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ABSTRACT 

THE DLK1-MEG3 LOCUS IN MALIGNANT CELLS OF PROSPECTIVE 

PRIMORDIAL GERM CELL ORIGINS 

Zachariah Payne Sellers 

August 8, 2017 

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) 

along their migration route through the embryo during the early stages of embryogenesis. 

PGCs also undergo global chromatin remodeling, including the erasure and re-

establishment of genomic imprints, during this migration. While PGCs do not 

spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) 

in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 

imprinting control differentially methylated region (DMR). Previous studies in bimaternal 

embryos determined that proper genomic imprinting at two paternally imprinted loci was 

necessary for their growth and development: Igf2-H19 and Dlk1-Meg3. Hypomethylation 

at DMRs within these two loci confers a tumor-suppressing phenotype, thus provoking the 

question of whether changes in genomic imprinting at these loci may be important for the 

development of GCTs. Similarly, these loci were recently implicated in the quiescence and 

maintenance of HSCs, and there is evidence to suggest that both loci are involved in 

leukemogenesis. Here, I investigated the DLK1-MEG3 locus in acute myeloid leukemia 

(AML) patient samples, and discovered significant associations between patient survival 

and the methylation and expression patterns from this locus. In addition, I investigated the 
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methylation of DMRs within the IGF2-H19 and DLK1-MEG3 loci in the human embryonal 

carcinoma (EC) cell line NTera2 and found that, while the IGF2-H19 control DMR was 

hypomethylated, the DLK1-MEG3 control DMR and secondary MEG3 DMR were 

hypermethylated in these cells. The expression ratio of imprinted genes from both loci also 

agreed with proposed imprinting mechanisms for these phenotypes, and changes in these 

expression ratios accompanied a decrease in the proliferation rate of these cells during 

treatment with the DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine. While 

NTera2 cells functionally responded to exogenous insulin-like growth factors, including 

IGF2, these cells exhibited strong nuclear staining for DLK1, and shRNA-mediated 

knockdown of DLK1 revealed a requirement for this gene for the in vitro and in vivo 

malignant properties of these cells. Furthermore, isolation of potential cancer stem cells 

(CSCs) from the NTera2 cell line based on CD133 and SSEA4 surface expression produced 

subpopulations of cells with unique gene expression signatures and migratory 

characteristics. However, little difference in the DLK1 or OCT4 expression was found 

among these subpopulations, and the emergence of CD133+SSEA4+ cells from in vitro-

expanded CD133-, SSEA4-, and CD133-SSEA4- singly-sorted cells indicated that, while 

the overall stemness of these cells was fixed, the phenotype of this established cell line is 

actually in flux. In conclusion, DLK1 is a potential target to treat AML and EC, meriting 

future investigations into the development of DLK1-targeting therapies, including the use 

of specific antibodies, aptamers, and vaccination strategies. EC cell growth and metastasis 

could also be inhibited by employing DNA methyltransferase inhibitors, and investigations 

into the effect of these drugs on the expression of genes from the DLK1-MEG3 locus in 
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AML could provide valuable information for the development of patient-specific 

treatments for this disease.
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CHAPTER 1: INTRODUCTION 

The maintenance of normal and malignant stem cells by parentally imprinted genes 

 Of the many layers of control over gene transcription, the developing field of 

epigenetics has characterized several highly complex, dynamic processes which govern 

transcription at arguably the most basic level: genomic availability. Broad changes to the 

chromatin landscape occur through a growing list of post-translational modifications to 

histone proteins in coordination with environmental conditions such as cellular metabolism 

[1]. This is exemplified by the transition from quiescence to proliferation in skeletal muscle 

stem cells, which occurs in response to metabolic changes that promote acetylation at the 

lysine 16 residue of histone H4 [2].  

In addition to these dynamic processes which allow for chromatin “breathing”, 

epigenetic processes are also at the core of cellular identity. Indeed, this epigenetic tagging 

system, collectively known as the epigenome, can help distinguish certain cell types [3]. 

For example, the process of creating induced pluripotent stem cells (iPSCs) can generate 

cells which are functionally very similar, but permanent changes to the epigenetic 

landscape as side effects of the induction process dictate the true stem cell potency, or 

stemness, of these cells [4]. In this case, the differences in stemness between these cells 

results from epigenetic marks which are localized to one specific region of the genome. 

This region, known as the DLK1-MEG3 locus, participates in an epigenetic inheritance 

mechanism – genomic imprinting – which is unique to only 100 known genes in the human 

genome sequestered into even fewer loci (www.geneimprint.com). Genomic imprinting 

http://www.geneimprint.com/
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controls the dosage of genes within a locus via differential chemical modifications to the 

maternally and paternally inherited chromosomes. For iPSCs, treatment with the histone 

deacetylase inhibitor valproic acid (VPA) induced changes to the imprinting pattern at the 

DLK1-MEG3 locus, as measured by increases in the activating histone modifications H3 

acetylation and H3K4 methylation and by decreases in the methylation of differentially 

methylation regions (DMRs) within this locus. While this illustrates the cooperation of 

several epigenetic marks to influence the overall imprinting pattern at a locus, DMR 

methylation is among the most common measures of genomic imprinting. Figure 1 

illustrates the archetype mechanism of gene regulation by methylation at DMRs, where 

allele-specific methylation controls the binding of chromatin-modifying proteins such as 

CCCTC-binding factor (CTCF) to promote the transcription of certain genes only from 

either the maternally- or paternally-inherited chromosome.  

Coincidentally, the archetype imprinted locus illustrated in Figure 1, IGF2-H19, is 

also a major player in regulating cellular identity. Different populations of hematopoietic 

stem cells (HSCs) were recently shown to express growth restriction-associated imprinted 

genes in accordance with their placement in the HSC hierarchy, where the highest 

expression of these genes, including H19 and Meg3, was found in the long-term 

repopulating HSC (LT-HSC) population at the top of this hierarchy [5]. This group also 

found that disruption of genomic imprinting at the Igf2-H19 locus via deletion of the 

imprinting control region (ICR), the control DMR for this locus, promoted the loss of 

quiescence by LT-HSCs and the accumulation of more differentiated HSCs over time. 

Interestingly, later work uncovered a similar role for the Dlk1-Meg3 locus in maintaining 

HSCs, where the deletion of either the intergenic control (IG) DMR or the secondary Meg3 
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DMR combined with the first five introns of Meg3 resulted in decreased noncoding RNA 

(ncRNA) expression from this locus and decreased fetal liver HSC numbers [6, 7]. In 

addition, quiescent adult pluripotent stem cells which exhibit hypomethylation at the IGF2-

H19 ICR, named very small embryonic-like stem cells (VSELs), displayed increases in 

methylation at the ICR upon in vitro expansion and differentiation [8, 9]. Thus, genomic 

imprinting at these loci is especially important for maintaining the stemness of somatic and 

pluripotent stem cells. Furthermore, downregulation of the H19 gene in embryonal 

carcinoma (EC) cells, which are hypothesized to be the cancer stem-like cells (CSC) that 

give rise to more differentiated germ cell tumor tissues, was accompanied by decreases in 

pluripotency gene expression in these cells, and DLK1 has been identified as a CSC marker 

which is important for the malignancy of CSCs in various cancers such as hepatocellular 

carcinoma and neuroblastoma [10, 11]. Taken together, the IGF2-H19 and DLK1-MEG3 

loci not only govern the maintenance of somatic and pluripotent stem cells, but genes from 

these loci are also involved in CSC malignancy. Considering the unique importance of 

these paternally imprinted genes in embryonic growth and development, it is not surprising 

that aberrant imprinting at these loci is also seen in certain malignancies [12, 13]. 
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Figure 1. The IGF2-H19 locus 

Genomic imprinting at the IGF2-H19 locus involves the binding of a CTCF protein to the 

ICR to regulate gene expression. In somatic cells, the ICR is hypomethylated on the 

maternally inherited chromosome (unfilled oval) and hypermethylated on the paternally 

inherited chromosome (filled oval). This methylation pattern controls the binding of CTCF 

proteins to the ICR, which allows for downstream enhancers to act on the promotor of 

either H19 or IGF2. 
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The IGF2-H19 and DLK1-MEG3 loci in embryogenesis and malignancy 

 The regulation of gene transcription by DMR methylation is well characterized for 

the IGF2-H19 locus (Figure 1) [14]. Though the exact mechanism of genomic imprinting 

for this locus is not yet fully described, the importance of the ICR for gene transcription 

was previously shown in a seminal paper by Kono, et al., in which bimaternal mice were 

generated for the first time via manipulation of only the Igf2-H19 locus [15]. Gametes carry 

specific chemical modifications to their chromatin, including DMR methylation and post-

translational modifications to histone proteins, such that the fusion of egg and sperm causes 

these chemical modifications to complement each other at imprinted loci. This 

phenomenon allows for unique gene expression ratios from imprinted loci based on the 

enhanced opportunity for transcription from either the paternally inherited or maternally 

inherited chromosome (Figure 2). Maternally imprinted loci are those which are chemically 

modified primarily on the maternally inherited chromosome and represent the majority of 

known imprinted loci. In mice, the Igf2-H19 and Dlk1-Meg3 loci are two of only four 

known loci which are paternally imprinted [16]. Thus, the fusion of oocytes does not 

provide complementing chemical modifications at imprinted loci, preventing the dosage of 

imprinted gene expression which is found in a normal conceptus and preventing the proper 

growth and development of the resulting embryo, and work by Kono, et al. highlighted the 

specific importance of the paternally imprinted Igf2-H19 locus in overcoming this 

restriction for creating viable bimaternal mice. 

Kono, et al. found that fusing one normal oocyte with one oocyte from which the 

Igf2-H19 ICR and the H19 gene were deleted overcame the growth restriction which 

accompanied oocyte fusion and resulted in the full-term development of mice [15]. 
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Importantly, while this process was very inefficient and resulted in the birth of only two 

surviving pups from 371 implanted embryos, the single pup which was sacrificed displayed 

a higher Dlk1/Meg3 transcription ratio than the non-surviving pups generated in the same 

manner. This indicated that the Dlk1-Meg3 locus was also important for bimaternal mouse 

generation, and later work showed that manipulation of both the Igf2-H19 and Dlk1-Meg3 

loci enhanced the efficiency of this process [17]. 

 In light of later work investigating genes from the IGF2-H19 and DLK1-MEG3 

loci, these results for bimaternal mice generation may be explained in terms of the 

maintenance of cell stemness. As previously stated, the expression of ncRNAs from these 

loci maintains HSC stemness and numbers, and the lncRNA H19 preserves the stemness 

of EC cells [5, 6, 18]. Similarly, deletion of the H19 gene on the maternal chromosome 

results in larger teratomas, which are composed of tissues derived from differentiated EC 

cells [19]. Interestingly, deletion of Meg3 from the maternal chromosome results in the 

development of larger teratomas as well [20]. This Meg3 deletion also results in the 

decreased expression of ncRNAs from the Dlk1-Meg3 locus, including miRNAs which are 

important for assessing the stemness of iPSCs, as well as the decreased expression stem 

cell-specific miRNAs. Taken together, it appears that downregulation of ncRNAs from the 

IGF2-H19 and DLK1-MEG3 locus decreases the stemness of cells and promotes their 

differentiation. In the case of teratomas, this results in the increased accumulation of bulk 

differentiated tumor tissue. For bimaternal embryos, a similar situation likely occurs 

whereby tissue development is impaired due to the high expression of ncRNAs from these 

loci, as illustrated for the erasure of imprint in Figure 2 which represents the imprint found 

at these loci as the result of oocyte fusion. Relaxing the expression of these ncRNAs via 
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manipulation of both loci allows for the proper differentiation of stem cells into developing 

embryonic tissues, mimicking the proper somatic imprint which is found in somatic cells 

and ESCs (Figure 2) [8]. The decreased expression of protein-coding genes Igf2 and Dlk1 

is likely a major player in the growth restriction of bimaternal embryos as well, since Igf2 

and Dlk1 are deeply involved in early growth and development. 

The parent-offspring conflict theory posits that parents contribute differently 

towards the growth and development of their offspring [21]. In the context of genomic 

imprinting at the IGF2-H19 and DLK1-MEG3 loci, this is demonstrated by the expression 

of growth-promoting protein-coding genes from the paternally inherited allele and growth-

suppressing noncoding RNAs (ncRNAs) from the maternally inherited allele in cells with 

a somatic imprint (Figure 3), with bimaternal embryo generation resulting in low 

expression of these protein-coding genes. Insulin-like growth factor 2 (IGF2), encoded by 

the IGF2 gene, participates in insulin-like signaling via activation of the IGF1 receptor and 

insulin receptor to promote cell growth and proliferation (Figure 4). Delta-like homologue 

1 (DLK1), encoded by the DLK1 gene, participates in cell-specific growth-related activities 

of which the exact mechanisms are largely uncharacterized. While Igf2 is known to 

stimulate early embryonic growth, studies in mice have found that a balance between adult 

HSC self-renewal and differentiation is dependent on Igf2 expression, and miRNAs from 

the Igf2-H19 and Dlk1-Meg3 loci actually decrease the expression of proteins involved in 

insulin-like signaling and the pro-growth mTOR pathway [5, 6, 22]. A recent study 

described an IGF2 variant in humans which severely restricted postnatal growth when 

inherited paternally, similar to the prenatal growth retardation found in mice who have a 

disrupted Igf2 gene on the paternally inherited chromosome [23, 24]. Dlk1-null mice are 
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also growth retarded and have lower survival rates compared to wild-type mice [25, 26]. 

One proposed mechanism for DLK1 action is through the inhibition of NOTCH signaling, 

and the overlapping expression patterns of Dlk1 protein and Notch mRNA in embryonic 

tissues led to the idea that Dlk1 inhibits the Notch-induced differentiation of these tissues 

[27]. In contrast to Dlk1-null mice, transgenic mice expressing Dlk1 at twice the normal 

level exhibit overgrowth with a failure to thrive in early life, and mice with three times the 

Dlk1 expression of normal mice exhibit organ abnormalities and embryonic lethality [28]. 

Interestingly, in contrast to the effects of increased Igf2 expression on HSC differentiation, 

this increased Dlk1 expression in transgenic animals impaired the maturity of certain 

tissues, in line with previous observations and the suggestion that a balance in proliferation 

and differentiation of tissues is skewed by defects in imprinted gene expression from Dlk1-

Meg3 [29]. In support of this, the upregulation of Dlk1 was found to occur during the 

prolonged culture of murine ESCs – a situation which has been found to accompany higher 

proliferation rates of these cells and their development of EC-like malignant characteristics 

– suggesting that Dlk1 expression in the embryo might promote the expansion of certain 

stem cells such as ESCs and prevent their differentiation into embryonic tissues [30, 31]. 

Furthermore, though no association between DLK1 expression and EC has been 

investigated, aberrant imprinting has been observed in the childhood cancer 

rhabdomyosarcoma, with hypermethylation of the IG-DMR observed in the embryonal 

histological subtype [12]. Considering this requirement for the balanced expression of 

growth-promoting protein-coding genes from the IGF2-H19 and DLK1-MEG3 loci in the 

proliferation and differentiation of stem cells, it is not surprising that IGF2 and DLK1 are 

involved in several malignancies, or that DLK1 has been characterized as a potential cancer 
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stem cell (CSC) marker which promotes the stemness of cancerous cells [11, 32-35]. As 

GCTs exhibit hypomethylation of the IGF2-H19 locus, autocrine IGF2 expression is not 

likely to contribute significantly to the growth of these tumors [36-38]. Investigations into 

the imprinting of other loci such as DLK1-MEG3 are lacking in GCTs such as EC, and 

these studies may prove important considering the epigenome dynamics of the primordial 

germ cells (PGCs) from which these tumors likely originate [36].  

As the precursors of gametes, primordial germ cells (PGCs) first appear in the 

developing epiblast, then undergo extensive chromatin remodeling which erases and re-

establishes genomic imprinting patterns [39, 40]. Interestingly, there are significant 

overlaps between the transitions into and out of proliferation by PGCs and changes to their 

epigenome (Figure 5A) [41].  Similarly, this timeframe also overlaps with the first signs of 

hematopoiesis in the embryo [42]. Importantly, though these cells are derivatives of ESCs, 

which are capable of forming teratomas in vivo, PGCs are not able to form teratomas. 

However, the fact that hypomethylation of the IGF2-H19 ICR is commonly found in GCTs 

indicates that these tumors likely originate from the germ cell compartment [36-38]. This 

would be surprising given that the IGF2-H19 locus is responsible for the quiescence of 

HSCs and that maternal H19 deletion promotes the growth of teratomas. However, the role 

of H19 in maintaining the expression of pluripotency markers in EC cells, which may be 

the stem cell responsible for certain types of GCTs (Figure 5C), suggests that this 

imprinting pattern may be important for GCT development [18, 43].   

Like GCTs, populations of quiescent adult stem cells were recently described in 

mice and humans which also share many characteristics with epiblast stem cells and PGCs 

[44]. These VSELs have thus far been best characterized in mice, where they exhibit 
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hypomethylation of the Oct4 promotor and, like GCTs, also exhibit hypomethylation of 

the Igf2-H19 ICR [8]. Like PGCs, these cells do not proliferate in vitro, do not form 

teratomas in vivo, and do not complement blastocyst development. However, VSELs can 

differentiate into all three germ layers in vitro and enter the cell cycle in vivo in response 

to various stimuli [45-47]. Collectively, these characteristics arguably place VSELs near 

the top of the adult stem cell hierarchy. Surprisingly, successful expansion of these cells 

was very recently reported to occur in response to treatment with VPA, a compound which 

was also shown to enhance the ex vivo expansion of HSCs while promoting their expression 

of DLK1, suggesting that an increase in DLK1 expression may also be related to the exit 

from quiescence by VSELs [9, 48]. In contrast to their hypomethylated Igf2-H19 locus, 

VSELs exhibit somatic-like methylation at the Dlk1-Meg3 locus, indicating that this entire 

locus is “open” for activation by VPA, similar to the activation of this locus by VPA during 

the generation of iPSCs [4]. In total, these studies put significant focus on the IGF2-H19 

and DLK1-MEG3 loci as potentially important players in the proliferation of quiescent cells 

which are proposed to arise from PGCs in the developing embryo. Interestingly, multiple 

groups have reported that VSELs can give rise to hematopoietic cells in vitro, suggesting 

that VSELs represent an Oct4-expressing “missing link” between PGCs and hematopoiesis 

in the developing embryo and posing questions regarding the potential roles of VSELs in 

the development of GCTs and leukemias [47, 49]. 

A common characteristic which is shared between PGCs and GCTs is the 

expression of pluripotency markers such as OCT4 and NANOG. EC is a type of GCT which 

exhibits certain aspects of pluripotency, including the ability to differentiate into all three 

germ layers [50]. PGCs, while not inherently pluripotent, are able to acquire pluripotency 
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upon transformation into embryonic germ cells (EGCs) in vitro, and a developmental fork 

in the road has been proposed for the controlled and malignant paths to pluripotency by 

PGCs (Figure 5B) [51]. Importantly, studies in testicular GCTs (TGCTs) have resulted in 

models which place EC as the precursor cells to more differentiated TGCTs (Figure 5C) 

[43]. Indeed, EC is considered the malignant counterpart to ESCs and the stem-like cells 

of teratocarcinomas [30]. Interestingly, the DNA methyltransferase inhibitor 5-aza-2’-

deoxycytidine (5-azaD) is toxic to EC cells at low doses in vitro, and this compound was 

recently found to target only the stem-like cells of teratocarcinomas for apoptosis and not 

more differentiated cells [52, 53]. While TGCTs are easily treated and most often cured, 

EC is commonly found within mixed GCTs, and if EC is the primary component of the 

GCTs then there is a high probability of metastatic spread by the time of diagnosis [54]. 5-

azaD is currently used to treat certain myelodysplastic syndromes (MDSs) and boasts a 

high safety profile, making it an interesting candidate drug for the treatment of EC [55]. 

Considering that MDSs originate in the HSC compartment, and that HSCs are 

proposed to originate from migrating PGCs, it is interesting that several reports have 

documented associations between GCTs and leukemias such as acute myeloid leukemia 

(AML) [5, 56-58]. Similarly, as the quiescence and stemness maintenance of murine HSCs 

was determined to be controlled by the Igf2-H19 and Dlk1-Meg3 loci, it is not surprising 

that the imprinting of these loci is disrupted in AML [5, 6, 59, 60]. The DLK1-MEG3 locus 

in particular has been extensively studied in MDS and leukemias, where MEG3 was 

identified as a tumor suppressor in AML and DLK1 was found to inhibit the differentiation 

and proliferation of promyelocytic cells [61, 62]. However, few studies have focused on 

the potential associations between genes from these paternally imprinted loci and patient 
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outcome. In MDS, which may evolve to AML, DLK1 expression was found to correlate 

with the blast percentage of bone marrow cells in MDS and increased as the disease 

progressed [63]. Considering the importance of these loci in the maintenance of stem cells, 

and especially the roles of DLK1 in CSC maintenance, the potential for CSCs to be 

responsible for the high relapse rate in AML highlights the importance of investigations 

into the roles of genes from these loci in the clinical response and survival of AML patients 

[64]. 
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Figure 2. Genomic imprinting at the IGF2-H19 and DLK1-MEG3 loci 

Genomic imprinting as a function of methylation at DMRs within the IGF2-H19 and 

DLK1-MEG3 loci controls the balance of expression for their respective ncRNAs and 

protein-coding genes. Hypomethylation (unfilled ovals) of the ICR, intergenic control 

DMR (IG-DMR; IG), and secondary MEG3 DMR (2o) promotes the expression of ncRNAs 

from these loci, whereas hypermethylation (filled ovals) of these DMRs promotes the 

expression of protein-coding genes. 
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Figure 3. Opposing roles in growth by tandemly-expressed genes 

The protein-coding genes and ncRNAs expressed from the IGF2-H19 and DLK1-MEG3 

loci exhibit opposing roles in cell growth. Hypomethylation (unfilled ovals) of the ICR, 

IG-DMR (IG), and secondary MEG3 DMR (2o) on their respective maternally inherited 

chromosomes and hypermethylation (filled ovals) of these DMRs on the paternally 

inherited chromosomes, as seen in somatic cells, results in the balanced expression of 

growth-suppressing ncRNAs and growth-promoting protein-coding genes from these loci.  
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Figure 4. Insulin-like signaling 

Insulin-like signaling occurs via stimulation of the IGF1 receptor and insulin receptor by 

the ligands IGF1, IGF2, and insulin. 
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Figure 5. Primordial germ cells and germ cell tumors 

(A) The epigenetic reprogramming of PGCs accompanies their migration and 

transcriptional quiescence. (B) Acquisition of pluripotency by PGCs can result in their 

transformation into EGCs or malignant EC cells. (C) EC cells are proposed to arise from 

germ cells and give rise to more differentiated TGCTs (ICM –  inner cell mass; Epi – 

epiblast; PGC – primordial germ cell; GC – gonocyte; SG – spermatogonial stem cell; SC 

– spermatocyte; ST – spermatid; Sp – spermatozoa; SS – spermatocytic seminoma; CIS – 

carcinoma in situ; SEM – seminoma; EC – embryonal carcinoma; Ch – choriocarcinoma; 

YS – yolk sac; Te – teratoma)  
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Tumor heterogeneity and fluctuating cancer stem cell phenotypes 

It is well accepted that tumors are composed of heterogeneous tissues [65, 66]. 

Among the subpopulations of cells proposed to exist within tumor tissues exists putative 

stem-like cell populations which exhibit enhanced capacity for malignancy. These CSC 

subpopulations are often identified based on their expression of certain surface antigens 

which also exist on normal stem cell populations, including SSEA4, CD133, and DLK1 

[11, 67-69]. However, several studies have challenged the nature of true CSCs within 

tumors by providing evidence that these CSC-like subpopulations of cells dynamically 

express CSC-associated antigens [70, 71]. Notably, low-passage cell lines from human 

metastatic melanoma patients were recently shown to form tumors in vivo irrespective of 

their surface expression of the CSC marker CD133, and CD133- isolated subpopulations 

of these cells re-acquired CD133 expression during culture [70]. Indeed, this phenomenon 

has also been demonstrated in normal HSCs, where the expression of characteristic surface 

antigens was found to fluctuate over time [72]. Similarly, Chinese hamster ovary cells were 

used to demonstrate that the fluctuation of mRNA and protein expression can be 

coordinated with the cell cycle [73]. Interestingly, the expression dynamics observed in 

cells from tumor bulk and low-passage cell lines has also been observed in an established 

cell line, questioning the usefulness of these cells in tumor models [74]. 

Like bulk tumor tissues, cancer cell lines have also been assessed for their 

heterogeneity and the presence of CSC subpopulations. Unique CSC subpopulations have 

been identified in several cell lines which could provide insight into the development of 

treatment strategies that target CSCs [68, 75]. However, also like bulk tumor tissues, the 

surface expression of CSC antigens was demonstrated to fluctuate in the established human 
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ovarian carcinoma cell line A2780 [74]. Interestingly, in vitro expansion of single cells 

isolated from this cell line based on their expression of CD24 and CD44 demonstrated that 

CD24-CD44+, CD24+CD44-, and even CD24-CD44- cells could give rise to CD24+CD44+ 

cells. Similarly, a recent investigation into B-cell acute lymphoblastic leukemia found that 

cell subpopulations isolated from a long-term culture system based on CD34 and CD38 

surface expression and expanded in vitro resulted in the re-establishment of the expression 

phenotypes found in the initial cell population, and similar results were obtained when 

expanding single cells isolated from each subpopulation [71]. Considering that EC cells 

are proposed to be the CSCs which may give rise to GCTs, and EC cells exhibit pluripotent 

characteristics related to their expression of the imprinted H19 gene, investigations into the 

phenotypic fluctuations of an EC cell line at the protein and mRNA levels may provide 

new insight into the mechanisms by which this occurs, and whether the expression of 

imprinted genes is related to this phenomenon [18, 43]. 

The human EC cell line NTera2 was derived from the teratocarcinoma cell line 

Tera2, which originated from a lung metastasis of teratocarcinoma in a 22-year-old male 

[76]. Among the cells observed from a nude mouse xenograft of Tera2, EC-like cells were 

found which resembled certain cells noted in early passages of Tera2 [77]. As an 

established EC cell line derived from this xenograft, NTera2 thus exemplifies the 

heterogeneity of cancerous tissues. Similarly, as the pluripotent stem-like cells of 

teratocarcinomas which may give rise to other TGCTs, EC cells such as NTera2 represent 

an interesting model for studying the nature of putative CSC populations [43]. 

Interestingly, HSCs are known to express CD133 and VSELs express CD133 and SSEA4, 

and both of these CSC-associated antigens have been found on the surface of EC cells [78-
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81]. Notably, SSEA4 is a pluripotent stem cell marker and has also been used to identify 

pluripotent stem-like cells within primary EC tissues [69]. Though the mechanisms by 

which these antigens exert their stem-like effects are largely uncharacterized, CD133 and 

SSEA4 represent antigens shared by cells of prospective PGC origins and are thus 

intriguing candidates for investigating the existence of CSCs within NTera2 as an 

established cell line.
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CHAPTER 2: MATERIALS AND METHODS 

Cell culture 

The NTera2 cell line was purchased from the American Type Culture Collection (ATCC) 

and ATCC instructions were followed for culturing of NTera2 cells. Cells were maintained 

at a high density in a media consisting of Dulbecco’s Modified Eagle’s Medium (DMEM) 

with high glucose (4,500 mg/mL) supplemented with 10% fetal bovine serum, 100 U/mL 

penicillin, and 10 µg/mL streptomycin, and the cells were split 1:3 upon reaching 

confluency.  

 

Isolation of mononuclear cells from human umbilical cord blood 

Human umbilical cord blood was provided by the Cleveland Cord Blood Center 

(Cleveland, OH) and centrifuged at 400 x g for 30 minutes in Ficoll-Paque Plus (GE 

Healthcare). Low-density mononuclear cells were isolated based on the resulting gradient 

following centrifugation.   

 

AML patient samples 

Forty-five newly diagnosed patients with acute non-promyelocytic leukemia were enrolled 

in a study and treated at the University of Bialystok Hematology Department (Bialystok, 

Poland) from 2008 to 2016. Patient information is listed in Table 1. The World Health 

Organization (WHO) classification system was used for diagnosing patients [82]. A seven-

day induction therapy following the DAC schedule was used to treat patients: seven 
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consecutive days of 200 mg/m2 cytarabine via continuous IV infusion, three consecutive 

days of 50 mg/m2 anthracycline via IV push; five days of 5 mg/m2 cladribine via IV push 

[83]. Following evaluation of the induction response, non-responding patients were given 

re-induction protocol therapy of cytarabine, cladribine, filgrastim, and mitoxantrone 

(CLAG-M) and/or idarubicin, cytarabine, and etoposide (ICE) [84-86]. Consolidation 

therapies for patients who achieved complete remission consisted of cytarabine and 

mitoxantrone first, then a high dose of cytarabine, and finally either allogenic HSC 

transplantation or maintenance therapy. 

 

Testicular germ cell tumor tissues 

Formalin-fixed paraffin-embedded (FFPE) human TGCT tissues were generously provided 

as a gift from Joanna Reszec at the Medical University of Bialystok (Bialystok, Poland). 

Pathology slides were also provided for each tumor which identified the EC component of 

the tissue samples. 

 

Combined bisulfite-restriction analysis and bisulfite sequencing of genomic DNA 

For NTera2 cells and all MNCs, genomic DNA (gDNA) was isolated from cells using the 

DNeasy Blood and Tissue Kit (Qiagen) and was subjected to bisulfite treatment using the 

EpiTect Bisulfite Kit (Qiagen). For FFPE tissues, the Epitect Fast FFPE Bisulfite Kit 

(Qiagen) was used to obtain bisulfite-treated gDNA (BSgDNA) from the EC component 

of FFPE tissue. For AML samples, the DNA Mini Kit (Qiagen) was used to isolate gDNA 

from whole peripheral blood leukocytes. The amplification of DNA sequences was 

performed using DNA oligo primer pairs specific to BSgDNA with the following 
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thermocycler conditions: for AmpliTaq DNA Polymerase (Applied Biosystems) - (95oC 

for 2 minutes, annealing temperature for 1 minute, 72oC for 1 minute) x 1 cycle, (95oC for 

30 seconds, annealing temperature for 1 minute, 72oC for 1 minute) x cycle number, (72oC 

for 10 minutes) x 1 cycle; for AmpliTaq Gold DNA Polymerase (Applied Biosystems) - 

(95oC for 8 minutes) x 1 cycle, (95oC for 2 minutes, annealing temperature for 1 minute, 

72oC for 1 minute) x 2 cycles, (95oC for 30 seconds, annealing temperature for 1 minute, 

72oC for 1 minute) x cycle number, (72oC for 10 minutes) x 1 cycle. Primer sequences for 

each locus are listed in Table 2. The annealing temperatures and cycle numbers for each 

amplicon are listed in Table 3. 

Combined bisulfite-restriction analysis (COBRA) was carried out on each 

amplicon via restriction enzyme digestion using either TaqI or BstUI (New England 

Biolabs) with the following thermocycler conditions: for BstUI – 60oC for 2 hours; for 

TaqI – 65oC for 2 hours. The digested amplicons were separated by electrophoresis in 

agarose gels, and densitometric analysis of ethidium bromide-labeled bands was performed 

on photographed agarose gels using ImageJ software (National Institutes of Health). The 

specific COBRA conditions for each amplicon are listed in Table 3. 

 Bisulfite sequencing was performed by ligating amplicons into TOPO vectors 

(pCR2.1 for DLK1-MEG3 IG-DMR and pCR4 for IGF2-H19 ICR) (Invitrogen) and 

transforming TOP10 bacteria using the TOPO TA Cloning Kit (Invitrogen).  Plasmids were 

purified from several colonies using the QIAprep Spin Miniprep Kit (Qiagen) and 

sequenced using the M13 primer pair. Sequencing results were compiled for methylation 

analysis using CpGviewer software (University of Leeds, UK).  
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Real-time quantitative PCR 

Extraction of RNA from NTera2 cells and MNCs (for comparison with NTera2 cells) was 

performed using the RNeasy Mini Kit (Qiagen). Human testes mixed tissue RNA was 

purchased separately (Ambion). For AML samples, total RNA was first purified using 

TRIZOL (Life Technologies) before diluting it with water to a final concentration of 1000-

2500 ng/µL, verifying its quality using a Nanodrop spectrophotometer (ThermoFisher) 

using a A260/280 threshold of 1.6. For MNCs used in experiments with AML samples, 

RNA was extracted using TRIZOL (Life technologies). For RNA isolated from NTera2 

and MNCs and purchased for human testes, the First Strand cDNA Synthesis Kit (Thermo 

Fisher) was employed for preparation of cDNA from 200 ng RNA in 10 µL reaction 

volumes. For RNA isolated from AML patients, 2500 ng of RNA was transcribed to cDNA 

using Superscript VILO (Life Technologies). For MNCs used in experiments with AML 

samples, 1000 ng of RNA was transcribed to cDNA using the First Strand cDNA synthesis 

kit without the addition of oligodT to the reaction mixture. Gene expression analysis was 

carried out at least twice in duplicate using 2 ng of cDNA, 12.5 µL SYBR Select Master 

Mix (Applied Biosystems), and 150 nM forward and reverse primer sequences in 25 µL 

reaction mixtures. Real-time quantitative PCR (RT-qPCR) for each reaction mixture was 

performed using a 7500 Fast Real-Time PCR system (Applied Biosystems) with the 

following amplification conditions: 50oC for 20 seconds; 95oC for 10 minutes; at least 45 

cycles repeating the two steps 95oC for 15 seconds then 60oC for 1 minute; 95oC for 15 

seconds; 60oC for 1 minute; 95oC for 30 seconds; then 60oC for 15 seconds. The ∆∆Ct 

method was used to quantify RT-qPCR results. Primer sequences for each gene are listed 

in Table 4. 
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NTera2 treatment with 5-aza-2’-deoxycytidine  

For proliferation assays of NTera2 cells treated with 5-aza-2’-deoxycytidine (5-azaD; 

Sigma), cells were plated at a density of 10,000 cells/well on 12-well plates (Greiner). 

Wells were washed with PBS, trypsonized, and counted in triplicate on each day. Cells 

were washed with PBS every day prior to adding fresh media supplemented with either 

vehicle (DMSO) for control cells or concentrations of 5-azaD in DMSO beginning on Day 

0. Proliferation assays were repeated twice in triplicate. 

 For DNA and RNA isolation from NTera2 cells treated with 5-azaD, cells were 

plated at a density of 150,000 cells/plate on 10-cm plates (Greiner). Cells were washed 

with PBS every day prior to adding fresh media supplemented with either vehicle (DMSO) 

for control cells or 100 nM 5-azaD in DMSO beginning on Day 0. Individual plates were 

trypsonized for each treatment either on Day 3 or Day 7 and the collected cells were divided 

in half for DNA and RNA isolation, which was later performed using the DNeasy Blood 

and Tissue Kit (Qiagen) and RNeasy Mini Kit (Qiagen), respectively. 

 

Plasmid preparation and transfection of NTera2 cells 

Stably transfecting NTera2 cells with short hairpin RNA (shRNA)-generating plasmids 

was performed using the pSUPER.retro.puro plasmid (Oligoengine). Plasmid preparation 

was performed according to the manufacturer’s instructions utilizing shRNAs against 

DLK1 or the control gene Renilla. Target sequences for shRNA constructs are listed in 

Table 5. NTera2 cells were electroporated for 2.5 ms at 125 V and selection of transfected 

cells was performed using 140 ng/mL puromycin. 
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Proliferation assays of transfected NTera2 cells 

Cells were plated at a density of 10,000 cells/well on 12-well plates (Greiner). Wells were 

washed with PBS, trypsonized, and counted in triplicate on every second day beginning on 

Day 0. Fresh media was exchanged for each well on every second day beginning on Day 0 

after an initial PBS wash on Day 0 only. Proliferation assays were repeated twice in 

triplicate. 

 

Tumor growth in immunodeficient mice 

All experiments in severe combined immunodeficiency mice (SCID) were performed in 

adherence to the guidelines established by the Association for the Assessment and 

Accredidation of Laboratory Animal Care at the University of Louisville upon approval by 

The Institutional Animal Care and Use Committee. SCID mice of 6-9 weeks of age were 

irradiated with 350 cGy and injected subcutaneously with 8 million stably transfected 

NTera2 cells in 200 µL volume of 50% Matrigel Matrix (Corning) in PBS at 24 hours post-

irradiation. Mice were monitored for signs of illness before being sacrificed after 5.5 weeks 

post-irradiation. The tumors were resected and measured using a digital caliper, then fixed 

via overnight formalin treatment followed by washing and storage in 70% ethanol. 

 

Organ seeding efficiencies 

The liver, lungs, and bone marrow were harvested from each mouse at the time of sacrifice. 

Isolation of gDNA from each tissue was performed using the DNeasy Blood and Tissue 

Kit (Qiagen). Evaluation of human-murine chimerism was achieved by qPCR analysis of 

100 ng gDNA using primers targeting a human α-satellite sequence and a murine β-actin 
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sequence on a 7500 Fast Real-Time PCR system (Applied Biosystems). Reaction mixtures 

consisting of 100 ng gDNA, 60 nM forward and reverse primers (Table 4), and 12.5 µL 

SYBR Select Master Mix (Applied Biosystems) in 25 µL reaction volumes were analyzed 

by qPCR at least once in duplicate with the following amplification conditions: 50oC for 

20 seconds; 95oC for 10 minutes; at least 45 cycles repeating the two steps 95oC for 15 

seconds then 60oC for 1 minute; 95oC for 15 seconds; 60oC for 1 minute; 95oC for 30 

seconds; then 60oC for 15 seconds. The difference in Ct values between the human α-

satellite sequence and murine β-actin for each sample generated ΔCt values for comparison 

to a standard curve of serially diluted NTera2 cells in a fixed number of murine MNCs. 

For stably transfected cell lines, organs were harvested from the same mice from 

which tumors were isolated. For NTera2 subpopulations, SCID mice of 2-4 months of age 

were irradiated with 350 cGy, and intravenous injections of 100 µL cell suspensions 

containing 100,000 freshly sorted NTera2 subpopulation cells (CD133–SSEA4–, CD133–

SSEA4+, CD133+SSEA4–, and CD133+SSEA4+) in phosphate-buffered saline were 

performed at 24 hours post-irradiation. 

 

Proliferation assays of NTera2 cells treated with insulin-like growth factors 

Cells were plated at a density of 10,000 cells/well on 12-well plates (Greiner). Wells were 

washed with PBS, trypsonized, and counted in triplicate on each day. Cells were washed 

with PBS every day prior to adding fresh media supplemented with either 10% FBS, 0.5% 

BSA, or growth factors (10 ng/mL IGF1, 10 ng/mL IGF2, and/or 10 µg/mL insulin) in 

0.5% BSA beginning on Day 0. Proliferation assays were repeated twice in triplicate.  
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Western blot 

NTera2 cells were plated onto 6-well plates (Greiner) at a density of 350,000 cells/well. 

Following quiescence in 0.5% BSA media, cells were washed with PBS and 1 mL of 0.5% 

BSA alone or supplemented with growth factors (10 ng/mL IGF1, 10 ng/mL IGF2, or 10 

µg/mL insulin) was added to the cells. Following a 10 minute incubation at 37oC and 5% 

humidity, cells were washed again with PBS before adding RIPA buffer (Santa Cruz 

Biotechnology) containing 10 µL/mL protease inhibitors (Sigma), 1 mM sodium 

orthovanadate, and 10 mM sodium fluoride for a 30 minute incubation on ice. The resulting 

lysate was collected and centrifuged at 10,000 x g for 15 minutes at 4oC. Protein 

concentrations were determined for each sample using the BCA Protein Assay Kit (Pierce). 

20 µg was separated on NuPAGE (Invitrogen) tris-glycine gels before transferring to 

PVDF membranes for 60 minutes at 100V. Membranes blocked for one hour at room 

temperature in a 2.5% BSA in TBS-T (20 mM tris pH 7.5, 150 mM NaCl, 0.1% Tween 20) 

before overnight incubation at 4oC with primary phospho-AKT or phospho-MAPK 

antibodies (Cell Signaling) in 2.5% BSA in TBS-T. Membranes were washed in TBS-T 

and the secondary antibody (Cell Signaling) in 2.5% BSA in TBS-T was added for a 1 hour 

incubation at room temperature. Membranes were washed with TBS-T before developing 

with ECL reagents (Amersham).  

 

Immunofluorescence 

Ntera2 cells were plated on 35 mm Fluorodish glass slides (World Precision Instruments) 

at a density of 50,000 cells/slide. Cells were washed with PBS and fixed via incubation in 

3.7% paraformaldehyde in PBS for 20 minutes at room temperature. Cells were washed 
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with PBS, incubated in 0.1% triton in PBS for 1 minute at room temperature, and washed 

again with PBS before blocking for 2 hours in 2.5% BSA in PBS at 37oC. Cells were 

incubated overnight at 4oC with 1:250 mouse anti-human DLK1 antibody (Abcam), then 

incubated for 1.5 hours at 37oC in the dark with goat anti-mouse secondary antibody 

(Invitrogen) conjugated to Alexa Fluor 594. A 1.5 hour incubation with Alexa Fluor 488 

phalloidin (Invitrogen) at 37oC in the dark followed before the cells were stained with 4’,6-

diamidino-2-phenylindole (DAPI; Life Technologies) at room temperature for 15 minutes. 

Confocal microscopy of stained cells was performed using a FV100-IX81 confocal 

microscope (Olympus) with Fluoview version 4.1a software (Olympus). 

 

Flow cytometry analysis of the IGF1 receptor and insulin receptor 

For INSR, NTera2 cells were detached using Cell Stripper (Corning) and incubated at 37oC 

and 5% humidity in 0.5% BSA media for two hours, then labeled with goat anti-human 

INSR-APC (R&D Systems) or goat IgG APC control (R&D Systems) and incubated in the 

dark at 37oC for 30 minutes. Cells were washed and resuspended in 0.5% BSA media for 

analysis using a LSR II flow cytometer (BD Biosciences) and FACSDIVA (BD 

Bioscences) software. 

For IGF1R, NTera2 cells were detached using Cell Stripper (Corning) and 

incubated at 37oC and 5% humidity in 0.5% BSA media for two hours, then labeled with 

chicken anti-human IGF1R primary antibody (Abcam). Control cells were not labeled with 

a primary antibody. Following a 30 minute incubation in the dark at 37oC, cells were 

washed and resuspended with 0.5% BSA media and a rabbit anti-chicken FITC conjugated 

secondary antibody (Abcam) was added to experiment and control cells. Cells were 
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incubated for 30 minutes in the dark at 37oC, washed and resuspended in 0.5% BSA media, 

and analyzed by flow cytometer.  

 

Fluorescence-activated cell sorting 

NTera2 cells were detached using Cell Stripper (Corning) and incubated in DMEM with 

2% FBS for 2 hours at 37oC and 5% humidity, then labeled with mouse anti-human CD133-

APC (Miltenyi Biotec) and mouse anti-human SSEA4-PE (eBioscience) antibodies in the 

dark for 30 minutes at room temperature. Mouse IgG1-APC (Miltenyi Biotec) and mouse 

IgG3-PE (eBioscience) were used as isotype controls. Cells were washed and resuspended 

in 2% FBS media before sorting by CD133 and SSEA4 expression using a Moflo XDP cell 

sorter (Beckman Coulter). 

 

Chemotaxis assay 

NTera2 cells freshly sorted by CD133 and SSEA4 surface expression were incubated in 

DMEM with 0.5% BSA for 4 hours at 37oC and 5% humidity, then employed in chemotaxis 

assays using modified Boyden chambers. Each 8 µm Transwell insert (Corning) was 

incubated with 1% gelatin for 60 minutes before removing the gelatin and loading 40,000 

cells into the upper chamber. Lower chambers contained DMEM with either 0.5% BSA as 

a negative control or 10% FBS. Following a 40-hour incubation at 37oC and 5% humidity, 

the PROTOCOL Hema3 stain set (Fisher Scientific) was used to stain cells on each insert. 

Migrated cells were counted under an inverted microscope after removing non-migrated 

cells from the top of each insert with a cotton swab. 
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Single-cell expansion and FACS analysis 

Single NTera2 cells were sorted into 96-well plates (Greiner) by their CD133 and SSEA4 

expression and cultured under normal conditions. Cells which expanded into colonies were 

transferred to larger diameter wells upon reaching confluency. The surface expression 

analysis of CD133 and SSEA4 by expanded cells was carried out in a manner similar to 

the initial sorting strategy. 

 

Statistical analysis 

All statistical analyses were carried out using the Mann-Whitney U Test unless otherwise 

noted. Graphpad Prism software was used for all statistical analyses and graph preparation. 

Data are graphed either as means ± SEM or in survival format, and p<0.05 is considered 

significant with * p<0.05, ** p<0.01, and *** p<0.001. 
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Parameter Characteristic Value 

General Information Number of patients 45 

Mean (range) age in years 46.5 (18-64) 

Mean (± SD) white blood cell count (G/l) 51.41±28.04 

Mean (range) of blastic cells in the peripheral blood 56 (0-97) 

Mean (range) of blastic cells in the bone marrow 65 (20-97) 

AML Subtypes based 

on WHO classification 

(n, (%)) 

AML with recurring genetic abnormalities t(8;21)(q22;q22);(AML1/ETO) 4 (8.9%) 

inv(16)(p13;q22) or t(16;16)(p13;q22);(CBFβ/MYH11) 1 (2.2%) 

t(9;11); MLLT3-MLL 3 (6.7%) 

AML with multilineage dysplasia without antecedent MDS 2 (4.4%) 

AML (therapy-related) 0 (0%) 

AML (not otherwise categorized, n=35) AML (minimally differentiated) 4 (8.9%) 

AML (without maturation) 8 (17.8%) 

AML (with maturation) 13 (28.9%) 

Acute myelomonocytic leukemia (AMMoL) 8 (17.8%) 

AMMoL with eosinophilia 0 (0.0%) 

Acute monocytic leukemia 2 (4.4%) 

Acute erythroid leukemia 0 (0.0%) 

Acute megakaryoblastic leukemia 0 (0.0%) 

Mutations FLT3-ITD/NMP1mut/CEBPAmut 8/2/1 

Induction Therapy 

Outcome 

 
Complete remission after 1st induction 24 

 
Complete remission after 2nd induction 6 

 
Complete remission after 3rd induction 3 

 
Mortality (1st/2nd/3rd induction/consolidation) 5/4/3/0 

Post-consolidation Treatment Allogenic hematopoietic stem cell transplant 30 

Maintenance 3 

Risk Favorable risk 7 (15.6%) 

Intermediate risk I 10 (22.2%) 

Intermediate risk II 8 (17.8%) 

Unfavorable risk 20 (44.4%) 

 

Table 1. AML patient information (NPM1mut - mutated nucleophosmin; CEBPAmut - 

mutated core binding factor leukemia; FLT3-ITD = internal tandem duplication of FMS-

like tyrosine kinase 3)
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Locus 1st PCR Primer Pair (5'-3') 2nd PCR Primer Pair (5'-3') 

IGF2-H19 ICR F - AGGTGTTTTAGTTTTATGGATGATGG  F - TGTATAGTATATGGGTATTTTTGGAGGTTT 

R - TCCCATAAATATCCTATTCCCAAATAACC R - TCCCATAAATATCCTATTCCCAAATAACC 

DLK1-MEG3 IG-DMR (CG6) F - TGGGAATTGGGGTATTGTTTATAT  F - GTTAAGAGTTTGTGGATTTGTGAGAAATG 

R - AAACAATTTAACAACAACTTTCCTC R - CTAAAAATCACCAAAACCCATAAAATCAC 

MEG3 DMR (CG7) F - TTATTTTTTTGAATAATAAGAGAAAGTATG F - TTATTTTTTTGAATAATAAGAGAAAGTATG 

R - CTCATTTCTCTAAAAATAATTAACC R - CCCCAAATTCTATAACAAATTACT 

MEG3 Promotor (CG9) F - TGAGGAAGTAGGGGTTTATAGAGAG F - TGAGGAAGTAGGGGTTTATAGAGAG 

R - AACCCTACAACCCCACAAAA R - TTCACAATAAACCCCACTCTCC 

MEG3 Intragenic (CG8) F - GTTTGAGATTTGTTGGGTATTT F - GTTTGAGATTTGTTGGGTATTT 

R - CGTTATTTTGGGTTTTGAGTTG R - CGTTATTTTGGGTTTTGAGTTG 

ZAC DMR F - GGGGTAGTYGTGTTTATAGTTTAGTA F - GGGGTAGTYGTGTTTATAGTTTAGTA 

R - CRAACACCCAAACACCTACCCTA R - CRAACACCCAAACACCTACCCTA 

P57-LIT1 DMR F - TTTTGGTAGGATTTTGTTGAGGAGT F - TTTTGGTAGGATTTTGTTGAGGAGT 

R - CCTCACACCCAACCAATACCTC R - CCTCACACCCAACCAATACCTC 

SNRPN DMR F - GTGTTGTGGGGTTTTAGGGGTTTAG F - AGGGAGTTGGGATTTTTGTATTG 

R - CTCCCCAAACTATCTCTTAAAAAAAACC R - CTCCCCAAACTATCTCTTAAAAAAAACC 

PEG1 DMR F - TTGTTGGTTAGTTTTGTAYGGTT F - TTGTTGGTTAGTTTTGTAYGGTT 

R - AAAAATAACACCCCCTCCTCAAAT R - CCCAAAAACAACCCCAACTC 

DNMT1 DMR F - GTTTAGTTTTTAGTTATTAGGGAGTTA F - TTTTGTTTGTTTTTTTGAGTT 

R - ACTCCRTTCCATCCTTCTACAC R - ACTCCRTTCCATCCTTCTACAC 

PEG10 DMR F - TTGGTTTAGGTGTGGGATTTT F - TTGGTTTAGGTGTGGGATTTT 

R - AAACATTCTAAAATACTACTCCATCTC R - AAACATTCTAAAATACTACTCCATCTC 

TRAPPC9 DMR F - GGTTTTAGTAGTATTAGGTA F - GGTTTTAGTAGTATTAGGTA 

R - AAACTCTTTACCCTATAAAT R - AAACTCTTTACCCTATAAAT 

L3MBTL DMR F - TATGAGGCGAAGAGAGGGTTATGGTAT F - TATGAGGCGAAGAGAGGGTTATGGTAT 

R - AAAACCCAACTCAAAACCTAAAAAAC R - AAAACCCAACTCAAAACCTAAAAAAC 

PEG3 DMR F - AAAAGGTATTAATTATTTATAGTTTGGT F - AAAAGGTATTAATTATTTATAGTTTGGT 

R - AAAAATATCCACCCTAAACTAATAA R - AAAAATATCCACCCTAAACTAATAA 

 

Table 2. Primer list for PCR of BSgDNA
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 1st PCR Conditions 2nd PCR Conditions COBRA 

Locus Polymerase 

Annealing 

Temperature 

(oC) 

Cycles Polymerase 

Annealing 

Temperature 

(oC) 

Cycles 
Restriction 

Enzyme 

IGF2-H19 ICR AmpliTaq 55 35 AmpliTaq 55 35 BstUI 

DLK1-MEG3 IG-DMR 

(CG6) 
AmpliTaq 55 35 AmpliTaq 55 35 BstUI 

MEG3 DMR (CG7) GoldTaq 57 40 GoldTaq 57 40 TaqI 

MEG3 Promotor (CG9) AmpliTaq 57 35 AmpliTaq 57 35 TaqI 

MEG3 Intragenic (CG8) AmpliTaq 55 35 AmpliTaq 55 35 BstUI 

ZAC DMR GoldTaq 55 35 GoldTaq 55 38 BstUI 

P57-LIT1 DMR GoldTaq 55 38 GoldTaq 55 58 TaqI 

SNRPN DMR AmpliTaq 60 35 AmpliTaq 60 35 BstUI 

PEG1 DMR AmpliTaq 55 35 GoldTaq 55 38 TaqI 

DNMT1 DMR AmpliTaq 55 35 AmpliTaq 55 35 BstUI 

PEG10 DMR GoldTaq 55 35 GoldTaq 55 35 BstUI 

TRAPPC9 DMR AmpliTaq 55 35 AmpliTaq 55 35 BstUI 

L3MBTL DMR GoldTaq 55 35 AmpliTaq 55 35 TaqI 

PEG3 DMR AmpliTaq 55 35 AmpliTaq 55 35 BstUI 

 

Table 3. PCR conditions for amplifying BSgDNA 
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Gene Forward Primer (5'-3') Reverse Primer (5'-3') 

IGF2 CCTCCTGGAGACGTACTGTGCT TGGACTGCTTCCAGGTGTCATA 

H19 TGACAAGCAGGACATGACATGG CAGCCTAAGGTGTTCAGGAAGG 

DLK1 GCGAGGATGACAATGTTTGCA GGTTCTCCACAGAGTCCGTGAA 

MEG3 ATCCCGGACCCAAGTCTTCT CCACATTCGAGGTCCCTTCC 

IGF1R GCACCATCTTCAAGGGCAATTTG AGGAAGGACAAGGAGACCAAGG 

INSR TCAAAACGAGGCCCGAAGAT GAGCCCATAGACCCGGAAGA 

IGF1 GATGCACACCATGTCCTCCT AAAAGCCCCTGTCTCCACAC 

OCT4 GCTGGATGTCAGGGCTCTTT TCAAGAGATTTATCGAGCACCTTCT 

TDGF1 ACATGTAATTCTACCAAGGTCTTCT AGGTCCACATTAGAATTAGTCTCCA 

MYC GCGACTCTGAGGAGGAACAAGA CCAGCAGAAGGTGATCCAGACT 

P57 CGGTTATTGGTTATGCCAAAGG CCAGAGTCCGCGATGAAAAT 

LIT1 ACACCAGCCAGGAAGGCCCA AGCTTCGCCCAGCCGTAGGA 

BMG TGACTTTGTCACAGCCCAAGATA AATGCGGCATCTTCAAACCT 

Human α-satellite DNA ACCACTCTGTGTCCTTCGTTCG ACTGCGCTCTCAAAAGGAGTGT 

Murine β-actin intronic DNA TTCAATTCCAACACTGTGCTGTCT CTGTGGAGTGACTAAATGGAAACC 

 

Table 4. Primer list for RT-qPCR 
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Name Target Gene Target Sequence (5'-3') 

Control Renilla [87] CAAAGGAAACGGATGATAA 

Construct 1 DLK1 [88] GGTGTCCATGAAAGAGCTC 

Construct 2 DLK1 GGTATCGTCTTCCTCAACAAG 

 

Table 5. Plasmid shRNA sequences for producing stably transfected cell lines 
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CHAPTER 3: DLK1 EXPRESSION AND MEG3 PROMOTOR METHYLATION ARE 

NOVEL MARKERS OF AML PATIENT SURVIVAL 

Introduction 

 The overlap of primordial germ cell migration and transformation with the 

appearance of primitive hematopoiesis in the developing embryo suggests that these two 

phenomena are somehow linked. The developmental route of mouse PGCs begins with 

their specification in the epiblast at embryonic day 6.25 (E6.25), continues with their 

epigenetic reprogramming and migration through the extraembryonic endoderm, and ends 

with their deposition in the genital ridges by E12.5, where they finalize their epigenetic 

reprogramming and transformation into either male or female germ cells [39, 89]. The 

appearance of PGCs at the allantois, a region of the extraembryonic yolk sac, at E7.5 occurs 

at a similar time and region as the first appearance of hemangioblasts and hematopoietic 

islands [90, 91]. Similarly, PGCs enter the aorta-gonad-mesonsephros region of the embryo 

at E11, which is the region where HSCs first appear and where Oct3/4-expressing cells 

were recently isolated which could form hematopoietic colonies in vitro [42, 92]. 

Considering this, it is not surprising that GCTs have been associated with hematologic 

malignancies, or that mouse teratocarcinoma cells were able to differentiate into erythroid 

cells in vitro [56-58, 93]. 

 For PGCs, hypomethylation of the IGF2-H19 ICR as a result of their epigenetic 

reprogramming serves not only as an artifact of the putative PGC origins of GCTs, but it 

is likely an important factor in the malignant transformation of these otherwise benign 
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cells as well [18, 36-38]. Similarly, imprinted genes are key regulators of HSC quiescence 

and maintenance, and several studies have documented various genomic imprinting defects 

in certain blood disorders [5, 6, 94]. Among these disorders is the blood cancer AML, 

which is characterized by the malignant expansion of myeloid progenitor blast cells. 

Studies in HSC maintenance and aberrant genomic imprinting in AML have uncovered the 

potential roles of several imprinted genes, many of which are considered part of an 

imprinted gene network (IGN) deeply involved in the regulation of embryonic and somatic 

growth [94-96].  

 In an effort to determine whether IGN members may influence the outcomes of 

AML patients, I was involved in an initial screening of methylation at the DMRs of several 

loci which encode members of the IGN, including IGF2-H19, ZAC, PEG1, and PEG3. 

However, while there were methylation differences between AML patients and MNC 

control cells for the IGF2-H19, ZAC, and PEG1 DMRs, there were no associations between 

the methylation of these DMRs and either the complete remission or the survival of patients 

(Figures 6-8). Considering the importance of both the IGF2-H19 and DLK1-MEG3 loci for 

the generation of bimaternal mice and for the quiescence and maintenance of HSCs, the 

DMRs which control the expression of IGN members DLK1 and MEG3 became 

prospective targets for the screen.  
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Figure 6. Leukemic cells exhibit differences in methylation at imprinted gene network 

loci compared to mononuclear cells 

Comparison of COBRA results for normal human mononuclear cells (MNCs) and human 

mononuclear cells from AML patients (AML). Graphs represent the results of COBRA 

performed once per sample for each locus and analyzed using the Mann-Whitney U test. 

MNCs – IGF2-H19, PEG1, PEG3 n=9; ZAC n=8. AML – IGF2-H19, PEG1 n=45; PEG3, 

ZAC n=42. ns not significant, * p<0.05, ** p<0.01 
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Figure 7. Methylation at imprinted gene network loci is not associated with complete 

remission in AML patients following the first round of induction therapy 

Comparison of COBRA results for human mononuclear cells from AML patients who 

responded (CR) or did not respond (NR) to treatment. Graphs represent the results of 

COBRA performed once per sample for each locus and analyzed using the Mann-Whitney 

U test. CR – IGF2-H19, PEG1 n=24; PEG3, ZAC n=22. NR – IGF2-H19, PEG1 n=20; 

PEG3, ZAC n=19. ns not significant 
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Figure 8. Methylation at imprinted gene network loci is not associated with AML 

patient survival 

Comparison of COBRA results for human mononuclear cells from AML patients based on 

patient survival. Graphs represent the results of COBRA performed once per sample for 

each locus and analyzed based on the median methylation for each locus using the Mantel-

Cox test. >median methylation – IGF2-H19, PEG1 n=23; PEG3, ZAC n=21. <median 

methylation – IGF2-H19, PEG1, PEG3 n=21; ZAC n=20. ns not significant 
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On the other hand, the DLK1-MEG3 locus encodes the growth-related protein-

coding gene DLK1 and the tumor-suppressing long noncoding RNA MEG3, as well as the 

second largest cluster of miRNAs in the human genome. While initially hypothesized to 

be under an imprinting control scheme similar to that of the IGF2-H19 locus, the presence 

of multiple DMRs and CTCF binding sites serve to illustrate a much less simple 

mechanism [97, 98]. Nonetheless, the intergenic control DMR (IG-DMR) sits atop the 

DMR hierarchy for this locus and thus exerts control over the expression of DLK1, MEG3, 

and the downstream miRNAs [99]. Previous studies in AML and acute promyelocytic 

leukemia (APL) revealed methylation defects in the DLK1-MEG3 locus which affected the 

expression of DLK1 and several of the downstream miRNAs, and hypermethylation of the 

MEG3 promotor was recently associated with decreased survival of AML patients [60, 98, 

100]. However, multiple CpG sites exist within the MEG3 promotor region, and the degree 

of methylation in this region was not used for associations with survival. Similarly, the 

expression of DLK1 and MEG3 have not been previously investigated for their roles in 

AML patient survival. Therefore, I hypothesized that methylation at select CpG sites 

throughout the DLK1-MEG3 locus (Figure 9), along with the expression of DLK1 and 

MEG3, could be associated with AML patient outcomes. 
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Figure 9. CpG sites within the DLK1-MEG3 locus 

Several imprinted (top arrows) and non-imprinted (bottom arrows) CpG sites exist within 

the DLK1-MEG3 locus. White circles represent the IG-DMR (left) and MEG3 DMR 

(right). 
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Results 

Methylation at select CpG sites within the DLK1-MEG3 locus is associated with AML 

patient outcomes 

 Previous investigations into the DLK1-MEG3 locus in blood disorders have 

revealed significant associations between the presence of dysplastic cells and aberrant 

methylation at select sites which contain many CpGs [60, 98, 100, 101]. Specifically, 

hypermethylation at the MEG3 promotor has been observed in MDS, multiple myeloma, 

and AML patient samples [100, 101]. Because hypermethylation of the MEG3 promotor 

was recently associated with decreased AML patient survival, I investigated the 

methylation of several CpG sites within the DLK1-MEG3 locus to determine whether this 

association involves the disruption of genomic imprinting [100].  

COBRA results from control MNCs and AML samples revealed significant 

differences for CG6, CG7, and CG8, but not for CG9 (Figure 10). A previous report 

utilizing a more detailed sequencing method found no overall differences between AML 

patients and control samples for the same CG6 region [60]. However, their results for AML 

patients show hypermethylation of the same CpGs which are targeted by BstUI in my 

assay, in agreement with my results. Similarly, this report also analyzed amplicons which 

lie in close proximities to the CG7, CG8, and CG9 amplicons, and found no differences in 

methylation between AML and control samples. However, none of their amplicons directly 

overlaps with CG7, CG8, or CG9, and in addition to the fact that their AML samples often 

showed considerable variation in methylation, it is also worth noting that their analyses 

were for a subset of DLK1-overexpressing patients. 
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Analyses of the response of patients to the first round of induction therapy based 

on methylation at each CpG site uncovered a slight, though significant, increase in the 

methylation of CG8 for patients who went into complete remission (CR) compared to non-

responders (NR) (Figure 11). This is surprising, as there was no statistical difference in the 

methylation at CG8 between AML and control MNCs. More importantly, however, 

survival curves generated based on the median methylation of AML samples for each CpG 

sites show significant associations between increased survival and higher methylation at 

CG7 and CG9 (Figure 12). Because CG7 and CG9 lie within the MEG3 promotor region, 

these results seemingly contradict a previous report which associated higher methylation 

of the MEG3 promotor with decreased survival in AML [100]. This is likely due to several 

possible factors centered around their method of methylation analysis for this region. The 

authors used methylation-specific PCR, in which one set of primers amplified a methylated 

allele and the other set of primers amplified an unmethylated allele, to determine whether 

there was aberrant methylation within the region. In addition to being arguably less 

sensitive for analyzing methylation than COBRA, the authors used sets of primers which 

did not overlap and instead were separated by over 1.3 kb. In fact, their methylated allele 

primer set amplified a region of DNA 150 bp downstream of CG9 (not imprinted), and 

their unmethylated allele primer set amplified a region of DNA within CG7 (imprinted), 

which could have produced inconsistent results due to the unique methylation patterns of 

genomic imprints. Thus, my results using COBRA may offer novel insight into the role of 

MEG3 promotor methylation in the survival outcome of AML patients. 

Further investigation into the associations between CpG site methylation and 

patient outcome yielded interesting results. A Spearman’s Rho test did not show a 
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correlation between age and methylation at CG6 (rho=-0.16, p=0.28), CG8 (rho-=0.16, 

p=0.28), or CG9 (rho=-0.13, p=0.39), but did show a correlation between CG7 methylation 

and patient age (rho=-0.39, p=0.01). Because the type of treatment offered for AML before 

and after 60 years of age are different, I checked the clinical response of patients using this 

age as a cutoff (Figure 13). No statistically significant differences in methylation were 

found between patients based on their response for either age group. Due to the limited 

number of patients over 60, a similar investigation into the association between methylation 

and survival based on age was carried out only for patients under 60, which yielded a strong 

association between high methylation and increased survival. 

Gene expression at the DLK1-MEG3 locus is regulated by both genomic imprinting 

and promotor methylation, offering the possibility that CpG sites within this locus may 

regulate gene expression independently as well as cooperatively. Similarly, genes 

expressed from this locus serve opposing roles in cell proliferation, further complicating 

the overall influence of aberrant methylation at this locus on malignancy. Therefore, I 

analyzed the associations between methylation at multiple sites and patient survival (Figure 

14; p values listed in Table 6). I found significant differences in survival between patients 

who had low methylation at all sites compared to patients who had high methylation at 1, 

2, or 3 sites total throughout this locus, with no differences between any other groups. Of 

these CpG sites, 2 are imprinted, 2 are not imprinted, and 2 are within the promotor region 

of MEG3. Analyses of the associations between survival and low methylation at all sites, 

up to 2 sites of high methylation, and over 2 sites of high methylation illustrated an 

intriguing stepwise pattern of increasing survival with increasing methylation, though the 

difference between 1-2 sites and 3-4 sites was not statistically significant. Similarly, a 
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stepwise pattern was found when analyzing only those CpG sites found within the MEG3 

promotor, albeit in an unexpected manner, where the difference between 1 site and 2 sites 

was also not statistically significant. 
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Figure 10. Leukemic cells exhibit differences in methylation at CG6, CG7, and CG8 

within the DLK1-MEG3 locus compared to mononuclear cells 

Comparison of COBRA results for normal human mononuclear cells (MNCs) and human 

mononuclear cells from AML patients (AML). Graphs represent the results of COBRA 

performed once per sample for each CpG site and analyzed using the Mann-Whitney U 

test. MNCs – CG6, CG7, CG8 n=9; CG9 n=8. AML – CG6, CG8 n=44; CG7, CG9 n=42. 

ns not significant, * p<0.05, *** p<0.001 
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Figure 11. Methylation at individual CpG sites within the DLK1-MEG3 locus is not 

associated with complete remission in AML patients following the first round of 

induction therapy 

Comparison of COBRA results for human mononuclear cells from AML patients who 

responded (CR) or did not respond (NR) to treatment. Graphs represent the results of 

COBRA performed once per sample for each CpG site and analyzed using the Mann-

Whitney U test. CR – CG6, CG8 n=24; CG7 n=22; CG9 n=23. NR – CG6, CG7, CG8, 

CG9 n=19. ns not significant, * p<0.05 
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Figure 12. Methylation at CG7 and CG9 within the promotor region of MEG3 is 

associated with AML patient survival 

Comparison of COBRA results for human mononuclear cells from AML patients based on 

patient survival. Graphs represent the results of COBRA performed once per sample for 

each CpG site and analyzed based on the median methylation for each locus using the 

Mantel-Cox test. >median methylation – CG6, CG8 n=22; CG7, CG9 n=21. <median 

methylation – CG6 n=21; CG7, CG9 n=20; CG8 n=22. ns not significant, * p<0.05 
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Figure 13. Methylation at CG7 in the promotor region of MEG3 does not exhibit age-

related associations with complete remission in AML patients following the first 

round of induction therapy 

 (A) Comparison of COBRA results for human mononuclear cells from AML patients of 

different age groups who responded (CR) or did not respond (NR) to treatment. Graphs 

represent the results of COBRA performed once per sample for CG7 and analyzed using 

the Mann-Whitney U test. CR <60 years n=19. NR <60 years n=10. CR >60 years n=3. 

NR >60 years n=9. (B) Comparison of COBRA results for human mononuclear cells from 

AML patients based on patient survival. Graphs represent the results of COBRA performed 

once per sample for CG7 and analyzed based on the median methylation for CG7 of 

patients <60 years using the Mantel-Cox test. >median methylation n=16. <median 

methylation n=13. ns not significant, * p<0.05, ** p<0.01 
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Figure 14. Combining methylation results from multiple DLK1-MEG3 CpG sites 

uncovers unique associations between AML patient survival and methylation at this 

locus 

Comparison of COBRA results for human mononuclear cells from AML patients based on 

patient survival. Graphs represent the results of COBRA performed once per sample for 

each CpG site and analyzed based on the median methylation for each CpG site using the 

Mantel-Cox test, where “0 sites” denotes patients for whom the methylation at each CpG 

site was lower than the median methylation for that site, “1 site” denotes patients for whom 

the methylation at one CpG site was higher than the median methylation for that site, etc. 

CG6-9 – 0 sites n=3 (both graphs); 1 site n=10; 2 sites n=9; 3 sites n=13; 4 sites n=5, 1-2 

sites n=19; 3-4 sites n=18. CG7,9 – 0 sites n=12; 1 site n=14; 2 sites n=15. *** p<0.001 

for Mantel-Cox test; * p<0.005 for Bonferroni (CG6-9 left graph); * p<0.0167 (CG6-9 

right graph, CG7 & CG9 graph) 
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CG6-9 (0,1,2,3,4) 1 site 2 sites 3 sites 4 sites 

0 sites 0.0027 0.0002 <0.0001 0.0733 

1 site   0.7903 0.2290 0.4016 

2 sites     0.1546 0.5870 

3 sites       0.1190 

     

     
CG6-9 (0, 1-2, 3-
4) 

1-2 
sites 

3-4 
sites   

0 sites <0.0001 <0.0001   

1-2 sites   0.3434   

     

     

CG7 & 9 (0, 1, 2) 1 site 2 sites   

0 sites 0.0012 0.0051   

1 sites   0.3941   
 

Table 6. Individual p values for Figure 14  
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DLK1 expression is associated with AML patient outcomes, but not with CpG site 

methylation 

 Several studies have recently emerged which analyzed the expression of imprinted 

genes within the DLK1-MEG3 locus in AML patient samples [60, 100, 102, 103]. Whereas 

the expression of MEG3 was found to be downregulated in both AML patient samples and 

cell lines, conflicting data has appeared for the expression of DLK1 in AML patient 

samples, and investigations into the outcome of patients based on the expression of these 

genes are lacking [60, 63]. My results show that the expression of both DLK1 and MEG3 

is significantly decreased in AML patients compared to control MNCs (Figure 15). 

However, though no studies have directly investigated the DLK1/MEG3 expression ratio 

in AML patient samples, these results for DLK1 and MEG3 surprisingly did not amount to 

any difference in the DLK1/MEG3 expression ratio between AML patients and control 

MNCs. Some AML samples exhibited high expression of these genes, and AML samples 

appeared to group together based on their DLK1/MEG3 expression ratio.  

 Considering my results from comparing CpG site methylation with patient 

outcomes, these variations in DLK1 and MEG3 expression among AML samples suggested 

that similar associations between expression patterns and patient outcomes may exist as 

well. While no associations between complete remission and the expression of DLK1, 

MEG3, or the DLK1/MEG3 expression ratio were found (Figure 16), high expression of 

DLK1 was associated with decreased patient survival (Figure 17). This is an interesting 

observation, as DLK1 is important for maintaining stem-like hematopoietic cells and may 

contribute to their accumulation, and the expression of DLK1 was previously found to 

increase during the progression of MDS [61, 63, 104]. 
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The lack of association between MEG3 expression and patient outcomes was unexpected, 

as CG7 and CG9 both lie within the MEG3 promotor and were associated with patient 

survival. Decreased expression of MEG3 was also recently implicated in the development 

of AML [62]. Investigating potential associations between methylation of CpG sites within 

the DLK1-MEG3 locus and the expression of DLK1, MEG3, and the DLK1/MEG3 

expression ratio in AML patients did not reveal any such associations for individual 

(Figures 18-21) or combined CpG sites (Figures 22, 23). While this was unexpected, the 

variability in the expression of DLK1 and MEG3 and of the DLK1/MEG3 expression ratio 

among AML patients, combined with a previous report which described biallelic 

expression of DLK1 in AML patients, suggests that biallelic expression of these genes is 

likely undermining the search for potential associations between their expression and CpG 

site methylation [60]. This report also found that control over mono- and biallelic 

expression of DLK1 was regulated by a CpG site within the DLK1 promotor, but not by 

CpG sites located in close proximities to each of the CpG sites I tested. Thus, investigating 

the biallelic expression of DLK1 and MEG3 in these patients in the future could be valuable 

for re-analysis of these potential associations.  
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Figure 15. Leukemic cells exhibit lower DLK1 and MEG3 expression than 

mononuclear cells 

Comparison of RT-qPCR results for normal human mononuclear cells (MNCs) and human 

mononuclear cells from AML patients (AML). Graphs represent the results of RT-qPCR 

performed once per sample in duplicate for each gene, where the average for each sample 

was used for analysis with the Mann-Whitney U test. MNCs – DLK1, MEG3, DLK1/MEG3 

n=9. AML – DLK1, MEG3, DLK1/MEG3 n=29. ns not significant, *** p<0.001 
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Figure 16. DLK1 and MEG3 expression is not associated with complete remission in 

AML patients following the first round of induction therapy 

Comparison of RT-qPCR results for human mononuclear cells from AML patients who 

responded (CR) or did not respond (NR) to treatment. Graphs represent the results of RT-

qPCR performed once per sample in duplicate for each gene, where the average for each 

sample was used for analysis with the Mann-Whitney U test. CR – DLK1, MEG3, 

DLK1/MEG3 n=16. NR – DLK1, MEG3, DLK1/MEG3 n=13. ns not significant 
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Figure 17. DLK1 expression is associated with AML patient survival 

Comparison of RT-qPCR results for human mononuclear cells from AML patients based 

on patient survival. Graphs represent the results of RT-qPCR performed once per sample 

in duplicate for each gene, where the average for each sample was used for analysis with 

the Mantel-Cox test based on the median expression for each gene. >median expression – 

DLK1, MEG3, DLK1/MEG3 n=14. <median expression – DLK1, MEG3, DLK1/MEG3 

n=15. ns not significant, * p<0.05 
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Figure 18. DLK1 and MEG3 expression is not associated with methylation at CG6 

Comparison of RT-qPCR results for human mononuclear cells from AML patients based 

on methylation at CG6. Graphs represent the results of RT-qPCR performed once per 

sample in duplicate for each gene, where the average for each sample was used for analysis 

with the Mann-Whitney U test based on the median methylation at CG6 for that sample. 

>median methylation – DLK1 n=14; MEG3, DLK1/MEG3 n=13. <median methylation – 

DLK1, MEG3, DLK1/MEG3 n=15. ns not significant 
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Figure 19. DLK1 and MEG3 expression is not associated with methylation at CG7 

Comparison of RT-qPCR results for human mononuclear cells from AML patients based 

on methylation at CG7. Graphs represent the results of RT-qPCR performed once per 

sample in duplicate for each gene, where the average for each sample was used for analysis 

with the Mann-Whitney U test based on the median methylation at CG7 for that sample. 

>median methylation – DLK1, MEG3, DLK1/MEG3 n=17. <median methylation – DLK1, 

MEG3, DLK1/MEG3 n=10. ns not significant 
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Figure 20. DLK1 and MEG3 expression is not associated with methylation at CG8 

Comparison of RT-qPCR results for human mononuclear cells from AML patients based 

on methylation at CG8. Graphs represent the results of RT-qPCR performed once per 

sample in duplicate for each gene, where the average for each sample was used for analysis 

with the Mann-Whitney U test based on the median methylation at CG8 for that sample. 

>median methylation – DLK1, MEG3, DLK1/MEG3 n=14. <median methylation – DLK1, 

MEG3, DLK1/MEG3 n=14. ns not significant 
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Figure 21. DLK1 and MEG3 expression is not associated with methylation at CG9 

Comparison of RT-qPCR results for human mononuclear cells from AML patients based 

on methylation at CG9. Graphs represent the results of RT-qPCR performed once per 

sample in duplicate for each gene, where the average for each sample was used for analysis 

with the Mann-Whitney U test based on the median methylation at CG9 for that sample. 

>median methylation – DLK1, MEG3, DLK1/MEG3 n=17. <median methylation – DLK1, 

MEG3, DLK1/MEG3 n=10. ns not significant 
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Figure 22. DLK1 and MEG3 expression is not associated with combined methylation 

results from CG6-9 

Comparison of RT-qPCR results for human mononuclear cells from AML patients based 

on methylation at CG6-9 within the DLK1-MEG3 locus. Graphs represent the results of 

RT-qPCR performed once per sample in duplicate for each gene, where the average for 

each sample was used for analysis with the Kruskal-Wallis test and Dunn’s Multiple 

Comparison Test based on the median methylation at CG6-9 for that sample, i.e. samples 

in the “0 sites” are from patients for whom the methylation at each CpG site was lower 

than the median methylation for that site, samples in the “1-2 sites” are from patients for 

whom the methylation at one or two CpG sites was higher than the median methylation for 

those sites, and samples in the “3-4 sites” are from patients for whom the methylation at 

three or four CpG sites was higher than the median methylation for those sites. DLK1, 

MEG3, DLK1/MEG3 – 0 sites n=2, 1-2 sites n=11, 3-4 sites n=13. ns not significant  
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Figure 23. DLK1 and MEG3 expression is not associated with combined methylation 

results from CpG sites within the MEG3 promotor region. 

Comparison of RT-qPCR results for human mononuclear cells from AML patients based 

on methylation at CG7,9 within the DLK1-MEG3 locus. Graphs represent the results of 

RT-qPCR performed once per sample in duplicate for each gene, where the average for 

each sample was used for analysis with the Kruskal-Wallis test and Dunn’s Multiple 

Comparison Test based on the median methylation at CG7,9 for that sample, i.e. samples 

in the “0 sites” are from patients for whom the methylation at each CpG site was lower 

than the median methylation for that site, samples in the “1 site” are from patients for whom 

the methylation at one CpG site was higher than the median methylation for that site, and 

samples in the “2 sites” are from patients for whom the methylation at both CpG sites was 

higher than the median methylation for those sites. DLK1, MEG3, DLK1/MEG3 – 0 sites 

n=5, 1 site n=10, 2 sites n=12. ns not significant  



 

64 

 

Discussion 

 In this chapter I provide evidence that CpG sites within the DLK1-MEG3 locus are 

hypermethylated in AML patient samples, and that there are significant associations 

between patient survival and both DLK1 expression and select CpG site methylation. 

Accumulating evidence continues to implicate the DLK1-MEG3 locus in the development 

of various human diseases, including those of the blood system [10, 60, 63, 104-110]. A 

recent landmark study described the functional requirements by long-term repopulating 

hematopoietic stem cells (LT-HSCs) for a large cluster of miRNAs located within the Dlk1-

Meg3 locus [6]. These miRNAs, hypothesized to originate from a large polycistronic 

transcriptional unit, were found to target members of the PI3K-mTOR pathway and restrict 

its overactivation [111]. Interestingly, deletion of the maternal IG-DMR repressed 

expression of Meg3 and the miRNA-containing ncRNAs in murine fetal liver LT-HSCs, 

reduced the numbers of these cells, and upregulated Dlk1. Maternal deletion of the first 5 

exons of Meg3 along with ~300 bp of its promotor, corresponding to CpG site CG7 in my 

experiments and previously shown to similarly alter the expression of these genes in whole 

mouse embryos, also reduced the number of murine fetal liver LT-HSCs [7]. What’s more, 

hypermethylation of the Meg3 DMR and repressive chromatin marks at the Meg3 promotor 

were recently shown to accompany decreased expression of these miRNAs as the result of 

an induction process used to create induced pluripotent stem cells [4]. Taken together, these 

studies highlight the complexity of genomic imprinting at the IG-DMR and MEG3 DMR 

and its importance for the correct expression of growth-promoting and growth-suppressing 

genes in stem cells. 
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 Considering this, combined with the roles of DLK1 in the maintenance of normal 

and cancerous stem cells, it was not surprising to find that decreased AML patient survival 

was significantly associated with high DLK1 expression. AML is characterized by the 

accumulation of blast cells in the bone marrow, and while the overexpression of DLK1 was 

previously found to decrease the proliferation of human promyelocytic HL-60 cells, the 

differentiation of these cells was also inhibited [61]. DLK1 expression is also known to 

increase during the progression of MDS [63]. Thus, high expression of DLK1 in leukemic 

blasts may promote their accumulation by blocking their differentiation and preventing 

their uptake of chemotherapeutics through hyperproliferation. This was not reflected in any 

association between DLK1 expression and the complete remission of patients, but using a 

larger number of patients and separating them into “high DLK1 expression” and “low 

DLK1 expression” groups may uncover such an association in future studies. More 

surprising, however, was the low expression of DLK1 in AML cells compared to control 

MNCs. Previous studies have shown conflicting data regarding the expression of DLK1 in 

AML patient samples compared to control MNCs [60, 112]. These studies both utilized 

GAPDH as a control gene and normal human bone marrow for control MNCs, and 

inspection of their RT-qPCR primer sequences did not reveal any obvious issues. Because 

I utilized BMG as a control gene and sourced MNCs from human umbilical cord blood, 

direct comparisons between my results and these studies cannot be made. However, 

discrepancies between these two studies could possibly be explained by the blast % of 

MNCs isolated from AML and normal bone marrow. In addition, one study had a large 

percentage of patients which exhibited biallelic expression of DLK1, which may have 

skewed their results towards higher DLK1 expression overall. Interestingly, this study also 



 

66 

 

found mono- and biallelic expression of DLK1 to be under the control of a CpG site within 

the DLK1 promotor region in AML patients. In light of a recent report in which 

overexpression of the Meis gene in an ND13 murine model of AML resulted in the 

overexpression of Dlk1 and hypermethylation of the IG-DMR, but not the Dlk1 promotor, 

it could be valuable to check the expression of MEIS and biallelic expression of DLK1 in 

the patient samples I used [113]. Doing so could help explain the lack of associations I 

found between CpG site methylation and DLK1 expression for these samples. 

 Like DLK1, MEG3 was found to be downregulated in AML samples compared to 

controls, but my results do not show any associations between MEG3 expression and CpG 

site methylation for AML samples. Nor do they show associations between MEG3 

expression and either the complete remission or survival of patients, which was unexpected 

due to the suppressive role previously found for MEG3 in leukemogenesis [62]. Also like 

DLK1, this could be explained by biallelic expression of MEG3, which has not been 

thoroughly investigated in AML. While the average methylation of imprinted CpG sites 

within the DLK1-MEG3 locus was high for AML samples, at least one of these two CpG 

sites was hypomethylated for many patients. Similarly, the possibility of biallelic 

expression for these genes could also explain lack of associations between the 

DLK1/MEG3 expression ratio and either the outcome or patients or the methylation of CpG 

sites. Paradoxically, higher methylation at CpG sites within the MEG3 promotor region 

was significantly associated with increased survival by these patients. This conflicts with 

a previous report which found aberrant methylation to significantly associate with 

decreased AML patient survival, though this conflict is likely due to the method of 

methylation assessment [100]. However, given the growth-suppressing nature of MEG3 
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and its downstream miRNAs and their dependence on the MEG3 DMR and promotor 

region for their correct expression, a decrease in miRNA expression would be expected for 

the samples which have higher methylation at these CpG sites [6, 7, 98, 114, 115]. This 

phenomenon could result in the overactivation of the PI3K-mTOR pathway, which is a 

common feature of AML, and allow for hyperproliferation of blasts and their enhanced 

uptake of chemotherapeutics. Thus, this would imply that the effect of increased DLK1 

expression and increased methylation of CpG sites within the MEG3 promotor serve 

opposing roles in the survival of AML patients due to their effects on chemotherapeutic 

uptake. However, I did not find any association between methylation of these CpG sites 

and complete remission by patients. Previous studies of small ncRNA expression in AML 

uncovered miRNA signatures based on specific karyotypes and subtypes, with APL 

specifically upregulating several miRNAs and cell cycle-promoting small nucleolar RNAs 

(snoRNAs) from the DLK1-MEG3 locus[116]. Interestingly, while the overexpression of 

these snoRNAs was dependent on the PML-RARalpha fusion protein, the expression of 

specific miRNAs was associated with hypermethylation of CTCF binding motif-containing 

CpG sites corresponding to CG7, CG8, and CG9. Thus, it appears that miRNA expression 

from this locus can be positively associated with increased methylation, and the location 

of potential CTCF-binding sites within each of these CpG sites underscores the importance 

of 3-dimensional chromatin conformation and the complexity of gene expression 

regulation at this locus. Assessment of miRNA expression specifically from this locus may 

expose expression signatures which are associated specifically with increased survival. 

 Taken together, these results are the first to associate AML survival with the degree 

of DLK1 expression and with the degree of methylation at the MEG3 promotor. This is 
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also one of the first instances where hypermethylation of CpG sites within the DLK1-

MEG3 locus appears beneficial for the patient, and this data may be useful for the future 

development of prognostic guidelines for AML. Future studies in search of miRNA 

expression signatures from the DLK1-MEG3 locus specifically associated with patient 

survival could offer further insight into the regulation of genes from this locus, and may 

serve as valuable biomarkers for AML. 

 

Conclusions 

• The initial screen of IGN DMR methylation uncovered differences between AML 

samples and control MNCs, though these differences did not amount to any 

significant associations between methylation and patient outcomes 

 

• Similar to the initial IGN DMRs screened, significant differences in methylation at 

CpG sites within the DLK1-MEG3 locus were also found between AML patients 

and control MNCs. In contrast to the other IGN DMRs, however, methylation at 

select CpG sites within the MEG3 promotor was significantly associated with AML 

patient survival. 

 

• High DLK1 expression among AML patients was significantly associated with 

decreased patient survival, but no associations were found between patient 

outcomes and either MEG3 expression or the DLK1/MEG3 expression ratio. 
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• Future studies integrating the epigenome with arrays of miRNA expression from 

the DLK1-MEG3 locus will provide valuable insight into gene regulation at this 

locus, and may aid in the future development of targeted therapies for AML. 
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CHAPTER 4: GENOMIC IMPRINTING IDENTIFIES DLK1 AS A NOVEL 

THERAPEUTIC TARGET FOR EMBRYONAL CARCINOMA 

 

Introduction 

 Primordial germ cells undergo widespread epigenomic changes during their 

maturation into sex-specific germ cells. Among these changes lies the complete erasure 

and reestablishment of genomic imprinting patterns [39]. Improper maintenance of 

genomic imprinting is found in several types of cancers and other growth-related 

diseases, yet few associations have been uncovered between aberrant imprinting and 

tumors of proposed PGC origins [117, 118]. Chief among these associations identified 

thus far is hypomethylation at the IGF2-H19 locus [36-38]. While the participation of 

growth factors such as IGF2 in insulin-like signaling has been implicated in TGCT 

development, a recent study found the H19 lncRNA to be necessary for the maintenance 

of EC stem-like cells [18, 119].  

Seminal work on the generation of bimaternal mice implicated two paternally 

imprinted loci as key barriers to this process: IGF2-H19 and DLK1-MEG3 [15, 120]. Later 

work determined that genetic manipulation of either locus was sufficient to carry pups 

through the majority of growth and development, but manipulation of both loci was 

necessary to efficiently create live, healthy mice [15, 17, 121]. Both loci harbor growth-

related protein-coding genes and growth-suppressing ncRNAs which are oppositely 

imprinted, such that 
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the protein-coding genes are transcribed primarily from the paternally inherited 

chromosome, and the ncRNAs are transcribed primarily from the maternally inherited 

chromosome. Interestingly, lncRNAs from each locus, H19 and MEG3, are implicated in 

the suppression of teratoma growth [19, 20]. What’s more, ncRNAs from these loci help 

maintain the quiescence and stemness of HSCs, and hypomethylation of the IGF2-H19 

locus is hypothesized to control the quiescence of adults pluripotent VSELs [5, 6, 8].  

 Several lines of evidence place HSCs and VSELs as derivatives of migrating PGCs 

in the developing embryo [42]. Similarly, TGCTs are proposed to originate from PGCs at 

various stages of their development [36]. Although PGCs and VSELs express pluripotency 

markers, neither population of cells is able to form teratomas in vivo or complement 

blastocyst development. On the other hand, EC cells can give rise to teratocarcinomas, and 

most TGCTs present with an EC component [54]. Interestingly, EC is placed atop the 

hierarchy of TGCT stemness and may be the stem-like cells which give rise to other TGCT 

tissues [43].  

PGCs serve as the proposed origin of HSCs, VSELs, and TGCTs such as EC [42-

44]. Thus, it is interesting that TGCTs display such malignant growth while exhibiting 

hypomethylation at the IGF2/H19 ICR [36-38].  Surprisingly, H19 expression is necessary 

to maintain the stemness of EC cells [18]. However, no studies have investigated 

methylation at the IGF2-H19 ICR in human EC cells, which is important when considering 

the heterogeneity of tumor tissues. Given the importance of the Dlk1-Meg3 locus in the 

generation of bimaternal mice, combined with the roles of this locus in HSC maintenance, 

it is also surprising that imprinting at this locus has not been investigated in TGCTs or EC 

cells [6, 15, 17]. What’s more, while tumor heterogeneity and the existence of CSCs in 
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tumors is generally accepted now, mounting evidence has challenged the existence of a 

static phenotype for stem cells and cancer stem-like cells. The continuum of HSC stemness 

was recently associated with the abundance of imprinted ncRNAs expressed by each cell, 

promoting the question of whether genes from the DLK1-MEG3 or IGF2-H19 loci may 

help define CSCs [6]. As the CSCs of TGCTs, the importance of H19 for maintaining the 

stemness of EC cell lines underscores this possibility [18]. Taken together, I therefore 

hypothesized that genomic imprinting at the IGF2-H19 and DLK1-MEG3 loci 

promotes the malignant growth of EC cells.  

 

Results 

Hypomethylation at the paternally imprinted IGF2-H19 locus in NTera2 correlates 

with a low IGF2/H19 expression ratio 

Multiple groups have confirmed a PGC-like hypomethylation of the IGF2-H19 ICR 

in GCT tissues [36, 38]. However, biallelic expression of H19 and IGF2 is also a common 

feature of TGCTs, and previous efforts to assess the biallelic expression of these genes in 

NTera2 were ineffective [122, 123]. Here, I found that the IGF2-H19 ICR is 

hypomethylated in NTera2 by COBRA as well as by a more sensitive sequencing method 

(Figure 24A and 24B, respectively). In contrast, MNCs exhibit higher methylation at this 

locus, in agreement with a recent report on imprinting in human tissues [124].  

Somatic-like methylation of the IGF2-H19 ICR corresponds to monoallelic 

expression of the H19 and IGF2 genes by a well-characterized CTCF binding motif, 

whereas hypomethylation of the ICR corresponds to biallelic expression of the H19 gene 

[125]. As expected based on their respective IGF2-H19 ICR methylation values, I found 
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that the IGF2/H19 expression ratio is significantly lower in NTera2 cells than MNCs 

(Figure 25A). Importantly, IGF2 expression as well as the IGF2/H19 expression ratio are 

also significantly lower in NTera2 cells than in testes tissues, which were recently reported 

to carry somatic methylation at the IGF2-H19 ICR, suggesting that autocrine IGF2 

signaling may not be an important feature of NTera2 growth [124] 
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Figure 24. NTera2 cells exhibit hypomethylation at the IGF2-H19 ICR 

(A) Analysis of BSgDNA amplicons by COBRA. Densitometric analysis of undigested 

amplicons (-) and amplicons digested by a restriction enzyme (+) was used to estimate 

the methylation percentage (% M) at the IGF2-H19 ICR. (B) Sequencing of BSgDNA 

amplicons from the IGF2-H19 ICR was used to confirm the COBRA results for this 

DMR. Graphs represent the results of one experiment. 
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Figure 25. A low IGF2/H19 expression ratio in NTera2 cells reflects their erasure of 

imprinting at this locus 

(A) RT-qPCR analysis of gene expression from the IGF2-H19 locus. Graphs represent the 

results of two experiments carried out in duplicate and analyzed using the Mann-Whitney 

U test. (B) Methylation and expression data from the IGF2-H19 locus demonstrate an 

erasure of imprint for this locus in Ntera2 cells. Hypomethylation at the ICR (unfilled oval) 

on each chromosome results in decreased expression IGF2 relative to H19. **p<0.01 

***p<0.001 
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Hypermethylation at the paternally imprinted DLK1-MEG3 locus in NTera2 

correlates with a high DLK1/MEG3 expression ratio 

In contrast to the IGF2-H19 ICR, no studies have directly investigated the 

imprinting pattern of the DLK1-MEG3 IG-DMR in human GCTs. However, 

hypermethylation of the MEG3 promotor was recently documented in TGCT tissues and 

cell lines, warranting further investigation into the methylation status of DMRs within this 

locus [126]. I found by COBRA that the DLK1-MEG3 IG-DMR and the MEG3 DMR are 

both hypermethylated in NTera2 cells compared to MNCs (Figure 26A), and I confirmed 

these results for the IG-DMR by a more sensitive sequencing method (Figure 26B).  

Though the exact mechanism of imprinting at the DLK1-MEG3 locus has yet to be 

determined, the association of methylation at the IG-DMR and MEG3 DMR is similar to 

that of the IGF2-H19 locus [99]. I found that the DLK1/MEG3 expression ratio is 

significantly higher in NTera2 cells than MNCs, in agreement with their respective 

methylation patterns at both DMRs within this locus (Figure 27A). Interestingly, while the 

expression of DLK1 is significantly lower in NTera2 cells than in testes, the DLK1/MEG3 

ratio is significantly higher in NTera2 cells, suggesting that methylation patterns within 

this locus may promote the malignant growth of NTera2. This expression ratio agrees with 

a recent report which found somatic methylation at the DLK1-MEG3 IG-DMR in human 

testes tissues [124]. What’s more, immunostaining of NTera2 cells revealed a strong 

presence of DLK1 in the nuclei of these cells (Figure 28). This is a surprising observation, 

as studies with DLK1 have primarily focused on its roles in growth and differentiation for 

membrane-bound and soluble DLK1 proteins only, with few studies commenting on its 

presence in the nucleus [127-130]. 
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Figure 26. NTera2 cells exhibit hypermethylation at DMRs within the DLK1-MEG3 

locus 

(A) Analysis of BSgDNA amplicons by COBRA. Densitometric analysis of undigested 

amplicons (-) and amplicons digested by restriction enzymes (+) was used to estimate the 

methylation percentage (% M) at the DLK1-MEG3 IG-DMR and MEG3 secondary DMR. 

(B) Sequencing of BSgDNA amplicons from the DLK1-MEG3 IG-DMR was used to 

confirm the COBRA results for this DMR. Graphs represent the results of one 

experiment. 
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Figure 27. A high DLK1/MEG3 expression ratio in NTera2 cells reflects their loss of 

imprinting at this locus 

(A) RT-qPCR analysis of gene expression from the DLK1-MEG3 locus. Graphs represent 

the results of two experiments carried out in duplicate and analyzed using the Mann-

Whitney U test. (D) Methylation and expression data from the DLK1-MEG3 locus 

demonstrate a loss of imprint for this locus in Ntera2 cells. Hypermethylation at the IG-

DMR (large filled oval) and MEG3 secondary DMR (small filled oval) on each 

chromosome results in increased expression of DLK1 relative to MEG3. **p<0.01 

***p<0.001 
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Figure 28. NTera2 cells exhibit a strong nuclear presence of the DLK1 protein 

Representative confocal 3D overlay of NTera2 cells showing the nucleus (DAPI; blue), F-

actin (green), DLK1 (red), and brightfield. 
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The demethylating compound 5-aza-2’-deoxycytidine inhibits the in vitro growth of 

NTera2 while demethylating the MEG3 promotor and augmenting the DLK1/MEG3 

and IGF2/H19 expression ratios 

 The toxicity of the demethylating compound 5-aza-2’-deoxycytidine (5-azaD) to 

EC cells has been documented by multiple studies [52, 53]. The 5-azaD analog 5-

azacytidine (5-azaC) was recently shown to demethylate the IGF2-H19 ICR in human 

rhabdomyosarcoma cells and augment their IGF2/H19 expression ratio [131]. Because 5-

azaD can prevent de novo DNA methylation and cause DNA methyltransferases to 

covalently bind DNA, I investigated the potential of 5-azaD to augment gene transcription 

from the IGF2-H19 and DLK1-MEG3 loci. In agreement with previous reports, I found 

that nanomolar doses of 5-azaD decreased the in vitro proliferation rate of NTera2 cells 

(Figure 29A). Because the IGF2-H19 ICR is already hypomethylated in NTera2 cells, I 

investigated the ability of 5-azaD to demethylate the DLK1-MEG3 locus (Figure 29B). 

Interestingly, while methylation of the MEG3 promotor decreased in response to 5-azaD 

treatment, the IG-DMR methylation status remained unchanged. 

 As expected with demethylation at the MEG3 promotor, MEG3 expression was 

significantly increased in 5-azaD-treated cells (Figure 30). Interestingly, although no 

changes were observed in IG-DMR methylation, DLK1 expression was also significantly 

decreased in treated cells. These changes in MEG3 and DLK1 expression resulted in a 

significant decrease in the DLK1/MEG3 ratio, which became evident by Day 3 of the 

treatment. Moreover, while the IGF2-H19 ICR is already hypomethylated in NTera2 cells, 

significant changes in IGF2 and H19 expression along with a significant increase in the 

IGF2/H19 expression ratio were also found in treated cells (Figure 31). While 5-azaD is a 
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DNA methylation inhibitor, its toxicity is attributed to its ability to cause covalent 

attachment of DNA methyltransferases to DNA [132]. This is important when considering 

the proposed CTCF-governed control of gene expression at these loci, as covalent adducts 

are likely to inhibit CTCF binding to DNA. In addition, methylation changes at the IGF2 

promotor and the intragenic IGF2 DMR may also play roles in the expression of this gene 

[133]. Similarly, a conserved CTCF binding site is located within the intragenic portion of 

the MEG3 promotor region, which may also affect the DLK1/MEG3 expression ratio [134]. 

Thus, 5-azaD treatment of NTera2 cells results in a significant decrease in their in vitro 

proliferation rate, and this is accompanied by MEG3 promotor demethylation and likely 

other aspects of genomic imprinting disruption. Most importantly, this decrease in the 

proliferation rate of treated cells is accompanied by a significant decrease in their 

DLK1/MEG3 expression ratio. This decrease in the proliferation rate of treated cells also 

occurs despite their increased IGF2 expression and increased IGF2/H19 expression ratio, 

with no statistically significant changes in the IGF1R expression of these cells (Figure 32). 

These results indicate that the maintenance of expression ratios from the IGF2-H19 and 

DLK1-H19 loci is associated with the proliferative capacity of NTera2 cells, and suggest 

that the DLK1/MEG3 expression ratio is more important than the IGF2/H19 expression 

ratio in the proliferation of NTera2. It is also interesting that OCT4 expression was 

decreased by 5-azaD treatment, suggesting the DLK1/MEG3 ratio may be associated with 

OCT4 expression. 

 It is worth noting that in order to be sure the IGF2-H19 and DLK1-MEG3 loci were 

worth investigating in EC, I screened methylation at the DMRs of several maternally 

imprinted loci (Figure 33). Each of these loci exhibited either hypomethylation or somatic-
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like methylation, with one exception (Figure 34). The P57-LIT1 locus was slightly 

hypermethylated in comparison to MNCs and its P57/LIT1 expression ratio reflected this 

imprint (Figure 35). However, while the exact roles of LIT1 are not very well characterized, 

P57 encodes a cell cycle inhibitor, in contrast to the paternally expressed growth-promoting 

IGF2 and DLK1 genes. In addition, 5-azaD decreased the expression of P57 while 

inhibiting the proliferation of NTera2 cells, suggesting that P57 does not play a significant 

role in the proliferation of NTera2 (Figure 36). Thus, I concluded that this locus was likely 

not as important for the malignancy of NTera2 as the IGF2-H19 or the DLK1-MEG3 loci, 

and continued my investigation with that focus. 

 

  



 

83 

 

 

Figure 29. 5-azaD treatment of NTera2 cells inhibits their proliferation and 

demethylates the MEG3 promotor  

(A) Proliferation assay of NTera2 cells treated with 5-azaD. Graph represents the results 

of two experiments carried out in triplicate, where Day 6 cell numbers were analyzed using 

a one-way ANOVA with a Tukey post-test. (B) Analysis of BSgDNA amplicons by 

COBRA. Densitometric analysis of undigested amplicons (-) and amplicons digested by 

restriction enzymes (+) was used to estimate the methylation percentage (% M) at the 

DLK1-MEG3 IG-DMR and MEG3 secondary DMR for NTera2 cells treated with 100 nM 

5-azaD for 3 and 7 days. Each graph represents the results of one experiment. **p<0.01 

***p<0.001  
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Figure 30. 5-azaD treatment of NTera2 cells augments their expression of genes from 

the DLK1-MEG3 locus 

RT-qPCR analysis of gene expression from the DLK1-MEG3 locus in cells treated with 

100 nM 5-azaD for 3 and 7 days. Graphs represent the results of two experiments carried 

out in duplicate and analyzed using the Mann-Whitney U test. *p<0.05 
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Figure 31. 5-azaD treatment of NTera2 cells augments their expression of genes 

from the IGF2-H19 locus 

RT-qPCR analysis of gene expression from the IGF2-H19 locus in cells treated with 100 

nM 5-azaD for 3 and 7 days. Graphs represent the results of two experiments carried out 

in duplicate and analyzed using the Mann-Whitney U test. *p<0.05 
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Figure 32. 5-azaD treatment of NTera2 cells decreases their expression of the 

pluripotency marker OCT4 

RT-qPCR analysis of gene expression in cells treated with 100 nM 5-azaD for 3 and 7 days. 

Graphs represent the results of two experiments carried out in duplicate and analyzed using 

the Mann-Whitney U test. *p<0.05 
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Figure 33. NTera2 cells exhibit low methylation at maternally imprinted loci 

Analysis of BSgDNA amplicons by COBRA. Densitometric analysis of undigested 

amplicons (-) and amplicons digested by restriction enzymes (+) was used to estimate the 

methylation percentage (% M) at the DMRs of maternally imprinted loci. Each graph 

represents the results of one experiment. 
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Figure 34. NTera2 cells exhibit hypermethylation at the P57-LIT1 locus, which is 

slightly demethylated by 5-azaD 

Analysis of BSgDNA amplicons by COBRA. Densitometric analysis of undigested 

amplicons (-) and amplicons digested by restriction enzymes (+) was used to estimate the 

methylation percentage (% M) at the P57-LIT1 KvDMR for (A) NTera2 cells and MNCs 

under normal conditions and (B) NTera2 cells treated with 100 nM 5-azaD for 3 and 7 

days. Each graph represents the results of one experiment. 
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Figure 35. A high P57/LIT1 expression ratio in NTera2 cells reflects their loss of 

imprinting at this locus 

(A) RT-qPCR analysis of gene expression from the P57-LIT1 locus. Graphs represent the 

results of two experiments carried out in duplicate and analyzed using the Mann-Whitney 

U test. (B) Methylation and expression data from the P57-LIT1 locus demonstrate a loss 

of imprint for this locus in Ntera2 cells. Hypermethylation at the KvDMR (large filled 

oval) on each chromosome results in increased expression of P57 relative to LIT1. ns not 

significant **p<0.01 ***p<0.001 
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Figure 36. 5-azaD treatment of NTera2 cells augments their expression of genes 

from the P57-LIT1 locus 

RT-qPCR analysis of gene expression from the P57-LIT1 locus in NTera2 cells treated 

with 100 nM 5-azaD for 3 and 7 days. Graphs represent the results of two experiments 

carried out twice in duplicate and analyzed using the Mann-Whitney U test. ***p<0.001 
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NTera2 expresses insulin-like growth factor-related genes 

 Insulin-like signaling involves several surface receptors and signaling peptides 

(Figure 4). Previous studies have found insulin-like signaling to be important for the 

growth of human murine teratocarcinoma, and it is proposed to be involved in TGCT 

development [119, 135-137]. Because 5-azaD treatment of NTera2 decreased the 

proliferation rate of these cells despite increasing their relatively low IGF2 expression and 

IGF2/H19 expression ratio, I investigated the expression of other insulin-like signaling 

genes by NTera2 cells to better characterize the capacity for insulin-like signaling in these 

cells. I found that NTera2 cells have significantly lower IGF1 expression, but significantly 

higher expression of IGF1R and INSR, than testes (Figure 37A), and I verified the 

expression of IGF1R and INSR by NTera2 cells at the protein level by flow cytometry 

analysis (Figure 37B). The high expression of insulin-like signaling receptors by NTera2 

cells indicates that, like TGCT tissues, these cells may also be responsive to insulin-like 

signaling growth factors. Also, like IGF2, NTera2 cells also express significantly less IGF1 

than testes, suggesting that autocrine insulin-like signaling is not important for these cells. 
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Figure 37. NTera2 cells express receptors for insulin-like signaling growth factors 

(A) RT-qPCR analysis of gene expression for insulin-like signaling-related genes. Graphs 

represent the results of two experiments carried out in duplicate and analyzed using the 

Mann-Whitney U test. (B) Flow cytometry analysis of the IGF1 receptor and insulin 

receptor in NTera2 cells. Graphs represent the results of two experiments. **p<0.01 
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Insulin-like growth factors phosphorylate the mitogenic signaling molecules AKT and 

MAP kinase and stimulate NTera2 proliferation in vitro in serum-free conditions  

 Insulin-like signaling is proposed to be important in TGCT pathogenesis, 

particularly through the actions of IGF1 and IGF1R [119]. The receptors IGF1R and INSR 

are activated by the peptides IGF1, IGF2, and insulin, and these activation signals are 

carried through mitogenic signaling pathways, of which the phosphorylation of the AKT 

and MAP kinase proteins are downstream events (Figure 4) [138]. Because I found NTera2 

cells to express IGF1R and INSR at the mRNA and protein levels, with relatively low 

expression of IGF1 and IGF2, I investigated the functional response of these cells to 

stimulation by exogenous insulin-like growth factors. Western blot analysis of AKT and 

MAPK phosphorylation in NTera2 cells stimulated by IGF1, IGF2, or insulin, revealed 

that each of these growth factors was able to activate downstream mitogenic signaling 

pathways in these cells (Figure 38A). Importantly, supplementing NTera2 cells with these 

growth factors in serum-free conditions triggered a significant increase in their 

proliferation rate (Figure 38B). These results confirm that, like murine EC cells and TGCT 

tissues, NTera2 is functionally responsive to exogenous insulin-like signaling. Importantly, 

these results also suggest that autocrine insulin-like signaling is not an important aspect of 

NTera2 malignancy. 
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Figure 38. Insulin-like signaling growth factors stimulate NTera2 cells 

(A) Western blot analysis of phosphorylated and total AKT and MAPK proteins 

following stimulation of NTera2 cells with insulin-like signaling growth factors. The 

results of two independent experiments are represented by each blot. (B) Proliferation 

assay of NTera2 cells treated with insulin-like signaling growth factors. Graph represents 

the results of two experiments carried out in triplicate, where Day 6 cell numbers were 

compared to BSA and analyzed using a 2-tailed unpaired t-test. (BSA – bovine serum 

albumin; IGF1 – insulin-like growth factor I; IGF2 – insulin-like growth factor II; INS – 

insulin; FBS – fetal bovine serum) *p<0.05, **p<0.01 
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DLK1 downregulation decreases NTera2 proliferation in vitro and NTera2 tumor size 

and organ seeding abilities in vivo 

 Though previous studies have identified various roles of DLK1 in normal tissue 

growth and regulation, several studies have reported that DLK1 is important for the growth 

and stemness maintenance of certain cancers [10, 11, 32-34, 105, 139-141]. Indeed, 

downregulation of DLK1 in hepatocellular carcinoma cell lines was recently shown to 

decrease their in vivo tumor growth capabilities and increase their expression of 

differentiation markers [107]. Thus, after finding that the relatively high DLK1/MEG3 

expression ratio decreased in NTera2 cells during 5-azaD treatment in association with a 

decrease in the proliferation rate of these cells, I investigated the importance of DLK1 in 

the proliferation rate of NTera2 cells. To accomplish this, I utilized two shRNAs against 

DLK1 and one control shRNA against a gene not expressed by human cells to create stably 

transfected cell lines. I confirmed the knockdown of DLK1 in these cells (Figure 39A) and 

found that each transfected cell line retained similar distribution of DLK1 by 

immunohistochemistry (Figure 40). I assessed the in vitro proliferation rates of these cells 

and found that DLK1 knockdown significantly decreased the NTera2 proliferation rate 

(Figure 39B). Interestingly, I also found that DLK1 knockdown was accompanied by a 

decreased in OCT4 expression, suggesting that these two genes are somehow linked. 

 Because the tumor microenvironment and normal serum levels of soluble DLK1 

may influence TGCT tumor growth, I employed these stable transfected cells in vivo to 

study the tumorigenicity and organ seeding abilities of DLK1 knockdown cells. I found 

that knockdown of DLK1 resulted in significantly decreased tumor growth (Figure 41A,B) 

and seeding efficiency of cells to the lung and liver (Figure 42B). Importantly, Figure 41C 
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shows the survival curve for these mice. While this figure suggests that the control cells 

were somehow more lethal to the mice than DLK1 knockdown cells, the death of mice 

during this experiment occurred within the first 2.5 weeks and was likely due to the native 

immunodeficiency in SCID mice combined with their treatment with irradiation. Thus, 

these results collectively indicate that DLK1 is important for the in vivo tumor growth and 

seeding efficiency of NTera2 cells. 
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Figure 39. DLK1 knockdown decreases NTera2 OCT4 expression and in vitro cell 

proliferation 

(A) RT-qPCR analyses of NTera2 cells stably transfected with either a control plasmid or 

a shRNA construct targeting DLK1. Graphs represent the results of two experiments carried 

out in duplicate and analyzed using a one-way ANOVA with a Tukey post-test. (B) 

Proliferation assay of stably transfected NTera2 cells. Graph represents the results of two 

assays carried out in triplicate, where Day 6 cell numbers were analyzed using a one-way 

ANOVA with a Tukey post-test. *p<0.05, **p<0.01, ***p<0.001 
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Figure 40. DLK1 knockdown cells exhibit strong nuclear DLK1 staining 

Representative confocal 3D overlay of stably transfected NTera2 cells showing the nucleus 

(DAPI; blue), F-actin (green), and DLK1 (red).  
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Figure 41. DLK1 knockdown decreases NTera2 tumor growth in vivo 

(A) In vivo tumor volume in SCID mice at 5.5 weeks post-irradiation. Each mouse was 

injected with 8 million stably transfected NTera2 cells at 24 hours post-irradiation, and 

results were compared using a one-way ANOVA with a Tukey post-test. Graph represents 

the results of one experiment with Control (n=3), Construct 1 (n=5), and Construct 2 (n=5). 

(B) Representative tumors for each of the stably transfected NTera2 cell lines. (C) Survival 

curve of animals injected with stably transfected NTera2 cells for the single experiment 

with n=6 for each group at the beginning of the experiment *p<0.05 **p<0.01 
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Figure 42. DLK1 knockdown decreases the in vivo organ seeding efficiencies of 

NTera2 cells 

(A) Standard curve generated based on qPCR analysis of DNA extracted from mixtures of 

NTera2 cells and murine bone marrow MNCs. (B) Seeding efficiencies of stably 

transfected NTera2 cells during in vivo tumor growth. Experiment was performed on 

organs harvested from the same animals from which tumors were harvested and measured. 

Graphs represent the results of one experiment with Control (n=3), Construct 1 (n=5), or 

Construct 2 (n=5). Analysis of DNA from each organ was performed using qPCR once in 

duplicate for lung and liver samples, and twice in duplicate for bone marrow samples, and 

results were analyzed using the Kruskal-Wallis H test with Dunn’s post-test. *p<0.05, 

**p<0.01, ***p<0.001 
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Embryonal carcinoma tissue samples exhibit PGC-like imprinting at the IGF2-H19 

and DLK1-MEG3 loci 

 EC cells are considered the pluripotent-like cells of teratocarcinomas and are often 

found in mixed germ cell tumors [30, 54]. As such, I investigated the IGF2-H19 ICR and 

DLK1-MEG3 IG-DMR imprints at multiple locations within mixed EC tissues (Figure 43). 

I found that the IGF2-H19 ICR displayed low methylation in these tissues, regardless of 

locality, in agreement with previous studies on GCTs [36-38]. Similarly, low methylation 

was also found at the DLK1-MEG3 IG-DMR in these tissues, and the methylation status of 

this DMR was also consistent between different sites of the same tissue. These results 

suggest that mixed EC tissues exhibit relatively homogeneous PGC-like methylation of the 

H19-IGF2 ICR and DLK1-MEG3 IG-DMR. However, considering that more stem-like 

cells like those which established the NTera2 cell line can be isolated from mixed GCTs 

such as teratocarcinomas, these imprinting patterns may represent only the bulk tumor 

tissue of low stemness, whereas more stem-like cells may be interspersed within these 

tissues which exhibit higher methylation at the DLK1-MEG3 IG-DMR. It is also worth 

noting that due to the hypermethylated P57-LIT1 locus I previously found in NTera2 cells, 

I also assayed that DMR in EC patient samples. Like the other two loci, P57-LIT1 was also 

hypomethylated in these tissues. 
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Figure 43. Human primary EC tissue exhibits hypomethylation at the IGF2-H19, 

DLK1-MEG3, and P57-LIT1 loci 

COBRA of BSgDNA amplicons from the IGF2-H19 ICR (A), DLK1-MEG3 IG-DMR (B), 

and P57-LIT1 DMR of FFPE human EC tissues. Each graph represents the result of one 

experiment. 
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Cancer stem cell surface markers CD133 and SSEA4 mark distinct subpopulations 

of NTera2 with unique gene expression signatures of cell stemness 

 The surface expression of CD133 and SSEA4 by EC cells and tissues has been 

previously reported [81, 142]. Because these markers have been used to study CSC-like 

populations of cells in several tissues and cell lines, I employed them to identify potential 

CSC subpopulations of NTera2 cells [67, 143]. In line with previous studies, I found that 

NTera2 cells express CD133 and SSEA4 on their surface, and I sorted 4 subpopulations of 

cells based on the expression of these markers (Figure 44) [80, 81]. Due to the importance 

of genes within the IGF2-H19 and DLK1-MEG3 loci in stem cell maintenance and 

proliferation, I assessed the expression of imprinted genes from these loci along with 

pluripotency-related genes in freshly sorted cells to identify potential differences in cell 

stemness (Figure 45B, 46; p values for these graphs located in Table 7) [5, 6]. Similarly, I 

assessed the expression of DLK1 and MYC in unsorted NTera2 cells and testes to confirm 

their upregulation in EC (Figure 45A). 

I found that SSEA4+ cell subpopulations had the highest expression of the 

pluripotency-related TDGF1 gene, which encodes the CRIPTO1 protein previously shown 

to mark an especially tumorigenic subpopulation of NTera2 cells having high pluripotency 

gene expression [144]. This result also agrees with a recent report in which SSEA4 surface 

expression helped distinguish cells within EC tissue which had high pluripotency gene 

expression and could differentiate into cells from all three germ layers upon embryoid body 

formation [69]. In addition, I found that the CD133-SSEA4+ cells had significantly higher 

expression of the pluripotency gene OCT4 and a higher DLK1/MEG3 expression ratio, with 

a trend towards a higher IGF2/H19 expression ratio, than CD133-SSEA4- cells, potentially 
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indicating differences in the stemness and proliferation rate of these subpopulations. 

Interestingly, significant differences in the expression of IGF2 and H19 were found among 

the subpopulations, but no significant differences were found for DLK1 or MEG3. Finally, 

the lowest DLK1/MEG3 ratio was found in CD133-SSEA4- cells, along with a trend for the 

highest H19 expression, suggesting that the CD133-SSEA4- phenotype may mark a 

particularly quiescent subpopulation of NTera2 cells. Overall, these results demonstrate 

that subpopulations of cells within the NTera2 cell line can be distinguished based on 

CD133 and SSEA4 surface expression, and these cell subpopulations carry unique 

expression signatures for imprinted and pluripotency-related genes. 
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Figure 44. Sorting strategy for NTera2 subpopulations based on CSC markers CD133 

and SSEA4 

(A) Isolation of NTera2 cells based on CD133 and SSEA4 surface expression. The top 

graph represents the size exclusion parameters and the bottom graph represents the isotype 

controls used. (B) Cells isolated from each subpopulation were of the same size. 
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Figure 45. The CSC markers CD133 and SSEA4 distinguish subpopulations of 

NTera2 cells exhibiting unique gene expression signatures 

(A) RT-qPCR analysis of pluripotency gene expression. Graphs represent the results of 

two experiments carried out in duplicate and analyzed using the Mann-Whitney U test. (B) 

RT-qPCR analysis of pluripotency-related genes. Graphs represent the results of two 

experiments carried out in duplicate and analyzed using the Mann-Whitney U test. *p<0.05 

**p<0.01 
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Figure 46. NTera2 subpopulations exhibit differences in their expression of imprinted 

genes 

RT-qPCR analysis of genes from the IGF2-H19 and DLK1-MEG3 loci. Graphs represent 

the results of two experiments carried out in duplicate and analyzed using the Mann-

Whitney U test. *p<0.05
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 OCT4 TDGF1 CMYC 

 CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ 

CD133-SSEA4- 0.0286 0.2000 1.0000 0.0286 0.0286 0.0286 0.1143 0.0286 0.0286 

CD133-SSEA4+   0.2000 1.0000   0.0286 0.1143   0.0286 0.0286 

CD133+SSEA4-     1.0000     0.0286     0.0286 

          

 IGF2 H19 IGF2/H19 

 CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ 

CD133-SSEA4- 0.6857 0.0286 0.0286 0.0286 0.0286 0.0571 0.0571 0.0571 0.1143 

CD133-SSEA4+   0.0286 0.0571   1.0000 0.0571   0.0286 0.0286 

CD133+SSEA4-     0.2000     0.1143     0.8857 

          

 DLK1 MEG3 DLK1/MEG3 

 CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ 

CD133-SSEA4- 1.0000 1.0000 0.4857 0.1143 0.3429 0.1143 0.0286 0.0286 0.0286 

CD133-SSEA4+   0.3429 0.3429   0.8857 0.8857   1.0000 0.8857 

CD133+SSEA4-     0.3429     0.8857     1.0000 

 

Table 7. Individual p values for Figures 45 and 46
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NTera2 subpopulations sorted by CD133 and SSEA4 surface expression display 

unique migratory characteristics in vitro and in vivo 

 Previous studies have found that the CD133 and SSEA4 antigens help identify 

CSC-like cells with increased migratory abilities [67, 145]. To determine if NTera2 cells 

exhibit different migratory abilities based on CD133 and SSEA4 expression, I employed 

freshly sorted NTera2 subpopulations in chemotaxis assays towards a 10% FBS gradient 

(Figure 47A; p values for Figure 47 listed in Table 8) and found statistically significant 

higher migration by the SSEA4+ cell subpopulations compared to CD133-SSEA4- cells.  

 To determine if the differences in in vitro migration by NTera2 subpopulations to 

10% FBS corresponded to differences in in vivo organ seeding abilities, I injected freshly 

sorted cells from each NTera2 subpopulation intravenously into SCID mice and analyzed 

their organs for human-murine chimerism at 60 hours post-injection (Figure 47B). 

Interestingly, I found a significantly higher number of CD133-SSEA4- cells in the bone 

marrow than CD133-SSEA4+ or CD133+SSEA4- cells. Also, similar to the differences in 

in vitro migration responses of these cell subpopulations, significantly higher numbers of 

CD133-SSEA4+ and CD133+SSEA4+ cells were found in the lungs of mice compared to 

CD133-SSEA4- cells. What’s more, this preferential seeding of the lung was not due to the 

simple trapping of larger cells in lung capillaries, as cells of each subpopulation were of 

similar sizes (Figure 44B). Collectively, these results demonstrate that surface expression 

of the CD133 and SSEA4 antigens identifies unique NTera2 cell subpopulations which 

exhibit different in vitro migratory properties and in vivo organ seeding efficiencies. 
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Figure 47. NTera2 subpopulations demonstrate unique migratory abilities in vitro 

and in vivo 

(A) Chemotaxis of NTera2 subpopulations in vitro. Graph represents the ratio of migration 

towards FBS versus BSA (negative control) and calculated as a percent migration of 

CD133-SSEA4- cells. Chemotaxis of freshly sorted cells was carried out a total of three 

times in duplicate and results were analyzed using the Mann-Whitney U test. (B) Organ 

seeding efficiencies of freshly sorted NTera2 subpopulation cells upon sacrifice of SCID 

mice at 60 hours post-intravenous injection. Results for each group (n=4; one experiment 

total) were assayed by qPCR at least twice in duplicate and analyzed using the Mann-

Whitney U test. *p<0.05, **p<0.01 

 



 

 

1
1
1
 

 Chemotaxis   

 CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+       

CD133-SSEA4- 0.0043 0.1797 0.0043       

CD133-SSEA4+   0.8182 0.9372       

CD133+SSEA4-     0.8182       

          

 Lung Seeding Efficiency Liver Seeding Efficiency Bone Marrow Seeding Efficiency 

 CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ CD133-SSEA4+ CD133+SSEA4- CD133+SSEA4+ 

CD133-SSEA4- 0.0426 0.8518 0.0293 0.7312 0.2790 0.3469 0.0014 0.0190 0.1095 

CD133-SSEA4+   0.3282 0.3282   0.2475 0.1740   0.2155 0.0334 

CD133+SSEA4-     0.1605     0.9525     0.1824 

 

Table 8. Individual p values for Figure 47 
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Each NTera2 subpopulation sorted by CD133 and SSEA4 surface expression re-

establishes the CD133- and SSEA4-expressing phenotypes of the parental NTera2 cell 

line upon in vitro expansion 

Several recent studies have demonstrated that surface marker expression is not a 

static feature of normal stem cells or cancerous stem-like cells [70, 72-74]. Indeed, primary 

leukemia cells and low-passage metastatic melanoma cancer cell lines were recently found 

to exhibit fluctuations in their surface expression of CSC markers [70, 71]. Notably, single 

cells sorted from the established human ovarian carcinoma cell line A2780 based on CD24 

and CD44 surface expression could regain expression of either CD24, CD44, or both 

antigens upon in vitro expansion [74]. Considering this discovery, I sorted single cells from 

the NTera2 cell line based on CD133 and SSEA4 surface expression, and I re-analyzed the 

expression of these antigens following in vitro expansion of these cells (Figure 48). I found 

that expansion of single cells from each NTera2 subpopulation (CD133-SSEA4-, CD133-

SSEA4+, CD133+SSEA4-, CD133+SSEA4+) resulted in re-establishment of the parental 

cell CD133 and SSEA4 surface expression phenotypes. Thus, the surface expression of 

CSC markers CD133 and SSEA4 by NTera2 cells fluctuates over time, suggesting that the 

true stemness of individual NTera2 cells cannot be assessed directly by the surface 

expression of these antigens. 

 



 

113 

 

 

Figure 48. Singly sorted NTera2 cells exhibit a fluctuating phenotype upon in vitro 

expansion 

Staining of in vitro expanded single cells following FACS sorting based on CD133 and 

SSEA4 expression.  
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Discussion 

Herein I provide evidence that the paternally imprinted growth-related gene DLK1 

is important for the malignancy of the human EC cell line NTera2. Whereas the paternally 

imprinted IGF2-H19 locus has been thoroughly investigated in TGCTs, where a 

hypomethylated ICR often remains as an artifact of the proposed PGC origin of these 

tumors, no study has directly investigated imprinting at the DLK1-MEG3 locus in these 

tissues [36-38, 122]. What’s more, a recent investigation into the imprinting status of PGCs 

during their transformation into EGCs, and thus their acquisition of pluripotency and 

teratoma-forming capacity, did not examine the DLK1-MEG3 locus [146]. This omission 

is especially surprising given the seminal work by Kono, et al., which demonstrated the 

reliance of bimaternal mouse embryo growth and development specifically on the 

imprinting status of the IGF2-H19 and DLK1-MEG3 loci - two of only four known 

paternally imprinted loci in mice [15-17]. Moreover, the induction of pluripotency in 

murine PGCs by Myc overexpression, a pluripotency-related gene which I found elevated 

in NTera2 cells (Figure 45A), upregulated Dlk1 expression in these cells [147]. Thus, given 

the imprinting dynamics of developing PGCs and their malignant and non-malignant routes 

of pluripotency acquisition (Figure 5A,B), combined with the presence of a historically 

growth-restricting hypomethylated IGF2-H19 ICR in both quiescent pluripotent adult stem 

cells and TGCT tissues, investigations into these two paternally imprinted loci could help 

uncover some important details regarding stem cell quiescence and the development of 

malignant stem-like cells [8, 36-38, 41]. 

I show that the NTera2 cell line exhibited hypomethylation at the IGF2-H19 ICR 

and hypermethylation at the DLK1-MEG3 IG-DMR and MEG3 DMR, in contrast to the 
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somatic methylation of these DMRs in human MNCs and the recently published somatic 

methylation results for other human tissues including testes [124]. The low IGF2/H19 and 

high DLK1/MEG3 expression ratios in NTera2 cells, as compared with MNCs and testes, 

agree with their respective methylation values at these DMRs. Surprisingly, while NTera2 

cells expressed lower IGF2 and MEG3 than testes, and there was no difference in H19 

expression between NTera2 cells and testes, NTera2 cells also expressed significantly 

lower DLK1 than testes. However, this difference in DLK1 expression is likely due to the 

presence of multiple cell types in human testes RNA, of which leydig cells are known to 

express high levels of DLK1 protein [148]. Importantly, DLK1 mRNA expression also 

does not provide insight into protein locality, and immunohistochemistry revealed a strong 

presence of DLK1 in the nucleus of NTera2 cells. This is a surprising observation given 

the limited commentary on DLK1 as a nuclear protein [127]. DLK1 is typically studied in 

its membrane-bound or cleaved, soluble form, and a study on mouse leydig cells showed 

very little, if any, nuclear DLK1 in these cells. Importantly, these differences in genomic 

imprinting and expression of imprinted genes among NTera2, MNCs, and testes suggest 

that the high DLK1/MEG3 expression ratio in NTera2 cells may be important for their 

malignancy, and this could serve as a viable target for therapeutic intervention for EC. 

 The methyltransferase inhibitor 5-azaD was recently found to be particularly toxic 

to EC cells [52]. Interestingly, 5-azaD specifically targeted stem-like cells and decreased 

the pluripotency of EC cells while globally demethylating their DNA [52, 53]. What’s 

more, the 5-azaD analog 5-azaC was also recently found to decrease the proliferation of 

rhabdomyosarcoma cells while demethylating their IGF2-H19 ICR and decreasing their 

IGF2/H19 expression ratio [131]. In agreement with these studies, I show that nanomolar 
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doses of 5-azaD decreased the proliferation rate of NTera2 cells and demethylated the 

MEG3 promotor, although this treatment did not affect methylation at the DLK1-MEG3 

IG-DMR. 5-azaD treatment also increased the IGF2/H19 expression ratio and decreased 

the DLK1/MEG3 expression ratio, likely through a combination of possible imprinting-

disrupting mechanisms, including promotor demethylation at the IGF2 and MEG3 genes 

and the blocking of CTCF binding via covalent attachment of DNA methyltransferases to 

DNA [132]. Thus, changes in the IGF2/H19 and DLK1/MEG3 expression ratios 

accompanied a decrease in the proliferation rate of NTera2 cells resulting from 5-azaD 

treatment, suggesting that these expression ratios are involved in NTera2 cell proliferation. 

Specifically, these results suggest that the DLK1/MEG3 expression ratio could be 

particularly important for the proliferation of NTera2 cells, as it decreased in response to 

5-azaD treatment, whereas the IGF2/H19 expression ratio increased. Notably, the IGF2 

expression increased in treated cells without a significant change in IGF1R expression, 

questioning the importance of insulin-like signaling in these cells. What’s more, NTera2 

cells express higher IGF1R and INSR than testes tissues and express these genes at the 

protein level, suggesting that 5-azaD cells should respond to higher IGF2 expression if 

they have functional receptors. 

  Insulin-like signaling is an important component of PGC migration and possibly 

TGCT pathogenesis [119]. Studies have shown that insulin-like signaling is important for 

teratocarcinoma cells, though no studies have investigated the response of human EC cells 

to insulin-like signaling growth factors [135-137]. In addition to being a source of DLK1 

for the testes, leydig cells also secrete other hormones, including IGF1 and testosterone 

[148-150]. This indicates that, like many other cancers, exogenous growth factors in serum 
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are likely a major source of growth stimulation for TGCTs such as EC. More importantly, 

this suggests that exogenous growth factors in the serum, such as IGF1, may compensate 

for low autocrine growth factor stimulation. In addition, NTera2 cells also express other 

growth factors which also stimulate mitogenic signaling pathways[151]. I show that, in 

spite of the inability of increased IGF2 expression by NTera2 cells to rescue their 

proliferation rate upon 5-azaD treatment, exogenous insulin-like signaling growth factors 

including IGF2 are able to stimulate mitogenic signaling pathways in these cells. In 

addition, while NTera2 cells exhibit a slow proliferation rate in the absence of serum, 

supplementing serum-free media with insulin-like signaling growth factors enhances the 

proliferation of NTera2 cells. Thus, NTera2 cells have functional insulin-like signaling 

receptors which likely contributes to their malignancy, though it is unlikely that autocrine 

IGF2 signaling plays a significant role in this process.  

 Unlike IGF2, the DLK1 protein is known to play roles in proliferation as both a 

membrane-bound and a soluble protein [152, 153]. Thus, assessing a role for this protein 

in the proliferation of NTera2 cells was achieved through shRNA-mediated 

downregulation. I show that knockdown of DLK1 in stably transfected NTera2 cell lines 

significantly decreased the proliferation rates of these cells in vitro. Most importantly, these 

in vitro results translated into significantly smaller tumor sizes in vivo in immunodeficient 

mice, as well as significantly reduced seeding efficiencies to the lungs and livers of these 

animals. These results clearly display a requirement of DLK1 expression by NTera2 cells 

for their malignancy, highlighting DLK1 as a potential target for therapy in EC. 

Interestingly, while the mechanisms by which DLK1 influence cell proliferation are still 

largely unknown and are often unique to a given cell type, DLK1 is a known marker of 
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certain normal stem cells and CSC populations [10, 11, 34, 154]. Considering that EC is 

regarded as the stem cell within teratocarcinomas, and that EC cells exhibit certain aspects 

of pluripotency, DLK1 may represent a novel biomarker for EC as a product of aberrant 

genomic imprinting in developing PGCs during their transition to a pluripotent stem-like 

state [30, 39, 50, 69].  

 Considering the heterogeneity of mixed GCTs and the rarity of CSCs in other types 

of tumor tissues, coupled with the CSC-like nature of the NTera2 cell line and its 

dependence on DLK1 for malignancy, I investigated the DLK1-MEG3 IG-DMR 

methylation in primary human TGCT samples which contained varying components of EC 

[65, 155]. I show that, in comparison to MNCs and published data for human testes, this 

DMR is hypomethylated in mixed TGCTs [124]. What’s more, analysis of the IGF2-H19 

ICR in these tissues also revealed hypomethylation, in agreement with previous reports on 

GCTs, and this characteristic was consistent among different regions of the same tumor 

[36-38]. These results are consistent with the proposed PGC origin of TGCTs, and they 

suggest that more stem-like cells, like those which clonally expanded to form the NTera2 

cell line, may be found as small populations of CSCs harboring higher methylation at the 

DLK1-MEG3 locus within mixed TGCT tissues [43]. 

 The existence of CSCs within tumor tissues and established cell lines has been the 

subject of much investigation and debate [156, 157]. Recent reports offer a new perspective 

on this phenomenon by providing evidence that, like previous studies in hematopoietic 

stem cells and Chinese hamster ovary cells, the expression of putative CSC markers 

fluctuate over time [70-74]. Surprisingly, the isolation of potential CSC subpopulations 

from the ovarian carcinoma cell line A2780 based on CD24 and CD44 surface expression 
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revealed that, although these subpopulations were unique in their organ seeding 

efficiencies in vivo, in vitro expansion of single cells from each subpopulation resulted in 

the gain of CD24, CD44, or both markers. Collectively, these studies indicate that the 

expression of stem cell-associated markers is not static in adult stem cells, CSCs, or 

established cell lines. I show here that a similar phenomenon occurs in NTera2 cells, 

whereby subpopulations of cells isolated from this cell line exhibit unique phenotypes upon 

isolation, but expansion of single cells from each subpopulation re-establishes the parental 

cell line phenotype at the level of surface antigen expression. Specifically, subpopulations 

of NTera2 cells isolated by FACS based on their surface expression of CD133 and SSEA4, 

antigens known to be expressed on normal stem cells as well as potential CSC populations, 

displayed unique expression signatures and migration characteristics in vitro and in vivo. 

Importantly, little difference in the pluripotency gene OCT4 was found among the 

subpopulations. Similarly, no significant differences in DLK1 expression were observed 

either, although the DLK1/MEG3 expression ratio was lowest in the CD133-SSEA4- cells. 

In this regard, in vitro expansion of single cells isolated from each subpopulation 

demonstrated the abilities of CD133-, SSEA4-, and CD133-SSEA4- cells to produce 

CD133+SSEA4+ cells, indicating that the overall stemness of cells within each 

subpopulation is similar. 

 In summary, the quiescence-associated hypomethylation of the IGF2-H19 locus is 

surprisingly found in NTera2 cells as well as EC-containing mixed TGCT tissues. 

However, while these tissues also exhibit hypomethylation at the DLK1-MEG3 IG-DMR, 

this DMR and the MEG3 DMR are hypermethylated in NTera2 cells. Investigation into the 

growth-related genes from these paternally imprinted loci revealed that autocrine IGF2 
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expression is not likely to be significant for the survival or proliferation of these cells. In 

contrast, DLK1 expression maintenance is necessary for the malignancy of NTera2 in vitro 

as well as in vivo. Importantly, isolation of potential CSCs from the NTera2 cell line 

revealed little difference in the OCT4 or DLK1 expression among these cells, and revealed 

no difference in their stem-like capabilies. These results highlight DLK1 as a potential 

target for the treatment of EC and potentially for other TGCTs, as it represents a novel 

candidate biomarker for stem-like cells within these tissues. 

 

Conclusions 

• As expected for tumor cells proposed to arise from PGCs, NTera2 cells exhibit 

hypomethylation at the IGF2-H19 DMR. However, in contrast to PGCs, NTera2 

cells exhibit hypermethylation at the DLK1-MEG3 DMR.  

 

• Undifferentiated NTera2 cells exhibit differences in imprinting methylation at 

control DMRs within the IGF2-H19 and DLK1-MEG3 loci compared to tissues 

isolated from primary patient samples, which is likely due to the heterogeneity of 

these tissues and more differentiated components. 

 

• DLK1, as a product of the DLK1-MEG3 locus, appears to be a crucial factor for the 

in vitro and in vivo growth of NTera2 and represents a potentially novel therapeutic 

target for EC. 
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• Confirmation of NTera2 proliferation inhibition by the DNA demethylating 

compound 5-azadeoxycytidine is accompanied by demethylation of the MEG3 

promotor and a decrease in the DLK1/MEG3 transcription ratio. 

 

• The roles of noncoding RNAs from the DLK1-MEG3 and IGF2-H19 loci in the 

pathogenesis of embryonal carcinoma requires further studies. However, NTera2 

cells express IGF1R and INSR and respond to insulin-like growth factor treatment. 

 

• I cannot identify a static phenotype for potential subpopulation of CSCs within the 

established NTera2 cell line, supporting the idea that cells from established cell 

lines show a fluctuating phenotype for the expression of CSC markers. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

As studies continue to document aberrant imprinting and expression from the 

DLK1-MEG3 locus in various diseases, its hidden complexities are slowly unwinding to 

reveal a deep connection with the stem-like state of cells. The prospective origins of AML 

and EC in the PGC compartment underscores the potential importance of genomic 

imprinting in the development of these diseases. My results indicate that the expression of 

the imprinted DLK1 gene is important for the malignancy of these cells, and this is likely 

due in part to its abilities to maintain cell stemness. In this context, the presence of nuclear 

DLK1 in NTera2 cells suggests a role for this protein in regulating gene transcription, and 

warrants investigation into DLK1 locality in AML blasts. Interestingly, NTera2 cells did 

not have higher DLK1 expression than testes tissue, further highlighting the importance of 

DLK1 location when considering its roles in malignancy. However, the malignant 

transformation of ESCs towards an EC-like phenotype as a result of prolonged in vitro 

passaging is accompanied by an increase in DLK1 expression, so monitoring the DLK1 

localization during this process could also help determine its roles in malignancy [31]. 

Future studies on the activities of nuclear DLK1 will give valuable insight into its 

oncogenic functions, and may uncover treatment options for cancers which do not appear 

to involve DLK1 through simple RT-qPCR screening. Similarly, the balance between 

normal stem cell self-renewal and oncogenesis may be rooted in DLK1 activities. 

 One of the major hurdles in regenerative medicine is the potential for malignant 

transformation by pluripotent stem cells. Billions of dollars have been spent over the last 
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two decades in an effort to safely harness the regenerative capacity of embryonic stem cells 

[158]. However, the underlying safety concern for teratoma formation by ESCs and iPSCs 

has been among the most significant roadblocks to their appearance in the clinic [159]. In 

this regard, investigations into adult pluripotent stem cell populations have yielded several 

potentially overlapping populations of cells which meet many of the criteria for 

pluripotency. Among these lies VSELs, which arguably lie near the top of the adult stem 

cell hierarchy due to their repertoire of stem cell and epiblast markers and their epigenetic 

signature [44, 160]. Importantly, hypomethylation of the IGF2-H19 ICR is a characteristic 

shared by VSELs, migrating PGCs, and GCTs [8, 36-38, 41]. The potential feedback loop 

which exists between the OCT4 protein, the H19 RNA, and the IGF2-H19 imprint offers 

a unique perspective on the self-renewal of these cells, and a recent study investigating the 

downregulation of H19 in EC cells discovered that H19 knockdown cells had significantly 

decreased expression of several pluripotency markers, including OCT4 [18, 161]. Thus, 

while this imprinting pattern in VSELs and migrating PGCs is associated with their 

quiescence, the same imprinting pattern is associated with pluripotency maintenance and 

malignancy in EC and potentially other GCTs [43]. What’s more, in contrast to the PGC-

like imprint at the IGF2-H19 locus, murine VSELs harbor a somatic imprint at the DLK1-

MEG3 IG-DMR [8]. Similarly, I found that the IG-DMR and MEG3 DMR are both 

hypermethylated in EC cells. These similarities in the imprinting patterns of VSELs and 

NTera2, which are both proposed descendants of PGCs, combined with the requirement 

for DLK1 by NTera2 for proliferation, begs the question of what role the DLK1 protein 

plays in the proliferation of VSELs. 
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Incredibly, over a decade of VSELs research has recently culminated in the 

successful expansion of these cells via treatment with the pan-histone deacetylase inhibitor 

(HDACi) valproic acid (VPA) [9]. This global epigenetic modifier was found to upregulate 

the expression of DLK1 in human umbilical cord blood hematopoietic stem cells in addition 

to promoting their expansion ex vivo [48]. The nuclear localization of DLK1 in NTera2 

cells is very surprising, especially considering that OCT4 expression was significantly 

higher in NTera2 cells than testes and was significantly decreased in DLK1 knockdown 

cells. Given the association of DLK1 with the stemness maintenance and proliferation of 

normal and cancerous stem cells, the intranuclear transport and activity of this protein may 

serve underappreciated functions specifically for stem cells, and investigations into 

genomic imprinting at the DLK1-MEG3 locus and DLK1 localization in VSELs could 

provide greater insight into the self-renewing potential of these cells.  
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