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ABSTRACT 

'COMPLEMENTARY' IMMUNE EVASION BY ORAL PATHOGEN 
PORPHYROMONAS GINGIVALIS 

Jennifer Lynn Krauss 

November 18,2010 

Complement, an early recognition system of innate immunity that senses local 

tissue damage and infection, cross-talks with and regulates other signaling systems, 

including Toll-like receptor (TLR) pathways. In the context of periodontitis, destructive 

inflammation and disease promotion are associated with extensive and synergistic 

activation of TLRs and complement within the chronically inflamed periodontium. The 

virulence of the periodontal pathogen Porphyromonas gingivalis is dependent, at least in 

part, upon its ability to use sophisticated stealth and sabotage tactics to undermine innate 

immunity. Intriguingly, although this pathogen can modulate TLR2 signaling and 

suppress specific aspects of complement activation (126), it proactively generates an 

active complement fragment (C5a) through limited degradation of the fifth complement 

component (C5) by virtue of its C5 convertase-like activity. We hypothesized that this 

seemingly counterproductive action may provide a survival advantage; permitting P. 

gingiva lis to instigate a subversive crosstalk between TLR2 and C5aR. Our work 

supports this hypothesis by demonstrating that C5a exposure promoted a synergistic rise 

of intracellular cAMP and impaired the ability of macrophages to destroy P. gingivalis. 

The cAMP synergy strictly required TLR2 signaling and a pertussis toxin- and 
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thapsigargin-sensitive C5a receptor pathway, whereas protein kinase A and glycogen 

synthase kinase-3~ acted as downstream effectors. Antagonistic blockade of the C5a 

receptor abrogated this evasive strategy and may thus have important therapeutic 

implications in treating periodontal disease. This first demonstration of complement

TLR crosstalk for immunosuppressive cAMP signaling indicates that pathogens may not 

simply undermine complement and/or TLRs as separate entities, but may also exploit 

their crosstalk pathways. 
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CHAPTER ONE: INTRODUCTION 

Innate immunity: its role in periodontal disease 

Innate immunity is a phylogenetically ancient system of host defense and 

represents the inherited resistance to infection (70). Until relatively recently, the innate 

immune response was viewed as a non-specific and temporary expedient to "buy time" 

until the activation of adaptive immunity, which comprises the system of B and T 

lymphocytes, each of which expresses antigen receptors of exquisite specificity (34). 

Although lacking the ability to make such fine structural distinctions, innate immunity is 

nevertheless endowed with considerable specificity. Indeed, germ-line encoded receptors 

(collectively known as pattern-recognition receptors) can detect and respond to conserved 

and generally distinct microbial structures, which are shared by related groups of 

microorganisms (e.g., lipopolysaccharide of gram-negative bacteria or lipoteichoic acid 

of gram-positive bacteria) (104). Most importantly, innate immunity is sophisticated 

enough to make judgments that instruct the initiation and progression of the adaptive 

immune response (34) (104). In this regard, the acquired specificity of the antigen 

receptors is not the result of co-evolution with microbes but the outcome of randomly 

generated gene recombination. Thus, even though the adaptive immune receptors can 

bind virtually any structure, they have no clue on the biological context of the 

encountered antigen (i.e., should they respond or not?). This information, however, is 

1 



provided by innate immune mechanisms, which act as mediators between detection of 

infection and induction of the adaptive response. Not surprisingly, successful pathogens 

which disarm or subvert host defenses target preferentially innate immunity (36) and 

particularly central systems such as the complement and the Toll-like receptor (TLR) 

family ofpattem-recognition receptors (88) (137). 

In the oral cavity, innate immunity contributes significantly to antimicrobial 

defense, although inadequate or overexuberant activation of the innate response may lead 

to oral disease, such as periodontitis (32) (37). In this context, periodontal health 

represents a dynamic state where pro-inflammatory and antimicrobial activities to control 

infection are optimally balanced by anti-inflammatory mechanisms to prevent 

unwarranted inflammation (37). This homeostatic balance may be disrupted, however, 

either by genetic defects in host immunity or by pathogens that undermine host defense 

mechanisms (37) (79) (83). It should be noted that pathogen-instigated immune 

suppreSSIOn of specific pathways and destructive inflammatory responses in the 

periodontium are not necessarily mutually exclusive, since the latter may arise as a 

consequence of the inability to control infection (49). 

The ability of periodontal pathogens to persist and establish chronic infections 

suggests that they may have evolved ways to disarm these defense mechanisms or 

subvert them to their advantage. Understanding the mechanisms of periodontal host

pathogen interplay can offer important insights into the disease pathogenesis and 

facilitate the rational design of therapeutic interventions. 
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Complement and TLRs: a potential for crosstalk 

The term "complement" was coined by Paul Ehrlich in the late 1890s to describe a 

heat-sensitive activity in serum that is complementary to that of antibody in causing lysis 

of bacteria (142). In line with this early view, the complement system has been 

traditionally considered as an antimicrobial enzyme system found In serum and 

inflammatory exudates like the gingival crevicular fluid (4) (109) (122). However, it is 

now well appreciated that complement constitutes a fundamental component of innate 

immunity, by virtue of its ability to orchestrate critical events during immune and 

inflammatory responses, including regulation of other innate or adaptive immune 

pathways (63) (90) (99) (165). 

The triggering of the complement system involves sequential activation and 

proteolytic cleavage of a series of serum proteins, leading to recruitment and activation of 

inflammatory cells, microbial opsonization and phagocytosis, and direct lysis of targeted 

pathogens (99). In addition to the serum components, the integrated complement system 

also includes membrane-bound regulators and receptors for interactions with various 

mediators of the immune system. Complement activation can proceed through three 

distinct mechanisms, namely the classical, lectin, or alternative pathways (99) (Fig. 1). 

All three pathways converge at a central step, involving activation of the third component 

of complement (C3) by pathway-specific C3 convertases (87) (99). Activation of the 

classical pathway is initiated by antigen-antibody complexes, whereas the lectin pathway 

is triggered through interaction of a secreted pattern-recognition receptor (the mannose-
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binding lectin) with specific carbohydrate groups found on the surface of a variety of 

microorganisms. To ensure fast and immediate response to invading pathogens, the 

complement cascade is maintained at a low level of activity ("tick-over") by the so-called 

alternative pathway. This pathway is initiated by spontaneous hydrolysis of C3 to 

C3(H20), thereby inducing a conformational change that allows binding to complement 

factor B and formation of the initial alternative pathway C3 convertase. This results in 

rapid tum-over of the alternative pathway, as long as there is no sufficient negative 

regulation as normally occurs with non-self surfaces (e.g., bacteria). In addition to this 

mechanism, the alternative pathway can be induced by bacterial lipopolysacharide and 

lipooligosacharide molecules in a way that strictly requires the participation of the plasma 

protein properdin (77). The alternative pathway may represent up to 80% of complement 

activation (99). In all three pathways, proteolytic cleavage of a series of proteins 

downstream of C3 leads to the generation of effector molecules, including opsonins (C3b, 

iC3b) and anaphylatoxins (C3a, CSa). The iC3b fragment is generated by further 

cleavage of microbe-attached C3b and mediates phagocytosis by complement receptor-3 

(Fig. 1). The inflammatory anaphylatoxins C3a and CSa activate seven-transmembrane 

domain G-protein-coupled receptors, known as the C3a receptor and CSa receptor 

(CD88), respectively. A newly identified but modestly characterized alternative receptor 

for CSa is the so-called CSa receptor-like 2 (CSL2). Originally believed to be an anti

inflammatory decoy receptor, CSL2 is now thought to playa novel and distinct role in 

sepsis (160). Another CS cleavage product, the CSb, initiates the assembly of the CSb-9 

membrane attack complex, which induces lysis of complement-targeted bacteria (99) 

(Fig. 1). 
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TLRs compnse a family of pattern recognition receptors named after their 

similarity to the Drosophila Toll protein (92) (104). Their discovery in the late 1990s has 

sparked a resurgent interest in innate immunity. Indeed, the study of TLRs has helped 

appreciate the economical specificity of the innate immune system and that adaptive 

immunity did not evolve to replace innate immunity, but rather evolved around it. TLRs 

are transmembrane glycoproteins comprising an N-terminalleucine-rich repeat domain, a 

transmembrane region, and a C-terminal cytoplasmic signaling domain (71) (75). These 

receptors are primarily expressed by first-line professional phagocytes (e.g., neutrophils, 

macrophages, and dendritic cells) and are thus strategically located for early recognition 

of microbial pathogens (1). To date, 10 human TLRs have been identified which 

generally sense and respond to distinct types of microbial structures (Fig. 2). For 

instance, TLR3 responds to double-stranded viral RNA, TLR4 responds to 

enterobacterial lipopolysaccharide, TLR5 to bacterial flagellin, and TLR9 to microbial 

CpG DNA. TLR2 is unique in that it heterodimerizes with signaling partners (TLRI or 

TLR6) for detecting and responding to microbial cell wall components, such as 

lipoteichoic acid, lipoproteins, yeast zymosan or fimbriae (1) (10) (80). 
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Classical Lectin Alternative 
Ag-Ab MBl C3(H20) 

Properdin, lPS/lOS 

Pathway-specific C3 convertases 

! 

Figure 1. Activation pathways of the complement system. All three pathways 

converge at a central step, involving activation ofthe third component of 

complement (C3) by pathway-specific C3 convertases. Proteolytic cleavage of a 

series of proteins downstream of C3 leads to the generation of potent effector 

molecules. These include the anaphylatoxins C3a and CSa, which activate specific 

receptors (C3aR and CSaR). Moreover, CSa also interacts with the modestly 

characterized CSa receptor-like 2 (CSL2) (81). Additional effectors generated 

downstream of C3 are the opsonins C3b and iC3b, the latter of which coats 

microbes and promotes their phagocytosis by complement receptor-3 (CR3). In 

the terminal pathway, CSb initiates the assembly of the CSb-9 membrane attack 

complex (MAC), which in turn induces microbial cell lysis (96). 
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Those TLRs which are mainly responsible for detecting extracellular microbial 

structures are expressed on the host cell surface (TLRs 1, 2, 4, 5, and 6), whereas those 

specializing in detecting viral or bacterial nucleic acids are appropriately located 

intracellularly on endocytic vesicles or organelles (TLRs 3, 7, 8 and 9) (Fig. 2). 

Following ligand binding, TLR signaling is triggered upon recruitment of adaptor 

proteins to the cytoplasmic TLR domains, which help propagate the signals to 

downstream kinases and transcription factors. This ultimately leads to induction of 

immunoregulatory genes that activate or suppress the innate immune and inflammatory 

response (116) (117). The presence of both common and selective adaptors, in 

conjunction with the apparent compartmentalization of the TLRs, allows the induction of 

individual signaling pathways (for at least some TLRs) in addition to a core TLR 

response (117). It is thus possible that activation of diverse TLR intracellular pathways, 

dependent upon different TLR ligand specificities, may allow the host to tailor a response 

that is appropriate against a given pathogen. 
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Figure 2. Microbial ligand specificites of human Toll-like receptors (TLRs). 

TLR2, in cooperation with its signaling partners, TLRI or TLR6, detects mostly 

microbial cell wall components, such as lipoprotein, lipotechoic acid (L T A) or 

fimbrae (1) (12). TLR4 and TLR5 recognize lipopolysaccharide (LPS) and 

bacterial flagellin, respectfully, whereas no ligand has been identified for 

TLRIO. Endosomal TLRs such as TLR3, recognizes double-stranded viral 

RNA, whereas TLR 7 and TLR8 recognized single-stranded viral RNA and 

TLR9 detects microbial CpG DNA. 
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Both complement and TLRs are rapidly activated by most pathogens upon 

encounter with the host, and common microbial molecules like gram-negative bacterial 

lipopolysaccharide and yeast zymosan can act both as TLR ligands and complement 

activators. It is conceivable that the coordination of the early innate response would 

require a crosstalk between the complement and the TLR systems. In this regard, a 

systematic analysis of crosstalk in intracellular signaling pathways has revealed that a 

great number of microbe-induced stimuli converge on a relatively limited number of 

effector signaling pathways (113). In principle, a molecular crosstalk between 

complement and TLRs could result in cross-regulation of the two systems, including 

potential synergistic or even antagonistic interactions. These interactions may help 

enhance host defense or regulate it to prevent excessive inflammatory responses. 

However, it is also plausible that at least some crosstalk interactions may be instigated by 

the pathogens themselves for deregulating or modifying the host response in a way that 

favors their survival. Though only recently has this issue started to be addressed, 

available evidence indicates bidirectional cooperation between the complement and the 

TLR system, since complement regulates TLR activation (63) (165), whereas TLR 

signaling transmodulates the activity of complement receptors (57) (61). 
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Periodontitis, associated bacteria, and complementffLR immunity 

Periodontal disease is possibly the most common chronic disorder of infectious 

origin in humans, resulting in inflammatory destruction of the tooth-supporting tissues 

(123). The disease is initiated by certain species of subgingival gram-negative anaerobic 

bacteria co-existing within dynamic communities of highly-organized architecture (24) 

(144), originally termed "dental plaque" which predates the more modem term "biofilm" 

(41) (106). In periodontal health, the ordered structure of the dental plaque biofilm 

consists predominately of gram-positive, facultative anaerobic bacteria, although the 

onset of the disease is associated with a shift to gram-negative anaerobic bacteria which 

begin to colonize the subgingival pocket with greater frequencies (145). Using a color

coded system, Socransky and colleagues characterized these microbial communities as 

red, orange, green, purple and yellow complexes, on the basis of cluster analysis, 

community ordination, and associated disease severity (146). A high prevalence of red 

complex members such as Porphyromonas gingivalis, Treponema dentico/a, and 

Tanerella forsythia correlates strongly with periodontal tissue destruction (65) (146). 

Prevotella intermedia and Fusobacterium nucleatum, both members of the orange 

complex, are also associated with various forms of periodontal disease (21) (146) (162). 

While the bacteria constitute an essential etiologic factor, it is the host 

inflammatory reaction to bacterial challenge that primarily mediates periodontal tissue 

damage (37). This is not to say, however, that the challenge in periodontitis involves 

simply the issue of controlling the inflammatory response. In a related context, purely 

anti-inflammatory therapies in sepsis clinical trials have generally failed even if the initial 

hyper-inflammatory stage was controlled; indeed, many patients would succumb to the 
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infection itself at later stages of the disease (134). Therefore, periodontal and other 

infection-driven inflammatory diseases should be dealt with in ways that address both 

infection and inflammation. This in turn requires adequate understanding of both 

protective and destructive aspects of the host response and how pathogens may evade the 

former and contribute to the latter. 

There is strong evidence that complement and TLRs form an important link 

between infection and various local or systemic autoimmune or inflammatory conditions, 

such as septic shock, ulcerative colitis, rheumatoid arthritis, systemic lupus 

erythematosus, atherosclerosis, ischemialreperfusion injury, and asthma (2) (17) (131) 

(160). There is also evidence for complement and TLR involvement in periodontal 

disease. In this regard, a profusion of complement proteins and derived split products are 

found within the gingival crevicular fluid of periodontitis patients, composing up to 70% 

of that found in the serum (127). The functionality of the complement components of the 

gingival crevicular fluid has been confirmed (18), whereas activated complement 

fragments have also been detected in the gingival connective tissue (18). Importantly, 

induction of experimental gingivitis in human volunteers causes progressive elevation of 

complement cleavage products and correlates with increased microbial plaque 

accumulation, clinical inflammation, and bleeding on probing (122). These clinical 

findings suggest a role for complement involvement in periodontal pathogenesis. 

Moreover, in vitro mechanistic studies have demonstrated complex interactions between 

periodontal bacteria and the complement system (58) (103) (125). 

In addition to elevated complement activity, the inflamed periodontium is 

infiltrated by TLR-expressing inflammatory cells, whereas healthy gingiva display 
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significantly lower levels of TLR expression (110) (111) (129). Besides professional 

inflammatory cells, gingival epithelial cells and fibroblasts also express TLRs and the 

level of expression correlates with disease activity (84) (129) (148) (159). In terms of 

function, TLRs (particularly TLR2 and to a much lesser extent TLR4) have been shown 

to regulate important immune and inflammatory responses to periodontal bacteria in vivo 

and in vitro (3) (11) (16) (23) (33) (54) (59) (118) (164). 

However, the precise roles, whether protective or destructive, played by the 

complement and the TLRs in periodontal infection and inflammation are poorly 

understood. This is partly because these issues have not previously been systematically 

investigated. Nevertheless, a substantial body of available literature exists, which, if 

properly synthesized and interpreted, could provide important new insights for future 

studies. 

Porphyromonas gingivalis: master of subversion 

In principle, a host inflammatory response can become destructive when it is 

deregulated and its magnitude gets out of proportion to the microbial threat, or when it is 

undermined by pathogens leading to persisting but ineffective inflammation in terms of 

infection control (37) (49) (83) (135). In the context of periodontitis, P. gingivalis could 

be reasonably characterized as a master of subversion, on the basis of sophisticated 

sabotage tactics presented below. This gram-negative anaerobic organism expresses an 

elaborate system of adhesins and proteolytic enzymes (e.g., long and short fimbriae, 

hemagglutinins, and Arg- and Lys-specific cysteine proteinases known as gingipains), 

which coordinately enable the pathogen to colonize host tissues and secure critical 

nutrients (89). As important as these virulence features may be, P. gingivalis would 
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probably be unable to establish a chronic infection, unless it could have also evolved 

ways to evade, undermine, or trick the host immune system. This is lucidly exemplified 

by its capacity to not only subvert both complement and TLR immunity but, moreover, to 

exploit crosstalk signaling pathways between complement and TLRs. 

Neutralization of complement action 

P. gingivalis causes significant inhibition of complement activation, regardless of 

the initiation pathway involved (classical, lectin, or alternative; Fig. 1), through 

gingipain-dependent degradation of key complement components, such as the C3 (126) 

(142). As a consequence, the deposition of opsonins or the membrane attack complex on 

the pathogen surface is suppressed, unless its gingipain activity is ablated by chemical or 

genetic means (139) (143). All three gingipain enzymes participate in complement 

inactivation, although the Arg-specific enzymes (HRgpA and RgpB) are more potent in 

this regard than the Lys-specific gingipain (Kgp) (125). As a further safety measure, the 

pathogen appears to hijack physiological mechanisms of inhibiting the complement 

cascade. In this regard, P. gingivalis uses its HRgpA to capture the circulating C4b

binding protein on the bacterial cell surface, thereby acquiring the ability to negatively 

regulate the classical pathway C3 convertase (128). 

The above summarized findings are consistent with observations that P. gingivalis 

is exquisitely resistant to the lytic action of complement (125) (143). Curiously, 

however, Arg- and Lys-gingipain mutants are as resistant as the wild-type organism upon 

their exposure to human serum, even though active complement fragments are readily 

deposited on their bacterial surface (143). These intriguing observations suggest an 

inherent protective mechanism that is independent of complement inactivation. Indeed, a 
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surface amomc polysaccharide was implicated in this inherent resistance smce P. 

gingiva lis mutants lacking this structure become readily susceptible to complement

mediated lysis (143). Although this anionic polysaccharide may directly confer 

resistance, the possibility for an indirect effect may not formally be ruled out. In this 

context, certain pathogens (e.g., Helicobacter pylori and Escherichia coli) acqUIre 

resistance against complement lysis by expressing molecules that can bind CD59, a host 

regulatory protein which inhibits the terminal step of the membrane attack complex 

formation (88). 

It, therefore, appears that P. gingivalis may be usmg a number of different 

reinforcing mechanisms to ensure its survival in the presence of complement. In this 

regard, since the inhibitory mechanisms of P. gingivalis against complement activation 

are leaky (125), it makes sense that it has also developed inherent resistance against 

complement-dependent lysis. However, ifthe surface anionic polysaccharide is sufficient 

to provide inherent protection, a plausible question is why the pathogen has additionally 

evolved ways to suppress a system that cannot kill it. An interesting interpretation is that 

P. gingivalis may have evolved complement inactivation capacity not for its own 

protection, but for the benefit of other organisms occupying the same subgingival niche. 

This action may not be as altruistic as it seems; it may actually offer a survival advantage 

for P. gingivalis, as it depends on other periodontal bacteria for enhanced colonization 

and full expression of virulence (74) (78) (124). Since P. gingivalis is resistant to the 

lytic action of complement (125) (143), the ability of the complement system to directly 

offer host protection against this organism is seriously questioned. Nevertheless, it 

cannot be ruled out that complement activation may indirectly fight this pathogen through 
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the recruitment and activation of phagocytic cells. However, P. gingivalis may have 

evolved strategies to diminish or evade its destruction by phagocytes in the presence of 

complement. 

Evasion and subversion of TLRs 

Available evidence suggests that P. gingiva lis may have also evolved ways to 

evade or subvert the TLR system, which senses this organism primarily through TLR2, as 

shown in vitro and in vivo (11) (54). On the other hand, TLR4 appears to play little or no 

role in cell activation in response to this oral bacterium (11) (54). These observations 

appear curious given that P. gingivalis is a gram-negative organism which expresses a 

lipopolysaccharide. However, the organism elegantly utilizes specific lipid A 1- and 4'

phosphatases and a deacylase which in concert generate a tetra-acylated and 

dephosphorylated lipid A structure (14). This modification renders the 

lipopolysaccharide molecule biologically inert, thereby allowing P. gingivalis to evade 

TLR4 activation (14). At the same time, this modification confers protection against 

polymyxin B and perhaps other cationic anti-microbial peptides (14). Intriguingly, the 

presence of high concentrations of hemin (an environmental nutrient found in diseased 

sites) suppresses lipid A I-phosphatase activity and leads to the production of a mono

phosphorylated lipid A, which actively antagonizes TLR4 activation (14) (15). Thus, 

even though P. gingivalis may express other molecules with intrinsic TLR4 agonistic 

activity, TLR4 activation is likely suppressed in the context of the whole organism (Fig. 

3), as seen both in vitro and in vivo (11) (54). In this regard, P. gingivalis behaves like 

certain other, non-oral pathogens which have also opted to modify their surface structures 

so as to escape TLR4 recognition (5) (108) (141). 
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The above considerations may explain why TLR2, rather than TLR4, is the 

predominant TLR involved in P. gingivalis recognition. Induction of TLR2 signaling by 

P. gingivalis requires a signaling partner (TLRI or TLR6), takes place in membrane lipid 

rafts where the receptors are recruited ad hoc, and is facilitated by a non-signaling co

receptor (CDI4) which constitutively resides in lipid rafts (54). Although the host TLR2 

response may be potentially protective, P. gingivalis has developed ways to undermine 

the intended host response. Indeed, the pathogen was shown to manipulate the TLR2 

response by instigating a molecular crosstalk between TLR2 and the CXC-chemokine 

receptor 4 in macrophage lipid rafts (59). Specifically, the binding of P. gingivalis 

fimbriae to CXC-chemokine receptor 4 induces cAMP-dependent protein kinase A 

signaling, which in turn suppresses TLR2-dependent activation of nuclear factor-KB and 

induction of nitric oxide (Fig. 3) (59). The inhibition of production of this key 

antimicrobial molecule promotes the ability of P. gingiva lis to survive in vitro and in vivo 

(59). 

The impact of TLR2 signaling on the ability of P. gingivalis to cause 

experimental periodontitis was examined by two independent studies, which found that 

TLR2-deficient mice (but not TLR4-deficient or wild-type controls) are protected against 

periodontal bone loss (11) (42). These findings are consistent with the notion that TLR2 

signaling is manipulated by P. gingivalis in a way that promotes its virulence. However, 

an alternative or additional interpretation is that the observed enhanced bone loss in 

normal mice could be attributed to P. gingivalis induction of TLR2-mediated 

inflammatory osteoclastogenesis (154). 

16 



~ ~ c:::::=::=' c:== ~ ~ c:::.::::::, 
/? ~ "'y Nucleus~ 

(/ NF-KB . . ~II activation 

Figure 3. Evasion or subversion of Toll-like receptor (TLR) 

activation by Porphyromonas gingivalis. P. gingivalis can either evade 

or actively antagonize TLR4 activation via a modified lipid A structure 

of its lipopolysaccharide (14) (62). Although activation of TLR2 is not 

antagonized at the receptor level, P. gingivalis instigates a molecular 

crosstalk between the CXC-chemokine receptor 4 and TLR2. Unlike 

CD14, which facilitates TLR2 activation by the pathogen (56), CXCR4 

suppresses TLR2 signaling via cyclic AMP-dependent protein kinase A 

(PKA) signaling, which in turn inhibits the activation of nuclear factor-

kappaB (NF-KB) activation (59) (161). 
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Exploitation of crosstalk interactions between TLRs and complement 

TLR2 activation by P. gingivalis induces two distinct signaling cascades (57). 

One of the cascades leads to induction of pro-inflammatory and antimicrobial responses, 

and represents the pathway that is manipulated by P. gingivalis through exploitation of 

CXC-chemokine receptor 4. The other cascade represents a pro-adhesive pathway and 

involves a crosstalk between TLR2 and the complement system (57). Specifically, P. 

gingivalis induces TLR2 inside-out signaling which transactivates the adhesive capacity 

of complement receptor-3 (62) (Fig. 4). This crosstalk is made possible by the property 

of complement receptor-3 to cluster with TLRs in lipid rafts of P. gingivalis-stimulated 

cells (54). Once transactivated, however, complement receptor-3 becomes a target of 

subversive activity by P. gingivalis. 

Indeed, P. gingiva lis uses its fimbriae to bind complement receptor-3, which in 

turn mediates the uptake of this oral pathogen by macrophages (56). Intriguingly, this 

phagocytic mechanism does not promote the killing of P. gingivalis (158), possibly 

because complement receptor-3 is not linked to vigorous microbicidal mechanisms (135). 

In contrast, when P. gingivalis is phagocytosed by alternative receptors, i. e., when 

complement receptor-3 is blocked or genetically ablated, the intracellular killing of this 

pathogen is dramatically enhanced (158). 

The interaction of P. gingivalis with complement receptor-3 also activates the 

extracellular signal-regulated kinase 112, which in tum selectively inhibits mRNA 

expression of the p35 and p40 subunits ofinterleukin-12 (53) (Fig. 4). 
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Figure 4. Crosstalk pathways between Toll-like receptors and complement 

in P. gingivalis activated macrophages. TLR2 recognition of P. gingivalis, 

induces PI3K-dependent inside-out signaling which trans activates CR3, thereby 

inducing ERKI 12 signaling that downregulates the expression of messenger 

RNA for cytokines of the IL-12 family (53) (54). Moreover, P. gingivalis uses 

its gingipains to attack C5, consequentely releasing biologically active C5a that 

can activate PI3K and ERKI 12 through its receptor (C5aR), in turn suppressing 

critical transcription factors required for expression of cytokines of the IL-12 

family (15) (63) (124). Intriguingly, IL-12 inhibition though these mechanisms 

results in impaired immune clearance of P. gingiva/is in vivo (53), suggesting 

that the pathogen exploits TLR- complement crosstalk signaling to promote its 

virulence. 
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Interleukin-12 (IL-12) is a key cytokine involved in pathogen clearance through 

regulatory effects on the production of interferon-y, which is a potent activator of the 

macrophage microbicidal capacity (IS3). Consistent with the above, wild-type mice 

elicit lower levels of interleukin-12 and interferon-y and display impaired clearance of P. 

gingivalis systemic infection compared to mice that lack complement receptor-3 (S3). 

Similar results are seen after CR3 blockade with a specific antagonist that suppresses P. 

gingivalis induction of periodontal bone loss in mice (S3). In brief, there is compelling 

evidence that complement receptor-3 constitutes an Achilles' heel which confers host 

susceptibility to P. gingivalis infection. In this regard, it seems likely that P. gingivalis 

may have actually co-opted a natural anti-inflammatory mechanism to evade innate 

immunity. Specifically, complement receptor-3 is heavily committed to phagocytosis of 

iC3b-coated apoptotic cells, which are not normally recognized as danger (76) (10S). 

This precludes induction of a vigorous host response and, in fact, production of 

interleukin-12 is inhibited following phagocytosis of apoptotic cells by macrophages 

(76). 

Although P. gingivalis inhibits the complement cascade, curiously enough, the 

pathogen proactively generates one of the active complement fragments. Specifically, all 

three gingipains (HRgpA, RgpB, and Kgp) act in a CS convertase-like manner and 

generate biologically active CSa through limited degradation of CS, whereas the CSb 

remnant is functionally inert (12S) (161). When CS is oxidized by hydroxyl radicals (as 

may occur in the oxidative environment of the inflammatory response) the gingipains 

generate increased CSa biological activity (31). Furthermore, P. gingiva/is may 

indirectly generate functional CSa by exploiting the physiological crosstalk between the 
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coagulation and the complement systems, which activates the so-called extrinsic pathway 

(66) (Fig. 1). Indeed, HRgpA and RgpB activate pro-thrombin to form thrombin (68) 

which, in turn, generates biologically active C5a by acting as a C5 convertase (66) (Fig. 

1). Although C5a can potentially playa key role in host defense against infection (46), it 

seems highly unlikely that P. gingivalis uses its enzymes to generate C5a to contribute to 

its elimination. 

An intriguing question, therefore, is whether there is any selective pressure or 

advantage for P. gingivalis to specifically generate C5a, given that this chronically 

persisting pathogen overall inhibits the complement cascade. A possible scenario is that 

local generation of excessive levels of C5a could incapacitate the antimicrobial function 

of gingival crevicular neutrophils rendering them less threatening to P. gingivalis. This is 

because neutrophils become immunologically paralyzed in the presence of high 

concentrations (10-100 nM) of C5a and thereby fail to carry out functions such as 

chemotaxis, phagocytosis, and production of antimicrobial and inflammatory mediators 

(67) (160). Such immunological dysfunction has been seen both in vitro and in vivo and 

involves both human and rodent neutrophils (67) (132) (160). In fact, C5a-mediated 

inhibition of neutrophil killing of P. gingivalis does occur, both in vitro and in vivo (1. 

Krauss and G. Hajishengallis, unpublished data). However, the underlying mechanisms, 

whether involving immune paralysis or alteration of specific signaling pathways, are 

currently under investigation. In addition to its potential exploitation by P. gingivalis, 

C5a may amplify periodontal tissue damage through its ability to recruit and activate 

inflammatory cells. For example, enhanced production of reactive oxygen species by 

C5a-stimulated neutrophils (46) may contribute to oxidative periodontal tissue 
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destruction (12). On the other hand, this host response would not affect P. gingivalis, 

since it is resistant to killing by reactive oxygen species (55) (111). 

Even if the gingipain activity of P. gingiva lis is capable of increasing the 

microenviromental C5a concentrations to paralyzing levels for the neutrophils, this would 

not impinge on the function of macrophages, which can also be recruited to the gingival 

crevice or additionally interact with the pathogen in the periodontal connective tissue (28) 

(150). Indeed, macro phages are quite resistant to the deleterious effects of high C5a 

concentrations, because they express relatively modest levels of the C5a receptor relative 

to neutrophils (160). For instance, whereas the ability of neutrophils to induce tumor 

necrosis factor-a (and other innate responses) is inhibited in the presence of C5a at 2: 10 

nM, the macrophages display potentiated tumor necrosis factor-a responses under the 

same C5a concentrations (67) (132). 

Therefore, even at high levels, C5a does not exert a general immunosuppressive 

influence on macrophages. Strikingly, however, C5a can specifically downregulate 

cytokines of the interleukin-12 family. Indeed, C5a-induced signaling in macrophages 

interferes with TLR-induced expression ofmRNA for the interleukin-12 p35, interleukin-

12/interleukin-23 p40, and interleukin-23 p19 subunits (63) (85). These regulatory 

effects are possibly mediated through C5a-induced phosphatidylinositol-3 kinase and 

extracellular signal-regulated kinase 112 signaling, which in concert suppress critical 

transcription factors, the interferon regulatory factor-l and -8 (63) (Fig. 4). At the protein 

level, the production of interleukin-12 is inhibited both in vitro and in vivo, leading to 

suppression ofT-helper type 1 cell-mediated immunity (63) (165). Moreover, the ability 

of C5a to inhibit mRNA expression of both interleukin-23 subunits strongly suggests that 
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CSa can interfere with the capacity of this cytokine to support the development of the T

helper type 17 cell subset (9). The physiological significance of these CSa regulatory 

effects is likely to attenuate potential tissue damage mediated by T -helper type 1 and T

helper type 17 cells, as seen in various pathological inflammatory conditions (37) (9S) 

(138). However, undesirable outcomes may arise when CSa is not produced 

physiologically but through the uncontrolled action of microbial enzymes, such as the P. 

gingivalis gingipains. Since interleukin-12 is important for immune control of P. 

gingivalis (S3), it is possible that this pathogen may exploit the CSa-induced crosstalk 

with TLR2 for inhibiting IL-12-dependent immune clearance. Such evasion mechanism 

may be complementary, rather than redundant, since the interaction of P. gingivalis with 

complement receptor-3 causes partial inhibition ofinterleukin-12 production (about 60%) 

(S3). The notion that P. gingivalis hijacks CSa for its own benefit is additionally 

supported by observations that the intracellular survival of this pathogen in macrophages 

is promoted in the presence of CSa (1S7). 

Interestingly, unlike CSa, C3a is extensively degraded by P. gingivalis gingipains 

and does not retain biological activity (161). Whether this is beneficial for the pathogen 

is uncertain, but it should be noted that C3a exerts direct antimicrobial effects and readily 

kills both gram-negative and gram-positive bacteria such as E. coli, Pseudomonas 

aeruginosa, and Enterococcus faecalis (114). If C3a can kill P. gingivalis as well, then 

its gingipain-mediated inactivation would serve to protect P. gingivalis. 

In summary, it appears that P. gingiva lis does not have a purely defensive agenda 

in dealing with the complement system. In other words, the pathogen may not restrict its 

action to simply inhibiting the complement cascade, but rather may proactively employ 
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specific complement components (such as the complement receptor-3 and the C5a) for 

bidirectional crosstalk interactions with TLR2 that favor the pathogen (Fig. 4). 

Therefore, we hypothesized that P. gingivalis can modulate TLR2 signaling by co-opting 

C5a receptor to instigate a subversive crosstalk that promotes its adaptive fitness. We 

speculated this may involve blunting the killing efforts of recruited leukocytes, without 

causing a wholesale immunosuppression. Moreover, this pathogen-induced crosstalk 

may serve to amplify select aspects of the inflammatory response, thereby liberating 

essential peptide nutrients essential for growth without promoting the antimicrobial 

defenses of recruited leukocytes that would likely facilitate its destruction. 
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CHAPTER TWO: MATERIALS AND METHODS 

Materials and reagents 

Carboxy methyl cellulose (CMC) was purchase from MP Biomedicals, Solon, 

OH.SQ22536, H89, SB216367, 8-Br-cAMP, AMD3100, forskolin, L-NAME (N(G)

nitro-L-arginine methyl ester), D-NAME (N(G)-nitro-D-arginine methyl ester), and 

EGTA were purchased from Sigma-Aldrich. Chelelythrin, PKI 6-22, KT5823, and 

thapsigargin were obtained from Calbiochem. PD98059 was from Cell Signaling 

Technology. Mouse-specific monoclonal antibodies to TLR2 [clone 6C2] was from e

Bioscience, TLR5 [85B152.5] from Abcam, and C5aR (20170) from Cedarlane 

Laboratories or Hycult. Mouse rIFN-y was from the R&D Systems. Mouse rC5a was 

purchased from R&D Systems and rC3a from Cell Sciences. The cyclic hexapeptide 

AcF(OP(D)Cha WR) (acetylated phenylalanine-( ornithine-proline-(D) cyclohexylalanine

tryptophan-arginine), also known as PMX-53, is a specific and potent C5a receptor 

(CD88) antagonist, was synthesized in the laboratory of John D. Lambris, as previously 

described (35) (98). A8~71-73, also a generous gift of John D. Lambris, a dual antagonist 

of both C5aR and C5a-like receptor-2, was generated essentially as previously described 

(49). Specifically, the A8~71-73 sequence (49) was created by three cycles of mutagenesis 

of the original human C5a construct (47), using the QuickChange XL Site-Directed 

Mutagenesis Kit from Stratagene. The three pairs of complementary primers used for 

mutagenesis are as follows (forward sequences given): 
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I) 5' -GTTACGATGGAGCCGCCGTT AA TAATGATG-3', 

2) 5' - CCGTGCT AA TATCTCTTTTAAACGCATGCAA TTGGGAAGG-3', 

3) 5' -CTCTTTT AAACGCTCGTGAAAGCTT AA TTAGC-3', 

corresponding to mutations I) C27A, 2) H67F and D69R, and 3) M70S and i\(71-74), 

respectively. The protein was then expressed and purified as previously described (47). 

All reagents were used at optimal concentrations determined in preliminary or published 

studies by our laboratories (36) (47) (59) (113) (165). C5a and C3a were used at 

concentrations up to 50 nM and 100 nM, respectively, which are widely used for in vitro 

experiments (63) (165). Moreover, these concentrations are consistent with observations 

that under inflammatory conditions, C5a and C3a may reach serum levels as high as 100 

nM and 400 nM, respectively, although even higher levels may be generated at local sites 

of inflammation (149) (160). All reagents were used at optimal concentrations 

determined in preliminary or published studies by our laboratories (59) (94) (98). When 

appropriate, dimethyl sulfoxide (DMSO) was included in medium controls and its final 

concentration was ~ 0.2 %. 

Animals 

Both female BALB/c and C57BLl6 C5aR-deficient mice (with their respective 

wild-type controls) were used in these studies. The TLR2-deficient mice were originally 

C57BLl6 (The Jackson Laboratory) and we backcrossed them for nine generations onto a 

BALB/c genetic background prior to use in these studies. The C5aR-deficient mice were 
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originally obtained from Dr. Craig Gerard (Harvard Medical School) and are now housed 

at The Jackson Laboratory. All animal procedures were approved by the Institutional 

Animal Care and Use Committee and performed in compliance with established federal 

and state policies. 

Culturing of bacterial strains 

P. gingivalis ATCC 33277 and its isogenic KDP128 mutant, which is deficient in 

all three gingipain genes (rgpA, rgpB, and kgp) (45) (kindly provided by Dr. K. 

Nakayama, Nagasaki University, Japan), were grown anaerobically from frozen stocks on 

modified Gifu anaerobic medium-based blood agar plates for 5-6 days at 37°C, followed 

by anaerobic subculturing for 18-24 hours at 37°C in modified Gifu anaerobic medium 

broth (Nissui Pharmaceutical). 

Oral gavage model 

Oral infection of mice proceeded as previously described by Baker et al (8). In 

brief, Balb/c mice were provided antibiotic-supplemented drinking water (800 mg 

sulfamethoxazole and 400 mg trimethoprim per liter of water) for 10 days prior to 

experiment. Following a 3 day regimen of antibiotic-free water, mice were orally 

infected with a 109 suspension in 2% CMC in PBS of P. gingivalis, repeated every other 

day for a total of 5 inoculations. Six weeks following the final inoculation, total 

anaerobic counts of bacteria were enumerated from paper-point samples grown under 

anaerobic conditions on blood agar plates for 7 days. Moreover, periodontal bone loss 

was determined by subtracting the measured distance from the cemento-enamel junction 
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(CEJ) to the alveolar bone crest (ABC) of P. gingivalis-infected from the group of sham

infected mice. Results are expressed as mm change in bone loss. 

Subcutaneous chamber model 

lsofluorane anesthetized Balb/c mice were dually implanted with a surgical-grade 

titanium coil chamber. Following a 7 day healing period, P. gingivalis (109 CFU in 100 

III of PBS) was injected into the chambers of each mouse. Chamber exudates were 

harvested from mice at indicated time points and centrifuged at 1000 rpm for 5 minutes. 

Subsequently, recruited cells were phenotypically characterized by flow cytometry and 

supernatants were used to determine viable counts of P. gingivalis. 

Intracellular survival assay in murine macrophages 

Thioglycollate-elicited macrophages were isolated from the peritoneal cavity of 

wild-type or mice deficient in TLR2, TLR4, C3aR, or C5aR (The Jackson Laboratory) 

(54) (165), in compliance with established federal guidelines and institutional policies. 

The macrophages were cultured at 37°C and 5% CO2 in RPMl 1640 (Invitrogen) 

supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine, 100 units/ml penicillin 

G, 100 Ilg/ml streptomycin, and 0.05 mM 2-ME. None of the experimental treatments, 

including treatments with C5a up to 100 nM, affected cell viability (monitored by the 

CellTiter-Blue™ assay; Promega) compared to medium-only treatments. The viability of 

phagocytosed P. gingivalis was monitored by an antibiotic protection-based intracellular 

survival assay, as previously described (158). Briefly, mouse peritoneal macrophages 

were allowed to phagocytose P. gingivalis (MOl = 10: 1; 5 x 106 bacteria and 5 x 105 

cells) for 30 min at 37°C. This was followed by washing to remove extracellular non-
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adherent bacteria and I-hour treatment with antibiotics (300 Ilg/ml gentamicin and 200 

Ilg/ml metronidazole) to eliminate residual or extracellular adherent bacteria. The 

macrophages were subsequently cultured overnight (for a total of 24 hours) or for 48 

hours. Immediately after, the macrophages were washed and lysed in sterile distilled 

water and viable counts of internalized P. gingivalis were determined by plating serial 

dilutions of macrophage lysates on blood agar plates subjected to anaerobic culture (158). 

Cell signaling and activation assays 

Induction of nitric oxide production was assessed by measuring the amount of 

N02- (stable metabolite of nitric oxide) in stimulated culture supernatants using a Griess 

reaction-based assay kit (R&D Systems), as previously performed (59). Levels of cAMP 

in activated cell extracts were measured using a cAMP enzyme immunoassay kit 

(Cayman Chemical) (94). PKA activity in lysates of activated cells was determined using 

the ProFluor™ PKA assay, according to the instructions of the manufacturer (Promega) 

(59). Phosphorylation of GSK3p on Ser9 and total GSK3p were monitored using 

F ACETM GSK3p ELISA kits (Active Motif). 

Intraperitoneal infection (i.p.) 

Upon i.p. infection of mice with P. gingivalis (5 x 107 CFU), peritoneal lavage 

was performed 24 hours post-infection and the peritoneal fluid was used to enumerate 

recovered CFU (following anaerobic growth on blood agar plates) and measure 

production of N02- (59). 
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Quantitative real-time PCR 

Gene expression in resting or activated mouse macrophages was quantified using 

quantitative real-time PCR. Briefly, RNA was extracted from cell lysates using the 

PerfectPure RNA cell kit (5 Prime, Fisher) and quantified by spectrometry at 260 and 

280 nm. The RNA was reverse-transcribed using the High-Capacity cDNA Archive kit 

(Applied Biosystems) and quantitative real-time PCR with cDNA was performed using 

the ABI 7500 Fast System, according to the manufacturer's protocol (Applied 

Biosystems). TaqMan probes, sense primers, and antisense primers for expression of a 

house-keeping gene (GAPDH) or iNOS) were purchased from Applied Biosystems. 

Confocal microscopy 

To examine co-localization of P. gingivalis with C5aR and TLR2, mouse 

macrophages were grown on chamber slides and exposed to FITC-Iabeled P. gingivalis 

for 10 min. The cells were then fixed, permeabilized, stained with Texas Red-labeled 

anti-C5aR plus allophycocyanin-Iabeled anti-TLR2, and mounted with coverslips for 

imaging on an Olympus FV500 confocal microscope (158). 

Fluorescence resonance energy transfer (FRET) 

Upon stimulation for 10 min at 37°C with P. gingivalis, mouse macrophages were 

labeled with a mixture of Cy3-conjugated (donor) and Cy5-conjugated (acceptor) 

antibodies. In other experiments shown in Fig. 13A, FITC-Iabeled P. gingivalis was used 

as donor and TRITC-Iabeled receptors served as acceptors. The cells were washed and 

fixed, and energy transfer between various donor-acceptor pairs was calculated from the 

increase in donor fluorescence after acceptor photobleaching (54) (152). The maximum 
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(max) and minimum (min) energy transfer efficiencies in the experimental system were 

determined in control experiments as the energy transfer between two different epitopes 

on the same molecule or between molecules that do not engage in heterotypic 

associations, and their values are denoted by dashed lines in Fig. 13A. The conjugation 

of antibodies to Cy3 or Cy5 was performed using kits from Amersham Biosciences 

Statistical analysis 

Data were evaluated by analysis of variance and the Dunnett multiple-comparison 

test using the InStat program (GraphPad Software, San Diego, CA). Where appropriate 

(comparison of two groups only), two-tailed ttests were performed. P < 0.05 was taken 

as the level of significance. All experiments were performed at least twice for 

verification. 
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CHAPTER THREE: MOUSE MODELS OF PERIODONTAL HOST -PATHOGEN 

INTERACTIONS AND INFLAMMATION 

Introduction 

Periodontitis is a prevalent chronic inflammatory disease that affects the tooth

supporting tissues and can exert a systemic impact on health (73) (123) (151). A group 

of tooth-associated subgingival anaerobic bacteria is strongly associated with 

periodontitis (146), however, it is the host inflammatory response to uncontrolled 

bacterial challenge that primarily mediates periodontal tissue destruction (37) (43) (72). 

Although no single animal model can faithfully reproduce all aspects of periodontitis (or 

any other disease), the power and significance of animal models involves their capacity to 

test specific hypotheses involving distinct aspects of periodontal pathogenesis (44). 

Knowledge gathered ... from different but·· complementary models can be synthesized 

appropriately to obtain unique insights into the mechanisms of periodontitis. Despite 

their limitations, animal models are absolutely necessary for determining cause-and

effect relationships and for assessing the potential of novel therapeutic compounds. Such 

studies cannot be adequately served by in vitro experiments. Moreover, causal 

mechanistic relationships cannot normally be addressed in human studies which are often 

correlative in nature (44). It should also be noted that clinical trials can be initiated only 
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after safety and efficacy has been demonstrated in animal models. As models of human 

disease, mice provide unique advantages beyond their relatively low cost and ease of 

handling. These include extensive background information on their immune system and 

a wide range of immunologic and cellular/molecular reagents. Moreover, the availability 

of a host of transgenic mouse lines can be used to study the impact of specific 

immunoregulatory genes. 

Inflammatory periodontal bone loss: the oral gavage model 

A mouse periodontitis model was developed by Baker and colleagues (6) (7) (8) 

('Baker' or 'Oral gavage' model) and is now widely used with various modifications. 

Reproducible gingival inflammation and alveolar bone loss can be induced in this model 

following oral gavage with Porphyromonas gingivalis (7) (158) or other periodontal 

pathogens, such as Aggregatibacter actinomycetemcomitans (38) (115), Tannerella 

forsythia (140) or Porphyromonas gulae, an animal periopathogen equivalent to human 

p. gingivalis (60). The model can be further modified to involve a co-infection, e.g., P. 

gingivalis and Fusobacterium nucleatum (78) (124). Additionally, the oral gavage model 

of periodontitis has been used for rapid and cost-effective identification of pathogenic 

mechanisms and potential therapeutics (7) (38) (42) (53) (86) (115). Specifically, these 

mouse studies have helped determine the role of defined innate receptors or cytokines in 

periodontal tissue destruction, substantiate a genetic basis for host susceptibility or 

resistance to periodontal disease, identify virulence factors and evasion strategies of 

periodontal pathogens, and offer potential mechanistic links between periodontal and 

systemic diseases (44). 
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Figure 5. Oral gavage model of P. gingivalis-induced mouse 

periodontitis. (A) Timeline of the experimental protocol. (B) Oral 

inoculation of mice with P. gingival is using a ball-ended feeding 

needle. The mouse is restrained by grasping the skin over the 

shoulders and holding the tail. 
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Host cell-periodontal bacteria interactions: the subcutaneous chamber model 

A widely used mouse model to study host-pathogen interactions is the so-called 

chamber model, which was introduced to periodontal research by Genco and colleagues 

(39). The chamber comprises a coil-shaped titanium wire that is surgically implanted 

subcutaneously into the mid-dorsal region of the mouse. As the exterior encapsulates 

with connective tissue during the healing phase of implantation, the interior lumen 

becomes increasingly hypoxic (44), creating an environment reminiscent of the 

periodontal pocket. Oral bacteria can be injected into the chamber lumen and their 

interactions with recruited inflammatory cells can be assessed accurately and 

quantitatively (11) (39) (111). A major advantage of the chamber model is that some of 

these parameters, especially monitoring viable species-specific bacterial counts, are 

difficult to assess quantitatively in mucosal infection models. Additionally, inflammatory 

responses of recruited leukocytes can also be evaluated. Moreover, long-term versions of 

the chamber model can be used to monitor respective leukocyte populations recruited into 

the chamber or to study bacterial interactions over time. This model is thus appropriate 

for investigating interactions of periodontal bacteria with recruited inflammatory cells 

under conditions that faithfully mimic the subgingival environment. 
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Figure 6. Subcutaneous chamber model. (A) Subcutaneous implantation of 

surgical grade titanium-coil chamber. (B) Intrachamber injection of P. gingivalis 

(109
) following 7 day healing period. Aspiration (C) of chamber fluid, 

immediately following desired inoculation period, and collection (D) for further 

analysis. 
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Results 

P. gingivalis augments the population of indigenous microflora in the oral gavage 

model 

To ascertain the effects of oral challenge with P. gingivalis (Pg) on the recovery 

of indigenous anaerobic bacteria residing within the oral cavity, total colony forming

units (CFUs) were enumerated and contrasted to CFUs recovered from sham-infected 

mice (Fig. 7B). Our results clearly demonstrate that the presence of P. gingivalis (Pg) 

significantly augments the population size of resident oral anaerobic bacteria recovered 

by paper-point sampling from the oral cavity compared to sham-infected control mice. 

Indeed, the co-presence of P. gingivalis (Pg) within the periodontium potentiated the 

overall number of indigenous oral microflora by two orders of magnitude. 

Neutrophils are impaired in their ability to promote the clearance of P. gingivalis in 

the subcutaneous chamber model 

Using the subcutaneous chamber model, we monitored inflammatory cell 

recruitment and investigated the fate of P. gingivalis within an in vivo setting that closely 

mimics the environment of the periodontal crevice. We observed that the overwhelming 

majority of cells recruited in response to intrachamber challenge with P. gingivalis were 

neutrophils (>97% at 24h post-infection) (Fig. SB). However, we found that despite a 

massive influx into the chamber, neutrophils were impaired in their ability to adequately 

clear the infection, observed at either early or late time points (Fig. SA). 
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Figure 7. Recovery of total anaerobic bacteria from oral gavage model. 

(A) Pre-determined buccal sites in the right maxilla (R1-R7) for measuring 

CEl-ABC distances. (B) Oral infection with P. gingivalis (Pg) causes major 

increases in the numbers of the indigenous oral anaerobic bacteria (p < 0.01 vs. 

sham-infected mice) recovered by paper-point sampling. 
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Figure 8. Analysis of chamber exudates from P. gingiva/is-chaUenged 

subcutaneous chamber model. (A) Recovery of viable P. gingivalis 

colony-forming units (CFUs) at 2 and 24 hours post-intrachamber 

challenge. (B) Phenotypic characterization [CD3 (green), F4/80 (yellow) 

and Ly6G (red)] of recruited leukocytes 24 hours post-intrachamber 

infection with P. gingivalis. 

39 



DISCUSSION 

The bimodal nature of periodontal disease requires an experimental system that 

can equally address both host and bacterial factors (mutually inclusive contributors) that 

promote periodontal tissue destruction. Due to its experimental versatility, the mouse 

oral gavage model, an in vivo experimental system (7), is a time-honored and faithful 

rendition of periodontal disease. For example, through the use of genetically altered 

mice, the oral gavage model can be employed to monitor changes in gene expression 

within the gingival tissues as well as quantify appreciable bone loss in the presence of 

keynote periodontal pathogens, such as Porphyromonas gingivalis (7) (8) (44) (58). In 

addition to examining host determinants that contribute to periodontal disease, microbial 

counts can also be enumerated. Intriguingly, through the use of this in vivo model, we 

demonstrate that the presence of P. gingivalis can stimulate a substantial rise in the 

overall numbers of indigenous oral anaerobic bacteria residing within the oral cavity (Fig. 

7B). These findings suggest that alterations in the oral microbial profile correspond with 

the prevalence of P. gingivalis, underscoring its importance for potentially promoting 

survival and virulence of the entire microbial community (21) (22) (49) (82). 

The dichotomy of both protective and destructive immunity in the periodontium 

highlights the critical importance of discerning the precise roles leukocytes play with 

regards to periodontal disease. Although well-accepted and heavily utilized, the oral 

gavage model offers a rather panoramic readout of mucosal responses to infection. 

However, the subcutaneous chamber model provides an alternative in vivo model that can 

be utilized to determine specific host and bacterial factors driving both protective and 

destructive aspects of periodontal disease. Our studies reveal that in response to 

40 



challenge with P. gingivalis, the lumen of the subcutaneous chamber becomes 

predominated almost exclusively by neutrophils (Fig. 8B), similar to an environment 

encountered within the gingival crevice, where 2:95% of total leukocytes are indeed 

neutrophils (28). Strikingly, P. gingivalis can survive and persist within the chamber 

although high numbers of neutrophils are chemoattracted there (Fig. 8A). These finding 

suggest that neutrophils may not be particularly adept at clearing P. gingivalis from the 

gingival crevice and may, in fact, playa destructive rather than protective role in 

periodontitis. 

In general, the strength of the chamber model involves the whole-animal aspect 

for accurately quantifiable host responses or microbiological parameters (inflammatory 

cell recruitment, cytokine responses, bacterial clearance or persistence, and so on) (11) 

(39) (44). Since the significance of animal models involves their capacity to test defined 

concepts or hypotheses, rather than their fidelity to all aspects of a given disease (44), the 

chamber model is suitable to determine how specific host response genes or putative 

virulence factors shape the outcome of host interactions with periodontal bacteria (28) 

(111). Therefore, the chamber model can complement the oral gavage model for a more 

complete and nuanced understanding ofthe periodontal host-pathogen interplay. 
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CHAPTER FOUR: MICROBIAL HIJACKING OF COMPLEMENT -TOLL

LIKE RECEPTOR CROSSTALK 

Introduction 

Although traditionally perceived as an antimicrobial enzyme system in serum, 

complement is now recognized as a central component of host defense impacting both 

innate and adaptive immunity (99). More recently, complement was suggested to 

crosstalk with another major innate defense system, the Toll-like receptors (TLRs), to 

apparently coordinate the host response to infection (52) (63). Not surprisingly, given its 

importance in fighting pathogens, complement constitutes a key target of immune 

evasion by microbes which cause persisting infections (52). Here we describe a novel 

strategy of immune subversion, involving microbial exploitation of the fifth complement 

component (C5) for corrupting TLR immunity via a hitherto unknown mechanism of 

complement-TLR crosstalk. 

The pathogen involved in these subversive interactions, Porphyromonas 

gingivalis, is a gram-negative anaerobic bacterium. This organism is strongly associated 

with periodontitis, a highly prevalent oral chronic inflammatory disease, and is moreover 

implicated in systemic conditions such as atherosclerosis and aspiration pneumonia (10). 

Although P. gingivalis inhibits the overall complement cascade regardless of the 

initiation pathway involved, curiously enough, this pathogen selectively generates 

biologically active C5a (69) (116). C5a generation by P. gingivalis is mediated by its 
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Arg-specific cysteine proteinases (HRgpA and RgpB gingipains) which act in a C5 

convertase-like manner (69) (116). Interestingly, upon release ofC5a from C5, the C5b 

remnant is proteolytically destroyed by P. gingivalis (6) to apparently prevent activation 

of the terminal complement pathway, which leads to the formation of the membrane 

attack complex (99). Since C5a is a powerful chemoattractant and activator of 

phagocytes (88), it seems counterproductive for a pathogen to actively contribute to C5a 

generation. An intriguing question, therefore, is whether there is any survival advantage 

for P. gingivalis to specifically generate C5a in its periodontal niche, where complement 

proteins are abundantly present at up to 70% of their concentration in serum (116). 

Below we present evidence that P. gingivalis paradoxically employs the pro

inflammatory C5a for targeted immune suppression of macrophages through a novel 

crosstalk mechanism between the C5a receptor (C5aR) and TLR2, the predominant TLR 

utilized by this organism in vitro and in vivo (123) (137). This is the first report for a 

pathogen capable of proactively instigating and exploiting crosstalk signaling between 

complement and TLRs, rather than undermining either system independently as 

previously shown for a number of other microbes (52) (161). 

Results 

C5a and subversion of macrophage function 

We were prompted to investigate whether C5a signaling is advantageous to P. 

gingivalis by earlier observations that its enzymatic activity selectively generates 

functional C5a, despite overall inhibiting the complement cascade (69) (116). We first 

examined whether C5a influences the macrophage intracellular killing of P. gingivalis. 
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Strikingly, the ability of this pathogen to survive intracellularly in mouse macrophages 

was significantly promoted by C5a, but not by the related anaphylatoxin C3a (Fig.9, A 

and B). This unexpected pro-microbial effect of C5a was also observed in interferon 

(IFN)-y-primed macrophages (Fig. 9, C and D). The elevated viable cell counts of P. 

gingivalis in C5a-treated macrophages could not be attributed to possible differences in 

the initial bacterial loads, since P. gingivalis phagocytosis was not significantly affected 

by the absence or presence ofC5a or C3a (data not shown). 

We next investigated the mechanism(s) underlying C5a-mediated inhibition of the 

macrophage intracellular killing capacity. In this regard, we hypothesized that the 

combined action of C5a and P. gingivalis on macrophages may induce 

immunosuppressive signaling. We first used real-time quantitative PCR to determine 

whether C5a upregulates the expression of negative regulators of TLR signaling in P. 

gingivalis-stimulated macrophages. Although the bacterium alone upregulated the 

expression of some of the investigated regulators, including the suppressor of cytokine 

signaling-I, the interleukin-I receptor-associated kinase M, and the ubiquitin-editing 

enzyme A20, no synergistic or additive effects were seen in the concomitant presence of 

P. gingiva/is and C5a (data not shown). Therefore, these regulatory molecules are not 

likely involved in C5a-mediated suppression of macrophage killing of P. gingivalis. 

Moreover, although induction of cAMP can induce immunosuppressive signaling (12), 

C5a by itself failed to induce a cAMP response in macrophages (Fig. 9E). Strikingly, 

however, C5a synergized with P. gingiva lis resulting in >3-fold elevation of the 

intracellular cAMP levels relative to P. gingivalis stimulation alone (Fig. 9E). The 
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synergy was observed as early as 10 min after cell stimulation, peaked at 1 hour, but 

significantly elevated cAMP levels were sustained for at least 24 hours (Fig. 9E). 

This upregulatory effect of C5a was dose-dependent (data not shown) and was 

totally abrogated by a C5aR antagonist (C5aRA), the cyclic hexapeptide 

AcF(OP(D)Cha WR) (Fig. 9F), indicating that C5a acted through the classic C5aR 

(CD88), rather than the alternative C5a-like receptor 2 (C5L2). 

Given that P. gingivalis is exquisitely resistant to killing by the oxidative burst 

(160), we investigated whether C5a interferes with induction of nitric oxide as a possible 

mechanism for its pro-microbial effect. The underlying rationale was that P. gingivalis is 

sensitive to nitric oxide-mediated killing (11) (54). Indeed, C5a significantly inhibited, 

via a C5aR-dependent mechanism, the production of nitric oxide in P. gingivalis

stimulated macrophages, even in cells primed with IFN-y (Fig. 9G). The C5aR 

specificity of the C5a-driven augmentation of cAMP and suppression of nitric oxide in P. 

gingivalis-challenged macrophages was confirmed by lack of these effects in C5aR

deficient (C5ar-I
-) macrophages (Fig. 9, H and I, respectively). In toto, our findings 

suggest that C5aR activation by C5a results in suppression of P. gingivalis intracellular 

killing associated with elevation of cAMP and reduction of nitric oxide. 
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Figure 9. Immunosubversive effects of C5a on P. gingiva/is-challenged 

macrophages. Untreated (A, B) or IFN-y primed (C, D) macrophages were 

incubated with P. gingivalis in the presence or absence of C3a (200 nM) or C5a 

(50 nM). Colony counts of internalized bacteria were enumerated at 24 (A, C) or 

48 hours (B, D) post-infection (E) P. gingivalis-challenged macrophages, in the 

absence or presence of C5a, were assayed for intracellular ~AMP production for 

the times indicated. (F) Similar experiment as in (E), involving 1 hour of 

incubation and the use of a specific C5a receptor antagonist (C5aRA; 1 /lM). (G) 

Unprimed or IFN-y-primed macrophages were assayed for N02- production after 

incubation with or without P. gingivalis, C5a, or C5aRA. Induction of cAMP (H) 

and N02- (I) production with macrophages from wild-type or C5aR-deficient 

(e5ar -1- ) mice. Data are means ± SD (n = 3) from typical experiments performed 

three (A-D, F and G) or two (E, H, and I) times yielding consistent results. *p < 

0.05 and **p <0.01 compared to medium only treatments . • p < 0.01 in C5a + Pg 

compared to Pg alone. Inverted triangles indicate significant (P<O.Ol) reversal of 

C5a effects by C5aRA or C5aR deficiency. 
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C5a immunosubversive effects are strictly dependent on cAMP-PKA signaling 

We investigated whether the C5a-mediated inhibition of nitric oxide production 

depends upon the ability of C5a to stimulate synergistic elevation of cAMP. Indeed, the 

inhibitory C5a effect on nitric oxide was reversed in macrophages pretreated with 

inhibitors of cAMP synthesis (SQ22536) or of PKA (H89 and PKI 6-22) but not of 

irrelevant kinases (chelerythrin or KT5823) (Fig. lOA), indicating that the C5a effect is 

mediated by cAMP-dependent PKA signaling. Importantly, the upregulation of nitric 

oxide levels by inhibitors of cAMP or of PKA was linked to significantly reduced 

intracellular survival of P. gingivalis in those same cells (Fig. lOB). Moreover, 

macrophage pretreatment with C5aRA counteracted the protective effect of C5a on P. 

gingivalis intracellular viability, whereas L-NAME (nitric oxide synthesis inhibitor) 

mimicked C5a and overrode the C5aRA effect (Fig. lOC). In contrast, D-NAME, an 

inactive enantiomer control, had no effect in that regard (Fig. IOC). Interestingly, the 

ability of inhibitors of cAMP or of PKA to reverse the immunosuppressive C5a effect 

progressively declined with increasing delay of their addition to the culture system (Fig. 

IOD). Therefore, P. gingivalis needs to immediately activate cAMP-dependent PKA 

signaling to suppress the macrophage killing capacity, consistent with the requirement for 

early availability of C5a in order to disable P. gingivalis-challenged macrophages. 
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Figure 10. C5a-mediated inhibition of nitric oxide production and promotion 

of P. gingivalis survival is cAMP and PKA dependent. (A, B) Mouse 

macrophages were pretreated or not with SQ22536 (cAMP synthesis inhibitor), 

H89 (PKA inhibitor), chelerythrin (protein kinase C inhibitor), PKI 6-22 (peptide 

inhibitor ofPKA), or KT5823 (peptide inhibitor of protein kinase G), and then 

infected with P. gingivalis with or without C5a. (C) Macrophages were pretreated 

with L-NAME (or D-NAME), C5aRA, or both and then infected with P. gingivalis 

with or without C5a. (D) Macrophages were incubated with P. gingivalis and C5a 

in the absence or presence of SQ22536 or PKI 6-22, added before P. gingivalis 

and C5a ("0 time delay") or with increasing delay times, as indicated.N02-

production (A) and viable counts of internalized bacteria (B-D) were determined at 

24 hours after infection. In (D), the dashed line indicates P. gingivalis CFUs in the 

absence of inhibitors [13.7 ± 2.7 (x 104
) CFUs]. Results are means ±SD (n= 3) 

from typical experiments performed at least twice with consistent results. *p < 

0.05 and **p < 0.01 compared to corresponding controls .• p < 0.01 in C5a + Pg 

with inhibitor or antagonist compared to C5a + Pg only. In (C), the inverted 

triangle shows significant (P < 0.01) reversal of the C5aRA effect. 
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In vivo exploitation of C5aR signaling for inhibition of nitric oxide and promotion of 

microbial survival 

To determine if C5aR signaling promotes P. gingivalis virulence also in vivo, we 

investigated the pathogen's ability to survive in mice after intraperitoneal infection, in the 

absence or presence of C5aRA. At 24 hours post-infection, the peritoneal lavage fluid 

from C5aRA-treated mice contained significantly lower P. gingiva/is CFU compared to 

control mice (>95% reduction; Fig. IIA). Consistent with this, C5ar-l
- mice were 

superior to wild-type controls in controlling the P. gingivalis infection (Fig. IIA). The 

wild-type control mice were additionally found to be bacteremic for P. gingivalis (4 out 

of 5 mice in this group had positive blood cultures 24 hours post-infection), whereas no 

bacteremia could be detected in C5ar-l
- or C5aRA-treated wild-type mice, further 

indicating that C5aR signaling promotes P. gingivalis virulence. Additional support that 

the reduced peritoneal bacterial burden in the absence of C5aR signaling reflects 

increased P. gingiva lis killing (rather than P. gingivalis escaping and taking up residence 

in internal organs) was obtained by lack of P. gingiva/is CFU detection in homogenates 

of several organs examined (spleen, kidney, liver, and lungs) from either C5ar-l
- or wild

type mice. The ability of C5aRA-treated mice for enhanced clearance of P. gingivalis 

correlated with elevated nitric oxide production (relative to control mice), whereas L

NAME counteracted both effects (Fig. 11, B and C). Therefore, as shown in vitro, the in 

vivo exploitation of C5aR signaling by P. gingivalis for enhanced survival involves a 

nitric oxide-dependent mechanism. 
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Figure 11. P. gingivalis exploits C5aR signaling to inhibit nitric oxide 

production and promote its survival in vivo. (A) Wild-type (WT) mice were 

intraperitoneally pre-treated with C5aRA (1 mg per kilogram body weight) or 

phosphate-buffered saline (PBS), followed by intraperitoneal infection of these 

mice, as well as mice deficient in C5aR (C5ar -1-), with P. gingivalis (5 x 107 

CFU). Wild-type mice were intraperitoneally pre-treated or not with C5aRA, 

with or without L-NAME or D-NAME (0.1 ml of 12.5 mM solution, 

corresponding to 0.34 mg per mouse), followed by intraperitoneal infection with 

P. gingivalis (B and C). Peritoneal fluid was harvested 24 hours after infection 

and used to determine viable P. gingivalis CFU (A and C) and N02- production 

(B). Data are from typical experiments performed twice yielding consistent 

findings and represent means ± SD (n = 5 mice) or are shown for each individual 

mouse with horizontal lines denoting mean values. *p < 0.01 compared to 

controls. The inverted triangles show significant (P < 0.01) reversal of the 

C5aRA effects. 
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Synergistic activation of the cAMP-PKA pathway requires C5aR-TLR2 crosstalk 

A systematic analysis of crosstalk in intracellular signaling pathways has revealed 

that receptor-mediated elevation of intracellular Ca2+ may potentiate cAMP induction by 

appropriate stimuli (36). If the synergistic effect of C5a on cAMP induction (Fig. 9E) 

depends upon its Ci+-mobilizing activity, then this synergy should be inhibited by 

thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ -ATPase which blocks the 

C5a-induced intracellular Ca2+ response (121). Indeed, macrophage pretreatment with 

thapsigargin abrogated the synergistic C5a effect on P. gingivalis-induced cAMP, 

whereas EGTA, which chelates extracellular Ca2+, had a relatively minimal and 

statistically insignificant effect (Fig. 12A). Significant reversal of the C5a effect on 

cAMP induction was also seen in cells pretreated with pertussis toxin (Fig. 12A), 

suggesting GUj-coupled C5aR signaling (49). 

In the absence of C5a, the ability of P. gingivalis to induce cAMP depends on its 

interaction with the CXC-chemokine receptor 4 (CXCR4) (11). We thus initially 

speculated that the synergistic C5a effect on cAMP induction could involve a crosstalk 

between C5aR and CXCR4. Although CXCR4 blockade by AMD3100 (at 1 ~g/ml 

which completely inhibits the CXCR4-P. gingivalis interaction (11)) modestly attenuated 

the synergistic C5a effect on cAMP production, the synergism was still profoundly 

manifested (>6-fold difference between AMD+C5a+Pg vs. AMD+Pg; Fig. 12B). 

Moreover, P. gingivalis failed to elevate intracellular cAMP in CXCR4-transfected CHO

Kl cells, although it induced cAMP production in cells co-transfected with CXCR4 and 

TLR2 (data not shown). Therefore, CXCR4 is not directly involved in cAMP induction 

but cooperates in that regard with TLR2, which on its own induces a rather weak cAMP 
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response (data not shown). We next showed that the synergistic C5a effect on cAMP 

induction actually involves a crosstalk with TLR2. 

Indeed, the ability of C5a to synergistically induce cAMP and activate PKA in P. 

gingivalis-stimulated wild-type macrophages was utterly absent in similarly stimulated 

Tlr2-1
- macrophages, which displayed only background activity levels (Fig. 12, C and D). 

However, the inherent capacity of Tlr2-1
- macrophages to elevate intracellular cAMP and 

activate PKA was confirmed by including a forskolin control (direct adenylate cyclase 

activator) (Fig. 12, C and D). This novel concept of C5aR-TLR2 crosstalk for synergistic 

cAMP-dependent PKA activation is consistent with additional findings from an in vivo 

experiment. Indeed, the PKA activity detected in freshly explanted peritoneal 

macrophages from P. gingivalis-infected mice was significantly reduced by TLR2 or 

C5aR deficiency, but not by TLR4 or C3aR deficiency, relative to cells from wild-type 

mice (Fig. 12E). 

We also showed that another synergistic interaction downstream of this receptor 

crosstalk involved PKA-dependent phosphorylation of glycogen synthase kinase-3~ 

(GSK3~) on Ser9 (Fig. 12F), an event that inactivates this kinase which would otherwise 

positively regulate cell activation (47). Indeed, although C5a or P. gingivalis by 

themselves only slightly increased Ser9-phosphorylation of GSK3~, their combination 

displayed a synergistic effect which was inhibited by PKI 6-22 (but not by PD98059 

control, an inhibitor of mitogen-activated protein kinase kinase) (Fig. 12F). Importantly, 

the GSK3~ inhibitor SB216763 mimicked the inhibitory C5a effect on P. gingivalis

induced iNOS expression and nitric oxide production, as did 8-Br-cAMP (PKA agonist; 

52 



positive control) (Fig. 120). Thus, OSK3~ appears to regulate iNOS and nitric oxide 

downstream of PKA in C5a plus P. gingivalis-challenged macrophages. 

The C5aR-TLR2 crosstalk is also consistent with confocal microscopy findings 

revealing for the first time co-localization of the two receptors in P. gingivalis-stimulated 

macrophages (Fig. 13B), and with fluorescence resonance energy transfer (FRET) 

experiments indicating that C5aR, TLR2, and P. gingivalis come into molecular 

proximity (Fig. 13A). Indeed, FRET analysis revealed significant energy transfer 

between Cy3-labeled C5aR and Cy5-labeled TLR2 in P. gingivalis-stimulated but not 

resting macrophages (Fig. 13A). No significant energy transfer was detected between 

Cy3-labeled C5aR and Cy5-labeled TLR5 or MHC Class I (controls) under the same 

conditions (Fig. 13A). Moreover, significant energy transfer was observed between 

FITC-Iabeled P. gingivalis and TRITC-Iabeled C5aR or TLR2 (but not TLR5 or MHC 

Class I) (Fig. 13A). However, unlike TLR2 which can directly be engaged by P. 

gingivalis (59) (137), C5aR appeared to associate indirectly with P. gingivalis in a TLR2-

dependent way; indeed, the P. gingivalis-C5aR FRET association was abrogated in TlrTI

macrophages (Fig. 13A). Taken together, the findings firmly establish a crosstalk 

between C5aR and TLR2 for synergistic induction of cAMP signaling. 

FRET analysis further revealed that in P. gingivalis-challenged macrophages, 

C5aR also associates with CXCR4 (Fig. 13A), suggesting co-association of all three 

receptors (CXCR4, TLR2, C5aR). These interactions likely occur in lipid rafts since all 

three receptors (but not TLR5 or MHC Class I) come within FRET proximity with an 

established lipid raft marker (OM1 ganglioside) in P. gingivalis-stimulated macrophages, 

unless the rafts are disrupted by methyl-~-cyc1odextrin (data not shown). Although the 
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C5aR-TLR2 crosstalk can proceed independently of CXCR4 and potently upregulates 

cAMP (Fig. 12B), maximal cAMP induction requires cooperation of all three receptors 

(Fig. 14). 

54 



Figure 12. Synergistic activation of the cAMP-PKA pathway requires C5aR-

TLR2 crosstalk. (A-D) Macrophages pre-treated with either thapsigargin (TG), 

EGTA, pertussis toxin (PTX) (A) or AMD3100 (B-D) were stimulated with P. 

gingivalis with or without C5a and assayed for cAMP production (A-C) or PKA 

activity (D) with or without PKI-6-22 (PKA inhibitor) and an irrelevant kinase 

inhibitor (KT5823). (E) PKA activities from freshly explanted peritoneal 

macro phages were determined from P. gingivalis-infected mice. (F) P. gingivalis-

challenged macrophages, pretreated with PKI-6-22 or PD98059, were assayed for 

GSK3b Ser9-phosphorylation and total GSK3b, in the absence or presence of C5a. 

(G) Macrophages stimulated with P. gingivalis with or without C5a, SB216763, or 8-

Br-cAMP were assayed for iNOS (4 hours) or N02- (24 hours). Data are means ± SD. 

*p < 0.05; **p < 0.01 between the indicated groups or compared to controls (E). 
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Figure 13. Lipid raft recruitment and co-Iocalizaion of C5R and TLR2 

in macrophages challenged with P. gingivalis. (A) FRET between the 

indicated donors and acceptors measured from the increase in donor (Cy3 or 

FITC) fluorescence after acceptor (Cy5 or TRITC) photobleaching. (B) 

Confocal co-localization of P. gingivalis (green), C5aR (red), and TLR2 

(blue). Bottom right, merged image. 
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Figure 14. TLR2 and C5aR signaling synergize to subvert macrophage 

killing of P. gingivalis in a PKA-dependent fashion. P. gingivalis induces 

a weak TLR2-dependent induction of cAMP production (left), whereas 

CXCR4 or C5aR signaling alone fails to do so (middle). However, P. 

gingivalis-induced TLR2 signaling with concomitant activation of C5aR 

and, to a lesser extent, CXCR4 synergistically enhances the 

immunosuppressive cAMP-PKA pathway that inactivates GSK3b and 

impairs iNOS-dependent killing. 
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DISCUSSION 

A molecular crosstalk between the complement system and the TLRs seems 

essential to appropriately coordinate the early innate response to infection (63) (165). 

Here, we addressed the intriguing possibility that at least some of the complement-TLR 

interplay may be instigated by pathogens, such as P. gingivalis, for promoting their 

adaptive fitness. The necessity for this evasion mechanism may be related to the fact that 

P. gingivalis cannot antagonize TLR2 activation at the receptor level, as it does with 

TLR4 (113). Therefore, it can be stated that this pathogen has evolved a subversive 

C5aR-TLR2 crosstalk mechanism for blunting the TLR2 antimicrobial response (Fig. 

14), as an alternative to direct TLR2 antagonism. Notably, P. gingivalis does not rely on 

immunological mechanisms for C5aR activation, since it can activate this receptor 

through gingipain-mediated local generation of C5a (69). We confirmed and expanded 

the biochemical demonstration of C5a generation by purified gingipains acting on 

purified C5 substrate (69), by estimating that P. gingivalis generates high levels of C5a 

(32.7 ± 4.3 nM) upon 30-min incubation in heat-inactivated human serum. Notably, 

unlike C5a, C3a is extensively degraded and inactivated by P. gingivalis (69). Since C3a 

(but not C5a) exerts direct bactericidal effects (113), C3a destruction by P. gingivalis 

may serve to protect this pathogen. 

The striking ability of C5a to synergize for cAMP production with P. gingivalis in 

a pertussis toxin-sensitive and TLR2-dependent way could be explained as follows. The 

Gi~'Y subunits, released upon activation of the pertussis toxin-sensitive Gai subunit, can 

potently regulate adenyl ate cyclase (AC) activity, either positively or negatively 

depending on the enzyme isoform (107). Thus, although Gi~'Y cannot stimulate AC by 
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themselves, they can dramatically upregulate the activity of several AC isoforms in the 

presence of an appropriate stimulus. Such stimulus is apparently provided by P. 

gingivalis activation of TLR2. Importantly, the AC isoforms which are positively 

regulated by Gi~y are not those that are sensitive to the inhibitory action of Gai (107). 

Since the ability of CSa to synergize with P. gingivalis for cAMP production is 

additionally dependent on intracellular Ca2+, Gi~y may possibly mediate their stimulatory 

effects on AC activity through their Ca2+-mobilizing effects. 

A major mechanism underlying the regulatory effects of cAMP on cell activation 

involves the ability of cAMP-dependent PKA to phosphorylate the cAMP response 

element-binding protein (CREB), which effectively competes with the p6S subunit of 

nuclear factor-KB for limiting amounts of common transcriptional cofactors (12S). 

Besides being under nuclear factor-KB control, the iNOS is additionally regulated by 

IFN-y; interestingly, however, PKA also inhibits the IFN regulatory factor-1 that is 

required for the synergistic IFN-y contribution to iNOS transcription (24) (101). 

Moreover, as supported by the figure 12F data, PKA can phosphorylate and inactivate 

GSK3~, thus abrogating its stimulatory effect on pro-inflammatory gene expression (47). 

Since PKA activation causes greater iNOS inhibition than GSK3~ inactivation (Fig. 

12G), it is likely that PKA may inhibit iNOS also in a GSK3~-independent way (Fig. 14). 

Although modest TLR-induced cAMP induction may control excessive pro

inflammatory signaling, sustained high levels of cAMP instigated by pathogens (and thus 

out of host control) may impair host defense. P. gingivalis is the first pathogen shown to 

exploit complement and TLRs to cause cAMP-dependent immune subversion in vitro and 

in vivo. It should be noted, however, that the interaction of CSa with P. gingivalis-
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challenged macrophages did not induce a generalized or nonspecific macrophage 

immunosuppression, since C5a actually enhanced P. gingivalis-induced interleukin-6 (IL-

6) production (data not shown). This sophisticated subversive crosstalk instigated by P. 

gingivalis (Fig. 14) serves in lieu of "built-in" adenyl ate cyclase which is not expressed 

by this bacterium, in contrast to Bordetella pertussis which disables human or mouse 

phagocytes by means of its own adenylate cyclase (14). 

Macrophages can interact with P. gingivalis not only in periodontal tissues but 

also in the setting of systemic inflammatory diseases such as atherosclerosis (10) (114) 

(160). Our previous findings that P. gingiva lis persists intracellularly in macrophages for 

at least 72h (147) were confirmed by an independent group, which additionally showed 

that up to 25% of the cells undergo necrosis by 72h and release cellular contents (100). It 

is thus conceivable that viable P. gingivalis could be released from necrotic macrophages, 

especially in the presence of C5a which dramatically promotes its intracellular 

persistence. This possibility becomes intriguing in view of epidemiological and 

mechanistic links between periodontitis and atherosclerosis (10) (114). However, 

whether the documented localization of viable P. gingivalis bacteria in atherosclerotic 

plaques (27) can be attributed to relocation of infected macrophages from periodontal 

tissues is currently uncertain. Nevertheless, the pathogen's capacity to exit initially 

infected host cells and then enter and multiply within new hosts, including vascular cells, 

has been documented (29) (156). 

C5aR activation in macrophages was also shown to inhibit TLR4-induced mRNA 

expression oflL-12p35, IL-12/IL-23p40, and IL-23pI9, and production oflL-12p70 and 

IL-23 protein, through C5a-induced phosphatidylinositol-3 kinase and extracellular 
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signal-regulated kinase 112 signaling (63) (64) (165). The physiological significance of 

these C5a regulatory effects is likely to attenuate potential tissue damage mediated by 

various T cell effector subsets (e.g., Th1 and Th17, regulated by IL-12 and IL-23, 

respectively), as seen in various pathological inflammatory conditions (91). However, 

undesirable outcomes may arise when C5a is not produced physiologically but rather 

through the uncontrolled action of microbial enzymes. In this context, pathogen-induced 

generation of C5a may modify TLR signaling and skew the T helper response in ways 

that could interfere with protective immunity. Therefore, on the basis of our findings and 

the reports on IL-12 and IL-23 regulation by C5a, it becomes evident that pathogens may 

exploit TLR-C5aR crosstalk in various ways. 

In summary, this work constitutes the first report of complement-TLR crosstalk 

for synergistic cAMP induction which disables macrophages. From a therapeutic 

viewpoint, C5aR blockade effectively deprived this pathogen of crucial survival tactics 

and may thus confer protection against periodontitis and associated systemic diseases like 

atherosclerosis. Since C5a can be generated by both complement and non-complement 

C5 convertases that also include microbial enzymes (69) (112) (136), it becomes 

important to identify other pathogens that exploit C5a-mediated subversive crosstalk 

signaling with TLRs. This will have important implications for novel counter-strategies 

to neutralize microbial virulence. Our findings further suggest that, in the course of 

evolution, chronically persisting pathogens may not have simply "learned" to breach 

complement and the TLRs separately, but, as hereby exemplified by P. gingivalis, to also 

exploit their communication hubs. 
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CHAPTER FIVE: THE C5A RECPTOR IMP AIRS IL-12-DEPENDENT 

CLEARANCE OF PORPHYROMONAS GINGIV ALIS AND IS REQUIRED FOR 

INDUCTION OF PERIODONTAL BONE 

Introduction 

In addition to its role in pathogen recognition and elimination, the complement 

network regulates immune and inflammatory responses through direct effects on immune 

cells or via crosstalk with TLRs and other signaling pathways (130). Both complement 

and TLRs are rapidly activated in response to infection and their crosstalk may serve to 

coordinate the host response through synergistic or antagonistic interactions. These 

interactions may respectively enhance host defense or control it to prevent 

immunopathology. However, the propensity of complement and TLRs for 

communication may be exploited by microbial pathogens to manipulate the host response 

in ways that promote their adaptive fitness (52). 

In this context, we have recently shown that the periodontal pathogen 

Porphyromonas gingivalis induces a subversive crosstalk between the complement C5a 

receptor (C5aR) and TLR2 that impairs nitric oxide-dependent intracellular killing in 

macrophages (157). Interestingly, P. gingivalis can control both receptors: it can directly 

engage TLR2 through cell-surface ligands (4), whereas it can activate C5aR (CD88) 

through local conversion of C5 to C5a using its own enzymes (157). Indeed, this 

bacterium does not have to rely on immunological mechanisms for C5a generation, but 
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rather expresses extracellular cysteine proteinases (gingipains) which function as CS 

convertase-like enzymes (12S) (1S7). 

CSaR activation has been also shown to downregulate TLR4-induced production 

of IL-12 in vitro and in vivo (63) (8S) (16S). This effect is exerted at the transcriptional 

level since CSaR signaling in macrophages inhibits TLR4-induced mRNA expression of 

the IL-12p3S and IL-12/IL-23p40 subunits. Since IL-12 is a key cytokine in Thl 

differentiation and cell-mediated immunity, this CSaR-TLR4 crosstalk may represent a 

regulatory mechanism to control IL-12 production and thereby prevent or attenuate 

possible immunopathology (S2). However, undesirable outcomes could arise if CSa is 

produced at excessively high levels, as may happen in sepsis. Under such conditions, the 

crosstalk between CSa-activated CSaR and TLR4 could severely suppress IL-12 and 

interfere with protective Thl immunity (S2) (63). 

High levels of CSa can be generated also through the uncontrolled action of CS

convertase-like microbial enzymes like the P. gingivalis gingipains (1S7). We therefore 

hypothesized that P. gingivalis may take advantage of CSa-induced signaling to suppress 

biologically active IL-12 (IL-12p70). Given that IL-12p70 induces IFN-y and mediates 

bacterial clearance through activated phagocytes (IS3), possible inhibition of this 

cytokine by P. gingivalis through CSaR exploitation could contribute to its ability to 

evade immune control. In this chapter, we show that CSa (and, to a lesser extent, its 

desarginated derivative CSadeSArg) inhibits TLR2-dependent induction of IL-12p70, but 

enhances induction of pro-inflammatory and bone-resorptive cytokines (IL-I~, IL-6, and 

TNF-a), in response to P. gingivalis. These in vitro observations were confirmed by in 

vivo studies, which additionally showed that CSaR-dependent inhibition of IL-12p70 
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promotes the survival of this pathogen. Moreover, C5aR signaling was required for the 

ability of P. gingivalis to induce periodontal bone loss in a mouse model of experimental 

periodontitis. Therefore, P. gingivalis exploits C5aR to promote its adaptive fitness and 

cause periodontal disease. This immune subversion mechanism has important therapeutic 

implications given the current availability of safe, selective, and potent C5aR antagonists. 

Results 

P. gingivalis proactively and selectively inhibits IL-12p70 production via C5aR

TLR2 crosstalk 

We investigated whether C5a inhibits P. gingivalis-induced IL-12p70 in 

peritoneal macrophages. E. coli LPS-stimulated macrophages were used as a control 

since C5a has been shown to inhibit IL-12p70 through a C5a/C5aR-LPS/TLR4 crosstalk 

(63). The host TLR response against P. gingivalis is predominantly mediated by TLR2 

both in vitro and in vivo (54) (55) (11). Therefore, we additionally examined whether 

possible C5a-mediated inhibition of P. gingivalis-induced IL-12p70 could involve a 

C5aR-TLR2 crosstalk. We found that the abilities of both P. gingivalis and LPS to 

induce IL-12p70 production were significantly inhibited by C5a (p < 0.01; Fig. 15A). 

These inhibitory effects were specifically mediated by C5aR signaling since they were 

completely reversed by a specific C5aR antagonist (C5aRA) (p < 0.01; Fig. 15A). 

Intriguingly, we observed that C5aR blockade significantly enhanced the 

induction of IL-12p70 production, even in P. gingivalis-stimulated macrophages that 

were not treated with exogenous C5a (p < 0.01; Fig. 15A). However, we did not observe 

this upregulatory effect of C5aR antagonism in LPS-stimulated macrophages (Fig. 15A). 
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We previously showed that P. gingivalis uses its gmglpams to generate C5a in 

complement-inactivated serum (157). Therefore, we reasoned that endogenously 

generated C5a limits P. gingivalis-induced IL-12p70 production, which is thus enhanced 

in the presence of C5aRA. This notion was substantiated by the finding that the isogenic 

mutant KDP128, which lacks all three gingipain genes, failed to regulate IL-12p70, 

unless exogenous C5a was added in the cell cultures (Fig. 15B). Indeed, C5aRA had no 

effect on KDPl28-induced IL-12p70 in the absence of exogenously added C5a (Fig. 

15B). The ability of P. gingivalis to induce IL-12p70 was completely abrogated in 

TLR2-deficient macrophages, whereas, as expected, LPS-induced IL-12p70 was 

unaffected (Fig. 15C). Taken together, these data indicate that P. gingivalis activates a 

C5aR-TLR2 crosstalk which inhibits IL-12p70 production in macrophages. 

The C5aR crosstalk pathways with TLR2 or TLR4 for IL-12p70 regulation appear 

to be similar, since the inhibitory effects of C5a were abrogated by treatment with the 

MEK1I2-specific inhibitor U0126 but not by the PI3K inhibitor wortmannin (p < 0.01; 

Fig. 15D). This implicates the MEK-ERKI/2 pathway in C5aR-mediated regulation of 

both TLR2- and TLR4-induced IL-12p70. On the other hand, the PI3K pathway is 

minimally involved, if at all (63). The C5aR-dependent inhibition of IL-12p70 in P. 

gingivalis-stimulated macrophages was selective for this cytokine, since other pro

inflammatory cytokines (IL-6 and TNF-a) were augmented (p < 0.01; Fig. IE). In 

conclusion, P. gingivalis proactively and selectively inhibits IL-12p70 production by 

activating a C5aR-TLR2 crosstalk without requirement for immunological mechanisms 

of complement activation. 
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Figure 15: C5aR signaling inhibits TLR2-dependent IL-12p70 induction in 

P. gingivalis-activated macro phages. IFN-y primed wild-type (A-D) or 

TLR2-deficient (C) mouse peritoneal macrophages were stimulated with 

medium, P. gingivalis, or E. coli LPS. Panel B includes the use of an isogenic 

mutant (KDP128) which is deficient in all three gingipain genes. Macrophages 

were pre-treated with C5aRA (A-B), U0126 or wortmannin (D) prior to 

challenge with C5a, P. gingivalis, or Ec-LPS. Culture supernatants were 

assayed for induction of the indicated cytokines after 24h of incubation. Data 

are means ± SD (n = 3 sets of macrophages). Asterisks show statistically 

significant (p < 0.01) inhibition (A-D; IL-12p70) or enhancement (E; IL-6 and 

TNF-a) of cytokine production, whereas black circles indicate statistically 

significant (D < 0.01) reversal of these modulatorv effects. 
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C5aR signaling in vivo differentially regulates P. gingivalis-induced cytokine 

responses 

We next investigated the biological significance of the C5aR-mediated inhibition 

of IL-12p70 production. First, it was essential to determine whether C5aR signaling can 

regulate P. gingivalis-induced IL-12p70 production also in vivo. For this purpose, wild

type mice were i.p. administered C5aRA followed by i.p. challenge with P. gingivalis. 

Mice deficient in C5aR or TLR2 were similarly challenged with P. gingivalis, and all 

mice were sampled 5h post-infection by peritoneal lavage. In addition to IL-12p70, we 

determined production ofIFN-y (which is positively regulated by IL-12p70 (153)), IL-23 

(an IL-12 family cytokine which shares a common IL-12/IL-23p40 subunit with IL-

12p70 (119), as well as pro-inflammatory cytokines that have been implicated in 

inflammatory bone resorption in periodontitis (IL-l~, IL-6, and TNF-a) (43). C5aRA

treated wild-type mice and C5aR-deficient mice elicited significantly higher levels of IL-

12p70, IFN-y, and IL-23 compared to PBS-treated wild-type controls (p < 0.01-0.05; Fig. 

16). In contrast, the induction of IL-l~, IL-6, and TNF-a production was inhibited by 

C5aR blockade or C5aR deficiency (p < 0.01; Fig. 2). On the other hand, the induction 

of all tested cytokines was abrogated in TLR2-deficient mice (p < 0.01; Fig. 2). These 

data confirm that C5aR signaling in vivo selectively inhibits the ability of P. gingivalis to 

induce TLR2-dependent IL-12 family cytokines (IL-12p70 and IL-23). Additionally, the 

observed downregulation of IFN-y is most likely secondary to inhibition of IL-12p70 

production. On the other hand, maximal induction of IL-l~, IL-6, and TNF -a requires 

intact signaling by both C5aR and TLR2. 

67 



- OWT+PBS 800 .. I?EdI WT + CSaRA 

.g 
600 ~ C5arJ

- + PBS 
CD 400 • Tlr2'" + PBS a. 

200 

0 
IL-12p70 IFNj' IL-23 IL-1p IL-6 TNF-a 

Figure 16. C5aR signaling regulates P. gingivalis-induced and TLR2-

dependent cytokine production in vivo. 10-12 week-old wild-type (WT) 

mice, which were pretreated or not with C5aRA (i.p.; 25 Ilglmouse), as 

well as mice deficient in C5aR (e5ar-I
-) or TLR2 (TlrTI

-), were i.p. 

infected with P. gingivalis (5x107 CFU). Peritoneal lavage was performed 

5h post-infection and the peritoneal fluid was used to measure the levels of 

the indicated cytokines. Mice not infected with P. gingivalis had 

undetectable levels of the cytokines investigated. Data are means ± SD (n = 

5 mice). *,p < 0.01 and ** , p < 0.01 vs. WT+PBS control. 
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C5aR-mediated inhibition of IL-12p70 promotes P. gingivalis survival in vivo 

Whether the C5aR-mediated inhibitory effect on IL-12p70 production (Fig. 16) is 

exploited by P. gingiva lis was addressed in subsequent experiments. Wild-type mice 

were i.p. treated with C5aRA (or PBS control) and infected with P. gingivalis by the 

same route. The C5aRA-treated mice comprised several groups, including mice given 

anti-IL-12 IgG, anti-IL-23p19 IgG, or non-immune IgG control. Treatment with anti-IL-

23p19 was included because the anti-IL-12 Ab reacts with both IL-12p70 subunits, p35 

and p40, the latter of which is shared by the heterodimeric IL-23 (IL-12/IL-23p40 and IL-

23p19 (119)). Thus, the experiment was designed in a way that would allow specific 

implication of IL-12p70 or both IL-12p70 and IL-23 in P. gingivalis immune clearance. 

At 24h post-infection, the peritoneal lavage fluid from C5aRA-treated mice contained 

about 2 lOglO units less P. gingiva lis CFU compared to mice pretreated with PBS control 

(p < 0.01; Fig. 17A). However, the enhanced ability ofC5aRA-treated mice to clear P. 

gingivalis was significantly (p < 0.01) counteracted by anti-IL-12 treatment, though not 

by anti-IL-23p19 or non-immune IgG (Fig. 17A). Viable P. gingivalis CFU counts were 

not detected in the blood or in homogenates of several organs examined (spleen, kidney, 

liver, and lungs) from any of the mouse groups. Taken together with the Fig. 16 findings, 

these data show that C5aR signaling inhibits IL-12p70 production and this inhibitory 

effect is exploited by P. gingivalis to resist immune clearance. This conclusion was 

further substantiated by similar findings from a related experiment in which C5aRA

treated mice were replaced by C5aR-deficient mice (Fig. 17B). 
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Figure 17. Inhibition of CSaR signaling promotes the in vivo clearance of 

P. gingivalis by augmenting IL-12. (A) Wild-type mice were pre-treated or 

not with C5aRA (i.p.; 25 flg/mouse), in the presence or absence of goat 

polyclonal anti-mouse IL-12 IgG, anti-mouse IL-23p19 IgG, or equal amount 

of non-immune IgG (i.p.; 0.1 mg/mouse). The mice were then infected i.p. 

with P. gingiva lis (5x107 CPU). (B) Similar experiment in which C5aRA-

treated mice were replaced by C5aR-deficient (C5ar-/-) mice. Peritoneal 

lavage was performed 24h post-infection and the peritoneal fluid was used to 

determine viable P. gingivalis CPU counts. Data are shown for each 

individual mouse with horizontal lines indicating mean values. *, p < 0.01 vs. 

controls. The inverted triangles indicate significant (p < 0.01) reversal of the 

effects ofC5aRA or C5aR deficiency by anti-IL-12. 
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Comparison of C5a and C5adesArg in regulating IL-12p70 and other macrophage 

activities 

The peritoneal fluid of P. gingivalis-infected mice from the above described 

experiments was also assayed by mouse CSa ELISA. CSa was detected at 2304 ± S27 

pg/ml (n = S mice) and 1629 ± 378 pg/ml (n = S mice) at, respectively, Sh and 24h post

infection. CSa is relatively unstable in biological fluids and is rapidly converted to its 

desarginated form (CSadeSArg). In fact, a large part of detected CSa may represent 

CSadesArg since the capturing antibody used in the sandwich ELISA (BD Pharmingen) 

recognizes a neoepitope exposed in both CSa and CSadesArg (though not in intact CS). 

CSadesArg does not have anaphylactic action but retains a number of other biological 

activities (97) (102) (107). We thus investigated whether it shares the capacity of CSa to 

regulate IL-12p70. We found that CSadesArg can also inhibit P. gingivalis-induced IL-

12p70 production, though not as strongly as CSa. Specifically, CSadesArg mediated 

significant (p < O.OS) inhibition of IL-12p70 at SO nM but not at 10 nM, at which 

concentration CSa was already effective (Fig. 18A). However, the increased stability and 

thus higher prevalence of CSadesArg compared to intact CSa suggests a possible significant 

role for the desarginated molecule in IL-12p70 regulation. 

Although CSadesArg binds also to the CSa-like receptor-2 (CSL2) with high affinity 

(120) (130), its observed modulatory effect on IL-12p70 production was likely mediated 

via the CSaR (CD88). In this regard, CSaRA by itself caused full reversal of the 

inhibitory effect of CSadesArg, whereas a dual CSaRlCSa-like receptor-2 antagonist (A8t.71-

73) (120) (133) had a comparable effect (Fig. 18B). In contrast, the C3aR antagonist 
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SB2901S7 (control) did not influence the ability of CSadesArg to inhibit induction of IL-

12p70 by P. gingivalis (Fig. 18B). 

We previously implicated CSa in synergistic interactions with P. gingivalis that 

elevate cAMP in macrophages, leading to inhibition of nitric oxide production and of 

intracellular killing (1S7). We investigated whether these evasion mechanisms can also 

be activated by CSadesArg. Side-by-side comparison revealed no significant differences 

between CSa and CSadesArg when tested at SO nM in elevating cAMP, inhibiting nitric 

oxide, and promoting its intracellular survival (Fig. 18, C-E). However, when the 

compounds were tested at 10 nM, CSa exhibited stronger effects than CSadesArg (Fig.18, 

C-E). In view of the strict dependence of CSa on intracellular Ca2
+ mobilization to 

synergistically elevate cAMP (IS7), we hypothesized that CSadesArg could similarly 

induce intracellular Ca2
+ responses. Indeed, at SO nM, CSa and CSadesArg induced 

comparable intracellular Ca2
+ mobilization in macrophages (Fig. 19A), whereas only CSa 

was active in that regard in neutrophils (Fig. 19B). Taken together, the data from Figs. 18 

and 19 indicate that P. gingivalis can exploit CSa even after its conversion to CSadesArg, 

thereby undermining macrophage defense functions (induction ofIL-12p70, activation of 

intracellular killing). 
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Figure 18. Comparative modulatory effects of CSa and CSadesArg on IL-12p70 

production and antimicrobial activities in P. gingivalis-challenged macrophages. 

Groups of mouse peritoneal macrophages were incubated with P. gingivalis in the 

absence or presence ofC5a or C5adesArg (at 10 or 50 nM) and assayed for (A) induction of 

IL-12p70 (after 24h), (C) generation of cAMP (lh), (D) N02- (24h), and (E) viable counts 

(CFU) of internalized bacteria (24h). In panel B, the macrophages were pre-treated with 

C5aRA, the dual C5aRlC5a-like receptor-2 antagonist A8~71-73, or the C3aR antagonist 

SB290157 to determine the receptor by which C5adesArg (50 nM) inhibits IL-12p70 

production. Data are means ± SD (n = 3 sets of macro phages). *, p < 0.05 and ** , p < 

0.01 compared to no C5a or C5adesArg (0 nM). In B, black circles indicate statistically 

significant (p < 0.01) reversal of the inhibitory effect of C5adesArg. In panels C-E, no 

significant differences were found between C5a and C5adeSArg when tested at 50 nM. 
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Figure 19. Comparison of C5a and C5adesArg in intracellular Ca2+ 

mobilization. Mouse peritoneal macrophages (A) or neutrophils (B) 

were loaded with the ratiometric calcium indicator Indo-! AM and 

stimulated with C5a or C5adesArg at the indicated concentrations (lower 

concentrations were used for neutrophils since they are more sensitive to 

C5a than macrophages (49)). Ca2
+ mobilization was measured in a 

spectrofluorometer and the traces are representative of three experiments. 
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C5aR mediates periodontal bone loss 

The involvement of CSaR signaling in P. gingiva/is immune evasion and in the 

induction of pro-inflammatory cytokines (Figs. lS-18), such as IL-1~, IL-6, and TNF-a 

that mediate periodontal bone resorption (43), suggested that CSaR may play an 

important role in P. gingivalis-induced periodontitis. Indeed, P. gingiva lis failed to 

induce significant periodontal bone loss in CSaR-deficient BALB/c or CS7BLl6 mice, in 

stark contrast to corresponding wild-type mice which developed significant bone loss 

relative to sham-infected controls (p < 0.01; Fig. 20 A, B, and E). TLR2 participates in 

crosstalk interactions with CSaR that promote mechanisms of P. gingiva lis immune 

evasion (1S7) and induce production of bone-resorptive cytokines (Fig. 16). Sensibly, 

therefore, TLR2-deficient BALB/c mice were similarly shown to be resistant to P. 

gingivalis-induced periodontal bone loss (Fig. 20 C and E). 

Mice used for P. gingivalis-induced periodontitis studies are usually 8-12 week

old and sham-infected controls do not develop appreciable bone loss (44). However, 

aging mice, like aging humans, gradually develop naturally-occurring inflammatory 

periodontal bone loss (due to chronic exposure to indigenous periodontal bacteria), which 

becomes quite dramatic after 9 months of age (Sl) (93). To determine the role of CSaR in 

the age-associated periodontitis model, we raised CSaR-deficient BALB/c mice and wild

type controls until the age of 16 months. We found that old CSaR-deficient mice are 

significantly protected against age-associated periodontitis relative to similarly aged 

wild-type controls (p < 0.01; Fig. 20D). Therefore, CSaR is involved in chronic, age

associated periodontal bone loss. However, it is currently uncertain whether CSaR is 

exploited by mouse periodontal bacteria as shown for P. gingivalis. 

75 



Au Bu Co 

1 0.2-

T l 
]o.z 

T l I 10.2-
r T 

.5 ~. .5.a .5 ~ I 

f ~2 1 I ~ 

f~ 
.1 ~ 

f~2 ! 
*1 

" ~ ~A-
~ .a4- i~ *I ~.aa- *1 

~. .a6 
~: WT WT GSar- GSar- Mice: WT WT Tld- Tlr2"'- Mice: WT WT GSar- GSar-

Infection: Sham Pg Sham Pg Infection: Sham Pg Sham Pg Age: Young Old Young Old 

Figure 20. C5aR and TLR2 deficiencies protect against periodontal bone loss. 

Mice deficient in C5aR (C5ar-I
-) (A, BALB/c; B, C57BLl6) or TLR2 (Tlr2-1

-) (C; 

BALB/c) and appropriate wild-type controls were orally infected or not with P. 

gingivalis and assessed for induction of periodontal bone loss six weeks later. Mice 

used in these experiments were 10-12 week-old. (D) Induction of naturally occurring 

periodontal bone loss in 16-month-old wild-type or C5ar-l
- BALB/c mice relative to 

their young counterparts (:s 12 weeks of age). (E) Representative images of P. 

gingivalis-induced bone loss under wild-type or C5aR- or TLR2-deficient conditions: 

P. gingivalis-infected C5ar-l
- or Tlr2-1

- mice display considerably smaller CEJ-ABC 

distances (yellow arrows) compared to infected wild-type mice, but quite comparable 

to those of sham-infected wild-type mice. Data are means ± SD (n = 5 mice). *, p < 

0.01 compared to corresponding sham-infected controls (A and B) or young 

counterparts (C). 
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Discussion 

Clinical and histological observations implicate complement in periodontal 

inflammation and pathogenesis, although the precise mechanisms or pathways involved 

have remained largely undefined (48). However, our findings clearly implicate the C5a

C5aR axis in periodontal tissue destruction and immune evasion by periodontal bacteria. 

Our present data suggest that P. gingivalis may exploit C5aR to promote its 

adaptive fitness in diverse ways. On the one hand, C5aR signaling inhibits TLR2-

dependent IL-12p70 induction and interferes with immune clearance of P. gingivalis. On 

the other hand, the P. gingivalis-instigated C5aR-TLR2 crosstalk leads to enhanced 

production of other pro-inflammatory cytokines (lL-l~, IL-6, and TNF-a). Therefore, 

this pathogen does not appear to cause a generalized immunosuppression but, rather, has 

evolved the ability to selectively target pathways that could result in its elimination. 

Consequently, P. gingivalis is an asaccharolytic organism with a strict requirement for 

peptides and hemin, and thus depends on the continuous flow of inflammatory serum 

exudate (gingival crevicular fluid) to obtain these essential nutrients and survive in its 

periodontal niche (34). In fact, non-selective immunosuppression would not be 

advantageous for P. gingiva/is; whereas such strategy would certainly afford protection 

against host immunity; however, P. gingiva lis would likely be condemned to starvation .. 

Therefore, the proactive release of C5a by P. gingivalis and the ensuing C5a-induced 

inflammation (increased vascular permeability and pro-inflammatory synergy with TLRs) 

can contribute to nutrient procurement. Moreover, the ability of P. gingivalis to induce 

C5aR-dependent periodontal bone loss expands the useful space for increased niche for 

the pathogen. 
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On the basis of the above discussion, it becomes apparent that P. gingiva lis uses a 

quite antithetical strategy relative to Staphylococcus aureus which promotes its survival 

by actually blocking CSa binding and CSaR activation, via a secreted protein known as 

CHIPS (chemotaxis inhibitory protein of S. aureus) (2S). This mechanism inhibits CSa

induced inflammation and phagocytic cell chemotaxis and protects S. aureus from 

neutrophils and macrophages (2S). On the other hand, the protozoan parasite Leishmania 

major also exploits CSaR for evading host immunity, which is restored in CSaR-deficient 

mice that consequently do not develop necrotizing dermal lesions as wild-type animals do 

(63). However, unlike P. gingivalis, L. major has to rely on CSa generation by the 

physiological complement cascade in order to exploit CSaR. 

P. gingivalis-induced inflammation via the CSaR-TLR2 crosstalk may have 

important implications from a clinical perspective, since it is likely to cause collateral 

tissue damage (inflammatory periodontal bone destruction). This notion is supported by 

our findings that mice deficient in CSaR or TLR2 are both resistant to P. gingival is

induced periodontitis. The fact that induction of bone loss is essentially prevented in the 

absence of either CSaR or TLR2 signaling, argues against the possibility that CSaR and 

TLR2 contribute to periodontal pathogenesis through independent effector mechanisms. 

In this regard, both receptors are under P. gingivalis control and are induced to crosstalk, 

while in physical proximity (IS7), cooperatively leading to immune evasion and 

induction of inflammatory/bone-resorptive cytokines. 

Both the CSa and C3a anaphylatoxins are readily metabolized in serum and lose 

their C-terminal arginine due to carboxypeptidase activity (107). The resulting C3a 

fragment (C3adesArg) is biologically inert in terms of C3a receptor-dependent functions, 
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but retains antimicrobial activity which is exerted independently of the receptor (114). 

On the other hand, C5adesArg can still bind C5aR, albeit with a lower affinity and a 

different mode of interaction relative to intact C5a (19) (107). Although C5adesArg is 

devoid of C5a spasmogenic (anaphylactic) activity, it retains other C5a activities to 

varying degrees depending on function and cell type involved. For example, 

monocytes/macrophages, but not neutrophils, do not appear to distinguish between C5a 

and C5adesArg in terms of induction of chemotaxis or lysosomal enzyme release (13) (97) 

(102). Our findings that C5adesArg retains the ability to inhibit P. gingivalis-induced IL-

12p70 and nitric oxide production has important implications: being considerably more 

stable than C5a (107), C5adesArg may provide a persisting stimulus for sustained 

manipulation of the antimicrobial response and destructive inflammation, properties that 

characterize chronic conditions like periodontitis. Intriguingly, whereas P. gingiva lis 

attacks C5 and generates biologically active C5a1C5adesArg, it extensively degrades C3 

and C3a which thus do not retain biological activity (161). Since C3a (but not C5a) 

exerts direct antimicrobial effects and readily kills both gram-negative and gram-positive 

bacteria (114), it is possible that degradation and inactivation of C3a by P. gingivalis may 

serve to protect this pathogen 

The data from this study collectively suggest that P. gingivalis has evolved to not 

only endure the host response (by selectively suppressing critical 'killing' pathways, such 

as IL-12-dependent clearance), but also to benefit from the inflammatory response, while 

at the same time contributing to periodontal pathogenesis. The ability of P. gingivalis to 

inhibit innate immune functions via C5aR exploitation may also allow bystander bacteria, 

i.e., co-habiting the same niche, to evade immune control. In this context, P. gingivalis is 
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thought of as a keystone periodontal species that could promote the survival and 

virulence of the entire microbial community (20) (22) (49) (82). 

In addition to being a prevalent and costly chronic condition that destroys tooth

supporting tissues, severe periodontitis exerts a systemic impact on health and the 

patients run increased risk for diseases such as atherosclerosis, diabetes, and perhaps 

rheumatoid arthritis (26) (30) (123) (151). Therefore, it becomes important to identify 

promising therapeutics for the treatment of this oral disease. Since C5aR- or TLR2-

deficient mice are both resistant to periodontal bone loss, at least in principle, 

pharmacological blockade of either C5aR or TLR2 could inhibit periodontitis. However, 

the availability of highly effective and safe C5aR antagonists, some of which have 

completed phase II trials (for rheumatoid arthritis and psoriasis) (131) (155), and the 

relative paucity of effective TLR2 antagonists, suggest that C5aR is a preferential and 

promising target of local therapeutic intervention to treat human periodontitis. From a 

mechanistic viewpoint, C5aR blockade may counteract the ability of periodontal bacteria 

to evade critical antimicrobial responses or to stimulate non-resolving/destructive 

inflammation, and thus should be capable of both controlling the infection and inhibiting 

periodontal bone loss. 
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