17% in 2009-10 

(Anderson and Butcher, 2006; Ogden et al., 2012). This trend mirrors that of the adult 

obesity rate, which grew from 13% to 34% between 1960 and 2008 (Flegal et al., 1998; 

Ogden et al., 2010). The rise in obesity has become a leading public health concern, as 

adiposity contributes to health problems such as heart disease, diabetes, high blood 

pressure, and stroke (Sturm, 2002). This has prompted a growing number of policy 

proposals intended to reverse or slow the trend.  

 Sugar-sweetened beverages (SSBs), particularly soda, have become a popular 

target of such proposals, as soda is the single largest contributor to caloric intake (Block, 

2004). Moreover, SSB calories may lead to larger increases in body weight than other 

sources of calories. A meta-analysis by Mattes (1996) finds that only 9% of calories from 

liquids are offset by subsequent downward adjustment in caloric intake, compared to 64% 

for solid foods. Additionally, SSBs have relatively high glycemic indices 

(Healthaliciousness.com, 2013).  

 Interventions to reduce SSB intake among children can take several forms. As of 

2007, 34 U.S. states taxed soda sold in grocery stores while 39 states taxed soda sold in 

vending machines. However, the tax rates were all below 10% and the purpose was 

primarily to raise revenue (Levy et al., 2011; Fletcher et al., 2010b). In recent years, 

proposals for larger soda taxes at the federal, state, or local levels with the explicit purpose 

of curbing childhood obesity have become increasingly common (Fletcher et al., 2010b). 

A recent New York City law would have banned restaurants from selling sodas and other 

sugary beverages larger than 16 ounces, though the law was ultimately overturned by the 
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courts (Reuters, 2013). School-level policies, such as not having “pouring rights” to soda 

with bottling companies or prohibiting stores, snack bars, or vending machines from selling 

soda, are also increasingly common (Levy et al., 2011). New federal regulations on the 

nutritional content of foods and drinks sold in school vending machines are scheduled to 

take effect in the 2014-2015 academic year and should dramatically reduce SSB 

availability in schools (Shah, 2013). 

 Despite the growing popularity of SSB-related interventions, the case for singling 

out SSBs to reduce childhood obesity is largely based on evidence that is not causally 

interpretable. Vartanian et al. (2007) conduct a meta-analysis of 88 studies and find a 

positive association between soda intake and body weight. Malik et al. (2006) and 

Woodward-Lopez et al. (2011) reach similar conclusions after reviewing 25 and 56 

observational studies, respectively. However, the associations produced by such 

observational studies may not reflect causal effects of soda on weight, in which case their 

relevance for policy is unclear. These associations could be driven partially or entirely by 

unobservable characteristics – such as an individual’s level of interest in health – that might 

influence not only soda intake but also other determinants of weight (e.g. junk food 

consumption and exercise).1 To the extent that the regressions do not control for these other 

determinants, the estimated effect of soda on weight could be exaggerated. Reverse 

causality is also a concern, as higher weight means greater caloric needs.       

 Perhaps because of the limited causal evidence upon which they are based, SSB-

related interventions, as currently practiced, do not appear to have had clear effects on 

childhood obesity. Powell and Chaloupka (2009) only find evidence of an effect of state 

                                                 
1 Such variables will be henceforth referred to as confounders. 
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soda taxes on adolescents’ BMI among those at risk of overweight, while Sturm et al. 

(2010) estimate a negative but modest relationship between soda taxes and BMI among 

fifth graders. Fletcher et al. (2010b) study a longer time period and a broader age range (3-

18) than these prior studies, and more thoroughly account for omitted variables by 

including state fixed effects. Changes in state soda tax rates are not significantly associated 

with changes in child BMI, overweight, or obesity, as the decrease in calories from soda is 

offset by an increase in calories from whole milk. Finally, Forshee et al. (2005), Fletcher 

et al. (2010a), and Taber et al. (2011) find no evidence of an effect of removing SSBs or 

junk foods from school vending machines on child BMI. While such retrospective program 

evaluations are useful, trial and error can be an expensive way to gain information about 

which SSB-related interventions best combat obesity. Some possible interventions, such as 

educational programs, impose large fiscal costs. Others, including taxes and restrictions, 

are not fiscally costly but economic theory suggests they would result in net social costs 

unless they reduce weight.  

 An alternative approach is to gather prospective evidence through small-scale pilot 

experiments. 2 James et al. (2004) show that a randomized nutrition education program 

among 29 elementary school classes in the United Kingdom reduced carbonated drink 

consumption and overweight and obesity rates. Ebbeling et al. (2006) show that a home-

based randomized experiment, which featured counseling and weekly deliveries of non-

caloric beverages among 103 13-18 year olds in Boston, only significantly reduced BMI 

among the heaviest teenagers. Sichieri et al. (2009) randomized 47 4th grade classes in 

                                                 
2 The discussion is limited to randomized experiments among children that included weight-related outcomes. 
Other experiments attempt to randomize soda intake among adults or focus on only intermediate outcomes 
such as dietary habits. See Levy et al. (2011) and Woodward-Lopez et al. (2011) for discussions of these 
studies. 
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Brazil to an educational program focused on reducing carbonated sugar-sweetened 

beverages, finding that the intervention led to a substitution from soda to juice, with body 

mass index (BMI) only dropping among overweight children. While these randomized 

experiments provide some causally-interpretable evidence that SSB-related interventions 

can reduce childhood obesity, their generalizability is limited by their small samples and 

the fact that only one occurred in the U.S. Accumulating a large enough evidence base 

from randomized experiments to motivate large-scale U.S. policy would be expensive and 

time consuming. 

 Therefore, we propose an approach designed to produce: 1) causally-interpretable 

evidence on the impact of SSB consumption on children’s weight; and 2) quantitative 

recommendations for potential SSB-related childhood obesity-fighting policies aimed at 

specified energy balance goals. Our approach requires only observational data, avoiding 

the large costs of trial interventions and randomized experiments. Unlike conventional 

methods, it explicitly accounts for inherent nonlinearity and the potential endogeneity of 

relevant behaviors in the modeling of child energy balance. 

 Our econometric framework comprises two components. First, we model children’s 

lifestyle choices that contribute to energy balance as a series of nonlinear regression 

equations, referred to as lifestyle regressions, with dependent variables such as calories 

from SSBs, calories from other sources, and minutes of physical activity per day. The main 

independent variables in this lifestyle regression system are the observable analogs of 

“prospective policy interventions”, such as the prices of SSBs, other foods and drinks, and 

fast-food meals; access to fast-food restaurants, full-service restaurants, grocery stores, 

Walmart Supercenters, and warehouse clubs; and nutrition information spending. These 
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variables all relate to potential policy levers: the price variables to taxes and subsidies; the 

establishment variables to taxes, subsidies, and moratoria for particular types of businesses; 

and nutritional education funding to further information spreading efforts. In the second 

component, we specify a regression equation, referred to as the energy balance regression, 

whose dependent variable is a measure of children’s energy balance (BMI percentile (%-

ile), body fat percentage (%), and definitional overweight and obesity), and whose key 

independent variables are the lifestyle variables, indicating children’s eating and exercise 

habits. The obesity-related lifestyle choices may be endogenous due to some unobservable 

variables relating to health status, genetics, parental characteristics, etc. that impact both a 

child’s energy balance and his or her eating or exercise habits. We correct for this potential 

endogeneity bias by implementing the two-stage residual inclusion (2SRI) instrumental 

variables method suggested by Terza et al. (2008), where instruments are the policy related 

variables mentioned above in the context of the first component of the econometric 

framework.  The 2SRI method is particularly appropriate in this context because it is 

designed to account for the inherent nonlinearity of both components of the model. Based 

on this modeling framework, we are able to improve the evidence base on possible SSB-

related interventions for combatting childhood obesity: combining the results from both 

components of the regression system, we estimate the causally-interpretable effects of the 

SSB-related prospective policy levers on energy balance. We also provide a way to 

estimate the change in a prospective policy lever that would be required to achieve a desired 

energy balance outcome, which is different from a commonly used linear approximation 

approach. 
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 The remainder of the dissertation is organized as follows. Chapter 2 discusses a 

simplified version of the model that includes only one policy, one lifestyle, one energy 

balance, and one observable control variable, and derives the estimators that can be used 

to evaluate policy effects and provide policy recommendations. As a comparison, 

estimators based on the conventional methods that ignore nonlinearity or endogeneity are 

also provided. In Chapter 3, the simple model in Chapter 2 is extended to be a general 

model that accommodates multiple policy and lifestyle variables and, correspondingly, 

more general policy effect estimators are derived. Chapter 4 introduces a full information 

version of the simple model by assuming known forms for the conditional probability 

density functions of the lifestyle variable (soda calorie intake) and for the energy balance 

variable (body fat %), and incorporating this information into the estimation of the relevant 

parameters. By doing this, we expect to obtain more efficient estimators. Using the same 

logic, chapter 5 discusses the full information version of the general model. The 

performance of the model introduced in chapter 2-5 are examined using simulated data (i.e. 

chapter 2 and 4) or real data (i.e. chapter 3 and 5). Finally, Chapter 6 summarizes and 

discusses the models and results put forth in Chapters 2 through 5. 

 

 

 

 



7 

	

Chapter 2: A Simplified Version of the Model and Proposed 

Empirical Policy Analytic Methods 

 The estimation of the causal effects of childhood behaviors (e.g. SSB calories 

intake, other calories intake, exercise, etc.) on energy balance is complicated by the fact 

that there might be some unobserved characteristics (e.g genetics or quality time with 

parents) that correlate with both weight and these behaviors. Failure to control for such 

unobserved confounding factors relegates conventional regression-based estimates to 

interpretation as merely indicative of statistical association, supplying little or no useful 

content for policy makers. The modeling framework proposed here takes explicit control 

of these factors so that the statistical estimates that it produces will be causally interpretable 

and, therefore, relevant to policy analysts and policy makers. This model has two levels: 

the first level models the effects of exogenous changes in the potential policy variables on 

children’s weight-related behaviors; the second level focuses on the causal effects of 

changes in these behaviors on child energy balance. Because child energy balance 

regressions in the second level are inherently nonlinear [proportional regressions for BMI 

%-ile and body fat % (see Basu and Manca, 2012; Buis, et al., 2012; and Paolino, 2001); 

logit analyses for obesity and overweight (see Wooldridge, 2010, Chapter 15)], we propose 

the use of the two-stage residual inclusion (2SRI) instrumental variables method suggested 

by Terza et al. (2008) to address the endogeneity bias due to unobserved confounders in 

nonlinear models. 

 To keep things simple without loss of generality, we start with the discussion of a 

simplified version of the model that includes only one energy balance variable (body fat %), 

one policy variable (soda price), one lifestyle variable (soda calorie consumption), and one 
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observable control variable (age). In this simple illustrative example, we demonstrate the 

corresponding two-level econometric framework and the way to consistently estimate the 

relevant coefficients. We also derive estimators that can be used to evaluate policy (soda 

price or other policies aimed at affecting soda consumption directly) effects and provide 

recommendations for policy changes (soda price change) or lifestyle changes (soda calorie 

consumption change) aimed at achieving a desired energy balance outcome (ideal 

population mean of body fat %). As a comparison, estimators based on conventional 

methods that ignore nonlinearity [the simple linear instrumental variables (LIV) method] 

or endogeneity [the nonlinear regression (NR) method] are also provided, and such 

comparison is made using the simulated data.   

 

2.1 Regression Representation of the Simplified Model 

 We posit the following lifestyle regression model 

 
 o o p uL exp(X α Pα ) X          (2.1) 

 
 
where 

 L ≡ daily soda calories consumed (cal.) 

 oX [1 AGE]   

 AGE ≡ children’s age (years) 

 P ≡ soda price ($ per 2 liters) 
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 o o o pE[L| X , P] exp(X α Pα )  ; uX is the regression error term; and o pα [α α ]   is 

the vector of parameters to be estimated with o CONST AGEα [α α ]  .  In addition, we 

assume that  

 
 o u L o o u uE[EB | L, X , X ] Λ(Lβ X β X β )= + +     (2.2) 

 
 
where Λ(   ) is the logistic cumulative distribution function (cdf) and L o uβ [β β β ]¢ ¢=  

is the vector of parameters to be estimated with o CONST AGEβ [β β ]  . This yields the 

following form for the energy balance regression model   

 
 L o o u uEB Λ(Lβ X β X β ) e= + + +       (2.3) 

 
 
where L o o u ue EB Λ(Lβ X β X β )= - + +  is the regression error term. The regression 

model in (2.1) and (2.3) accounts for the potential endogeneity of soda calorie consumption 

(L) through the explicit inclusion of its unobserved confounders, Xu, in the energy balance 

equation. The observable control variable (AGE) included in Xo is assumed to be 

exogenous in both equations. We apply the two-stage residual inclusion (2SRI) method 

suggested by Terza et al. (2008) to obtain estimates of the αs and the βs in the model. The 

2SRI method requires at least one instrumental variable that is highly correlated with soda 

calorie consumption, L, but correlated with body fat %, EB, only through its influence on 

soda calorie consumption. Soda price (P) satisfies this condition, and can be used as the 

instrumental variable. The two stages of the 2SRI method are: 
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Stage 1 – use the nonlinear least squares (NLS) method to estimate the lifestyle regression 

(2.1) and obtain consistent estimators, 2SRI
oα  and 2SRI

Pα , then calculate 

2SRI 2SRI 2SRI
u o o PX L exp(X α Pα )     ; 

Stage 2 – obtain the consistent estimators, 2SRI
Lβ , 2SRI

oβ , and 2SRI
uβ  by applying the NLS 

method to the following version of (2.3) 

 

 
2SRI 2SRI

L o o u uEB Λ(Lβ X β X β ) e         (2.4) 

 
 
with  2SRI

uX  obtained from the stage 1. 

The 2SRI method described above takes account of both the inherent nonlinearity and the 

potential endogeneity of soda calorie consumption in the modeling of child energy balance 

and, as a result, all the estimates of the αs and the βs are consistent.  

  

2.2 Average Incremental Effects in the Simplified Model 

 Using the 2SRI parameter estimates and the corresponding lifestyle and energy 

balance equations, we can estimate the effect of soda calorie consumption or soda price on 

body fat %. We first derive estimators of the change in body fat %, on average, in response 

to a particular change in soda calorie consumption or soda price, based on the 2SRI method. 

Following the approach of Terza and Wu (2016), using the 2SRI parameter estimates, the 

average incremental effect (AIE) of an exogenous policy-driven increment in soda calorie 

consumption, say ΔL, on body fat % can be estimated as 

 

 

n

i L
i 1

1
EB ( ) EB

n


   
 

        (2.5) 
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where 

  2SRI 2SRI 2SRI 2SRI
i L i L L oi o ui uEB ( ) Λ((L Δ )β X β X β )        

 
2SRI 2SRI 2SRI
ui i oi o i PX L exp(X α P α )     ;  the i subscript refers to the ith sample member; 

2SRIα s  and 2SRIβ s  are the 2SRI estimators; and  EBdenotes the sample average for body 

fat %. Similarly, the estimated AIE of an exogenous increment in soda price by the amount 

ΔP on body fat % is3 

 

 

n

i P
i 1

1
EB ( ) EB

n


   
 

        (2.6) 

 
 
where 

 

  2SRI 2SRI 2SRI 2SRI
i P i P L oi o ui uEB ( ) Λ(L ( )β X β X β )          

 

 2SRI 2SRI 2SRI
i P oi o i P P uiL ( ) exp(X α (P Δ )α ) X        

 
 

and 2SRI
uiX  and EBare defined as in equation (2.11). It is easy to show that the estimated 

AIEs in equations (2.5) and (2.6) are consistent as the coefficient estimates ( 2SRIα s  and 

2SRIβ s ) used are consistent. We will refer to these two AIE estimators as the 2SRI-estimated 

AIEs.  

 

                                                 
3 For detailed derivations of equation (2.5) – (2.6) see Appendix 2C. 
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2.3 Requisite Policy Changes to Achieve an EB Target in the Simplified Model 

 In addition to the aforementioned AIE analyses, we also provide other empirical 

measures that may be of interest to policy makers. For example, we derive an estimate of 

the requisite change in soda calorie consumption (soda price) for achieving a pre-specified 

energy balance target. Such a measure would be essential to the design of a policy 

intervention.  Let EB0 be the average ideal level of body fat %. Then the estimated change 

in soda calorie intake that would be required to bring the current average level of body 

fat %, EB, down to the ideal one, EB0, can be obtained by solving  

 

 

n0 0
i L

i 1

1
EB EB (Δ )

n
          (2.7) 

 
 
where 

 0 0 2SRI 2SRI 2SRI 2SRI
i L i L L oi o ui uEB (Δ ) Λ((L Δ )β X β X β )        , 

 
2SRI 2SRI 2SRI
ui i oi o i PX L exp(X α P α )      ; the αs and the βs are the coefficient estimates 

obtained from 2SRI; and 0
LΔ  denotes the estimated change in L required to achieve EB0 

and it is the only unknown value in this equation. Similarly, the estimated change in soda 

price that would be necessary to bring EB down to EB0 is 0
PΔ , such that 

 

 

n0 0
i P

i 1

1
EB EB (Δ )

n
          (2.8) 

 
 
where  

 
0 0 2SRI 2SRI 2SRI 2SRI

i P i P L oi o ui uEB (Δ ) Λ(L (Δ )β X β X β )         
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  2SRI 2SRI 2SRI
i P oi o i P P uiL ( ) exp(X α (P Δ )α ) X        

 
and can be obtained by solving equation (2.8). There is no closed form solution for 0

LΔ  (or 

0
PΔ ) as equation (2.7) [or (2.8)] is nonlinear. In practice, we use Stata/Mata Optimize 

procedure to approximate it by determining the value that minimizes the squared difference 

between EB0 and n 0
i L

i 1

1
EB (Δ )

n
   [or n 0

i P
i 1

1
EB (Δ )

n
  ].4 Based on equation (2.7) [or (2.8)], we 

can obtain the 2SRI-based 0
LΔ  (or 0

PΔ ) by replacing the αs and βs  with 2SRIα s  and SRIβ s . 

 We prefer the approach discussed above in obtaining the relevant policy 

recommendation estimators, although it is a little complicated in calculation. Typically, for 

simplicity, researchers use a more conventional approach that relies on linear 

approximation. They simply divide the difference between the targeted average body fat % 

(EB0) and the current average body fat % ( EB) by the estimated AIE with the relevant 

causal increment set equal to 1.  Theoretically, there is no difference between these two 

approaches in obtaining estimated required changes in L or P if the regressions used in the 

method have linear functional forms.  But when the regressions are nonlinear, the linear 

approximation approach may yield unreliable estimates that differ substantially from the 

true values. In the model we propose, the relevant relationships are inherently nonlinear. 

So the conventional approach based on linear approximation is not appropriate. This can 

be illustrated by Figure 2.1.A and 2.1.B. In Figure 2.1.A, we draw the true response curve 

of the AIE on body fat % for different values of ΔL.5 The response curve based on the 

                                                 
4 The corresponding Stata program is available upon request. 
5 We plot the value of the true AIE(ΔL) over varying ΔL (ranges from -100 to 100, with 0.5 as the increment) 
in STATA, and find the true response curve is convex and passes through the origin.  
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conventional approach (referred to as the “linear approximation to the true response curve” 

in the figure) is linear and intersects with the true response curve when ΔL is 1.6 Both 

response curves are increasing as more soda calorie consumption indicates higher body 

fat %. The targeted level of average body fat % (15%) is lower than the current level (23%), 

so the expected change in body fat % is negative and we can draw a horizontal line [denoted 

by 0
LAIE( )  in the figure] below the x-axis to find out the change in L necessary to achieve 

the expected decrease in body fat %. The intersection of this horizontal line with the true 

response curve will give us the true requisite change in L ( 0
LΔ ), while the intersection of 

this horizontal line with the linear approximation curve will give us the change in L 

obtained from the conventional approach ( CONV
LΔ ). Clearly, 0

LΔ  is greater than CONV
LΔ  in 

magnitude, indicating that the conventional approach tends to underestimate the actual 

decrease in soda consumption necessary to bring the average body fat % down to the ideal 

level. Similarly, we draw another figure to show the relationship between the change in P 

and the corresponding AIE on body fat % (see Figure 2.1.B). The true response curve is 

decreasing as higher soda price indicates lower body fat %.7 The response curve based on 

the conventional approach (referred to as the “linear approximation to the true response 

curve” in the figure) is linear and decreasing, and intersects with the true response curve 

when ΔP is 1.8 After drawing a horizontal line [denoted by 0
PAIE( )  in the figure] below 

                                                 
6 To obtain this linear approximation curve, we first find out the point in the graph that indicates the true AIE 
of one unit increase in L on body fat %, and this point should coincide with the one in the true response curve; 
we then draw a straight line, which is the line we are looking for, that passes through this point and the origin. 
Therefore, the two response curves in Figure 2.1.A should intersect at ΔL = 1. 
7 We plot the value of the true AIE(ΔP) over varying ΔP (ranges from 0 to 2, with 0.01 as the increment) in 
STATA, and find the true response curve is convex and passes through the origin.  
8 To obtain this linear approximation curve, we first find out the point in the graph that indicates the true AIE 
of one unit increase in P on body fat %, and this point should coincide with the one in the true response curve; 
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the x-axis [and above the line AIE(1)],9 we obtain the true requisite change in P ( 0
PΔ ) and 

the change in P based on the conventional approach ( CONV
PΔ ). Then we can see that 0

PΔ  is 

smaller than CONV
PΔ , which means that the conventional approach tends to overestimate the 

actual increase in soda price necessary to bring the average body fat % down to the ideal 

level in this case.10 

 

2.4 Simulation Comparison of Estimators in the Context of the Simplified Model 

 In the above three sections, i.e. section 2.1-2.3, we discussed our modeling 

framework, in the context of the simple case, and the way to obtain consistent coefficient 

estimates, AIE and policy recommendation estimators. To better illustrate our idea and 

examine our proposed method, we conduct a simulation study. Specifically, we compare 

our method to the conventional methods that ignore inherent nonlinearity [the simple linear 

instrumental variables (LIV) method] or potential endogeneity [the nonlinear regression 

(NR) method] when modeling energy balance outcomes, i.e. body fat % in this case. In this 

section, we first describe our sampling design, and then discuss the coefficient, AIEs, and 

policy recommendation estimators obtained from each of the three methods, i.e. 2SRI, LIV, 

and NR, using the simulated data. 

 

                                                 
we then draw a straight line, which is the line we are looking for, that passes through this point and the origin. 
Therefore, the two response curves in Figure 2.1.B should intersect at ΔP = 1. 
9 We put this horizontal line above the line AIE(1) in Figure 2.1.B because we would like to explain the 

results in Table 2.5.B, in which the true 
0

PΔ  is less than 1. This horizontal line can also be put below the line 

AIE(1) if the targeted decrease in the average body fat % is so large such that the increase in P is expected to 
be greater than 1. In this case, 0 CONV

P PΔ Δ  

10 
0

PΔ  may be greater than 
CONV

P
Δ , also see footnote 9. 
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2.4.1 Sampling Design in the Simplified Model 

 We simulate a sample of 200,000 children (ages 2-19) with four variables: 

children’s age (years), daily soda calories consumed (cal.), body fat %, and soda price 

($ per 2 liters).11 We first generate data for age and soda price based on pre-specified values 

of the means and variances,12 and then, generate data for daily soda calorie consumption. 

Because soda calorie consumption is nonnegative, we assume it to be a Generalized 

Gamma (GG) [three parameter] variate which has the following probability density 

function (pdf) [Manning et al., 2005] 

 

 
 

γ

o
γ

f (L | X , P; κ,μ,σ) exp(Z γ V)             L 0
σL γΓ γ

     (2.9) 

 
 
where L is the lifestyle variable, soda calorie consumption; κ, μ and σ are the basic 

parameters of the distribution; Γ(  ) is the gamma function; 2
γ κ

 ; 

  Z sign κ ln(L) μ / σ  ;  V γ exp κ Z ; o o pμ X α Pα  , Xo is a vector that consists 

of the observable control variable, age, and a constant term, P is the policy variable, soda 

price, and the αs are the parameters . 

 We make this assumption because the GG distribution subsumes many different 

distributions that are commonly used for non-negative random variables, such as Weibull, 

Exponential, Log-normal, and so on. By doing this, we are safe to argue that our simulation 

results are not limited to a specified non-negative distribution, i.e. Weibull, Exponential, 

Log-normal, etc., for L.  

                                                 
11 We use Stata/Mata to generate the simulated sample based on equation (2.9) - (2.14) discussed below. The 
corresponding Stata program is available upon request. 
12 Age and soda price are assumed to be uniformly distributed with pre-specified means and variances. 
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 To generate L, we need to know its cumulative distribution function (cdf). 

According to Stacy and Mihram (1965), the conditional cdf of the GG variable, L, is 

 

    
pγ(ν, (L/ a) )

Γ(ν)
   if p  >  0   

  
 oF(L | X ,P;a, v,p)    

pγ(ν, (L/ a) )
1

Γ(ν)
   if p  <  0  (2.10)  

 
 
where a, v, p are the basic parameters in this specification; and γ(b, c)  denotes the 

incomplete gamma function defined as 
c

b 1 t

0
γ(b, c) t e dt 

 . The parameterization in this 

case differs from the one under which we specify the pdf in (2.9). Manning et al. (2005) 

provides a crosswalk between the form in (2.9) and the Stacy and Mihram 

parameterization. Therefore, we can express a, v, and p as functions of κ, μ, and σ, i.e. 

σ

κ

2

exp(μ)
a

1

| κ |


 
 
 

, 2

1
ν

| κ |
 , and 

κ
p

σ
 . When p > 0, we have  

 

 
1

1 pL a γ (ν, Γ(ν) U[0,1])        (2.11) 
 
 
where 1γ (d, j)  denotes the inverse incomplete gamma function defined such that if 

j = γ(d, k)  then 1k = γ (d, j) ; U[0, 1] denotes the uniform random variable on the unit 

interval. Based on (2.11), we can now generate data for L by picking values for κ, σ, and 
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the αs, and hence calculating a, v, and p, which are the parameters used in (2.11).13 After 

obtaining L, Xu can be generated as  

 
 u o o pX L exp(X α Pα C)          (2.12) 

 
 

where 2σ/κ *C ln[κ C ] , * 2 2C Γ{(1/ κ ) (σ/k)} /Γ{1/ κ }= + ; 14  and all the unobserved 

factors, other than age and soda price, that affect soda calorie consumption are captured by 

Xu. With the generated value of Xu in hand we are able to generate data for body fat %. 

Because the value of body fat % ranges from 0 to 1,15 we assume it to be beta distributed 

(Basu and Manca, 2012; Buis, et al., 2012; Paolino, 2001), and the corresponding pdf is 

 

 ξμ 1 ξ(1 μ) 1
o u

Γ(ξ)
h(EB | L, X , X ;ξ,μ) EB (1 EB)          0 < EB <1

Γ(ξμ)Γ(ξ(1 μ))
   


 

           (2.13) 
 
 
where EB represents the energy balance variable (body fat %); 

o u L o o u uμ E[EB | L,X ,X ] Λ(Lβ X β X β )    , Λ(   ) is the logistic cdf; and ξ and the βs 

are the parameters. To generate EB, we pick values for ξ and the βs, and use the inverse 

transform method (Ross, 1997, p. 62)  

 
 1EB H (U[0,1])-=         (2.14) 
 

                                                 
13 We cannot get the inverse incomplete gamma function directly in Stata/Mata, but we can get it indirectly. 
For the details of the data generation of L, see Appendix 2A. 
14 See Manning et al. (2005) for the conditional mean of the Generalized Gamma random variable. 
15 In the simulated data, body fat % is measured as a decimal instead of a percentage. 
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where H-1(  ) is the inverse beta cdf, and U[0,1] denotes the uniform random variable on 

the unit interval.16  

 Note that in this design, EB depends on the unobserved component, Xu, which is 

clearly correlated with L [see equation (2.12)].  Therefore, L is endogenous in (2.13) if βu 

is nonzero. In fact, in constructing simulated samples, we can control the degree of 

endogeneity by varying the absolute value of βu in the sampling design.   

 To make the simulation results more informative, we chose the relevant parameters 

for the sampling design so as to be as realistic as possible for children aged 2-19 based on 

the literature and some online resources. We set the mean soft drink price per 2 liters at 

$1.35, and mean age at 10.5 years. We also adjusted the relevant parameters to make the 

mean of daily soda calories consumed around 120 cal. and the mean body fat % around 

23%.17 Attention was also given to other important aspects of the relevant distributions. 

For example, body fat % is seldom close to 0 or 1, so the tails of the distribution in the 

simulated sample should be relatively thin. Similarly, soda calories consumed per day may 

not exceed 3200 cal. as this is the approximate maximum amount of calories needed daily 

for an active male aged 14-18 years.18  Moreover, the signs of the parameters (the αs and 

the βs) were chosen so as to be meaningful (e.g. Pα  is negative, in keeping with the law of 

demand; and βL is positive, as increased soda consumption is likely to lead to higher body 

                                                 

16 The cdf is
EB

ξμ 1 ξ(1 μ) 1

o u
0

Γ(ξ)
H(EB | L, X , X ; ξ, μ) t (1 t) dt

Γ(ξμ)Γ(ξ(1 μ))

- - -
ò= -

-
. In Stata/Mata, EB can be 

generated by using the “invibeta(a,b,p)” function, which is the inverse beta cdf where a and b are the shape 
parameters, and p is a value between 0 and 1. In our case, a = ξμ, b = ξ(1 – μ), and p is the uniform random 
variable on the unit interval, i.e. U[0, 1].  
17 For a detailed discussion of the sampling design see Appendix 2B. 
18 An active female aged 14-18 years may need 2400 calories per day. For daily calorie needs for other age-
gender groups at different levels of physical activity, see http://www.webmd.com/diet/features/estimated-
calorie-requirement 
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fat %). By setting βu at a positive value we assume that the unobservable component (Xu) 

is dominated by factors such as one’s genetic predisposition to consume sugar which is 

positively related to both the consumption of calories from sugared soft drinks and body 

fat % (Qi et al., 2012).  

 Table 2.1.A and 2.1.B displays the summary statistics of the main variables in the 

simulated sample and the values of the key parameters (the αs and the βs.) chosen for the 

sampling design, respectively. It is clear to see that sample means of the four variables are 

all as expected. About 89% of the observations in the sample have their body fat % fall 

within 6% and 45%, which is quite reasonable. And the maximum amount of soda calories 

intake per day is about 461 cal., which is less than the amount of calories needed per day 

for an active male aged 14-18 years (3200 cal.). By design, the coefficient of Xu is nonzero 

(βu = 0.005), meaning that soda calorie consumption variable is endogenous in the child 

energy balance model. The severity of the endogeneity problem is determined by the 

magnitude of βu, i.e. the higher the magnitude of βu, the more serious the problem will be. 

    

2.4.2 Coefficient Parameter Estimation in the Simulated Simplified Model 

 Using the simulated data we estimated the parameters of the model in (2.1) and (2.3) 

via the 2SRI protocol given in section 2.1 [culminating in the NLS estimation of (2.4)]. For 

comparison, we also provide the relevant estimates obtained from: 1) a simple nonlinear 

regression (NR) method that ignores endogeneity (but not nonlinearity); and 2) the linear 

instrumental variables (LIV) method that ignores nonlinearity (but not endogeneity). For 

simplicity, the three types of coefficient estimates will be referred to as the 2SRI estimators, 

the NR estimators, and the LIV estimators, respectively.   
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 The following two-stage protocol was used for the NR method,   

Stage 1 – is the same as the one in the 2SRI method, i.e. estimate the lifestyle regression 

(2.1) using the NLS method, and thereby obtain consistent estimates of the αs (say NR
oα , 

NR
Pα ); 

Stage 2 – estimate the energy balance regression (2.3) without including Xu by applying 

the NLS method, and obtain the corresponding estimates of the βs (say NR
Lβ , NR

oβ ). 

Compared with the 2SRI method, in the NR approach the unobserved confounders for L, 

Xu, are not included in the energy balance regression, while the lifestyle regression is 

exactly the same in both methods. Therefore, the NR estimators for the βs based on the 

simulated data will not be consistent, but estimators for the αs will be consistent and equal 

to the 2SRI estimators. the LIV method 

 The LIV method is actually the two-stage least squares (2SLS) method, in which 

both two stages are based on linear regressions.  The two stages are as follows: 

Stage 1 – estimate the linearized lifestyle regression, o o PL X α Pα u   , by OLS, and 

obtain estimators, LIV
oα  and LIV

Pα .  Then construct LIV LIV LIV
o o PL X α Pα    ; 

Stage 2 – estimate the linearized energy balance regression, LIV LIV
L o oEB L β X β e   , 

by OLS, and obtain estimates of the βs, LIV
Lβ  and LIV

oβ . 

The LIV method accounts for endogeneity but ignores inherent nonlinearity. 

 The first column of Table 2.2 shows the true parameter values (i.e. pre-specified 

values listed in Table 2.1.B) and the corresponding estimates obtained from each of the 

three methods. The 2SRI estimates listed in the second column are quite close to the true 

parameters, while the NR and the LIV estimates listed in the last two columns are far from 
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the true values; except, of course, for the NR estimates of the αs. Estimates of the αs 

obtained from the NR method are equal to the ones obtained from the 2SRI method, which 

is just as expected since the first stages in both methods are exactly the same. There is an 

upward bias for the NR coefficient estimate of soda calorie consumption ( NR
Lβ 0.00861  

vs Lβ 0.007 ), which is consistent with the fact that the unobserved confounders are 

assumed to be positively related to both soda consumption and body fat % in the simulated 

data. Although the LIV method accounts for the endogeneity of soda consumption, it 

incorrectly assumes linear functional forms for both the lifestyle regression and the energy 

balance regression, and hence produces inconsistent coefficient estimates. This is similar 

to the results obtained by Terza, Bradford and Dismuke (2008). Overall, the 2SRI estimator 

outperforms the other estimation approaches.  

 

2.4.3 Average Incremental Effect Estimation in the Simulated Simplified Model 

 Using the simulated data and each of the three sets of parameter estimates (2SRI, 

NR, and LIV) we estimated the AIEs of an increment in soda calorie consumption (ΔL) or 

soda price (ΔP) on body fat %.  The 2SRI-based estimates were obtained through direct 

application of (2.5) and (2.6) and are listed in the second columns of Tables 2.3.A and 

Table 2.3.B. For the NR case, the estimated AIEs were calculated via the versions of 

equations (2.5) and (2.6) that exclude the 2SRI 2SRI
ui uX β  component and replace the 2SRIα s  

and 2SRIβ s  by NRα s  and NRβ s  .  These estimates are listed in the third columns of Tables 

2.3.A and Table 2.3.B.19 The LIV-estimated AIEs analogous to (2.5) and (2.6) are: LIV
L LΔ β  

                                                 
19 For detailed derivations of the NR-estimated AIEs see Appendix 2C. 
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and LIV LIV
P P LΔ α β , respectively, with LIV

Pα  and LIV
Lβ , and are listed in the fourth columns of 

Tables 2.3.A and Table 2.3.B. 

 In Table 2.3.A the simulation results for the 2SRI-, NR-, and, LIV-estimated AIE 

of a one calorie increment in soda consumption on body fat %, denoted by 
2SRI

LAIE(Δ ) , 

NR

LAIE(Δ ) ,  and 
LIV

LAIE(Δ )  respectively. These three estimated AIEs are compared 

with the true value, denoted by AIE(ΔL), which is calculated by substituting the true 

parameters (listed in the first column of Table 2.2) for the 2SRI estimators ( 2SRIα s  and 

2SRIβ s ) in equation (2.5).20 The true value, AIE(ΔL), is 0.001084, meaning that one more 

calorie from soda consumption will increase body fat % by around 0.11 of a percentage 

point on average. The corresponding estimate based on the 2SRI method is quite close to 

this value (0.001086 vs 0.001084), while the estimates obtained from the NR method and 

the LIV method are quite divergent from the true value (0.001338 vs 0.001084, and 

0.001354 vs 0.001084, respectively). 

 The results are similar for the estimated AIE of a one dollar increment in soda price 

on body fat %. As can be seen in Table 2.3.B, the true value [AIE(ΔP)] is equal to -0.10503, 

indicating that a one dollar increase in soda price per 2 liters will decrease body fat % by 

around 10.5 percentage points. The NR- and LIV-estimated AIEs differ a lot from the true 

value  

(-0.12633 vs -0.10503, and -0.30202 vs -0.10503, respectively), while the 2SRI-estimated 

AIE is very close to the population value (-0.10539 vs -0.10503). 

                                                 
20 The true value of AIE(ΔL) was calculated based on a super sample of 3 million observations generated 
using the same sampling design as that used to simulate the analysis sample of  size 200,000. The true value 

for AIE(ΔP) was similarly obtained; as were the true values 0

LΔ  and 0

PΔ  discussed in the following section. 
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 We also test the performance of the 2SRI-estimated AIEs under different levels of 

endogeneity by adjusting the magnitude of βu when generating data. We would like to see 

whether the AIE estimators based on our preferred 2SRI method are consistently superior 

to the ones based on the NR or the LIV method in all cases. We therefore simulate 5 slightly 

different samples of the same size (200,000) by increasing βu from 0 to 0.02, with 0.005 as 

the increment, while keeping other parameters unchanged during data generating process. 

As βu increases, the endogeneity problem gets worse. For each sample, we apply all three 

methods for estimating the AIEs, and then calculate the absolute percentage bias of each 

relative to the true value (absolute %bias = [|(estimated value - true value)/true 

value|]*100%) for the estimated ones. Table 2.4.A (2.4.B) shows the AIEs of a one unit 

increase in soda calorie consumption (soda price) on body fat % for increasing levels of 

endogeneity. The 2SRI-estimated AIEs and the NR-estimated AIEs are nearly identical 

when there is no endogeneity problem (βu = 0).21 However, as βu increases, the increase in 

the percentage bias for the NR-based AIE estimators is striking: it increases from 0.02% to 

85.51% for changes in soda calorie consumption (Table 2.4.A); and from 0.12% to 78.09% 

for a one dollar increase in soda price (Table 2.4.B). On the other hand, the percentage bias 

for the 2SRI-based AIE estimators is small in all the cases (always less than 1%). This 

indicates the importance of taking care of endogeneity when there is strong belief in the 

existence of unobservable confounders. Moreover, merely account for nonlinearity is not 

enough. The LIV-estimated AIEs are also subject to large bias especially when βu is large, 

                                                 
21 The differences are so minor that they disappear even if the numbers are rounded to six decimal places in 
Table 2.4.A and five places in Table 2.4.B. You can see the differences when the numbers are rounded to 
one more place, which are not shown in Table 2.4.A and 2.4.B: 0.0011129 vs 0.0011130 for a one unit change 
in calorie consumption; and -0.105938 vs -0.105942 for a one dollar change in soda price. 
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which indicates that the adverse effects of ignoring nonlinearity get worse when 

endogeneity is more prevalent, even if the method itself accounts for endogeneity.  

 Based on the results from Table 2.3.A (B) and Table 2.4.A (B), we may conclude 

that, compared with the NR- and the LIV-estimated AIEs, the estimates obtained via the 

2SRI method are more reliable for assessing the effects of potential policy interventions, 

especially when the endogeneity problem is prevalent. 

 

2.4.4 Policy Recommendations in the Simulated Simple Model 

Using the simulated data and each of the three sets of parameter estimates (2SRI, 

NR, and LIV) we estimated policy recommendations [PR] ( 0
LΔ  and 0

PΔ ) for a given energy 

balance target ( 0EB ).  For the present simulation study we specify the energy balance 

target to be a population average body fat % of 15%. This choice is motivated by the fact 

that the recommended healthy body fat percentages are 9-15% for boys and 14-21% for 

girls according to an online article.22  The 2SRI-based PR estimates were obtained through 

direct application of (2.7) and (2.8) and are listed in the second columns of Tables 2.5.A 

and Table 2.5.B.  For the NR case, the estimated PRs were calculated by using the versions 

of equations (2.7) and (2.8) that exclude the 2SRI 2SRI
ui uX β  component and replace the 2SRIα s  

and 2SRIβ s  by NRα s  and NRβ s  These estimates are listed in the third columns of Tables 

2.5.A and Table 2.5.B.23   

                                                 
22 The online article regarding the recommended healthy body fat % for boys and girls is available at: 
http://www.livestrong.com/article/194320-body-fat-percentage-for-children/. Information regarding 
children and adolescents’ healthy body fat % by age and gender can be found via the following link: 
http://www.doctoragostini.com/childhoodobesity/id4.html. 
23 For detailed derivations of the NR-estimated AIEs see Appendix 2C. 



26 

	

 Compared with the 2SRI- and the NR-based estimated changes in L or P required 

to achieve EB0, those based on the LIV parameter estimates are relatively simple. The LIV-

based 0
LΔ  is the one that solves the equation  n0 0 LIV LIV

i L L oi o
i 1

1
EB (L Δ )β X β

n
    , and the 

LIV-based 0
PΔ  is the one that solves the equation 

 n0 0 LIV LIV LIV LIV LIV
i P P L o L o oi

i 1

1
EB (P Δ )α β (α β β )X

n
        . Unlike equation (2.7) and (2.8), 

there are closed form solutions for 0
LΔ  and 0

PΔ , i.e. the LIV-based 0
LΔ  and 0

PΔ  are 

 

 
 n0 LIV LIV

i L oi o
i 1

LIV
L

1
EB L β X β

n
β


  

       (2.15) 

 
and  

 

 
 n0 LIV LIV LIV LIV LIV

i P L o L o oi
i 1

LIV LIV
P L

1
EB P α β (α β β )X

n
α β


     


    (2.16) 

 
 
respectively.  The LIV-estimated PRs, obtained using (2.15) and (2.16) are are listed in the 

fourth columns of Tables 2.5.A and Table 2.5.B.  

 We also estimated the PRs using the conventional approach prefer the approach 

(see section 2.3). Recall that in this approach, the PR estimates are obtained by simply 

dividing the difference between the targeted average body fat % (EB0) and the current 

average body fat % ( EB) by the estimated AIE with the relevant causal increment set equal 

to 1 (e.g. using the 2SRI-based parameter estimates and AIE result 

0
LΔ (0.15 0.23) / 0.00108 73.6 66    , where 0.001086 is obtained from the second 

column of Table 2.3.A). There is no difference between these two approaches in obtaining 
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estimated required changes in L or P if the regressions used in the method have linear 

functional forms, e.g. as in the discussion of the LIV method.24  In nonlinear models, 

however, the 2SRI and NR based estimates diverge.  This is demonstrated in the sixth and 

seventh columns of Tables 2.5A and 2.5.B.   

 The “true” PR values, 0
LΔ  and 0

PΔ , and their linear approximations are denoted by 

“True” 0
LΔ  and “True” 0

PΔ  in Tables 2.5.A and 2.5.B.  These true values, along with the 

2SRI- NR- and LIV-based PR estimates indicate that the decrease in soda consumption 

necessary to bring the current average body fat % (23%) down to 15% is around 85 calories, 

and the increase in soda price required is around 48 cents. The 2SRI-based 0
LΔ  and 0

PΔ  

obtained from our preferred approach are quite close to the true values (-85.40 vs -85.48, 

and 0.479 vs 0.482, respectively), while the corresponding NR- and the LIV-based 

estimates diverge from the true values quite substantially. Comparing the true 0
LΔ  with its 

linear approximation, the former  

(-85.48) is larger than the latter (-73.87) in absolute value, which is consistent with the 

conclusion from Figure 2.1.A, i.e. the conventional approach tends to underestimate the 

decrease in L necessary to achieve EB0. Similarly, the true 0
PΔ  (0.482) is smaller than its 

linear approximation (0.762), which is consistent with the illustration in Figure 2.1.B. 

Finally, as expected, the LIV-based 0
LΔ ( 0

PΔ ) obtained from our approach is exactly the 

                                                 

24 In equation (2.15),  n
LIV LIV

i L oi o
i 1

1
L β X β

n
    is actually the sample average for body fat %, EB , while LIV

Lβ  

is the LIV-estimated AIE of one unit increment in L on EB. Therefore, equation (2.15) is identical to the one 
used in the conventional approach on obtaining the requisite change in L. Similarly for equation (2.16), in 

which  n
LIV LIV LIV LIV LIV

i P L o L o oi
i 1

1
P α β (α β β )X

n
       is the sample average for body fat %, EB , and LIV LIV

P Lα β  is 

the LIV-estimated AIE of one unit increment in P on EB.  
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same as the one obtained from the conventional approach as the regressions used in the 

LIV method are linear. 

 We also compare the policy recommendation estimators ( 0
LΔ  and 0

PΔ ) based on 

our approach for different levels of endogeneity. The results are shown in Table 2.6.A and 

2.6.B. 25  The absolute percentage bias for the 2SRI-based estimates is always small 

irrespective of the level of endogeneity, while the bias for the NR- or the LIV-based 

estimates increases as βu increases. Therefore, our 2SRI-based approach to the estimation 

of requisite policy changes for achieving a specified energy balance target estimates is 

preferred especially when soda calorie consumption is severely endogenous. 

 

2.5 Summary  

 In this chapter, we illustrate our method based on a simple case where only one 

energy balance variable, one policy variable, one lifestyle variable, and one observable 

control variable are involved, and simulate data to examine our proposed method in the 

estimation of 1) AIEs on body fat % in response to an exogenous change in soda calories 

intake or soda price and 2) quantitative policy recommendations for changing soda calories 

intake or soda price aimed at achieving an ideal body fat %. We derive, and develop Stata® 

code for, those econometric estimators, and apply it using simulated data. The simulation 

results show that, overall, the 2SRI method performs very well: all the estimates of the 

coefficients, the AIEs, and the change in soda calories intake or soda price required to 

achieve the average ideal body fat % are quite close to the true values. And the estimators 

                                                 
25 The results for the requisite change in L or P when βu is 0.02 are not shown in the table as Stata/Mata 
Optimize procedure fails to converge in this case.  
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obtained from the method that ignores the inherent nonlinearity of the model (i.e. the LIV 

method) or the potential endogeneity of soda calorie consumption (i.e. the NR method) in 

the modeling of child energy balance, body fat %, are subject to substantial bias. Moreover, 

our approach in obtaining the two policy recommendation estimators is more appropriate 

than the conventional approach that relies on linear approximation. 
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Appendix 2A 

Data Generating for L in Stata/Mata 

 As Stata/Mata does not provide inverse incomplete gamma function, we cannot 

generate L directly based on (2.11). But we can get it indirectly. The incomplete gamma 

function γ(s, x) can be expressed as 

 

 γ(s, x) Γ(s)G(s, x)         (2A-1) 
 
 
where G(s, x) denotes the cdf of the simple Gamma random variable with parameter s. 

Using (2A-1), let 

 
 j = γ(d, k) Γ(d) G(d, k)        (2A-2) 
 
 
Solving (2A-2) for k yields 

 

 1 1 j
k = γ (d, j) G d,

Γ(d)
   

  
 

      (2A-3) 

 
 
where 1G (d,P)  denotes the inverse cdf of the simple Gamma random variable. 

Combining (2A-3) with (2.3) yields26 

 

 
1

1 pL a G (ν, U[0,1])        (2A-4) 
 

                                                 
26 The Generalized Gamma Distribution (GGD) we assume for L is a three parameter based distribution, 
which is a special case of the four parameter GGD used in Tadikamalla, 1979, in which the location parameter 
is 0. We generate L indirectly through generating a standard gamma random variate, say X, with shape 

parameter v, and making the transformation 1/pL aX . In other words, if L ~ GG (a, v, p), then 

 
p

L
~ Gamma v,1

a

 
 
 

. 
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where U[0, 1] denotes the uniform random number on the unit interval. We can now 

generate L using 
1

pa rgamma(ν, 1) , where rgamma(m, n) is the Stata command used to 

randomly generate a gamma variate with shape parameter m and scale parameter n. 
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Appendix 2B 

Background and Motivation for the Chosen Sampling Design 

 According to the Bureau of Labor Statistics, monthly average prices for non-diet 

Cola per 2 liters ranged from $1.310 to $1.367 in 2009.27 So as an approximation, the mean 

price of soft drinks per 2 liters in the simulated data was set at $1.35. Fletcher et al. (2010b) 

use the NHANES III data and the NHANES 1999-2006 data to study the effects of soft 

drink taxes on childhood obesity. Their sample consists of children and adolescents 

between the ages of 3 and 18, with mean age equal to 10.513 and a standard deviation equal 

to 0.043. Therefore, we generate our sample with a mean of age of approximately 10.5 as 

we are interested in the children and adolescents between the ages of 2 and 19. Moreover, 

the mean calories from soft drinks in the previous 24 hours in Fletcher et al. (2010b) are 

115.247 cal., with standard deviation equal to 2.531. Lin et al. (2011) use the 1998-2007 

National Consumer Panel data and the 2003-2006 NHANES data. Their sample consists 

of children aged 2-19 years. The average calorie intake from sugar-sweetened beverages 

(SSBs) (including regular soft drinks, sports and energy drinks, and fruit drinks) is 189 cal. 

for children from low income families and 195 cal. for children from high income families. 

An online report shows that the energy obtained from SSBs for individuals aged 2-19 was 

155 calories a day in 2009/2010.28 Given the above information, we chose the average soda 

calorie intake per day to be around 120 cal. 

 Based on NHANES 1999-2004 data, a national health statistics report (Ogden, C.L. 

et al., 2011) shows that the mean percentage body fat at age 8 was 28% for boys and 31% 

                                                 
27 See http://data.bls.gov/timeseries/APU0000717114?data_tool=XGtable 
28 See http://www.foodnavigator-usa.com/Markets/Calories-from-sugar-sweetened-beverages-have-
declined-steadily-since-1999-but-still-account-for-11-of-energy-intakes-in-teenage-boys 
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for girls respectively, and these numbers decrease to 23% for boys at age 19 and increase 

to 35% for girls at age 19. Since we distinguish neither between boys and girls nor between 

different ages in our simplified illustration, we set the average body fat % at around 23%.  
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Appendix 2C 

Background and Motivation for AIE Estimators and 

Recommended Requisite Price Change 

 The regression in (2.1) is causal in the sense that Xo is comprehensive with respect 

to P, i.e. it comprises all the possible confounders for P and its own elements.29 Similarly, 

(2.3) is causal because o uX [X X ]  is comprehensive with respect to L. In other words, 

conditional on oX  (X), any differences in the mean of the observed value of L (EB) can 

be exclusively attributed to differences in the observed value of P (L).  

 We distinguish between the observable version of P and its exogenously mandated 

version, P*.  Correspondingly, we define the observable version of L and its potential 

outcome version ( *P
L ) – the version of L that would obtain if the policy variable were 

mandated to be P*. Likewise we define the observable version of EB and its potential 

outcome version (
P*LEB ) – the version of EB that would obtain if the policy variable were 

mandated to be P*.  To define the effect of a policy driven exogenous (and counterfactual) 

change in P on energy balance, we focus on how 
P*LEB would change between: the pre-

policy scenario in which the distribution of P is exogenously set at * preP P ;  and the post-

policy scenario in which the distribution of preP  is exogenously incremented by ΔP, a fixed 

constant. Within this framework, the 2SRI-based policy effect of interest can be formally 

defined as  

 

 
pre preP Δ PP

2SRI
P L LAIE (Δ ) E[EB ] E[EB ]


       (2C-1) 

 

                                                 
29 See Terza (2014) for an expanded discussion of the concepts used here. 
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To simplify the discussion (and in keeping with convention), we assume that the observable 

value of L for any individual in the population is the same as it would have been if the 

observable value of P were exogenously imposed rather than the product of individual 

choice. In other words, for every individual in the population ωwe have that 

 
 exogP (ω)

L(ω) L (ω)         (2C-2) 

 
 

where exogP  denotes the random variable representing the observable distribution of P 

treated as if it were exogenously imposed. Similarly, we assume that the observable value 

of EB for any individual in the population is the same as it would have been if the 

observable value of L were replaced by exogP (ω)
L (ω) , where exogP

L  is potential outcome 

version of L for exogP . In other words, for every individual in the population ω  

 
 

exogP (ω)
LEB(ω) EB (ω)        (2C-3) 

 
 
Based on (2.9) and (2C-3)  

 
 exog

exogP
L L o o u uP

EB Λ(L β X β X β ) e         (2C-4) 

 
 
and based on (2.7) and (2C-2)  

 
 exog

exog
o o P uP

L exp(X α P α ) X         (2C-5) 

 
 
Extending (2C-4) and (2C-5) to any exogenously imposed version (distribution) of the 

policy variable (say *P ) we obtain 
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 *

*P
L L o o u uP

EB Λ(L β X β X β ) e         (2C-6) 

 
 
and based on (2.7) and (2C-2)  

 
 *

*
o o P uP

L exp(X α P α ) X         (2C-7) 

 
 
Using the law of iterated expectations, it follows from (2C-6) and (2C-7) that  

 

 * *
*P

L L o o u u o uP P
E[EB ] E[Λ(L β X β X β )] E E[e | L , X , X ]        

  *
o o P u L o o u uE[Λ([exp(X α P α ) X ]β X β X β )]       (2C-8) 

 
 
because, by assumption, * o uP

E[e | L ,X ,X ] 0 . For our analyses, we will follow the 

typical approach and take the hypothetically mandated pre-policy version of the policy 

variable to be pre exogP P . Combining this assumption with (2C-1) and (2C-8) yields 

 
 

2SRI exog
P o o P P u L o o u uAIE ( ) E[Λ([exp(X α (P Δ )α ) X ]β X β X β )] E[EB]         

           (2C-9) 
 
 
Clearly, the statistic given in (2.12) is the sample analog to (2C-9). It is, therefore, easy to 

show that since 2SRI
oα , 2SRI

Pα , 2SRI
Lβ , 2SRI

oβ  and 2SRI
uβ  are consistent estimators of oα , Pα

, Lβ , oβ  and uβ , respectively, (2.12) is a consistent estimator of (2C-9). 

 If we do not know the exact change in a particular policy that impacts L, but have 

information about the resultant change in L between the pre-policy scenario and the post-
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policy scenario, the effect of an exogenous policy-driven shift in L by the amount ΔL on 

energy balance can be formally defined as 

 

 pre pre
L

2SRI
L L Δ L

AIE (Δ ) E[EB ] E[EB ]


      (2C-10) 

 
 
where preL   is the distribution of L in the pre-policy scenario. Assume that, for every 

individual in the population ω , we have that  

 
 exogL (ω)

EB(ω) EB (ω)       (2C-11) 

 
 
where exogL  denotes the random variable representing the observable distribution of L 

treated as if it were exogenously imposed. (2C-11) indicates that the observable value of 

EB for any individual in the population is the same as it would have been if the observable 

value of L were exogenously imposed rather than the product of individual choice. Based 

on (2.9) and (2C-11) 

 
 exog

exog
L o o u uL

EB Λ(L β X β X β ) e    .    (2C-12) 

 
 
Extending (2C-12) to any exogenously imposed version of L (say L*, analogous to P*) we 

obtain 

 
 *

*
L o o u uL

EB Λ(L β X β X β ) e    .     (2C-13) 

 
 
Using the law of iterated expectations, it follows from (2C-13) that  

 

 *
* *

L o o u u o uL
E[EB ] E[Λ(L β X β X β )] E E[e | L ,X ,X ]        



38 

	

  *
L o o u uE[Λ(Lβ X β X β )]        (2C-14) 

 
 

as *
o uE[e | L ,X ,X ] 0  by assumption. Assume exog preL L , and combine (2C-10) and 

(2C-14), we have  

 

 2SRI exog
L L L o o u uAIE (Δ ) E[Λ((L Δ )β X β X β )] E[EB]     . (2C-15) 

 
 
Clearly, (2C-15) can be consistently estimated by (2.11).  

 By applying a similar approach, the effects of P or L on energy balance analogous 

to (2C-9) and (2C-15) but imposing the condition that L is exogenous are 

 

 NR exog
P o o P P u L o oAIE ( ) E[Λ([exp(X α (P Δ )α ) X ]β X β )] E[EB]        

          (2C-16) 
 
and 
 

 NR exog
L L L o oAIE (Δ ) E[Λ((L Δ )β X β )] E[EB]       (2C-17) 

 
 
respectively, and (2C-16) and (2C-17) can be consistently estimated by  

  

 
n NR NR NR NR NR

oi o i P P ui L oi o
i 1

1
Λ([exp(X α (P )α ) X ]β X β ) EB

n


       
 

      

          (2C-18) 
 
and 
  

 
n NR NR

i L L oi L
i 1

1
Λ((L )β X β ) EB

n


     
 

      (2C-19) 

 
 
where NR NR NR

ui i oi o i PX L exp(X α P α )     . The LIV-based effects are relatively simple as 

both lifestyle regression and energy balance regression are linear so that all component that 



39 

	

remain unchanged from pre- to post-policy will cancel out. The two types of effect based 

on the LIV method analogous to (2C-9) and (2C-15), are  

 

 LIV
P P P LAIE ( ) Δ α β        (2C-20) 

 
and 
 

 LIV
L L LAIE (Δ ) Δ β        (2C-21) 

 
 

respectively, and can be estimated as LIV LIV
P P LΔ α β  and LIV

L LΔ β  correspondingly. 

 We now turn to characterize the policy-driven change in P ( 0
PΔ ) or L ( 0

LΔ ) that 

would be required to bring the average energy balance to a targeted level ( 0E[EB] EB ). 

As in the above discussion, we take exogP  or exogL  as the pre-policy starting point. Using 

(2C-8) we get 

 

 0 exog 0
o o P P u L o o u uEB E[Λ([exp(X α (P +Δ )α ) X ]β X β X β )]       

(2C-22) 
 
 

and the requisite policy change is the value of 0
PΔ  that solves (2C-22). Using (2C-14) we 

get 

 

 0 exog 0
L L o o u uEB E[Λ((L Δ )β X β X β )]        (2C-23) 

 
 

and the requisite policy-driven change in L is the value of 0
LΔ  that solves (2C-23). The 

solution, with respect to 0
PΔ  ( 0

LΔ ), to the version of (2.14) [(2.13)] that replaces the αs and 

βs  by 2SRIα s  and SRIβ s  is the sample analog to 0
PΔ  ( 0

LΔ ) in (2C-22) [(2C-23)], and is the 
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2SRI-based estimated change in P (L) required to achieve EB0. It is easy to show that 2SRI-

based 0
PΔ  ( 0

LΔ ) is a consistent estimator of 0
PΔ  ( 0

LΔ ) as the 2SRIα s  and SRIβ s  are 

consistent estimators.  

 Similarly, imposing the exogeneity of L, the requisite policy-driven change in P or 

L is the value of 0
PΔ  or 0

LΔ  that solves 

  

 0 exog 0
o o P P u L o oEB E[Λ([exp(X α (P +Δ )α ) X ]β X β )]      (2C-24) 

 
or 
 

 0 exog 0
L L o oEB E[Λ((L Δ )β X β )]        (2C-25) 

 
 

and the corresponding NR-based estimator 0
PΔ  ( 0

LΔ ) is the solution to the version of 

equation (2.14) [(2.13)] with respect to 0
PΔ ( 0

LΔ ) that excludes the ui uX β  component and 

substitutes the NRα s  and NRβ s  for the αs and βs .  

 Compared with the 2SRI- and the NR-based policy recommendation estimators 

defined in (2C-22) – (2C-25), those based on LIV parameter estimates are relatively simple. 

By applying a similar approach, they can be easily derived. We will not repeat the 

derivations here. 
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Table 2.1.A: Summary Statistics of the Simulated Sample in Simple Case 
Variables Definition Mean St. dev. 

P Soda price ($ per 2 liters) 1.35 0.32 

Xo
30 Age (years old) 10.5 4.9 

L Soda calorie consumption per day (cal.) 120.06 88.54 

EB Body fat % 0.23 (23%) 0.15 (15%) 
 

Table 2.1.B: Pre-specified Values of the α and β Parameters 
Parameters αo αP βL βo βu 

Values 0.001 -2 0.007 0.02 0.005 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
30 Xo is actually a vector consists of two elements, age and a scalar 1 (used for adding a constant in the 
equation). For simplicity, here we just use it to denote age. Similarly, we use αo and βo to denote the 
coefficients of age in lifestyle equation and energy balance equation respectively, i.e. they are scalars, not 
vectors. 
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Table 2.2: Coefficient Estimates 
True Parameters 2SRI Estimators NR Estimators LIV Estimators 

oα 0.001  2SRI
oα 0.00109  NR

oα 0.00109  LIV
oα  0.12302  

Pα 2   2SRI
Pα -2.00405  NR

Pα -2.00405   LIV
Pα -223.09     

Lβ 0.007  2SRI
Lβ 0.00701  NR

Lβ 0.00861  LIV
Lβ 0.00135  

oβ 0.02  2SRI
oβ 0.02007  NR

oβ 0.01955  LIV
oβ 0.00309  

uβ 0.005  2SRI
uβ 0.00498  - - 
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Table 2.3.A: Average Incremental Effects (AIEs) of Daily Soda Calorie 
Consumption (L) on Child’s Body Fat % (EB), 

with 1 Calorie Increment in L (ΔL = 1) 

True LAIE(Δ )    2SRI

LAIE(Δ )  NR

LAIE(Δ )  LIV

LAIE(Δ )  

0.001084 0.001086 0.001338 0.001354 
 

Table 2.3.B: Average Incremental Effects (AIEs) of Soda Price (P) on Child’s Body 
Fat % (EB), with 1 Dollar Increment in P (ΔP = 1) 

True PAIE(Δ )    2SRI

PAIE(Δ )   NR

PAIE(Δ )  LIV

PAIE(Δ )  

-0.10503 -0.10539 -0.12633 -0.30202 
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Table 2.4.A: Average Incremental Effects (AIEs) of Daily Soda Calorie Consumption (L) on Child’s 
 Body Fat % (EB), with 1 Calorie Increment in L (ΔL = 1),  

 for Increasing Level of Endogeneity 
 

Level of 
Endogeneity 

(βu) 

True 

LAIE(Δ )  
 2SRI

LAIE(Δ )  
NR

LAIE(Δ )  
LIV

LAIE(Δ )  
Absolute 

%bias 
(2SRI) 

Absolute 
%bias 
(NR) 

Absolute 
%bias 
(LIV) 

0 0.001113 0.001113 0.001113 0.001268 0.03% 0.02% 13.92% 
0.005 0.001084 0.001086 0.001338 0.001354 0.24% 23.46% 24.94% 
0.01 0.001050 0.001055 0.001528 0.001455 0.50% 45.52% 38.54% 
0.015 0.001015 0.001023 0.001687 0.001553 0.75% 66.13% 52.90% 
0.02 0.000982 0.000992 0.001821 0.001639 1.00% 85.51% 66.92% 

 

Table 2.4.B: Average Incremental Effects (AIEs) of Soda Price (P) on Child’s 
 Body Fat % (EB), with 1 Dollar Increment in P (ΔP = 1), 

 for Increasing Level of Endogeneity 
Level of 

Endogeneity 
(βu) 

True PAIE(Δ )   2SRI

PAIE(Δ )  
NR

PAIE(Δ )  
LIV

PAIE (Δ )  
Absolute 

%bias 
(2SRI) 

Absolute 
%bias 
(NR) 

Absolute 
%bias 
(LIV) 

0 -0.10582 -0.10594 -0.10594 -0.28292 0.12% 0.12% 167.38% 
0.005 -0.10503 -0.10539 -0.12633 -0.30202 0.34% 20.28% 187.56% 
0.01 -0.10324 -0.10382 -0.14389 -0.32449 0.56% 39.37% 214.29% 
0.015 -0.10032 -0.10111 -0.15896 -0.34636 0.78% 58.45% 245.25% 
0.02 -0.09656 -0.09754 -0.17197 -0.36560 1.01% 78.09% 278.61% 
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Table 2.5.A: Simulation Results for the Target Policy (
0
LΔ ) to Achieve Average Ideal Body Fat % (EB0) =15% 

 -- Comparison of Our Approachand the Conventional Approach 
 

Our Approach The Conventional Approach 

True 0
LΔ  2SRI 0

LΔ  NR 0
LΔ  LIV 0

LΔ  “True” 0
LΔ  2SRI 0

LΔ  NR 0
LΔ  LIV 0

LΔ  

-85.48 -85.40 -68.46 -59.12 -73.87 -73.69 -59.83 -59.12 

 

Table 2.5.B: Simulation Results for the Target Policy ( 0
PΔ ) to Achieve Average Ideal Body Fat % (EB0) =15%  

-- Comparison of Our Approachand the Conventional Approach 
 

Our Approach The Conventional Approach 

True 0
PΔ  2SRI 0

PΔ  NR 0
PΔ  LIV 0

PΔ  “True” 0
PΔ  2SRI 0

P  NR 0
PΔ  LIV 0

PΔ  

0.482 0.479 0.322 0.265 0.762 0.759 0.634 0.265 
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Table 2.6.A: Simulation Results for the Target Policy ( L
0Δ ) to Achieve Average Ideal Body Fat% (EB0) =15%  

 for Increasing Level of Endogeneity, Using Our Approach 
Level of 

Endogeneity 
(βu) 

Sample Mean 
of Body 
Fat % 

True 0
LΔ  2SRI 0

LΔ  NR 0
LΔ  LIV 0

LΔ  
Absolute 

%bias 
(2SRI) 

Absolute 
%bias 
(NR) 

Absolute 
%bias 
(LIV) 

0 0.22 (22%) -74.69 -74.75 -74.77 -57.13 0.09% 0.12% 23.51% 
0.005 0.23 (23%) -85.48 -85.40 -68.46 -59.12 0.09% 19.91% 30.84% 
0.01 0.24 (24%) -100.11 -99.85 -67.32 -61.75 0.25% 32.75% 38.32% 
0.015 0.25 (25%) -117.60 -117.06 -68.74 -64.81 0.46% 41.55% 44.89% 

 

Table 2.6.B: Simulation Results for the Target Policy ( 0
PΔ ) to Achieve Average Ideal Body Fat% (EB0) =15% for Increasing     

Level of Endogeneity, Using Our Approach 
Level of 

Endogeneity 
(βu) 

Sample Mean 
of Body 
Fat % 

True 0
PΔ  2SRI 0

PΔ  NR 0
PΔ  LIV 0

PΔ  
Absolute 

%bias 
(2SRI) 

Absolute 
%bias 
(NR) 

Absolute 
%bias 
(LIV) 

0 0.22 (22%) 0.384 0.384 0.384 0.256 0.11% 0.13% 33.33% 
0.005 0.23 (23%) 0.482 0.479 0.322 0.265 0.46% 33.18% 44.97% 
0.01 0.24 (24%) 0.655 0.649 0.304 0.277 0.89% 53.58% 57.76% 
0.015 0.25 (25%) 1.000 0.983 0.306 0.291 1.69% 69.37% 70.96% 
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Figure 2.1.A 
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Figure 2.1.B 
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Chapter 3: The General Model and Proposed Empirical Policy Analytic Methods 

 In chapter 2, we examined a simplified version of the model by using simulated 

data, and showed that all the relevant estimators derived based on this model outperform 

those based on conventional models that ignore nonlinearity or endogeneity. This simple 

model provides a good illustration of our methods in obtaining causally-interpretable 

evidence on the impact of SSB consumption on children’s weight and quantitative 

recommendations for potential SSB-related interventions aimed at specified energy 

balance goals. However, the situation described by the model is too simple: only one 

measure for each type of variable, i.e. energy balance variable, lifestyle variable, policy 

variable, observed control variable, is far from reality. Therefore, to make the model more 

general and more representative of the real world, in this chapter, we extend the simple 

univariate model to accommodate multiple policy and lifestyle variables. The reasons are 

quite obvious: many lifestyle choices may affect one’s body weight, and each lifestyle 

choice variable is likely to depend on a number of potential policy levers. We also consider 

different measures of the energy balance outcome, as no single measure has been proven 

to be the most accurate indicator for obesity. We complete the discussion with an empirical 

application, showing the way of implementing our method in practice. Correct asymptotic 

standard errors of the relevant estimators are derived and coded in Stata®. 

 

3.1 Regression Representation of the General Model 

 The lifestyle regression and the energy balance regression, analogous to (2.1) and 

(2.3), in the general model are 

 

  j j o oj Pj ujL g X α Pα X          (3.1) 
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and  
 
  r r Lr o or u ur rEB f Lβ X β X β e         (3.2) 

 
 
respectively, where jg ( )  and rf ( )  are known functions (r = 1, ..., R; j = 1, ..., J); 

1 JL [L . . . L ]  is the vector comprising multiple lifestyle choice variables; oX  is a vector 

of regression control variables; u u1 uJX [X ... X ]  is the vector of unobserved confounders 

for the lifestyle choice variables in L ; 1 KP [P ... P ]  is the vector comprising a variety of 

potential policy variables (k = 1, ..., K); the αs and βs are regression parameters to be 

estimated, and re  is the regression error term for the rth energy balance regression. This 

model is causal in the sense that it explicitly accounts for the potential endogeneity of 

lifestyle choice variables by including unobserved confounders uX  for L in (3.2) and all 

the other variables, oX  and P , are assumed to be exogenous in both (3.1) and (3.2). The 

αs and βs can be consistently estimated by applying the 2SRI instrumental variables 

method, where the instruments are the policy variables included in P  and are assumed to 

be highly correlated with lifestyle choice variables, but only correlated with energy balance 

outcome through their impacts on lifestyle choices. In order to identify the model, the 

number of policy variables (K) should be no less than the number of endogeneous variables 

(J), i.e. K ≥ J.  

 To make the model more straightforward, let’s focus on three lifestyle choices — 

SSB calories intake (L1), other calories intake (L2), minutes of physical activity per day 

(L3); and four energy balance measures — BMI percentile (EB1), body fat % (EB2), 
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indicator for overweight (EB3), indicator for obesity (EB4). Then the lifestyle choice can 

be modeled via a nonnegative nonlinear regression of the form31  

 
 j o oj pj ujL exp(X α Pα ) X         (3.3) 

 
 
where j = 1, 2, 3; oX  and P  are defined as in (3.1); the αs are the parameters to be 

estimated; and Xuj denotes the random error term. The energy balance outcome can be 

modeled as32 

 
 r Lr o or u ur rEB Λ(Lβ X β X β ) e= + + +      (3.4) 

 
 
where r = 1, 2, 3, 4; Λ(  ) is the logistic cumulative distribution function (cdf); 

1 2 3L [L L L ] ; oX  is defined as in (3.2); u u1 u2 u3X [X X X ] ; the βs are the 

parameters to be estimated; re  is the random error term. To identify this model, we need 

the number of policy variables (K) to be no less than 3, i.e. K ≥ 3. The 2SRI estimator for 

this model is: 

Stage 1 – estimate each lifestyle equation in (3.3) via the nonlinear least squares (NLS) 

method, and obtain consistent coefficient estimates ojα , Pjα . Then construct the vector 

u u1 u2 u3X X X X   
    , where uj j o oj pjX L exp(X α Pα )     . 

Stage 2 – obtain consistent coefficient estimates, Lrβ , orβ , urβ , by applying the NLS 

method to the following version of (3.4) 

 

                                                 
31 Assuming lifestyle variables, i.e. L1, L2, and L2 to be Generalized Gamma distribution. 
32 If using beta regressions for EB1 and EB2, and logit regressions for EB3 and EB4, (3.4) can be used to 
model all the four energy balance variables. 
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 2SRI
r Lr o or u ur rEB Λ(Lβ X β X β ) e= + + +      (3.5) 

 
 
where uX  has been obtained from stage 1. These two stages would be repeated for each 

of the four energy balance outcomes. 

 

3.2 Average Incremental Effects in the General Model 

 Based on the above model specification and the 2SRI coefficient estimates, we can 

now construct estimators for the lifestyle choice effects or the policy effects on a particular 

energy balance outcome. The average incremental effect (AIE), analogous to (2.5), of an 

exogenous policy-driven shift in the jth lifestyle variable by the amount δj on a specified 

energy balance measure can be estimated as  

 

 n
rri j

i 1

1
EB (δ ) EB

n


   
 

        (3.6) 

 
 

where 
n

r ri
i 1

1
EB EB

n
 , riEB is the observed level of the rth energy balance measure for 

the ith individual in a sample of size n;    ri j ji j Lr oi or ui urEB (δ ) Λ L +δ β X β X β    L , 

 ji jL +δL  is the same as iL  with its jth element shifted by δj, ui u1i u2i u3iX X X X   
   

, uji ji oi oj i pjX L exp(X α Pα )     ; the αs  and the βs  are the 2SRI coefficient estimates. 

Similarly, the estimated AIE, analogous to (2.6), of an exogenous change in the kth policy 

variable, say Δk, on a specified energy balance measure is  

 

 n
rri k

i 1

1
EB (Δ ) EB

n


  
 

       (3.7) 
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where   ri k i k Lr oi or ui urEB (Δ ) Λ L (Δ )β X β X β      ,

i k 1i k 2i k 3i kL (Δ ) L (Δ ) L (Δ ) L (Δ )   
    , ji k oi oj ki k Pj ujiL (Δ ) exp(X α (P Δ )α ) X     P , 

ujiX  is defined as in (3.6), ki k(P Δ )P  is the same as P  with its kth element replaced by 

ki kP Δ ; rEB  denotes the sample average for the rth energy balance measure, defined as 

in (3.6).   

 It is easy to show that the two types of estimated AIEs, (3.6) and (3.7), are consistent 

as the parameter estimators, the αs  and βs , used in both equations are consistent. The 

lifestyle effect estimator in (3.6) can be used to evaluate the direct effects of exogenous 

changes in the lifestyle variables (however motivated) on children’s energy balance, and 

compare the effectiveness of less formal (and possibly more direct) efforts to change 

children’s behavior (i.e. less formal than policy measures based on manipulation of the 

elements of P ). It can also answer the question as to whether calories from SSBs differ 

from the same amount of calories from other sources in terms of affecting one’s energy 

balance. The policy effect estimator in (3.7) can be used to evaluate and compare extant 

and planned obesity related policies that are based on a particular energy balance measure 

(EBr) and the individual policy lever variables in P .  

 

3.3 Empirical Application 

 Our ultimate goals are to study the causal impact of sugar-sweetened beverage 

(SSB) consumption on childhood obesity, and provide quantitative policy 

recommendations for prospective policy interventions aimed at specified energy balance 
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goals. These objectives will be fulfilled by using the empirical data from the National 

Health and Nutrition Examination Survey (NHANES), combined with county level policy 

data, such as prices of foods and drinks, access to fast-food restaurants, grocery stores, etc., 

obtained from various sources. These aggregate-level policy variables are assumed to be 

exogenous in both lifestyle regression equations and energy balance equations, and highly 

correlated with lifestyle variables, and, hence, can be used as instrumental variables for 

lifestyle variables. However, the use of those variables requires state and county identifiers 

of the subjects involved in each wave of the NHANES, which are only available in the 

restricted data available through Census Research Data Centers (RDC). We are currently 

in the process of getting those data, which, we believe, will be ready soon. For now, as an 

illustration of our method, and a preliminary test as well, we use part of the data to 

demonstrate the feasibility of our proposed method in practice. Specifically, we use school 

breakfast policy, family Food Stamps receiving status and family frequency of eating at 

restaurant per week as instrumental variables for SSB calories intake, other calories intake, 

and physical activities, and study the impacts of those lifestyle variables on children’s body 

fat %.   . These instrumental variables are publicly available but are likely to be of lower 

quality than the aggregate-level policy variables (e.g. prices) that we will be able to obtain 

through the RDC.  In particular these publicly available IVs are likely to be weak and 

probably violate the requisite IV validity condition. For this reason, we view the following 

empirical analyses as mainly illustrative and confine our causal analyses to the estimation 

of the AIEs of the lifestyle variable on energy balance.  We forego estimation of the AIEs 

of the policy variables [as in (3.7)] (and estimation of recommend policy changes as 

detailed in Chapter2).  More complete, and we expect more policy relevant, analyses will 
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be conducted once we secure the restricted aggregated data via the RDC and merge it with 

the NHANES data. 

 In the following two sub-sections, we first describe the NHANES and the 

aggregate-level policy data in detail, i.e. covering all the relevant variables that will be 

involved in our more complete analyses based on the restricted data. We then conduct an 

empirical analysis to illustrate our method using the data that does not require the usage of 

state and county identifiers. 

 

3.3.1 Data 

 We use all the seven waves of the National Health and Nutrition Examination 

Survey (NHANES) data from 1999 to 2012 to construct our analysis sample. The 

NHANES repeatedly collects data from a multistage probability sample of the US civilian 

noninstitutionalized population since 1999, and releases it in a two-year cycle, i.e. 1999-

2000, 2001-2002, etc. It is designed to assess health and nutritional status of children and 

adults. The survey consists of a home interview, during which the information of 

participant’s demographic characteristics and physical activities are collected,33 followed 

by a standardized physical examination in a mobile examination center (MEC). The 

examination includes physical measurements such as standing height, body weight, percent 

body fat34, etc. A 24-hour diet recall   interview is also conducted in the MEC.35  

                                                 
33 For those participants aged 12 -15, physical activity information is collected in the mobile examination 
center (MEC).  
34 Percent body fat is only available in three waves, i.e. 1999-2000, 2001-2002, and 2003-2004, while other 
body measures, such as body weight and standing height, are available for all the seven waves. 
35 Started from 2003, NHANES releases two days of dietary data, among which day 1 data is collected in the 
MEC while day 2 data is collected via a phone interview. For wave 1999-2000 and 2001-2002, only one day 
dietary data was released and it was collected in the MEC. 
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 We pool all seven waves of the data and restrict our analysis sample to include 

children aged 2-19. We construct the BMI percentile variable by comparing children’s 

BMI, defined as body weight divided by squared height (kg/m2), to the 2000 Centers for 

Disease Control and Prevention (CDC) gender-specific BMI-for-age growth charts. Then 

the overweight indicator is set to 1 if BMI percentile is greater than or equal to 85th 

percentile and less than 95th percentile, and 0 if not; and the obesity indicator is set to 1 if 

BMI percentile is greater than or equal to 95th percentile, and 0 otherwise. These three 

measures are constructed for all seven waves, while another energy balance measure, body 

fat %, is only available for three waves, i.e. 1999-2000, 2001-2002, and 2003-2004.  

 The construction of the lifestyle variables, i.e. sugar-sweetened beverage calories 

intake, other calories intake, and minutes of physical activity per day, is a little tricky as 

dietary data released and physical activity questionnaire vary across waves. Started from 

wave 2003-2004, the survey releases two days of calories intake data for each participant. 

The first day diet recall is collected in the MEC, and the second day recall is collected via 

telephone 3-10 days later. Most of the participants have two days of intakes available. 

Therefore, for the waves released since 2003, we use the average of calories intake if two 

days of intake data are available, and use one day of intake data if not when constructing 

calories intake variables. For wave 1999-2000 and 2001-2002, calories intake variables are 

built based on the one day of intake data released. Considering the potential inconsistency 

of calories intake variables we use across waves, we also control a variable to indicate 

whether calories intake variables are generated by using two-day data or not. Because of 

the concern that a 24-hour diet recall may not reflect one’s usual diet behavior, e.g. people 

may eat more over the weekend than on weekdays, so we generate a variable to show the 
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proportion of diet recall(s) that happened during the weekend.36 There were Physical 

activity (PA) questionnaire changes since 2007. Prior to 2007, participants were asked 

about specific types of leisure time activities (e.g. basketball, baseball, yoga, etc.), for each 

of which, they were asked about the intensity of the activity, i.e. vigorous or moderate, the 

number of times in past 30 days, as well as the minutes on average spent each time. Based 

on this information, we generate three PA variables for any types of moderate, vigorous, 

and moderate-vigorous combined activities respectively, and they are defined as minutes 

spent per day. In 2007 and beyond, participants are not asked about specific types of 

physical activities, but asked about moderate or vigorous physical activities in general, 

such as minutes spent on moderate/vigorous activities at work on a typical day; minutes 

spent on walking or bicycling for transportation purpose on a typical day; and minutes 

spent on moderate/vigorous recreational activities on a typical day. To be consistent with 

previous waves, we only consider recreational activities for the waves released after 2006 

when constructing the relevant PA variables, assuming that leisure time activities are 

approximately equivalent to recreational activities.  

 Other control variables, such as age, gender, race, household income, number of 

people in the household, and reference person’s37 marital status and educational level, are 

also obtained from the NHANES. And the three publicly available instrumental variables, 

i.e. school breakfast availability, having family members receiving Food Stamps, and 

number of times of eating restaurant per week, are also obtained from the NHANES. 

                                                 
36 This variable can take three values, 0, 0.5, and 1. Value 0 means no diet recall(s) was(were) on a weekend; 
0.5 means one of the two-day diet recalls was on a weekend; and 1 indicates that diet recall(s) was(were both) 
on a weekend. 
37 Reference person is the one who owns or rents the residence where other household members reside. 
He/she is not necessarily the parent of the child, but may still play an important role in affecting child’s 
lifestyle behaviors. So we control for the characteristics of the reference person when analyzing children’s 
energy balance.  
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 We will merge the pooled data set constructed from the NHANES to a database of 

aggregate-level “prospective policy levers” based on the state and county identifiers, which 

are only available in the restricted data available through Census Research Data Centers 

(RDC). We are currently in the process of getting access to the RDC data. Once we gain 

access, we will do the merge and use the policy-lever variables as the instrumental 

variables, instead of the three publicly available ones mentioned above, in the empirical 

analysis illustrated in section 3.3.2 below. We will also include a richer set of control 

variables than those used in the parsimonious regression specification used below. We 

construct the database of policy levers using data from various sources. Our first source of 

price data is the Council for Community and Economic Research’s Cost of Living Index 

(C2ER COLI); our second source is the United States Department of Agricultures’ 

Quarterly Food at Home Price Database (QFAHPD). Our primary source for numbers of 

establishments (used to measure the access to restaurants, food stores, etc.) is the Bureau 

of Labor Statistics’ Quarterly Census of Employment and Wages (QCEW), which provides 

economic data by industry. Data for other policy levers has been obtained directly from, or 

reconstructed using, databases implemented in published studies.  

 

3.3.2 Illustration of the Proposed Framework – An Empirical Analysis  

 We use part of the NHANES data discussed above to illustrate the way of 

implementing our method in practice. Table 3.1 shows the variables used in this illustrative 

analysis and the summary statistics correspondingly. The analysis sample is constructed 

from the first 3 waves from the NHANES, i.e. 1999-2000, 2001-2002, and 2003-2004, and 

consists of 2,828 children aged from 12-19, with 29% body fat on average. Sample means 



 

59 

	

of the three lifestyle variables – SSB calories intake, other calories intake and physical 

activity per day – are 263 cal., 1975 cal., and 59 minutes respectively. Instrumental 

variables include indicator for whether the school serves breakfast everyday, indicator for 

whether there were any family members receiving Food Stamps in the past 12 months, and 

the number of times of eating restaurant food per week. Other controls involved are 

children’s age, gender and race; household income; and children’s reference person’s 

marital status and educational level. Table 3.2 shows the 2SRI first stage regression results 

using the NLS method for each of the three lifestyle regressions modeled via equation (3.3). 

Wald test statistics are reported to show the joint significance of the three instrumental 

variables in the estimation of lifestyle regression equations: 18.98 (p < 0.01), 23.02 (p < 

0.01) and 13.42 (p < 0.01) for SSB calories intake, other calories intake and physical 

activity per day respectively, indicating that our instrumental variables are relevant.  

 After the first stage lifestyle regressions, we calculate the residuals correspondingly 

and use them as extra controls in the second stage energy balance regression, where the 

energy balance outcome is body fat %. This second stage regression is modeled by equation 

(3.4) and estimated by the NLS method. The results are displayed in Table 3.3, column (1). 

As a comparison, we also reported the results in column (2) based on the nonlinear 

regression (NR) method that ignores the potential endogeneity of lifestyle variables in the 

body fat % regression, i.e. without including residuals in the regression. The asymptotic t 

statistics of the 2SRI second stage estimates are adjusted to account for the fact that the 

residuals controlled in the regression are the generated regressors calculated using the first 

stage estimates. Derivations of the correct asymptotic standard errors of 2SRI second-stage 

coefficient estimates are discussed in Appendix 3B.  
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Our 2SRI second stage results suggest that body fat % increases as other calories 

intake increases at 5% significance level, while the corresponding NR estimate suggest the 

opposite. Besides, physical activity is shown to have significantly positive effect on 

decreasing body fat % based on the NR estimate while it seems not to have any significant 

impact on body fat % based on the 2SRI estimate. We are pointing these out to show that 

the estimates obtained from the two methods, i.e. 2SRI and NR, could be very different, 

and that ignoring the potential endogeneity of the variables of interest could result in very 

biased estimates A nice feature of the 2SRI method is that it allows us to test for 

endogeneity directly in the second stage by conducting a joint Wald test of the null 

hypothesis that the coefficients of the residuals are all equal to zero. The Wald test statistic, 

i.e. 10.71 (p = 0.013), shows that the residuals are jointly significant at 5% significance 

level, indicating that the three lifestyle variables may be endogenous.  

As we’ve mentioned before, we won’t use this analysis to make any inference about 

the effects of lifestyle on body fat %. Part of the reason is because our instrumental 

variables may be correlated with the random error term of the energy balance regression 

equation, and hence, subject to the violation of the IV validity condition. Another reason 

could be the weak instrument issue. Although the first stage test statistics have shown that 

our instruments are jointly significant in predicting lifestyle variables, the results in chapter 

5, based on models that appear to fit the data better, are not as convincing with regard to 

the strength of the IVs –  especially in the physical activity lifestyle regression. It is 

primarily these problems with the IVs (invalidity and weakness) that lead us to view the 

2SRI results in Tables 3.2 and 3.3 as merely illustrative. The same can be said for the AIE 

estimates presented in Table 3.4. The AIE on body fat % in response to an increment in 
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each lifestyle variable is calculated using 2SRI [see column (1)], and NR [see column (2)] 

coefficient estimates respectively, where the increments we choose are 50, 500 and 30 for 

SSB calories intake, other calories intake and minutes of physical activity, respectively. 

One can choose any increments and use equation (3.6) to calculate the corresponding AIEs. 

AIEs of exogenous changes in the policy variables, i.e. the three instrumental variables in 

this case, on body fat % can be calculated in a similar way based on equation (3.7). As you 

can see from table 3.4, AIEs from column (1) and column (2) differ a lot. 

3.4 Summary 

 In this chapter, we extend the simple version of the model to a general one that 

accommodates multiple policy and lifestyle variables and derive the AIEs in this general 

case. Using the part of the data we’ve been able to obtain thus far, we conduct an empirical 

analysis to demonstrate the implementation of our causal analytic framework in practice. 

Specifically, we show the regression results for each stage of 2SRI estimation, the IV 

relevance test in the first stage, the endogeneity test in the second stage, the ultimate AIE 

estimates and the correct asymptotic standard errors38 associated with the second stage 

coefficient estimates and AIE estimators. As a comparison, we also present the results 

based on the NR method that ignores the endogeneity problem. The empirical results 

suggest that 2SRI-based estimates and NR-based estimates can differ from each other 

substantially, and hence draw attention to the importance of accounting for endogeneity. 

Due to the data limitation, we are not able to provide meaningful results with regard to the 

causal impacts of lifestyle on children’s body fat %. The usage of potentially better 

instrumental variables, i.e. the aggregate-level “prospective policy levers”, requires using 

                                                 
38 For details, see Appendix 2B and 3C. 
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state and county identifiers which are not directly available in public. We are in the process 

of getting access to them from RDC. Once we gain access and, thereafter, link our policy-

lever database we’ve constructed to the NHANES data we’ve cleaned, we will replicate 

the analysis presented above with a much richer set of instrumental variables and controls. 

We expect that these results will yield substantive results that can be used to inform 

childhood obesity policy. 
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Appendix 3A 

Estimators for the General Model Based on the NR/LIV Method 

 The NR parameter estimators can be obtained via the following two stages: 

Stage 1 – is the same as the one in the 2SRI method, i.e. estimate each lifestyle equation in 

(3.3) via the nonlinear least squares (NLS) method, and obtain consistent coefficient 

estimates of the αs (say NR
ojα , NR

Pjα ); 

Stage 2 – estimate energy balance regression (3.4) without including uX  by applying the 

NLS method, and obtain the corresponding estimates of the βs (say NR
Lrβ , NR

orβ ), which are 

not consistent as the lifestyle variables are incorrectly assumed to be exogenous in this 

regression equation. 

With these NR coefficient estimates in hand, we can now estimate the policy effects. The 

NR-estimated AIEs of an exogenous increment in the jth lifestyle variable (δj) or the kth 

policy variable (Δk) on the rth energy balance measure (EBr) are 

 

 
NRn

rri j
i 1

1
EB (δ ) EB

n


 
  

 
       (3A-1) 

 
and 
 

 n NR
rri k

i 1

1
EB (Δ ) EB

n


   
 

       (3A-2) 

 
 

where    NR NR NR
ri j ji j Lr oi orEB (δ ) Λ L +δ β X β  L ,  ji jL +δL  is the same as iL  with its 

jth element shifted by δj;   NR NR NR NR
ri k i k Lr oi orEB (Δ ) Λ L (Δ ) β X β   ,

NR NR NR NR
i k 1i k 2i k 3i kL (Δ ) L (Δ ) L (Δ ) L (Δ )   
    ,
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NR NR NR NR
ji k oi oj ki k Pj ujiL (Δ ) exp(X α (P Δ )α ) X     P , NR NR NR

uji ji oi oj ki PjX L exp(X α P α )     , 

ki k(P Δ )P  is the same as P  with its kth element replaced by ki kP Δ ; rEB  denotes the 

sample average for the rth energy balance measure.  

 The two-stage protocol used for the LIV method is 

Stage 1 – estimate each of the linearized lifestyle regressions, j o oj pj jL X α Pα u   , by 

OLS, and obtain estimators, LIV
ojα  and LIV

Pjα . Then construct the vector 

LIV LIV LIV LIV
1 2 3L L L L   

    , where LIV LIV LIV
j o oj PjL X α Pα    . 

Stage 2 – estimate the linearized energy balance regression, 

LIV LIV
r Lr o or rEB L β X β e= + + , by OLS, and obtain estimates of the βs, LIV

Lrβ  and LIV
orβ . 

The LIV-estimated AIEs analogous to (3A-1) and (3A-2) are 
j

LIV
j L rδ β  and 

k 1 k 2 k 3

LIV LIV LIV LIV LIV LIV
k P 1 L r P 2 L r P 3 L rΔ (α β α β α β )       respectively, where 

j

LIV
L rβ  is the LIV coefficient 

estimate of the jth lifestyle variable in the rth energy balance regression equation, and 
k

LIV
P jα  

is the LIV coefficient estimate of the kth policy variable in the jth lifestyle regression 

equation.  
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Appendix 3B:  Asymptotic Standard Errors for the 2SRI Coefficient 

Estimates in the General Model 

In this section, we derive the correct asymptotic standard errors of the 2SRI 

coefficient estimates, where the corresponding two stages are: 

Stage 1 – use the nonlinear least squares (NLS) method to estimate each lifestyle equation 

below  

 
 j o oj pj ujL exp(X α Pα ) X          (3B-1) 

  
 
where j = 1, 2, 3,  and obtain consistent estimators, j oj Pjα ' α ' α '      , then calculate the 

residual as 

 

 uj j o oj pjX L exp(X α Pα )           (3B-2) 

 
 
and construct the residual vector as u u1 u2 u3X X X X   

    ; 

 
 
Stage 2 – apply the NLS method to the rth energy balance outcome regression equation 

below 

 
2SRI

r Lr o or u ur rEB Λ(Lβ X β X β ) e= + + +      (3B-3) 

 
where r = 1, 2, 3, 4, to obtain consistent estimates of the energy balance parameters 

r Lr or urβ ' β ' β ' β '   
    . 

 Therefore, the first stage objective function is 
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n n

1 i 11i 12i 13i
i 1 i 1

q α, V q q q
 
          (3B-4)  

 

where   2

1ji ji oi oj i Pjq L exp X α Pα    ,  i i oi iV L X P ,  i 1i 2i 3iL L L L  

and the second stage object function is 

 

   
2n n

2r r ri ri i Lr oi or ui ur
i 1 i 1

q α,β , Z EB Λ(L β X β X β )
 
          (3B-5) 

 
 

where  1 2 3α ' α ' α ' α '    ,  r Lr or urβ ' β' β' β' , and  ri ri iZ EB V   

 Following Terza (2016a, 2016aA, and 2016B), the asymptotic covariance matrix 

of the first and second stage parameter estimators, i.e. α  and rβ , are 
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         (3B-6) 
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rβ i Lr oi or ui ur i Lr oi or ui urΛ(L β X β X β ) Λ(L β X β X β )                 

     

 i Lr oi or ui ur i oi ui1 Λ(L β X β X β ) L X X        
     

α i Lr oi or ui ur i Lr oi or ui urΛ(L β X β X β ) Λ(L β X β X β )              

 i Lr oi or ui ur 1i 2i 3i1 Λ(L β X β X β ) ψ ψ ψ    
       

 ji ujr oi oj i pj oi iψ β exp(X α Pα ) X P       

j = 1, 2, 3, AVAR(α)  and 
*

rAVAR (β ) are the estimated covariance matrices obtained 

from the first and second stage packaged regression results respectively.  
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Appendix 3C: Asymptotic Standard Errors of the 2SRI-Based 

Average Incremental Effects 

This section is focusing on deriving the asymptotic standard errors of the estimated 

average incremental effects (AIEs) on the energy balance outcomes in response to an 

exogenous increment in lifestyle variable (Lj) or a particular SSB-related policy 

intervention of interest (Pk). Recall the three lifestyle regression equations and four energy 

balance equations:  

  

   j o o oj PjE L | X , P exp X α Pα     

Lifestyle Regression Equations (3C-1) 

 

   r o u Lr o or u urE EB | L,X ,X Λ Lβ X β X β    

Energy Balance Equations   (3C-2) 

 

where j 1, 2, 3 ; r 1, 2, 3, 4 ;  u u1 u2 u3X X X X  and  uj j o oj pjX L exp X α Pα   . 

The corresponding estimated average incremental effect of an increment, δj, in Lj on a 

particular energy balance outcome EBr is 

 

 
  

j

j

n δ i
δ

i 1

pe α,β
PE

n



        (3C-3) 

where 

       
j iji j Lr oi or ui ur Lr oi or ui urδ ipe α,β Λ L +δ β X β X β Λ Lβ X β X β             L   
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 ji jL +δL  is the same as iL  with its jth element shifted by δj, and 

ui u1i u2i u3iX X X X   
    , uji ji oi oj i pjX L exp(X α Pα )     . In order to derive the 

asymptotic properties of  jδPE , we cast it as a two-stage optimization estimator (2SOE): 

the first stage comprises consistent estimation of α and β (e.g. via 2SRI) and the second 

stage is to obtain  jδPE by optimizing the following objective function w.r.t. 
jδPE  

 

 j 1

n

δ i δ i
i 1

q α,β, PE , Z

           (3C-4) 

where 

      j j jj

2

δ i δ i δδ iq α,β, PE , Z pe α,β PE       

 i i oi iZ L X P  and α ' β '  
  is the first-stage estimator of  α ' β ' . Following Terza 

(2016a, 2016aA, and 2016B), the asymptotic standard error of  jδPE is estimated as  

 

    
  

    
  

j j

j

'n n

δ i δ iα ' β ' α ' β '
i 1 i 1

δ

pe α,β pe α,β
AVAR(PE ) AVAR α' β '

n n
 
        

      
   
   

  
   

      

 

    jj

2n
δδ i

i 1
pe α,β PE

n

 




      (3C-5) 

 
where 
 

 
  

j j jα βδ i δ i δ iα ' β ' pe (α,β) pe pe     
   

      j iα ji j Lr oi or ui ur Lr oi or ui urδ ipe Λ' L +δ β X β X β Λ' L β X β X β             L  
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   1i 2i 3iψ ψ ψ  

 

 ji ujr oi oj i Pj oi iψ β exp(X α Pα ) X P       

 

     
jβ ji j Lr oi or ui ur ji j oi uiδ ipe Λ ' L +δ β X β X β L +δ X X       

   L L   

     i iLr oi or ui ur oi uiΛ ' L β X β X β L X X     
      

 
 
 

and   AVAR α' β'  
  is the consistent estimate of the asymptotic covariance matrix of 

α ' β '  
 . 

Similarly, the estimated average incremental effect of an increment in the kth policy 

variable, say Δk, on a particular energy balance outcome, EBr, is 

 

 
  

k
k

n i

i 1

pe α,β
PE

n







        (3C-6) 

where 

      
k ii k Lr oi or ui ur Lr oi or ui urΔ ipe α,β Λ L (Δ )β X β X β Λ L β X β X β                

i k 1i k 2i k 3i kL (Δ ) L (Δ ) L (Δ ) L (Δ )   
     

ji k oi oj ki k Pj ujiL (Δ ) exp(X α (P Δ )α ) X     P  

 

ki k(P Δ )P  is the same as P with its kth element replaced by ki kP   , and uiX  is defined 

as in (3C-3).  kPE  can also be considered as a two-stage optimization estimator (2SOE), 

which can be obtained by 1) first consistently estimating α and β via 2SRI, and 2) second 

optimizing the following objective function w.r.t. 
k

PE  
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 k k

n

Δ i i
i 1

q α,β, PE , Z

          (3C-7) 

where 

      k k kk

2

Δ i i Δ iq α,β,PE ,Z pe α,β PE        

 i i oi iZ L X P  and α ' β '  
  is the first-stage estimator of  α ' β ' . The 

corresponding asymptotic standard error of  kPE is estimated as 

 

    
  

    
  

k k

k

'n n

Δ i Δ iα ' β ' α ' β '
i 1 i 1

Δ

pe α,β pe α,β
AVAR(PE ) AVAR α β
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2n
ΔΔ i

i 1
pe α,β PE

n

 




     (3C-8) 

where 

  
    

k k kα βΔ i Δ i Δ iα ' β ' pe α,β pe pe     
  

  
kα i k Lr oi or ui ur α1 1i α2 2i α3 3iΔ ipe Λ ' L (Δ )β X β X β λ λ λ         

        

 i Lr oi or ui ur α1 1i α2 2i α3 3iΛ ' L β X β X β Π Π Π      
       

  jαj ji αj L r oi oj ki k Pj uji ujr ujiλ β exp(X α (P Δ )α ) X β X         P  

jL r oi oj ki k Pj oi ki kβ exp(X α (P Δ )α ) X (P Δ )     
  P P   

    
j iL r ujr oi oj i Pj oiβ β exp X α Pα X P       

  αj ji αj ujr ij oi oj i PjΠ β L exp X α Pα        

  ujr oi oj i Pj oi iβ exp X α P α X P      

  
kβ i k Lr oi or ui ur i k oi uiΔ ipe Λ ' L (Δ )β X β X β L (Δ ) X X      
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  i iLr oi or ui ur oi uiΛ ' L β X β X β L X X     
      

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

73 

	

Table 3.1 Variables Used in the Illustrative Empirical Analysis 
– Sample and Summary Statistics 

 Mean SD 
Energy Balance Outcome ( EB ) 
Body Fat % 0.29 0.11 
Lifestyle Variables ( L ) 

Sugar-Sweetened Beverage Calories Intake (cal.) 263.42 242.91 
Other Calories Intake (cal.) 1974.93 934.14 
Physical Activity Per Day (minutes) 59.16 82.75 
Other Variables ( oX ) 

Age (years) 15.12 1.91 
Female 0.48 0.5 
Non-white 0.73 0.45 
Annual Household Income < $15,000 0.18 0.38 
Reference Person Education-High School Graduate 0.6 0.49 
Reference Person Education-Some College 0.26 0.44 
Reference Person Education-College Graduate or Higher 0.15 0.36 
Reference Person’s Marital Status-Single 0.37 0.48 
Instrumental Variables ( P ) 

School Serve Breakfast Each Day 0.81 0.4 
Family Member(s) Receiving Food Stamps in the Last 12 
months 0.19 0.39 
Number of Times per Week Eating at Restaurant 2.26 1.97 
N 2,828 
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Table 3.2 2SRI First Stage Estimates 
 (1) (2) (3) 
 SSB Calories Other Calories Physical Activity 
Age (years) 0.080*** 

(9.121) 
0.017*** 
(3.692) 

0.102*** 
(6.577) 

    
Female -0.332*** 

(-9.358) 
-0.257*** 
(-15.041) 

-0.535*** 
(-8.976) 

    
Non-white 0.034 

(0.705) 
-0.046* 
(-2.097) 

-0.073 
(-1.086) 

    
Annual Household 
Income < $15,000 

-0.120* 
(-1.985) 

0.008 
(0.267) 

-0.070 
(-0.779) 

    
Reference Person 
Education-Some 
College 

-0.034 
(-0.701) 

0.040 
(1.819) 

0.218** 
(2.805) 

    
Reference Person 
Education-College 
Graduate or Higher 

-0.141 
(-1.772) 

0.044 
(1.708) 

0.118 
(1.503) 

    
Reference Person is 
Single 

0.067 
(1.526) 

-0.018 
(-0.883) 

-0.058 
(-0.897) 

    
School Serve Breakfast 
Each Day 

-0.090 
(-1.475) 

-0.062** 
(-2.601) 

-0.199* 
(-2.559) 

    
Food Stamps Received 
in the Last 12 months 

0.019 
(0.295) 

0.025 
(0.956) 

0.254* 
(2.491) 

    
# Times/Week Eating at 
Restaurant 

0.036*** 
(3.989) 

0.016*** 
(3.896) 

0.022 
(1.508) 

    
Constant 4.484*** 

(30.309) 
7.477*** 
(99.791) 

2.790*** 
(10.896) 

IV Relevance Test    
Wald ( 2χ )  18.983 23.016 13.423 
P-value < 0.000 < 0.000 0.004 
N 2,828 2,828 2,828 

t statistics in parentheses 
Reference Person Education-High School Graduate is omitted. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3.3 2SRI Second Stage and NR Estimates 
 (1) (2) 
 2SRI NR39 
SSB Calories (cal.) -0.003 

(-1.848) 
-0.00003 
(-0.954) 

   
Other Calories (cal.) 0.001* 

(1.974) 
-0.00006 *** 

(-6.861) 
   
Physical Activity/Day 
(minutes) 

-0.008 
(-1.620) 

-0.001*** 
(-3.782) 

   
Age (years) 0.061* 

(2.551) 
-0.007 

(-1.726) 
   
Female 0.668** 

(3.010) 
0.553*** 
(32.319) 

   
Non-white 0.151 

(1.600) 
0.041* 
(2.303) 

   
Annual Household 
Income < $15,000 

-0.114 
(-1.143) 

0.006 
(0.306) 

   
Reference Person 
Education-Some 
College 

-0.095 
(-0.961) 

-0.064*** 
(-3.595) 

   
Reference Person 
Education-College 
Graduate or Higher 

-0.246 
(-1.890) 

-0.074** 
(-3.283) 

   
Reference Person is 
Single 

0.070 
(0.859 

-0.010 
(-0.576) 

   

u1X  (SSB Calories) 0.003 
(1.835) 

- 

   

u2X  (Other Calories) -0.001* 

(-2.074) 
- 

   

u3X  (Physical Activity) 0.008 
(1.524) 

- 

   
Constant -3.188** -0.895*** 

                                                 
39 For the details about the NR method in the estimation of energy balance outcomes, see Appendix 3A  
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(-3.111) (-12.852) 
Endogeneity Test   
Wald ( 2χ ) 10.708* 

- 
P-value 0.013 - 
N 2,828 2,828 

t statistics in parentheses, adjusted for the 2SRI estimates, i.e. column (1).40 
Reference Person Education-High School Graduate is omitted. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
40 For detailed derivations of the correct asymptotic standard errors for the 2SRI second stage NLS estimates, 
see Appendix 3B. 
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Table 3.4 Average Incremental Effects of Lifestyle Variables on Body Fat %  
-- 2SRI vs NR-Based Estimates 

 (1) (2) 
 2SRI-Based NR-Based41 
SSB Calories Intake 
( Δ 50 ) 

-0.031 
(-1.914) 

-0.0003 
(-0.954) 

   
Other Calories Intake 
( Δ 500 ) 

0.131 
(1.846) 

-0.006*** 

(-6.902) 
   
Physical Activity 
( Δ 30 ) 

-0.049 
(-1.719) 

-0.003*** 

(-3.800) 
   
N 2,828 2,828 

t statistics in parentheses, adjusted for the 2SRI-based AIEs in column (1).42  
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

 

 

 

 

 

 

 

                                                 
41 For detailed derivations of the NR-based AIEs, see Appendix 3A. 
42 For detailed derivations of the asymptotic standard errors for the 2SRI-based AIEs, see Appendix 3C. 
Derivations of the asymptotic standard errors for the NR-based AIEs are essentially the same – eliminate 

ui urX β  terms from the calculation of the individual AIE, i.e. equation (3C-3) and use covariance matrix of 

coefficient estimates obtained based on the NR method, instead of    AVAR α ' β '  in equation (3C-5) 

would give the correct asymptotic standard errors. 
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Chapter 4: More Efficient Estimation — 

A Full Information Version of the Simplified Model 

 In the previous two chapters, we have shown that, given the conditional means of 

the lifestyle variables and the energy balance variables, we can consistently estimate the 

relevant parameters by applying the two-stage residual inclusion (2SRI) method, where the 

regressions in both stages are estimated by the nonlinear least squares (NLS) method. If 

we know the distributions of the lifestyle variables and the energy balance variables, and 

incorporate this full information in maximum likelihood estimation (MLE) of both stages 

of a 2SRI protocol, we can obtain parameter estimates that are not only consistent but also 

more efficient than their NLS counterparts. In this chapter, we examine the potential 

efficiency gains based on the simple case introduced in chapter 2, using simulated data.  

 

4.1 The Simplified Model Revisited 

 We assume lifestyle variable (L), soda calorie consumption, conditional on the 

price variate (P), to be a Generalized Gamma random variable which has the following 

probability density function (pdf) 

 

 
 

γ

o
γ

f (L | X , P; κ,μ,σ) exp(Z γ V)             L 0
σL γΓ γ

     (4.1) 

 
 

where Xo and P are defined as in chapter 2; Γ(  ) is the gamma function; 2
γ κ

 ; 

  Z sign κ ln(L) μ / σ  ;  V γ exp κ Z ; o o pμ X α Pα  ; κ, σ, and the αs are the 

parameters to be estimated. We also suppose that, conditional on L, the observable 
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confounder age ( oX ) and the unobservable confounder ( uX ), the energy balance variable, 

body fat % (EB), is Beta distributed with the pdf 

 

 ξμ 1 ξ(1 μ) 1
o u

Γ(ξ)
h(EB | L, X , X ;ξ,μ) EB (1 EB)          0 < EB < 1

Γ(ξμ)Γ(ξ(1 μ))
   


 

           (4.2) 
 
 
where as in chapter 2; o u L o o u uμ E[EB | L,X ,X ] Λ(Lβ X β X β )    , Λ(   ) is the logistic 

cumulative density function (cdf); and ξ and the βs are the parameters to be estimated. It is 

easy to show that the corresponding conditional means of L and EB are, respectively, 

 
 o o o pEB(L | X , P) exp(X α Pα C)        (4.3) 

 
 

where 2σ/κ *C ln[κ C ] , * 2 2C Γ{(1/ κ ) (σ/k)} /Γ{1/ κ }= + , and can be absorbed into the 

intercept component of αo ; and 

 
 o u L o o u uE[EB | L, X , X ] Λ(Lβ X β X β )= + + .    (4.4) 

 
 
Based on the two conditional means in (4.3) and (4.4), which are the minimum information 

needed for NLS estimation, we have shown that the αs and βs can be consistently estimated 

via the 2SRI method introduced in chapter 2. Unlike chapter 2, we now consider a full 

information version of the estimation approach. By full information, we mean the 

conditional probability density functions of L and EB are known, and are given by (4.1) 
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and (4.2) respectively. As long as the functional forms in (4.1) and (4.2) are correctly 

specified,43 the parameters can be consistently estimated by the following two stages: 

Stage 1 — use maximum likelihood estimation (MLE) to estimate the lifestyle regression 

parameters (αs, σ, κ) based on the conditional pdf in (4.1), and obtain consistent estimators, 

MLE MLE MLE
o Pα [α α ]    , MLEσ and MLEκ̂ , then calculate the residual as 

 

 MLE MLE MLE MLE
u o o PX L exp(X α Pα C )            (4.5) 

 
where 
 

 
MLE MLEˆMLE MLE (2σ /κ ) MLE*C ln[(κ ) C ]    

 

     MLE* MLE 2 MLE MLE MLE 2C Γ{(1/ (κ ) ) (σ /κ )} /Γ{1/ (κ ) }= +  

 
 
Stage 2 — obtain consistent estimates of the energy balance parameters, 

MLE MLE MLE MLE
L o uβ [β β β ]      and MLEξ ,  by applying MLE based on the conditional pdf 

in (4.2) with Xu replaced by MLE
uX . 

 Although the approach introduced in chapter 2 relaxes dependence on the full 

distributional assumption, unlike the MLE discussed here, the latter may afford substantial 

gains in efficiency.  Moreover, the likelihood formulations in (4.1) and (4.2) are very 

parametrically flexible so that misspecification bias is less of a concern. 

                                                 
43 The conditional pdf we assumed for L, equation (4.1), is quite flexible as many distributions, such as 
Weibull, Log-normal, Exponential, etc., that are commonly used in modeling nonnegative random variables 
are special cases of General Gamma distribution. The Beta distribution we assumed for EB, equation (4.2), 
can produce a unimodal, uniform, or bimodal distribution of points that can be either symmetrical or skewed 
(Paolino, 2001), which is quite flexible. The above-mentioned flexibilities in specifying the conditional pdf 
for L and EB should largely reduce the likelihood of misspecification bias when applying MLE.  
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 After obtaining consistent MLE parameter estimators from stages 1 and 2, we can 

calculate the relevant policy effect estimates by substituting the MLE parameter estimates 

for the αs and βs  in equation (2.5) and (2.6). For simplicity, these estimators, together 

with the parameter estimators introduced in this chapter, will be referred to as MLE 

estimators; and their counterparts described in chapter 2 will be referred to as NLS 

estimators. To examine the potential efficiency gains of the MLE estimators relative to the 

NLS estimators, we conduct a simulation study below.  

 

4.2 Simulation Study — Examine the Potential Efficiency Gains 

 We generate 1000 samples of size n = 10,000 using the same sampling design as 

that used to simulate the analysis sample in chapter 2, and to each of them apply two 

different estimators: (1) minimum information version of the model — apply the nonlinear 

least squares (NLS) method to estimate the two-stage regressions of 2SRI discussed in 

chapter 2; (2) full information version of the model — apply maximum likelihood 

estimation (MLE) for both stages of 2SRI introduced in this chapter. Using the results from 

each of these models, we estimate the policy effects based on equation (2.5) – (2.6). The 

results are displayed in Table 4.1. Column 2 lists the true values to be estimated: parameters 

(the αs and βs, i.e. pre-specified values during data generating process) and policy effects 

[ LAIE(Δ )  and PAIE(Δ ) , i.e. average incremental effects of an increment in L or P on EB, 

where the increment is 1].44 The corresponding NLS and MLE estimators are listed in 

                                                 
44 True values for the policy effects and recommended policy changes were calculated based on a super 
sample of 1 million observations generated using the same sampling design as that used to simulate the 1000 
replicates each of sample size n = 10,000. See chapter 2 for details about the corresponding true values 
calculated based on a super sample of size 3 million. 
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column 3 and 4 respectively. We can see that all the estimators are quite close to their true 

values, indicating that estimators based on both minimum and full information models are 

consistent. As our main interest here is the possible efficiency gains by incorporating the 

full information of the model in the estimation, we calculate mean squared error (MSE) of 

the relevant estimators, which are presented in column 5 and 6. The comparison of these 

two columns shows that MLE estimators are more efficient than their NLS counterparts, 

i.e. the MSE of the latter are much larger. To make the comparison more straightforward, 

we calculate the percentage decrease in the MSE of each estimator based on the full 

information model relative to the one based on the minimum information model; and the 

results are displayed in the last column. As you can see, the efficiency improvement is 

huge: the percentage decrease in the mean squared error of most MLE estimators, relative 

to NLS estimators, is more than 50%.  

 

4.3 Summary 

  In this chapter, we introduce a full information version of the simple model by 

assuming known forms for the conditional probability density functions of the lifestyle 

(i.e. soda calorie intake) and energy balance outcome (i.e. body fat %) variables. The 

regressions in the two stages of the 2SRI protocol are then estimated via the MLE 

method, which is expected produce more efficient estimates than the NLS based 2SRI 

method used in in chapter 2. We conduct a simulation study to examine the potential 

efficiency gains. We find the MLE-based estimators have smaller mean squared error 

than their NLS-based counterparts, and the percentage gain in efficiency is found to be 

more than 50% for all the coefficient and AIE estimators.     
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Table 4.1 Comparison of Minimum and Full Information Versions of the Model 
— Examine Efficiency Gains 

Parameter True 
Estimate MSE % of 

Efficiency 
Gains 

Minimum 
Information 

Full 
Information 

Minimum 
Information 

Full 
Information 

αo 0.001 0.0010638 0.0010007   1.20e-06 3.68e-08 96.93% 

αP -2 -2.00126 -2.000156   0.0003673 0.0000105 97.14% 

βL 0.007  0 .0070029 0.0070007 3.39e-09   4.29e-10   87.35% 

βo 0.02 0.0200513    0.0200058   6.78e-07 2.32e-08 96.58% 

βu 0.005 0.0049971    0.0049996   3.74e-09 4.95e-10 86.76% 

LAIE(Δ )  0.0010839   0.0010839     0.0010836 1.13e-10 3.65e-11 67.70% 

PAIE(Δ )  -0.1050318 -0.1050567 -0.1050167 3.32e-06 1.54e-06 53.61% 

 

The value of a particular estimator listed in column 3 and 4 is averaged over the 1000 simulated samples, i.e. 1000
n 1 jmn

1
q

1000   where 

jmnq denotes the jth estimate based on mth model (m = minimum or full information model) obtained from nth sample. Mean square 

error (MSE) of a particular estimator is measured as 21000
n 1 jmn j

1
(q q )

1000   where jq  is the true value of jmnq . To make the comparison 

between the minimum and full information models with regard to MSE more straightforward, we calculate the percentage of efficiency 

gains, listed in the last column, as 
full, j minimum, j

minimum, j

MSE MSE
100%

MSE


 . 
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Chapter 5: More Efficient Estimation — 

A Full Information Version of the General Model 

 This chapter discusses the full information version of the general model introduced 

in chapter 3. The idea is the same as that used in chapter 4: both lifestyle and energy balance 

regression parameters are consistently estimated via maximum likelihood estimation 

(MLE), giving that their conditional distributions are correctly specified. We expect the 

MLE parameter estimators and the policy effect estimators calculated from them to be more 

efficient than their counterparts based on the minimum information model described in 

chapter 3. As in chapter 3, we complete our discussion with an empirical analysis to 

demonstrate implementation of the method introduced in this chapter. The analysis is 

performed using the same data set as that used in chapter 3, and hence is comparable to the 

empirical analysis conducted in that chapter.  Correct asymptotic standard errors for the 

relevant estimators are derived and coded in Stata®. 

 

5.1 The General Model Revisited 

 We assume the distributions for the nonnegative continuous lifestyle variables [L1 

– sugar-sweetened beverage (SSB) calories intake; L2 – other calories intake; L3 – minutes 

of physical activity per day] to be generalized gamma (GG) as 

 
 j j o j j j jg (L | X , P) gg(L ; κ ,μ ,σ )        (5.1) 

 
 
where j = 1, 2, 3; oX  and P  are defined as in chapter 3; gg(  ) denotes the generalized 

gamma pdf which is  
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γγ
gg(Y; κ,μ,σ) exp(Z γ V)            Y 0

σY γΓ γ
       

 
 

with 2
γ κ

 ,   Z sign κ ln(Y) μ / σ  ,  V γ exp κ Z ; j o oj pjμ X α Pα  ; and κj, 

σj, and the αjs are the parameters to be estimated.  

 The energy balance outcomes we are interested in are BMI percentile (EB1), body 

fat % (EB2), indicators for overweight (EB3) and obesity (EB4), among which the first two 

are fractional variables that take values between 0 and 1, and the last two are binary 

variables that take values of 0 or 1. We therefore assume EB1 and EB2 to be beta 

distribution; and EB3 and EB4 to be Bernoulli distribution. The corresponding conditional 

probability density functions are, respectively, as follows 

 

 r1 r1 r1 r1ξ μ 1 ξ (1 μ ) 1r1
r1 o u r1 r1

r1 r1 r1 r1

Γ(ξ )
h(EB | L, X , X ;ξ ,μ ) EB (1 EB)

Γ(ξ μ )Γ(ξ (1 μ ))
   


 

        
        r10<EB <1  (5.2) 

 
 
where r1 = 1, 2, L  and uX are defined as in chapter 3, 

r1 r1 o u Lr1 o or1 u ur1μ E[EB | L,X ,X ] Λ(Lβ X β X β )    , Λ(   ) is the logistic cdf, and ξr1 and 

the βr1s are the parameters to be estimated; and 

  

   r 2r 2
1 EBEB

r2 o u r2 r r2 r 22f (EB | L,X ,X ;β ) μ 1       EB  μ 0 or 1
     (5.3) 

 
 
where r2 = 3, 4, r2 r2 o u Lr2 o or2 u ur2μ E[EB | L,X ,X ] Λ(Lβ X β X β )    , and βr2s are the 

parameters. 
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To consistently estimate the relevant parameters in this case, we can apply 

maximum likelihood estimation (MLE) based on the conditional probability density 

functions in (5.1) – (5.3) in both stages of the 2SRI method. 

 

5.2 Method Illustration – Continued Empirical Analysis  

 We repeat our real data analysis conducted in chapter 3 by applying MLE instead 

of NLS to the estimations of lifestyle and energy balance regressions. The correct 

asymptotic standard errors are derived and calculated for these MLE parameter 

estimators.45 The relevant AIE estimators and their correct asymptotic standard errors46 are 

re-calculated using MLE parameter estimators and the corresponding correct asymptotic 

standard errors. For the same reasons as discussed in chapter 3, we view the analysis 

conducted here as merely illustrative of the econometric framework and method. We are 

aiming at using this illustrative analysis to give a more concrete perspective of our method, 

and possibly to demonstrate the feasibility of our method in extended scenarios wherein 

there are multiple endogenous variables in a nonlinear context.    

Columns (1) through (3) of Table 5.1, show the 2SRI first stage MLE coefficient 

estimates for SSB calories intake, other calories intake and physical activity respectively, 

wherein the underlying conditional distributions are assumed to be generalized gamma 

(GG) with probability density functions as defined in (5.1). The Wald test statistics show 

that the IVs are relevant in predicting SSB calories, i.e. 36.53 (p < 0.01), and other calories 

                                                 
45 See Appendix 5A for details.  
46 The formula is exactly the same as the one used to calculate the asymptotic standard errors of the 

corresponding AIEs, see equation (3C-5) in Appendix 3C. Replace  α ' β '  with MLE MLEα ' β '  
  would 

give us the correct asymptotic standard errors of the AIEs discussed in this chapter. 
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intakes, i.e. 23.25 (p < 0.01), but not relevant for physical activity, i.e. 3.19 (p = 0.363), 

which is inconsistent with the result obtained in chapter 3, where Wald statistic is 13.423 

(p = 0.004), see the bottom of Table 3.2, column (3). Given this point of divergence 

between the NLS (chapter 3) and GG-MLE results in the 2SRI first stage, we conduct a 

model fit comparison test, i.e. NLS vs GG MLE. The NLS estimation performed in chapter 

3 can be equivalently cast as the pseudo maximum likelihood estimator (PMLE) based on 

the normal distribution with an exponential conditional mean [as in the systematic 

component of the generic lifestyle equation (3.3)].47 Unfortunately, the NLS-PMLE is not 

nested within the GG-MLE so a conventional likelihood ratio test cannot be implemented.  

For this reason, we use the likelihood ratio (LR) test devised by Vuong (1989) for fit 

comparisons of likelihood-based non-nested models (see also Wooldridge, 2010, p505-508; 

Greene, 2012, p534-536). Vuong’s LR test statistic (V-LR) is asymptotically normally 

distributed.  In the present context, large negative values of the V-LR indicate rejection of 

the null hypothesis that the models fit the data equally well in favor of the GG-MLE. 

Similarly, large positive values support the relative validity of NLS-PMLE. As can be seen 

at the bottom of Table 5.1, the large negative value of the V-LR for each of the lifestyle 

regressions indicates that GG-MLE affords better model fit. From this result, we conclude 

that the seemingly good first stage results regarding the strength of the IVs (based on the 

chi-squared joint test statistics displayed in Table 3.2), are likely to be misleading. The 

preferred GG-MLE results give evidence of IV weakness – in particular, regarding their 

predictive power for minutes of physical activity.   

                                                 
47See Gourieroux, Monfort and Trognon, 1984; and Gourieroux and Monfort, 1989, section 8.4.2 
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This goodness-of-fit analysis also supports our idea of using GG as the conditional 

distribution for non-negative continuous variables – it is very flexible in terms of the shape 

of its probability distribution, and hence, may fit the data better. As a comparison, we also 

present the first stage results based on the LIV method, i.e. the linear instrumental variables 

method48, in columns (4) – (6) of Table 5.1. F statistics suggest weak IVs in the estimation 

of all three lifestyle regressions – none of them are greater than 10, the rule of thumb for 

IV relevance test in the linear case. This weak IVs conclusion seems to be consistent with 

the one based on GG MLE. However, it does not indicate that LIV performs better than 

NLS-based 2SRI method discussed in chapter 3. It could be a coincidence. We have every 

reason to believe that linear regression is not a good choice especially when the dependent 

variable has limited value range and its distribution is highly skewed.  

Table 5.2 shows the coefficient estimates for body fat % regressions based on the 

alternative methods. Column (1) shows the estimates obtained from the 2SRI second stage 

estimation, which is based on the MLE method with the distribution modeled in equation 

(5.2), i.e. Beta distribution. For simplicity, let’s call them “corrected” Beta estimates as 

they are 2SRI estimates and thus directly account for the potential endogeneity of the 

lifestyle variables. Conversely, the estimates obtained from the similar Beta regression that 

ignores endogeneity are referred to as the “uncorrected” Beta estimates – listed in column 

(2). Column (3) displays the LIV second stage coefficient estimates that are corrected for 

potential endogeneity but ignore the inherent nonlinearity of the model. Column (4) gives 

the OLS estimates that ignore both endogeneity and nonlinearity. The AIEs on body fat % 

in response to an exogenous increment in each lifestyle variable based on these methods 

                                                 
48 See chapter 2, section 2.4.2 for details. 
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are displayed in Table 5.3, column (1) – (4) correspondingly. As you can see from Tables 

5.2 and 5.3, coefficient and AIE estimates differ substantially across the four model 

specifications: models that account for the potential endogeneity (i.e. “corrected” Beta and 

LIV) suggest no significant impacts or significant effects at low significance level (5%, 

only for physical activity in the “corrected” Beta column) of lifestyle variables on body 

fat % while the ones that ignore endogeneity (i.e. “uncorrected” Beta and OLS) show 

significant results at a very high significance level (0.1%, for all three lifestyle variables). 

Comparison of the AIEs between “corrected” Beta and LIV methods [Table 5.3, column 

(1) and (3)] also suggests divergent results due to the ignoring nonlinearity even though 

both methods account for endogeneity. All these comparisons draw our attention to the 

importance of choosing the appropriate method when dealing with endogeneity in a 

nonlinear context as results can differ substantially across various methods. As our 

instruments are weak, we won’t draw any inferences from these results. We will replicate 

the analysis using better IVs, i.e. the aggregate-level “prospective policy levers”, once we 

get access to the restricted RDC data. 

 

5.3 Summary 

 In this chapter, we discuss the full information model in the general case and apply 

MLE in both stages of the 2SRI method based on the same data set as that is used in chapter 

3. Ideally, we would like to compare the MLE-based estimators obtained from this chapter 

to the NLS-based ones obtained from chapter 3 and show that the two sets of estimators 

are similar but the former ones have smaller standard errors, indicating efficiency gains 

from the fully parametric version of the 2SRI model relative to the minimally parametric 
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one. However, due to the data limitation discussed above, we are not able to do so. Our 

MLE-based 2SRI first stage test statistics indicate that the instrumental variables we use 

are not strong enough, and hence, neither NLS-based estimators nor MLE-based estimators 

are consistent. Therefore, the comparison of standard errors is futile in the current analysis. 

We are hoping that, once we merge the public NHANES data to the aggregate-level policy 

data based on state and county identifiers, we will get meaningful results that allow such 

comparisons.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 

Appendix 5A:  Asymptotic Standard Errors for 2SRI Coefficient Estimates 

in the Fully Parametric General Model 

In this section, we derive the correct asymptotic standard errors of the 2SRI 

coefficient estimates, where the corresponding two stages are: 

Stage 1 – use the maximum likelihood estimation (MLE) method to estimate parameters 

of each lifestyle conditional pdf defined as in (5.1), and obtain consistent estimators, 

MLE MLE MLE
j oj Pjα ' α ' α '      , MLE

jσ and MLE
jκ  then calculate the residual as 

 
  MLE MLE MLE MLE

uj j o oj Pj jX L exp X α Pα C            (5A-1) 

 
where 

 
MLE MLE
j jˆ(2σ /κ )MLE MLE MLE*

j j jC ln[(κ ) C ]    

 
    = +MLE* MLE 2 MLE MLE MLE 2
j j j j jC Γ{(1 / (κ ) ) (σ /κ )} /Γ{1 / (κ ) }   

 
and construct the residual vector as MLE MLE MLE MLE

u u1 u 2 u 3X X X X   
    ; 

 
Stage 2 – apply MLE based on the conditional pdf 

 

   
    

r1 r1r1 ξ μ 1MLE
r1 o u r1 r1

r1 r1 r1 r1

Γ ξ
h EB | L, X , X ;ξ ,μ EB

Γ ξ μ Γ ξ 1 μ
 


    

        r1 r1ξ 1 μ 1
1 EB

     (5A-2) 

where r1 = 1, 2,  MLE MLE
r1 r1 o u Lr1 o or1 u ur1μ E EB | L, X , X Λ Lβ X β X β     

   and the 

conditional pdf  

 

    r 2r 2
1 EBEBMLE

r2 o u r2 r2 r2f EB | L, X , X ;β μ 1 μ
       (5A-3) 
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where r2 = 3, 4,  MLE MLE

r 2 r 2 o u Lr 2 o or 2 u ur 2μ E EB | L, X , X Λ Lβ X β X β     
   to obtain 

consistent estimates of the energy balance parameters MLE MLE MLE MLE
r1 Lr1 or1 ur1β ' β ' β ' β '   
     

and MLE
r1ξ , and MLE MLE MLE MLE

r 2 Lr 2 or 2 ur 2β ' β ' β ' β '   
     for fractional outcomes (i.e. body fat % 

and BMI percentile) and binary outcomes (i.e. overweight and obesity) respectively. 

 Therefore, the first stage objective function is 

  

   
n n

1 i 1i 2i 3i
i 1 i 1

q α, V l l l
 
          (5A-4)  

 

where lji represents the log-likelihood function of jth lifestyle variable for individual i, 

 i i oi iV L X P , and the second stage object functions are 

 

        n nMLE
r1 r1 r1 r1i r1 r1 r1i r1 r1i

i 1 i 1
q α ,β ,ξ , Z ln Γ ξ ln Γ ξ μ ln Γ ξ 1 μ

 
       

   

        r1 r1i r1i r1 r1i r1iξ μ 1 ln EB ξ 1 μ 1 ln 1 EB       

        (5A-5) 

 

where MLE MLE MLE MLE
1 2 3α ' α ' α ' α '       ,  r1 Lr1 or1 ur1β ' β' β' β'  ,  r1i r1i iZ EB V

 MLE
r1i i Lr1 oi or1 ui ur1μ Λ L β X β X β    , and 

 

         n nMLE
r2 r2 r2i r2i r2i r2i r2i

i 1 i 1
q α ,β , Z EB ln μ 1 EB ln 1 μ

 
       (5A-6) 
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where   r2 Lr2 or2 ur2β ' β' β' β' ,  MLE
r 2i i Lr 2 oi or 2 ui ur 2μ Λ L β X β X β    , 

 r2i r2i iZ EB V for fractional outcomes and binary outcomes respectively. 

 Following Terza (2016a, 2016aA, and 2016B), equation (9), the asymptotic 

covariance matrix of the first and second stage parameter estimators, i.e. MLEα  and MLE
r1β , 

for fractional energy balance outcomes  is49 

 

r1 r1
1111 12r1

r1 r1
12 22

D D
D

D ' D

 
  
  

 


 
         (5A-7) 

where 

  r1 MLE
11D AVAR α    

     r1

*r1 MLE MLE
12 β r1 α r1 r1D AVAR α E q ' q 'AVAR β    

   

     r1 r1

*r1 MLE MLE
22 r1 β r1 α r1 β r1 α r1D AVAR β E q ' q AVAR α E q ' q '           

     

       * *MLE MLE
r1 r1AVAR β AVAR β    

r1

r1

n

β r1 α r1
i 1

β r1 α r1

q ' q
E q ' q

n

 

    

 
       

         
r1 r1β r1 r1 β r1i r1 r1i r1 r1i r1i r1iq ξ μ ψ ξ μ ψ ξ 1 μ ln EB ln 1 EB          

         α r1 r1 α r1i r1 r1i r1 r1i r1i r1iq ξ μ ψ ξ μ ψ ξ 1 μ ln EB ln 1 EB          

  
r1β r1i i Lr1 oi or1 ui ur1 i oi uiμ Λ' L β X β X β L X X     

                                                 
49 r1ξ is not the parameter of interest. So the correct asymptotic standard error of the corresponding estimate 

is not covered in equation (5A-7). 
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    α r1i i Lr1 oi or1 ui ur1 ur11 oi o1 i P1 oi iμ Λ ' L β X β X β β exp X α P α X P       

     ur12 oi o2 i P2 oi i ur13 oi o3 i P3 oi iβ exp X α P α X P β exp X α P α X P       

   

 ψ  represents the logarithmic derivative of the gamma function,  MLEAVAR(α )  and 

* MLE
r1AVAR (β ) are the estimated covariance matrices obtained from the first and second 

stage packaged regression results respectively. Similarly, for binary outcomes, the 

asymptotic covariance matrix of both stage parameter estimators, i.e. MLEα and MLE
r2β , is 

r2 r2
1111 12r2

r2 r2
12 22

D D
D

D ' D

 
  
  

 


 
         (5A-8) 

where 

  r2 MLE
11D AVAR α    

     r 2

*r2 MLE MLE
12 β r2 α r2 r2D AVAR α E q ' q 'AVAR β    

   

     r 2 r 2

*r2 MLE MLE
12 r2 β r2 α r2 β r2 α r2D AVAR β E q ' q AVAR α E q ' q '           

    

       * *MLE MLE
r2 r2AVAR β AVAR β   

r 2

r 2

n

β r2 α r2
i 1

β r2 α r2

q ' q
E q ' q

n

  

    

 
  

 r 2 r 2

r 2

β r2i β r2i
β r2 r2i r2i

r2i r2i

μ μ
q EB 1 EB

μ 1 μ

 
   


 

 α r2i α r2i
α r2 r2i r2i

r2i r2i

μ μ
q EB 1 EB

μ 1 μ

 
   


 

  
r2β r2i i Lr2 oi or2 ui ur2 i oi uiμ Λ' L β X β X β L X X     
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    α r2i i Lr2 oi or2 ui ur2 ur21 oi o1 i P1 oi iμ Λ ' L β X β X β β exp X α P α X P       

     ur22 oi o2 i P2 oi i ur23 oi o3 i P3 oi iβ exp X α P α X P β exp X α P α X P       

  MLEAVAR α  and 
* MLE

r 2AVAR (β ) are the estimated covariance matrices obtained from 

the first and second stage packaged regression results respectively. 
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Table 5.1 2SRI and LIV First Stage Estimates 
 (1) (2) (3) (4) (5) (6) 
 SSB Calories  

GG 
Other Calories 

GG 
Physical 

Activity GG 
SSB Calories  

LIV 
Other Calories 

LIV 
Physical 

Activity LIV 
Age (years) 0.077*** 

(5.538) 
0.013** 
(3.027) 

0.119*** 
(6.882) 

20.660*** 
(8.826) 

29.035** 
(3.289) 

5.451*** 
(6.679) 

       
Female -0.273*** 

(-5.513) 
-0.251*** 
(-15.252) 

-0.279*** 
(-4.401) 

-83.698*** 
(-9.729) 

-494.182*** 
(-14.911) 

-27.618*** 
(-9.332) 

       
Non-white 0.064 

(1.165) 
-0.025 

(-1.267) 
-0.102 

(-1.238) 
13.564 
(1.211) 

-71.000 
(-1.704) 

-4.987 
(-1.376) 

       
Annual Household 
Income < $15,000 

-0.282*** 
(-4.142) 

-0.006 
(-0.235) 

-0.050 
(-0.516) 

-28.530* 
(-2.115) 

3.094 
(0.057) 

-2.570 
(-0.596) 

       
Reference Person 
Education-Some 
College 

0.085 
(1.514) 

0.036 
(1.796) 

0.127 
(1.679) 

-6.576 
(-0.587) 

74.372 
(1.772) 

10.484** 
(2.649) 

       
Reference Person 
Education-College 
Graduate or 
Higher 

0.191* 
(2.231) 

0.058* 
(2.293) 

-0.050 
(-0.504) 

-37.443* 
(-2.296) 

103.288* 
(2.006) 

5.999 
(1.385) 

       
Reference Person 
is Single 

0.175** 
(3.043) 

-0.025 
(-1.323) 

-0.154* 
(-2.092) 

15.466 
(1.482) 

-42.759 
(-1.104) 

-4.319 
(-1.346) 

       
School Serve 
Breakfast Each 
Day 

-0.272*** 
(-4.294) 

-0.063** 
(-2.966) 

-0.096 
(-1.173) 

-24.070 
(-1.712) 

-127.222** 
(-2.634) 

-11.495** 
(-2.665) 
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Food Stamps 
Received in the 
Last 12 months 

0.170* 
(2.291) 

0.029 
(1.164) 

0.111 
(1.269) 

3.072 
(0.215) 

51.121 
(0.999) 

9.341 
(1.958) 

       
# Times/Week 
Eating at 
Restaurant 

0.043*** 
(3.409) 

0.016*** 
(3.698) 

-0.006 
(-0.398) 

12.432*** 
(4.059) 

33.913*** 
(3.638) 

1.274 
(1.444) 

       
Constant 5.138*** 

(22.181) 
7.521*** 

(106.242) 
3.213*** 
(11.642) 

-21.509 
(-0.583) 

1821.567*** 
(12.536) 

-3.283 
(-0.260) 

ln(σ)  0.157*** 
(5.338) 

-0.832*** 
(-60.186) 

0.455*** 
(18.209) 

- - - 

κ  4.674*** 
(31.374) 

0.452*** 
(13.247) 

3.831*** 
(35.760) 

- - - 

IV Relevance Test       
Wald/F Statistics 36.534 23.246 3.190 6.033 7.135 3.964 
P-value < 0.000 < 0.000 0.363 < 0.000 < 0.000 < 0.008 
Model Fit Test  
(NLS-PMLE vs 
GG-MLE) 

      

V-LR Test 
Statistics 

-120145.571 -1293816.814 -103275.558 - - - 

N 2,828 2,828 2,828 2,828 2,828 2,828 
t statistics in parentheses 
Wald statistics are reported in column (1) – (3), while F statistics are reported in column (4) – (6). 
Reference Person Education-High School Graduate is omitted. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5.2 2SRI Second Stage “Corrected” Beta, “Uncorrected” Beta, LIV Second Stage, and OLS Estimates 
 (1) (2) (3) (4) 
 “Corrected” Beta “Uncorrected” Beta LIV OLS 

SSB Calories (cal.) 0.001 
(0.711) 

-0.00003 
(-0.880) 

0.0002 
(0.164) 

-0.000005 
(-0.804) 

     
Other Calories (cal.) -0.001 

(-0.999) 
-0.00006*** 

(-6.300) 
-0.00008 
(-0.191) 

-0.00001*** 
(-6.946) 

     
Physical Activity/Day 
(minutes) 

-0.015* 

(-1.980) 
-0.001*** 
(-5.064) 

0.00002 
(0.007) 

-0.00009*** 
(-3.763) 

     
Age (years) 0.059 

(1.755) 
-0.012** 
(-2.774) 

-0.004 
(-0.208) 

-0.003** 
(-2.929) 

     
Female 0.249 

(1.251) 
0.582*** 
(33.978) 

0.096 
(1.434) 

0.115*** 
(34.506) 

     
Non-white -0.071 

(-1.071) 
0.038 

(1.934) 
0.0003  
(0.008) 

0.008* 
(2.063) 

     
Annual Household Income < 
$15,000 

0.055 
(0.757) 

0.013 
(0.556) 

0.007 
(0.204) 

0.001 
(0.270) 

     
Reference Person Education-
Some College 

0.033 
(0.487) 

-0.064** 
(-3.269) 

-0.008 
(-0.534) 

-0.013*** 
(-3.482) 
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Reference Person Education-
College Graduate or Higher 

-0.095 
(-1.032) 

-0.072** 
(-2.876) 

-0.002 
(-0.033) 

-0.015*** 
(-3.298) 

     
Reference Person is Single -0.162* 

(-2.060) 
-0.016 

(-0.898) 
-0.007 

(-0.283) 
-0.002 

(-0.566) 
     

u1X  (SSB Calories) -0.001 
(-0.726) 

- - - 

     

u2X  (Other Calories) 0.0004 
(0.883) 

- - - 

     

u3X  (Physical Activity) 0.014 
(1.914) 

- - - 

     
Constant -0.348 

(-0.368) 
-0.842*** 
(-11.979) 

0.438 
(0.533) 

0.307*** 
(22.050) 

ln(ξ)  3.248*** 

(85.531) 
3.237*** 

(123.581) - - 

Endogeneity Test     
Wald/F Statistics 5.542 - 0.378 - 
P-Value 0.136 - 0.769 - 
N 2,828 2,828 2,828 2,828 

t statistics in parentheses, adjusted for 2SRI second stage “corrected” Beta estimates, i.e. column (1).50 
Reference Person Education-High School Graduate is omitted. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

                                                 
50 For detailed derivations of the correct asymptotic standard errors for the 2SRI second stage Beta estimates, see Appendix 5A. 
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Table 5.3 Average Incremental Effects of Lifestyle Variables on Body Fat % 
-- 2SRI-Based “Corrected” Beta vs “Uncorrected” Beta vs LIV vs OLS 

 (1) (2) (3) (4) 
 “Corrected” Beta “Uncorrected” 

Beta 
LIV OLS 

SSB Calories Intake 
( Δ 50 ) 

0.013 
(0.702) 

-0.0003 
(-.880) 

0.008 
(0.164) 

-0.0003 
(-0.804) 

     
Other Calories Intake 
( Δ 500 ) 

-0.048 
(-1.060) 

-0.006*** 

(-6.343) 
-0.042 

(-0.191) 
-0.006***  
(-6.946) 

     
Physical Activity 
( Δ 30 ) 

-0.081* 

(-2.244) 
-0.003*** 

(-5.083) 
0.0005 
(0.007) 

-0.003*** 

 (-3.763) 
     
N 2,828 2,828 2,828 2,828 

t statistics in parentheses, adjusted for the 2SRI-based AIEs, i.e. column (1) “Corrected” Beta.51 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

                                                 
51  For formula of calculating the correct asymptotic standard error, see equation (3C-5). Replace  α ' β '  with MLE MLEα ' β '  

  would give the correct 

asymptotic standard errors of the 2SRI-based AIEs.   
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Chapter 6: Summary and Discussion 

 Communities and States are increasingly targeting the consumption of sugar-

sweetened beverages (SSBs), especially soda, in their efforts to curb childhood obesity. 

However, the empirical evidence currently available is not causally interpretable, and 

hence, provides little or no useful content for policy makers. In the current study, we 

suggest a modelling framework that can be used for making causal estimation and inference 

in the context of childhood obesity. This modeling framework is built upon the 2SRI 

method suggested by Terza et al. (2008), and allows for the implementation of alternative 

estimation methods at each stage (i.e. NLS or MLE methods, and henceforth NLS-based 

or MLE-based 2SRI). The framework also accommodates a variety of likelihood 

specifications (e.g., GG, Beta, logit, etc.), resulting in potentially more efficient estimates. 

Based on this modeling framework, we derive the estimators that can be used to 1) evaluate 

the effectiveness of policy interventions on childhood obesity – the average incremental 

effect (AIE) estimators; and 2) provide quantitative policy recommendations aimed at 

specified energy balance goals – the policy recommendation estimators. We aim to use 

those estimators to better inform childhood obesity policy. 

We conduct simulation studies in chapter 2 and chapter 4, respectively, 1) to 

examine the performance of our methods in the estimation of AIEs and quantitative policy 

recommendations relative to conventional methods – LIV (that ignores inherent 

nonlinearity) and NR (that does not take account of potential endogeneity); and 2) to assess 

the potential efficiency gains from implementing MLE-based vs. NLS-based 2SRI. Our 

simulation studies show that 1) the 2SRI method outperforms LIV and NR methods – 

estimators obtained from the 2SRI method are very close to the true values while their LIV 
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and NR counterparts are subject to substantial bias; and 2) MLE-based 2SRI is more 

efficient than the NLS-based 2SRI approach – the percentage gain in efficiency from MLE 

vs. NLS is found to be more than 50% for all the coefficient and AIE estimators. 

Using publicly available NHANES data, we conduct an empirical study in chapters 

3 and chapter 5 to demonstrate the implementation of the methods introduced. We compare 

the NLS-based 2SRI estimates to their NR counterparts in chapter 3 and find substantial 

difference in these estimates.  In chapter 5 we compare the MLE-based 2SRI estimates to 

the corresponding estimates obtained from several other alternative methods, including 

“uncorrected” Beta regression that accounts for nonlinearity but not endogeneity, the LIV 

method that accounts for endogeneity but not nonlinearity and OLS regression that ignores 

both endogeneity and nonlinearity. The estimates diverge substantially across different 

methods. Such findings suggest the importance of choosing the appropriate method when 

dealing with endogeneity in a nonlinear context. Unfortunately, due to data limitations, we 

are not able to draw any inference about the causal impacts of lifestyle choices, sugar-

sweetened beverage consumption in particular, on childhood obesity. The instrumental 

variables used in the current empirical analysis are proven to be weak and probably violate 

the requisite IV validity condition. Potentially better instrumental variables, i.e. the 

location-related aggregate-level policy variables, will be obtained in the near future.  The 

acquisition of these variables requires the use state and county identifiers which are only 

available in the Census Research Data Centers (RDC). We are in the process of getting 

access to the RDC data. Once we get access, we will replicate the empirical analysis 

performed in chapter 3 and 5 with a much richer set of instrumental variables and controls. 
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We expect that these results will yield substantive results that can be used to inform 

childhood obesity policy. 
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