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ABSTRACT 
 

MECHANISMS OF ACTION AND CO-OPTIVE EVOLUTION FOR 
HYPERVARIABLE COURTSHIP PHEROMONES IN  

PLETHODONTID SALAMANDERS 
 

Damien Beau Wilburn 

March 31, 2014 

 Pheromones are an important type of chemical cue used by most animals to 

convey information between individuals. For more than 100 million years, male 

plethodontid salamanders have utilized a system of non-volatile, proteinaceous 

pheromones to regulate female mating behavior and receptivity. One of these pheromone 

components, Plethodontid Modulating Factor (PMF), is a hypervariable protein related to 

the three-finger protein (TFP) superfamily. Previous studies revealed that PMF persists as 

a rapidly evolving multi-isoform mixture. However, many characteristics of PMF as a 

pheromone remained undetermined, including gene structure and transcriptional 

regulation, translational regulation, protein structure, evolutionary mechanisms, and the 

isoform effects on female behavior and neurophysiology. Therefore, the broad aim of this 

dissertation was to characterize the mechanisms of action and evolution for PMF using 

the red-legged salamander, Plethodon shermani. The molecular and proteomic diversity 

of PMF was determined by RT-PCR and mass spectroscopy. The PMF complex is the 

product of at least 13 gene duplications in 3 gene classes containing highly conserved 5’ 

and 3’ untranslated regions (UTRs). These UTRs are bound by cold inducible RNA 

binding protein, which likely plays a key role in coordinating expression of the many 
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diverse PMF isoforms during gland development. Using mass spectroscopy and 

multidimensional NMR, the 3D structure of the most abundant PMF isoform was 

determined to have a novel structure compared to all other TFPs. In particular, an altered 

disulfide bonding pattern promoted greater backbone flexibility in the most rapidly 

evolving segments of PMF to possibly enhance male pheromone and female receptor 

interactions. Functional assays testing different mixtures of PMF isoforms revealed that 

isoform diversity is a key requirement for increasing female receptivity, likely through 

synergistic interactions in the vomeronasal organ and/or the brain. Examination of 

pheromones in a different plethodontid species (P. cinereus) revealed that the majority of 

PMF duplications occurred within the last ~20 million years. In summary, in response to 

female sexual selection, the PMF gene complex has evolved through an unusual 

disjunctive evolutionary process as part of a birth-and-death model of gene evolution to 

permit coordinated expression of dozens of flexible proteins that synergistically function 

to regulate female behavior. 
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CHAPTER I – INTRODUCTION 

 

 Around 1300 AD, an anonymous cleric in northern England wrote the classic 

poem Cursor Mundi, or “Runner of the World,” which chronicles the history of the earth 

from the perspective of the Christian Bible. Within its approximately 30,000 lines, the 

cleric defines five human “wits” to parallel the five elements of Aristotle: touch to earth, 

taste to water, sight to fire, hearing to the ether, and smell to the air. More commonly, 

these are known as the five basic senses, but this 700 year old poem may represent the 

first documented description of what is today called sensory biology [1]. In the modern 

context, the definition has been refined as the study of how living organisms perceive 

mechanical, electromagnetic, or chemical cues [2-4]. While this description does include 

the five senses (touch and hearing to mechanical, sight to electromagnetic, taste and smell 

to chemical), it includes many more stimuli that organisms commonly perceive from their 

environment: movement of particles, substrate vibrations, electrical or magnetic fields, 

thermal energy, or chemicals in the form of pheromones [5-8]. In contrast to mechanical 

or electromagnetic stimuli, there are thousands to millions of potential chemical cues, 

requiring organisms to possess many more molecular sensors of exquisite sensitivity and 

specificity in order to fully perceive the chemical world [4, 5]. 

Chemical sensing is likely the oldest of the three basic types, with pheromones 

themselves being an ancient evolutionary innovation, even utilized by baker’s yeast 

(Saccharomyces cerevisiae) [9]. Compared to the five senses in the Cursor Mundi, 
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pheromones are a much more recent discovery. The term was first coined by Karlson and 

Luscher in 1959, a combination of the Greek words pherin (“to secrete”) and hormone 

(“to stimulate”), and was defined as “substances which are secreted to the outside by an 

individual and received by a second individual of the same species, in which they release 

a specific reaction, for example, a definite behavior or a developmental process” [10]. 

The first animal pheromone, bombykol, was discovered by Adolf Butenandt in silkworm 

moths (Bombyx mori) as a long chain unsaturated alcohol secreted by females and used to 

attract male mates [11]. In the 50+ years since the discovery of bombykol, thousands of 

different chemicals have been identified in insects to perform similar functions, including 

frontalin in the invasive bark beetle (Dendroctonus valens) [12], heptacosadiene in fruit 

flies (Drosophila melanogaster) [13], derivatized fatty acids in ermine moths 

(Yponomeuta spp.) [14], and tetradecenyl acetates in European corn borer (Ostrinia 

nubialis) [15]. Presently, a major online phermone database, the Pherobase 

(http://www.pherobase.com), lists more than 6,500 different semiochemicals for over 

7,000 species, the overwhelming majority of which are from insects. A common theme 

among insect pheromones is their chemical composition, as most are small, volatile 

hydrocarbon chains with variable modifications which define their specificity and 

function [16]. Continual discovery of new and diverse bioactive molecules which impact 

social function led to extensions of the original Karlson and Luscher definition with new 

terms for interspecies signaling: allomones (benefit sender), kairomones (benefit 

receiver), and synomones (benefit both sender and receiver) [17-19]. However, many 

pheromones also qualify as allomones/kairomones/synomones depending on the species 
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of the receiver, and as they signal through common neurological pathways, more recently 

these terms have been unofficially consolidated under the umbrella of “pheromones”  

[5, 20]. The incredible diversity of pheromones within and between species of 

Lepidoptera has been proposed as one of the mechanisms that has permitted their 

expansive radiation to over 100,000 species [21]. While the experimental advantages of 

insects (small size, ease to maintain, short generation time, etc.) have allowed tremendous 

advances in the study of pheromones as a whole, their complex biosynthetic pathways 

have prohibited addressing many evolutionary questions with respect to modes and rates 

of selection [14]. 

 In contrast to insects, a number of vertebrates utilize peptide or protein 

pheromones for chemical communication, which, as direct gene products, have obvious 

advantages for studying both evolutionary history and regulation of biosynthesis. To date, 

protein pheromones and sensory mechanisms have been most well-characterized in 

mammals – specifically, rodents [22]. In mice, protein pheromones are commonly 

delivered as part of general bodily fluids: urine, tears, milk, etc. Two key families of 

proteins have been implicated as pheromones: major urinary proteins (MUPs) and 

exocrine secreted proteins (ESPs). Both MUPs and ESPs are multigene families with 

many expressed isoforms in urine and tears, respectively [23, 24]. Isoform number and 

sequence are variable between different strains of inbred mice, with many isoforms 

evolving unique functions. For example, one MUP isoform termed darcin (named after 

the male protagonist from Pride and Prejudice) increases female mating receptivity, and 

simultaneously promotes learning of volatile cues in the male’s urine [25, 26]. In 

contrast, a different subset of isoforms promote aggression and competition between rival 
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males [27]. MUPs have a similar genomic architecture to other multigene families: many 

tandemly repeated genes including multiple pseudogenes [24]. 

 Mice, and most other vertebrates, sense pheromones through a specialized set of 

neuronal epithelia (the vomeronasal epithelia, VNE) found in the vomeronasal organ 

(VNO). In contrast, most general odorants are detected through the main olfactory 

epithelium (MOE). As a secondary form of chemoreception, the VNO/VNE are often 

referred to as the accessory olfactory system [5, 22]. The main difference between these 

two neuronal populations is the types of chemoreceptors that are expressed. In the MOE, 

individual neurons express a single receptor, one of approximately 1000 olfactory 

receptors (ORs), such that each neuron is highly tuned for detecting only a small subset 

of ligands [28]. These studies by Axel and Buck later culminated in their being awarded 

the 2004 Nobel Prize in Physiology or Medicine. In contrast to the MOE, the rodent VNE 

is divided into apical and basal layers expressing vomeronasal type-1 receptors (V1Rs) or 

type-2 receptors (V2Rs), respectively [29, 30]. ORs, V1Rs, and V2Rs are all G-protein 

coupled receptors (GPCRs), but share no recent homology [31]. Compared to both ORs 

and V1Rs, V2Rs possess long extracellular domains which were hypothesized to bind 

peptide or protein pheromones [30]. Binding of pheromones to V1R/V2Rs activates the 

IP3 signaling pathway, leading to opening of TRPC2 cation channels, membrane 

depolarization, and signal transduction from the VNE to the brain [32]. The role of 

TRPC2 has been well established as a critical channel for pheromone signal transduction: 

in trpc2-/- mice, there zero sensory stimulation in the VNE, but mice also lose all ability 

to discriminate gender, and males would equally attempt to mount males or females [33]. 

VNE neurons project to the specialized vomeronasal amygdala, followed by the 
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hypothalamus, where behavior and/or endocrine effects may be mediated [5]. Despite 

nearly 20 years of research, only a small number of specific ligand:receptors pairs have 

been identified for V1R/V2Rs [23, 34, 35]. Unlike MOE neurons, there is evidence that 

VNE neurons can express more than one type of receptor, which can affect both their 

sensitivity and even specificity to particular stimuli [35, 36]. Vomeronasal receptors do 

not translocate to the plasma membrane spontaneously, and require selective association 

with one of many M1/M10 class MHC 1b molecules [37]. However, one of the few well 

characterized pheromone-V2R pairs is ESP1 and V2Rp5 [23]. Recently, the structure of 

ESP1 was determined by multidimensional NMR, and binding assays coupled with site-

specific mutagenesis revealed that ESP1 interacts primarily by salt bridges with the 

extracellular domain of V2Rp5 [38]. Difficulty in identifying specific pheromone-

receptor interactions has led to recent studies focusing on understanding how specific 

classes of V1Rs and V2Rs recognize broad types of signals (conspecific male, 

conspecific female, heterospecific predator, heterospecific non-predator, etc.) [20]. 

 Beyond rodent models, most research on olfactory and VNO signaling has 

centered on anatomical and comparative genomics studies. Most fish possess a single 

olfactory organ, with individual neurons expressing all three types of receptors (ORs, 

V1Rs, and V2Rs) [39]. In contrast, lungfish have specialized neurons that project to the 

ventrolateral olfactory bulb, suggesting a primitive accessory olfactory system which 

evolved in a common ancestor to lungfish and tetrapods [40]. In clawed frogs (Xenopus 

spp.), the MOE possess all three receptor types, but the VNO only contains V2R-

expressing neurons [41, 42]. Humans are seemingly most similar to frogs in that they 

possess a MOE which expresses both ORs and V1Rs, but completely lack an accessory 
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olfactory system [43]. Throughout terrestrial vertebrate evolution, there has been 

significant redistribution of these receptor families such that putative pheromone 

receptors, i.e. V1Rs and V2Rs, are not always expressed in the VNO. 

  For ~25 years, salamanders and newts (order Caudata) have served as valuable 

non-mammalian models to study the evolution and function of protein pheromones in 

vertebrates [44-46]. Caudata includes approximately 655 extant species of salamanders 

and newts, nearly all located in the northern hemisphere, divided into ten families [47]. 

The size, diet, and life cycle vary dramatically between species, yet multiple genetic 

studies have resulted in conflicting models of phylogeny [47-50]. Possibly the earliest 

lineage includes the family Crytobronchidae, which has only three extant species in two 

genera (Cryptobranchus alleganiensis, hellbenders; Andrias japonicus, Japanese giant 

salamander; Andrias davidianus, Chinese giant salamander). These are the largest known 

amphibians in the world, with the Asian species reaching ~1.5-2 m in length and they are 

purely aquatic [49]. In contrast, Ambystoma (the only genus in Ambystomatidae) 

represent more stereotypical amphibians in that they metamorphose from an aquatic 

larval stage into terrestrial adults. However, even this is not universally applicable to all 

Ambystoma spp., such as the Mexican axolotl (Ambystoma mexicanum): famous for its 

ability to regenerate its limbs and even its spinal cord [51], axolotls are paedomorphic 

salamanders that never undergo metamorphosis and remain in a permanent juvenile-like 

state [52, 53]. In the eastern newt (Notopthalmus viridescens), there are actually three life 

stages: an aquatic larval stage similar to Ambystoma, followed by a juvenile terrestrial 

stage (“red eft”) for 2-3 years that often includes traveling to new ponds, and then 

metamorphosis into an aquatic adult [49]. 
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The majority of extant salamander species (>50% of the ~655 species) are in the 

family Plethodontidae [49]. Existing for more than 100 million years, plethodontid 

salamanders are extraordinarily successful in both species richness and population count, 

such that in some ecosystems, salamanders contribute more to the total biomass than any 

other vertebrate [54]. In contrast to all of the aforementioned examples, most 

plethodontid species lay their eggs on land, and juvenile salamanders emerge in their 

terrestrial adult morphs. Likely the most defining feature of this family is that they are 

completely lungless, and breathe entirely through their skin and the mucosa of their 

mouths. However, another important characteristic are their nasolabial grooves: vertical 

slits along the snout that transports chemicals from the substrate to the nares by capillary 

action, enhancing chemoreception [55]. Using a number of different types of skin glands, 

salamanders release both volatile and non-volatile pheromones to provide information on 

species [56, 57], size [58], sex [56], female gravidity [58, 59], diet [60, 61], and parasite 

load [62]. These pheromones facilitate many social functions including territoriality [63, 

64], predator avoidance [65, 66], prey detection [67, 68], and reproductive behavior [44, 

69]. While plethodontid salamanders have separate MOE and VNE, the two share a 

common olfactory chamber with the VNE occupying lateral diverticula [70]. The VNE, 

but not the MOE, is sexually dimorphic with males having approximately twice as many 

neurons [71]. Molecular studies using RT-PCR and in situ hybridization revealed that the 

Ors and V2Rs are exclusively expressed in the MOE and VNE, respectively, with no 

evidence for V1R expression [72]. Similar to mice, vomeronasal neurons project to the 

accessory olfactory bulb, which only target the vomeronasal amygdala. From there, 
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further connections are made to the hypothalamus and preoptic area [73, 74], which are 

brain centers involved in vertebrate reproductive behavior [75, 76]. 

Along with their other unique characteristics, plethodontid salamanders perform a 

unique, highly stereotyped courtship ritual. Despite some deviations between species, 

there are five basic stages to the courtship: orientation, persuasion, tail straddling walk 

(TSW), deposition, and insemination [77, 78]. Orientation includes male salamanders 

finding a female salamander and aligning his body perpendicularly near the base of her 

tail, and he may then perform a number of different behaviors to persuade her to initiate 

TSW. In one large clade of eastern Plethodon spp., persuasion includes a “foot dancing” 

behavior where the male repeatedly moves both his fore and hind limbs up and down, 

possibly as a measure of stamina and endurance [78, 79]. In other species, males will 

circle the female and periodically bite at her for unclear reasons [80]. In the majority of 

species, males deliver non-volatile proteinaceous courtship pheromones using enlarged 

premaxillary teeth to “scratch” the female’s dorsum [44]. A small gland on the male’s 

chin (mental gland) secretes pheromones that are applied to the abraded area and 

presumably diffuse into the female’s bloodstream, where they may freely diffuse and 

affect any number of target tissues [81]. Assuming a successful persuasion, the male and 

female salamander will enter into TSW, where a female straddles a male’s undulating 

tail, and the two walk in unison for an extended period of minutes to hours (Figure 1). 

Species that deliver pheromones by scratching the female’s dorsum tend to have the 

shortest tail straddling walk phases (median of ~5 min). For species that do not deliver 

pheromone, TSW can extend up to 300 min [82].  
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Figure 1. Tail straddling walk 

Illustration of plethodontid salamanders in tail straddling walk, with the male salamander 
on the left and the female straddling his undulating tail on the right [78].  
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While multiple types of mental glands exist, most species deliver pheromones through 

the transdermal scratching mechanism [45]. However, for a single clade of large eastern 

Plethodon spp. (the P. glutinosus complex, 28 species), mental gland morphology has 

transitioned from a small cluster near the tip of the chin to a large, pad-like structure on 

the lower jaw. In these species, during TSW, males will bend around and directly “slap” 

the female’s snout with the mental gland to release pheromones onto an area that is 

continuous with the female’s olfactory chamber (Figure 2) [83]. These species have 

intermediate TSW lengths (mean ~30 min) [84], and application of pheromones further 

reduces this time [85]. Once in the olfactory chamber, pheromones activate VNE neurons 

by binding to specific receptors, affect the aforementioned regions of the brain, and alter 

the female’s mating behavior [70, 83, 86]. During TSW, the male will periodically pause 

and wait to see if the female tries to advance forward; if she does not, he will initiate 

spermatophore deposition. Depending on the species, this process requires the male to 

press his body to the ground and remain still for 4-7 min. The male lifts his vent off of the 

deposited spermatophore, walks forward with the female following to receive the 

spermatophore into her cloaca, and thus completes courtship [78]. The length of the 

courtship season varies between species, but generally, species with scratching delivery 

mate in either spring (April-May) or summer (August-September), while slapping species 

only use the summer mating season. These one or two brief mating windows require 

males to maximize their number of mating opportunities, such that even small changes in 

courtship time could have profound impacts on reproductive success over several million 

years [87].  
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Figure 2. Slapping pheromone delivery 

Illustration of a male plethodontid salamander (right) bending turning his body (1), 
slapping his enlarged mental gland to the female (2), and returning to tail straddling walk 
(3) [78].  



12 
 

Chemical analysis of the mental gland has principally focused on two species, 

Ocoee’s salamander (Demosgnathes ocoee) and the red-legged salamander (Plethodon 

shermani), as models of scratching and olfactory delivery systems, respectively [69, 88]. 

D. ocoee expresses a relatively complex mixture of >30 different proteins. Combined 

DNA sequencing and mass spectral proteomics efforts revealed that many of these 

proteins are products of gene co-option: gene duplication followed by mutation to drive 

neofunctionalization. In particular, many hormones (insulin, glucagon, insulin-like 

growth factor, leptin) were targets of gene co-option in D. ocoee and may adjust female 

physiology during courtship [88, 89]. One protein, sodefrin precursor-like factor (SPF), 

represented ~33% of the total pheromone, and experimental application of SPF on female 

D. ocoee salamanders reduced courtship time [81]. In contrast to this relatively complex 

blend, analysis of the P. shermani pheromone extract revealed that >98% of the total 

pheromone included only three major protein components of 22 kDa, 19 kDa, and 7 kDa 

[69]. The 22 kDa component, or Plethodontid Receptivity Factor (PRF), consisted of 3 

isoforms with sequence similarity to IL-6 cytokines [83]. The 7 kDa component, or 

Plethodontid Modulating Factor (PMF), was much more diverse with >30 expressed 

isoforms, and shared homology with the three-finger protein (TFP) superfamily [90]. 

PMF and PRF each comprised ~50% and ~33% of the whole pheromone extract, 

respectively, but because of their molecular weight differences, the stoichiometry of PMF 

to PRF was ~5:1 [91]. Both proteins individually activated neurons in the VNE and in the 

brain [86, 92], but in behavioral assays, only PRF decreased courtship time similar to 

whole pheromone extract while PMF surprisingly increased it [83, 93]. Comparison of 

cDNA sequences of PMF, PRF, and SPF across multiple plethodontid species revealed 
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all three proteins are rapidly evolving and under pervasive positive selection [94-97]. The 

remaining 19 kDa component in P. shermani pheromone extract was unidentified until 

recently when it was shown to belong to the TIMP superfamily (see Chapter VI), 

however, its biological functions are still unknown.  

 The TFP superfamily, of which PMF is a member, is an extraordinarily diverse 

group of proteins. Well-known TFPs include many snake venom cytotoxins and 

neurotoxins [98-100], but paralogs exist in all vertebrates, including putative toxins in 

rainbow trout [101], skin secretions from clawed frogs [102, 103], positional cell surface 

markers of limb regeneration in amphibians [104], the complement protein CD59 [105], 

the urokinase receptor uPAR [106, 107], and the human Ly6 antigen [108, 109]. 

Establishing a proper TFP phylogeny has been extraordinarily difficult as there is 

minimal sequence conservation between members; however, the family receives its name 

due to all members adopting a common protein topology of two short parallel β-sheets 

resembling “three fingers.” This topology is stabilized by 8 conserved cysteine residues 

that adopt a canonical disulfide bonding pattern of 1-3, 2-4, 5-6, 7-8 [110]. The net result 

is a highly stable protein platform with mutatable loops such that a near infinite number 

of sequences may be evaluated for novel functions. This hypothesis was indirectly tested 

using a synthetic TFP with randomized loops, binding the mutants to the IL6 cytokine 

receptor, and selecting only the bound versions. The result was multiple high affinity 

TFPs that functioned as either IL6 receptor agonists or antagonists, further demonstrating 

the versatility of the TFP domain [111]. 

Snake toxin TFPs, along with many of the other co-opted gene families in snake 

venoms (e.g. phospholipase A2, VEGF, CRISP, cystatin, whey acidic protein, kallikrein), 
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have evolved through a birth-and-death model of molecular evolution [112-115]. 

Originally proposed by Nei et al. [113] as an alternative to concerted evolution for 

immune system genes, in this model for multigene families, genes are repeatedly 

duplicated and different sequence permutations are evaluated by selection. Functional 

genes are free to be duplicated and mutated further, while maladaptive variants are 

discarded via pseudogene conversion and/or chromosomal deletion (Figure 3) [113]. For 

snake venoms TFPs, the net result has been many isoforms with variability in prey 

specificity, relative toxicity, and molecular function, including ion channel blocking 

[116-118], nicotinic and muscarinic receptor antagonists [119-121], acetylcholinesterase 

inhibition [100], cell-adhesion regulation [122], integrin binding [123], and pore 

formation in the plasma membrane [124, 125]. Recent sequencing of the Indonesia king 

cobra (Ophiophagus hannah) genome provided new insights into this model of venom 

evolution, suggesting that (1) venom adaptation occurs by either gene 

hijacking/modification or duplication of non-toxin genes, and (2) positive selection 

seemingly acts more quickly on highly expressed toxin genes (such as TFPs). This 

accelerated evolution is in contrast to species that primarily rely on constriction for prey 

immobilization (e.g. pythons) [126]. As venom toxicity directly affects prey capture, 

there is a strong advantage from natural selection for acquiring a highly potent blend of 

toxins that can rapidly immobilize any potential prey species, with accelerated evolution 

from arms-race dynamics [115].  
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Figure 3. Models for multigene family evolution 

Comparison of models for (A) concerted evolution and (B) birth-and-death model of 
evolution. In the concerted evolution model, multigene families evolve independently 
within species by a single common ancestor and/or gene conversion stabilize multiple 
copies towards a common sequence through homologous recombination (e.g. ribosomal 
RNA genes). In the birth-and-death model, genes continually divide and diversify 
irrespective of speciation, with favorable genes (white circles) further duplicated for 
possible functional innovation, and deleterious genes (black circles) eliminated by gene 
removal or pseudogene conversion [113].  
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The birth-and-death model of snake venom evolution is potentially analogous to 

that of plethodontid salamander pheromones. However, rather than natural selection 

acting through prey capture, female receptors and associated reproductive behaviors are 

agents of sexual selection, which have promoted rapid evolution of pheromone genes 

[94]. With respect to inheritance, it has been argued that rapid evolution should be most 

readily observed in genes that affect survival and energy acquisition, as these are likely 

stronger selective forces than mate choice [126]. However, genes for prey capture are 

often tied into functional complexes: associated sets of traits that cooperatively work to 

accomplish a single biological task [127]. In addition to the toxin genes themselves, 

venom systems require a functional venom gland (and the associated structural genes), a 

way to inject the toxins (e.g. fangs), and a means to protect the predator from self-

exposure. As all of these elements contribute to the same function, it is unsurprising that 

they act as selective tethers on the other elements and generally constrain evolution until 

there is sufficient directional pressure, such as need to capture a new type of prey, 

whereupon evolutionary “bursts” are observed [128-130]. Despite plethodontid 

pheromones existing as part of a larger complex surrounding courtship behavior 

(common mental gland, tail straddling walk, and relative stasis in delivery mode), as 

secreted products that have little-to-no metabolic feedback in the male, the only strong 

selective tether is female receptors. Similar rates of evolution were observed for 

interacting proteins between egg and sperm, best characterized in abalone with VERL 

and lysin, respectively [131-134]. However, due to likely stoichiometric constraints, lysin 

persists as a single gene copy that is apparently constrained with suboptimum affinities in 

order to maintain interactions with different VERL isoforms [135]. This is not a 
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limitation in plethodontid salamanders, particularly for species utilizing olfactory 

delivery as vomeronasal receptors are often sensitive at femtomolar levels [35]. 

Consequently, there is likely a high selective premium (and possibly low cost) on rapid 

gene duplication and pheromone diversification in order to maximize the likelihood of 

stimulating any mating female in the population, improving reproductive success and 

fitness. 

For more than 100 million years, plethodontid salamanders have utilized this 

highly novel system of rapidly evolving pheromones to improve male reproductive 

success akin to snake venoms in prey capture. Within this system, Plethodontid 

Modulating Factor (PMF) is a particularly tractable candidate to study how sexual 

selection may have promoted rapid evolution within a birth-and-death model. As a three-

finger protein, PMF is already part of a rapidly evolving gene family, which has been 

well characterized in the context of snake venom TFPs. Given the hypothesis that male 

pheromones have duplicated to maximize the likelihood of stimulating any mating 

female, it would be expected that different isoforms are likely to have to different effects 

on female neurophysiology and behavior. Therefore, the aims of this dissertation were to 

characterize the molecular diversity, gene regulation, protein structure, and biological 

function of this hypervariable vertebrate pheromone, Plethodontid Modulating Factor, in 

response to 100 million years of female sexual selection. In chapter II, using a 

combination of DNA sequencing and mass spectral techniques, the diversity of PMF in 

P. shermani was characterized, models of molecular evolution examined, and novel 

qualities identified within the untranslated regions. In chapter III, mass spectroscopy and 

multidimensional NMR were used to determine the three dimensional structure of the 
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mostly highly expressed PMF isoform, possibly providing insight into PMF:receptor 

interactions. In chapter IV, female receptivity was measured for an individual isoform 

and the complete PMF complex, to assess how different isoforms might differentially 

affect female behavior. In chapter V, female vomeronasal responses were measured after 

treatment with different combinations of PMF isoforms. In chapter VI, mental gland 

development was studied to better understand the mechanisms underlying pheromone 

synthesis and gland hypertrophication. Finally, in chapter VII, the pheromone 

composition was characterized for P. cinereus, a species closely related to P. shermani 

with scratching delivery, to gain insights into how pheromone genes may have evolved 

across the transition from scratching to slapping delivery. The significance of these 

highly interdisciplinary studies are explained within each chapter, and further integrated 

in Chapter VIII.
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CHAPTER II - PROTEOMIC AND UTR ANALYSES OF A RAPIDLY 

EVOLVING HYPERVARIABLE FAMILY OF VERTEBRATE PHEROMONES 

 

Chapter Overview 

During the annual mating season, the mental gland of male plethodontid 

salamanders diverts its protein synthesizing capacity to the production of courtship 

pheromones that increase female receptivity. Plethodontid Modulating Factor (PMF), a 

highly disulfide-bonded 7 kDa pheromone, shows unusual hypervariability with each 

male expressing >30 isoforms. Twenty-eight PMFs were purified and matched by 

proteomic analyses to cDNA sequences. In contrast to coding sequence hypervariability, 

the untranslated regions (UTRs) show extraordinary conservation, no predicted 

microRNA binding sites and an overlapping triplet polyadenylation signal. Full-length 

cDNA sequencing revealed 3 PMF gene classes containing sub-classes of clustered 

sequences that support ≥13 PMF gene duplications. The unusual phenomena of 

hypervariable coding regions embedded within extremely conserved UTRs is proposed to 

occur by a disjunctive evolutionary process. During the short courtship season, the UTRs 

are hypothesized to subsume and coordinate the transcriptional and translational 

regulatory mechanisms of the mental gland. PMF, as a secreted protein with limited 

metabolic feedback in the male, is under minimal mutational restraint and thus has 

experienced highly accelerated rates of evolution. Consequently, plethodontid 

salamanders may provide a unique model for furthering our understanding of the 
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selective forces that determine differential rates of gene duplication and evolution in 

protein families.   
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Introduction 

 Relatively little is known about the evolution and coordinated regulation of genes 

in vertebrates that affect male and female mating behavior during annual reproductive 

cycles. However, for any trait to evolve through natural selection and propagate within a 

population, an adaptive advantage must exist.  The classical paradigm for protein 

evolution is that selective pressures act on the corresponding gene’s protein coding 

sequence (CDS) to maintain or modify structural and functional constraints [136]. In the 

modern context, additional forces that have been shown to affect protein evolutionary 

rates include, but are not limited to the following: protein expression level, gene product 

interactions within networks or metabolic pathways, protein dispensability, protein 

secretion, maintenance of protein folding fidelity, specificity of tissue or temporal 

expression during the life cycle, splicing-related constraints and gene duplication events 

[137, 138]. Many of these forces act in disproportionate yet integrated ways to drive 

protein diversification (positive selection) or to maintain structural elements (purifying 

selection). At the mRNA level, it is generally assumed that the untranslated regions 

(UTRs) that flank the CDS are under fewer functional constraints and are free to acquire 

mutations at a rate faster than that of the protein coding region [139]. In most examples 

of highly conserved UTRs (or more commonly, conserved cis-acting regulatory 

sequences contained within the UTRs), the protein coding region is more highly 

conserved [140-143]. In these examples, where protein function is often indispensable 

and sensitive to detrimental mutations, it is typically hypothesized that purifying selection 

or concerted evolution “protect” the genomic region from any and all mutagenesis [144]. 

However, multiple toxin systems have evolved to present with the unique phenomena of 
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multigene families with mRNAs containing variable protein coding sequences embedded 

within highly conserved UTRs [145-147]. In all cases, it is proposed that following gene 

duplication, mutations will arise and become fixed in the CDS at faster rates than the 

UTRs due to strong, pervasive positive selection. In the present study, we utilize a highly 

tractable salamander model to define and characterize a novel family of hypervariable 

vertebrate courtship pheromones that contain atypical, highly conserved UTRs in their 

mRNAs and correlate these cDNA sequences with expressed pheromone isoforms.  

The red-legged salamander, Plethodon shermani, is a species indigenous to a 

mountainous region of western North Carolina, USA.  For a brief ~2 month mating 

season, male P. shermani will develop a hypertrophied mental gland whose translational 

capacity is almost exclusively dedicated to pheromone production. During a unique 

courtship ritual, a male salamander delivers these pheromones to a female by “slapping” 

his mental gland on the female’s nares. The pheromones stimulate olfactory receptors in 

the female’s vomeronasal organ and increase her receptivity to mating [85, 87]. Chemical 

and proteomic analyses of mental gland extracts demonstrated that ~85% of the protein is 

composed of two major classes of pheromones [69].  A 22 kDa component termed 

Plethodontid Receptivity Factor (PRF) increases female receptivity and is related to IL-6 

cytokines [83, 85, 93].  The second major component encompasses a family of 7 kDa 

proteins termed Plethodontid Modulating Factor (PMF) [90].  PMF is closely related to 

the highly disulfide-bonded three-finger protein (TFP) superfamily, which includes snake 

venom α-neurotoxins and cytotoxins, xenoxins of Xenopus skin, and human Ly-6/uPAR 

proteins [102, 107, 148].  The “three finger” structure of TFPs arises from 8 highly 

conserved cysteine residues that form a constrained disulfide-bonded scaffold [108, 149, 
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150]. Through extensive duplication and mutation, the only shared consensus sequence 

between all TFPs is the motif CCXXXXCN occurring near the C-terminal end [110]. 

Although most vertebrate TFPs exist as single-gene copies [108, 120], venomous snakes 

often have several distinct TFP isoforms per species that result from gene duplication 

events [101, 151]. 

Analysis of the P. shermani pheromone extract by high performance liquid 

chromatography (HPLC) suggested >30 PMF isoforms were expressed in the mental 

gland [69].  Sequencing of  ~300 clones from a P. shermani pheromone gland cDNA 

library revealed that >70% coded for PRF and PMF isoforms, and included 32 unique 

PMF derived protein sequences [89]. Initial analyses of the PMF expressed sequence tags 

(ESTs) indicated the CDSs were highly dissimilar while both the 5’ and 3’ UTRs were 

highly conserved. Palmer et al. [90] designed primers based on the conserved UTRs to 

obtain 27 additional mental gland PMF coding sequences with ~37% average amino acid 

dissimilarity. In a subsequent study comparing PMF cDNAs from multiple species in a 

larger phylogenetic context, the observed amino acid dissimilarity placed PMF under 

strong positive selection [96]. While this work serves as an important preliminary 

investigation, it is largely dependent on the assumption that each mRNA equates to an 

expressed pheromone that is inevitably delivered to a female. In Saccharomyces, the 

correlation coefficient between global mRNA to protein levels was found to only be 

~0.5-0.6 [152]. A more proximate and pronounced example of this problem is PRF in P. 

shermani, where dozens of cDNAs have been identified at relatively uniform frequencies, 

yet three isoforms comprise >95% of the expressed PRF protein [69, 83, 94]. 

Structurally, PMF contains 8 disulfide-bonded cysteine residues that form a stable 
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molecular scaffold upon which sequence hypervariability may be mounted [96], but it is 

still unclear how much of this variation is functionally expressed and exposed to sexual 

selection in P. shermani females during courtship. 

 In order to more critically examine PMF’s molecular and structural diversity, 

experiments were performed (a) to determine the extent of PMF molecular diversity at 

the nucleic acid and protein levels in a single animal or pool, (b) to obtain unbiased, full-

length PMF sequences from the 5’-cap structure to polyA tail, and (c) to assess the 

evolutionary basis and significance of coding region hypervariability and UTR 

conservation.  
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Methods 

Gland excision and protein extraction 

Plethodon shermani males were collected during their breeding season from a 

single site in Macon Co., North Carolina, USA (35°10’48” N, 83°33’38” W).  Males 

were anesthetized in a mixture of 7% ether in water.  Ten mental glands were excised and 

immediately incubated in RNAlater (Ambion, Austin, TX) at 4°C overnight prior to 

storage at -20°C.  Pheromones were extracted following the methods of Rollmann et al. 

[83].  Approximately 100 glands were excised and pheromones were induced for 

secretion by incubation with 0.8 mM acetylcholine chloride in Amphibian Ringer’s 

Solution for ~60 minutes. Whole pheromone extract was centrifuged at 10,000 x g for 10 

minutes, the supernatant collected, and the centrifugation repeated before storage of 

supernatant at -80°C. Methods and animal care were approved by Oregon State 

University’s Institutional Animal Care and Use Committee (ACUP 3007 and 4053 to 

L.D. Houck). 

PMF cDNA amplification and sequencing 

Ten P. shermani mental glands were homogenized and total RNA extracted using 

the RNeasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol.  

The mRNA fraction was subsequently purified using the PolyATtract mRNA Isolation 

System IV (Promega, Madison, WI).  cDNA was synthesized from the purified mRNA 

using the Creator SMART cDNA Kit (Clontech, Palo Alto, CA), and subjected to routine 

PCR using primers (PMF5’F: 5’-

TTAAGGCCGAGGCGGCCCTGGAATCCAGAATGAG-3’; PMF3’R: 5’-

AATTGGCCATTACGGCCGCCATCTTGATTGCTTT-3’) based on conserved regions 



26 
 

of the PMF 5’ and 3’ UTRs. Primers included engineered SfiI restriction sites (Integrated 

DNA Technologies, Coralville, IA) for integration into the pDNR-LIB vector following 

restriction digest and ligation. Cloned PCR products were transformed into chemically 

competent TOP10 E. coli (Invitrogen, Carlsbad, CA) by the manufacturer’s protocol, and 

plated on LB/agar/chloramphenicol.  Clones were cultured in 150 μL Circlegrow (MP 

Biomedicals, Irvine, CA) with 25 μg/mL chloramphenicol, shaken for 48 hours at 37°C 

and aliquots taken for colony PCR using standard M13 primers. Products were purified 

using the QIAquick PCR Purification Kit (Qiagen, Valencia, CA) and supplied to the 

University of Louisville DNACore Lab for automated DNA sequencing. The methods 

were repeated for a single P. shermani mental gland to evaluate allelic variation. 

Additionally, PMF cDNA products with full-length UTRs were generated, cloned, and 

sequenced using the GeneRacer RLM-RACE Kit (Invitrogen, Carlsbad, CA) following 

the manufacturer’s protocol. In these reactions, either PMF5’F or PMF3’R was used in 

PCR with an adapter primer to allow for independent amplification of full-length 3’ and 

5’ UTRs as well as less biased amplification of CDSs.  

Processing and analysis of sequences 

Programs used for initial sequence processing are part of the DNASTAR package 

(Lasergene Version 7.1; DNASTAR, Madison, WI). SeqMan Pro was used to filter low 

quality sequences and assemble contigs.  Sequences verified as PMF were processed 

using EditSeq for translation of open reading frames and prediction of protein molecular 

weight.  After removal of repeat translations, sequences were aligned and statistics 

calculated using MegAlign with the ClustalW algorithm and Gonnet 250 protein weight 

matrix.  Unique sequences were compiled in FASTA format to serve as a database for 
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peptide mass fingerprinting, and were deposited in NCBI GenBank (Genbank accession 

numbers JF274283-JF274477). Gene trees for all PMF sequences were constructed using 

MEGA 5 [153] for 500 bootstraps by Nearest-Neighbor Joining for amino acid 

substitutions under a Poisson model with uniform rates. MEGA 5 was also used for 

calculating mean nucleotide and amino acid distances between PMF clusters [154]. Site-

specific codon substitution models with variable dN/dS rates (ω) estimated by maximum 

likelihood were fit using PAML 4 [155]. Models included M1a (nearly-neutral; 2 

parameters: 0 < ω0 < 1, ω1 = 1), M2a (selection; 3 parameters: 0 < ω0 < 1, ω1 = 1, ω2 ≥ 1), 

M7 (beta; 2 parameters: p and q for β-distribution with 10 ω-values in range [0,1]), and 

M8 (beta and ω; 3 parameters: p and q as in M7, and ω ≥ 1), with tests for positive 

selection performed by using likelihood ratio tests to compare M2a vs. M1a and M8 vs. 

M7 (with 2lnL compared to χ2) [155-158].  

Purification of PMF isoforms 

Mental gland pheromone extracts were purified by strong anion-exchange-HPLC 

(Mono Q; Pharmacia, Piscataway, NJ), reverse phase-HPLC (RP-HPLC) (C-18; Grace 

Davison Discovery Sciences, Deerfield, IL), and size exclusion chromatography (G-75 

Superfine; Pharmacia, Piscataway, NJ). All chromatographic separations were 

accomplished on a 2695 Alliance HPLC System equipped with a 2487 dual wavelength 

absorbance detector and Empower software (Waters Division, Milford, MA). The Mono 

Q column (0.5 x 5.5 cm) was eluted at 1 ml/min with a NaCl gradient in 50 mM Tris/HCl 

buffer, pH 8.0 (mixed gradient: 5 mM NaCl/min for 30 min, 10 mM NaCl/min for 15 

min, 20 mM NaCl/min for 10 min). The C-18 column (0.5 x 15 cm) was eluted with an 

acetonitrile gradient in 0.1% TFA. The G-75 column (1.6 x 15.5 cm) was eluted at ~10 
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mL/hr with 0.5 X phosphate-buffered saline (PBS).  Based on previous data from 

Feldhoff et al. [69], the PMF fractions were collected after separation by strong anion-

exchange-HPLC.  These fractions were pooled, concentrated using YM-3 Centriprep 

(Millipore, Billerica, MA), further purified by size exclusion chromatography, re-

concentrated, and re-chromatographed by strong anion-exchange-HPLC with individual 

peaks collected for final purification by RP-HPLC. 

Mass spectral analysis 

Picomole quantities of each PMF isoform were provided to the University of 

Louisville Biomolecular Mass Spectrometry Core Laboratory.  Intact protein mass was 

determined by electrospray ionization mass spectrometry (ESI-MS) using a Q-TOF API-

US (Waters Division, Milford, MA), while tryptic fragment fingerprints were acquired by 

either matrix-assisted laser desorption ionization followed by time-of-flight (MALDI-

TOF) using a TOF Spec 2E (Waters Division, Milford, MA) or liquid chromatography 

tandem mass spectroscopy (LC/MS-MS) using a LTQ Orbitrap XL (Thermo Scientific, 

Waltham, MA). SEQUEST software (Thermo Scientific, Waltham, MA) was used for all 

peptide fingerprinting analysis with a custom database constructed from plethodontid 

mental gland cDNA sequences. The precise masses of intact PMFs and those for tryptic 

peptides obtained after reduction and alkylation were matched to theoretical masses 

(peptide mass fingerprinting) derived from DNA sequences for PMFs. Predicted intact 

masses were adjusted by 8 Da to account for the protons lost in the 4 disulfide bonds.  
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Results 

 Initial RT-PCR for PMF using optimized primers for each UTR was performed 

using a pool of mRNA from 10 P. shermani male mental glands. Sequencing of 140 

clones yielded 65 derived protein sequences. After sequence alignment, 13 primary 

clusters were identified based on biochemical properties in the derived amino acid 

sequences (Figures 4, 5). Three major variations of the secretion signal peptide were 

observed, and the 13 clusters of sequences were grouped into larger classes (termed Class 

I, II, III).  Classes I, II and III contained 9, 2 and 2 sequence clusters, respectively. In this 

organizational scheme, a cluster is equivalent to a sub-class. When a gene tree was 

constructed for these sequences, each sequence cluster (except Id) fell into a single 

monophyletic clade (Figure 6). The average amino acid dissimilarity between all unique 

PMF sequences was calculated to be ~69% (including the secretion signal). While 

significantly higher than the value calculated by Palmer et al. [90], the difference can be 

attributed to two reasons. First, the primers used in the earlier study heavily biased the 

PCR products toward Class I PMFs, losing the diversity added from Classes II and III 

(Table 1). Second, there was not sufficient coverage to detect that the extremely high 

sequence diversity between clusters masks low within-cluster nucleotide dissimilarity 

(<10% for any cluster). Within each cluster, the majority of the detected amino acid 

variation within a cluster can be attributed to one or two single nucleotide polymorphisms 

(SNPs) relative to the cluster consensus sequence. To examine the extent of allelic 

variation in an individual male, PMF RT-PCR products were generated and sequenced 

from the mRNA of a single P. shermani mental gland. 
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Figure 4. Alignment of PMF cluster consensus sequences.  

Each sequence is labelled with its class and subclass abbreviation, with the first line 
being a group consensus sequence and a histogram showing identity consensus strength. 
Completely conserved residues in the mature peptide highlighted in black with white 
font, and additional residues matching the consensus are highlighted in grey. The black 
box surrounding the first 19 residues denotes the signal peptide. 
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Figure 5. Complete alignment of PMF cDNA translations.  

Alignment of derived protein sequences from the 99 unique PMF cDNAs, including a 
histogram of consensus strength and residues not matching the consensus highlighted in 
pink.  
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Figure 6. Gene tree of P. shermani PMF 
cDNAs.  

A topological gene tree of postulated PMF 
gene duplication events in P. shermani.  
Bold text indicates sequences with confirmed 
protein isoforms, and the corresponding 
branches leading to these sequences are also 
bolded. Posterior probabilities are listed for 
each branch. The tree is rooted against 
xenoxin from Xenopus laevis (Genbank 
accession # NM001085827).  
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Table 1. Mean distance between PMF clusters. Nucleotide (upper right) and amino 
acid substitutions (lower left) per site from averaging over all sequence pairs between 
PMF classes are shown. Analyses for amino acid substitutions were conducted using the 
JTT matrix-based model. 

  

 Ia Ib Ic Id Ie If Ig Ih Ii Iia Iib IIIa IIIb  

Ia  0.209 0.218 0.268 0.347 0.315 0.313 0.378 0.387 0.603 0.496 0.777 0.721 

N
u
c
le

o
ti
d

e
 D

is
ta

n
c
e

 

Ib 0.484  0.183 0.252 0.303 0.329 0.305 0.375 0.359 0.556 0.516 0.725 0.684 

Ic 0.535 0.447  0.161 0.231 0.242 0.257 0.326 0.316 0.441 0.416 0.712 0.691 

Id 0.667 0.607 0.415  0.204 0.200 0.217 0.279 0.267 0.547 0.554 0.792 0.770 

Ie 0.798 0.668 0.541 0.455  0.178 0.250 0.283 0.281 0.677 0.603 0.964 0.857 

If 0.699 0.801 0.649 0.509 0.413  0.249 0.289 0.297 0.657 0.640 0.935 0.799 

Ig 0.685 0.662 0.593 0.507 0.591 0.576  0.125 0.124 0.665 0.598 0.794 0.735 

Ih 0.833 0.972 0.927 0.680 0.650 0.673 0.310  0.088 0.655 0.641 0.826 0.832 

Ii 0.843 0.832 0.852 0.665 0.633 0.689 0.335 0.221  0.680 0.621 0.761 0.753 

Iia 1.116 1.013 0.837 1.064 1.267 1.206 1.202 1.115 1.200  0.209 0.731 0.801 

Iib 0.941 0.942 0.721 0.985 1.041 1.143 1.035 1.038 1.040 0.492  0.696 0.769 

IIIa 1.269 1.185 1.189 1.286 1.467 1.399 1.223 1.281 1.216 1.324 1.348  0.223 

IIIb 1.163 1.191 1.137 1.234 1.319 1.320 1.180 1.344 1.243 1.428 1.411 0.504   

 Amino Acid Distance   
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Sequencing of 96 clones yielded nucleotide sequences coding for 30 unique predicted 

proteins; surprisingly, 14 had not previously been detected, but all derived amino acid 

sequences closely matched a cluster consensus sequence. These data – obtained from an 

individual male and a 10-animal pool – indicate that allelic variation, in the absence of 

extensive gene duplication, cannot fully explain the extensive observed heterogeneity in 

PMF.  

 To further characterize the previously unsequenced parts of the 5’ and 3’ UTRs, a 

5’ cap to 3’ polyA-based RT-PCR method [159] was used to obtain cDNA copies 

representing full-length mRNAs. While the initial ESTs suggested conserved UTRs 

among all PMF isoforms, it is now reported that each of the 3 gene classes identified 

above, based on signal peptide sequences, also contains a unique highly conserved 5’ and 

3’ UTR pair that is >98% identical between any two sequences within each class (Figure 

7A) (Genbank accession numbers JF274382- JF274477). In general, the 5’ UTR is highly 

conserved among all 3 classes, with the major difference being unique insertions ~20 bp 

from the transcription start site in classes II and III (Figure 7B). In all three classes, the 

first 2-3 bp on the 5’ end of the 5’ UTR were inconsistently detected which may relate to 

transcriptional regulation. In contrast to the 5’ UTR, the 3’ UTR was unique in both 

length and sequence with no significant alignment observable among the three classes. 

Within each class, however, the 3’ UTR was ~98% conserved similar to the 5’ UTR. All 

3’ UTRs were very AU-rich, with Classes I and III containing the near-ubiquitous 6 

nucleotide polyadenylation signal –AAUAAA- (Class II utilizes a less common –

AUUAAA- motif) (Figure 7A and Table 2).  
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Figure 7. Summary of PMF UTR analysis by gene class.  

A) Schematic of PMF mRNAs to scale with the UTR consensus strength within each 
class marked by color. B) Alignment of the 5’ UTR consensus sequences per class with 
the top line representing the group consensus with a histogram of consensus strength. 
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Table 2. Summary of PMF 3’ UTRs by class. The consensus sequence, typical length, 
average AU content of each PMF 3’ UTR sorted by class, with known polyadenylation 
signals denoted by bold and underline. 

  

 Length 
(bp) 

AU-
content 

Consensus Sequence 

Class I 710 70% UCACACACUCUUCAGGAGAUGCUAUUGAGGAAUCAC
ACUGGCAUCCCAAUACAGACCAAGUAAACAAAAGCA
AUCAAGAUGGCUACCAGAGAAAACAAGGAGCAAAGC
UUCUUUGACGUAAAGUCAUGCUUCUCUAUUAUGUCU
UUGAUACAGUAACAUAAAUUGAUGUUUGCUAUAAAA
AUUAAAUUCCUUCUACAUGUCUCCUGAUGACUAUAG
UUCUGCCUAGUUAUUACUUUUCCAAAAAAUCUAUUA
AUCCAUAAUUUUUCUACUGGGUUAGUGUGAUGGGA
AGGAAUUACUCUAAAAAUCGUAUUUUGUUUCAAUGA
GAAUAUAAUUGGAAUGAUCUAAAUUAAUGAUGCCAC
CCAAGUUGUCACUUUUCUGAAAAUUCUGUAAUCUUU
UAUUUAUGUAUCUGAAAAUGUGGAAGCAGAAAAAUG
UAUUACUGUAUAAUAUAUCUUGGAUUAAUAUAACAA
AACAUGUAAAUUUCUGUAAAAAAAUCGACUGUGCAA
UCUUUUAUCCUUGAUGUUCUCAUUUUCUUUUCCAAA
CAAAUCUGUUUCUGAAUUUCCCAUGUAAUAACUGAA
UUUCAAACAUCAUUGUGUUAAACUGGAAGAAUGAUU
UUUGUUUGUUCUACAAUUCUCUAUAACUCAUCUCUG
GAAGUCUUGUUUGAUGGUGCUUUUACAAAUAAAUA
AAUAAAAGACCAUUUAUAUCUG 

Class II 190 62% UACUGUCUUUGGCAGAGGCGAAUAAAGAAUCGAGAU
GACCGCCUAACAGAGACCAAGUAAACAAAAGCAAUC
AAGAUGGCCACCAGAGAAAACAAAGAACAGGAAAUA
UGCCUUAAGAGUGAAUUCAGGCCUCUAUGUUAUGU
CUCUGAUAACAUGAAUGGCUUCCUAUAACAAUUAAA
UUCCUUCUAUAUGU  

Class III 650 or 
300 

68% GAUGGCCGGCCAAUACCUUCCAAGAACCAAAAAGCA
AGAAAUAUGGCGACCAGAGAAAUGAAAGCCCAGGAG
ACCGCUUCUUUAGAGUGAAGGCACGCCUCUGCAUU
GUGCCUCGGAUUACACGAAUUGUUUGGUCAGAAAAU
GUACUUUCCUUGCAUAGGUUUUCUGAUGACUGCAU
UUAGAAUUAUUUAAAUUUCUGAAAAGAAAAGUUACC
AAUGGGUUCUUUACUGGGUAAUGUGUAGGGUCAUG
CAUUGUGUUGAUAUAUUUUGGUAUCCAUAAUAAAAU
AAUUGAAUUUAUGUGAAAUUAUGACUUGCUUAUAGU
UAUCACUUUGGAGGAAAAUCCUGUAAGUUUUGUGUU
UUACAAGAAUAUGUGGAAAGGACGAGAAUGUAUUAG
UGUAAUUACAUAAUUUGUUUUUCUUUAACAAUUACA
UUUACGUAUUUUAAGAAAGUAGAAUCCUUUUUCCUC
AAUUUUCUAGAAUUGUAUUUCAAAUUAUUUCUGUUC
UUAAAUUUCCCUUGGAAUAAUUGAAUUUCUUAUAUU
UAUGUGUUUCUCUGGAAGAAAUAGUUUCAUUUUUGC
ACCAAUUCUCUGCAGCUUUUCUCUGGAAUUCUUCAU
UGCUGUUGCUUUUACAAAUAAAUGAAUGGCAUUAAA
AAUAAA 
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Furthermore, the Class I  3’ UTR contained a rare 14 nucleotide polyadenylation 

sequence AAUAAAUAAAUAAA, functionally equivalent to a triplet overlap 

(nucleotides 1-6; 5-10; 9-14) of the consensus hexanucleotide polyadenylation signal 

(AAUAAA). Because polyadenylation is a stochastic event, this repetitive sequence 

could function to increase the probability of successful polyadenylation and ensure 

maturation of Class I PMF mRNAs and/or explain the enhanced Class I PMF expression 

that we have observed. One also cannot rule out this rare polyadenylation signal playing a 

role in cytoplasmic deadenylation or polyadenylation processes since there are several 

polyU-rich regions within the 3’ UTR [160]. In the Class III 3’ UTR, there are two 

identified polyadenylation signals that permit a full-length ~670 bp form and a truncated 

~300 bp variant. However, the frequency of truncation may not be uniform across the 

Class III PMFs, with ~85% of the IIIa 3’ UTR clones having truncated 3’ UTRs 

compared to only ~25% of the IIIb 3’ UTR clones. During the analysis of 108 full-length 

cDNAs, we identified an additional 20 uniquely derived protein sequences. 

Cumulatively, 99 unique PMF predicted protein sequences from the P. shermani mental 

gland were identified (Genbank accession numbers JF274283-JF274381). 

 To assess the extent that the genetic variation was translated into mature 

pheromone components, proteomic analyses were performed on pheromones purified 

from P. shermani mental glands. In a previous study [69], the majority of PMF isoforms 

were found in the D to I fractions when whole pheromone extract was separated by 

strong anion-exchange-HPLC (Figure 8A).  
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Figure 8. Chromatographic separation of P. shermani pheromones.  

(A) Separation of pheromones by strong anion-exchange-HPLC. Fractions were termed 
A to I as displayed, with the B to C fractions primarily containing PRF and fractions D to 
I primarily containing PMF. Individual proteins in each fraction are identified by the 
fraction letter and a unique number. B) Separation of pheromones by reverse phase 
HPLC, with the principal PRF and PMF fractions labelled.  
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Through a combination of size exclusion-chromatography, strong anion-exchange-HPLC 

(Figure 8A) and reverse phase-HPLC (Figure 8B), 28 unique PMF isoforms were 

purified for subsequent analysis by two independent mass spectral (MS) techniques 

(Table 3). When compared to the cDNA database of 99 derived PMF protein sequences, 

26 isoforms were matched to predicted sequences by at least one MS technique, including 

12 isoforms that were fully characterized using both MS techniques. Ten of the 13 

clusters contained 1-3 expressed isoforms (Id contained 7 isoforms, with no isoforms in 

IIa or IIIa), with the majority being found in Class I. In the selection models constructed 

using PAML, there was significant evidence for strong positive selection acting on 

multiple amino acid residues across the P. shermani PMF gene tree (ω2 = 4.03 in M2a; 

Table 4). Multiple isoforms found within the same cluster were predicted to originate 

from more separate lineages (Figure 6), suggesting both diversification of function and a 

molecular selection to only translate the more distinct pheromone products. In a parallel 

analysis, PAML models for only translated PMF sequences predict similar substitution 

rates to those of all P. shermani PMFs for positively selected sites (ω2 = 3.99 in M2a; 

Table 4). The calculated rates for both analyses are faster than those predicted by Palmer 

et al. [96] for the larger clade within which P. shermani is found (P. glutinosus complex; 

ω2 = 2.75 in M2a). Substitution rates and models of molecular evolution could not be 

determined for individual clusters due to some clusters containing as few as 2 sequences. 

Importantly, four PMF isoforms (A1 = IIIb03; G = Ic03; H = Ib04; I = Id08) appear to be 

expressed at much higher levels, and together comprise >33% of the total PMF protein.  
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Table 3. Summary of mass spectroscopy data. A summary of the mass spectral data 
correlating purified proteins to cDNA sequences, including intact protein mass, number 
of tryptic peptides, and percent sequence coverage for the tryptic peptides (an asterisk 
indicates peptide sequencing by LC/MS-MS, and all other samples utilized MALDI-
TOF).  Sequences conclusively defined by both intact protein mass and >50% sequence 
coverage are marked in bold with gray background, while proteins with partial 
characterization using either technique contain a gray background and a white 
background indicates neither criterion was met. Partial characterization likely indicates 
proper class/cluster identification, but not necessarily sequence. 

  

Purified 
PMF 

Experimental 
Mass (Da) 

Theoretical 
Mass (Da) 

Sequence 
Matched 

# of 
Matching 
Peptides 

% 
Sequence 
Coverage 

A1 7478 7479 PshePMF IIIb02 5 77 
D1 n/a 9767 PshePMF IIIa02 2 40 
D2 n/a 6830 PshePMF Ie01 3 68 
D3 n/a 7269 PshePMF Ia03 2 62 
D4 n/a 6998 PshePMF Ii02 2 71 
D5 n/a 6295 PshePMF Id01 1 46 
D6 n/a 6829 PshePMF Ie02 2 66 
D7 n/a 7211 PshePMF Iib04 2 50 
D8* 7317 7314 PshePMF Id02 7 97 
D9* 7331 7314 PshePMF Id02 6 88 
D10* 6979 6976 PshePMF If01 5 97 
D11* 7020 7017 PshePMF Id13 6 100 
D12 6857 6873 PshePMF Id11 2 81 
E0 6829 6829 PshePMF Ie02 2 63 
E1a 6872 6873 PshePMF Ig08 3 97 
E1b 7146 7147 PshePMF Id06 4 100 
E2 7353 7353 PshePMF Id03 5 95 
E3 7048 7048 PshePMF Ii06 3 100 
E4 6912 7165 PshePMF Iib07 2 70 
E5 6915 6916 PshePMF Ii10 5 100 
E6 6994 6891 PshePMF Ig07 2 55 
E7 6948 6891 PshePMF Ig10 2 55 
E8 n/a 7165 PshePMF Iib07 2 70 
E9 n/a 6253 PshePMF Ic04 3 54 
F1 7234 7235 PshePMF Ih06 3 33 
G* 6256 6257 PshePMF Ic03 3 100 
H 7479 7479 PshePMF Ib04 4 100 
I 6943 6937 PshePMF Id08 2 52 
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Table 4. Models of positive selection for P. shermani PMFs. A summary of PAML 
results for site models of PMF evolution using tests for positive selection in both the 
complete P. shermani PMF gene tree and isoforms exclusively identified through 
proteomic analysis with models M2a vs. M1a and M8 vs M7. In both the M1a/M2a and 
M7/M8 model sets, inclusion of a free parameter of ω ≥ 0 was statistically significant, 
and parameter estimates were similar in all models. ** denotes p < 10-10. 

  

Model dN/dS logL Estimates of parmeters 2ΔL 

All PMF Sequences (n = 99) 
M1a (nearly-neutral) 0.8503 -4919.67 p0 = 0.15399, ω0 = 0.02767 

p1 = 0.84601, ω1 = 1.00000 
 

 

M2a (selection) 2.68 -4796.61 p0 = 0.12902, ω0 = 0.00200 
p1 = 0.27334, ω1 = 1.00000 
p2 = 0.59764, ω2 = 4.03091 

 
 
246.12** 

M7 (beta) 0.7312 -4904.68 p = 0.18799, q = 0.06909 
 

 

M8 (beta+ω) 2.50 -4793.77 p1 = 0.58733, ω1 = 3.82353 
p0 = 0.41267 
p = 0.01906, q = 0.01069 

 
 
221.82** 

Expressed PMF Sequences (n = 23) 
M1a (nearly-neutral) 0.82 -2634.05 p0 = 0.19423, ω0 = 0.04906 

p1 = 0.80577, ω1 = 1.00000 
 

 

M2a (selection) 2.66 -2587.36 p0 = 0.16064, ω0 = 0.03892 
p1 = 0.23147, ω1 = 1.00000 
p2 = 0.60789, ω2 = 3.99185 

 
 
93.38** 

M7 (beta) 0.62 -2636.35 p = 0.03280, q = 0.01870 
 

 

M8 (beta+ω) 2.69 -2586.85 p1 = 0.62655, ω1 = 3.98878 
p0 = 0.37345 
p = 0.02251, q = 0.01949 

 
 
99.0** 
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However, cDNA corresponding to mRNAs for these abundant protein isoforms were not 

found at significantly higher abundance in sequenced clones, suggesting disproportionate 

translation rates of PMF mRNAs. With the exception of disulfide bonds, no other post-

translational modifications were observed in any PMF isoform. 
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Discussion 

As previously reported, PMF is a hypervariable vertebrate courtship pheromone that 

shows extensive molecular variability. For the first time, this molecular variability has 

been ordered into 3 gene classes with 13 sequence clusters based on coding sequence 

similarity and used to characterize purified proteins. Since the PMF isoforms were 

purified from a pooled sample extracted from ~100 mental glands, the individual purified 

PMF proteins likely represent those most highly expressed in the population and 

responsible for major bioactivity. Although specific functions are not known, typically 

only 1-3 PMFs from each cluster are highly expressed, thus each cluster may be fulfilling 

a unique biological role (e.g. receptor-, cell- or tissue-specific targeting), with the most 

abundant forms likely conferring the highest selective advantage. Interestingly, recent 

behavioral data also suggest that PMF isoforms act synergistically such that only a 

complex but relatively specific blend of isoforms can increase female receptivity 

(Wilburn and Houck, unpublished data). This is also in light of P. shermani PMFs 

showing faster substitution rates for sites under positive selection than those averaged 

across the sampled taxa in Palmer et al. [96]. Previously, the SNP variants were proposed 

to be alleles or rare gene duplications [90]. Although the exact number of PMF genes 

remains unknown, our data support many gene duplications and their retention as 

functional genes as the cause of male PMF hypervariability. While alternative splicing is 

possible, our preliminary data (Wilburn and R Feldhoff, unpublished) suggest PMF 

shares a similar gene structure to other TFP members with 3 exons/2 introns [101, 161]. 

In all cases, one exon includes nearly all of the signal peptide while the other two exons 

encode 3 and 5 cysteine residues, respectively. Unfortunately, efforts to fully sequence all 
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of the PMF genes has been impeded by a number of factors: (1) the P. shermani genome 

is exceptionally large (30 Gb or ~10x the size of the human genome) [162], (2) 

salamander introns are typically >10x larger than those in vertebrate orthologs [163], (3) 

there exist several processed PMF pseudogenes that compete for primer binding during 

PCR, and (4) the number of duplications within a cluster make it difficult to target a 

single locus. Current data, however, supports at least one PMF gene for each of the 13 

(consensus) sequence clusters shown in Figure 4. In line with other duplicated TFPs, we 

postulate that multiple tandem gene duplication events have facilitated a rapid expansion 

of PMF’s functional breadth in modulating female behavior through several distinct 

isoform classes – each with a unique biological target. The extraordinary conservation of 

the 5’- and 3’-UTRs suggests important functions for regulating PMF expression. 

Preliminary sequencing of developing mental gland transcriptomes reveals that synthesis 

of pheromone mRNAs precedes efficient translation, further alluding to post-

transcriptional mechanisms as being the major process by which PMF expression is 

regulated (Wilburn and R Feldhoff, unpublished data). Both RNA binding proteins and 

microRNAs (miRNAs) have been recognized as major regulators of mRNA stability and 

translational efficiency [143, 164-166]. Because longer 3’ UTRs often contain additional 

regulatory targets that reduce expression (e.g. miRNA binding sites) [167], it is 

noteworthy that the most abundant protein isoforms are those associated with long 3’ 

UTRs in the class I and IIIb PMFs (Figure 6A). Additionally, no predicted miRNA 

targets were found within the PMF UTRs [168]; while available databases contain 

primarily mammalian miRNAs, it seems unlikely that amphibian miRNAs are directly 

targeting PMF mRNAs for degradation given the extreme abundance of the pheromone 
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transcripts and their efficient translation in the mental gland.  While there is no consensus 

method for predicting targets of RNA binding proteins, the extensive AU-content in the 

3’ UTR could serve as a platform for AU-binding proteins, such as the HuR/ELAV 

proteins known to influence mRNA stability and translation [139, 141]. In gametogenic 

cells, the DAZL family of RNA-BPs promotes translational activation by directly 

recruiting the poly(A) binding protein to deadenylated mRNAs [169-171]. Interestingly, 

the Class I PMF 3’ UTR contains the U-rich predicted consensus DAZL-binding 

sequence [170, 172]; however, RT-PCR experiments to amplify DAZL from mental 

gland cDNA have been unsuccessful. Given the mental gland’s unique developmental 

and functional characteristics, regulatory proteins at the translational and/or 

transcriptional levels are likely involved in shifting the gland, prior to the annual mating 

season, from development and differentiation to pheromone production. Importantly, 

translational regulation of this type would add another layer of plasticity for PMF as a 

chemical signal by controlling the selective expression of different isoforms using 

regulatory proteins that would now be under indirect sexual selection. Targeted research 

into the specific RNA-BPs that may regulate these mechanisms is required. 

 The high CDS dissimilarity in the context of highly conserved UTRs represents 

an apparent contradiction to the dogma by which protein sequences and their 

corresponding genes are assumed to evolve in response to selective pressure. Across 

dozens of sampled plethodontid species, in the mature 7 kDa pheromone isoforms, 

purifying selection has maintained PMF’s structurally constrained disulfide bonded 

scaffold (8 Cys; 4 disulfide bonds), along with the strictly conserved N-terminal Leu and 

C-terminal tripeptide –Leu/Val-Cys-Asn. These conserved residues, that are similarly 
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spaced in each cluster, also support gene duplication events as the basis for the high 

number of expressed PMF isoforms in P. shermani and closely related species [96].  

Thus, rather than being uniform or random, for the first time the diversity of PMF is more 

accurately grouped into 13 sequence clusters within 3 major gene classes containing 

highly conserved UTR pairs. Expression patterns have evolved such that only the most 

divergent PMFs are highly translated, maximizing the diversity of the pheromone 

mixture. While the preceding comments emphasize amino acid variation, it is important 

to note that most of the variation within a cluster is produced by 1-2 SNPs.  Therefore, 

within a cluster, any two PMF nucleotide sequences are >99% identical. Interestingly, the 

similarity of the UTRs within-cluster and within-class do not significantly deviate (~98% 

for both). Therefore, it is proposed that while purifying selection across the members of 

each of the 3 classes maintains the UTRs, after CDS neofunctionalization, equally strong 

selection conserves the protein coding sequence and the core structural characteristics 

within each cluster. Thus, we propose that different modes of evolution are acting 

independently on the coding regions and regulatory UTRs of PMF genes. For the protein 

coding region, a plethora of isoforms have been produced through multiple gene 

duplications that rapidly diverged under positive selection to assume different biological 

roles, resulting in the sequence clusters now maintained through purifying sexual 

selection. It is noteworthy that rapid evolution of tandemly duplicated genes is common 

in some gene families [173, 174]. In Hessian flies, a family of salivary protein-coding 

genes has duplicated and undergone positive selection to generate 7 distinct genes within 

a 15 kb genomic region [147]. Similarly, in several species of snakes, multiple 

phospholipase A2 genes have duplicated to form multigene families with 2-4 copies each. 
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In these examples, positive selection drives diversification of the CDS while the UTRs 

are under neutral evolution [146]. Because of the lack of genomic sequences, we cannot 

directly determine if the PMF UTRs are under neutral or purifying selection. However, 

since the 3’ UTR between the three gene classes could not be easily aligned, it is 

hypothesized that there must have been significant mutation acquisition (equal to or 

greater than that in the CDS) shortly after the earliest gene duplication events that yielded 

the three classes, and thus the conservation observed now is due to purifying selection. 

With there being potentially dozens of PMF genes in the P. shermani genome, secreted 

courtship pheromones, which are not involved in attraction and only serve to increase 

female receptivity, may have even fewer mutational constraints such that this protein 

family could reflect the maximum rates of vertebrate gene duplication and functional 

evolution.   

 We believe this external mode of trait selection is analogous to that for venomous 

snakes and cone snails whose toxins must instantly paralyze a variety of prey. As an 

essential nutritional source, prey immobilization acts as a natural form of bioassay to 

provide a selective force for adaptive toxin evolution. In our model, the female P. 

shermani salamander population may possess a variety of cell or tissue-specific receptors 

whose activation enhances mating success. Over millions of years, random females likely 

represent an extreme selective force to drive accelerated gene duplication and protein 

diversification in reproductive males. However, this unique model system has another 

major component: the highly conserved UTRs, common to all PMFs, which likely have 

an important regulatory function. While presumably under the same selective pressures, 

the evolutionary decoupling of the CDS and UTRs explains how the potential of PMF as 
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a pheromone signal can be rapidly expanded and exploited to affect mating success.  By 

using multiple genes with highly conserved regulatory UTRs, expression of dozens of 

PMF genes during the short mating season (that follows the annual mental gland 

development and differentiation process) is uniformly regulated in response to external 

and physiological cues. 
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Conclusions 

 PMF is a hypervariable vertebrate courtship pheromone that modulates male 

reproductive success through an arsenal of distinct protein isoforms which have resulted 

from numerous gene duplication events in three separate gene families. While duplication 

of small, highly disulfide-bonded proteins have been utilized in multiple toxin systems 

[115, 175], PMF as a pheromone signal is unique in vertebrates for both the extent of 

molecular variability and the extreme conservation of the UTRs. Within the three major 

classes, multiple sequence clusters were identified with translated PMF products likely 

performing unique biological roles.  The most abundant isoforms may represent the 

selective optima in the population at this time. The novel, highly conserved, AU-rich 5’- 

and 3’-UTRs are suggested to serve as platforms for RNA binding proteins that permit 

PMF to usurp the pheromone gland’s translational machinery. The unique nature of the 

pheromone mRNAs suggests that, over millions of years, independent evolutionary 

forces have driven a stabilization of the regulatory UTRs while promoting, through gene 

duplication and mutation, expansion of PMF’s functional roles during courtship. Further 

studies of this unusual evolutionary alliance between highly conserved UTRs and gene 

duplication events, for proteins that play a significant role in enhancing mating success, 

may provide new insights into transcriptional and translational regulation in vertebrates.  
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CHAPTER III - STRUCTURAL INSIGHTS INTO THE EVOLUTION OF A 

SEXY PROTEIN: NOVEL TOPOLOGY AND RESTRICTED BACKBONE 

FLEXIBILITY IN A HYPERVARIABLE PHEROMONE FROM  
THE RED-LEGGED SALAMANDER, PLETHODON SHERMANI 

 

Chapter Overview 

In response to pervasive sexual selection, protein sex pheromones often display 

rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, 

the general dogma is that structure is maintained even as sequence or function may 

rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) 

superfamily: a diverse class of vertebrate proteins co-opted for many biological functions 

– such as components of snake venoms, regulators of the complement system, and 

coordinators of amphibian limb regeneration. All of the >200 structurally characterized 

TFPs adopt the namesake “three-finger” topology. In male red-legged salamanders, the 

TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such 

that, through extensive gene duplication and pervasive sexual selection, individual male 

salamanders express more than 30 unique isoforms. However, it remained unclear how 

this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and 

multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, 

PMF-G. The high resolution structural ensemble revealed a highly modified TFP 

structure, including a unique disulfide bonding pattern and loss of secondary structure, 
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that define a novel protein topology with greater backbone flexibility in the third peptide 

finger. Sequence comparison, models of molecular evolution, and homology modeling 

together support that this flexible third finger is the most rapidly evolving segment of 

PMF. Combined with PMF sequence hypervariability, this structural flexibility may 

enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of 

structural conformers. We propose that the flexible third finger plays a critical role in 

PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF 

to still bind its receptor(s) without the need for complementary mutations. Consequently, 

this unique adaptation may establish new paradigms for how receptor:ligand pairs co-

evolve, in particular with respect to sexual conflict. 
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Introduction 

Pheromone signaling is an essential means of communication for many animals to 

acquire information for a vast array of qualities on other individuals, including species, 

gender, reproductive status, and disease state [10, 176-178]. For nearly all characterized 

systems, pheromone molecules are perceived via specialized receptors within a target’s 

olfactory system, and in turn elicit specific, pre-programmed behavioral and/or endocrine 

responses [5]. For more than 50 years, the earliest and best characterized pheromone 

systems have been those in insects, commonly employing small, volatile odorants as 

chemoattractants [10, 14]. The evolution of such systems has been extremely difficult to 

study, as these odorant molecules are generally the products of complex enzymatic 

cascades [179]. In contrast, multiple vertebrate systems utilize peptide or protein 

pheromones to act as chemical signals; as direct gene products, these pheromones are 

more tractable to both biochemically synthesize and investigate their evolutionary origins 

[87]. Because pheromones are ligand molecules that bind to target receptors, it is critical 

to deduce the 3-dimensional structure of pheromone molecules in order to address how 

different selective mechanisms may be acting in a co-evolutionary receptor-ligand 

framework. To date, protein structures have only been determined for two mouse 

pheromones: a major urinary protein (MUP) that affects male aggressive behavior [27, 

33] and the male sex pheromone exocrine gland-secreting peptide 1 (ESP1) [23, 38]. 

Consequently, little is known about the structural evolution of pheromones in non-

mammalian vertebrates. 

 Over the past 25 years, plethodontid salamanders have served as a valuable model 

for investigating the mechanisms by which protein pheromones regulate behavior and 
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reproductive success [44, 87]. As basal tetrapods, salamanders are an excellent model to 

study the origins of terrestrial pheromone signaling in vertebrates. For more than 100 

million years, plethodontid salamanders have utilized a unique courtship behavior, 

termed tail straddling walk, to coordinate insemination and facilitate mating success [78]. 

In the species Plethodon shermani, during tail straddling walk, male salamanders will 

periodically deliver non-volatile, proteinaceous courtship pheromones to the female by 

“slapping” an enlarged gland on his chin (the mental gland) to the female’s nares [69, 

83]. After a male has applied pheromone to the female that he is courting, the protein 

molecules diffuse into the female’s olfactory chamber where they bind to receptors on 

vomeronasal neurons, which project to specific regions of the brain, and influence the 

female’s mating behavior [70, 86, 92]. It is noteworthy that these pheromones are applied 

after courtship has initiated, and function to regulate female mating behavior: they are not 

chemoattractants [83]. Chemical analysis of the P. shermani pheromone composition 

revealed two major components: Plethodontid Receptivity Factor (PRF), a 22-kDa 

protein related to IL-6 cytokines, and Plethodontid Modulating Factor (PMF), a 7-kDa 

protein related to the three-finger protein (TFP) superfamily [69, 91, Chapter II]. Both 

PRF and PMF persist as multi-isoform blends; however, compared to PRF with only 3 

isoforms which share ~95% identity, individual male salamanders synthesize more than 

30 unique PMF isoforms with ~30% amino acid identity [Chapter II]. Multiple studies of 

molecular evolution have demonstrated that PMF is under pervasive positive selection, 

presumably in response to sexual selection from co-evolving female receptors [96, 

Chapter II].  
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   The TFP superfamily, of which PMF is a member, includes many diverse 

proteins such as snake neuro- and cytotoxins [115, 120], regulators of the complement 

system [105], membrane receptors in mammalian tissue re-organization [106], and 

factors that facilitate amphibian limb regeneration [104]. One central idea in the field of 

protein structural biology is that, throughout protein evolution, structure is generally 

more highly conserved than sequence, often as a consequence of functional requirements 

that promote purifying selection [180]. In support of this, while more than 90,000 

structures have been deposited in the PDB, all of these proteins adopt a relatively small 

number of topological folds (~1300 in CATH) [181, 182]. Furthermore, studies in 

evolutionary biochemistry further suggest that only a few high-impact mutations on these 

conserved topologies are necessary for the evolution of novel functions [183]. The TFP 

superfamily well exemplifies this phenomenon. Establishing a well-resolved TFP 

phylogeny has been difficult, as homologs from different species share little amino acid 

similarity and are difficult to align [104, 110]; however, the defining feature of this 

superfamily is the conserved protein structure of two parallel β-sheets (2- and 3-stranded) 

arranged in a “three-finger” shape. Importantly, this shape is highly stabilized by 8 

conserved cysteine residues that adopt a canonical disulfide bonding pattern (1-3, 2-4, 5-

6, 7-8). To date, more than 200 TFP structures have been solved by X-ray 

crystallography or multidimensional NMR, and all share this canonical disulfide bonding 

pattern and three-finger shape [104]. 

 PMF has many unique characteristics compared to nearly all other TFPs, despite 

preservation of the 8 conserved cysteine residues and their relative spacing. First, in 

plethodontid salamanders, PMF has been subjected to exacerbated gene duplication and 
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pervasive positive selection, compared to most organisms where TFPs with particular 

functions are found as single gene copies, and snake venom glands have been specially 

noted for having up to 5 isoforms of different toxins [108, 120]. Second, while most TFPs 

carry a net positive charge, nearly all P. shermani PMFs are highly negatively charged 

(mean charge = -9.1). Third, as the only pheromone TFP, rather than being under natural 

selection like other TFPs, PMF was novel as the first identified TFP under sexual 

selection. Despite extensive sequencing and proteomic analyses [Chapter II], it remained 

unclear how the evolution of PMF hypervariability in response to sexual selection might 

influence the archetypal TFP structure. Therefore, in order to better characterize the 

structure:function relationships of the PMF pheromone family, the aim of this study was 

to determine the complete 3D structure of the most abundant PMF isoform (Isoform G; 

Genbank Accession #JF274292). 
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Materials and Methods 

Ethics statement 

Methods and animal care were approved by Oregon State University’s 

Institutional Animal Care and Use Committee (ACUP 3007 to L.D. Houck). Animals 

were anesthetitized prior to surgery using diethyl ether, minimizing any pain, and post-

surgical survival rate was >99%. All salamanders were collected under permits obtained 

from the North Carolina Wildlife Resources Commission. 

Reagents 

All oligonucleotides were synthesized by Integrated DNA Technologies 

(Coralville, IA). Accuprime High Fidelity (HF) Taq Polymerase System, the EasySelect 

Pichia Expression Kit (including the vector pPICZαA), Zeocin, ultra-pure agarose, and 

TOP10 chemically competent E. coli were purchased from Invitrogen (Carlsbad, CA). 

All restriction enzymes, T4 DNA Ligase, and additional PCR supplies were purchased 

from New England Biolabs (Ipswich, MA). GFX gel band purification system was 

purchased from GE Healthcare (Piscataway, NJ). QIAquick PCR purification system was 

purchased from Qiagen (Valencia, CA). Sep-Pak Light C-18 cartridges were purchased 

from Waters Division (Milford, MA). Centriprep ultrafiltration units were purchased 

from Millipore (Billerica, MA). Trypsin, trifluoracetic acid (TFA), and all salts were 

purchased from Sigma-Aldrich (St. Louis, MO). Yeast media reagents, Whatman DEAE 

cellulose, and acetonitrile (ACN) were purchased from Fisher Scientific (Pittsburgh, PA). 
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High Performance Liquid Chromatography 

High resolution strong-anion exchange HPLC (Mono Q; Pharmacia, Piscataway, 

NJ), reverse phase-HPLC (RP-HPLC) (C-18; Grace Davison Discovery Sciences, 

Deerfield, IL), and size exclusion chromatography (G-75 Superfine; Pharmacia, 

Piscataway, NJ) was accomplished on a 2695 Alliance HPLC System equipped with a 

2487 dual wavelength absorbance detector and Empower software (Waters Division, 

Milford, MA). The strong anion exchange column (0.5 x 5.5 cm) was eluted at 1 mL/min 

with a NaCl gradient in 50 mM Tris/HCl buffer, pH 8.0. The C-18 column (0.46 x 15 cm) 

was eluted with an ACN gradient in 0.1% (v/v) TFA at 1 mL/min. The G-75 column (1.6 

x 15.5 cm) was isocratically eluted at ~10 mL/hr with 0.5 X phosphate-buffered saline. 

Mass spectral analysis 

Picomole quantities of PMF-G were provided to the University of Louisville 

Biomolecular Mass Spectrometry Core Laboratory.  Intact protein mass was determined 

by electrospray ionization mass spectrometry (ESI-MS) using a Q-TOF API-US (Waters 

Division, Milford, MA), while proteolytic fragment fingerprints were acquired by liquid 

chromatography tandem mass spectroscopy (LC/MS-MS) using a LTQ Orbitrap XL 

(Thermo Scientific, Waltham, MA). SEQUEST software (Thermo Scientific, Waltham, 

MA), MassMatrix v.1.3.2 [184], or custom Python scripts built around Extract-MSn 

(Thermo Scientific, Waltham, MA) were used for all peptide analyses. The average 

masses of intact proteins and monoisotopic masses of peptides were matched to 

theoretical average or monisotopic masses, respectively. Predicted intact masses were 

adjusted by 1.0078 Da per cysteine to account for the protons displaced in disulfide 

bonds. 
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Purification of natural PMF-G 

 P. shermani males were collected during their breeding season from a single site 

in Macon Co., North Carolina, USA (35°10’48” N, 83°33’38” W). Males were 

anesthetized in a mixture of 7% (v/v) diethyl ether in water. Pheromones were extracted 

following the methods of Houck et al. [93]  Approximately 100 glands were excised and 

pheromones extracted with 0.8 mM acetylcholine chloride in Amphibian Ringer’s 

Solution for ~60 minutes, centrifuged at 14,000 x g for 10 minutes, the supernatant 

collected, and the centrifugation repeated before storage at -80°C. PMF isoform G was 

purified from the whole pheromone extract using the methods described in Chapter II. 

Preparation of rPMF-G expression strain 

The P. pastoris codon optimized sequence for the most abundant PMF isoform, 

PMF-G (Genbank Accession # JF274292), was predicted by web-based software from 

IDT (Coralville, IA). Six overlapping and complementary oligonucleotides based on the 

sequence were prepared, and used in assembly PCR based on the methods of Stemmer et 

al. [185]. Purified PCR products were ligated to the vector pPICZαA and cloned into 

TOP10 chemically competent E. coli using standard procedures. Plasmid DNA from 

Zeocin-resistant clones was purified, sequenced to validate the construct, linearized by 

restriction digest with SacI, and transformed into P. pastoris strains KM71H and GS115 

using the EasySelect Pichia Expression Kit. Zeocin-resistant P. pastoris clones were 

screened for recombination by colony PCR using primers flanking the AOXI locus. Two 

positive clones from each P. pastoris strain were used for small-scale protein expression 

following the manufacturer’s protocols with products analyzed by SDS-PAGE. 
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Large scale preparation of rPMF-G 

 For each preparation, 400 mL BMGY (100mM potassium phosphate, pH 6.0, 2% 

peptone, 1% yeast extract, 1.34% YNB, 4 x 10-5% biotin, 1% glycerol) was inoculated 

with strain KM71H clone 1 and incubated at 29°C with shaking at 275 rpm for ~40 

hours. Cells were collected by centrifugation, resuspended in 1 L BMM (100mM 

potassium phosphate, pH 6.0, 1.34% YNB, 4 x 10-5% biotin, 1% methanol) with an initial 

optical density (600 nm) of 0.5, and allowed to continue shaking for ~72 hours with 1% 

methanol added every 24 hours. Cultures were then centrifuged at 4000 x g for 20 

minutes, the supernatant collected, filtered, and pumped over a 25 mL DEAE-cellulose 

column pre-equilibrated in 50mM NaCl/50mM Tris/HCl, pH 8 at ~0.8 mL/min. The 

column was then washed with 150 mL 100mM NaCl/1% Triton X-100/1M Urea/50mM 

Tris-HCl, pH 8 and the sample eluted in 75 mL 300mM NaCl/1% Triton X-100/1M 

Urea/50mM Tris-HCl. The sample was twice diluted (1:4) with 1% Triton X-100/1M 

Urea/50mM Tris-HCl, pH 8 and concentrated to ~2.5mL using a YM-3 Centriprep. The 

sample was then treated with trypsin in a 1:40 mass ratio overnight at 37°C, products 

separated by strong anion exchange HPLC (linear gradient: 0-500 mM NaCl in 50 mM 

Tris-HCl, pH 8 at 10 mM NaCl/min), fractions collected, pooled, and further purified by 

two rounds of RP-HPLC (linear gradient: 0-40% ACN at 1% ACN/min). 

Validation of rPMF-G structure 

 Monoisotopic intact protein masses were obtained for both PMF-G and rPMF-G 

using ESI-MS. Both proteins were reduced with dithiothreitol (DTT) and alkylated with 

iodoacetamide (IAA) prior to mass acquisition by ESI-MS. Tryptic fragments were 

sequenced by LC/MS-MS. Far-UV circular dichroism (CD) spectra (185-260 nm) were 
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acquired for native and rPMF-G by averaging 5 scans across a 0.1-cm path at 0.2 nm 

intervals using a Jasco J-810 Spectropolarimeter, and curves processed using the R 

function loess.smooth with smoothness parameter 0.05; α-helix and β-sheet content were 

estimated using the web application K2D3 [186]. The state of oligomerization was 

determined by analytical ultracentrifugation using a Beckman XLA analytical 

ultracentrifuge.  The C(S) profile showed a monodisperse sample with an S value 

consistent with a monomer. The molecular weight derived from the sedimentation 

coefficient, diffusion coefficient and calculated partial specific volume was within 10% 

of the expected mass. 

PMF partial reduction analysis 

 Partial cystine reduction was accomplished at low pH in order to prevent disulfide 

bond reformation and scrambling. Both natural and rPMF-G were subjected to restricted 

reduction using a trialkyphosphine (TCEP; tris-[-2-carboxyethyl]-phosphine; Pierce) at 

pH 3 in 0.1% TFA for 20 minutes at room temperature followed by immediate injection 

onto the C-18 RP-HPLC column at pH 2.2 (linear gradient 17.5% to 35% ACN at 0.35% 

ACN/min).  Individual peaks corresponding to the cleavage of 0, 1, 2, 3 or 4 disulfide 

bonds were collected by hand. Volume and ACN concentration were reduced by 

incomplete lyophilization. Samples were rapidly alkylated by dropwise addition of the 

protein solution into 500 µL IAA (5 mM in 100 mM Tris, pH 8) while vortexing for ~1 

min before the pH was lowered by addition of 500 µL 5% formic acid.  Alkylated 

samples were purified using a C18 Zip-tip, divided into 4 aliquots, and diluted with 100 

mM ammonium bicarbonate. DTT (7.5 mM) was added to half of the samples, and all 

samples were subjected to overnight proteolysis with either chymotrypsin or AspN such 
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that all reduction/protease combinations were performed. Peptide fragments were purified 

by C18 Zip-tip, and analysed by LC/MS-MS. 

NMR structural studies 

 Milligram quantities of 15N-labeled rPMF-G were prepared using the methods 

above with 1.5g/L 15N-ammonium sulfate (99%) added to the BMM expression media, 

and prepared at ~2.2mM in 50mM KCl/10mM Na2HPO4, 90% H2O/10% D2O, pH 7. 

NMR spectra were recorded at 18.8 T on a Varian Inova spectrometer equipped with a 5 

mm inverse triple resonance pfg probe at 20°C. Spectra were processed using NMRPipe 

[187]. NMR assignments were obtained using a combination of 2D/3D experiments 

(using 1H and 15N, with natural abundance levels of 13C): TOCSY-15N-HSQC, 2D-

TOCSY, 2D-COSY, H15NCO, 15N-HSQC, 13C-HSQC, NOESY-15N-HSQC, and 2D-

NOESY. All NMR spectra were acquired in phase sensitive mode with solvent 

suppression by Watergate [188]. Spectra were analyzed using SPARKY (T. D. Goddard 

and D. G. Kneller, SPARKY 3, University of California, San Francisco). Near complete 

assignment of all backbone atoms (98% non-proline 1HN, 91% 15N, 100% 1Hα, 96% 13Cα, 

and 46% 13CO) and 97% side-chain 1H atoms were obtained. Structure calculations were 

performed using CYANA [189, 190] with automatic assignment to integrated 2D-

NOESY and NOESY-15N-HSQC peaks. Dihedral angle restraints were obtained using 

predictions from TALOS+ [191]. HN exchange rate was measured by lyophilizing rPMF-

G, the sample resolubilized in 99.99% D2O, and 15N-HSQC spectra recorded every hour 

for 24 hours. Amide groups with half lives greater than 2.5 hours were examined for 

possible H-bonding partners, and defined using the CYANA hbond function if the 

distance between the groups was less than 2.5 Å. Cα and Cβ chemical shifts suggest all 



62 
 

cysteine residues are oxidized and disulfide bonded [192]; alternative disulfide patterns 

(for both candidate PMF-G patterns as well as the canonical TFP pattern) were included 

during CYANA constraint calculation, and the 1-2, 3-6, 4-5, 7-8 pattern yielded the 

lowest average target score and fewest consistent constraint violations, strongly 

supporting that it is the correct disulfide bonding pattern. The final ensemble of 20 out of 

100 structures did not contain structural or van der Waals violations >0.30 Å. For 

dihedral angles, there were no violations >3.2°, and 88.9% of all dihedral angles were 

found in the most favored regions of the Ramachandan plot, with 9.0% in the additionally 

allowed regions and the remaining 2.1% in the generously allowed regions. Spin-lattice 

(longitudinal) relaxation rate constants (R1), spin-spin (transverse) relaxation rate 

constants (R2), and 15N[1H] steady-state heteronuclear NOEs of the backbone 15N nuclei 

were measured. Delay values used were 10, 30, 50, 90, 130, 170, and 210 ms for R2 

experiments, and 10, 80, 150, 300, 500, 750, and 1000 ms for R1 experiments, all with a 

recovery delay of 5 seconds. For 15N[1H] NOE measurements, two spectra were acquired 

with or without 5 seconds of proton saturation during the recovery delay, with the both 

saturated and unsaturated experiments having a relaxation delays of 5 seconds. All NMR 

data were deposited in the BMRB (19660), and the structural ensemble deposited in the 

PDB (2mhy). 

Structural analysis 

 All 3D protein models were produced in PyMOL (v1.3, Schrodinger, LLC), and 

regular secondary structure defined using the DSS function in PyMOL. Surface 

renderings with charge distribution are color coded according to amino acid type: acidic 

(red: Glu, Asp), basic (blue: Lys, Arg, His), hydrophilic (magenta: Ser, Thr, Gln, Asn, 
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Gly), nonpolar (green: Ala, Leu, Ile, Val, Phe, Tyr, Trp, Met, Pro), or cysteine (yellow: 

Cys). PMF structural comparisons were made to a representative TFP (short chain 

neurotoxin from Naja nigricollis, 1IQ9); length and charge calculations for structurally 

characterized TFPs were based on results from ScanProsite at the ExPASy server with 

query “C-x(5,30)-C-x(2,10)-C-x(10,30)-C-x(2,20)-C-x(5,30)-C-C-x(4)-C-N” (method 

adapted from Garza-Garcia et al. [104]). HN exchange half-lives were calculated by non-

linear least-squares regression of the peak integration versus time for H-D exchange 

experiments. R1 and R2 rate constants were calculated by similar non-linear least squares 

regression versus peak intensity, and saturated to non-saturated NOE ratio calculated 

based on peak integration. The random coil index for PMF-G was calculated using 

chemical shift values submitted to the RCI server [193]. PMF sequence variability for all 

Class I PMFs (Genbank accession #JF274283-274351) was calculated using the protein 

variability server (PVS) [194], with likelihood of positive selection based on Bayes 

empirical Bayes results for M2A site specific PAML models from Chapter II. Homology 

modeling was conducted using Rosetta 3.4 [195]: sequences for additional PMF isoforms 

were aligned to PMF-G using ClustalW [196], alignable elements of the new isoform 

sequence superimposed on the peptide backbone of the lowest energy PMF conformer, 

the disulfide bonding pattern fixed to that of PMF-G, insertion loops built using the 

loopmodel function, and fastrelax applied to minimize the energy of the resulting model. 

Ten thousand models were generated per isoform, cluster analysis performed with the 

cluster radius automatically determined, and the lowest energy structure of the most 

abundant cluster reported. 
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Results 

Disulfide bond characterization of PMF-G 

 As a member of the TFP superfamily, PMF was expected to adopt the canonical 

TFP disulfide bond pattern. Initial experiments relied on natural PMF-G purified from P. 

shermani whole pheromone extract through a series of chromatographic separations 

(Figure 9) [Chapter II]. Analysis by mass spectrometry (MS) confirmed that all 8 cysteine 

residues were disulfide bonded (Figure 10). However, due to its small size and high 

disulfide density, PMF-G was extremely protease resistant, and initial efforts to 

characterize the disulfide bonds by MS with proteolytic digestion yielded ambiguous data 

that suggested a non-canonical pattern.  Based on the methods of Gray [197], PMF-G was 

next subjected to partial disulfide bond reduction, and the resulting protein species, 

having different numbers of reduced disulfides, were separated by reverse phase high 

performance liquid chromatography (RP-HPLC) at pH 2.2 to prevent re-oxidation 

(Figure 11).  Extensive experimentation confirmed that reducing only a single disulfide 

was sufficient to deduce the majority of the disulfide bonding pattern. Following 

alkylation to prevent the two free sulfhydryls from reforming a disulfide bond, 

proteolytic digestion and LC-MS/MS were used to identify peptide fragments containing 

disulfides 1-2 and 4-5 (Table 1, Figure 12). Fragmentation data for the peptide containing 

Cys-6,7,8 did not support alkylation of Cys 8, and because it is extremely rare for 

adjacent residues to form a disulfide bond [198], there is no evidence to support a pattern 

containing 3-8 and 6-7 bonds. Consequently, the disulfide pattern of PMF-G was deduced 

to be either 1-2, 3-6, 4-5, 7-8 or 1-2, 3-7, 4-5, 6-8, both differing from the canonical TFP 

pattern (1-3, 2-4, 5-6, 7-8).  
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Figure 9. Purification scheme of natural PMF-G. 

(A) Initial separation of whole P. shermani pheromone extract by strong anion exchange 
HPLC with the mixed rate gradient. Fractions E-I described in Chapter II corresponding 
to PMF were pooled (elution fractions 43-57 min). (B) Following sample concentration, 
the PMF mixture was further purified using size-exclusion chromatography. (C) The size 
exclusion chromatography samples were re-separated by strong anion exchange HPLC on 
a shallow linear gradient with fraction G collected (~42 min). (D) Fraction G was 
subjected to a second round of strong anion exchange HPLC, and (c) finally purified at 
>99% purity by RP-HPLC. (F) MS analysis of PMF-G revealed a highly enriched signal 
at the expected average mass of 6256 Da. 
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Figure 10. PMF-G contains 4 disulfide bonds 

(A) Treatment of PMF-G with IAA resulted in no CAM alkylation, unless first reduced 
with DTT, implying that all cysteine residues are disulfide bonded in the intact protein; 
(B) Similar treatment of rPMF-G confirmed that both its molecular weight and cystine 
content are identical to natural PMF-G.   
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Figure 11. Partial reduction of PMF-G 

RP-HPLC separation of PMF-G treated with TCEP at low pH to induce restricted 
disulfide reduction. Each peak is labeled with the number of remaining disulfides, with 
increasing hydrophobicity as the number of free sulfhydryls increases. 
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Table 5. Summary of mass spectral analysis in PMF-G disulfide bonding pattern 
determination. Mass spectral analyses was performed on the three-disulfide species of 
PMF-G purified by RP-HPLC. Differential treatment included proteolytic enzyme (Enz; 
chymotrypsin [C] or AspN [A]), reduction with dithiothreitol (DTT), and alkylation with 
iodoacetamide (addition of a carboxyamidomethyl (CAM) group). Observed 
monoisotopic masses were compared to theoretical masses with no free sulfhydryls, and 
mass shifts used to determine peptide modification. All assignments were confirmed by 
analysis of the fragmented ion series. 
 
Bond Enz DTT Sequence Exp MH+ Obs MH+ Mass Shift 

 

1-2 

C -      1LQCNTLG 

                

 18YIGPICEETG 

1923.846 1923.848 -0.002 

C + 1LQCNTLDGGTEECIPGI

Y18 

1923.846 1925.864 +2.018 

(+2H+) 
 

 

4-5 

C -  25KSEDEEYKSCGI 
             

 49LVTAGEADECEEQ 

2760.150 2760.152 +0.002 

C + 25KSEDEEYKSCGIQEEC

EDAEGATVL49 

2760.150 2762.168 +2.018 

(+2H+) 
 

 

 

 

3-

6/7 

C - 19NVCCAMVHY24 733.321 791.351 +58.030 

(+CAM) 

C + 19NVCCAMVHY24 733.321 791.351 +58.030 

(+CAM) 

A - 41DAEGATVL(CC)CAM 

 

       57NCLDEP 

1649.637 1707.669 +58.032 

(+CAM) 

A + 41DAEGATVL(CC)CAM 

PEDLCN57 

1649.637 1709.682 +60.045 

(+CAM,+2H+) 
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Figure 12. Mass spectral analysis of partially reduced PMF-G. 

Sample ion spectra of PMF-G, partially reduced with TCEP, the 3 disulfide bonded 
species collected by RP-HPLC, free sulfhydryls alkylated by iodoacetamide to add a 
CAM group, and proteolytically digested using chymotrypsin. Specific masses of PMF 
that were essential for disulfide bond deduction are labeled. 
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Further LC-MS/MS analyses were unable to resolve the ambiguity between these two 

patterns, and additional structural characterization was limited by the availability of 

natural pheromone extract. 

Expression of rPMF-G 

To fully characterize the structure of PMF-G, we sought to generate a correctly 

folded recombinant protein (rPMF-G). Heterologous expression of nearly all TFPs has 

relied on in vitro disulfide formation from scrambled products generated in E. coli or by 

solid phase synthesis [199, 200]. Based on the methods of Greenwald et al. [201], we 

employed the yeast system Pichia pastoris. Assembly PCR [185] was used to prepare a 

codon-optimized pmf-g gene for P. pastoris, which was successfully cloned into 

pPICZαA for targeted secretion into the growth media. P. pastoris clones were initially 

screened for successful transformation by colony PCR, and small-scale cultures were 

prepared for positive clones from both Mut+ (X33) and MutS (KM71H) backgrounds. 

rPMF-G was only secreted by clones in the MutS backround. All assays indicated that 

rPMF-G had a structure identical to the natural pheromone: LC/MS-MS and ESI-MS 

confirmed the sequence and mass, respectively; 5µg aliquots of PMF-G, rPMF-G, and a 

1:1 mixture of the two produced single peaks by RP-HPLC with retention times varying 

by < 0.01 min; far UV circular dichroism (CD) spectroscopy generated nearly identical 

spectra for both proteins; and rPMF-G was validated to have the 1-2 and 4-5 disulfides 

(Figure 13). The literature suggests that this is only the second time a recombinant TFP 

has been synthesized without in vitro refolding [201]. 
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Figure 13. Comparison of native and recombinant PMF-G. 

(A) RP-HPLC analysis comparing 5 µg aliquots of PMF-G, rPMF-G, and equal amounts 
of PMF-G and rPMF-G. The similarity in retention times strongly suggested identical 
structures between native and recombinant PMF-G. (B) Far UV CD analysis of native 
and recombinant PMF-G produced very similar spectra, with estimated secondary 
structure of ~11% α-helix and ~29% β-sheet content (K2D3; 27), which is similar to 
NMR results measured by DSS in Pymol (11% α-helix, 33% β-sheet) [72,73]. (C) Both 
PMF-G and rPMF-G were treated with TCEP for 20min and major peaks represent 4, 3, 
2, 1, and 0 intact disulfides. Retention times were slightly adjusted to correct for run-to-
run variation (~0.6 min, 2 different RP-C18 columns, ~2 weeks apart). Data from mass 
spectral analysis of the 1 reduced disulfide species are consistent with the results in Table 
5. 
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NMR analysis of rPMF-G 

To determine the solution structure of PMF-G, milligram quantities of 15N-labeled 

rPMF-G were prepared for multidimensional NMR analysis. Essentially complete 

assignments of all backbone atoms and side-chain atoms were obtained from 2D 

NOESY, TOCSY, 3D 15N HSQC-NOESY, HNCO and natural abundance 1H(13C) HSQC 

experiments.  The 3D structure of PMF-G was solved using standard restrained molecular 

dynamics simulation with distance restraints determined by nuclear Overhauser effect 

(NOE) measurements and dihedral angle restraints using TALOS+ (Table 6). Additional 

hydrogen bond constraints were determined by measuring hydrogen/deuterium exchange 

rates for backbone amide protons (Figure 14). Structure calculation was performed with 

constraints using the two alternative disulfide patterns; multiple van der Waals and 

distance violations were observed when the 3-7/6-8 disulfides were included, whereas 

there were no consistent conflicts in the other model. Thus, we concluded that the 

disulfide-bonding pattern of PMF-G is 1-2, 3-6, 4-5, 7-8. Surprisingly, despite shuffling 

in 3 of the 4 disulfides, PMF-G still adopts an overall “three-finger” shape (Figure 15). 

However, the resulting adjustments in the protein backbone eliminated much of the 

classical TFP topology (a two-stranded β-sheet in finger 1 and a three-stranded β-sheet in 

finger 2 and finger 3) (Figure 16B). This includes the loss of a finger 3 β-strand, leading 

to a two-stranded sheet in finger 2, and a rotation in finger 2 such that it is near-

orthogonally aligned with finger 1 (likely a result of the self-contained altered 3-6 and 4-

5 disulfides). Additionally, the novel disulfide pattern eliminated the conserved van der 

Waals network present between the canonical 1-3, 2-4, 7-8 disulfides, which stabilize the 

base of the classical TFP structure [110] (Figure 15B).  



73 
 

Table 6. Restraints and statistics of PMF-G structural ensemble 

Structural constraints 
NOE distances: < 3.00 Å 78 (11.1%)  Intraresidue 161 (22.9%) 
 3.00 – 3.99 Å 239 (33.9%)  Adjacent (|i-j|=1) 217 (30.8%) 
 4.00 – 4.99 Å 245 (34.8%)  Short (1<|i-j|≤5) 110 (15.6%) 
 5.00 – 5.50 Å 142 (20.2%)  Long (|i-j|>5) 216 (30.7%) 
 Total 704  Total 704 
      
Dihedral 
angles: 

76     

Hydrogen 
bonds: 

3     

Disulfide bonds: 4     
      

Structural statistics 
Average RMSD to mean (Å)   Ensemble (n=20) Lowest 

energy 
 Backbone   0.31±0.08  0.19 
 Heavy atom   0.73±0.07 0.64 
      
Target function    0.49±0.052 0.37 
      
Violations Upper limit #  1±1 0 
  rms  0.0060±0.0015 0.0039 
  max  0.13±0.06 0.07 
 van der 

Waals 
#  2±0 2 

  sum  2.3±0.2 1.9 
  max  0.23±0.03 0.20 
 torsion 

angles 
#  0±0 0 

  rms  0.7072±0.0562 0.6587 
  max  2.66±0.30 2.54 
      
Ramachandran statistics (Procheck [202]) 
 Most favored region (%)  88.9±0.02 87.5% 
 Additionally allowed regions 

(%) 
 9.1±0.02 10.4% 

 Generously allowed regions 
(%) 

 2.1±0 2.1% 

 Disallowed regions (%)  0±0 0 
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Figure 14. PMF-G amide H-D exchange rate. 

Plot of peak integration versus time of 15N-HSQC spectra recorded every hour over 24 
hrs for rPMF-G lyophilized and dissolved in D2O. An exponential decay curve 
(v=v0exp(-kt)) was fitted to all peaks with 3 or more points. 
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Figure 15. NMR-derived structural ensemble of PMF-G. 

(a) Backbone model of PMF-G with the twenty lowest-energy conformers, color coded 
from N- to C-terminus (blue to red), and peptide finger numbers denoted (1-3); (b) 
disulfide bonds in PMF-G from underside view (same color scheme as a) and a 
representative TFP (1IQ9, carbons in magenta, sulfurs in green). 
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Figure 16. Surface models of PMF-G. 

(a) Alignment of PMF-G with a representative TFP (1IQ9), color coded by residue type 
(acidic, red; basic, blue; hydrophilic, purple; nonpolar, green; cysteine, yellow), with 
disulfide bonds denoted by the black lines; (b) secondary structure schematic comparing 
PMF-G (left) and a representative TFP (right; 1IQ9); (c) backbone model of PMF-G (20 
lowest-energy conformers) with partially transparent surface rendering (both color coded 
N- to C-terminus, blue to red); (d) full surface rendering of PMF-G color coded by 
residue type (same color code as a); (e) surface rendering of 1IQ9 (same color code as a).  



77 
 

Analysis of side chain properties revealed a general segregation between the two 

elongated protein faces: one side contained the majority of negative and hydrophobic 

residues, while the other contained the few positive charges and additional hydrophilic 

residues. This highly polarized negative charge density is in sharp contrast to most other 

TFP members that typically have a net positive charge (Figure 16D-E). The lack of 

secondary structure between fingers 2 and 3 may be the result of charge repulsion due to 

the concentration of acidic residues on the two fingers, leading to an extended finger 3 

and forming a cleft between them. The majority of backbone amides in PMF-G were 

solvent accessible and rapidly exchanged (34 out of 54 HN groups were undetectable after 

20 minutes in D2O, and only 13 HN groups had half-lives greater than one hour; Figure 

14); however, the slowest-exchanging amides were found near the base of finger 2, and 

near the N- and C-termini nexus. Notably, the Leu55 amide proton was nearly non-

exchangeable (half-life >38 hours) (Figure 17A), and is likely H-bonded with the Gln2 

backbone carbonyl. Additionally, two highly conserved residues on finger 2 (Glu30 and 

Lys25) were found in close proximity, and likely form a novel salt bridge to help stabilize 

finger 2. Although the resulting structural model is well determined (average backbone 

rmsd = 0.31 Å), there is less β-sheet structure in PMF-G relative to other TFPs (Figure 

2B; consistent with CD results, Figure 13B). When compared against all available PDB 

sequences using PDBeFold, the closest match was a γ-bungarotoxin (1MR6) with a Q-

score of only 0.24 (P-score 0.1, Z-score 1.2), suggesting that PMF has a previously 

uncharacterized protein topology.  
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Figure 17. Measurements of sequence and structural variability in PMF. 

(a) Backbone amide (HN) exchange H/D exchange rates measured by half life (in hours), 
with proline residues omitted; (b) Root mean squared fluctation (RMSF) per residue in 
the PMF structural ensemble (blue) and predicted from the random coil index (red); (c) 
spectral density functions at 0, ωN, and ωH, with J(0) sensitive to fast (ns) and slow 
motions, J(ωN) to motiions on time scales faster than (1/ωN = 2 ns), and J(ωH) to motions 
faster than 1H (1/ωH = 0.2 ns); (d) Sequence variability (Shannon entropy index) at each 
residue measured for all Class I PMFs, shaded according to likelihood of positive 
selection at each position (red p < 0.01, orange p < 0.05; yellow = neutral selection). 
Seven out of the nine non-conserved amino acids in finger 3 display signatures of 
positive selection, suggesting combined structural flexibility and rapid evolution in this 
region.  
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Comparative modeling with additional PMF isoforms 

To assess how PMF sequence hypervariability may be structurally manifested, 

sequence comparison and homology modeling were conducted for additional PMF 

isoforms using the NMR-derived PMF-G structure as a template. Of the 99 PMF 

haplotypes reported in Chapter II, the spacing of the first 5 cysteines is conserved in 75% 

of the sequences, and varies by no more than 3 residues in the remaining 25%. This could 

be considered an underestimate, as 86% of Class I PMFs (which comprise ~90% of the 

total PMF protein) share this spacing for the first 5 cysteines. However, the region 

between the 5th and 6th cysteines (equivalent to most of finger 3) is more variable, both in 

length (15.6±2.6 residues; PMF-G = 9 residues) and sequence. Homology models for 

four additional highly expressed PMF isoforms (H, I, E3, and A1) all have extended 

loops on finger 3 (Figure 18). In the three most abundant Class I PMFs (G, H, and I), 

fingers 1 and 2 are predicted to be nearly identical with respect to both sequence and 

structure, with finger 3 being the only highly variable region. Additionally, in the PMF-G 

structural ensemble, two regions display greater backbone flexibility than the rest of the 

protein: the loop between fingers 1 and 2, and the length of finger 3. This flexibility is 

further supported by multiple lines of evidence: nearly all of the backbone amides in 

these regions are solvent accessible and exchanged rapidly, fewer well-defined NOEs 

were observed for these regions, 15N linewidths were broader for many of the backbone 

amides, and these residues had higher predicted random coil indexes (based on chemical 

shift values) (Figures 17A-D,19). Relaxation experiments confirmed that residues in 

these regions (specifically, 17, 36, 44, 45, 47, and 51) were flexible on µs-ms time scales 

(Figures 17, 20).   
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Figure 18. Homology modeling of major PMF isoforms. 

Homology models of four additional PMF isoforms that are highly expressed in P. 

shermani (isoform H, accession #JF274289; isoform I, accession #JF274304; isoform E3, 
accession #JF274344; isoform A1, accession #JF274380). Models are color coded 
according to amino acid conservation relative to PMF-G, which is included as a reference 
in the first panel (same residue, blue; conservative substitution, green; nonconservative 
substitution, red; insertion, yellow). 
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Figure 19. PMF-G backbone amide 15N linewidths. 

Barplot of 15N linewidths for backbone amides derived from a 15N-HSQC spectrum. The 
N-terminal Leu and two Pro residues were assigned 0 Hz, and residues undectable by 
15N-HSQC (residues 16, 18, 25, 37, 49) were assigned 27.5 Hz.  
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Figure 20. rPMF-G NMR relaxation analysis. 

Relaxation analysis of rPMF-G examined by (a) 15N[1H] steady-state heteronuclear NOE 
measurements (with lower values suggestive of conformational changes), (b) spin-lattice 
(longitudinal) relaxation rate constants (R1) (with lower values indicating sub-ns 
exchanges), (c) spin-spin (transverse) relaxation rate constants (R2) (with higher values 
indicating µs-ms exchanges), and (d) the Rex rate. R1 and R2 are reported as parameter 
estimates ± 95% confidence interval.  
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Additionally, models of molecular evolution (from Chapter II) indicated that the majority 

of positively selected residues are found on finger 3 (Figures 17E, 21). Together, these 

data suggested that, in addition to rapid evolution of finger 3, the altered disulfide 

bonding pattern of PMF-G disrupted the classical TFP topology and permitted greater 

structural flexibility in this finger in order to maximize the number of sequence/structural 

permutations of PMF. 
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Figure 21. Rates of molecular evolution on PMF-G. 
Putty model of PMF-G, with backbone width proportional to residue variability 
(Shannon-Weaver index in Figure 17E), and color-coded according to the likely mode of 
molecular evolution (based on data from Chapter II; backbone, black; purifying selection, 
blue; neutral selection, yellow; positive selection, 0.01 ≤ p < 0.05, orange; positive 
selection, p < 0.01, red). 
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Discussion  

Within evolutionary, biomedical, and structural scopes, the TFP superfamily has 

remained a key research target due to both the unique structural elements and the diverse 

functions of its many orthologs. Within the snake toxin TFPs alone, through adaptive 

evolution, members have adopted many distinct functions including ion channel blocking 

[116-118], nicotinic and muscarinic receptor antagonists [119-121], acetylcholinesterase 

inhibition [100], cell-adhesion regulation [122], integrin binding [123], and pore 

formation in the plasma membrane [124, 125]. There also exist membrane-bound TFPs, 

including CD59, Ly6 antigen, and the newt regenerative positional maker Prod1. In a 

study by Garza-Garcia et al. [104], the solution structure of Prod1 was solved and fit 

within the canonical TFP framework; however, within a phylogenetic context, Prod1 was 

much more similar to PMF in both sequence and predicted biochemical characteristics. If 

PMF and Prod1 are relatively recent paralogs within salamanders, then PMF’s novel 

topology and disulfide pattern are likely more recently derived characteristics. Notably, 

expression of PMF-G in P. pastoris suggested that the novel disulfide bonding pattern is 

thermodynamically favorable and not the product of plethodontid-specific chaperones 

and/or protein disulfide isomerases. In contrast to most TFPs (excluding Prod1), PMF has 

a high net negative charge which may affect its folding dynamics. A comprehensive 

structural analysis of the TFP superfamily by Galat et al. [110] found little sequence 

similarity beyond the 8 core cysteine residues, and last three Cys arranged in the 

CCXXXXCN motif. Despite the lack of sequence similarity, three of the four disulfides 

(1-3, 2-4, 7-8) form a tight van der Waals interaction network that stabilize the double β-

sheet structure (< 4 Å between the bonds, < 1 Å average rmsd for this network between 
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TFP members). In the example where the Cys 6-7 doublet is split by an additional residue 

(TGFβ-RII), this network is disrupted and the structure is less stable. Likewise, the 

altered disulfide bonding pattern of PMF-G disrupted this network such that the 

disulfides are spaced further apart (Figure 15B), and may partially relate to the loss of the 

β-strand normally found in finger 3. Interestingly, the spacing between the first two 

cysteines was conserved among all PMFs (9 residues), and is shorter than any structurally 

characterized TFP (length = 17.0 ± 5.9 residues; min residues = 10). This shorter spacing 

may be important in promoting formation of the 1-2 disulfide, which in turn could 

prevent the canonical 1-3 bond from forming and help drive the novel disulfide pattern. 

A central question that remained was what is the adaptive value in PMF adopting 

a novel disulfide-bonding pattern relative to the canonical TFP structure? Within ~30 

million years, the PMF complex has undergone tens to hundreds of gene duplications to 

yield the ~100 expressed mRNA haplotypes observed in P. shermani cDNA [Chapter II]. 

At the same time, these genes have been under strong sexual selective pressure to 

differentiate and adopt potentially novel signaling roles in order to affect female behavior 

and physiology [96, Chapter II]. When whole mental gland extract was applied to female 

salamanders, courtship time decreased by ~20% [83]. Surprisingly, when a mixture of 

more than 30 PMF isoforms was tested (that did not include PMF-G), courtship time 

increased [93]. While this subset of PMF isoforms activated VNO neurons and regions of 

the female brain classically involved in pheromone response [70, 86, 92], a more recent 

set of experiments revealed that a  more complete PMF mixture (that included PMF-G) 

decreased courtship time similar to whole extract but without significantly activating 

more VNO neurons (see Chapters IV and V). Consequently, our working hypothesis is 
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that synergistic interactions between the many diverse isoforms are necessary for PMF to 

increase female mating receptivity. This is perhaps in contrast to other polygenic 

pheromone families, such as MUPs in mice, where different isoforms are uniquely 

involved in mediating gender recognition, male-male aggressive behavior, female sexual 

receptivity, and learning of individual odor profiles [24-27, 33]. Expression of different 

PMF isoforms is highly variable between male salamanders; however, PMF always 

constitutes ~50% of the total mental gland pheromone [91], with PMF-G almost always 

being the most abundant isoform (~12% of the total PMF) [Chapter II]. In the current 

study, we have provided evidence that the most variable and rapidly evolving segment of 

PMF (finger 3) is also structurally flexible. Homology modeling supported that both the 

length and shape of this finger is likely variable in additional PMF isoforms, and that this 

segment has the greatest topological differences from the canonical TFP structure. 

Combining the sequence variability, structural flexibility, and altered topology relative to 

the TFP superfamily, we hypothesize that finger 3 plays a critical role in PMF-receptor 

interactions, utilizing both residue variability and backbone flexibility to permit a 

significantly greater number of structural permutations that may occupy a broader range 

of female receptors. As female receptors continue to evolve, this structural flexibility may 

permit PMF to still interact with target receptors by adopting a slightly different 

conformation, without the immediate need for complementary mutations. Consequently, 

we hypothesize that PMF may have evolved a form of “resilience” to mutations in female 

receptors, that might otherwise ablate pheromone:receptor interactions, and thus provide 

males with an enhanced ability to stimulate any mating female in the breeding 

population. The precise mechanism by which PMF regulates female mating behavior has 
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yet to be determined; however, PMF stimulated neurons in the female vomeronasal organ 

and activated regions of the brain known to be involved in pheromone response [86, 92]. 

Based on these data, PMF is presumably binding to a vomeronasal type-2 receptor 

(V2R), which are highly abundant in the P. shermani VNO [72] and have been 

implicated in protein pheromone signaling in rodents [20, 22, 27]. Very few specific 

receptor:ligand pairs have been identified for vomeronasal receptors [20, 23, 34, 35], but 

to date, none of these examples include TFP:V2R interactions. Recently, the 3D structure 

was determined for the mouse sex pheromone ESP1, and through mutagenesis assays and 

molecular docking studies with its specific V2R receptor, it was determined that charge-

charge interactions provide most of the binding specificity. Future studies of PMF will 

seek to determine specific VNO receptors that mediate reception of plethodontid 

courtship pheromones and to understand the molecular interactions that drive 

pheromone:receptor co-evolution. 
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Conclusions 

Over tens of millions of years, sexual selection has promoted rapid evolution in 

the three-finger protein pheromone, Plethodontid Modulating Factor. In addition to 

sequence hypervariability, this process has altered the highly conserved TFP disulfide 

bonding pattern and topology which has resulted in increased backbone flexibility in the 

putative receptor binding sites. Taken together, the sequence diversity and structural 

flexibility likely permit thousands of PMF conformers, increasing both the signal 

plasticity of PMF and the likelihood of stimulating any female in the mating population. 

In support of this hypothesis, preliminary data suggest that female receptivity increases 

when females receive sufficient PMF isoform diversity. This “evolved conformational 

flexibility” may confer PMF robustness to ever evolving changes in female receptors. 

This work lays the foundation for future research in understanding the molecular 

adaptations that arise as part of the sexual conflict between males and females that can 

lead to an evolutionary “arms race” of signals by one gender and receptors of the other 

gender. 
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CHAPTER IV - DIFFERENTIAL FEMALE BEHAVIOR FROM A 

HYPERVARIABLE COURTSHIP PHEROMONE IN THE RED-LEGGED 

SALAMANDER, PLETHODON SHERMANI 

 

Chapter Overview 

 Pheromones are a diverse class of biological molecules that play critical roles in 

mediating social and sexual behaviors. In many systems, pheromones exist in complex 

mixtures, with the precise composition and ratios of the different components essential 

for bioactivity. The interactive effects of complex pheromone mixtures, however, have 

been minimally studied in vertebrates. In the red-legged salamander (Plethodon 

shermani), male salamanders use non-volatile proteinaceous pheromones to modify 

female courtship behavior and mating receptivity. One component of this pheromone 

mixture is a hypervariable 7 kDa protein, Plethodontid Modulating Factor (PMF). Within 

a single population, individual male salamanders express more than 30 different variants 

(isoforms) of PMF. In contrast to the complete pheromone extract, a subset of PMF 

isoforms was previously demonstrated to lower female mating receptivity. In the current 

study, we demonstrated that a single PMF isoform had no effect on female mating 

behavior, while a more complete mixture of PMF variants recapitulated the effect of the 

whole pheromone mixture and increased female receptivity. From these data, we 

hypothesize that: (a) female preference and sexual selection have promoted the rapid 
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gene duplication of PMF over ~20 MY, resulting in the complex mixture we observe 

today; and, (b) PMF isoforms act synergistically through complex neurophysiological 

pathways to modulate female courtship behavior. These studies help define a framework 

for further investigations of the complex interactions and molecular mechanisms by 

which protein pheromones modulate female mating behavior. 
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Introduction 

 Chemical communication by pheromone signaling permits the transmission of 

specific information between individuals, including information about species, sex, 

reproductive status, and disease state [176-178]. A defining characteristic of pheromones 

is the elicitation of behaviors or neuroendocrine responses in the receiving animal [10]. 

The chemicals that compose pheromone mixtures may be derived from virtually any type 

of biomolecule. In several well-characterized insect pheromone systems, small volatile 

hydrocarbon chains or rings are released into the environment to attract potential mates or 

to communicate other species-specific information [14, 16, 203, 204]. In contrast, 

vertebrates often use water soluble signals which may be widely dispersed or privately 

delivered. For example, male firebelly newts secrete a peptide pheromone (termed 

sodefrin) that can attract gravid females [46]; adult sea lamprey release sulfated sterols as 

migratory pheromones that recruit juveniles to spawning streams [205]; and in mice, the 

many isoforms of the major urinary protein (MUP) family perform multiple social 

functions, including promotion of male aggression towards other males, regulation of 

female receptivity, and learning of individual scent profiles [24, 26, 27]. 

However, most if not all pheromone molecules are delivered as complex 

mixtures, and their bioactivity is often tied to both the presence and relative proportions 

of different components [206, 207]. Protein pheromones, in particular, are well suited for 

the study of such interactions in vertebrates for three reasons. First, protein pheromone 

genes often comprise multigene families that are products of exacerbated gene 

duplication and positive selection [24, 94]. Second, as direct gene products, their 

synthesis and expression levels are generally regulated through well-characterized 
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biochemical processes. Third, recombinant pheromones can be readily prepared using 

heterologous expression systems to control the exact composition of experimental 

mixtures [25, 208]. Even with the many advantages of protein pheromones, relatively few 

studies have examined protein interactions in complex mixtures.  This dearth of studies is 

surprising because the prevailing opinion is that interactions are a central property of 

many pheromone communication systems [209-213] 

 For more than 100 million years, plethodontid salamanders have utilized mixtures 

of non-volatile, proteinaceous courtship pheromones to regulate female behavior and 

mating receptivity [85]. As basal tetrapods, salamanders provide an excellent model 

system for studying the evolution of pheromone signaling. Courtship pheromones, unlike 

many chemoattractants, are a special type of sex pheromone that are privately delivered 

during courtship and influence associated behaviors [87]. The annual mating season for 

many plethodontid salamanders occurs during a few months in late summer or early fall. 

Before this mating season, plasma androgen levels rise in adult male salamanders. The 

increased androgen induces the development of a specialized chin gland (termed a 

"mental gland").  The mental gland is solely dedicated to the production of protein 

courtship pheromones [69, 214]. In a successful courtship between a male and female, the 

female typically straddles the male’s undulating tail and the pair walks forward in unison.  

This behavior was described as a tail-straddling (TSW) walk by Arnold [78]. At the end 

of this walk, the male deposits a spermatophore, and the female moves over and then 

down on that spermatophore to obtain the apical sperm  mass [78]. In our principal model 

the red legged salamander (Plethodon shermani), the male salamander will periodically 

turn and deliver courtship pheromones to the female by “slapping” his mental gland 
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against the female’s nares. These pheromones then travel along the female’s nasolabial 

grooves which deliver the aqueous pheromone to neural receptors in the vomeronasal 

organ (VNO). Ultimately, pheromone stimulation results in activation of specific brain 

regions that modify female courtship behavior [70, 83, 86]. In laboratory trials, the 

pheromone extract reduced the time females spent in TSW.  We interpreted the decrease 

in time in tail-straddling walk as an increase in female mating receptivity [85].  

 Chemical analysis of the P. shermani pheromone extract revealed that >85% of 

the mixture was comprised of two major proteins [69]. The first identified component 

was a 22-kDa protein termed Plethodontid Receptivity Factor (PRF) which is related to 

IL-6 cytokines. Similar to the complete pheromone extract, purified PRF also increased 

female receptivity [83]. Through continued biochemical analysis, three sequence variants 

(isoforms) of PRF were identified. These variants were termed B, C1, and C2. This 

nomenclature was based on the relative charge and elution conditions when the 

pheromones were analyzed by high performance liquid chromatography (HPLC) (see 

Figure 8A and Table 7). All three PRF isoforms shared a >95% sequence identity. 

Individual analysis of pheromone extracts from more than 100 male P. shermani revealed 

significant variability in the relative ratios of these isoforms, with ~20% of animals 

expressing only two of the three isoforms. Notably, all current evidence suggested that 

these isoforms were the products of gene duplication, and not allelic variation or 

alternative splicing [91]. Courtship trials testing the efficacy of a recombinant PRF-C2 

elicited the same response as the complete mixture (increased female receptivity), 

suggesting some redundancy in function between the isoforms [208].  
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Table 7. Summary of pheromone isoforms by HPLC fraction. Greyed boxes indicate 
uncharacterized composition and/or no behavioral tests prior to this study. For G, H, and 
I, the fractions are >95% for a single isoform, with one or two minor isoforms. 

HPLC Fraction Pheromone No. of Isoforms Effect on female receptivity 
A  
B PRF 1 +18% (Rollmann et al. [83]) 

+27% (Houck et al. [208]) C PRF 2 
D    
E PMF ~20-25 -23% (Houck et al. [93]) 
F PMF ~10-15 
G PMF 1-3  
H PMF 1-3 
I PMF 1-3 
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The second pheromone component identified from male mental glands was the 7-

kDa protein Plethodontid Modulating Factor (PMF). PMF is related to the three-finger 

protein (TFP) superfamily that includes many snake venom neuro- and cytotoxins [90]. 

Proteomic and molecular analyses for P. shermani revealed that, when compared to the 3 

highly conserved PRF isoforms, individual males expressed more than 30 unique PMF 

isoforms that only shared ~30% average amino acid identity. PMF was observed in five 

major HPLC fractions (termed E, F, G, H, and I; Figure 8A); further analysis revealed 

that nearly all of the PMF isoforms were found in the E and F fractions (≥30 isoforms 

total; Table 1), while the G, H, and I fractions were each highly enriched for individual 

isoforms (each >95% purity). Consequently, these three isoforms (G, H, and I) were the 

most abundant PMFs and comprised ~25% of the total PMF mixture [Chapter II]. In an 

earlier study [93], a mixture of PMF-EF was tested in staged courtship trials. In contrast 

to both whole pheromone and PRF, PMF-EF actually decreased female receptivity (based 

on an increase in TSW time). It was hypothesized that, due to its homology with snake 

venom neurotoxins, PMF may be acting to relax the female, thereby facilitating 

completion of the courtship. 

However, as already noted for many insect systems, both the presence and ratios 

of particular pheromone components are often critical for proper biological activity. As 

an incomplete mixture of PMFs was used in the previous assay, further study on the 

impact of these highly abundant isoforms was warranted. Using a yeast expression 

system, a recombinant PMF-G (rPMF-G) was prepared that is biochemically identical to 

the natural pheromone [Chapter III]. Importantly, PMF-G was the most abundant PMF 

isoform in nearly all male P. shermani [91, Chapter II]. While a single PRF isoform was 
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sufficient to stimulate female salamanders [208], it was unknown if the same 

phenomenon would occur with PMF, which has >10X the isoform diversity. To assess 

the potential interactive and synergistic effects that may underlie the PMF complex, we 

determined the effects of rPMF-G and PMF-EFGHI on female mating receptivity in P. 

shermani. 
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Methods 

Plethodon shermani courtship behavior 

The courtship ritual of P. shermani involves many characterized behaviors and 

occurs in well stereotyped stages [78]: (1) Orientation: the male faces towards the female 

and follows her. (2) Persuasion:  the male presents visual (and chemical) cues to attempt 

to persuade the female to court. The performance of one persuasion behavior (foot 

dancing) is positively correlated with advancement to the next phase [79]. (3) Tail 

Straddling Walk: during this lengthy phase, the male will periodically turn and “slap” the 

female with his mental gland to apply courtship pheromones. Stimulation from these 

pheromones decreases the length of TSW [83]. (4) Deposition: the male periodically 

pauses during TSW, and if the female does not try to advance further (possibly implying 

ample female receptivity), he will press his body to the ground and deposit a 

spermatophore while continuing to undulate his tail. The deposition process consistently 

requires ~7 minutes. The spermatophore is composed of a small sperm cap that sits atop a 

gelatinous base. (5) Insemination: the male lifts his vent off of the deposited 

spermatophore and walks forward. The female typically follows until her vent is 

positioned above the spermatophore. She then lowers her vent removes the sperm cap 

(leaving the gelatinous base behind), and then departs from the male, completing 

courtship. 

Animal collection, maintenance, and pre-screening 

 Plethodon shermani salamanders were collected during their breeding season 

from a single site in Macon Co., North Carolina, USA (35°10’48” N, 83°33’38” W) in 

August 2010, and sexed based on the presence of a mental gland in males or large ova in 
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females. Initially, salamanders were maintained at Highlands Biological Station. All 

animals were individually housed in clean plastic boxes (17 x 9 x 13 cm) each lined with 

a damp paper towel and supplied with a second damp crumpled paper towel for a refuge. 

Once per week, animals were transferred to clean boxes with fresh substrate and fed 2 

waxworms (Galleria mellonella). The temperature and humidity were maintained at 15-

18°C and ~70%, respectively. Some P. shermani will not mate under laboratory 

conditions, such that for larger observational studies, animals must be pre-screened to 

determine mating propensity [93]. Briefly, male and female salamanders were randomly 

paired in clean plastic boxes with a damp paper towel substrate (no refuge), and left 

together overnight. The following morning, we determined if the pair mated by (a) 

examining the box for the presence of the spermatophore gelatinous base and (b) 

checking the female’s cloaca for a visible sperm cap. Following successful insemination, 

females were removed from pre-screening for one week to allow the sperm cap to 

dissolve before being presented with another mating opportunity. From the pre-screening 

data, 160 males and 160 females were selected for observed courtship trials, and shipped 

to Oregon State University. Animals were then housed at the same temperature and 

humidity, and maintained on a North Carolina photoperiod.  

Gland removal and pheromone preparation 

To prevent interference from endogenous male pheromones, all male salamanders 

had their mental glands surgically removed, based on the methods of Rollmann et al. 

[83]. Briefly, males were anesthetized in a mixture of 7% ether in water, and the exterior 

pad-like mental gland was removed from the dermis. Following surgery, males were 

placed in clean boxes and the wound was covered with a small piece of gauze containing 
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an antibiotic ointment. Males were allowed two weeks to heal before being used in any 

behavioral experiments. Gland removal surgery has no impact on male courting behavior, 

including slapping during TSW [79, 83, 85, 93, 208, 215, 216].  Pheromones were 

extracted from the excised mental glands following the methods of Rollmann et al. [83].  

Briefly, mental glands were induced to secrete pheromones by incubation with 0.8 mM 

acetylcholine chloride in Amphibian Ringer's Solution for ~60 minutes. Whole 

pheromone extract was centrifuged at 10,000 x g for 10 minutes, the supernatant 

collected, and the centrifugation repeated before storage of supernatant at -80°C. 

Methods and animal care were approved by Oregon State University's Institutional 

Animal Care and Use Committee (ACUP 3007 and 4053 to L.D. Houck). Based on the 

methods of Chapter II, a natural mixture of PMFs containing fractions E through I (PMF-

EFGHI) was purified from whole pheromone extract using strong anion exchange HPLC. 

As described in Chapter III, rPMF-G was expressed using the methylotrophic yeast 

Pichia pastoris. As a eukaryote, P. pastoris can perform many post-translational 

modifications, including production of disulfide bonds, which do not naturally occur in E. 

coli expression systems. All biochemical assays (reverse phase HPLC, tandem mass 

spectrometry, disulfide bond analysis, far-UV circular dichroism, multidimensional 

NMR) demonstrated that rPMF-G has a 3D structure identical to that of natural PMF-G. 

Both PMF-EFGHI and rPMF-G were prepared at 0.5 µg/µL in 0.5X phosphate buffered 

saline (PBS), the same concentration used for the PMF-EF behavioral trials in Houck et 

al. [93]. 
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Staged courtship trials 

 Effects of courtship pheromones on female receptivity were assayed by recording 

the courtship behaviour of females treated with exogenous application of one of the two 

pheromone solutions (PMF-EFGHI, rPMF-G) or a vehicle control (0.5X PBS). Methods 

were adapted from those used by Houck et al. [93]. Due to the limited number of 

successful courtship encounters in the lab, previous experiments could reliably only test 

two treatments. In order to maximize statistical power and test three different solutions, a 

mixed effects design was employed. On each observation night, male and female 

salamanders were paired as described during pre-screening trials. Salamanders were 

equally divided into four groups of 40 pairs, with each group observed one night per 

week for 5 weeks. During the first week of observations, within each group, male and 

female salamanders were randomly paired, and allowed 3 hours to initiate TSW. Once a 

pair entered TSW, if the male attempted to apply pheromone by slapping the female with 

his chin, 5 µL of a random treatment was applied to the female’s snout by micropipette. 

Subsequently, the female would receive additional 5 µL aliquots of the same treatment 

after 5 min and 10 min following the initial slap (15 µL total). In order to partially control 

for the physical stimulus of slapping, the data point was only considered valid if the male 

slapped at least 3 times (corresponding to the 3 pheromone applications). Time was 

recorded from the initiation of TSW to spermatophore deposition, and is herein defined 

as courtship time. Occasionally, application of the pheromone would “startle” the female 

salamander, and she would disengage from TSW, but then later resume the courtship 

with little-to-no persuasion from the male. Total time is defined as time in TSW and any 

TSW interruption times. For a given courtship encounter to be included in the analysis, 
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(1) the pair must have entered TSW and proceeded to spermatophore deposition, (2) the 

male salamander must have slapped the female’s snout ≥3 times, (3) the female must 

have received all three 5 µL aliquots of treatment, and (4) the total TSW interruption time 

must be less than 40 min. If a pair successfully completed a courtship encounter meeting 

these criteria, that male and female remained paired for all subsequent weekly 

observations. If that pair entered courtship a second time, the female would randomly 

receive one of the two remaining treatment groups – providing a partial repeated 

measures design. No pairs engaged in courtship three times and received all three 

treatments. For salamanders that had yet to successfully mate, the pairs were randomized 

each week until (a) they successfully mated and were paired for the remainder of the 

experiment or (b) the experiment was terminated. Pheromone treatments were coded 

prior to the start of the experiment such that all observers were blind to the treatment 

during observations. The purpose of these criteria was to maintain consistency with 

previous studies, best control for properly observing effects of pheromone treatment (i.e., 

ensuring females received sufficient dosage, physical stimulus of slapping corresponded 

to minimum number of pheromone applications), and maximize statistical power. While 

no pair received all three treatments, 10 out of 32 pairs received two separate treatments. 

 Data were analyzed using linear mixed-effects models with the R package nlme 

with parameter estimation by maximum likelihood. Both courtship time and total time 

were analyzed with treatment (0.5X PBS, rPMF-G, PMF-EFGHI) as a fixed effect and 

salamander pair as a random effect. The significance of treatment was tested by 

likelihood ratio test against an intercept-only null model, with individual effects of the 

three solutions examined post-hoc by t-test with corrected standard errors.  
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Results 

 A total of 32 salamander pairs engaged in courtship successfully and met the 

aforementioned criteria.  Ten of these pairs received two of the three possible treatments 

(42 total courtship encounters). The distribution of the data for the three treatments was 

approximately equal (n = 15 for 0.5X PBS, n = 15 for rPMF-G, n = 13 for PMF-EFGHI). 

Examination of the data by box-plot revealed three outliers outside the mean ± 1.5 * 

interquartile range (Fig 2A). With the outliers removed, the data for both courtship time 

(TSW without interruption time) and total time (TSW with interruption time) were fit by 

maximum likelihood to mixed effect models with and without treatment as a fixed effect. 

When compared by likelihood ratio test, treatment was significant in both cases, with p = 

0.0394 for courtship time and p = 0.0469 for total time. Because courtship time is the 

measure used in previous behavioral studies [83, 85, 93, 208, 215], this is the more 

relevant measure of comparison and the primary focus of our analysis. For the 10 pairs 

that received two treatments, there was a significant effect from the inclusion of the 

random effect of pair (p = 0.026). The mean courtship time for the negative control of 

0.5X PBS was 55.9 min (range 28-87 min). Post-hoc t-tests comparing rPMF-G, with 

mean 56.0 min (range 23-107 min), to 0.5X PBS revealed no significant difference (p = 

0.9930).  In contrast, PMF-EFGHI significantly decreased courtship time to a mean of 

43.1 min (range 24-59 min,), implying an increase in female receptivity by ~23% (p = 

0.0425, Fig 2B). Inclusion of the outliers did not alter the trend of the effects, but 

increased the standard error such that the effect of PMF-EFGHI over 0.5X PBS was not 

significant at p < 0.05 (p = 0.1027). As with previous studies, there was no significant 

difference in initiation frequency, number of interruptions, interruption time, or 

insemination success between the three treatment groups (data not shown).  



104 
 

 

Figure 22. Effect of PMF components on female receptivity. 

(A) Box-and-whisker plot of courtship time for each treatment group, with whiskers 
defining the range of the data, and the box denoting the middle 50% (25%ile, Q1, to the 
75%ile, Q3). Outliers are defined as values outside Q1 – 1.5*(Q3-Q1) or Q3 + 1.5*(Q3-Q1). 
(B) Maximum likelihood means of courtship time (dark grey) and total time (light grey) ± 
SE for each treatment group. * p < 0.05. 
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Discussion 

 The aim of this study was to compare the effects of different PMF isoform 

mixtures on female behavior in P. shermani. We now report that the most abundant PMF 

isoform (PMF-G) had no effect on female mating behavior, but a more complete mixture 

of PMF isoforms (PMF-EFGHI) increased female receptivity, with an effect similar to 

that of whole pheromone extract and PRF. Both of these effects are in contrast to the 

previous study [93] which demonstrated that PMF-EF decreased female receptivity. It 

should be reiterated that while PMF-E and PMF-F together represent a highly complex 

mixture with >30 isoforms, the G, H, and I peaks are highly enriched for the 3 most 

abundant PMF isoforms. Therefore, the only difference between PMF-EF and PMF-

EFGHI are these three major PMFs, with PMF-G in isolation having no measurable 

effect. 

 We propose two competing hypotheses to explain how PMF-EFGHI increased 

female receptivity: (1) additive effects from PMF-HI, (2) synergistic effects in the PMF 

isoform complex. For the first time, the effects of isoforms PMF-G, PMF-H, and PMF-I 

on female mating receptivity were evaluated, using the two mixtures PMF-EFGHI and 

rPMF-G. With regard to hypothesis 1, since the mean courtship time for rPMF-G and 

0.5X PBS were nearly identical (~0.1 min difference), it is possible that isoforms H and I 

(either independently or in combination) caused a large increase in female receptivity, 

overcoming the negative effects of PMF-EF. According to hypothesis 2, the several PMF 

isoforms functionally complement one another such that PMF-EF is interacting with 

isoforms G, H, and I in a manner that increases female receptivity. The first hypothesis 

seems unlikely: in an additive effect model, with PMF-EF producing -23%, PMF-EFGHI 

producing +23%, and PMF-G having no effect, PMF-HI would generate +46%, nearly 
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twice what PRF or whole pheromone elicited. Also, in this model, it seems surprising that 

PMF-G, as the most abundant PMF isoform [Chapter II], would be functionally inert. The 

other hypothesis is that PMF isoforms act synergistically to enhance female receptivity. 

In this scenario, multiple isoforms of PMF are required to functionally complement one 

another, explaining why rPMF-G had no effect on female receptivity.  At the same time, 

a mixture excluding the three most abundant isoforms may have a negative effect on 

female receptivity (i.e. females may perceive this as an abnormal/atypical signal and be 

“dissuaded” from courting with that particular male). Other pheromone systems, as well 

the study of communication at large, provide evidence for this second hypothesis. In 

ermine moths, females synthesize hydrocarbon chains modified with acetate or alcohol 

groups that attract potential mates; strong synergistic effects were observed when the 

alcohol and acetate versions were tested in combination [217]. Similar effects were 

observed in leafrollers (Argyrotaenia sphaleropa) where alcohol- and acetate-diene 

pheromones have synergistic interactions, which were further enhanced by specific ratios 

between the two versions [207]. In tungara frogs, the whine-chuck system of auditory 

communication has been a well-documented example of multimodal components 

functioning better in combination than individually [218]. Recently, this signal was 

demonstrated to be further modulated by both the presence and sequential order of a 

visual cue, vocal sac inflation [219]. Consequently, we hypothesize that PMF isoforms 

function synergistically to enhance female receptivity.  

Whether these effects are additive or synergistic, the mechanism by which the 

interactive effects may be mediated remains unknown. All data to date suggest that PMF 

regulates female behavior by binding to vomeronasal type-2 receptors (V2Rs) in the 
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female VNO: (a) PMF-EF activated neurons in the female VNO [92], (b) in rodents, 

V2Rs are primarily responsible for binding peptide or protein pheromones [20, 30, 38], 

and (c) V2Rs are highly expressed in the P. shermani VNO [72]. It has been 

hypothesized that VNO receptors (like olfactory receptors) display monoallelic 

expression such that each neuron in the VNO expresses only a single receptor, limiting it 

to recognizing only a small number of potential pheromone ligands [5, 29, 30]. 

Vomeronasal receptors are generally highly sensitive, often requiring sub-picomolar 

concentrations. However, in mice, there is evidence that individual VNO neurons express 

multiple V2R receptors, and even neurons with the same receptors respond to different 

pheromone molecules [35]. In P. shermani, PMF-responsive VNO neurons may be 

expressing different receptors with each binding different PMF isoforms, and stimulation 

of multiple receptors by these different isoforms is necessary for proper signaling. 

Alternatively, VNO neurons may be independently activated by different PMF isoforms 

and the proposed interactive effects are mediated by downstream processing in the central 

nervous system. Recently, we determined the 3D structure of PMF-G by 

multidimensional NMR, and homology modelling suggested that most of the PMF 

sequence hypervariability was manifested in one loop of the protein structure – 

consequently, we hypothesized that this loop is critical for receptor interactions [Chapter 

III]. While PMF is monomeric in solution, it is also plausible that activation of female 

receptors may require forming a complex with multiple PMF isoforms. None of these 

hypotheses are mutually exclusive, but all may explain how sexual selection over the past 

100 million years has driven massive gene duplication and positive selection of the PMF 

complex [96]. Future next-generation sequencing studies identifying potential pheromone 
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receptors in the P. shermani will facilitate understanding the mechanism by which PMF 

activates VNO neurons and modulates female behavior. 

 In conclusion, we have demonstrated that the hypervariable vertebrate pheromone 

Plethodontid Modulating Factor differentially regulated female mating behavior based on 

isoform composition. In contrast to PRF [208], a single isoform of PMF was not 

sufficient to affect female receptivity, while different combinations of more complex 

mixtures may have opposing effects based on the presence or absence of the three most 

abundant isoforms. We hypothesized that synergistic effects have promoted the large 

PMF isoform diversity present in P. shermani, and that female salamanders may evaluate 

isoform complexity through V2R receptors in their VNO. The requirement of a complete 

PMF mixture to increase female receptivity provides a functional basis for the 

perpetuation of extensive PMF gene duplication in Plethodon salamanders for the past 

~100 million years [96]. Future studies will investigate the mechanistic basis by which 

female P. shermani react to differences in PMF isoform composition. 
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CHAPTER V - OLFACTORY EFFECTS OF PMF ISOFORM VARIABILITY IN 

THE RED-LEGGED SALAMANDER, PLETHODON SHERMANI  

 

Chapter Overview 

 Chemical communication via chemosensory signaling is an essential process for 

promoting and modifying reproductive behavior in many species. During courtship in 

plethodontid salamanders, males deliver a mixture of non-volatile proteinaceous 

pheromones that activate chemosensory neurons in the vomeronasal epithelium (VNE) 

and increase female receptivity. One component of this mixture, Plethodontid Modulating 

Factor (PMF), is a hypervariable pheromone expressed as more than 30 unique isoforms 

that differ between individual males. Different isoform mixtures have variable effects on 

female mating receptivity, such that the aim of this study was to test the effects of 

isoform variability on VNE neuron activation using the agmatine uptake assay. All 

isoform mixtures activated a similar number of neurons (+350% over background) except 

for a single purified PMF isoform (+17%). These data further support the hypothesis that 

PMF isoforms act synergistically in order to regulate female receptivity, and different 

putative mechanisms are discussed. Over the past 100 million years, co-evolution with 

female receptors has been the likely driving force in promoting gene duplication and 

positive selection of the PMF gene complex in order to generate the diverse mixture we 
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observe today. Thus, more variable mixtures would be capable of stimulating any female 

in the mating population and maximize reproductive opportunities for male salamanders.  
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Introduction 

 In many animals, chemical signaling via pheromone transmission is an essential 

means of communication to convey information between individuals, such as sex, 

species, and reproductive condition [10, 176, 177, 220]. Pheromones are chemicals 

transferred between members of the same species and elicit specific behaviors or 

endocrine responses [10]. Most pheromones, regardless of their chemical structure, are 

sensed via olfaction [204]. In tetrapod vertebrates, two discrete sets of neuronal epithelia 

are present, the main olfactory epithelium (MOE) and vomeronasal epithelia (VNE) [5]. 

Most studies of the VNE have been in rodents, where it is anatomically isolated from the 

MOE in an anterior bone-encapsulated cavity (the vomeronasal organ, VNO). In these 

mammalian models, two receptor families were identified in the VNE: vomeronasal type-

1 receptors (V1Rs) and vomeronasal type-2 receptors (V2Rs) [29, 30]. Based on amino 

acid sequence and structural prediction, it was hypothesized that V1Rs would detect and 

bind small volatile chemosignals, while larger peptide or protein chemosignals would 

interact with the large, extracellular N-terminal domains of V2Rs. While few specific 

ligand-receptor pairs have been identified, all neurophysiological and biochemical studies 

to date support this hypothesis [23, 34, 35]. Compared to the MOE, where neurons 

express individual olfactory receptors (ORs) and each is highly tuned to detecting a small 

number of ligands [22, 28, 221], receptor expression is more variable between neurons in 

the VNE – as are the ligands they sense [35, 36, 221]. In insects, pheromone activity is 

often dependent on combinations of particular components being delivered in precise 

ratios [206, 207], and in vertebrates, protein pheromones often persist as multigene 

families with many expressed isoforms [23, 24, 38]. At least in mammals, this may relate 
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to receivers learning individual scent profiles [25, 26]; however, for senders, the whole 

signal may not be equivalent to the sum of its parts. To date, few studies have sought to 

investigate the interactive effects of such vertebrate protein pheromones. 

 As basal tetrapods, salamanders make an excellent non-mammalian model to 

study the evolution and function of pheromone signaling in vertebrates. For the 

salamander family Plethodontidae, male salamanders deliver non-volatile proteinaceous 

courtship pheromones to females in order to regulate courtship behavior and mating 

receptivity [87]. Preceding the annual mating season, plasma androgen levels rise in male 

salamanders and induce hypertrophication of a submandibular mental gland solely 

dedicated to the production of courtship pheromones [69, 214, 222]. In our principal 

model, the red-legged salamander (Plethodon shermani), male salamanders privately 

deliver pheromones to a female during an elaborate courtship ritual by “slapping” his 

hypertrophied mental gland to her nares [78]. Pheromones diffuse into the female nasal 

cavity, activate neurons in the VNE that project to regions of the brain classically 

involved in pheromone response, which stimulates changes in mating behavior [70, 83, 

86]. During staged courtship trials, application of whole pheromone extract (WE) to 

female salamanders decreased tail straddling walk time by ~20% [85]. Chemical analysis 

of the pheromone extract revealed two major families of courtship pheromones: 

Plethodontid Receptivity Factor (PRF) and Plethodontid Modulating Factor (PMF). PRF 

is a 22 kDa protein related to IL-6 cytokines, while PMF is a smaller ~7 kDa protein 

related to the highly diverse three-finger protein (TFP) superfamily, which includes 

members such as snake venom cytotoxins and neurotoxins, the amphibian limb 

regeneration factor Prod1, and mammalian complement system receptor CD59 [69, 90]. 
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Through gene duplication and pervasive positive selection, both PRF and PMF exist in 

the pheromone mixture as multi-isoform blends [94, 96]; however, compared to 3 PRF 

isoforms with ~95% sequence identity, individual male salamanders express more than 

30 unique PMF isoforms with only ~30% sequence identity [91, Chapter II]. PMF 

isoform expression levels vary between males, with three isoforms (G, H, and I; together 

defined as PMF-GHI) almost always found in greater abundance than a mixture of >30 

minor isoforms (referred to as PMF-EF; see Chapters II and IV for details). When applied 

to female salamanders, both a single PRF isoform and a mixture of all three recapitulated 

the effect of WE by decreasing courtship time by ~20% [83, 208]. In contrast, female 

behavioral response to PMF was different depending on the isoform composition: a 

single abundant PMF isoform (PMF-G) elicited no measurable effect, a mixture of minor 

isoforms (PMF-EF) increased courtship time, but a complete mixture of isoforms (PMF-

EFGHI) decreased courtship time similarly to both WE and PRF [93, Chapter IV]. From 

these data, we hypothesized that PMF isoforms are functioning synergistically through an 

unknown neurophysiological pathway. 

 Salamanders possess a single nasal cavity with the MOE and VNE divided along 

the medial and lateral edges, respectively. The VNE, but not the MOE, is sexually 

dimorphic in plethodontid salamanders such that male salamanders have approximately 

twice as many VNE neurons [71]. RT-PCR and in situ hybridization studies have 

revealed high expression of V2Rs, but not V1Rs, in the P. shermani VNE [72]. In order 

to measure neuronal activation in this system, the arginine derivative agmatine (AGB) 

can be used as a tracer that passes through non-specific cation channels during membrane 

depolarization [223-226]. Co-application of pheromone and AGB to female salamanders 
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permits selective uptake of AGB into activated neurons, and following tissue fixation, 

sectioning, and immunohistochemical labeling, a permanent record of neuronal activation 

is obtained [70]. Previous studies suggested that PRF and PMF-EF activate different 

subsets of VNE neurons, yet independently only accounted for ~70% of the activated 

neurons observed when females were treated with WE [92]. No experiments were 

previously performed testing isoform mixtures containing the abundant isoforms PMF-

GHI, consequently, it is hard to assess how the synergistic effects between abundant and 

minor PMF isoforms may be mediated through VNE signaling. Therefore, to better 

characterize the role of PMF isoform diversity in regulating female courtship behavior, 

the aim of this study was to test the efficacy of different PMF isoform mixtures on 

stimulating female VNE neurons using the AGB uptake assay. 
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Results 

 Fourteen blocks with 5 heads each were cryosectioned for a total of 70 animals, 

collected as four sets of sequential 20 µm sections (80 µm between each section in a set). 

However, due to a cryostat malfunction, a large percentage of sections were lost for three 

blocks, and were excluded from the analysis (effective n = 55). Prior to full 

immunohistochemical (IHC) processing of one of the four slide sets, methods were 

optimized from the original Wirsig-Wiechmann et al. [70] protocol to reduce background 

staining and enhance resolution (Figure 23). Total neuron counts between treatments 

were visualized by box-and-whisker plots to reveal non-normal, overdispersed 

distributions (Figure 24A). The data were then analyzed using generalized linear models 

with negative binomial distributions, with and without pheromone as a fixed effect. When 

compared by chi-squared test, this fixed effect was significant (χ2(6) = 38.5, p = 8.8 x   

10-7). For the individual pheromone treatments, 0.5X PBS activated the fewest neurons. 

Model estimates for each treatment group (log transformed means) were compared to 

0.5X PBS by z-test with corrected standard errors for overdispersion (τ = 1.716) (Figure 

24B and Table 8). Means of AGB reactive neurons were reported as both total numbers 

and percent increase over vehicle/0.5X PBS treatment (similar to Wirsig-Wiechmann et 

al. [70, 92]). PMF-G elicited no significant response (𝑥̅ = 8.1, z = 0.24, p = 0.81).  
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Figure 23. Agmatine immunohistochemistry. 

Comparison of vomeronasal tissue from females treated with 0.5X PBS (A) and WE (B), 
with arrows pointing to immunoreactive neurons. (C) Higher magnification of four AGB 
neurons in close proximity. 
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Figure 24. Model estimates of AGB count data. 

(A) Box-and-whisker plots comparing the 7 pheromone treatments, which reveals non-
normal overdispersed distributions. (B) Bar graph of negative binomial GLM estimates ± 
standard errors for PMF and WE treatments above 0.5X PBS levels. 
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Table 8. Summary of GLM estimates by pheromone treatment. 

Treatment Mean AGB 
Reactive Neurons 

Effect above 
vehicle 

t-value p 

0.5X PBS 7.0 - - - 
PMF-G 8.1 +17% 0.236 0.81 
PMF-GHI 33.4 +378% 2.586 0.0097 
PMF-EF 22.8 +225% 1.903 0.057 
PMF-EFG 38.3 +448% 2.614 0.0090 
PMF-EFGHI 33.8 +383% 2.419 0.016 
WE 106.5 +1421% 4.439 9.0 x 10-6 
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All PMF treatment groups activated a significantly greater number of neurons compared 

to saline at p < 0.05 except for PMF-EF (𝑥̅ = 22.8, +225%, z = 1.90, p = 0.057); 

however, the effect of PMF-EF over vehicle was approximately twice of that observed in 

Wirsig-Wiechmann et al. [92] (+124%), and failure to achieve significance at p < 0.05 

may be partially explained by the number of levels in the treatment variable (7 groups 

versus only 2 in Wirsig-Wiechmann et al. [92]). Except for PMF-G, there was no 

statistical difference between any of the PMF isoform mixtures. Whole extract activated 

significantly more neurons than all other treatments (𝑥̅ = 106.5). 
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Discussion 

 In the current study, we evaluated the response of female olfactory neurons to 

different isoform combinations of Plethodontid Modulating Factor, a hypervariable 

salamander courtship pheromone. While both PRF and PMF are independently capable of 

reducing courtship time, PMF is unique in its ability to increase or decrease female 

receptivity depending on the isoform composition [93, Chapter IV]. When the different 

mixtures of PMF isoforms were tested in the current study, all but the single isoform 

(PMF-G) elicited a similar response of ~350% increase over 0.5X PBS. The non-

significant +17% increase in neuronal activation from PMF-G was consistent with 

courtship trials where there was no detectable response over vehicle [Chapter IV]. 

However, the mixture of the three highly abundant isoforms, PMF-GHI, elicited a robust 

response, suggesting that (1) PMF-H and PMF-I are independently producing large 

significant effects, or (2) PMF isoforms act synergistically to stimulate females. While 

we cannot definitively exclude the hypothesis that PMF-HI has a large independent 

effect, this seems unlikely for several reasons. First, PMF-G is consistently more 

abundant than PMF-H or PMF-I in the pheromone extract [Chapter II]. Second, the three-

dimensional structure of PMF-G was recently solved by NMR, with homology modeling 

suggesting that PMF-H and PMF-I are structurally very similar to PMF-G such that they 

may bind similar receptors [Chapter III]. Third, the only solution missing PMF-G (PMF-

EF) activated the fewest neurons, and while not statistically significant, it is interesting 

that the same mixture plus PMF-G (PMF-EFG) activated approximately twice as many 

neurons. Consequently, these data further support the hypothesis that synergistic 

interactions between different PMF isoforms are required to enhance female receptivity. 
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One quality of PMF that seems common to multiple vertebrate protein 

pheromones is evolutionary histories with pervasive gene duplication and 

neofunctionalization. In mice, both the major urinary proteins (MUPs) and exocrine 

gland-secreting peptide (ESP) families are highly polymorphic, with isoforms variably 

expressed both within and between inbred strains [24]. Many of these isoforms may have 

unique functions: specific MUPs are involved in regulating female receptivity and 

promoting male aggressive behavior [25, 27]; and ESP1, but not other ESPs, increased 

female receptivity [23]. In contrast to these mouse systems, where the pheromones are 

dispersed into the environment as part of general bodily fluids, the mental gland of 

plethodontid salamanders is only used to privately deliver signals to a single female 

during courtship [45]. Based on the timing of mental gland development and its use 

during tail-straddling walk, these pheromones presumably serve no functions beyond 

regulating behaviors that may impact reproductive success [83, 227]. Therefore, unlike 

the mouse pheromones with disparate functions, the many isoforms of both PMF and 

PRF may be acting on overlapping biological pathways, which fits within the “redundant-

signal” hypothesis [228, 229].  

However, the precise mechanism by which these PMF molecules are interacting 

to activate VNE neurons and affect female behavior remains unclear. All available 

evidence supports the hypothesis that PMF binds to V2Rs in the female VNE [72, 92]. In 

mice, pheromone binding to V2Rs induces the IP3 signaling cascade that eventually leads 

to opening of the transient cation channel TRPC2, allowing an influx of Ca2+, membrane 

depolarization, and signal transduction to the central nervous system [5, 33]. The 

proposed mechanism of AGB uptake during neuronal depolarization is via open TRPC2 
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channels following pheromone binding, and TRPC2 is highly abundant in the P. 

shermani VNO [72]. Both NMR and analytical ultracentrifugation studies demonstrated 

that PMF is monomeric, both as a single isoform and a complex mixture [Chapter III]. 

While some TFPs can form dimers [125], it is likely that the high negative charge density 

of PMF precludes such interactions [Chapter III]. One possible explanation may be that 

different PMF isoforms form a multimeric complex with a single receptor molecule. 

Compared to other members of the three-finger protein superfamily, PMF-G has a novel 

protein topology and three-dimensional structure that permits greater backbone flexibility 

in one of the three fingers, which is also the most variable and rapidly evolving segment 

in the PMF gene complex [Chapter III]. With less structural variation in the rest of the 

molecule, this may allow any number of different isoforms to dock with target receptors 

through the conserved regions, but activation may be dependent on proper interactions 

from the variable third fingers of the necessary isoforms in the proper orientation. These 

potential kinetic constraints may help explain the selection pressure for the large number 

of PMF isoforms (>50 expressed between different male P. shermani) and their large 

abundance in the mental gland (~5:1 stoichiometry compared to PRF, and ~50% of total 

pheromone in whole extract) [91, Chapter II].  

However, one previously unexplored hypothesis is that some isoforms of PMF 

may be functioning as signature mixtures rather than individual pheromones. The classic 

Karlson and Luscher (1959) definition of a pheromone is a molecule that elicits a pre-

programmed behavioral and/or neuroendocrine effect. In contrast, signature mixtures, 

proposed by Wyatt (2010), are variable sets of cues that provide information on identity 

of specific individuals in a population, but elicit no innate, pre-programmed response in 
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receiving individuals. What makes these terms somewhat confounding is that, under the 

proper conditions, signature mixtures can function similarly to pheromones. For example, 

the mouse pheromone darcin, a MUP isoform delivered alongside many other proteins 

and volatile odorants in mouse urine, provokes learning of male odor profiles in virgin 

females such that, upon subsequent exposure to the same odor profile minus darcin, 

female receptivity increases. In this system, females are now conditioned to respond to 

particular markers, but without initial co-exposure with darcin, there is no learning of 

these individual cues [25, 26]. In P. shermani, male salamanders express unique, 

individual PMF profiles (visible by HPLC), although the exact composition of these 

mixtures is hard to dissect other than PMF-G, H, and I are universally expressed at 

proportionally high levels [91]. Comparison of PMF cDNA sequences revealed that while 

there exists more than 99 unique putative isoforms in a single population, sequences were 

more accurately clustered into 13 common archetypes with only 1-2 SNPs varying 

between the sequences within each cluster [Chapter II]. Each of these PMF isoform 

clusters may be performing unique roles, either by targeting different classes of receptors 

or functioning in part as signature mixtures to convey identity. Because learning is an 

active component of signature mixture response [204], and P. shermani are difficult to 

breed under laboratory conditions (L.D. Houck, personal communication), it is a 

challenge to test these variable pheromone components on virgin females. However, 

female plethodontid salamanders can distinguish between the odors of individual 

conspecifics [230]. Additionally, learning of predator cues has been tested in multiple 

amphibian species [231-233], and in mice, many of these heterospecific signals are 

mediated through specific vomeronasal receptors (both V1Rs and V2Rs) [20]. Common 
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isoforms such as PMF-G may be acting as more traditional pheromones, while other 

variable PMFs serve more as individual cues in signature mixtures. This hypothesis is 

complementary to the longer standing view that PMF has been subject to extensive gene 

duplication and pervasive positive selection in order to expand the functional breadth of 

PMF as a “pheromone” [96, Chapter II]. 

In summary, PMF is a hypervariable vertebrate courtship pheromone that 

differentially regulates female courtship behavior at least in part through variability in 

isoform composition. For the first time, we demonstrated that a single isoform of PMF 

was unable to significantly activate neurons in the female VNE; however, any mixture of 

PMF containing 3 or more isoforms elicited a similar response of ~350% activation over 

vehicle. The exact receptors and mechanisms mediating this response is still unclear, and 

may, in part, involve isoforms forming multimeric complexes with V2Rs, VNE neurons 

expressing multiple V2Rs, and/or learning in female salamanders as part of signature 

mixtures. Future studies will seek to further characterize the molecular architecture of the 

P. shermani VNE, identifying the specific PMF receptors, and elucidating the binding 

mechanics in order to better understand the evolutionary forces that have driven 

exacerbated gene duplication and positive sexual selection on PMF over the past 100 

million years. 
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Experimental procedures 

Animal collection 

 P. shermani salamanders were collected from a single site in Macon Co., North 

Carolina, USA (35°10’48” N, 83°33’38” W) during their annual breeding season in 

August 2011, and housed at Highlands Biological Station for duration of the experiment. 

Adult salamanders were identified and sexed based on a well-developed mental gland in 

males and large ova in females. Animals were individually housed 15-18°C and ~70% 

humidity in clean plastic boxes (17 x 9 x 13 cm) lined with a damp paper towel, and a 

second damp crumpled paper towel for refugia. Once per week, salamanders were 

transferred to clean boxes with new substrate and fed 2 waxworms (Galleria mellonella). 

All animals were collected under permits obtained from the North Carolina Wildlife 

Resources Commission, and all animal methods were approved by Oregon State 

University ACUP #4053 to L.D. Houck. 

Preparation of male pheromones 

 Whole pheromone extract (WE) was collected from male salamanders following 

the methods of Rollmann et al. [83]. Briefly, male salamanders were anesthetized in a 

mixture of 7% ether/water for ~7 minutes, and the mental gland surgically removed from 

the dermis using iridectomy scissors. Mental glands were then incubated in acetylcholine 

chloride (0.8 mM in amphibian Ringer’s solution) for 60 min to induce pheromone 

secretion. Mental glands were removed by two rounds of centrifugation at 10,000 x g for 

10 min, and pheromone extracts stored at -80°C till further processing at the University 

of Louisville. WE was prepared by ultrafiltration and standardized at 2.0 mg/mL in 0.5X 

phosphate buffered saline (PBS). PMF-EF and PMF-EFGHI were prepared based on the 
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methods of Chapter II using high performance liquid chromatography (HPLC). Briefly, 

WE was subjected to strong anion exchange HPLC in order to collect the PMF-EFGHI 

fraction. PMF-EF and PMF-GHI were resolved by a second round of strong anion 

exchange HPLC with a shallower elution gradient. PMF-GHI was purified to >99% 

purity by one round of reverse phase HPLC such that the solution only contained the 

three most abundant PMF isoforms. In order to test the effects of PMF-G and PMF-EFG, 

highly purified recombinant PMF-G was prepared based on the methods of Chapter III 

using the methylotrophic yeast Pichia pastoris. All biochemical and structural studies 

have confirmed that recombinant PMF-G has an identical sequence and 3D structure to 

natural PMF-G, and is thus suitable for bioassays. PMF-EFG was prepared by mixing 

natural PMF-EF with recombinant PMF-G in a 7:2 ratio (which approximates natural 

levels, based on integration of peak areas observed by strong anion exchange HPLC). All 

PMF solutions were standardized using ultrafiltration to 0.5 mg/mL in 0.5X PBS.  

AGB uptake assay and immunohistochemistry 

The AGB uptake assay was performed based on the methods from Wirsig-

Wiechmann et al. [70]. Pheromone solutions were mixed 1:1 with 6 mM AGB (Sigma 

Aldrich, St. Louis, MO) in 0.5X PBS. A total of 70 adult gravid female salamanders were 

placed in new, unused Tupperware sandwich boxes lined with a single damp paper towel 

and allowed to acclimate for 30 min. Each salamander received one of 7 different 

treatments (n=10 per treatment): 0.5X PBS (negative control/vehicle), PMF-G, PMF-

GHI, PMF-EF, PMF-EFG, PMF-EFGHI, or WE (positive control). Two microliters of 

pheromone/AGB was applied to the female’s nares every 2 minutes for a total 40 min (20 

applications), followed by 3 rinses with 5 µL 0.5X PBS over ~5 minutes. Females were 
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then rapidly decapitated, the lower jaw removed, and heads incubated overnight in 10mL 

4% paraformaldehyde/2.5% glutaraldehyde (in 150mM sodium chloride/100mM sodium 

phosphate, pH 7.4). Heads were then decalcified using DeCal (Decal Corporation, 

Congers, NY) for 3 days, cryoprotected in 30% sucrose for 2 days, and embedded using 

Optimal Cutting Temperature (OCT) media (Sakura-Finetek, Torrance, CA). A total of 

14 blocks were prepared with 5 heads each, and stored at -80°C prior to cryosectioning. 

Heads were sectioned coronally at a thickness of 20 µm, and thaw mounted onto 

superfrost plus slides pre-coated with polylysine. Sections were collected in four sets 

such that each section in a set was separated by 80 µm. Slides were stored at -80°C prior 

to immunohistochemistry. One slide set was used to optimize IHC conditions from the 

original Wirsig-Wiechmann et al. [70] protocol to reduce background staining 

(adjustments were principally in the concentration of detergents used in pre-incubation 

and washing steps): after equilibration to room temperature, slides were washed five 

times for 5 min each in 1X PBS, preincubated in 1% normal goat serum/1X PBS/0.2% 

Triton X-100/0.5% Tween-20/0.02% azide for 30 min, and incubated overnight in rabbit 

anti-AGB (EMD-Millipore, Billerica, MA) diluted 1:2000 in 1% normal goat serum/1X 

PBS/0.1% Triton X-100/0.05% Tween-20/0.02% azide for three days. Slides were then 

washed five times for 5 min each in 1X PBS/0.05% Tween-20 (PBST), incubated for 30 

minutes in biotinylated goat anti-rabbit IgG (Thermo-Pierce, Rockford, IL) diluted 1:500 

in PBST, washed five times for 5 min each with PBST, incubated in 0.5X ultra-sensitive 

ABC peroxidase staining reagent (Thermo-Pierce) in PBST for 30 minutes, washed three 

times for 5 min each with PBST, twice with 1X PBS for 5 min each, and developed with 
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metal enhanced DAB (Thermo-Pierce) for 5 min before serial dehydration and 

coverslipped with Permount (Fisher Scientific, Pittsburgh, PA).  

Histological and statistical analyses 

 Slides were visualized and imaged using an Olympus microscope with an 

attached 9 megapixel digital camera. AGB reactive neurons were counted in VNE tissue 

for all sections from both left and right nasal cavities. Count data was analyzed using 

generalized linear models with negative binomial distributions using the R function 

glm.nb in the package MASS. The effect of pheromone treatment was evaluated by 

likelihood ratio test against an intercept-only model, with individual effects of the seven 

solutions/levels examined post-hoc by z-test with corrected standard errors.  
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CHAPTER VI - GENE EXPRESSION DURING SEASONAL ORGANOGENESIS: 

PROFILING TRANSCRIPTOME CHANGES IN AN ANNUAL CYCLE OF 

GLAND DEVELOPMENT AND HYPERVARIABLE PHEROMONE SYNTHESIS 
 

Chapter Overview 

 Cell differentiation is an essential biological process for tissues and organs to 

adopt specific functions, resulting from the ordered, synchronized expression of hundreds 

to thousands of genes. A detailed analysis of the genes expressed at different stages of 

differentiation can be highly informative to determining a tissue’s function, regulatory 

proteins, and evolutionary origin. In the red-legged salamander, male salamanders 

develop a highly specialized pheromone gland (mental gland) that, once fully developed, 

redirects nearly all of its transcriptional and translational machinery to the production of 

pheromone. The mental gland undergoes the unique phenomenon of seasonal 

organogenesis: an annual cycle where the mental gland undergoes extreme 

hypertrophication, persists for ~2 months, and then completely resorbs. At least one 

family of proteinaceous pheromones, Plethodontid Modulating Factor (PMF), has 

experienced a highly unusual history of disjunctive evolution: following gene 

duplication, high rates of positive selection have diversified the coding regions, yet 

unknown forces have conserved the untranslated regions by purifying selection. 

However, it remains unclear how the mental gland hypertrophies, redirects its molecular 

machinery exclusively towards pheromone synthesis, and how these UTRs may be 
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involved in this process. Using next-generation sequencing, we prepared a de novo 

transcriptome of the mental gland at six stages of development. Combining differential 

expression analysis and immunohistochemistry, it was ascertained that the mental gland 

initially adopts a highly proliferative, almost tumor-like phenotype, then proceeds to 

rapidly increase the amount of pheromone mRNA in order to drive pheromone synthesis. 

One likely player in this transition is Cold Inducible RNA Binding Protein (CIRBP), 

which selectively and cooperatively binds the highly conserved PMF 3’ UTR. CIRBP, 

along with other stress response proteins, have seemingly been co-opted to perform novel 

functions in the development of the mental gland and play key roles in regulating 

pheromone synthesis. This study illustrates how post-transcriptional regulators of gene 

expression may act as strong selective tethers even for rapidly evolving proteins, and 

could have key implications for studying the co-evolution of such proteins and their 

regulators. Similarly, the mental gland could be a powerful emerging model of regulated 

proliferation and subsequent resorption with potential links to cancer biology. 
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Introduction 

The processes of cellular differentiation and tissue remodeling are ubiquitous for 

multicellular organisms. The transition of cells from totipotency to terminal 

differentiation are the result of highly coordinated gene networks and changes in 

expression patterns [234]. Cell differentiation can be induced by a range of signals, 

including cytokines, hormones, cell contact, external stressors, and extracellular matrix 

composition [235-239]. Generally, target genes are regulated through activation of 

specific transcription factors and/or post-transcriptional mechanisms, such as RNA-

binding proteins and microRNAs, which allow selective translation of key proteins [240, 

241]. In the case of endocrine and exocrine glands, differentiation includes the activation 

of genes whose products are distributed and function outside of the originating tissue. 

Study of the gene networks involved in the differentiation of exocrine and endocrine 

glands may provide key insights into better understanding the regulation, biogenesis, and 

downstream activities of the secreted products. 

For nearly all animals, pheromones are important chemical signals that can 

mediate social and reproductive behaviors [10, 177, 220]. Most pheromones elicit their 

effects by first binding to cell surface receptors on specialized olfactory neurons [5, 204]. 

While pheromones may provide honest or dishonest information to receivers [203], 

underlying the transmission of a particular pheromone exists layers of regulation that 

modulate its synthesis. Therefore, the social behaviors which result from pheromone 

signaling are indirectly mediated by regulation of pheromone synthesis itself. To date, the 

most well characterized pheromone models are the volatile hydrocarbons of insects, 

synthesized through long enzymatic cascades [16]. Consequently, tracing the specific 
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mutations and genetic characteristics that modulate their production can be both tedious 

and difficult. In contrast, protein pheromones, as direct gene products synthesized via 

transcription/translation, provide a much more tractable model for studying how natural 

or sexual selection may alter pheromone genes and their regulatory elements. 

Interestingly, as secreted products that do not directly interact with the sender’s 

metabolism, purifying selection may be weaker on protein pheromone genes, leading to 

many having histories of accelerated evolution [24, 94, Chapter II]. However, despite 

overwhelming evidence that both the composition and ratio of components in pheromone 

mixtures are often essential for proper biological activity [209-213], there have been no 

specific studies addressing the regulation of protein pheromone biosynthesis at different 

levels of mixture complexity. 

 For more than 100 million years, plethodontid salamanders have utilized a system 

of nonvolatile proteinaceous courtship pheromones to regulate female reproductive 

behavior [87]. In the species Plethodon shermani, during a courtship behavior known as 

tail-straddling walk, male salamanders will privately deliver pheromones to a female by 

“slapping” a large pad-like gland on his chin (the mental gland) to the female’s nares 

[85]. Pheromones diffuse into the female nasal cavity, bind to receptors on neurons in the 

vomeronasal organ, activate regions of the brain involved in pheromone response, and 

regulate female mating behavior [70, 73, 83, 86, 92]. Chemical analysis of the pheromone 

extract revealed two major components: Plethodontid Receptivity Factor (PRF) and 

Plethodontid Modulating Factor (PMF). PRF is a 22-kDa protein with sequence similarity 

to IL-6 cytokines [83], while PMF is a 7-kDa protein related to the highly diverse three-

finger protein (TFP) superfamily that includes snake venom neuro- and cytotoxins, the 
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complement receptor CD59, the human Ly6 antigen, the urokinase receptor uPAR, and 

the amphibian regeneration factor Prod1 [90]. When experimentally applied to female 

salamanders, both PRF and PMF altered the length of courtship time [83, 93, 208, 

Chapter IV]. Analysis by high performance liquid chromatography (HPLC) and mass 

spectrometry (MS) revealed multiple isoforms of both PRF and PMF; however, 

compared to 3 highly conserved PRF isoforms (>95% identity), individual male P. 

shermani expressed more than 30 diverse PMF isoforms (~30% identity) [Chapter II]. 

The ratios of different PRF and PMF isoforms are quite variable between male 

salamanders [91], and the source of isoform sequence diversity is primarily from gene 

duplication [Chapter II]. Examination of PRF and PMF sequences from 29 plethodontid 

species revealed that both genes have been subjected to pervasive positive selection [94, 

96]. Sampling from these many species by RT-PCR was facilitated by the unique quality 

that both PRF and PMF have unusually conserved, AU-rich untranslated regions (UTRs). 

The contrast is most striking for PMF: compared to the ~30% amino acid identity 

between isoforms, the average conservation for both the 5’ and 3’ UTRs is ~98%. We 

proposed that PMF genes have been subjected to disjunctive evolution: the coding 

regions of the many PMF gene copies have been under positive selection in order to 

expand the functional breadth of PMF as a pheromone, while purifying selection on the 

UTRs permitted coordinated, synchronized expression of the many PMF isoforms 

[Chapter II]. The mechanism by which these UTRs mediate such expression remained 

unknown, but it was postulated that RNA binding proteins are likely involved. Limited 

DNA sequence data and no proteomic information pertaining to the cytosolic 

environment of the mental gland precluded further analysis. 
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  The mental gland of P. shermani is an unusual tissue that undergoes the unique 

phenomenon of seasonal organogenesis. During the non-breeding season, it is absent 

from male salamanders; however, presumably in response to elevated plasma androgens 

[214, 222], the gland hypertrophies over ~2 months and develops into a large pad-like 

structure solely dedicated to the production of protein pheromones (Figure 25). Once the 

gland has fully developed, PRF and PMF represent ~85% of the secreted protein [69]. 

Similarly, cDNA sequence analysis revealed that ~70% of the total mRNA coded for 

pheromones [89]. Following the end of the courtship season, the gland seemingly resorbs 

and a new one forms each subsequent year. Post-embryonic organogenesis is rare outside 

of plants [242, 243], with the best models being gonad development in nematodes [244, 

245], and perhaps shares qualities with insect and amphibian metamorphosis [246]. 

However, none of these examples have the dynamic but highly regulated annual cycle 

that results in an organ performing such a specialized function. It is noteworthy that 

surgical removal of the mental gland is followed by rapid wound healing which 

prevented gland regrowth in subsequent years (L.D. Houck and R.C. Feldhoff, personal 

communication), though animals will continue to mate normally. This suggests that there 

likely exist androgen-sensitive precursor cells embedded in the dermis. Given that the 

transcriptional and translational machinery of fully developed mental glands are directed 

almost exclusively towards pheromone production, there must exist some earlier 

developmental phase characterized by greater mitosis and/or general growth in order to 

form the glandular structure. The unusually conserved pheromone UTRs may be critical 

for regulating (1) the transition from gland hypertrophication to pheromone synthesis, 

and (2) the precise composition of proteins found in the pheromone mixture.  
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Figure 25. Mental gland hypertrophication. 

Comparison of male P. shermani from (A) late May (non-breeding condition) and (B) 
mid-August (breeding condition), with the mental gland being the large pad-like structure 
on the male’s lower jaw in panel B.  
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Previous studies of the mental gland have been limited to examining basic histology [45, 

247], establishing that plasma androgens influence development [214, 222], and 

characterizing the pheromone composition [69, 91, Chapter II]. Therefore, to better 

understand the developmental process of this novel tissue and how pheromone synthesis 

may be regulated to produce variable signals that regulate female reproductive behavior, 

the aim of this study was to characterize the transcriptome of P. shermani mental glands 

at different stages of gland development. 
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Results 

Qualitative observation of mental gland development 

 To examine mental gland development, we performed a time-course experiment 

based on initial observations by Woodley [214]. In that study, plasma testosterone for 

male P. shermani was found to increase from mid-June (~100 ng/mL) to late August 

(~350 ng/mL), and started to decline by early September. It was also observed that ~90% 

of animals had thin mental glands by late June, and the glands were enlarged on ~50% of 

animals by mid-July. To acquire a comprehensive sample set that spanned most phases of 

development, we collected male P. shermani approximately every 3 weeks from late May 

through mid-September in 2010 (5/29, 6/19, 7/10, 8/1, 8/21, 9/11). Our qualitative 

observations were similar to those of Woodley [214]. On 5/29, male salamanders had 

visibly different skin pigmentation near the mentum compared to females, including 2 out 

of 15 males with extremely faint “outlines” of a mental gland. By 6/19, this proportion 

had increased such that 8 of 10 collected males had visible outlines and/or thin mental 

glands. On 7/10, all males collected had visible and protruding mental glands. At this 

time point, 8 mental glands were incubated in acetylcholine to induce pheromone 

secretion; analysis of these samples by reverse-phase high performance liquid 

chromatography (RP-HPLC) revealed normal proportions of PRF and PMF, however, the 

protein concentration of the samples were ~33-50% of levels normally observed in mid-

August. Glands from the last three time points (8/1, 8/21, and 9/11) were visibly well-

developed and had normal levels of pheromone. For a second data set, we collected 

animals from mid-June (6/13) and early August (8/3) in 2013, and observed similar rates 

of gland development, suggesting a tightly regulated seasonal pattern of development 
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within the population. Histological analysis of the tissue by hematoxylin/eosin staining 

showed that the glandular tissue was immediately under the epidermis (~2-3 cells thick). 

The mental gland was structured as cylindrically shaped bundles with nuclei localizing 

exclusively near the periphery. At the 8/3 time point, there was bright eosin staining in 

the center of these bundles; yet on 6/13, only nuclear staining was visible for the smaller, 

more tightly packed bundles (Figure 26A). Confocal fluorescence microscopy was 

performed using a combination of dyes to stain the nucleus (DAPI), actin fibers 

(phalloidin), and glycoproteins associated with the plasma membrane and/or extracellular 

matrix (ECM) (wheat germ agglutinin). For 8/3, the strongest actin staining was along the 

periphery (near the nuclei), with light, diffuse staining and a few small fibers visible in 

the eosin-stained space; for 6/13, actin was only found adjacent to DAPI-stained nuclei 

(Figure 26B-C). Lectin staining suggested condensation and/or degradation of much of 

the ECM as the gland expanded (Figure 26B). Immunohistochemical labelling with anti-

PRF produced a strong, punctate pattern throughout the eosin-positive space, and may 

represent stored secretory vesicles/granules. There was minimal PRF staining for 6/13, 

both in intensity and volume (Figure 27). These data suggest that the mental gland 

initially forms as a tightly packed mass of cells with little cytoplasm, and upon induction 

of pheromone synthesis, the cells swell with large volumes of pheromone, adopt a 

columnar shape, and the ECM condenses and/or degrades in order to support the enlarged 

cells. 
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Figure 26. Mental gland histology. 

Comparison of mental glands from male P. shermani from two stages in mental gland 
development (6/13 and 8/3) using (A) hematoxylin and eosin staining, (B-C) fluorescent 
confocal microscopy with dyes labeling the nucleus (blue), actin cytoskeleton (red), and 
ECM (green) at 10X (B) and 40X (C) magnifications. 
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Figure 27. Pheromone immunohistochemistry. 

Comparison of pheromone expression and localization for mental glands at two stages of 
development (6/13 and 8/3) by immunohistochemistry (using anti-PRF; red), with 
fluorescent dyes labeling the nucleus (blue) and ECM (green). 
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Mental gland transcriptome and changes in gene expression 

 Total RNA was isolated from 5 mental glands at each of the six 2010 time points 

(30 glands total). It should be noted that “mental gland” is used here to describe the tissue 

occupying the anatomical location where the mental gland is normally found; for the 

earlier time points, this largely represented skin and connective tissue. Standardized 

amounts of total RNA were pooled for the five glands at each time point, and cDNA was 

synthesized with oligo-dT priming (Figure 28). Interestingly, the bands known to 

correspond to PMF and PRF mRNA were visible for all six time points, even in the early 

points when there was no detectable pheromone in the extract. The intense ~850 bp band 

in the 5/29 and 6/19 samples was later identified to encode a 15.3 kDa secreted protein 

with no significant blastp results in Genbank. DNA was sequenced using the Illumina 

HiSeq 2000 platform with 100bp paired-end reads at a depth of >20 million reads per 

time point, and a de novo transcriptome was prepared using the Trinity RNASeq package 

(Table 9).  Initial gene annotation was performed using several publicly available 

bioinformatics tools (see methods section). Reads were re-aligned to the transcriptome, 

expression levels estimated using RSEM [248], and differences in gene expression 

between time points estimated by EBSeq [249] (Table 10). However, nearly all of the 

assembled genes were detectable at all six points (at varying levels), and with n = 1 per 

time point, EBSeq used a highly conservative variance estimator and there was limited 

statistical power to detect differentially expressed genes between contiguous time points.  
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Figure 28. P. shermani mental gland cDNA. 

Comparison of pooled, PCR amplified cDNA from six time points in mental gland 
development used for transcriptome sequencing. Arrows denote the bands corresponding 
to PRF and PMF mRNA, which are present at all 6 points. 
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Table 9. Summary of P. shermani mental gland transcriptome. 

 

 

 

 

 

 

 

 

  

Total no. of reads 146,829,960 
Average read length 100 bp 
Total number of Trinity components 56,083 
Total number of Trinity transcripts 158,361 
Mean length of transcripts 578 bp 
Median length of transcripts 394 bp 
No. of Trinotate-predicted ORFs 47,097 
Trinotate ORFs with SwissProt match (blastp) 22,182 
Trinotate ORFs with TrEMBL match (blastp) 25,184 
Transcripts with TrEMBL match (blastx) 39,600 
Successfully re-aligned forward reads 66,392,752 (90.4%) 
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Table 10. Select list of differentially expressed genes. Comparison denotes the two 
time points compared by EBSeq, with fold change as the ratio of the second time point to 
the first, and the posterior probability of differential expression (PPDE).  

Gene Putative function Comparison Fold Change PPDE 
PMF Class II Pheromone 6/19 → 8/1 28 X 1 
C3 Putative pheromone 6/19 → 8/1 430 X 1 
Sodefrin-like factor Putative pheromone 6/19 → 8/1 350 X 0.962 
VIP-like homolog Putative pheromone 6/19 → 8/1 170 X 1 
Calmodulin Ca2+ binding 6/19 → 8/1 0.24 X 1 
Parvalbumin Ca2+ binding 5/29 → 6/19 9200 X 0.999 

6/19 → 8/1 0.00031 X 0.973 
Calreticulin Ca2+ binding 6/19 → 8/1 3.1 X 1 
Kazal-type serine 
protease inhibitor 

Secreted protease 
inhibitor 

6/19 → 8/1 280 X 0.976 

Cystatin Secreted protease 
inhibitor 

6/19 → 8/1 30 X 1 

Cathepsin S Cysteine protease 6/19 → 8/1 1.5 X 0.999 
Protein disulfide 
isomerase A6 

Chaperone 6/19 → 8/1 9 X 1 

ADP-ribosylation 
factor 4 

Vesicle transport 6/19 → 8/1 1.7 X 0.999 

Gap junction protein Gap junctions 6/19 → 7/10 480 X 0.999 
8/1 → 8/21 0.0012 X 1 

Vascular endothelial 
growth factor A 

Promotes angiogenesis 6/19 → 8/1 39 X 0.957 

Tubulin α1 Microtubule formation 6/19 → 8/1 0.41 X 1 
Histone H2A Chromatin binding 6/19 → 8/1 0.36 X 0.999 
Histone H1E Chromatin binding 5/29 → 6/19 0.0074 X 0.935 
eIF4AI Translation initiation 5/29  → 6/19 31 X 0.909 
  8/1 → 8/21 0.045 X 0.990 
eIF 2 Translation initiation 5/29 → 6/19 0.011 X 0.901 
Ribosomal protein 
L36 

Translation 6/19 → 7/1 20 X 0.881 

  8/1 → 8/21 55 X 0.997 
Ribosomal protein 
L38 

Translation 8/1 → 8/21 0.065 X 0.999 

Ribosomal protein S4 Translation 8/1 → 8/21 0.049 X 0.984 
Ribosomal protein 
S25 

Translation 8/1 → 8/21 0.071 X 0.978 
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To better characterize overall expression patterns, cluster analysis was performed 

using the R package MBCluster.Seq [250]. Using a hierarchical approach, five major 

groups of genes were identified with different expression profiles and numbered 1 to 5 in 

order of decreasing gene count (Figure 29). Cluster 1 contained the majority of genes 

(87.7%), had a maximum expression in May/June, and included the majority of 

housekeeping genes (e.g. β-actin, GAPDH, PCNA, ferritin, ribosomal proteins). In 

relative terms, cluster 2 had the most stable expression patterns (~1-4X fold difference 

between time points), and included a range of genes from different biological pathways, 

including ribosomal proteins, lysosomal proteases, signal peptidase complex members, 

and lipid biogenesis enzymes. Cluster 3 included genes almost exclusively found in the 

earliest time point (with some low expression in the last two time points, possibly 

suggesting a cyclical response as the gland begins to resorb). Some of the most highly 

expressed genes in cluster 3 included ribosomal proteins (S6, S15, S17, S23, L14, L24, 

L32, L37a) and histone proteins (H1E, H2A, H3). Clusters 4 and 5 together include the 

genes most highly expressed in the later phases of gland maturation (0.8% of all genes). 

As expected, the majority of transcripts coded for pheromone, including PRF and PMF, 

but also (in lower abundance) many putative pheromones that were identified in other 

plethodontid species (natriuretic peptide, vasoactive intestinal peptide, sodefrin 

precursor-like factor, cysteine rich secretory protein) [89]. Included in these sequences 

was a predicted protein related to the tissue inhibitor of metalloproteinase (TIMP) family 

that included an extraordinarily long 3’ UTR (~3700 nt); through mass spectrometry, this 

sequence was matched to a protein previously termed C3 based on its chromatographic 

elution conditions. C3 comprises ~10% of the pheromone extract [91].  
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Figure 29. Cluster analysis of mental gland gene expression. 

(A) Cladogram representing the ~55,000 genes organized into 6 clusters. Shades of grey 
represent log fold changes between time points. (B) Line graphs of cluster means vs time. 
(C) The six most abundant genes in each cluster (at the time point with the highest 
expression levels per cluster). 
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The function of this protein is still unknown, but given this new information as to its 

likely homology, we will now refer to it as Plethodontid TIMP-like Protein (PTP). 

Multiple other protease inhibitor-like proteins were identified, included cystatin C and 

multiple Kazal-type inhibitors. Clusters 4 also included a number of retrotransposon and 

reverse transcriptase-like sequences. The biological importance of these sequences is 

unclear, but provides a likely mechanism to explain the presence of processed PMF 

pseudogenes in the P. shermani genome [Chapter II]. Three other proteins of interest in 

cluster 4 included acetylcholinesterase (AChE), nuclear protein 1 (NP1), and vascular 

endothelial growth factor (VEGF). Incubation with acetylcholine is our standard 

methodology to induce pheromone secretion from mental glands [83, 251], such that the 

co-secretion of AChE would allow for tightly controlled pheromone release via the same 

mechanism that regulates muscle contractions [252]. VEGF, an angiogenic factor, may be 

necessary for mental gland maintenance such that as the mental gland enlarges, the cells 

closest to the dorsal surface will be distant from dermal capillaries and may not receive 

sufficient nutrition without angiogenesis. Related to the preceding, NP1 classically 

functions in chromatin remodeling as part of stress responses, such as nutrient starvation, 

to prevent apoptosis [253, 254]. Notably, NP1 is one of the few proteins to steadily 

increase in expression over the 6 time points, and may play an important role in ensuring 

that the gland persists throughout the courtship season after it has transitioned to 

pheromone synthesis. To validate estimates of gene expression from the Illumina data, 

qRT-PCR analysis was performed for 16 genes of interest (Figure 30), and similar 

expression patterns were observed.  
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Figure 30. qRT-PCR analysis of select mental gland genes. 

Transcript abundance was measured for 16 mental gland genes qRT-PCR, scaled relative 
the time point with the most abundant expression, and fit to a linear mixed effect model 
with gene and time as fixed effects and male as a random effect. Reported values are 
model estimated mean ± standard error.  
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RNASeq- and qPCR-based estimates of gene expression were significantly correlated 

with R2 = ~0.5, with no significant biases from gene or time point. 

Cold Inducible RNA Binding Protein (CIRBP) binds the PMF 3’ UTR 

 It was previously hypothesized that the highly conserved PMF untranslated 

regions functioned as platforms for RNA binding proteins (RNA-BPs) that would permit 

synchronized expression of the many diverse isoforms [Chapter II]. Unfortunately, no 

RNA-BPs were detected during differential expression analysis with EBSeq. Upon 

manual examination of the candidate genes, Cold Inducible RNA-BP (CIRBP) was found 

to be significantly more abundant than any other RNA-BP (~0.13% of all transcripts in 

6/19 time point). Analysis by qRT-PCR confirmed differential mRNA expression over 

the six time points, with maximum expression at 6/19 (Figure 30). To test for biological 

activity in vitro, recombinant CIRBP fused to the enhanced cyan fluorescent protein 

(rCIRBP/ECFP) was expressed in E. coli and purified to >99% homogeneity. 

Electrophoretic mobility shift assays (EMSAs) were performed using rCIRBP/ECFP and 

in vitro transcribed RNA. For these initial studies, efforts were focused on PMF Class I 

that includes the majority of expressed isoforms and represents the greatest percentage of 

the PMF mRNA. When rCIRBP/ECFP was titrated against a nearly full length PMF 3’ 

UTR (nucleotides 26-667), a very clear shift was observed in both the RNA and protein 

bands (Figure 31). Interestingly, there was visible RNA smearing at lower concentrations 

of rCIRBP/ECFP, suggesting possible dissociation of the RNA/protein complex during 

electrophoresis. Simultaneously, the altered position of the RNA band in the presence of 

greater rCIRBP/ECFP suggested a non 1:1 stoichiometry.  
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Figure 31. CIRBP – PMF 3’ UTR interactions. 

EMSA using a constant amount of PMF 3’ UTR in vitro RNA (200 ng) with increasing 
concentrations of rCIRBP/ECFP (µM; RBP), and a protein-only control. Protein 
fluorescence was detected by ECFP (green), and RNA was stained using Sybr Green II 
(red).  
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To narrow down the potential binding sequences for CIRBP in the PMF 3’ UTR, four 

overlapping sequences of ~250 nt were prepared. Simultaneously, an off-target control of 

similar length was prepared from the keratin 3’ UTR. When these five different RNAs 

were analyzed by EMSA, all showed visible gel shifts in the presence of increasing 

rCIRBP/ECFP, yet the degree of overlap appeared most intense in the 26-288 and 99-368 

fragments (Figure 32). Also, in the non-protein control lanes, the variability in band 

number and intensity suggested different degrees of RNA secondary structure between 

the different sequences, which may have had an impact on CIRBP binding. To further 

demonstrate specificity of CIRBP towards the PMF 3’ UTR, fluorescently tagged 

versions of the different RNA molecules were prepared by using tetramethylrhodamine 

(TAMRA) and aminoallyl-modified uracil. With PMF 3’ UTR 99-368, addition of a 100-

fold excess of unlabeled PMF 3’UTR 99-368 eliminated the gel shift, while a 100-fold 

excess of unlabeled keratin 3’ UTR only reduced the gel shift to a smear (Figure 33A). 

These data further suggest that CIRBP has relatively greater affinity for the PMF 3’ UTR, 

yet some non-specific affinity for other RNA molecules. In a similar competition assay, 

using a TAMRA-labelled PMF 3’ UTR 26-667, 100X unlabeled RNA was added for 

three different lengths of the PMF 3’ UTR (26-288, 26-565, 26-667) and keratin 3’ UTR. 

Only the full length PMF 3’ UTR 26-667 was able to fully eliminate the observed gel 

shift, such that there was a positive correlation between RNA length and ability to 

compete for binding (Figure 33B). 
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Figure 32. CIRBP affinity for different RNAs. 

Overlays of fluorescent EMSAs using increasing 
concentrations rCIRBP/ECFP (RBP) with 200 ng of five 
different RNA molecules (four overlapping ~250 bp 
segments of the PMF 3’ UTR, and a Keratin 3’ UTR 
control). Protein fluorescence was detected by ECFP 
(green), and RNA was stained using Sybr Green II (red). 
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Figure 33. Competition EMSA with 
CIRBP. 

(A) EMSA between TAMRA-labeled 
PMF 3’ UTR 99-368 RNA (30 ng; red) 
and rCIRBP/ECFP (1.5 µg; RBP; green), 
with competition using 100X (3 µg) of a 
specific competitor (SC; unlabeled PMF 
3’ UTR 99-368) or a non-specific 
competitor (NC; unlabeled Keratin 3’ 
UTR 205-441). (B) EMSA with TAMRA-
labeled PMF 3’ UTR 26-668 RNA (30 
ng; red) and rCIRBP/ECFP (1.5 µg; RBP; 
green), with competition using 100X (3 
µg) of four different unlabeled 
competitors: SC1 = PMF 3’ UTR 26-288, 
SC2 = PMF 3’ UTR 26-565, SC3 = PMF 
3’ 26-668, or NC = Keratin 3’ UTR 205-
441. 
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Dynamics of CIRBP-PMF 3’ UTR Interactions 

 CIRBP contains two structural domains: an N-terminal RNA recognition motif 

(RRM) and a C-terminal glycine-rich, low complexity domain (LCD). Studies on the 

human homolog of CIRBP suggested that both domains can bind RNA, with the RRM 

having specific RNA interactions and the LCD having non-specific interactions [255]. 

For P. shermani, each domain was expressed as a separate fusion protein to enhanced 

cyan fluorescent protein (rCIRBP-RRM/ECFP and rCIRBP-LCD/ECFP), and when used 

in EMSAs, neither domain demonstrated strong affinity to the TAMRA-labelled PMF 3’ 

UTR (99-368) (Figure 34). There was a small amount of smearing that occurred in the 

highest concentrations of rCIRBP-LCD/ECFP, suggesting some weak interaction. As 

similar smearing was observed at lower concentrations with rCIRBP/ECFP, EMSAs with 

rCIRBP/ECFP and PMF 3’ UTR 99-368 were repeated with and without formaldehyde 

pre-treatment to crosslink protein-RNA complexes. Crosslinking successfully reduced the 

amount of visible RNA smearing in the gel (Figure 35), suggesting that under sufficiently 

low stoichiometry, rCIRBP/ECFP (and likely rCIRBP-LCD/ECFP) forms an unstable 

complex with target RNA such that it readily dissociates under electrophoresis 

conditions. 

 When using TAMRA-labelled RNA (Figure 33), it was observed that interaction 

with CIRBP caused significant fluorescence quenching of bound RNA – likely due to 

shielding of the fluorophores attached to the uracil bases. Using TAMRA-labelled PMF 

3’ UTR 99-368, all three CIRBP constructs were titrated and fluorescence quenching 

quantified by measurement in a 96-well microplate (Figure 36).  
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Figure 34. EMSA with CIRBP domains. 

TAMRA-labeled PMF 3’ UTR 99-368 RNA (30 ng; red) with increasing concentrations 
of either rCIRBP-RRM/ECFP or rCIRBP-LCD/ECFP (µM; green). 
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Figure 35. CIRBP – RNA interactions stabilized by formaldehyde crosslinking. 

EMSA between TAMRA-labeled PMF 3’ UTR 99-368 RNA (30 ng; red) and increasing 
concentrations of rCIRBP/ECFP (µM; RBP; green), with and without pre-treatment with 
1% formaldehyde. 
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Figure 36. CIRBP titration curve. 

TAMRA-labeled PMF 3’ UTR 99-368 RNA was titrated with increasing concentrations 
of rCIRBP/ECFP (black), rCIRBP-RRM/ECFP (blue), and rCIRBP-LCD/ECFP (red), 
and binding measured by fluorescence quenching. Data were fit to the Hill equation by 
nonlinear modeling to obtain measures of binding affinity (KA) and cooperativity (n). No 
significant change was detected for rCIRBP-RRM/ECFP, denoted by a dashed line.  
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There was no detectable fluorescence quenching with rCIRBP-RRM/ECFP (represented 

by the dashed blue line), while both rCIRBP/ECFP and rCIRBP-LCD/ECFP yielded 

sigmoidal curves characteristic of cooperative binding. When data for these two proteins 

were fit to the Hill equation by nonlinear regression, both the association constant (KA) 

and Hill coefficient (n) were significant, but with rCIRBP-LCD/ECFP having both lower 

affinity (higher KA) and weaker cooperativity (lower n) compared to rCIRBP/ECFP. 

Thus, the data suggest that both domains likely function synergistically to promote 

binding to the PMF 3’ UTRs. 

 Recent models of other RNA-BPs with LCDs suggested that, upon binding to a 

proper catalyst, unstructured LCDs adopt regular β-sheet structure which permits 

aggregation and formation of stress granules, processing bodies, or other macromolecular 

RNA-protein complexes [256]. To test if the PMF 3’ UTR may be acting as such a 

catalyst, rCIRBP/ECFP was analyzed by circular dichroism (CD) and titrated with 

increasing amounts of PMF 3’ UTR 26-667 (Figure 37). There was a detectable increase 

in the CD absorbance, particularly near ~215 nm where β-sheet can be measured. Even 

though the percentage change is relatively small, this likely relates to (1) the majority of 

CD signal originating from ECFP, which comprises ~60% of the total protein and 

contains a highly structured β-barrel, and (2) CD only reports on the average secondary 

structure content, and the “induced” β-sheet in CIRBP may only be occurring in a small 

proportion of the available molecules. Nonetheless, these data support that binding of 

CIRBP to the PMF 3’ UTR promotes a conformational change and increased secondary 

structure, likely in the LCD shifting from random coil to β-sheet. 
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Figure 37. PMF 3’ UTR induces secondary structure changes in CIRBP. 

CD spectra of rCIRBP/ECFP with increasing concentrations of PMF 3’ UTR 26-668 
RNA, with changes in CD suggesting higher levels of secondary structure (likely β-
sheet). 
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CIRBP Expression and Correlation to PMF In Vivo 

 Polyclonal antibodies to rCIRBP/ECFP were prepared and affinity purified 

specifically against CIRBP-RRM. Immunohistochemical staining using anti-CIRBP-

RRM revealed that CIRBP protein was in greater abundance at 6/13 compared to 8/3, 

localized to the cytoplasm. The staining was uniformly distributed, uncharacteristic of 

cytologically visible RNA granules such as stress granules, Cajal bodies, or nuclear 

speckles (Figure 38). To better quantify CIRBP protein levels for individual mental 

glands, western blot analysis was performed. However, multiple bands were observed 

near and below the approximate 17 kDa expected molecular weight (Figure 39A-D). 

These bands were hypothesized to be CIRBP degradation products, possibly by a 

protease that was sequentially processing the C-terminal LCD. In support of this 

hypothesis, immunopulldown products were analyzed by gel electrophoresis and mass 

spectrometry such that peptides were identified fully spanning the N-terminal RRM 

(Figure 39B). Addition of either a broad protease inhibitor cocktail or 0.1 mM 

iodoacetamide (to specifically inhibit cysteine proteases) limited the extent of 

degradation, but did not completely ablate it (Figure 39A). The same samples were 

examined by western blot over multiple days, and even without a protease inhibitor, 

degradation was incomplete (data not shown). Thus, some of this visible degradation may 

be naturally occurring, involved in natural CIRBP turnover, and play a biological role. 

Interestingly, neither inhibitor changed the number of bands observed, only their relative 

intensities, such that a single protease may be contributing to both natural and 

experimentally-induced degradation.  
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Figure 38. CIRBP immunohistochemistry. 

Comparison of CIRBP expression and localization for mental glands at two stages of 
development (6/13 and 8/3) by immunohistochemistry (using anti-CIRBP-RRM; red), 
with fluorescent dyes labeling the nucleus (blue) and ECM (green). 
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Figure 39. CIRBP protein analysis. 

(A) Western blot analysis comparing CIRBP degradation with and without different 
protease inhibitors. Mental glands were dissected into approximate halves, and incubated 
with RIPA extract containing no protease inhibitors, a commercially available protease 
inhibitor cocktail (PIC), or 100 µM iodoacetamide (IAA). (B) SDS-PAGE with SYPRO 
Ruby stain of immunopulldown products using either a rabbit IgG mixture vs anti-
CIRBP-RRM for two time points in gland development. (C) Estimated molecular weights 
(in kDa) for different CIRBP degradation products compared with masses predicted by 
cleavage of C-terminal Cathepsin S sites (YG). (D) Western blot analysis demonstrating 
the diversity of CIRBP abundance and degradation state for individual mental glands 
from 6/13 (5 µg total protein) vs 8/3 (30 µg total protein) when extracted using RIPA 
with IAA. 
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While we were unable to determine the specific protease involved, multiple lines of 

evidence suggested that it may be cathepsin S: (1) iodoacetamide performed as well or 

better than the protease inhibitor mix, implicating a cysteine protease; (2) most of the 

identified mental gland proteases in the transcriptome were lysosomal, with cathepsin S 

having the highest expression; (3) in contrast to most lysosomal proteases, cathepsin S is 

active only at near-neutral pH, and the RIPA buffer was at pH 8; (4) the CIRBP LCD is 

enriched for the cathepsin S target sequences (aliphatic or aromatic residues followed by 

Gly, [257], specifically YG in the CIRBP-LCD), and cleavage at these sites would 

generate proteins of similar molecular weight to those observed by western blot (Figure 

39C). 

 To ascertain a potential role for CIRBP in regulating mental gland development 

and PMF synthesis, several variables were correlated from individual mental glands 

collected at two time points (6/13 and 8/3). Pheromone was extracted by incubation in 

acetylcholine for 30 minutes, and concentration measured by BCA protein assay. 

Because PMF consistently comprises ~50% of the total pheromone [91], we used this 

concentration as a proxy for PMF protein expression (PPMF). Following pheromone 

extraction, pheromone glands were stored in RNAlater, and later dissected into two 

approximately equal halves in order to independently isolate total RNA (using a Qiagen 

kit) and cellular protein (homogenization in RIPA buffer with iodoacetamide). Using 

standardized amounts of cellular protein, CIRBP expression was measured by western 

blot (Fig 15D). Based on densitometric estimates, both total CIRBP (PTotal-CIRBP) and 

intact CIRBP (PIntact-CIRBP) were measured. Using total RNA, expression levels were 

measured for three genes by qRT-PCR: PMF (RPMF), CIRBP (RCIRBP), and cathepsin S 
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(RCath). Using these 6 variables plus a time covariate (6/13 vs 8/3), a series of nested 

MANOVAs were performed to identify potentially meaningful correlations (Table 11). 

Time was a significant covariate for all variables, and the only significant factor for all 

three measured mRNA levels. Total CIRBP protein (including degradation products) 

increased proportionally to CIRBP mRNA levels, but with a higher ratio at 6/13 

compared to 8/3. Total CIRBP was the best predictor for intact CIRBP levels, however, 

there were significant interaction terms between time/RCath and time/RCath/RCIRBP/PTotal-

CIRBP such that, only at 6/13, intact CIRBP levels decreased as Cathepsin S mRNA levels 

increase (both independently and in proportion to total CIRBP levels). Finally, while 

neither CIRBP protein variable had an effect on PMF mRNA levels, pheromone protein 

levels were negatively correlated with intact CIRBP (represented by the time/PIntact-CIRBP 

interaction term, because there was no pheromone protein detected at 6/13). While some 

of these correlations may be a consequence of natural gland progression in response to 

some other unmeasured variables, these data provide additional evidence to support that 

Cathepsin S regulates steady-state levels of CIRBP. As intact CIRBP was negatively 

correlated with PMF protein levels but not mRNA levels, this suggested that CIRBP may 

be acting a translational repressor. 
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Table 11. MANOVA results for CIRBP expression and regulation. Statistically 

significant coefficients (p < 0.05) are bolded. 

 Variable Sum of 
Squares 

F-
statistic 

p-value Coefficient 

RCIRBP ~ time 

 time 5.42 x 10-16 23.18 5.0 x 10-5 8.65 x 10-9 

 Residuals 6.31 x 10-16    

RCath ~ time 

 time 2.55 x 10-16 57.83 3.52 x 10-8 5.93 x 10-9 

 Residuals 1.19 x 10-16    

PTotal-CIRBP ~ time x RCIRBP 

 time 9.59 x 108 90.46 8.73 x 10-10 -6.34 x 103 

 RCIRBP 1.65 x 108 15.60 5.63 x 10-4 1.45 x 1012 

 time : RCIRBP 2.01 x 108 18.97 1.98 x 10-4 -1.28 x 1012 

 Residuals 2.65 x 108    

PIntact-CIRBP ~ time x RCIRBP x PTotal-CIRBP x RCath 

 time 2.68 x 107 6.02 0.0290 -2.66 x 103 

 RCIRBP 1.04 x 107 2.34 0.150 4.27 x 1012 

 PTotal-CIRBP 4.91 x 107 11.02 0.00553 -0.382 

 RCath 1.80 x 106 0.41 0.536 -4.75 x 1014 

 time : RCIRBP 2.00 x 106 0.45 0.514 -4.81 x 1012 

 time : PTotal-CIRBP 1.12 x 106 0.25 0.624 -1.60 x 10-2 

 time : RCath 2.95 x 107 6.63 0.023 4.74 x 1014 

 RCIRBP : PTotal-CIRBP 6.06 x 105 0.14 0.718 -1.91 x 108 

 RCIRBP : RCath 1.43 x 107 0.32 0.581 3.47 x 1022 

 PTotal-CIRBP : RCath 2.48 x 107 0.56 0.469 2.12 x 1010 

 time : RCIRBP : PTotal-CIRBP 1.29 x 107 0.29 0.600 2.25 x 108 

 time : RCIRBP : RCath 1.96 x 106 0.04 0.837 -3.46 x 1022 

 time : PTotal-CIRBP : RCath 2.95 x 107 0.66 0.430 -2.10 x 1010 

 RCIRBP : PTotal-CIRBP : RCath 7.92 x 106 0.18 0.680 -1.43 x 1018 

 time : RCIRBP : PTotal-CIRBP : 
RCath 

2.86 x 108 6.42 0.025 1.42 x 1018 

 Residuals 5.79 x 108    

RPMF ~ time x PTotal-CIRBP x PIntact-CIRBP 

 time 1.50 x 10-10 43.98 1.45 x 10-6 4.97 x 10-6 

 PTotal-CIRBP 2.40 x 10-13 0.07 0.792 6.00 x 10-12 

 PIntact-CIRBP 1.00 x 10-13 0.004 0.950 8.49 x 10-12 

 time : PTotal-CIRBP 2.46 x 10-12 0.72 0.406 1.05 x 10-9 

 time : PIntact-CIRBP 6.00 x 10-14 0.02 0.899 -1.03 x 10-10 

 PTotal-CIRBP : PIntact-CIRBP 3.00 x 10-14 0.01 0.922 -5.80 x 10-16 

 time : PTotal-CIRBP : PIntact-CIRBP 7.50 x 10-13 0.22 0.644 8.22 x 10-14 

 Residuals 7.18 x 10-11    
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PPMF ~ time x RPMF x PIntact-CIRBP x PTotal-CIRBP 

 time 2.8585 128.28 4.17 x 10-8 1.51 

 RPMF 0.0451 2.02 0.178 -2.67 x 10-7 

 PIntact-CIRBP 0.0373 1.67 0.218 -2.73 x 10-18 

 PTotal-CIRBP 0.0035 0.16 0.698 -3.23 x 10-19 

 time : RPMF 0.0013 0.06 0.810 -1.39 x 105 

 time: PIntact-CIRBP 0.3478 15.61 0.00166 -4.49 x 10-4 

 time : PTotal-CIRBP 0.0281 1.26 0.282 -1.48 x 10-4 

 RPMF : PIntact-CIRBP 0.0001 0.004 0.951 1.47 x 10-10 

 RPMF : PTotal-CIRBP 0.0234 1.05 0.324 1.05 x 10-11 

 PIntact-CIRBP : PTotal-CIRBP 0.0012 0.06 0.818 1.06 x 10-22 

 time : RPMF : PIntact-CIRBP 0.0003 0.01 0.916 18.1  

 time : RPMF : PTotal-CIRBP 0.0000 0.001 0.980 32.8 

 time : PIntact-CIRBP : PTotal-CIRBP 0.0295 1.33 0.270 5.63 x 10-8 

 RPMF : PIntact-CIRBP : PTotal-CIRBP 0.0060 0.27 0.614 -5.76 x 10-15 

 time : RPMF : PIntact-CIRBP : PTotal-

CIRBP 
0.0002 0.01 0.930 -8.35 x 10-3 

 Residuals 0.2897    

 

  



167 
 

Discussion 

 The process of mental gland development is a novel example of hormone-

responsive tissue differentiation and restructuring to create an organ highly specialized 

towards performing a single function. For ~8 months of the year, the mentum of male P. 

shermani appears as normal skin and is indistinguishable from that of a female. This 

unusual phenomenon of seasonal organogenesis may be rare, but the underlying 

biochemical processes are likely conserved among a number of vertebrate developmental 

processes, supported by the large number of conserved genes observed in the mental 

gland transcriptome. However, the quality that makes this a particularly exquisite model 

system is the annual nature of accelerated growth followed by natural resorption, with the 

first half of the process sharing a number of qualities with tumorogenesis and resorption 

representing cyclical whole organ apoptosis. The presented molecular and histological 

data support our original hypothesis that mental glands must initiate in a highly mitogenic 

state, and then transition into a veritable pheromone factory. Cells first rapidly divide and 

proliferate, evidenced by elevated PCNA levels at the earliest time points in gland 

development (Figure 30). As these cells divide, many housekeeping genes (representing 

over 80% of the expressed genes) are activated in order to build the structure and basic 

morphology of the gland (Figure 29). The overall glandular structure seems to consist of 

many dozens to hundreds of cells surrounding an open lumen/channel that passes through 

the epidermis (Figure 26). At early stages of development, these cells consist 

volumetrically of little more than a nucleus, characteristic of rapid mitosis and further 

mimicking a tumor-like structure [258-260]. While the term “tumor-like” may not be 

perfectly accurate, there is a reasonable amount of analogy: the mental gland seemingly 
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“invades” the dermis, compresses and/or degrades much of the ECM to allow expansion, 

rapidly divides to form a larger structure, and eventually releases angiogenic factors to 

increase blood supply and possibly extend viability. While ECM composition was only 

preliminarily examined through lectin staining (Figures 26, 27, 38), it is noteworthy that 

several different protease inhibitor families (TIMPs, cystatins, Kazal-type serine protease 

inhibitors) are overexpressed at later stages of development. As many of these proteins 

have signal peptides, they may be secreted in order to inhibit proteases that are initially 

required to allow mental gland expansion, but eventually must be inactivated to prevent 

cell degradation. It was already known that Plethodontid TIMP-like Protein is packaged 

as part of the pheromone mixture when extracted with acetylcholine [91], and 

presumably as well during slapping by male salamanders. It is unclear if the other factors 

are also released in the same manner, or separately partitioned in the Golgi apparatus and 

secreted as part of an alternative constitutive pathway. Alternatively, these protease 

inhibitors may be necessary to protect synthesized pheromones from premature 

degradation. What makes this tumor-like phenotype particularly interesting is that, unlike 

normal cancerous tissue, following the courtship season the mental gland regresses and 

completely resorbs to a non-visible, precursor state. Detailed molecular characterization 

of both the proliferation and resorption processes could have powerful implications 

towards cancer biology and identifying potential factors with which to reprogram tumor 

cells. 

 For the gland to transition towards pheromone synthesis, extensive changes in 

gene expression are required, including overexpression of both PRF and PMF mRNA. 

However, while the proportions might have changed, nearly all genes were detectable at 
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all 6 time points. On average, housekeeping genes in Cluster 1 were still represented at 

~33% of maximum levels even after transitioning to primarily pheromone synthesis. 

Despite minimum pheromone translation at early time points (Figure 27 and Table 11), 

PRF and PMF together comprised ~1.5% and ~10% of all mRNA in May and June, 

respectively. One explanation for these results may be that, upon androgen-stimulated 

initiation of hypertrophication, a single signal universally activates transcription of all 

mental gland-associated genes. Subsequently, additional factors such as chromatin 

remodeling and mRNA stability could regulate steady state levels of different genes 

within the transcriptome to control the timing and expression of key proteins. Models 

with this type of gene regulation already exist within the scope of reproductive biology in 

the cases of gametogenesis and the post-fertilization maternal-to-zygotic transition. 

Chromatin condensation occurs throughout both spermatogenesis and oogenesis leading 

to partial transcriptional silencing, and complete silencing in mature spermatids and 

oocytes [261-264]. Consequently, mRNAs are commonly regulated by cytoplasmic 

polyadenylation to control poly(A) tail length, recruitment of the poly(A) binding protein 

(PABP), and formation of the translation initiation complex [265-267]. However, 

additional RNA-BPs provide further regulation. One example is the Deleted-in-

Azoospermia protein (DAZ) protein and its autosomal homolog, DAZ-like protein 

(DAZL). Both DAZ and DAZL recognize target sequences within the 3’ UTR of select 

mRNAs and can recruit PABP through protein-protein interactions, permitting formation 

of the initiation complex independently of a poly(A) tail [169, 171, 268]. However, the 

stoichiometry and relative spacing of DAZ/DAZL molecules on a RNA molecule can act 

to recruit additional repressor proteins (DAZAP, PUM2) with activity being dependent 
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on phosphorylation status [269-271]. Genes such as the meiosis-associated sycp3 are 

regulated by all of the aforementioned regulatory layers, but the net result is a process of 

ordered and synchronized gene expression independent of changes in transcription [171, 

272, 273]. In this context, NP1 and CIRBP may be playing critical roles in chromatin 

remodeling and controlling mRNA stability and/or translation, respectively.  

 In mammalian systems, CIRBP plays a number of diverse, yet highly integrated 

roles. It is classically recognized for stress granule formation in response to cellular 

stressors, including heat shock, UV irradiation, hypoxia, oxidative stress osmotic shock, 

or arsenic exposure [255, 274]. CIRBP is normally stored in the nucleus, and under stress 

conditions, it will translocate to the cytosol, bind target mRNAs, and associate into stress 

granules [255]. As “cold inducible” RNA binding protein, CIRBP received its name 

because of its role in testes, which operate ~3°C below normal body temperature [275]. It 

was later identified as a major cold shock protein in Arabidopsis, and the Arabidopsis 

homolog could functionally replace non-homologous cold shock proteins in E. coli [276]. 

The temperature-dependent expression is a product of alternative promoter usage, 

producing a transcript with an elongated 5’ UTR that contains an internal ribosome entry 

site [277]. Because of the seasonal nature of the mental gland and its presence in a cold-

blooded animal, temperature-dependent expression in P. shermani seemed like a highly 

tractable hypothesis. However, 5’ RACE experiments revealed that the CIRBP 5’ UTR 

length was similar between June and August, and was closer in size to the short 

mammalian 5’ UTR without the internal ribosome entry site (data not shown). Also, 

CIRBP IHC revealed exclusively cytoplasmic localization at both time points with 

relatively uniform labelling, not indicative of stress granules. In a recent study [256], the 
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low complexity domains of multiple RNA-BPs were studied and found to form hydrogels 

composed of β cross strands similar to amyloid fibers. Repeats of the tripeptide Gly/Ser-

Tyr-Gly/Ser were determined to be essential for formation, and likely involved π-π 

overlap between tyrosine residues. Using mutagenesis studies comparing a protein with 

0, 12, 18, 22, or 27 tripeptide repeats, hydrogel size and stability were positively 

correlated with the number of repeats; in contrast, CIRBP only has 7 repeats, such that it 

may form smaller aggregates that are not visible microscopically. Given that CIRBP-

RNA interactions induced a conformational change in CIRBP secondary structure which 

recruited additional CIRBP molecules through cooperativity, it is plausible that CIRBP 

may, essentially, coat the entire PMF 3’ UTR (and possibly the whole PMF mRNA) in 

order to interfere with ribosome binding and translation. Given the dramatic changes in 

PMF mRNA abundance over gland development, this binding may also facilitate mRNA 

degradation. While it is generally thought that stress granules protect mRNA molecules 

from degradation [278, 279], their close proximity and possible association with 

processing bodies (P-bodies) has led to the hypothesis that there may be mRNA exchange 

between these macromolecular complexes that could lead to mRNA degradation under 

the proper cellular conditions [280, 281].  

Similar to reports on the human homolog [255], we determined that both the 

RRM and LCD were required for stable, highly cooperative binding of CIRBP to the 

PMF 3’ UTR. Structural comparison of different RRM-RNA complexes from other 

RNA-BPs has revealed that the RRM is a highly plastic structure with respect to 

nucleotide binding. The αβ sandwich structure contains two conserved regions of 7 and 6 

amino acids (termed RNP1 and RNP2) which bind single stranded dinucleotides on either 
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DNA or RNA through a range of interactions, including π-π overlap between aromatic 

residues and the nitrogen bases, hydrophobic interactions between additional aromatics 

and the sugar moieties, and/or salt bridges with the phosphate between the two 

nucleotides. Despite these conserved structural elements, sequence specificity is dictated 

by less conserved residues forming additional interactions [282]. RNA secondary 

structure also plays a critical role, with some RNA-BPs requiring dinucleotides to be part 

of stem loops or other types of internal loops [283-285]. When the dinucleotide frequency 

within the PMF 3’ UTR was examined relative to predicted values based on nucleotide 

abundance, five of the sixteen combinations were observed at higher than expected 

frequencies: UC (+26%), UG (+58%), CA (+7%), CU (+29%), and GA (+8%). However, 

when these real vs expected distributions were compared by χ2 test, UG contributed much 

more to the test statistic relative to the other dinucleotides with higher than expected 

frequencies (χ2
UG = 12.02, compared to χ2

CU = 3.30). Future experiments examining both 

CIRBP-RRM specificity as well as PMF 3’ UTR secondary structure will be required in 

order to determine if this interesting statistic has functional significance.  

In addition to CIRBP, many other cold shock proteins were identified in the mental gland 

and had similar expression patterns (Figures 29, 30). All evidence suggests that CIRBP 

likely plays some critical role in facilitating the glands transition from growth and 

development into pheromone synthesis by interacting with PMF and likely other mRNAs 

for some key function (likely relating to translational repression and/or mRNA 

degradation). As already noted, while CIRBP was originally characterized based on its 

roles in temperature-dependent expression, more recent studies have demonstrated its 

roles in systemic and general stress response [255, 286]. When we also include factors 
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like NP1, and the transcription factors ATF3 (found in Cluster 1) and NRF2 (possibly 

present, based on identification of its inhibitor Keap1), the mental gland seems to express 

a preponderance of stress response genes [287, 288]. It is worth noting, again, how this 

quality further suggests that the mental gland may have a tumor-like phenotype [289, 

290]. In addition to facilitating proliferation and development, the role of CIRBP as a 

regulator of pheromone synthesis is also interesting within the scope of gene co-option. A 

common theme among plethodontid pheromone genes, as well snake toxins and the 

products of other exocrine tissues, is gene duplication followed by rapid evolution in 

order to drive neofunctionalization for the acquisition of new functions [94, 115, Chapter 

II]. Through the same basic processes, it is plausible that novel regulators could be 

recruited and co-opted to provide tight control over gene expression of exocrine products 

in these systems. With many of these gene products having evolutionary histories of 

positive selection, it would likely be of value to explore both the products and their 

regulators in a co-evolutionary framework. At least in the case of PMF, CIRBP may have 

been the causative agent driving purifying selection on the UTRs while sexual selection 

from the female receptors promoted positive selection on the coding regions. The 

putative role of CIRBP directing the selective forces on the noncoding regions of PMF 

might be relevant to future studies of the regulatory elements of other rapidly evolving 

genes. 
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Conclusions 

For more than 100 million years, plethodontid salamanders have utilized a rapidly 

evolving system of non-volatile proteinaceous courtship pheromones to regulate female 

mating behavior in order to facilitate reproduction. In the red-legged salamander, 

Plethodon shermani, these pheromones are synthesized in a submandibular mental gland 

that annually hypertrophies into a large, pad-like structure whose transcriptional and 

translational machinery are almost exclusively programmed for pheromone synthesis. We 

now report that this highly effective system results from a tightly coordinated gene 

expression cascade, allowing for annual organogenesis followed by rapid conversion to a 

highly efficient pheromone factory. Glandular cells initially have an almost cancerous 

phenotype characterized by rapid proliferation and ECM dissolution, followed by a 

tremendous increase in pheromone mRNA levels. A key regulator in this process is Cold 

Inducible RNA Binding Protein: a stress-responsive RNA binding protein used by both 

animals and plants to store select mRNAs in stress granules and promote cell survival. 

For at least one pheromone, Plethodontid Modulating Factor, CIRBP selectively binds 

the 3’ UTR and recruits additional molecules through cooperativity, with protein-protein 

and protein-RNA interactions likely stabilized through induced intermolecular β sheets. 

This interaction may inhibit translation of PMF mRNA and/or promote its degradation 

through association with P-bodies. The net result is suppression of pheromone translation 

until the gland is sufficiently large to support the storage of 10s to 100s of micrograms of 

pheromone, which can be used to increase receptivity in almost any female in the 

breeding population. CIRBP may be one player that has exerted purifying selection on 

the PMF UTRs, creating a system of disjunctive evolution with highly conserved 
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noncoding segments and rapidly evolving coding regions. The mechanisms behind this 

exciting dichotomy may serve as a model for future studies of gene regulation on rapidly 

evolving proteins. 
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Methods 

Animal collection, gland removal, and pheromone extraction 

 P. shermani males were collected during their breeding season from a single site 

in Macon Co., North Carolina, USA (35°10’48” N, 83°33’38” W). Males were 

anesthetized in a mixture of 7% (v/v) diethyl ether in water. For analysis of total RNA, 

pheromone extract, or cellular proteins, mental glands were surgically removed using 

iridectomy scissors. For RNA analysis, glands were incubated overnight in RNAlater 

(Ambion, Austin, TX) at 4°C before long term storage at -20°C. Pheromone was 

extracted from mental glands based on the protocol in Chouinard et al. [91]: briefly, 

mental glands were individually incubated in 0.2 mL acetylcholine chloride (0.8mM in 

Amphibian Ringer’s solution) for 30 min, centrifuged at 14,000 x g for 10 min, the 

supernatant collected, and the centrifugation repeated before storage at -80°C. Following 

extraction, mental glands were stored in RNAlater to allow preservation of RNA and 

cellular proteins. Pilot experiments confirmed that 30 min in the acetylcholine solution 

was sufficient to extract >90% of the total pheromone with no detectable RNA 

degradation (Wilburn and Feldhoff, unpublished data). Salamanders were collected under 

permits issued by the North Carolina Wildlife Resource Commission (to R.C. Feldhoff 

and D.B. Wilburn), and all animal protocols were approved by University of Louisville 

IACUC (#12041 to P.W. Feldhoff) and Highlands Biological Station IACUC (to D.B. 

Wilburn). 

cDNA preparation and transcriptome sequencing 

 Mental glands were collected from male P. shermani at six time points 

approximately every 3 weeks during 2010 (5/29, 6/19, 7/10, 8/1, 8/21, and 9/11). This 
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range preceded and spanned the principal August mating season. Five glands were 

collected at each time point and immediately stored in RNAlater. Total RNA was 

extracted from individual glands using the RNeasy kit (Qiagen, Valencia, CA) following 

the manufacturer’s instructions. RNA concentrations were estimated by 260 nm 

absorbance. For each time point, standardized amounts of RNA were pooled from all five 

glands, and double-stranded cDNA prepared by oligo-dT priming using the SMARTer 

cDNA synthesis kit (Clontech, Palo Alto, CA). cDNA was supplied to Otogenetics 

Corporation (Norcross, GA) for library preparation and sequenced using the Illumina 

HiSeq 2000 platform (>20 million reads per time point, 100-bp paired end reads). 

Transcriptome bioinformatics analysis 

Illumina reads from all six time points were pooled and assembled into a single 

transcriptome using Trinity (r2012-10-05) [291]. Initial assemblies with default settings 

resulted in over-compaction of deBruijn graphs for PMF, limiting both isoform detection 

and full-length mRNA re-construction. Butterfly parameters were then optimized, and the 

final assembly included the additional settings --min_kmer_cov 2 --bfly_opts "-

path_reinforcement_distance= 25 -min_per_id_same_path= 98”. Reads from each time 

point were re-aligned to the full transcriptome using RSEM (v1.2.5) [248], with 

differential expression analysis conducted using EBSeq [249]. Expression differences 

were compared between adjacent time points (5/29 to 6/19, 6/19 to 7/10, etc.). Based on 

visual observations and analysis of pheromone extract from additional glands collected at 

each time point, the separate phases of gland development were best characterized by the 

6/19 time point (growth/development) and the 8/1 time point (pheromone production); 

therefore, an additional comparison with EBSeq was performed between the 6/19 and 8/1 
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time points. For putative gene annotation, the Trinotate package (r2013-02-25) was used 

to determine (1) putative open reading frames (using TransDecoder, [291]), (2) protein 

BLAST (blastp) against both the SwissProt and TrEMBL databases [292-295], (3) 

orthologous group identification with eggNOG [296], (4) gene ontogeny assignment 

[297], (5) signal peptide prediction with SignalP [298], (6) protein family assignment 

with Pfam [299], and (7) transmembrane domain prediction with TmHMM [300]. As 

most of these databases searches relied on proper open reading frame assignment by 

TransDecoder, an additional BLAST search was performed with blastx using assembled 

nucleotide sequences against the full TrEMBL database [293, 295]. There were multiple 

cases of the TransDecoder proteins having no blastp hits in SwissProt or TrEMBL, yet 

the nucleotide sequence produced strong blastx hits (E-value < 0.001), suggesting that 

TransDecoder identified the wrong open reading frame. In these cases, an alternative 

open reading frame was selected based on the longest amino acid sequence that contained 

the aligned region of the blastx hit. 

qRT-PCR analysis of differentially expressed genes 

For select genes (see Table 12 for primers), qRT-PCR analysis was performed on 

RNA isolated from each mental gland used to construct the transcriptome (six time points 

each with 5 glands, 30 glands total). Total RNA was diluted to ~5-20 ng/uL, and accurate 

concentrations were determined using Quant-iT RiboGreen RNA assay kit (Invitrogen, 

Carlsbad, CA). qRT-PCR reactions were performed in triplicate using 20 µL reactions 

with the Power SYBR Green RNA-to-CT 1-Step kit (Ambion) containing 1 µL diluted 

total RNA. Expression levels were calculated by the pcrfit function in the R package 

qpcR using the cm3 mechanistic model [301].   
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Table 12. Primers used for qRT-PCR, CIRBP expression, and in vitro transcription. 

Primer Sequence 
qPCR primers 
PMF Class I 3'UTR 26-45 F' TGA GGA ATC ACA CTG GCA TC 
PMF Class I 3'UTR 103-82 R' GCT CCT TGT TTT CTC TGG TAG C 
PRF 3'UTR 97-116 F' ATC GTG GGA TGG ACA GTT TG 
PRF 3'UTR 186-167 R' TCG GGA AAG ATG AGG ACT TC 
PTP CDS 79-98 F' CAC CTG CAG TCA GCT TTT TG 
PTP CDS 164-145 R' ATC CAG CCA TCA TCA TCC TC 
CIRBP CDS 44-63 F' TTG ACA CAA ACG AGC AGG AC 
CIRBP CDS 187-168 R' CGT CTT TCG CAT CTT CTT GG 
Actin CDS 134-153 F' TTG GTA TGG GCC AGA AAG AC 
Actin CDS 241-222 R' CAT CCC AGT TGG TGA CAA TG 
Cathepsin S CDS 220-239 F' GCA GCA AAG CTT GAT CTT CC 
Cathepsin S CDS 359-340 R’ ACA CGG TCT GAA ATG GCT TC 
Cystatin C CDS 134-153 F' TTG CCA TGA CCG AGT ACA AC 
Cystatin C CDS 275-256 R' GGG TGT GTG CAA GTT GTT TG 
PCNA 200-219 F' CTG TGG GGG TTA AAA TGA GC 
PCNA 296-277 R' ATG GTG TCG GCA TTG TCT TC 
Androgen Receptor 2-21 F' TGG AAG CCA TTG AGC CTA TC 
Androgen Receptor 147-128 R' AAA ACC TGG TAG GGC TTT CG 
Keratin 488-507 F' TCG ATA AGG TCC GAT TCC TG 
Keratin 603-584 R’ TAA GGG CTC CAT GTT GTT CC 
VEGF 90-109 F' CTT CAT GCC ATC TTG TGT GC 
VEGF 226-207 R' CCA CGA GTT TGT TTC GAT GC 
GAPDH 523-542 F' ACT GTG CAT GCG ATT ACT GC 
GAPDH 622-603 R' AGG CTG GAA TGA TGT TCT GG 
AChE 1577-1596 F' TCA GCA GAA GGA TGA TGC AC 
AChE 1708-1689 R' GAT TGG TGT TGA GTG CGA TG 
NP1 209-228 F' ACA ACA CGA ACC GCT TCA AC 
NP1 284-265 R' TTC TTC TCC TCG CTG TTG TG 
CSPE1 1518-1537 F' TGG CCT GAA TTT AGG AGA CG 
CSPE1 1595-1576 R' TTA ACC CTT TCC GCA CTG AC 
HSC70 91-110 F' AAT GAC CAG GGC AAC AGA AC 
HSC70 174-155 R' CTG ATT TTT AGC GGC GTC TC 
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Expression primers 
EYFP 1-20 + Kpn I F’ GCG CGG TAC CATGGTGAGCAAGGGCGAGGA 
EYFP 717-700 + LnkA R’ GCTGCCTCCTGCAGCGGCCGCTCCGGACTTGTACAGCT

CGTCCAT 
Ps CIRBP 1-23 + LnkA/DP F' GCT GCA GGA GGC AGC GAT CCC ATG TCT TCA GAT 

GAT GGG AAG AT 
Ps CIRBP 253-274 + LnkA/DP F' GCT GCA GGA GGC AGC GAT CCC TCT GAC CGA AGC 

CGA GGC GGC T 
Ps CIRBP 252-231 + TAA + Hind R' CAT GAA GCT TTT ATT TGC CCG CTT GGT CCA CTC 

GG 
Ps CIRBP 498-478 + HindIII R' GCG CAA GCT TTT AGT TAT CAT AGC TGT CTC T 

 

in vitro transcription primers 
PMF 3' UTR 26-45 + pT7 F' TAA TAC GAC TCA CTA TAG GTG AGG AAT CAC ACT 

GGC ATC 
PMF 3' UTR 99-118 + pT7 F' TAA TAC GAC TCA CTA TAG GGG AGC AAA GCT TCT 

TTG ACG 
PMF 3' UTR 271-290 + pT7 F' TAA TAC GAC TCA CTA TAG GGG GTT AGT GTG ATG 

GGA AGG 
PMF 3' UTR 406-427 + pT7 F' TAA TAC GAC TCA CTA TAG GTC TGA AAA TGT GGA 

AGC AGA AA 
PMF 3' UTR 288-268 R' TTC CCA TCA CAC TAA CCC AGT 
PMF 3 'UTR 368-349 R' ACA ACT TGG GTG GCA TCA TT 
PMF 3' UTR 565-544 R' ACA TGG GAA ATT CAG AAA CAG A 
PMF 3' UTR 667-647 R' GCA CCA TCA AAC AAG ACT TCC 
Keratin 3' UTR 205-224 + pT7 F’ TAA TAC GAC TCA CTA TAG GGA TTG GCT GAC ATT 

CCA CCT 
Keratin 3' UTR 441-422 R' CAT TCC CCG GTG TAA GAA TG 
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Based on the gross morphological changes of the mental gland, it was expected that few 

genes would be stably expressed across mental gland development; therefore, RNA input 

was used to normalize qPCR measurements, with the literature supporting that input is 

often a more robust reference than housekeeping genes [302, 303]. Expression levels for 

each gene were normalized based on the time point with the highest expression, and a 

single linear mixed effect model was fit by maximum likelihood using the lme function in 

the R package lmer. The model included fixed effects for gene and time, with male as a 

random effect; all variables, including the interaction between gene and time, were 

significant at p < 0.001.  

Expression of recombinant CIRBP 

To conduct in vitro protein-RNA binding assays, recombinant CIRBP was 

prepared using an E. coli expression system. Preliminary experiments revealed that 

CIRBP was insoluble at > 0.2 mg/mL in all tested buffers (data not shown); however, 

solubility was dramatically improved when recombinant CIRBP was expressed as a 

fusion protein with enhanced cyan fluorescent protein (rCIRBP/ECFP). Simultaneously, 

fusion proteins were prepared with only the RRM-containing N-terminus (residues 1-84; 

rCIRBP-RRM/ECFP) and the glycine-rich C-terminus (residues 85-165; rCIRBP-

LCD/ECFP). All constructs included ECFP on the N-terminus, a short hydrophilic linker 

(SGAAAAGGSDP), and the CIRBP element at the C-terminus. The CIRBP coding 

regions were amplified from mental gland cDNA using the Accuprime High Fidelity Taq 

polymerase system (Invitrogen) (see Table 4 for primers). ECFP was amplified from a 

pcDNA3.1-based vector (supplied by Dr. Ronald Gregg, University of Louisville), and 

fusion genes were prepared by modified assembly PCR [185]. Fusion PCR products were 
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purified using the QIAquick PCR cleanup system (Qiagen), and cloned the pET45b 

vector (Novagen, San Diego, CA) following restriction digest with KpnI and HindIII 

(New England Biolabs, Ipswisch, MA), gel purification of cleavage products (GFX 

purification system, GE Healthcare, Piscataway, NJ), ligation using T4 DNA Ligase 

(New England Biolabs), and transformation into T7 Express lysY/Iq chemically 

competent E. coli (New England Biolabs). Sequence of transformed DNA was validated 

by colony PCR and Sanger sequencing by the University of Louisville DNACore facility. 

For protein expression, clones were cultured overnight at 28°C in LB media with 100 

µg/mL ampicillin (LB/Amp), diluted in 1 L LB/Amp with an 600 nm optical density 

(OD600) equal to ~0.05, incubated with shaking until the OD600 equaled ~0.7, IPTG 

added to a final concentration of 0.1 mM, and incubated overnight. E. coli were harvested 

by centrifugation, resuspended in 50 mM NaCl/0.1% Triton X-100/2 mM EDTA/50 mM 

Tris, pH 8, and lysed by sonication followed by lysozyme treatment (final concentration 

1 mg/mL) for 1 hour. Insoluble material was removed by centrifugation, and proteins 

concentrated by ammonium sulfate precipitation (final concentration 70%). Ammonium 

sulfate pellets were resolubilized in Ni-NTA binding buffer (0.5 M NaCl/5 mM 

Imidazole/20 mM Tris, pH 8), and passed through a 15 mL Ni-NTA column (Thermo-

Pierce, Rockford, IL) at 1 mL/min. The column was then washed and eluted with 

increasing concentrations of imidazole (all in 0.5 M NaCl/20 mM Tris, pH 8): 10 column 

volumes (CVs) at 5 mM, 2 CVs at 20 mM, 1 CV at 40 mM, 1 CV at 60 mM, and finally 3 

CVs at 200 mM (collected in 5 mL fractions). Highly fluorescent fractions were pooled, 

concentrated, and buffer exchanged to 1X EMSA Buffer (100 mM KCl/2 mM 

EDTA/0.05% Tween-20/20 mM HEPES, pH 7.4) by ultrafiltration (YM-10 Centiprep, 
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Millipore). All fusion products were standardized to equal molar concentrations 

(rCIRBP/ECFP: 1.4 mg/mL, rCIRBP-N/ECFP: 1.1 mg/mL, rCIRBP-C/ECFP: 1.0 

mg/mL) 

Electrophoretic mobility shift assays 

CIRBP-RNA interactions were characterized by electrophoretic mobility shift 

assays (EMSAs). RNA was prepared by in vitro transcription using the T7 High Yield 

RNA Synthesis Kit (New England Biolabs) with purified PCR products amplified from 

P. shermani 8/1 cDNA using primers that included engineered T7 promoters (Table 12). 

Synthesized RNA was subsequently treated with Turbo DNase I (Ambion), and purified 

using the RNeasy Kit (Qiagen). For fluorescently labeled RNA, in vitro transcription 

reactions were adjusted to include 7.5 mM UTP and 2.5 mM aminoallyl-UTP (Ambion), 

treated with TURBO DNase I (Ambion), purified using the RNeasy kit (Qiagen), and 

adjusted to 0.4 mg/mL with 2.5 mg/mL TAMRA-carboxylic acid (Invitrogen) in 0.1 M 

MES (pH 5). One-fourth volume of EDAC (0.1 mM) was added to the reaction, 

incubated for 2 hours in the dark, and then labelled RNA was purified using the RNeasy 

Kit (Qiagen). All EMSAs were performed as 15 µL reactions in 1X EMSA Buffer with 

3% glycerol using either 300 ng unlabeled or 45 ng labeled RNA. rCIRBP/ECFP (or the 

domain truncations), competitors, and other reagents were added at the listed 

concentrations, and incubate at room temperature for 20 minutes prior to gel loading. For 

crosslinking assays, formaldehyde was added to the protein-RNA mixture at a final 

concentration of 1%, incubated for 5 min, and the reaction quenched by addition of 

glycine to a final concentration of ~330 mM prior to gel loading. RNA was separated 

using agarose gels of 2% (for PMF 3’ UTR 26-667) or 3% (for ~250 nt products), and 
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electrophoresed for 3 hours at 80 V. For unlabeled RNA, gels were stained with Sybr 

Green II RNA Stain (Invitrogen) for 30 min. Gels were imaged using a Typhoon 9400 

fluorescent bed scanner (GE Life Sciences, Piscataway, NJ) with the appropriate laser 

and filter settings. For fluorescence quenching assay, 0.5 µg of TAMRA-labeled RNA 

was incubated with increasing concentrations of different rCIRBP constructs in a 200 µL 

reaction, and fluorescence measured using the Synergy2 plate reader (Biotek, Winooski, 

VT). Data were fit to the Hill equation (𝜃 =
1

(
𝐾𝐴
[𝐿]

)𝑛+1
) using the nlsLM function in the R 

package minpack.lm.   

Antibody preparation 

PRF antisera was prepared by immunizing two rabbits with PRF fractions 

collected by anion-exchange chromatography (performed by RCF at UofL). The antigen 

was >90% enriched for PRF, but contained ~5% PTP such that there was significant 

immunoreactivity for both proteins. CIRBP antisera was prepared by immunizing two 

rabbits with purified rCIRBP/ECFP (~98%) using Ni-NTA resin (performed by the 

Proteintech Group, Chicago, IL). Highly purified antigens (>99% by reverse phase 

HPLC) were coupled to agarose matrices for affinity purification of antibodies: briefly, 

6% crosslinked agarose beads (CL6B; Sigma-Aldrich, St. Louis, MO) were activated 

with carbonyl diimidazole (CDI; Sigma-Aldrich) in dry acetone for 20 minutes, quickly 

rinsed under vacuum with cold distilled water, and then incubated in antigen solutions 

(~2 mg/mL in 100mM KCl/0.05% Tween-20/100mM NaCO3, pH 11) overnight with 

gentle agitation. Resins were packed into ~1-3mL columns (depending on the starting 

amount of antigen), remaining active sites blocked with 50 mM Tris, pH 10, and 

equilibrated in 1X phosphate buffered saline (PBS). Antibodies were purified by 



185 
 

incubating antisera with the resin overnight at 4°C, washing with 10 CVs of 1X PBS to 

collect unbound antibodies, stringently washed with 5 CVs of 0.5 M NaCl/0.05% Tween-

20/20 mM Tris, pH 7.5 (TTBS), and eluted with 6 CVs 0.1 M citric acid/0.1% Tween-20, 

pH 3 collected in 0.2 mL fractions. Elution fractions were neutralized with 1 M 

Na2HPO4, and antibody-containing fractions determined by absorbance measurements at 

280 nm. Fractions were then pooled, concentrated, and buffer exchanged to 1X PBS by 

ultrafiltration (YM-30 Centriprep; Millipore, Billerica, MA). Four antigen columns were 

prepared: PRF, PTP, rPRF/ECFP, and rCIRBP-RRM/ECFP. PRF and PTP antibodies 

were serially purified from the same antisera by first passing whole antisera through the 

PRF column for purification of anti-PRF, and the flowthrough (i.e., unbound antibodies) 

then passed over the PTP column for purification of anti-PTP. Both solutions of affinity-

purified antibodies were then adsorbed against the opposing column to ensure removal of 

non-specific or low-affinity antibodies. anti-CIRBP-RRM was purified by passing 

rCIRBP/ECFP antisera over the rPRF/ECFP column to remove anti-ECFP, the 

flowthrough next incubated with the rCIRBP-N/ECFP column, anti-CIRBP-RRM 

purified, and the two-column process repeated to ensure removal of non-specific or low-

affinity antibodies.  Antibody specificity was validated by western blot. 

Histological analysis 

For histological analysis of mental glands, male salamanders were anesthetized in 

7% ether, sacrificed by rapid decapitation, the lower jaw removed, immediately placed in 

4% paraformaldehyde (in 150 mM NaCl/100 mM Na2HPO4, pH 7.4), and incubated 

overnight with gentle agitation. Fixed jaws were decalcified by incubation in 10% EDTA 

(pH 7.4, DEPC-treated) for 48 hours, cryoprotected in 30% sucrose for 48 hours, 
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embedded in Optimum Cutting Temperature (OCT) media (Sakura-Finetek, Torrance, 

CA), and stored at -80°C prior to cryosectioning. Lower jaws were sectioned coronally at 

a thickness of 16 µm (for immunohistochemistry) or 40 µm (for structural morphology), 

and thaw mounted onto superfrost plus slides pre-coated with polylysine. Slides were 

stored at -20°C until analyzed. Hematoxylin/eosin staining was performed using standard 

protocols [304]. For immunohistochemical labeling, slides were first equilibrated to room 

temperature for 30 min and washed five times with 1X PBS for 5 min each. Antigen 

retrieval was conducted by incubating the slides in 10mM Citric Acid (pH 6)/0.05% 

Tween-20 at 70°C for 30 min, cooled to room temperature for 20 min, and washed twice 

with PBS with 0.05% Tween-20 (PBST) for 5 min each. Blocking was performed for 30 

min with 1X PBS/0.1% BSA/0.5% Tween-20, and immediately incubated overnight with 

primary antibody (anti-PRF at 7.5 µg/mL or anti-CIRBP-RRM at 3.5 µg/mL) in PBST 

with 0.1% BSA. Slides were then washed five times with PBST for 5 min each, incubated 

with secondary antibody (Alexa Fluor 633 goat anti-rabbit IgG (Invitrogen), 1 µg/mL in 

PBST) for 30 min, washed five times with PBST for 5 min each, and finally 

counterstained with Alexa Fluor 488-wheat germ agglutinin (Invitrogen; 10 µg/mL in 

PBST) and DAPI (Invitrogen; 3.6 µM). For gland morphology, thick sections (40 µm) 

were stained with Alexa Fluor 488-wheat germ agglutinin, Alexa Fluor 555-Phalloidin 

(Invitrogen; 0.005 U/µL), and DAPI. Slides were coverslipped with Prolong Gold 

Antifade reagent (Invitrogen), cured overnight in the dark, and stored at 4°C. Imaging 

was accomplished using an Olympus Fluoview FV1000.  
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Circular Dichroism 

To measure secondary structure changes in rCIRBP/ECFP with different 

concentrations of RNA, far-UV CD spectra (185-255 nm) were acquired by averaging 10 

scans across a 0.1-cm path at 0.2 nm intervals using a Jasco J-810 Spectropolarimeter. 

Stock rCIRBP/ECFP (1.4 mg/mL in 1X EMSA) buffer was diluted 10-fold in water (to 

reduce chloride background). Following initial measurements with no RNA, PMF 3’ 

UTR 26-667 (at 70 ng/µL in 0.1X EMSA Buffer) was titrated into the solution, incubated 

for 5 min, and CD spectra recorded. Spectra were adjusted for slight changes in 

volume/concentration following serial dilution throughout the experiment. At the 

concentrations used, PMF 3’ UTR 26-667 produced no significant CD signal over buffer. 

Quantification and modelling of CIRBP expression 

For two separate time points in 2013 (6/13 and 8/3), 15 male P. shermani were 

collected, mental glands removed, pheromone extracted, and mental glands stored in 

RNAlater (Ambion) as previously described. One gland for 8/3 was inadvertently 

destroyed, such that n = 29. Pheromone concentrations were accurately determined by 

BCA Protein Assay (Thermo-Pierce), and normal proportions of pheromone components 

(PMF:PRF:PTP ~ 5:3:1) were validated by RP-HPLC. Stored mental glands were later 

dissected into approximately equal halves in order to extract both RNA (RNeasy Kit, 

Qiagen) and cellular protein (homogenization in RIPA Buffer, supplemented with 0.1 

mM iodoacetamide). Pilot studies confirmed that the two halves are equivalent for levels 

of target proteins and mRNA. CIRBP protein levels were measured by western blot. 

Preliminary experiments suggested that glands from 6/13 had ~6X higher levels of 

CIRBP, such that, in order to maintain similar blot intensities for quantification, 5 µg was 
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loaded per lane for 6/13 glands and 30 µg per lane for 8/3 glands. Briefly, proteins were 

separated using a 15% Tris-Tricine gel with 4% stacking gel at 50 V for 15 minutes 

followed by 100 V for 90 min, transferred to PVDF membranes by electroblotting in 15% 

methanol/0.025% SDS/10 mM CAPS, pH 11 at 55 V for 75 min. The membrane was 

blocked with 0.5 M NaCl/0.5% Tween-20/20 mM Tris, pH 7.5 for 1 hour, incubated with 

αCIRBP-RRM (1.4 µg/mL) for 1 hour, then incubated with alkaline phosphatase-

conjugated goat anti-rabbit IgG (1 µg/mL; Sigma-Aldrich), and developed using 

BCIP/NBT. All membrane washes and antibody dilutions were performed using TTBS 

(0.5 M NaCl/0.05% Tween-20/20 mM Tris, pH 7.5). All blots were processed and 

developed simultaneously in order to minimize run-to-run variation, and a reference of 10 

ng rCIRBP/ECFP was included on each membrane for normalization. Densitometry 

analysis was performed using ImageJ. Extracted RNA was used for qRT-PCR analysis 

for PMF, CIRBP, and Cathepsin S based on the previous methods (see Table 12 for 

primers). Correlation between variables was determined by multivariate ANOVA 

(MANOVA). 

Immunopulldown and mass spectrometry of CIRBP 

To validate the identity of different bands visualized during western blot, 

immunopulldown experiments were performed. Anti-CIRBP-RRM was used for CIRBP 

pulldown, and as a negative control, an IgG-enriched fraction from pre-immunization 

serum of CIRBP immunized rabbits was prepared by ammonium sulfate precipitation and 

DE52 chromatography. Using Protein G coupled Dynabeads (Invitrogen), 10 µg of 

antibody was adsorbed to the beads, stringently washed with PBST, incubated with 

pooled RIPA extract from 6/13 (~180 µg) or 8/3 (~840 µg) for 30 min, washed with 
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PBST, the beads transferred to a clean 1.7 mL tube, and incubated with 1X gel loading 

buffer (1% SDS/12% glycerol/0.005% bromophenol blue/50 mM Tris, pH 6.8) at 65°C 

for 30 min. The complete samples were loaded into a 15% Tris-Tricine gel with 4% 

stacking gel, electrophoresed at 50V for 15 min followed by 100 V for 90 min, and 

stained using SYPRO Ruby fluorescent gel stain (Invitrogen). The gel was imaged using 

the Typhoon 9400 fluorescent bed scanner (GE Life Sciences). All bands were then 

individually excised, proteins reduced and alkylated with dithiothreitol/iodoacetamide, 

treated overnight with trypsin, peptides isolated by acetonitrile extraction, and supplied to 

the University of Louisville Biomolecular Mass Spectrometry Core Laboratory for 

analysis by LC/MS-MS. 
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CHAPTER VII - PROTEOMIC ANALYSES OF COURTSHIP PHEROMONES 

IN THE REDBACK SALAMANDER, PLETHODON CINEREUS 

 

Chapter Overview 

The evolutionary success of plethodontid salamanders for ~100 MY is partly due 

to the use of courtship pheromones that regulate female receptivity. In ~90% of 

plethodontid species, males deliver pheromone by “scratching” a female’s dorsum, where 

pheromones diffuse transdermally into the bloodstream. However, in a single clade, 

representing ~10% of Plethodon spp., males apply pheromones to the female’s nares for 

olfactory delivery. Molecular studies have identified three major pheromone families: 

Plethodontid Receptivity Factor (PRF), Plethodontid Modulating Factor (PMF), and 

Sodefrin Precursor-like Factor (SPF). SPF and PMF genes are relatively ancient and 

found in all plethodontid species; however, PRF is exclusively found in the genus 

Plethodon – which includes species with transdermal, olfactory, and intermediate 

delivery behaviors. While previous proteomic analyses suggested PRF and PMF are 

dominant in slapping species and SPF is dominant in non-Plethodon scratching species, it 

was unclear how protein expression of different pheromone components may vary across 

delivery modes within Plethodon. Therefore, the aim of this study was to proteomically 

characterize the pheromones of a key scratching species in this evolutionary transition, 

Plethodon cinereus. Using mass spectrometry-based techniques, our data support the 

functional replacement of SPF by PRF in Plethodon spp. and an increase in PMF gene 
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duplication events in both lineage-dependent and delivery-dependent manners. Novel 

glycosylation was observed on P. cinereus PRFs, which may modulate the metabolism 

and/or mechanism of action for PRF in scratching species. Cumulatively, these molecular 

data suggest that the replacement of pheromone components (e.g., SPF by PRF) preceded 

the evolutionary transition of the functional complex from transdermal to olfactory 

delivery. 
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Introduction 

 For many organisms, intricate biological processes are often the product of 

functional complexes: diverse, yet integrated, sets of characters that interact in order to 

perform a specific function or task [127]. A prime example of a functional complex is 

venom delivery in snakes, spiders, and cone snails: in order to capture prey, multiple 

organs and specific behaviors have evolved for the synthesis and injection of potent 

toxins that rapidly immobilize the target [115, 175, 305]. Because all of the elements in a 

functional complex behave like gears in a single machine, their interdependence on one 

another can act as a strong selective tether; consequently, genes in such a system would 

be expected to co-evolve at similar rates. In contrast, in the functional complex of 

courtship pheromones in plethodontid salamanders, observed stasis in morphology, 

physiology, and behavior masks signatures of rapid evolution in the pheromone 

molecules themselves [87, 94]. 

 For more than 100 million years [50], plethodontid salamanders have utilized an 

array of pheromones to coordinate courtship and facilitate mating success. During the 

annual mating season, plasma androgen levels rise in male salamanders and induce 

development of a submandibular mental gland that is solely dedicated to the synthesis of 

non-volatile, proteinaceous courtship pheromones [69, 214]. As part of an intricate 

courtship behavior termed tail straddling walk, most species deliver these pheromones to 

female salamanders by one of two behaviors in order to modify the female’s mating 

receptivity and behavior [83, 87]. In the majority of plethodontid species (~300 spp.), the 

mental gland is a small, subdermal structure at the tip of the chin. Nearly all species with 

this type of mental gland apply pheromone using hypertrophied premaxillary teeth to 
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“scratch” the female’s back. In this system, pheromones presumably diffuse into the 

female bloodstream [44, 45]. However, approximately 17 MYA in a single clade of large 

eastern Plethodon species (the P. glutinosus complex, 28 spp.; Figure 40), pheromone 

delivery transitioned to direct application from a larger, external, pad-like mental gland to 

the females nares, whereupon pheromones bind to specific receptors in the female 

vomeronasal organ and stimulate regions of the brain involved in regulating reproductive 

behavior [70, 83, 86]. More basal species in this genus still retain the ancestral scratching 

delivery system (the P. cinereus complex; 10 spp.) where pheromone is applied to the 

dorsum, yet 6 species employ both and/or intermediate behaviors where the precise 

location of pheromone delivery is unknown (P. wehrlei and P. welleri groups; 2 and 4 

spp., respectively) [77, 80, 306, 307]. Transdermally delivered pheromones do not have 

direct access to the receptors in the olfactory pathway [216], but must have receptors 

some place that allow a response. 

 Two model salamander species (P. shermani using olfactory delivery, and 

Desmognathes ocoee using scratching delivery) have been used to chemically 

characterize the three major pheromone components [69, 81]. In P. shermani, ~85% of 

the total pheromone is comprised of two proteins: Plethodontid Receptivity Factor (PRF), 

a 22-kDa protein related to IL-6 cytokines, and Plethodontid Modulating Factor (PMF), a 

7-kDa protein related to three-finger protein superfamily which includes snake neuro- 

and cytotoxins, complement system regulators, and receptors in the plasminogen 

activation system [Chapter II]. Both of these proteins persist in the pheromone extract as 

multi-isoform blends, but with PMF having more than 30 highly diverse isoforms 

compared to 3 major PRF isoforms [91].   
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Figure 40. Phylogenetic relationship among plethodontid salamanders.  

The figure is adapted from Palmer et al. [97], updated with relationships between 
plethodontid genera and approximate divergence times are based on maximum-likelihood 
trees constructed by Vieites et al. [50] for three nuclear genes (RAG1, BDNF, POMC); 
relationships between eastern Plethodon spp. are based on more recent findings by 
Highton et al. [308] using albumin sequence data. Trait acquisition and loss are denoted 
by solid and empty boxes, respectively. 
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In contrast, the pheromone extract of the more ancestral species D. ocoee is more 

complex and contains many more types of proteins; however, the most abundant protein, 

Sodefrin Precursor-like Factor (SPF), has been characterized as a 20-kDa protein with 

sequence similarity to the newt pheromone precursor and a family of phospholipase A2 

inhibitors [81, 97]. Additionally, D. ocoee expresses a single isoform of PMF. At the 

proteomic level, there is no evidence of PRF in D. ocoee or SPF in P. shermani, although 

SPF mRNA can be detected at trace levels in P. shermani [89]. Staged courtship trials 

have successfully demonstrated behavioral effects when female salamanders receive 

purified PRF or PMF in P. shermani, or SPF in D. ocoee [81, 83, 93] 

 Molecular surveys of the expression of mRNAs for these three pheromone 

components across the plethodontid phylogeny demonstrate that while PMF and SPF are 

ubiquitously found in all plethodontid species, PRF is restricted to the four eastern 

Plethodon groups [95]. Relative stasis has been observed in many elements of the 

functional complex, such as mating behavior (tail straddling walk), morphology (mental 

gland), and delivery mode (scratching vs. olfactory); yet models of molecular evolution 

revealed that all three pheromone families display signatures of positive selection [96]. In 

groups co-expressing PRF and SPF, the two components displayed opposing signatures 

of selection (i.e. when PRF displayed signatures of positive selection, SPF did not, and 

vice versa). It was therefore proposed that PRF is replacing SPF in a lineage specific 

manner [97]. However, because of the extremely high sensitivity of PCR, the presence of 

PRF, PMF, and SPF mRNA in all four Plethodon groups does not equate to protein 

expression. With proteomic data only available for a single slapping species (P. shermani 

in P. glutinosus), it was unclear how the other pheromone components would be 
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represented in Plethodon groups utilizing scratching or intermediate behaviors. An 

additional limitation of the previous studies was that plethodontid pheromone mRNAs 

appear to be disproportionately translated, such that RT-PCR analysis does not make a 

good proxy for protein expression [Chapter II]. Therefore, in order to resolve the 

ambiguities in how plethodontid pheromones might be evolutionarily replacing one 

another across the mode of delivery transition, the aim of this study was to proteomically 

characterize the mental gland extract of a basal Plethodon species with scratching 

delivery, Plethodon cinereus. 

 

  



197 
 

Materials and methods 

Gland excision and protein extraction 

Plethodon cinereus males were collected during their breeding season from Giles 

Co., Virginia, USA (37°22’22” N, 80°32’31” W).  Males were anesthetized in a mixture 

of 7% ether in water.  Pheromones were extracted following the methods of Rollmann et 

al. [83].  Approximately 20 glands were excised and pheromone secretion was stimulated 

by incubation with 0.8 mM acetylcholine chloride in Amphibian Ringer's Solution for 

~60 minutes. Whole pheromone extract was centrifuged at 10,000 x g for 10 minutes, the 

supernatant collected, and the centrifugation repeated before storage of supernatant at      

-20°C. Prior to all proteomic analyses, the pheromone extract was concentrated using a 

YM-3 Centriprep (Millipore, Billerica, MA), and buffer exchanged to 0.5X phosphate 

buffered saline. For molecular biological analyses, seven additional mental glands were 

excised and immediately incubated in RNAlater (Ambion, Austin, TX) at 4°C overnight 

prior to long term storage at -20°C. Methods and animal care were approved by the 

University of Louisville’s Institutional Animal Care and Use Committee (IACUC #12041 

to P.W. Feldhoff). 

Mass spectral characterization and sequencing of P. cinereus protein pheromones  

Individual mental gland proteins were purified by reverse phase-HPLC (RP-

HPLC) (C-18, 0.46 x 15 cm; Grace Davison Discovery Sciences, Deerfield, IL) using a 

2695 Alliance HPLC System equipped with a 2487 dual wavelength absorbance detector 

and Empower software (Waters Division, Milford, MA) with an elution gradient 0-70% 

acetonitrile (ACN) at 1% ACN/min.  Both whole pheromone extract and individual RP-

HPLC fractions were analyzed by SDS-PAGE using 15% tris-tricine separating gels and 
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4% stacking gels, with electrophoresis at 50 V for 15 min followed by 100 V for 75 min 

[309]. Gels were stained using Coomassie Brilliant Blue R250.  

Following SDS-PAGE of individual RP-HPLC fractions, protein bands were 

excised using a sterile scalpel blade, then cut into ~1 mm3 cubes, and placed in a 1.7 ml 

tube. Remaining Coomassie dye was removed by multiple extractions using 25 µL 

ammonium bicarbonate (50 mM), incubated for 15 minutes, 50 µL acetonitrile added, 

incubated another 15 minutes, the supernatant removed, the gel pellet dried using a 

vacuum centrifuge, and the process repeated. Once the dye was completely removed, 

disulfide bonds were reduced by incubating the gel pellet in 50 µL DTT (20 

mM)/ammonium bicarbonate (100 mM) at 56°C for 45 minutes, followed by alkylation 

with 50 µL iodoacetamide (55 mM)/ammonium bicarbonate (100 mM) for 30 minutes in 

the dark. After two washes using 0.1 mL ammonium bicarbonate (100 mM) and 0.1 mL 

acetonitrile, the pellet was incubated with 50 µL trypsin (20 ng/µL in 50 mM ammonium 

bicarbonate) overnight at 37°C. The supernatant was then collected, and the pellet 

washed twice using 25 µL ammonium bicarbonate (50 mM) and 25 µL acetonitrile with 

the washes added to the collected supernatant. The collected solution was then 

lyophilized, resolubilized in 10 µL acetonitrile (50%)/formic acid (0.1%), and submitted 

to the University of Louisville Mass Spectroscopy Core Facility for analysis by liquid 

chromatography-tandem mass spectroscopy (LC/MS-MS). All mass spectral data were 

analyzed using MassMatrix 2.4.2 [184]  

Initial peptide identification was performed by searching the mass spectral data 

against an unannotated draft P. cinereus mental gland transcriptome (Wilburn and 

Feldhoff, unpublished data).  Briefly, P. cinereus mental gland cDNA was prepared using 
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the SMARTer cDNA synthesis kit (Clontech, Palo Alto, CA), and for the most probable 

transcriptome match, primers were designed using primer3 [310] (Integrated DNA 

Technologies, Coralville, IA) in order to ascertain the full sequence by PCR and Sanger 

sequencing. Targets were PCR amplified using the Accuprime High-Fidelity Taq system 

(Invitrogen, Carlsbad, CA) with a thermocycler program of 94°C for 2 minutes, followed 

by 35 cycles of 94°C for 15 seconds, 57°C for 15 seconds, and 68°C for 3 minutes. PCR 

products were examined by gel electrophoresis, and following successful amplification, 

were cloned into pCR2.1 (Invitrogen) using T4 DNA Ligase (New England Biolabs, 

Ipswich, MA), transformed into TOP10 chemically competent E. coli (Invitrogen), and 

plated on LB agar plates with 100 µg/mL ampicillin (Sigma-Aldrich, St. Louis, MO). 

Colony PCR was performed on resulting clones using routine PCR (reagents from New 

England Biolabs) with M13 primers (Integrated DNA Technologies), and DNA supplied 

to the University of Louisville DNA Sequencing Core Facility for sequencing of both 

forward and reverse strands. All sequence data was processed using the DNASTAR 

package (Lasergene v.10.0.1; DNASTAR, Madison, WI). MS results were searched 

against a database of these new sequences as well as those reported by Palmer et al. [95-

97] (AY499379- AY499400; DQ097017-DQ097020; DQ882525-DQ882529) for final 

identification. All new sequences were deposited in NCBI Genbank (Accession 

#KJ187079-KJ187106). 

Pheromone glycosylation analysis 

 The presence of glycoproteins in whole pheromone extract from D. ocoee, P. 

shermani, and P. cinereus was evaluated by separating 15 µg of pheromone by SDS-

PAGE (as described above), and staining the gel using the Pro-Q Emerald 488 
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glycoprotein staining kit (Invitrogen) which selectively labels reducing sugars with a 

fluorescent tag following periodate oxidation. Fluorescent imaging was performed using 

the Typhoon 9400 laser bed scanner (GE Life Sciences, Piscataway, NJ). Following 

imaging, the gel was stained with Coomassie Brilliant Blue R250, re-imaged using the 

Typhoon 9400, and the two images pseudo-colored and overlaid in order to 

simultaneously visualize carbohydrate and protein staining. Ovalbumin in the protein 

ladder (M3913; Sigma-Aldrich) served as a positive control for successful glycoprotein 

staining. The protocol was repeated for multiple individual RP-HPLC fractions. 

Preliminary data suggested that PRF was the only highly glycosylated protein in the P. 

cinereus pheromone extract. Consequently, individual P. cinereus PRF isoforms were 

purified by RP-HPLC to >99% purity, lyophilized, and prepared for deglycosylation 

using the Protein Deglycosylation Kit (New England Biolabs): briefly, the lyophilized 

samples were resolubilized in 12 µL 1X Denaturing Buffer (0.5% SDS, 40 mM DTT), 

the samples each equally divided into two tubes, incubated at 95°C for 10 minutes, then 

cooled to 4°C for 2 minutes, and diluted with 1.5 µL G7 Buffer (50 mM sodium 

phosphate, pH 7.5), 1.5 µL NP-40 (1%), and 3 µL nuclease-free water. Half of each PRF 

isoform was treated with either 1.5 µL deglycosylation enzyme mix or 1.5 µL nuclease-

free water (negative control), and incubated at 37°C overnight. The samples were finally 

separated by SDS-PAGE, stained for both carbohydrate and protein components, and the 

bands excised for LC/MS-MS analysis.  
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Results 

Separation and purification of P. cinereus pheromones 

 Separation of the P. cinereus pheromone extract by SDS-PAGE reveals 6 intense 

bands (in addition to multiple lighter bands); compared with P. shermani and D. ocoee 

extracts, three of the protein bands corresponded to approximately the same molecular 

weights as PRF, SPF and PMF (Figure 41). Separation by RP-HPLC revealed greater 

diversity with more than 20 detectable peaks, suggesting multiple isoforms of some 

pheromone components and/or similarity in molecular weight between components. 

Thirteen individual RP-HPLC peaks were hand-collected (Figure 42) for further analysis 

by SDS-PAGE (Figure 43). The estimated masses of these proteins ranged from 7.2 – 

68.1 kDa (Table 13). LC/MS-MS was performed on tryptic digests of gel bands to 

ascertain the identity of these sequences (summarized in Table 13). Additionally, on 

SDS-PAGE gels, RP-HPLC peaks 6 and 10 (Figure 42) split into two bands; these bands 

were individually excised for mass spectral characterization (with the higher molecular 

weight (H) bands termed 6H and 10H, and the lower molecular weight (L) bands termed 

6L and 10L. Because of the limited availability of P. cinereus cDNA sequences deposited 

in Genbank, an unannotated draft mental gland transcriptome was initially used for 

comparison to the mass spectral data to identify likely gene candidates, and these matches 

were confirmed by targeted RT-PCR. 
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Figure 41. SDS-PAGE 
separation of mental gland 
pheromone extracts 
between species.  

Fifteen micrograms of 
whole pheromone extract 
from D. ocoee (Do), P. 

shermani (Ps), and P. 

cinereus (Pc) were separated 
using a 15% Tris-Tricine 
gel, stained for 
carbohydrates using ProQ-
488 reactive dye following 
periodate oxidation, and 
then Coomassie-stained to 
visualize protein 
composition. The images 
were pseudocolored and 
overlayed to identify protein 
versus glycoprotein 
components. 
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Figure 42. RP-HPLC separation of P. cinereus pheromone extract.  

A 190 µg aliquot of P. cinereus pheromone extract was separated using a 0-70% ACN 
linear gradient, and individually numbered peaks hand collected for subsequent mass 
spectral characterization. 
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Figure 43. SDS-PAGE analysis of individual RP-HPLC fractions.  

A representative SDS-PAGE gel comparing individual RP-HPLC fractions (marked by 
number, see Table 1) to the whole P. cinereus pheromone (Pc) and size standard (L). 
Notably, the three PRF fractions (11-13) show molecular weights larger than the ~22 kDa 
predicted from DNA sequences. 
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Table 13. Summary of mass spectral data for RP-HPLC purified P. cinereus 
proteins. 

Peak 
Label 

Retention 
Time (min) 

Mass 
Estimate 
by Gel 
(kDa) 

Expected 
Mass 
(Da) 

Sequence 
Match 

Accession 
No. 

% 
Sequence 
Coverage 

1 30.1 16.0 7354 PMF DQ882525 84 
2 30.9 7.4 7912 PMF KJ187100 66 
3 32.0 7.9 8040 PMF KJ187100 87 
4 32.5 7.9 7912 PMF KJ187100 81 
5 33.9 7.2 7526 PMF KJ187093 100 
6H 35.2 21.1     
6L 35.2 7.0 8071 PMF KJ187097 91 
7 40.6 25.0 23975 CRISP KJ187086 93 
8 42.3 12.0 14259 Poliovirus 

Receptor-
related 
Protein 

KJ187105 29 

9 42.7 19.2 19119 C3 KJ187079 95 
10H 45.7 68.1 68210 Albumin JQ866994 72 
10L 45.7 9.8 9770 NPP KJ187100 91 
11 52.2 37.3 23790 PRF A5 AY499385 94 
12 54.0 36.9 23846 PRF A2 AY499382 86 
13 55.1 25.8 23900 PRF B1 AY499399 84 
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Mass spectral identification of P. cinereus pheromones 

 All proteins in fractions 1 – 5 and 6L were identified to be different isoforms of 

PMF (Table 13; herein referred to as PMF-1 through PMF-6 respectively). All data 

suggested that these individual proteins are monomeric, similar to P. shermani and D. 

ocoee PMFs. PMF-1 matched a P. cinereus PMF identified by Palmer et al. [96]; 

however, PMF-2 through 6 were unique in that they were not detected by the primers in 

that study, which were based on the conserved UTRs in P. shermani Class I [Chapter II]. 

Comparisons with available P. shermani PMF sequences suggest that these additional 

PMFs are more closely related to PMF Class III (Table 14). The closest sequence match 

for PMF-2, PMF-3, and PMF-4 was a single unusual PMF sequence that contained an N-

terminal extension (more than doubling the molecular weight of typical PMFs) with no 

significant similarity to any sequences presently in Genbank. The fact that all three 

isoforms matched a single sequence suggested that these three peaks are likely single 

nucleotide variants whose corresponding cDNAs were not detected by PCR. 

Interestingly, the N-terminal peptide matched the protein in peak 10L (Figure 42; herein 

termed N-terminal PMF-precursor Peptide, NPP) indicating that it can be cleaved off. 

Based on the mass spectral data, this PMF is likely synthesized as a larger precursor, with 

NPP and PMF-2,3,4 processed using the dibasic cleavage site, -Arg-Lys-, one residue 

from the normal N-terminus of PMFs. Dibasic cleavage sites consist of any combination 

of adjacent Lys or Arg  residues and are often used to cleave and process peptide or 

protein hormones such as insulin, as well as several D. ocoee pheromones [88].  
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Table 14. Amino acid distance matrix for P. cinereus vs. P. shermani PMF sequences 

 Ia Ib Ic Id Ie If Ig Ih Ii IIa IIb IIIa IIIb 
PMF1 0.55 0.48 0.46 0.50 0.83 0.81 0.96 1.17 1.15 1.33 1.05 1.47 1.28 
PMF2,3,4 1.02 1.21 1.24 1.47 1.67 1.49 1.39 1.71 1.51 1.96 1.53 0.60 0.58 
PMF5 1.08 1.25 1.26 1.37 1.81 1.56 1.26 1.81 1.54 2.02 1.53 0.82 0.58 
PMF6 1.04 1.18 1.29 1.41 1.81 1.48 1.36 1.79 1.48 2.02 1.42 0.82 0.68 
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However, NPP may undergo additional N-terminal processing: several amino acids 

beyond the predicted signal peptide cleavage site were not detected and several NPP 

peptides were identified with sequences missing 2-11 amino acids at the N-terminus 

(Figure 44). There were no additional trypsin cleavage sites in this region, and we 

hypothesize these variants arise as part of N-terminal processing in P. cinereus. PMF-5 

and PMF-6 are very similar in sequence (63 out of 68 identical residues), and also match 

more closely to PMF Class III; however, different primers against the 3’ UTR were 

required to amplify each (Table 15), suggesting that the UTRs of P. cinereus PMFs may 

not be as conserved as they are in P. shermani [Chapter II]. All of the P. cinereus PMFs 

possess a net negative charge, a characteristic of the P. shermani PMFs, but the lone D. 

ocoee PMF has a net positive charge.  

There were no detectable SPF-like proteins in the P. cinereus pheromone extract. 

This suggests that, similar to P. shermani, SPF sequences in P. cinereus determined by 

Palmer et al. [97] reflect the exquisite sensitivity of RT-PCR and SPF mRNAs are likely 

only present at trace levels. In contrast, three isoforms of PRF (RP-HPLC peaks 11-13; 

Figure 42) were identified (Table 13; herein referred to as Pc-PRF-1, Pc-PRF-2, and Pc-

PRF-3, respectively), and support the hypothesis that PRF is replacing SPF in the P. 

cinereus complex. Mass spectral data matched all three isoforms with sequences 

previously identified by Palmer et al. (2005), with Pc-PRF-1 matching PRF A5, Pc-PRF-

2 matching PRF A2, and Pc-PRF-3 matching PRF B1. These A and B designations 

correspond to two discrete families of PRF identified by Palmer et al. [95], with the B-

family being found exclusively in the P. cinereus complex.  
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Figure 44. Alignment of identified P. cinereus PMF sequences.  

Six PMF isoforms were identified by LC/MS-MS, with black boxes denoting specific 
peptides identified during the analysis. Three sequences (PMF2-4) have an additional N-
terminal extension (termed NPP) that is post-translationally cleaved and elutes at a 
different location (Peak 10B) by RP-HPLC. LC/MS-MS data support different degrees of 
N-terminal processing on NPP, with observed cleavage sites marked with arrows. 
Representative P. shermani PMF sequences are included in grey font. The predicted 
signal peptide has been deleted from all sequences. 
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Table 15. Primer list for P. cinereus PCR products 

Primer Name Sequence 
PMF with NPP 5’ UTR F’ 5’-TGCTTGTCTTCTTGGTGGTG-3’ 
PMF with NPP 3’ UTR R’ 5’-AGAGGCGTGCCTTCACTTTA-3’ 
PMF Class III-like 5’ UTR F’ 5’-GTACATGGGGACAGGGACAG-3’ 
PMF Class III-like 3’ UTR R’  5’-AGAGGCGTGCCTTCACTTTA-3’ 
C3 5’ UTR F’ 5’-ACGCAGAGTACATGGGGAAC-3’ 
C3 3’ UTR R’ 5’-AATGGGACGAGAGACAATGG-3’ 
CRISP 5’ UTR F’ 5’-TTGAATAGCCAACCTGTCCA-3’ 
CRISP 3’ UTR R’ 5’-AGCGCATACATCTGCCTCTT-3’ 
Poliovirus Receptor-related Protein 5’ UTR F’ 5’-ACAGGTTGTGACAAGAGGTG-3’ 
Poliovirus Receptor-related Protein 3’ UTR R’ 5’-TGTGTCTCGTGTCTGGTTCA-3’ 
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Surprisingly, when these fractions were analyzed by SDS-PAGE, all three bands had 

estimated molecular weights greater than the 22 kDa predicted by DNA sequencing data 

and characteristic of the PRFs found in P. shermani (Figure 43). Examination of the Pc-

PRF-1 and Pc-PRF-2 sequences revealed two N-linked glycosylation motifs (-Asn-Ala-

Thr-, NAT, and -Asn-Gln-Thr-, NQT) in close proximity to one another. Additionally, 

the tryptic peptide that would contain both N-linked glycosylation signals was one of 

only two peptide masses for Pc-PRF-1, and one of three peptides for Pc-PRF-2 (Figure 

45) that were not identified by mass spectral sequencing techniques (LC/MS-MS). Pc-

PRF glycosylation was verified by periodate oxidation followed by staining with an 

aldehyde-reactive fluorescent dye (Figure 46). Additionally, treatment with a commercial 

blend of deglycosylation enzymes reduced the masses of Pc-PRF-1 and Pc-PRF-2 to that 

of Pc-PRF-3, yet all three PRFs still stained positive for glycosylation. LC/MS-MS 

verified that both N-linked glycosylation sites were glycosylated in Pc-PRF-1 and Pc-

PRF-2 (indicated by deamination of the NAT and NQT motifs to -Asp-Ala-Thr-, DAT, 

and -Asp-Gln-Thr-, DQT, following enzymatic deglycosylation). However, this left only 

a single unmatched tryptic peptide for both Pc-PRF-1 and Pc-PRF-3 that contains Ser (S) 

and/or Thr (T) as possible O-linked glycosylation sites, i.e., the N-terminal tryptic 

peptide, LTISAPVK. This sequence is common to all three P. cinereus PRF isoforms, 

and we can deduce that this peptide contains O-linked oligosaccharides on either T2 or 

S4. Surprisingly, the large molecular weight decrease following removal of the N-linked 

components is ~12 kDa, or ~6 kDa per N-linked oligosaccharide, which is equivalent to 

~30 sugar residues. There are very few examples of N-linked carbohydrate masses this 

large in vertebrates, and all involve complex tetra-antennary structures [311].  
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Figure 45. Alignment of identified P. cinereus PRF sequences.  

Three PRF isoforms were identified by mass spectrometry (LC/MS-MS), with black 
boxes denoting specific peptides identified during the analysis. A grey box denotes 
peptides identified following enzymatic deglycosylation, with predicted N-linked 
glycosylation signals outlined in black. A representative P. shermani PRF sequence was 
included in grey font, and the predicted signal peptide has been deleted from all 
sequences. 
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Figure 46. Deglycosylation analysis of P. cinereus PRFs.  

Pc-PRF-1, Pc-PRF-2, and Pc-PRF-3 were separated by SDS-PAGE with and without the 
addition of a commercially available deglycosylation enzyme mixture (DGE). Following 
deglycosylation, both Pc-PRF-1 and Pc-PRF-2 show molecular weight shifts to that of 
Pc-PRF-3, as well as a decrease in signal when stained for carbohydrate. However, even 
after deglycosylation, all three isoforms still display carbohydrate signals; subsequent 
mass spectral analysis confirmed that all N-linked oligosaccharides were removed from 
both Pc-PRF-1 and Pc-PRF-2, suggesting that the remaining carbohydrates are O-linked 
on T2 and/or S4 in all three isoforms.  
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The O-linked component(s) is estimated to be ~3 kDa/~15 sugar residues. Additional 

carbohydrate staining comparing the D. ocoee, P. shermani, and P. cinereus whole 

pheromone extracts suggests that all three extracts contain some glycoprotein 

components (Figure 41); however, most of the glycosylated components in the P. 

shermani extract display relatively greater carbohydrate staining over protein staining, 

suggesting they are minor components in the protein pheromone extract, visible in part 

due to the sensitivity of the fluorescent carbohydrate stain. Importantly, P. shermani 

PRFs have no post-translational modifications (unpublished data). It is possible that PRF 

glycosylation may be unique to species utilizing the transdermal pheromone delivery 

mode and that the covalently bound carbohydrate moieties might influence the structure, 

metabolic half-life, or mechanism of action. However, due to the limited availability of 

Pc-PRFs and the inability to maintain reproductively active animals in the laboratory, any 

studies to further define molecular and biological aspects are currently not feasible. 

Additional protein components were identified in the P. cinereus pheromone 

extract that showed no similarities to PRF, PMF, and SPF. Peak 7 shared sequence 

similarity to the Cysteine-Rich Secretory Protein 1 (CRISP1): a male specific protein 

that, in mammals, is part of the seminal fluid, binds to the sperm cap, and plays a role in 

egg:sperm fusion [312]. While CRISP1 is normally glycosylated in mammals, we found 

no evidence for glycosylation in the P. cinereus homolog (Figure 47). Peak 8 matched a 

sequence with little similarity to any sequence presently in Genbank; however, the closest 

match was to uncharacterized amphibian proteins that are related to the poliovirus 

receptor.  
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Figure 47. Glycosylation analysis of individual RP-HPLC fractions.  

Select RP-HPLC fractions were separated by SDS-PAGE and analyzed for glycosylation 
using both carbohydrate and protein staining. No glycosylation was detected on any of 
the protein bands.  
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Peak 9 is the P. cinereus homolog of the P. shermani protein C3 [91], with sequence 

similarity to the Tissue Inhibitor of Metalloproteinase (TIMP) family (and more recently 

renamed to Plethodontid TIMP-like Protein, PTP) [Chapter VI]. The function of this 

protein in P. shermani is under active investigation, and may function in mental gland 

maintenance rather than serve as a pheromone (Wilburn and Feldhoff, unpublished data). 

Peak 10H was identified to be serum albumin, and likely an artifact of trace blood 

contamination during the mental gland removal. No matches were identified for peak 6H. 

None of the identified proteins, including PRF and PMF, have been functionally tested 

specifically in P. cinereus and should only be considered putative pheromones. 
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Discussion 

 The evolution of functional complexes has been of great scientific interest for 

some time, as interactions between otherwise disparate characters can act as a potent 

selective tether [313-315]. The predominant hypothesis is that correlational selection 

drives evolution in such functional complexes, but this results in dramatically different 

evolutionary modes of stasis or rapid differentiation [128, 129]. The interaction of these 

two processes is well established in plethodontid salamanders, with multiple studies 

finding evidence for repeated gene duplication and pervasive positive selection acting on 

the pheromone genes, yet the larger behavioral and physiological architecture is generally 

conserved across Plethodontidae [94, 96, 97, Chapter II]. The one exception to this larger 

conservation is the relatively recent adaptation of olfactory pheromone delivery in the P. 

glutinosus complex (less than 17 MYA of >100 MYA for scratching delivery; Figure 40). 

Investigations of signaling pathways in P. shermani revealed that both PRF and PMF 

activate neurons in the vomeronasal organ, an accessory olfactory system often 

associated with pheromone signaling in vertebrates [70, 92]. Both pheromones likely 

target vomeronasal type-2 receptors, which in rodents bind protein or peptide 

pheromones [23, 30, 38], and are highly expressed in the P. shermani vomeronasal organ 

[71, 72]. While there is some variation in the anatomy and neuron physiology between 

vertebrate taxa, the use of protein pheromone binding receptors and the underlying 

biochemical signaling cascades appear to be conserved in fish, salamanders, frogs, and 

rodents [5, 39, 41, 42, 72] 

 The more plesiomorphic character of transdermal pheromone delivery is greatly 

understudied in comparison to the more recently derived olfactory system. By direct 
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delivery to the bloodstream, this ancient system bypasses the need for central processing 

and could directly target different tissues or organs in female salamanders. cDNA 

sequencing of mental glands from two transdermal species, D. ocoee and Eurycea 

guttolineata, revealed sequences for hormone-like peptides, lending plausibility to direct 

stimulation [89]. Interestingly, the total protein pheromone mass in these glands is 10-

15% of that of slapping species, possibly indicating greater potency or more rapid 

pheromone regeneration, since this system apparently lacks the potential for signal 

amplification that could occur through central processing in the brain.  However, virtually 

all research to date has centered on the three principal pheromone components observed 

in P. shermani and D. ocoee: PRF, PMF, and SPF [87, 316]. While PMF and SPF have 

an ancient origin and their mRNAs are detectable by RT-PCR in all plethodontid mental 

glands, both proteomic and molecular analyses reveal stark differences in isoform 

variability and relative expression as species transition from transdermal to olfactory 

delivery. For example, D. ocoee possesses a single PMF isoform that comprises < 5% of 

the total pheromone, versus P. shermani which has >30 PMF isoforms that constitute 

~50% of the total pheromone. Interestingly, P. cinereus appears to be intermediate 

between these two examples: 6 isoforms of PMF comprising 15-20% of the total protein.  

These data suggest that sexual selection promoted gene duplications of PMF prior to the 

transition from transdermal to olfactory delivery, yet the process was further exacerbated 

beyond the transition. However, even from preliminary transcriptome sequencing, there 

is no evidence for the extended PMFs with the NPP extension in P. shermani (Wilburn 

and Feldhoff, unpublished data), suggesting this may be an adaptation exclusive to the P. 

cinereus lineage. 
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 Despite proteomically characterizing >70% of the total pheromone extract and 

nearly all of the major peaks, there was no evidence for any SPF proteins in the P. 

cinereus pheromone extract, further supporting the hypothesis that PRF may be 

functionally replacing SPF in Plethodon spp. With trace levels of SPF mRNA and no 

measureable amounts of SPF protein present in P. shermani and P. cinereus, which exist 

on distant ends of the Plethodon phylogeny, PRF is thus expected to be highly expressed 

in the mental glands of both intermediate groups, P. wehrlei and P. welleri. The 

discovery of glycosylation on all of the P. cinereus PRFs is an interesting phenomenon, 

and may be important for biological activity when PRF is delivered transdermally. 

Glycosylation may function to increase PRF conformational stability [317], solubility in 

plasma [318], and/or to help mediate specific receptor:ligand interactions [319]. If sexual 

conflict is present, glycosylation may additionally shield PRF from recognition by the 

female immune system [320]. There are no reports to date of glycosylation being 

essential for pheromone activity; however, this is not surprising given the limited number 

of characterized protein pheromones. In all PRF sequences for 28 members of the P. 

glutinosus group (which includes P. shermani), the N-linked glycosylation motifs are 

mutated and non-functional while the 9 amino acid N-terminal peptide extension found in 

Pc-PRFs, which contains the O-linked glycosylation site(s), has been deleted. 

Examination of available PRF sequences from the two intermediate groups reveal that P. 

welleri PRFs mirror those of P. glutinosus  and lack the observed glycosylation sites, 

while the O-linked N-terminal extension and the two N-linked motifs are preserved in P. 

wehrlei, similar to that of P. cinereus. There is a great deal of ambiguity with respect to 

the precise mode of pheromone delivery in these intermediate groups; both Organ [306] 
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and Arnold [77] reported that male P. welleri rub their mental glands across the female’s 

body, similar to the scratching behavior, while Picard [307] and Dyal [80] additionally 

observed slapping behavior during tail straddling walk in other members of this group. 

There are no ethological data available for P. wehrlei, as animals would not court under 

laboratory settings (Arnold SJ, personal communication); thus, it is still unclear whether 

P. wehrlei uses scratching or olfactory delivery. It is an interesting correlation that, 

similar to P. shermani and additional P. glutinosus group members, the P. welleri group 

at least partially use slapping delivery in order to provide pheromone to the VNO of 

females, and those PRF sequences lack molecular signatures of glycosylation. 

Importantly, when P. shermani whole pheromone was applied to the dorsum of females, 

there was no effect on female behavior, and it was proposed that the P. glutinosus 

complex had “lost” the necessary receptors and/or signaling pathways utilized in 

transdermal delivery [216]. However, an alternative possibility should be considered is 

that since PRF is one of the major signaling molecules in Plethodon spp., the 

glycosylation of PRF in transitional scratching species may alter the site and/or pathway 

by which PRF enhances mating receptivity in females. This hypothesis is consistent with 

species using exclusively scratching (P. cinereus) or slapping (P. glutinosus) delivery, 

and while it may be applied to both locations in the intermediate delivery species, it may 

be functionally targeting different tissues in species with glycosylation (bloodstream in P. 

wehrlei, where slapping behavior is unknown) versus those without glycosylation 

(vomeronasal organ in P. welleri, which uses slapping behavior). Based on current 

methods, P. cinereus do not court frequently enough under laboratory conditions to 

permit behavioral assays to test if PRF glycosylation is directly involved in signaling 
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(Arnold SJ, personal communication); future neurophysiological and biochemical studies 

will likely be necessary to ascertain the function of these unique covalently bound 

oligosaccharides. Additionally, older studies on plethodontid systematics reported that P. 

wehrlei is the sister clade to P. glutinosus, however, the most recent molecular data 

support concurrent speciation between these lineages [308]. Our findings suggest that, at 

least by parsimony with respect to PRF glycosylation, P. welleri may be the sister clade 

to P. glutinosus; however, if the older models are correct, then this loss of glycosylation 

and putative transition in PRF signaling may have independently evolved multiple times 

in Plethodon spp.  

 While great emphasis was placed on examining pheromone families that are 

functionally active in related plethodontid species, it is also relevant that our proteomic 

analyses revealed new genes which have been co-opted for likely pheromone activity in 

P. cinereus. The NPP observed on P. cinereus PMF 2-4 is particularly different, as this 

specific type of PMF variant has not previously been characterized in other species, and 

represents a large fraction of the P. cinereus PMFs. The limited genomic sequence data 

for P. shermani PMFs suggests that PMF has a gene structure similar to other three-

finger proteins, with the first intron found near the end of the signal peptide but before its 

cleavage site [Chapter II]. It is plausible that this NPP sequence may have been inserted 

into this first intron, through gene insertion and/or genomic rearrangement with 

compensatory mutations. Unfortunately, this sequence shares little-to-no similarity with 

any characterized proteins presently in Genbank, but its maintenance in the pheromone 

extract suggests a key function. The co-option of CRISP as a putative pheromone is also 

of particular interest, due in part to its role in mammalian reproduction, but also its 
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potential evolutionary origins in other exocrine glands that include snake venom glands. 

In contrast to more classical models of gene co-option with gene duplication and 

functional diversification, Fry [115] proposed that, in snake venom glands, both CRISP- 

and kallikrein-like toxins may have been recruited directly from genes already expressed 

in an ancestral salivary gland-like tissue that eventually developed into modern toxin 

glands. In plethodontid salamanders, the mental gland has long been proposed to be a 

modified mucous gland based on its location and histological staining [247]; however, 

our biochemical analyses of the glandular extracts from multiple species do not support 

this hypothesis. There have been no detectable proteoglycans in any of our model 

species, and in this study, we even determined that there are relatively few glycoproteins 

in the mental glands of the three principal model species. Recently, fluorescence confocal 

microscopy provided evidence that the mental gland lacks a large lumen for storage; 

instead the gland has columnar cells with basal nuclei and long cytoplasmic regions that 

include pheromone packaged in secretory granules or vesicles – much more similar to a 

salivary or other type of serous gland [Chapter VI]. Interestingly, in a single plethodontid 

species with atypical pheromone delivery (D. wrighti), the mental gland secretes into the 

male’s mouth and he must bite females to deliver pheromone transdermally [45]. A 

salivary gland relationship may provide an alternative mechanism for the diverse types of 

proteins observed in the mental gland beyond traditional gene co-option. This would also 

suggest a potential common origin between salamander pheromone and snake venom 

glands, which have been shown to utilize many related gene families. The ontogeny of 

the P. shermani mental gland and the molecular mechanisms that regulate its 

development are presently being investigated. 
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 In conclusion, plethodontid salamanders and their specialized system of courtship 

provide a valuable model for studying the interplay between different evolutionary forces 

on functional complexes. In this study, we extensively characterized the mental gland 

proteome of Plethodon cinereus, one of the few Plethodon species to exclusively employ 

the ancient or plesiomorphic behavior of transdermal pheromone delivery. Our data 

support the hypothesis that PRF has functionally replaced SPF in the Plethodon genus; 

however, the mechanism and site of action for PRF may be dependent on extensive N- 

and O-linked glycosylation observed in P. cinereus PRFs. This post-translational 

modification is absent in species that exclusively employ olfactory delivery, and may 

provide phylogenetically-relevant information for species with intermediate forms of 

delivery. The hypervariable pheromone Plethodontid Modulating Factor (PMF) displays 

intermediate characteristics with respect to isoform number and biochemical 

characteristics of PMFs in closely and distantly related salamanders (P. shermani and D. 

ocoee). Additional potential pheromone genes were identified in P. cinereus, such as 

CRISP, that may provide key ontological evidence as to the identity and origin of this 

unique pheromone gland that has been retained for more than 100 million years in 

plethodontid salamanders. All of these data further support the underlying hypothesis 

that, despite relative conservation in most higher-order aspects of this functional 

complex, pervasive sexual selection has acted at the molecular level and led to rapid 

diversification of the pheromone molecules and mental gland composition, independent 

of the mechanism by which pheromones are delivered. 
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CHAPTER VIII - CONCLUSIONS AND FUTURE DIRECTIONS 

 

 For more than 100 million years, plethodontid salamanders have utilized 

proteinaceous courtship pheromones to modulate the timing of courtship and influence 

reproductive success. These proteinaceous pheromones are rapidly evolving, presumably 

in response to female sexual selection, and persist as multi-isoform mixtures through a 

birth-and-death model of gene evolution. The most extreme example of this is the 

pheromone Plethodontid Modulating Factor (PMF), a hypervariable protein related to the 

three-finger protein (TFP) superfamily. The number of PMF isoforms varies between 

species, with only 1 in Desmognathes ocoee, approximately 6 in Plethodon cinereus, and 

more than 30 in P. shermani [Chapter VII]. The massive expansion of the PMF gene 

complex partially corresponds to the transition from transdermal to olfactory delivery. 

Similar to the case of lysin and VERL in abalone sperm-egg interactions [131-134], the 

interactions of PMF and female receptors via the bloodstream may be concentration 

limited, thereby restricting the number of PMF isoforms that a single male can effectively 

deliver. By transitioning courtship pheromones to the olfactory system, concentration 

becomes significantly less important, and there is likely little selective pressure to restrict 

males from synthesizing an extraordinarily diverse blend of PMF isoforms that are 

essential for increasing female receptivity [Chapter IV]. This variability is further 

enhanced by changes in the canonical TFP disulfide bonding pattern to permit greater 
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backbone flexibility in the most rapidly evolving segments of PMF, particularly the loop 

of finger 3 [Chapter III]. 

 The explosion of PMF gene duplications that corresponds to a change in delivery 

mode is also coupled to a change in mental gland morphology. Species with either 

olfactory or intermediate delivery systems (P. glutinosus, P. welleri, and P. wehrlei) have 

enlarged, pad-like mental glands (presumably of similar histology, see [44] and Chapter 

VI) that are presumably necessary to deliver pheromones via slapping. However, in these 

glands, significant changes in gene expression are required to transition the gland from 

growth and development to active pheromone synthesis. It was proposed in Chapter II 

that the highly conserved untranslated regions (UTRs) were products of purifying 

selection to allow simultaneous, synchronized expression of the many diverse isoforms. 

In Chapter VI, the RNA binding protein CIRBP was identified as a likely regulator of 

PMF translation and/or mRNA stability, and cooperatively binds to these highly 

conserved UTRs. While the role of CIRBP has not been examined in other species, PMF 

sequences in the P. cinereus transcriptome had shorter, unique 3’ UTRs (and is partially 

why the Class II and III-like PMFs were missed in the PCR-based screen by Palmer et al. 

[96]). However, at least some of the P. shermani PMFs (such as PMF-A1) are highly 

expressed without having the conserved Class I PMF UTRs. The specificity of CIRBP is 

likely dictated by a common dinucleotide and possibly RNA secondary structure such 

that absolute sequence conservation may not be required for a sequence to still be a 

target. However, because of its cooperative binding mechanics, 3’ UTR length is likely a 

critical factor to promote association of CIRBP towards some PMFs and not others; in 

particular, Class III PMFs with their alternative poly(A) cleavage site (Table 2). Of note 
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is PMF-A1 (Class IIIb), which generally had the longer 3’ UTR variant compared to 

Class IIIa sequences [Chapter II].   

Based on all of these data, the following hypothesis is proposed. PMF gene 

duplication and rapid evolution have likely been the product of sexual selection linked to 

female receptors. However, through the birth-and-death model of gene evolution, male 

salamanders have managed to maximize their probability of successfully stimulating 

females through highly diverse and flexible proteins which can bind the receptors of any 

female in the breeding population. This form of molecular exploitation could only arise 

after the transition to olfactory delivery using a larger mental gland, where signaling by 

direct application only requires trace amounts of pheromone. However, transition to this 

type of structure required a different physical architecture and a new program of gene 

regulation, such that there are two discrete phases of mental gland development, with 

pheromone translation in part regulated by CIRBP. All of these adaptations culminate in 

a highly effective pheromone system for males to maximize their chance of mating 

successfully during a brief courtship season.  

 Future directions of this project would likely entail further defining the 

mechanisms underlying female neurophysiology and PMF gene regulation. The present 

lack of molecular data for the female VNE creates a tremendous bottleneck towards 

determining how individual isoforms may be functioning synergistically to activate 

neurons. Using a combined approach of laser capture microdissection and next-

generation sequencing, efforts are currently underway to build comprehensive 

transcriptomes of both the MOE and VNE, which should include all V2R (and possibly 

V1R) sequences. The original approach used to characterize the murine V2R receptors 
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for ESP1 and MHC peptides involved co-labeling VNE neurons by in situ hybridization 

for activation (using immediate-early response genes) and some set of V2Rs, then 

systematically increasing probe specificity in order to identify a single V2R [23, 35]. 

While feasible given a complete library of receptor sequences, this is a highly laborious, 

low throughput strategy. And, because V2Rs do not readily translocate to the plasma 

membrane [37], transfection-based approaches in cell culture have been difficult to 

optimize. The recent structural characterization of ESP1 and its binding to V2Rp5 

through the extracellular N-terminal domain [38] may provide new opportunities: if the 

V2R N-terminal regions function as binding domains (as has been hypothesized since 

their original discovery [30]), higher throughput may be achieved using cDNA or phage 

display systems. Briefly, affinity-tagged pheromones could be used to selectively 

pulldown displayed N-terminal domains, and then the associated RNA sequenced in 

order to determine identity. Identification of likely pheromone receptors would permit 

many additional research options, including biochemical and structural studies to 

determine complex formation, population studies to determine allele frequencies and 

correlations to male pheromone levels, and phylogenetic studies in order to trace 

potential patterns of co-evolution between pheromone-receptor pairs.  

  The presented work on characterizing CIRBP as a potential regulator of PMF 

translation serves as a critical first step to understanding the mechanisms that control 

PMF expression. However, many questions remain unanswered, particularly how CIRBP 

specifically recognizes the PMF 3’ UTR. Initial efforts to determine the dinucleotide 

specificity of the CIRBP-RRM using in silico modeling were unsuccessful, in part due to 

the current difficulties in simulating RNA-protein interactions. Consequently, higher 
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resolution biochemical assays will likely be necessary using a full panel of substrates and 

comparing relative affinities under different circumstances. As previously alluded, this 

would allow for highly interesting studies comparing the UTRs of different PMF 

isoforms both within and between species to determine if CIRBP has indeed played a key 

role in regulating expression of different PMFs via selective 3’ UTR evolution. A high 

resolution NMR structure (< 1 Å rmsd) has already been solved for the human CIRBP 

RNA recognition motif (PDB #1X5S), and P. shermani CIRBP shares 82% identity 

(69/84 identical residues, with 11/15 conservative substitutions). However, it will be 

critical to solve the structure in complex with RNA oligonucleotides to determine the 

molecular interactions that provide specificity. The precise mechanisms of the CIRBP 

low complexity domain will likely be much more complicated, as its tendency to 

aggregate and precipitate would make it extraordinarily difficult to crystallize or maintain 

at sufficiently high concentrations for solution NMR. Establishing a biologically relevant 

model using in vitro and/or cell culture systems will be critical for fully characterizing 

CIRBP’s function in PMF gene expression and mental gland development. One option 

may include induction of mental gland development in female P. shermani to serve as a 

“zero background” model where there is no potential interference from endogenous male 

hormones. Sever [222] managed to induce gland development in female Eurycea 

quadridigitata; however, this was using ~100,000 X physiological levels of testosterone. 

In collaboration with Dr. Sarah Woodley (Duquesne Univ.), we have recently attempted 

to replicate Sever’s original work in P. shermani using small implants in both gravid and 

non-gravid females that provide constant release of testosterone at physiological levels. 

There were no visible mental glands in gravid females with testosterone implants; in non-
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gravid females (with naturally lower estradiol levels), there was evidence for initial 

formation of a mental gland, although much more slowly than natural male progression. 

Hormone assays confirmed that testosterone levels were at male physiological levels, 

however, estradiol was elevated above females with control implants, suggesting likely 

endocrine interference. An inducible model of mental gland development would allow 

much higher resolution measurements of changes in gene expression, and permit control 

over other external cues that may be essential for regulating progression and timing (e.g. 

temperature, humidity, and photoperiod). 

 These proposed mechanistic studies likely represent the most tractable 

applications of the P. shermani system to biomedical science. With the exception of the 

work with mice, there are presently no well characterized models for vomeronasal signal 

transduction; as basal tetrapods, salamanders provide an excellent comparative model to 

determining the mechanisms universal to vertebrate olfaction and signaling. As was 

discussed in Chapter VI, there are many similarities between mental gland and tumor 

development – and while studies of the mental gland are currently in their infancy, 

understanding the mechanisms of gland maturation and eventual regression may unlock 

new therapeutic targets for cancer treatment. However, as animals that thrive in cool, 

damp habitats, plethodontid salamanders are likely one of the first groups to be impacted 

by global climate change. Consequently, studying the molecular mechanisms of mating 

and reproduction may have more profound impacts on preserving biodiversity and 

species survival.   
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