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ABSTRACT 

TARGETING FAS PATHWAY AS AN EFFECTIVE MEANS OF INDUCING 

TOLERANCE TO PANCREATIC ISLETS 

Kyle Woodward 

August 8, 2017 

Signaling through Fas/FasL is critical to immune homeostasis and 

tolerance to self-antigens.  SA-FasL is a chimeric protein of FasL and 

streptavidin.  SA-FasL exists as oligomers with potent apoptotic function on Fas 

expressing immune cells and tightly binds to biotinylated surfaces. Islet grafts 

engineered to transiently display SA-FasL on their surface established tolerance 

in allogeneic recipients with a short course of rapamycin.   

We hypothesized that SA-FasL on the islet allograft will induce apoptosis 

in alloreactive T effector (Teff) cells and phagocytes clearing apoptotic bodies will 

produce tolerogenic molecules, such as TGF-β, that will lead to the generation 

and/or expansion of Treg cells at the induction phase.  Treg cells will then home 

to allografts in response to inflammatory cues and will be maintained in the graft 

by alloantigens for long-term graft protection.  In support of this hypothesis, we 

demonstrated reduced alloreactive T cells in the draining lymph nodes of SA-

FasL-engineered grafts as compared to controls.  Depletion of phagocytes or 

blocking TGF-β peri- and immediate post-transplantation of allogeneic SA-FasL-

islet grafts abrogated tolerance as the grafts were rejected acutely. 
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Systemic nature of the tolerance at the induction phase was shown by 

demonstrating that both un-engineered as well as SA-FasL-engineered islet 

grafts simultaneously transplanted under the contralateral kidney capsules 

survived indefinitely.  SA-FasL-islets had characteristics of immune privilege as 

chemical destruction of the long-term graft followed by the transplantation of an 

un-engineered graft at the same location 4 days later resulted in the protection of 

the second set graft.   

We also tested whether tolerance to allografts requires physical presence 

of SA-FasL on the graft.  To investigate this, we engineered biotinylated poly 

ethylene glycol (PEG) hydrogel or poly(lactic-co-glycolide) (PLGA) scaffolds with 

SA-FasL and co-transplanted with unmanipulated allogeneic islets under the 

kidney capsule or epididymal fat pad, respectively, resulted in indefinite ( > 200 

days) islet survival.  Flow cytometry revealed increased amounts of Tregs in the 

graft and draining lymph nodes in the PEG model. Mice rejected these grafts 

when Tregs were depleted.  Taken together, the studies presented herein 

elucidate the mechanistic basis of SA-FasL-mediated tolerance and show that 

SA-FasL-engineered biomaterials are also effective in inducing tolerance.   
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CHAPTER 1: INTRODUCTION 

 

Type 1 diabetes  

 Diabetes affects a rapidly increasing number of people each year. In 2014, 

29 million people in the United States alone suffered from diabetes1. It 

contributes to 200,000 deaths and is estimated to cost $245 billion in the US per 

year1.  A significant portion (5-10%) of those with diabetes in the US are afflicted 

with the autoimmune form known as type 1 diabetes. Diabetes is characterized 

by hyperglycemia and can contribute to hypertension, blindness, kidney disease, 

and the need for limb amputations.   

Type 1 diabetes is caused by the loss of insulin producing β cells in the 

islets of Langerhans, located in the pancreas.  Genetics play a large role in the 

onset of type 1 diabetes, as several genes have been linked to increased 

susceptibility. Among the strongest correlations with the disease are MHC 

genes2, 3. Further adding to the evidence for the genetic basis of diabetes, in 

studies examining monozygotic twins where one has type 1 diabetes the second 

twin was diabetic in approximately 50% of the pairs of twins in the study4, 5.  

 However, as the concordance rate of type 1 diabetes among monozygotic 

twins is only around 50%, environmental factors are implicated as another 
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contributor to the development of disease. Although the nature and diversity of 

the environmental factors yet to be fully investigated, viruses are considered one 

of the main suspects. Coxsackie virus may initiate inflammation and β cell 

antigen shedding leading to type 1 diabetes, as it has been shown to infect 

human β cells in vitro and infection was inhibited by type I and type II 

interferons6. Viral infections can then increase the MHC I expression on the 

surface of β cells, and also lead to the production of inflammatory cytokines, 

which lead T cells and other leukocytes to attack infected β cells and possibly 

uninfected β cells as well7. As Non-obese diabetic (NOD) mice spontaneously 

become diabetic, these mice have been used to study many facets of 

autoimmune diabetes, which may have parallels to T1D in humans. NOD mice 

with suppressor of cytokine signaling 1 knocked out (SOCS-1-Tg NOD) become 

diabetic after infection with Coxsackie virus, further implicating it as a possible 

trigger for the cascade of events which ultimately leads to T1D6.  

 Later events in that cascade are more studied, as early signs of diabetes 

can be detected once β cell loss is significant enough. In recently deceased 

human patients suffering from T1D, CD8+ and CD4+ T cells, macrophages, and 

CD20+ B cells are found infiltrating islets in higher levels when compared to non-

diabetics8. On top of that, T cells are suspected to play a large role due to 

genetic screening revealing that HLA genes show the strongest link to T1D in 

humans, with DR3/4-DQ8 comprising almost 50% of children with anti-islet 

autoimmunity by the age of 53, implying that CD4+ T cells in these patients may 

play a key role in the destruction of β cells. In NOD mice, CD4+ T cell depletion 
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reverses new onset diabetes, further adding weight to the idea that they are a 

crucial cell type in the development of T1D9. Furthermore, proinsulin and insulin 

are major targets of CD4+ T cells and mice transgenic for proinsulin that was 

modified to eliminate a dominant CD4+ T cell epitope do not develop T1D10.  

CD8+ T cells may have a huge part in β cell destruction as well, as evidenced by 

a study showing HLA-A2+ patients have circulating CD8+ T cells that kill β cells in 

vitro by targeting a pre-proinsulin peptide chain2. This observation is also 

supported by mouse studies, as CD8+ T cells in NOD mice have been discovered 

which recognize the insulin β chain, and can therefore target β cells11.  See 

Figure 1 for a schematic diagram of the events leading to islet destruction. 

 

Treatment of type 1 diabetes 

One of the miracles of modern medicine is the availability of insulin to treat 

diabetes. However, even with insulin administration blood glucose is often 

difficult to regulate, and thus the severe of long-term effects such as kidney 

disease and arterial damage leading to limb amputation may still occur with such 

treatment.   

Another option being explored is the prevention of diabetes through early 

screening and immunosuppression.  Genetically at risk children can be positively 

screened for insulin autoantibodies and islet cell antibodies long before beta cell 

destruction is complete12.  Additionally, when type 1 diabetes is initially 

diagnosed, there is often a honeymoon period in which administration of insulin  
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eases the burden of the few remaining beta cells allowing them to produce 

insulin. If the autoimmune aspects of type 1 diabetes were regulated at these 

points, possibly through T cell suppression, diabetes could theoretically be 

reversed when the patients recover beta cells and therefore regain sufficient 

control of blood glucose levels. However, genetic and antibody screening of all 

children is not yet practical, and no studies have sufficiently prevented diabetes 

as of yet.  For instance, studies with vaccination soon after diagnosis using alum 

and glutamic acid decarboxylase, a critical protein in autoimmune diabetes, 

found no significant reduction in insulin production loss among other factors, in 

direct contrast to animal models which show vaccination to a target antigen to be 

tolerizing13, 14. Therefore, I do not see this as an alternative to transplantation, but 

rather a potential treatment option.  

A fourth option for treatment of type 1 diabetes is transplanting of beta cell 

containing islets from healthy donor pancreas. Successful transplantation of 

islets is an effective cure of T1D, and working out protocols which allow the 

patient to retain the transplant are therefore currently a focus in T1D research. 

The current leading clinical protocol, the Edmonton Protocol, is able to restore 

control of blood glucose through intraportal transplant of islets 15.  Despite the 

great success of the Edmonton Protocol, it is still far from an ultimate solution to 

type 1 diabetes.  Upon following the patients, only 31% retained insulin 

independence after two years, and 10% after five years15, 16.   

Islet transplants under this protocol are done by injecting islet cells directly 

into the portal vein. This is very convenient, bypassing the need for surgery, and 
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as islets are in contact with the blood stream they may easily detect blood 

glucose levels and secrete insulin into the blood in response. However, such 

direct injection into the portal vein leads to the instant blood mediated 

inflammatory reaction, in which a large amount of islets are swiftly destroyed17, 18. 

This is characterized by platelets binding the islets, coagulation, infiltration of 

CD11b+ cells, compliment activation, and destruction of the islets17.   

In order to compensate for the islets to this instant blood mediated 

inflammatory reaction, more islets must be transplanted in the beginning.  This 

may require up to four donors to have islets pooled together in order to gain 

successful insulin independence19. This may be somewhat obviated by 

transplanting islets in another location, however, no suitable replacements for 

intraportal transplantation have been sufficiently researched for clinical islet 

transplants as of yet. 

In addition to the immediate loss of islets due to instant blood mediated 

inflammatory reaction, there is a slower loss due to the immune response. Under 

the Edmonton Protocol, multiple donors are required for a single transplant, 

giving a large chance that one or more of the sets of donated islets will not be 

HLA matched.  As with many mismatched transplants, effector T cells can soon 

destroy the graft without proper immunosuppressive drugs. Those used in this 

protocol are daclizumab, rapamycin, and tacrolimus. Daclizumab is an IL-2 

receptor monoclonal antibody which inhibits IL-2 uptake in effector T cells, 

blocking proliferation and growth. This also blocks IL-2R on regulatory Tregs, and 

therefore may have conflicting effects. Rapamycin, also known as sirolimus, 
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works through inhibition of mTOR, which in turn inhibits effector T cells and is 

known to induce regulatory T cells in vitro. Tacrolimus is a calcineurin inhibitor 

that blocks IL-2 production in T cells. Altogether, these drugs are effective at 

stopping much of the T cell response that would quickly eliminate transplanted 

islets. However, increasing evidence shows that long-term use of tacrolimus and 

rapamycin as per the Edmonton Protocol causes damage to kidneys and islets, 

suggesting that these drugs may be counterproductive20, 21.  In addition, such 

immunosuppression weakens the body’s natural defense against tumors and 

infections. 

 

Immune regulation as an approach to induce allotolerance    

 Despite their toxic effects, these drugs must be used under the current 

protocol in order to keep T cell mediated rejection under control. In addition, 

autoreactive CD8+ and CD4+ T cells have already established β-cell 

autoimmunity in T1D patients. As such, how can effector T cells be kept in 

check? There are several methods already existing in the immune system to stop 

or control rogue T cells, including the deletion of T cells in the thymus, known as 

central tolerance. This is brought about by APCs such as medullary thymic 

epithelial cells or dendritic cells in the thymus presenting antigen to T cells in the 

thymus22. T cells that tightly bind to self-antigens presented by MHC class I or 

class II are deleted before being allowed to escape to the periphery and cause 

damage.  
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While this system has been extensively studied as a preemptory 

mechanism to control autoimmunity, its validity has also been shown in 

transplant settings. In a rat allogeneic islet transplant model, Posselt et al. 

showed that allogeneic islets transplanted into the thymus survived indefinitely 

through deletion of alloreactive T cells23. This central tolerance translated into 

systemic tolerance, as a second set of donor-matched islets transplanted under 

the kidney capsule of the thymically manipulated rats also survived without 

further immune intervention.   

Relevant to the context of this thesis are studies with bone marrow mixed 

chimerism to induce tolerance.  Mixed chimeras were shown to be tolerant to 

both the donor and recipient antigens established by thymic deletion of 

responding T cell clones24. The presence of a functional Fas ligand protein 

(FasL, CD95L) on the surface of donor bone marrow cells was shown to be 

requisite for the induced tolerance25, 26.  

 

Tregs as a mediator of tolerance 

Immune tolerance to self-antigens is maintained not only by central 

tolerance through the deletion of autoreactive T cells in the thymus, but also by 

several peripheral mechanisms.  CD4+CD25+Foxp3+ regulatory cells (Tregs) are 

critical to peripheral tolerance mechanisms27 as the lack of these cells or defects 

in their function results in massive autoimmunity in humans and rodents28, 29. 

Tregs are either developed in the thymus (tTregs) or induced in the periphery 
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(pTreg). Tregs express several markers which aid in their suppressive function, 

including CTLA-4, ICOS, and LAG-330 and suppress not only T effector cells, but 

various other immune effector cells, such as NK cells, B cells.  Tregs suppress 

target cells through cell-to-cell contact as well as various immunosuppressive 

cytokines, such as IL-10 and TGF-β, or through competition for IL-2, a cytokine 

required for the generation, expansion, and function of Tregs31. 

Importantly, Tregs have been shown to suppress autoimmune diabetes in 

the BDC2.5/NOD mouse model32.  These mice are genetically modified to 

contain a CD4+ T cell population which is specific for β cell antigen, however they 

are kept in check by regulatory cells, blocking the onset of diabetes in young 

BDC2.5/NOD mice. When Tregs in 5-week-old BDC2.5/NOD mice are depleted 

through diphtheria toxin receptor expressed under the control of FOXP3 

promotor, and therefore, Treg specific, they acquired overt diabetes in 3-5 days 

32.  Humans with recent onset of T1D were shown to have normal frequency of 

Treg cells, yet they have a reduced ability to suppress effector T cell proliferation 

in vitro33.  Ex vivo expanded Treg cells were shown to prevent and reverse TD in 

NOD and the expanded cells have been tested in various clinical trials to prevent 

treat T1D as well as prevent allograft rejection with reported clinical benefits34, 35. 

Important in the context of this dissertation are our published observations 

that CD4+CD25+Foxp3+ regulatory cells are critical to tolerance established by 

pancreatic islets engineered with SA-FasL27. Confocal microscopy revealed an 

increased number of Tregs located in the long-term allogeneic islet grafts. Tregs 

were critical not only for the induction, but also maintenance of tolerance. 
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Depletion of Tregs with an antibody to CD25 early post-transplantation (day 14) 

or after long-term tolerance had been established (day 100) resulted in rejection 

of islet grafts in both groups of mice.  The exact mechanisms by which Tregs are 

generated by SA-FasL and if they are thymic or induced are yet to be elucidated. 

SA-FasL may shift the balance of Teffs/Tregs in favor of Tregs by selectively 

inducing apoptosis in Teffs.  Consistent with this notion, studies demonstrating 

that Tregs are more resistant to Fas/FasL mediated apoptosis due to their 

increased expression of c-FLIP36 and SA-FasL-engineered Tregs have better 

regulatory function than the unmanipulated cells in preventing T1D and graft-vs-

host diseases in preclinical models37, 38. 

 

Rapamycin in transplantation 

 Another pathway to increase Tregs is through TGF-β and rapamycin. In 

vitro, it has been shown that a combination of TGF-β and rapamycin converts 

conventional T cells into Tregs39. These converted Tregs are known as induced 

Tregs (iTregs) if developed in vitro or peripheral Tregs (pTregs) if developed in 

vivo. Such peripherally generated Tregs are necessary to control autoimmunity, 

as not all T cells that are able to respond to self-antigen are deleted in the 

thymus. iTregs have suppressive activity and can be identified by the lack of 

Helios or Nrp-1 40. 

  Rapamycin also increases the Treg to Teff ratio through suppressing the 

growth of effector T cells, and expanding Tregs41.  Rapamycin functions by 
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inhibiting mammalian target of rapamycin (mTOR)42. Deletion of mTOR in mice T 

cells causes them to spontaneously become iTregs43. Rapamycin is currently in 

use as an immunosuppressive drug in the Edmonton Protocol, one of the leading 

protocols on islet transplantation44. However, in current use, it must be 

administered long-term in order to stave off rejection. During such long-term use, 

rapamycin is toxic to β-cells, reducing their insulin secretion, mass, and 

proliferation, while increasing their autophagy and apoptosis45, 46. Therefore, the 

time of rapamycin administration must be shortened drastically or eliminated in 

order for a favorable outcome in the cure of diabetes. 

Other methods of increasing the Treg:Teff cell ratio include IFN-γ and 

indoleamine 2,3-dioxygenase (IDO)47. Despite the fact that it is thought of as an 

inflammatory cytokine, sustained IFN-γ activity can be tolerogenic. IFN-γ has 

been shown to activate IDO production in DCs48. IDO is an enzyme that 

catalyzes the degradation of tryptophan, and as such may starve T cells and 

prevent their activation and proliferation. IDO also has been shown to induce 

CD4+ T cells to become regulatory T cells.  The observed synergy between SA-

FasL and rapamycin may operate through DC expression of IDO in response to 

rapamycin and IDO initiating a forward regulatory loop resulting in the generation 

of Tregs47. Rapamycin has also been shown to work in conjunction with another 

anti-inflammitory cytokine, IL-1049.  This combination of treatment induces T 

regulatory type one (Tr1) cells which have proven to aid in tolerance in islet 

transplantation49.  
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Rapamycin also affects B cell proliferation50. It blocks entry into the S 

phase of cell growth in B cells, and inhibits differentiation into plasma cells50.  As 

a result, less anti-donor antibodies are generated. This three pronged tolerance 

induction through inhibition of B and T cell responses and the increase in Treg 

responses make rapamycin an ideal immunomodulatory  drug.   

 

Fas-mediated activation induced cell death (AICD) as a means of 

immunomodulation  

Fas is expressed in the thymus, heart, and liver51, and notably on the surface of 

activated B and T cells.  FasL is found on the surface of activated T cells and NK 

cells, as well as in immune privilege sites such as testis and eye52. The 

interaction of Fas with FasL is a critical mechanism of immune homeostasis and 

self-tolerance through activation-induced cell death (AICD). Mutations in affecting 

the function of Fas or FasL result in hyper proliferation of lymphocytes and 

autoimmunity, suggesting that the Fas pathway has a non-redundant function 

vital to immunoregulation53, 54. Fas pathway was also shown to be important to 

immune privilege status of various organs, such as eyes and testicular tissues55.  

Fas/FasL-interaction was also demonstrated to be involved in acquired tolerance 

to tumors.  Many tumors express FasL as a mechanism of immune evasion by 

inducing apoptosis in T effector cells responding to tumor associated antigens56. 

As such, the Fas pathway has great potential to regulate immune response and 

has been the subject of intense research.  
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In addition to naïve T cells becoming activated in response to encounters 

with donor cells, humans and nonhuman primates have preexisting memory T 

cells from previous infections which can also cross-react with transplants, known 

as heterologous immunity57, 58. These memory cells in humans and nonhuman 

primates express Fas59, 60. In addition, both CD8+ and CD4+ memory cells are 

sensitive to Fas/FasL mediated apoptosis61, 62. 

In researching just how fundamental apoptosis is to inducing peripheral 

tolerance, Li et al. found that blocking apoptosis with cyclosporin A inhibits 

allograft tolerance even with costimulatory blockade63. However, attempts to 

harness the power of Fas/FasL in order to cause apoptosis of donor reactive T 

cells have met with mixed results. Use of an agonistic Fas antibody in mice 

induced apoptosis, but had the side effects of liver toxicity and death, presumably 

because of the expression of Fas on liver tissue64. 

In utilizing gene therapy to manipulate apoptosis of donor reactive T cells, 

FasL overexpression on heart grafts surprisingly accelerated rejection with a 

massive increase in neutrophil infiltration into the graft65. Upon further study, it 

was found that FasL is cleaved from the membrane through matrix 

metalloproteinases 66, 67, and that chemotaxis of neutrophils is activated by the 

soluble form of FasL, and not the membrane bound form68, 69. In addition, 

membrane bound FasL is effective at inducing apoptosis, but soluble FasL 

actually blocks apoptosis in T cells70.  Therefore, the use of FasL as an effective 

immune regulatory will require separation of its apoptotic function from 
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chemotactic and anti-apoptotic functions. See Figure 2 for a schematic diagram 

of Fas/FasL induced apoptosis. 

SA-FasL as a novel form of FasL 

In order to combat these problems in inducing tolerance to transplants, 

Yolcu et al. generated a novel form of FasL which lacks the cleavage site and is 

fused with streptavidin to form a chimeric protein (SA-FasL)71. This novel 

molecule has two important features; i) forms oligomers owing to the structural 

features of streptavidin and ii) binds to biotinylated biologic and non-biologic 

surfaces for transient display (Figure 3). Several studies have shown the 

feasibility of attaching SA-FasL to biotinylated islets, cardiac tissue, or 

splenocytes72-74.  Importantly, immunomodulation with SA-FasL-engineered cells 

and tissues resulted in apoptosis of alloreactive T cells and induction of tolerance 

without detectable chemotactic function for neutrophils 74.  

 In the context of islet transplantation as a cure for type 1 diabetes, we 

showed that rapamycin as an mTOR inhibitor works in synergy with SA-FasL to 

induce robust tolerance as all SA-FasL-engineered islet grafts survived  in 

chemically diabetic allogeneic recipients for 500 days (n=45)74. This compelling 

observation lead us to investigate the underlying mechanism(s) of the long term 

survival of islet grafts.  Since rapamycin administration is stopped 14 days after 

transplant in this protocol, and SA-FasL is almost completely absent from the 

surface of cultured islets 11 days after engineering, the long term survival must 

rely on a third regulatory mechanism.   
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Islet transplant sites 

 Infusion of islets through portal vein into the liver is the only site being 

practiced in the clinic. Intraportal transplants are effective in creating an 

environment in which islets can sense blood glucose and secrete insulin with 

appropriate response levels. Intraportal injection of islets also obviates the need 

for surgery, as islets are directly injected into the portal vein. In addition, 

intraportal transplant protocols may be the most well studied in humans. 

However, intraportal transplants may not yield the best environment for islets, 

mainly due to the instant blood-mediated inflammatory reaction, which causes 

the death of many islets soon after transplantation17.  Another downside is the 

higher concentration of toxic immunosuppressive drugs in the liver.  

Therefore, other locations have been explored in clinical transplantations 

including intramuscular75, intraperitoneal76, and intrabone77 injections of islets.  

As of yet these are still experimental procedures, but they are an important step 

towards discovering the optimal transplantation site which minimizes instant 

blood mediated inflammatory reaction and toxicity of immunosuppressive drugs. 

In the context of the recent developments using biomaterials as delivery vehicles 

and for encapsulation of islets or immunomodulation, liver is not a suitable 

transplant site.  As such, there is a great need for the development of transplant 

sites as alternatives to intraportal transplantation that will be clinically applicable 

and lack the complications of transplantation into the liver. 
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Hydrogel cotransplantation with islets 

Hydrogels are cross-linked polymer networks that are highly hydrated. 

There are various types of hydrogels with different chemical content or 

polymerization features suitable to the targeted applications.  Hydrogels allow 

incorporation of various bioactive functionalities at specific concentrations in 

order to affect the environment. For example, hydrogels incorporated with 

vascular endothelial growth factor (VEGF) slowly released the protein over 

several days and stimulated cells in culture78.   

Among various hydrogels, polyethylene glycol (PEG) has great potential 

for use in transplantation due to its safety for in vivo use and low inflammation-

causing profiles79. One PEG hydrogel in particular, maleimide-terminated 4-arm 

poly(ethylene) glycol (PEG-4MAL), was generated to take advantage of these 

attributes in an islet transplantation setting80.  As the name suggests, PEG-4MAL 

is formed from a 4-arm macromer of PEG-MAL. This is then incubated with an 

RGD peptide with a c-terminal cysteine, allowing for cell adhesion. PEG-4MAL 

was then conjugated with VEGF and cross-linked into a hydrogel 81. VEGF was 

tested for its ability to induce angiogenisis, which is necessary for islets to get the 

maximum level of engraftment and function.  Encapsulation of islets in VEGF 

conjugated PEG-4MAL hydrogels and delivery into small bowel mesentery in rats 

resulted in engraftment, vascularization, and insulin production over the course of 

four weeks81. PEG-VEGF has also been shown to be effective at modifying 

vascularization and reducing inflammatory leukocyte recruitment at the graft 
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when transplanted with a single donor set of islets in the epididymal fat pad in 

mice and improved survival of the graft82. 

Hydrogels provide a flexible and desired platform to deliver SA-FasL to the 

target tissues for immunomodulation.  The advantages of this approach are two-

fold; i) safety due to localized immunomodulation and ii) efficacy since SA-FasL 

is presented at the target tissue for a robust response. To explore this potential, 

our lab in collaboration with Andres Garcia lab at Georgia Institute of Technology 

investigated the efficacy of PEG gels engineered with SA-FasL in inducing 

tolerance to islet allografts. Garcia lab generated PEG-4MAL macromers with 

biotin-PEG-thiol to create microgels which are covalently tethered to biotin. 

These PEG-4MAL biotinylated microgels were shown to bind SA-FasL in a dose-

dependent manner, release the molecule over the course of weeks in vivo, 

induce apoptosis in Fas expressing cells in vitro and induce tolerance to 

unmanipulated allogeneic islets when co-transplanted with SA-FasL-engineered 

PEGs under the kidney capsule. 

 

Utilizing scaffolds for alternative transplant sites 

 As PEG hydrogels cannot be infused into the liver and are not 

biodegradable, we also collaborated with Lonnie Shea lab at the University of 

Michigan to use biodegradable and compatible microporous poly (lacto-co-

glycolide) (PLG) scaffolds developed by this group. The Shea lab previously 

demonstrated the validity of using PLG scaffolds to transplant islets in abdominal 
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adipose tissue83.  Islets are loaded on this nonencapsulated platform that allows 

islets to better integrate into the host microenvironment84.  These scaffolds 

loaded with syngeneic islet transplants were penetrated by host cells, and islets 

were revascularized when transplanted in the epidymal fat pad84.  Importantly, 

these scaffolds are able to adsorb fundamental extracellular matrix components 

before transplant, such as collagen and fibronectin, which then aid in a quick 

restoration of euglycemia in mice85.   

 When used in combination with SA-FasL engineering of islets, PLG 

scaffolds may synergistically improve islet engraftment and survival in animal 

models of diabetes. This may work through causing apoptosis of effector T cells, 

inducing immune privilege at the site of engraftment through mechanisms 

promoting Treg generation, and avoiding the instant blood-mediated 

inflammatory reaction through extrahepatic transplantation.  We have 

demonstrated the efficacy of PLG scaffolds to induce tolerance to allogeneic 

islets using two different platforms; i) PLG scaffolds were modified with biotin and 

engineered with SA-FasL and loaded with unmodified islets,  or ii) unmodified 

scaffolds loaded with SA-FasL-engineered allogeneic islets.  PLG scaffold-based 

islet transplantation and immunomodulation, therefore, provide a clinically 

practical approach as it obviates the need for islet engineering and intraportal 

transplantation.  
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CHAPTER 2: SA-FASL-ENGINEERED ISLETS INDUCE A BIPHASIC 

SPATIOTEMPORAL ALLOTOLERANCE REQUIRING A PHAGOCYTE/TGF-

Β/TREG AXIS 

 

Introduction 

Type 1 diabetes is an autoimmune disease caused by the destruction of 

insulin-producing beta cells in the pancreas, resulting in long term 

hyperglycemia.  Transplantation of allogeneic pancreatic islets was shown to be 

effective in reversing hyperglycemia in patients with type 1 diabetes86.  However, 

allogeneic islet grafts are subject to rejection initiated and perpetuated by Teff 

cells87, 88.  Therefore, approaches that specifically target Teff cells for physical 

and/or functional elimination have potential to protect allogeneic islet grafts as a 

curative therapy for type 1 diabetes.  

T effector (Teff) cells upregulate Fas receptor (CD95/Apo-1) on their 

surface following activation and become sensitive to FasL (CD178)-mediated 

apoptosis, defined as activation-induced cell death (AICD)89-91.  AICD is critical 

for the establishment of immune homeostasis and tolerance to self-antigens89.  

The pivotal role of Fas/FasL pathway in regulating T cell responses is 

emphasized by the emergence of autoimmunity in cases of Fas or FasL 

deficiencies54, 90.  The Fas pathway, therefore, has significant potential for the 

development of therapeutic approaches to treat autoimmune diseases and 
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transplant rejection.  However, the pursuit of tissue-targeted expression of FasL 

for immunomodulation in settings of autoimmunity and transplantation has 

produced conflicting observations92-95 that potentially arise from the complex 

nature of FasL expression, the existence of two different isoforms, and the 

pleiotropic and opposing functions performed by each isoform.  FasL is 

expressed as a type II membrane-bound protein, which can be cleaved by matrix 

metalloproteinases into soluble form in response to environmental cues66. The 

membrane-bound form was reported to have apoptotic activity, while the soluble 

form lacks such activity and serves as a chemotactic factor for neutrophils69, 96.  

These initial observations were further confirmed in transgenic mice expressing 

either a soluble or membrane-bound form of FasL97.  The membrane-bound form 

was shown to be apoptotic and essential for controlling autoimmunity, while the 

soluble form promoted autoimmunity and tumorigenesis via non-apoptotic 

functions.  Therefore, the therapeutic application of FasL as an 

immunomodulator may require a form that primarily has apoptotic function. 

We have previously reported71 the generation a novel form of FasL 

chimeric with a modified form of core streptavidin (SA-FasL).  This molecule 

forms spontaneous oligomers in solution and has robust apoptotic activity on 

Fas-expressing lymphocytes.  Importantly, SA-FasL can be transiently displayed 

on the surface of biotinylated cells, tissues, or organs for systemic or localized 

immunomodulation72, 74, 98, 99.  Systemic immunomodulation with donor SA-FasL-

engineered splenocytes resulted in tolerance to cardiac allografts in rodents99, 

and facilitated the engraftment and survival of hematopoietic stem cells in 
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allogeneic hosts100.  Localized immunomodulation using SA-FasL-engineered 

islet allografts resulted in indefinite graft acceptance in a chemically diabetic 

BALB/c-to-C57BL/6 mouse model74. 

We herein investigated the mechanistic basis of tolerance achieved by 

SA-FasL-engineered allogeneic islets and report that tolerance is initiated by a 

regulatory loop consisting of apoptosis, phagocytes, and TGF-β. Importantly, 

tolerance at the induction phase is donor-specific and systemic, and evolves into 

graft site-restricted immune privilege requiring Treg presence at the maintenance 

phase.   

 

Materials and Methods 

Mice and Recombinant Proteins 

C57BL/6, B6.Cg-Foxp3tm2(EGFP)Tch/J, BALB/c, and C3H mice were obtained from 

Jackson Laboratories).   C57BL/6.SJL and TCR transgenic OT-I and OT-II mice 

on Rag2-/- background were purchased from Taconic Farms. BALB/c.RIP-OVA 

mice were a gift from Dr. S. Webb, Scripps Research Institute, La Jolla, CA. 

Animal were kept in our specific pathogen-free animal housing facility at the 

University of Louisville using protocols approved by the Institutional Animal Care 

and Use Committee. Recombinant SA and SA-FasL proteins were produced in 

our laboratory using the Drosophila DES expression system (Invitrogen) as 

previously described 71.  

 

Pancreatic Islet Isolation, Engineering, and Transplantation 
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Pancreatic islets were harvested from 8 to 12-week-old donors under anesthesia 

using a standard protocol 71.  Islets were engineered with SA-FasL or SA control 

proteins as described74 and ~500 islets were transplanted under kidney capsule 

of streptozotocin chemically induced diabetic mice (confirmed by BG ≥ 300 mg/dl 

for two consecutive days). Selected groups of mice were given i.p. injections of 

rapamycin (0.2 mg/kg) starting on the day of transplantation daily for 15 days. 

Animals were monitored for blood glucose levels and those with two consecutive 

daily measurements of ≥ 250 mg/dl were considered diabetic and rejecting the 

graft.   

 

Skin and Heart Transplantation  

Donor tail skin was harvested from euthanized mice, cut into 2 cm square, and 

grafted on dorsal area of recipients under anesthesia.  Animals were bandaged 

and bandage was removed 7 days post-transplant. Animals were monitored daily 

and skin was considered rejected at 90% necrosis.  Heterotopic heart 

transplantation and graft monitoring were performed as described 99.  

  

In Vivo Proliferation Assays 

OVA CD8+ T cells were isolated from spleen and mesenteric LNs of OT-I 

transgenic C57BL/6 mice, labeled with CFSE as described101, and 15 x 106 

cells/animal were transferred by tail vein injection into C57BL/B6.SJL congenic 

mice. One day later, these mice were transplanted with SA- or SA-FasL-

engineered pancreatic islets isolated from RIP-mOVA transgenic BALB/c mice 
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expressing a membranous from of OVA in pancreatic beta cells under the control 

of rat insulin promoter102. Lymphocytes were harvested from kidney-draining 

LNs, mesenteric LNs, and spleens 5 days after islet transplantation and stained 

with antibodies against CD8-PerCp, V-5-PE, and CD45.2-APC.  Proliferation of 

OT-I cells were determined by gating on V-5+CD8+CD45.2+ T cells. 

 Splenocytes were isolated from C57BL/6 mice with long-term syngeneic 

and allogeneic graft acceptors and rejectors, labeled with CFSE, and injected by 

tail vein into naive F1 (C57BL/6 x BALB/c, H-2b/d) or (C57BL/6 x C3H, H-2b/k) 

mice as donor and third party antigenic controls, respectively.  After 72 h, 

lymphocytes were harvested from the spleen and stained with antibodies against 

H-2Kb-PE and H-2Kd-APC or H-2Kk-PE to differentiate between donor and 

recipient cells. The cells were run on the FACSCalibur and the data was 

analyzed using FlowJo software. 

 

Phagocyte Depletion and Treatment with Anti-TGF- Antibody 

Selected groups of mice were injected intravenously with 

dichloromethylenediphosphonic acid (DMDP, Clodronate) or PBS loaded 

liposomes (Enca Encapsula NanoSciences) one day prior to islet transplantation.  

Depletion of macrophages and immature DCs in peripheral blood were assessed 

using antibodies against F4/80, CD11b, and CD11c at various times post-

treatment.   

For blocking TGF-β in vivo, mice were treated either with 300 µg/mouse 

monoclonal antibody (1D11) to TGF-β1, 2, and 3 on days -1, +1, +3, and +5 
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post-transplantation (n = 2) or 1 mg/mouse on days -1, +1, +3, +5, and +6 post-

transplantation (n = 3), or 0.5 mg/mouse on days 100, 102. 104, 106 post-

transplantation (n = 4).  A blocking antibody (JES5-2A5) to IL-10 was used at 1 

mg/mouse on days -1, +1, 3, 5, and 6 post-transplantation (n = 5). 

 

Analysis of TGF- production by T cells undergoing apoptosis and 

macrophages engulfing apoptotic bodies 

CFSE labeled OT-II T splenocytes were activated with OVA for 72 hrs and live 

cells were isolated by Lympholyte density separation and incubated with SA-

FasL or SA protein (equal molarity to SA-FasL) as control for 16-18 hrs.  Cells 

were washed extensively, labeled with Annexin V, 7AAD, and CD4 and analyzed 

using multiparameter flow cytometry.  

Peritoneal macrophages were cultured in 24-well plates at 2 x 106 

cells/well and incubated for 1 hour in serum free medium at 37oC in a 5% CO2 

incubator. Non-adherent cells were washed out and adherent macrophages were 

cocultured with apoptotic OT-II cells at 1:3 ratio in serum free media for 18 hrs. 

To remove non-engulfed apoptotic cells, wells were washed extensively with 

PBS and fixed with 4% of paraformaldehyde for 20 minutes at room temperature. 

After FcII/III receptor blockade and permeabilization, cells were stained with a 

mouse anti-TGF-β antibody (R&D systems) for 45 minutes at 37oC and the 

binding was visualized using Alexa 546-labeled anti-mouse IgG antibody 

(Invitrogen).  Macrophages were identified by Alexa 647-labeled anti-F4/80 
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antibody (Caltag Laboratory).  Cells were analyzed using confocal microscopy for 

the uptake of apoptotic bodies (green) and production of TGF- (blue).  

 

Immunohistochemical analyses 

The kidney harboring islet graft was snap-frozen in Tissue-Tek O.C.T. compound 

(Sakura FineTek), cut into 5-8 m thick sections using a Bright OTF5000 

cryomicrotome (Rose Scientific Ltd.).  For TGF-β staining, primary and 

secondary Ab complexes were first prepared by mixing 1:1000 dilution of anti-

TGF-β Ab (clone 1D11) or mouse IgG1 isotype control in PBS with equal volume 

of 1:300 dilution of Alexa 546-labeled goat anti-mouse Ab followed by rotating for 

18 hrs at 4°C.  Antibody complexes were then blocked with heat-inactivated 

mouse serum (0.1% v/v) by incubating on rotator at 4°C for 2 hrs.  Tissue 

sections were then fixed in 1:1 ice cold acetone-methanol for 10 minutes at room 

temperature (RT), washed, and incubated in 2% paraformaldehyde for 10 

minutes at RT. Tissue sections were then incubated in a blocking solution (1% 

BSA, 5% goat serum and 1:400 FcII/III receptor block) for 30 minutes at RT 

followed by staining first with Alexa647-conjugated rat anti-mouse F4/80 Ab 

(1:100 dilution, Caltag laboratories) in 1% BSA for 1 hour at 37°C.  After washing 

twice with PBS, tissue sections were then stained with anti-TGF-β or isotype Ab 

complexes by incubation for 4 hrs at room temperature.  Hoechst (Molecular 

Probes) was used to stain DNA in the tissue.  Fluorescent images were obtained 

using a Leica TCS SP5 confocal microscope under 20X magnification.   
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Statistical Analyses 

The Welch’s t-test was used to determine difference between two groups except 

in the supplemental data which used an unpaired two-tailed t-test.  Graft survival 

statistical difference was assessed using the log-rank test.  Data are expressed 

as mean ± SD. P values of < 0.05 were considered significant.  Statistical 

analysis and graph creation was performed using GraphPad Prism software.  

 

Results 

Reduced frequency of proliferating alloreactive T cells in lymph nodes 

draining FasL-engineered islet grafts  

We have previously shown that pancreatic islets engineered to display 

SA-FasL protein on their surface overcame rejection in chemically diabetic 

allogeneic hosts74.  Graft survival was associated with apoptotic depletion of Teff 

cells within islet grafts74. To assess if the depletion of alloreactive T cells is 

systemic, CFSE-labeled OT-I CD8+ T cells (CD45.2) recognizing a dominant 

epitope of ovalbumin (OVA) were adoptively transferred into congenic 

C57BL/6.SJL mice (CD45.1) one day before sub-renal capsule transplantation of 

islets from OVA transgenic BALB/c (RIP-OVA) donors. We observed a marked 

increase in the percentage of proliferating OT-I cells (~ 54%) in the kidney 

draining lymph nodes of recipients transplanted with control streptavidin (SA)-

engineered islets (Figure 4A).  OT-I cells also showed significant, but less robust 

proliferation in the lymphoid tissues distant from the graft, such as mesenteric 

lymph nodes (~15%) and the spleen (~24%).  In marked contrast, significantly  
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lower percentages of proliferating OT-I cells were detected in the same three 

tissues of recipients transplanted with SA-FasL-engineered BALB/c RIP-OVA 

islet grafts, with the decrease being more pronounced (> 5-fold) in graft draining 

LNs.  These observations are consistent with the reported critical role of graft-

draining lymph nodes in regulating alloreactive immunity87.  Furthermore, these 

results show that the impact of SA-FasL on alloreactive T cells is not systemic, 

but rather primarily localized to the graft74  and graft draining lymph nodes as 

shown here. 

 

Systemic donor-reactive responses persist despite long-term islet graft 

acceptance  

The reduced proliferative response of donor-reactive T cells in SA-FasL-

engineered islet graft recipients (Figure 4A) in the early phase of tolerance 

induction may evolve into two different outcomes at the maintenance phase; 

establishment of generalized tolerance and consequent unresponsiveness to 

donor antigens or localized immune privilege in spite of persistent donor-reactive 

responses.  We first confirmed our previous observations74 by demonstrating that 

transplantation of SA-FasL-engineered BALB/c islets into chemically diabetic 

C57BL/6 mice under transient cover of rapamycin (15 daily doses) results in 

long-term graft survival (Figure 4B).  This tolerogenic effect was dictated by SA-

FasL as islet grafts engineered with streptavidin as control protein transplanted 

using the same rapamycin regimen were acutely rejected (n=3; MST 24±2.3).  

We next tested if tolerant graft recipients generate a systemic donor-reactive 
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response. An in vivo proliferation assay was used to assess the status of donor-

specific immune responses in acceptors of SA-FasL-engineered islet grafts.  T 

cells harvested from the spleen of long-term (> 100 days) SA-FasL-islet graft 

recipients generated a strong in vivo proliferative response against both donor 

(BALB/c) and third party (C3H) antigens (Figure 4C).  The donor-reactive 

response was of similar magnitude to those generated by T cells from long-term 

syngeneic or rejecting control SA-engineered allograft recipients.  An intact 

systemic T cell response to the donor antigens in long-term SA-FasL-engineered 

islet allograft survivors is consistent with the demonstrated role of FasL in 

physiological immune privilege 103, 104.  

 

Phagocytes are required for tolerance induction 

Apoptotic lymphocytes were shown to have immunomodulatory features 

involving phagocytes and TGF-β105, 106.  We, therefore, next investigated the role 

of phagocytes in the induction of tolerance in our model. Depletion of 

macrophages and immature DCs using clodronate loaded liposomes (Figure 5) 

one day before transplantation resulted in acute rejection of SA-FasL-engineered 

islet grafts in all recipients (Figure 6A; n = 7, MST = 24 ± 9.6 days).  In marked 

contrast, all the mice treated with empty liposome (no clodronate) showed graft 

survival over an observation period of 100 days (n = 5, MST >100 days), 

supporting a critical role of these cells in the induction of tolerance.  

Immunohistochemical analysis revealed more F4/80+ macrophages 

localized in the periphery of SA-FasL engineered islets early post-transplantation  
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(day 5) as compared with SA-engineered control islet grafts (Figure 6C).  SA-

FasL-engineered islets scored positive for TGF-, while this cytokine was 

undetectable in SA-engineered control islets (Figure 6C). Consistent with these 

in vivo observations, we demonstrated using in vitro cultures that both T cells 

undergoing SA-FasL-mediated apoptosis (data not shown) and macrophages 

engulfing apoptotic bodies from T cells produce TGF- (Figure 6D).  However, it 

remains to be investigated if TGF- secreted by macrophages contributes to 

tolerance seen in this model.  Taken together, these results demonstrate the 

critical role of phagocytes in the induction phase of tolerance attained by SA-

FasL-engineered allogeneic islet grafts.  

 

TGF- is required for the induction, but not the maintenance of tolerance 

IL-10 and TGF-β are immunoregulatory cytokines, and in particular TGF-β 

has been implicated in tolerance involving T cell apoptosis in various models105-

107.  We, therefore, tested the role of these cytokines in the induction and 

maintenance of tolerance.  Recipients of SA-FasL-engineered allogeneic islets 

were treated intravenously with a blocking antibody to TGF- and IL-10.  

Neutralization of TGF- at the induction phase of tolerance resulted in acute 

rejection of all SA-FasL engineered islet grafts (Figure 6B; n = 5, MST = 22 ± 4.9 

days), whereas antibody treatment at the maintenance phase of tolerance (100 

days post-transplantation) had no impact on graft survival (n = 4 MST > 60 days 

post injection).  In marked contrast, treatment with a blocking antibody against IL-

10 as another regulatory cytokine at the induction phase did not affect long-term 
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acceptance of SA-FasL-engineered islet grafts (Figure 6B; n = 5, MST > 100 

days).   These results demonstrate the critical role of TGF- in the induction, but 

not maintenance, phase of tolerance. 

 

Tolerance is systemic at the induction phase and shows both donor and 

tissue specificity  

We have previously shown that long-term tolerance achieved by SA-FasL-

engineered islet grafts is localized to the graft and requires Treg cells for 

maintenance74.  Treg cells were shown to traffic to allogeneic pancreatic islets 

immediately post-transplantation in response to inflammatory cues, where they 

manifest their immunoregulatory function within the graft microenvironment87, 108. 

Therefore, we assessed if the SA-FasL-mediated long-term, localized tolerance 

is systemic at the induction phase using a simultaneous two-islet graft model.  

C57BL/6 mice were transplanted with BALB/c SA-FasL-engineered islets under 

the right kidney capsule and unmanipulated islets from BALB/c or C3H third party 

donors under the left kidney capsule.  These animals were also subjected to a 

short course of rapamycin (0.2 mg/kg) administered daily for 15 days starting the 

day of transplantation.  Surgical removal of the kidney harboring SA-FasL-

engineered islet graft 60 days post-transplantation did not result in hyperglycemia 

in recipients transplanted with donor-matched, unmodified islet grafts, 

demonstrating the survival and function of unmodified donor grafts (Figure 7A; n 

= 4, MST > 100 days).  Importantly, tolerance in this group was maintained by 

Treg cells as their depletion using an antibody to CD25 resulted in rejection of  
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3/4 grafts within 22 days (Figure 7B).  The mouse that did not reject the graft had 

minimal depletion of Treg cells (Figure 8). This is concordant with previous 

results demonstrating the rejection of SA-FasL-engineered grafts after Treg 

depletion74. In marked contrast, surgical removal of the SA-FasL-engineered 

BALB/c islet graft resulted in prompt hyperglycemia in recipients transplanted 

with the unmodified C3H third party islet graft, thus demonstrating that tolerance 

requires antigen-specificity (Figure 7C, n = 5). 

We next used the simultaneous two-graft model to determine the tissue-

specific nature of tolerance at the induction phase.  C57BL/6 mice were 

transplanted with BALB/c SA-FasL-engineered islets and donor-matched or C3H 

third party skin grafts under the transient cover of rapamycin.  Both donor and 

third party skin grafts were acutely rejected (Figure 7D).  Rejection of BALB/c 

skin also triggered rejection of SA-FasL-engineered BALB/c islets, causing 

development of hyperglycemia within 30 days (Figure 7E; n = 4, MST 26 ± 2.6 

days).  In marked contrast, the rejection of C3H skin did not interfere with long-

term acceptance of BALB/c SA-FasL-engineered islets as all mice remained 

euglycemic for an observation period of 60 days (Figure 7E; n = 4, MST > 60 

days).   Because skin grafts elicit vigorous allogeneic immune responses, we 

next assessed the survival of heart allografts.  Similar to skin grafts, BALB/c 

heart grafts transplanted simultaneously with SA-FasL-engineered islets were 

rejected, albeit in a delayed tempo as compared with control heart allografts 

alone (Figure 7F; MST = 25 ± 1.7 vs 12 ± 0.9 days for controls, P  = 0.0169).  

Heart graft rejection also caused hyperglycemia, an indication of SA-FasL- 
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engineered islet graft rejection (Figure 7F; n = 3, MST = 25 ± 2.0 days). Taken 

together, these results demonstrate that localized immunomodulation with SA-

FasL-engineered islets evolves into systemic tolerance at the induction phase 

that is both donor- and tissue-specific. 

 

SA-FasL-engineered islets establish a donor-specific immune privilege site 

that requires the graft for maintenance 

Although FasL has been implicated in physiological immune privilege103, 

104, the direct evidence for such a role in induced immune privilege remains to be 

provided.  To assess if the SA-FasL-engineered islet graft induces an immune 

privileged site, long-term (> 60 days) recipients were treated with streptozotocin 

to destroy the graft.  A group of mice were transplanted with a second set of 

unmodified donor-matched or C3H third party islet grafts into the same site of the 

primary graft 4 days after the confirmation of hyperglycemia.  The second set of 

BALB/c islet grafts restored euglycemia in all recipients for an observation period 

exceeding 70 days (Figure 9B; n = 5).  In marked contrast, third party islet 

allografts established euglycemia only for 20 days, demonstrating acute graft 

rejection (Figure 9B; n = 5, MST = 19 ± 2.7 days).    

To test whether alloantigens expressed by the graft are the driving force 

for the maintenance of induced immune privilege, a second set of long-term (> 60 

days) graft recipients were injected with streptozotocin and maintained for 20 

days with exogenous insulin, a period considered to be sufficient for clearance of 

the injured graft.  Transplantation of unmodified donor-matched second set of  
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islet grafts under the same kidney capsule that harbored the primary graft 

resulted in temporary euglycemia and rejection of all grafts in an acute fashion 

(Figure 9C; n = 5, MST = 16 ± 2.1 days).  These data demonstrate a requirement 

for the continued presence of islet alloantigens for the maintenance of induced 

immune privilege site.  

 

Immune privilege cannot be extended to a second set of unmanipulated 

islet grafts transplanted to a distant site under the cover of rapamycin  

The two-islet graft model showed that peripheral tolerance is systemic at 

the induction phase and requires a short course of rapamycin.  This agent works 

in synergy with Fas-mediated apoptosis to eliminate Teff cells63, 109 and also has 

a positive effect on the generation, maintenance, and function of Treg cells27, 43, 

110.  Inasmuch as the localized tolerance in our model was maintained by Treg 

cells (Figure 7B), we tested if rapamycin can expand and/or mobilize Treg cells 

from long-term surviving primary grafts into the second set of donor graft 

transplanted at a distant site. Long-term (80 days) acceptors of SA-FasL-

engineered BALB/c islets were transplanted with a second set of unmodified, 

donor-matched islet grafts under the contralateral kidney capsule under the same 

rapamycin regimen used for the induction of tolerance. Surgical removal of the 

primary graft 40 days after transplantation of the secondary graft resulted in 

prompt hyperglycemia within 3 days (Figure 9D, n = 3).  These data confirm our 

previously published studies demonstrating that tolerance at maintenance phase 
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is localized 74, and further show that rapamycin at this phase cannot 

mobilize/extend tolerance to a secondary graft placed in a distant site.   
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CHAPTER 3: LOCAL IMMUNOMODULATION WITH SA-FASL-ENGINEERED 

BIOMATERIALS ACHIEVES ALLOGENEIC ISLET GRAFT ACCEPTANCE 

 

Introduction-  

Current clinical treatments for type 1 diabetes rely on direct injection into 

the portal vein, exposing the graft to the blood, which leads to the death of 50-

80% of transplanted islets through instant blood-mediated inflammatory reactions 

(IBMIR)111, 112. Other sites for transplant have been explored, including kidney, 

spleen, and omentum113, or the murine version of omentum, epididymal fat pad 

(EFP)114.  These extrahepatic sites for transplant have varying degrees of 

vascularization and inflammatory responses to islet transplants, which leads to 

different levels of engraftment and islet survival.  

As such, type 1 diabetes patients might greatly benefit from alternative site 

transplantation where IBMIR and inflammatory responses are reduced, yet islets 

are sufficiently vascularized. This may be achievable through transplantation in 

conjunction with biomaterials such as maleimide-terminated 4-arm poly(ethylene) 

glycol (PEG-4MAL) and poly (lacto-co-glycolide) (PLG). PEG-4MAL with VEGF 

tethered to the hydrogel network and slowly released through proteolytic 

degradation was shown to increase vascularization of islets transplanted at the 

epididymal fat pad in mice82.    
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These hydrogels may also be used in conjunction with SA-FasL to control 

the immune response to engrafted islets. Integrating biotin into the PEG-4MAL 

gels and then engineering with SA-FasL could allow for the slow release of SA-

FasL as the gels degrade, allowing for continuous immunosuppression in the 

area of the graft. 

PLG scaffolds also show promise for enabling clinical islet transplants at 

extrahepatic sites. Islets can be seeded into the pores of the scaffold, which then 

allows for integration with the host tissue. PLG scaffolds transplanted with islet 

grafts in the EFP of mice allow for islet vascularization and nutrient diffusion due 

to their high porosity115, 116.  Further experimentation showed that decorating PLG 

scaffolds with collagen IV, which is important in extracellular matrix structure, 

resulted in an increase in function of the transplanted islets115, 117. 

In this chapter, we study the ability of PLG scaffolds and PEG-4MAL 

hydrogels in combination with SA-FasL and a short course of rapamycin to 

induce long-term tolerance to allogeneic islets in a chemically induced mouse 

model of BALB/c-to-C57BL/6. We also engineer biomaterials with SA-FasL 

alongside islet engineering with SA-FasL to induce tolerance to islets without 

additional immunosuppression in the same allogeneic model. 

 
Materials and Methods 

Islet transplantation. BALB/c pancreatic islets were isolated using Liberase TL 

as a digestive enzyme (Roche Life Science) and purified by a Ficoll density 

gradient as previously published118. To biotinylate islets, overnight cultured islets 

were incubated in 5 μM EZ-Link Sulfo-NHS-LC-Biotin (Thermo Scientific) for 30 
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min at room temperature, washed extensively with PBS to remove unbound 

biotin solution. Biotinylated islets and microgels were engineered with SA-FasL 

(~150 ng/500 islets and 1-10 µg/1000 microgels). In select groups, unengineered 

islets or microgels or both were used in place of SA-FasL engineered islets or 

microgels. Approximately 500 islets were co-transplanted with 1000 microgels 

into streptozotocin diabetic (> 250 mg/dL) C57BL/6 or B6.129(Cg)-

Foxp3tm3(DTR/GFP)Ayr/J (C57BL/6.FoxP3EGFP/DTR) recipients, where indicated.  For 

Treg depletion, islet graft recipients were injected i.p. with diphtheria toxin (50 

µg/kg body weight) and depletion was confirmed 3 days later in peripheral blood 

lymphocytes using flow cytometry.  Selected groups were also treated i.p. with 

rapamycin at 0.2 mg/kg daily for 15 doses starting the day of transplantation. In 

select groups of mice, islets were loaded onto PLG scaffolds (2/mouse). Diabetic 

mice were given anesthesia and a small incision was made on the abdomen to 

allow scaffolds to be placed on epididymal fat pads. Adipose tissue was wrapped 

around scaffolds before being returned to the abdomen. Mice were then sutured. 

Select biotin-PLG scaffolds were engineered by placing scaffolds to a round 

bottom tube and adding SA-FasL (0.5 or 2.5 µg /scaffold) diluted in PBS and 

incubating at 20oC for 30 minutes while rotating and shaking the tube every 10 

minutes. Scaffolds were washed twice before being loaded with islets. 

Unmodified BALB/c islets co-transplanted with unmodified PEG gels or loaded 

onto unmodified PLG scaffolds were used as controls. Animals were monitored 

for blood glucose and ≥ 250 mg/dL blood glucose levels for two consecutive daily 

measurements were considered rejected.  Data was graphed using GraphPad 
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Prism and log-rank test was used to determine significance between groups, p < 

0.05 was considered significant.  

 

Intraperitoneal Glucose Tolerance Test 

Mice were put in clean cages without food and allowed to fast for 6 hours. 

After fasting, mice were injected with 25% glucose solution (2 gm/kg body 

weight). Mice were monitored for blood glucose levels before injection and at 10, 

20, 30, 60, 90, and 120 minutes post glucose injection. 

 

Immune monitoring.  Spleen, kidney, and kidney draining lymph nodes were 

harvested from rejecting and long-term mice (> 200 days). Single cells were 

prepared from the spleen and lymph nodes by gentle mechanical dispersion and 

from islet harboring kidney by collagenase digestion. Cells were stained using 

antibodies to cell surface markers (Alexa 700-CD4 Ab, APC-Cy7-CD8 Ab, PE-

Cy7-CD25 Ab from Pharmingen, BD, and eFlour 450-CD44 Ab and PerCP-

Cy5.5-CD62L Ab from eBioscience). Intracellular FoxP3 staining was carried out 

on fixed/permeablized cells using FoxP3 Transcription Factor Staining Buffer set 

(eBioscience). For mixed lymphocyte reaction, splenocytes were panned and 

labelled with CFSE. Stimulator cells were prepared from either naïve BALB/c 

(donor) or C3H (3rd party) mice, irradiated with 200 cGy, and cocultured with 

equal numbers of responder cells in 96-well plates (0.1x106 cells/well). Cells 

were cultured in 200 µl DMEM supplemented with HEPES buffer, sodium 

pyruvate, penicillin/streptomycin, L-Glutamine (ThermoFisher Scientific), FBS, L-
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Arginine HCL, folic acid, L-Asparagine, 2-Mercaptoethanol (Sigma), and 

responder serum. Cells were harvested after four days of culture at 37°C and 

stained with Alexa 700-CD4 Ab, APC-Cy7-CD8 Ab, and 7AAD to separate dead 

cells (BD Pharmingen). Data was collected using BD LSR II and analyzed using 

Diva software. Data was graphed using GraphPad Prism and Welch’s t test was 

used to determine significance between groups, p < 0.05 was considered 

significant. 

 

Proliferation assay. Splenocytes harvested from selected group of transplant 

recipients were labeled with CFSE and used as responders to irradiated (2000 

cGy) splenocytes from donor or third party C3H mice in a standard in vitro 

proliferation assay74.  After 4 days in culture, cells were stained with 7AAD and 

fluorescence-conjugated Abs against CD4 and CD8, and analyzed for CFSE 

dilution by gating on live cells using BD LSR II.  Data was analyzed using Diva 

software.  Data was graphed using GraphPad Prism and Welch’s t test was used 

to determine significance between groups, p < 0.05 was considered significant. 

 

Confocal Microscopy. After the observation period of 200 days, long-term islet 

bearing kidneys were snap frozen in OCT compound (Sakura Tissue-Tek) by 

submerging in methyl butane (Sigma) on dry ice. Tissues were cut in 10 µm-thick 

slices using a Bright OTF5000 cryomicrotome (Rose Scientific) and put on 

frosted slides for staining. Slides were fixed in 4% paraformaldehyde, incubated 

in 0.5% Triton X-100, and blocked in 0.1% bovine serum albumin, 5% goat 
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serum, and rat anti-mouse CD16/CD32 (BD Pharmingen). Staining was 

performed using rabbit anti-glucagon mAb (Cell Signaling) and guinea pig anti-

insulin polyclonal antibody (Dako) as primary antibodies, followed by washing 

and staining with AlexaFluor-647-conjuaged goat anti-rabbit antibody (Life 

Technologies) and AlexaFluor-555-conjugated anti-guinea pig antibody 

(Invitrogen). Hoechst 33342 (Molecular Probes) was used to stain DNA.  

Fluorescent images were obtained using a Leica TCS SP5 confocal microscopy 

under 10X magnification.    

 

Statistical analysis 

Flow data was tested for significance using a two tailed Welch’s t-test. Graft 

survival was tested for significance using the log-rank test. P values of <0.05 

were considered significant. Survival curves, IPGTT, and flow graphs were 

created and analyzed using GraphPad Prism software. 

 

Results 

SA-FasL-engineered microgels induce apoptosis  

Herein, we engineered a novel biomaterial for the sustained presentation 

of SA-FasL within the islet graft microenvironment. This approach eliminates the 

need for islet modification and establishes a translatable, effective 

immunomodulatory strategy that does not require chronic immunosuppression. 

Hydrogel microparticles (microgels) were synthesized from maleimide-terminated 

4-arm poly(ethylene) glycol (PEG-4MAL) macromers using microfluidics 
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polymerization119. The PEG-4MAL platform enables stoichiometric, covalent 

incorporation of thiol-containing molecules, and provides improved crosslinking 

efficiency for formation of structurally defined hydrogels80. PEG-4MAL exhibits 

minimal toxicity in vivo, and it is rapidly excreted in the urine79, important 

considerations for clinical applications. Biotinylated microgels were produced by 

reacting biotin-PEG-thiol with PEG-4MAL macromer, and generating 150 μm 

diameter microgels crosslinked with dithiothreitol (DTT) via microfluidics 

polymerization (Figure 10A). The resulting microgels displayed covalently-

tethered biotin capable of capturing SA with high affinity (Figure 10B). These 

results show that SA-FasL can be tethered to biotinylated microgels.  

 

Long-term islet allograft survival induced by SA-FasL-engineered 

microgels 

The immunomodulatory efficacy of microgels presenting SA-FasL was 

tested in an allogeneic islet transplantation setting. Unmodified allogeneic 

(BALB/c) islets were mixed with microgels, and the resulting mixture was 

transplanted under the kidney capsule of streptozotocin-diabetic C57BL/6 mice. 

Mice receiving unmodified islets and control biotinylated microgels acutely 

rejected all grafts [median survival time (MST) = 14.6 ± 1.7 days; Figure 11A].  

Islets co-transplanted with SA-FasL-engineered microgels had significantly 

prolonged survival (MST = 37.6 ± 9.0 days). The presentation of SA-FasL on 

both microgels and biotinylated islets further delayed rejection with four grafts 

rejecting within 59 days and one graft surviving for the 200-day observation  
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period.  The improved performance of this group suggests a dose-dependent 

immunomodulatory effect for SA-FasL. This was confirmed in mice receiving 

microgels engineered with 10 times more SA-FasL protein which further 

improved graft survival as 2/5 unmodified islet grafts did not show signs of 

rejection by the 200-day experimental end-point (Figure 11A, B). Notably, all 

grafts (n=5) functioned and survived for the entire 200-day observation window in 

mice co-transplanted with unmodified islets and SA-FasL-presenting microgels 

when subjects were treated with a short course of rapamycin (0.2 mg/kg daily 

initiated on day 0 post-transplantation for 15 doses; Figure 11A, 12). 

Intraperitoneal glucose tolerance tests demonstrated equivalent function of these 

long-term grafts compared with naïve mice (Figure 11C). In marked contrast, the 

same protocol with rapamycin injections but without SA-FasL-engineered 

microgels resulted in acute rejection (MST = 20.6 ± 3.9 days) (Figure 11A). 

Taken together, these results show that simple co-transplantation of allogeneic 

islets and SA-FasL-engineered microgels restores long-term glycemic control 

without the use of chronic immunosuppression or islet modification.  

 

Tregs required for long-term survival of islets in mice treated with SA-FasL-

engineered microgels 

Because of the localized nature of immunomodulation, we assessed the 

systemic response of graft recipients to donor antigens in an in vitro proliferation 

assay. Both CD4+ and CD8+ T cells from long-term (> 200 days) islet graft 

recipients treated with SA-FasL-engineered microgels showed proliferative  
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responses to donor as well as third party antigens (Figure 13A).  The observed 

responses were at similar magnitudes to those obtained using T cells from 

rejecting mice receiving unmodified microgels plus rapamycin. This result 

indicates that mice receiving SA-FasL-engineered microgels maintain systemic 

immune competence, and that the protection afforded by SA-FasL-engineered 

microgels remains localized to the graft, as reported previously in two transplant 

settings using FasL as an immunomodulatory molecule74, 120.   

To further elucidate the mechanism of graft acceptance, immune cell 

populations harvested from the spleen, graft draining lymph nodes (LNs), and the 

graft were analyzed using flow cytometry in a time-course study, with particular 

focus on Teff and T-regulatory (Treg) cells as targets of FasL-mediated 

immunomodulation.  We observed a trend towards an increased ratio of Treg to 

CD4+ and CD8+ Teff cells in the graft (p < 0.05 for Treg:CD8+ Teff) and Treg to 

CD4+ and Teff cells in graft draining LNs (p < 0.05 for Treg:CD4+ Teff population) 

in groups receiving SA-FasL-engineered microgels and rapamycin compared to 

control groups receiving unmodified microgels alone or in combination with 

rapamycin (Figure 13B). Treg cells, similar to Teff cells, follow the inflammatory 

cues and infiltrate into rejecting grafts without a functional consequence121, 122. As 

such, we conducted a depletion study to directly assess the role of Treg cells in 

the observed graft acceptance in our model.  For these studies, BALB/c 

allogeneic islets were transplanted into transgenic C57BL/6 mice expressing 

human diphtheria toxin (DT) receptor under the control of Foxp3. Chemically 

diabetic transgenic mice transplanted with allogeneic islets and SA-FasL- 
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engineered microgels under the transient cover of rapamycin established graft 

acceptance, as seen previously in C57BL/6 recipients, with all mice maintaining 

graft function at day 50 post-transplantation. Depletion of Treg cells by 

administration of DT on day 50 resulted in rejection of all grafts by day 82 (Figure 

13C; MST = 72.2 ± 10.2 days), demonstrating the dominant role of this cell type 

in graft acceptance. 

  

Transplantation of SA-FasL modified islets on microporous scaffolds 

We investigated the transplantation of SA-FasL modified islets on 

microporous scaffolds implanted into the epididymal fat pad (Figure 14A). Initial 

studies employed syngeneic islets transplanted into streptozotocin-induced 

diabetic mice to determine the impact of the scaffolds and short term rapamycin 

on the engraftment and function of the islets. Transplantation of the syngeneic 

islets led to the establishment of euglycemia within 10 days for all animals, and 

the animals maintained euglycemia for the duration of the study (100 days) 

(Figure 14B). Subsequently, allogeneic islets modified with SA-FasL were 

transplanted on microporous scaffolds. Unmodified islets transplanted on 

scaffolds with transient rapamycin had rejection of the grafts, as indicated by 

increased blood glucose levels, by day 30 (Figure 14B). Mice transplanted with 

allogeneic islets modified with SA-FasL and receiving transient rapamycin had 

normalized blood glucose levels that were sustained for 200 days (Figure 14B), 

similar to the results with syngeneic islets. Rapamycin has been previously 

reported to synergize with FasL presentation to prolong graft survival74, as either  
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factor alone results in only short-term graft function. An intraperitoneal glucose 

tolerance test (IPGTT) study demonstrated that the normalization of blood 

glucose levels by the transplanted islets was similar to that observed with naïve 

mice (i.e., non-diabetic) (Figure 14C), which is consistent with previous reports of 

islets transplanted on scaffolds116, 123.  

T cell proliferative responses were analyzed from the spleens. The collected 

cells were labeled with CFSE and used against BALB/c donor and third party 

C3H stimulators in a standard ex vivo mixed lymphocyte reaction. After 4 days of 

culture, the responses from CD8 T cells indicated similar proliferative responses 

for the SA-FasL islets, the unmodified islets, and an age-matched C57BL/6 

control, with responses similar to both the donor and third party stimulators 

(Figure 14D). Interestingly, CD4 T cell responses were greater for the SA-FasL 

modified islets relative to either the unmodified islets or age-matched control. 

This response was similar for both the donor and third party stimulators. These 

results demonstrate that CD4 and CD8 responsiveness is maintained outside the 

graft. Collectively, these studies demonstrate that the microporous scaffolds for 

transplantation of FasL modified islets to an extrahepatic, extra-renal site 

provides for engraftment of the islets and protection from the immune response 

similar to previous reports performed with transplantation into the kidney capsule 

or liver74, 124. 

 

 



 66 

FasL scaffolds support allogeneic graft function without sustained 

immunosuppression 

We subsequently investigated whether SA-FasL modified scaffolds could 

prevent allogeneic islet rejection similar to the SA-FasL modified islets, while also 

supporting engraftment and long-term function to maintain normoglycemia. 

Scaffolds decorated with SA-FasL were loaded with islets from BALB/c donors 

and transplanted into the epididymal fat pad of diabetic C57BL/6 mice. Naïve 

islets mounted on SA-FasL-engineered PLG scaffolds along with transient 

rapamycin demonstrated graft survival for more than 200 days in more than 80% 

of the animals (Figure 15A), with one animal rejecting at day 30. Rapamycin 

without FasL had a mean graft survival time of 23.6±2.2 days (Figure 15A, B). 

Interestingly, when both islets and scaffolds were conjugated with FasL but did 

not receive the short course rapamycin treatment, one third of the mice 

established long-term tolerance while the rest rejected by day 50. For the 

transplantation of islets on SA-FasL modified scaffolds, normoglycemia was 

established within days of transplantation (Figure 15B). The blood glucose 

dynamics were similar between the SA-FasL-modified scaffolds and the 

unmodified scaffolds (with rapamycin) through day 20, at which point, the blood 

glucose levels began to rise for the unmodified scaffolds likely due to rejection of 

the islets. An IPGTT performed at day 200 demonstrated restoration of 

normoglycemia at a rate that was similar to naïve animals (Figure 15C).  
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CHAPTER 4: DISCUSSION 

 

The studies done in chapter 2 show that SA-FasL-engineered pancreatic 

islets induce a biphasic, spatiotemporal tolerance to allografts. This tolerance 

begins as systemic during the early induction phase, and becomes localized 

during the maintenance phase.  Despite extensive searching of the literature, we 

have not found this biphasic, spatiotemporal tolerance induced in other models. 

We also showed the noted ability of FasL to induce immune privilege at the site 

of the graft.  This immune privilege relied on phagocytes and the tolerogenic 

cytokine TGF-β and required the graft and Tregs to maintain it.   

FasL has been shown to give similar tolerogenic effects when used for 

immunomodulation in other studies 25, 36, 55, 92, 103, 125.  However, other studies 

have shown the inability FasL to induce tolerance to allografts65, 93, 94.  The 

conflicting results may be explained by the difference in function of membrane 

and soluble forms, reverse signaling, and its continuous expression when 

upregulated through gene therapy68, 92-94, 97, 126-129.  Complications can arise 

especially when FasL is cleaved from the cell membrane by matrix 

metalloproteinases and is converted to its soluble form, as the soluble form 

causes chemotaxis in neutrophils, competes for binding with membrane-bound 

FasL, thereby blocking apoptosis.70, 96, 97.   
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In comparison, SA-FasL does not notably increase chemotaxis of 

neutrophils, has removed the cleavage site, induces apoptosis in T cells, and is 

only transiently displayed on the surface of islets, all of which may lead to the 

more consistent results in these studies72, 74, 118.  For example, islet grafts 

ectopically expressing wild type FasL were shown to undergo acute rejection 

mediated by neutrophils68, 94.  On top of this, sustained expression may cause 

excessive apoptosis which has been shown to result in necroptosis resulting in 

inflammatory responses130.  Lastly, overexpression of the soluble form of FasL in 

tissues rich in metalloproteinases may program an anti-apoptotic and 

proinflammatory cascade that results in destructive, rather than protective 

immune responses against allografts129.  All in all, the apoptotic SA-FasL 

engineered on islet grafts temporarily for localized immunomodulation overcomes 

various shortcomings of the wild type FasL. 

Induction of tolerance in our model required phagocytes and TGF-β, as 

depleting phagocytes or blocking TGF-β resulted in graft rejection.  We hypothesize 

that Teff cells respond to the islet graft and undergo apoptosis due to the SA-FasL 

on the graft. Phagocytes then bind to the apoptotic cells, which causes them to 

secrete anti-inflammatory cytokines, including TGF-β, which, in conjunction with 

rapamycin, leads to the expansion or conversion of Tregs.  In support of this 

hypothesis, confocal microscopy revealed a higher number of macrophages 

infiltrating SA-FasL-engineered islet grafts compared to SA-engineered control 

grafts soon after transplantation. Some of these macrophages colocalized with 

TGF-β in the SA-FasL engineered grafts. TGF- secreted by macrophages or 
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other phagocytes binding apoptotic bodies may contribute to the generation and 

suppressor function of Treg cells as well as the suppression of T cells within the 

grafts 106, 107, 131, 132.  These Tregs may then take up residence within the graft or 

home to other sources of inflammation such as a second set of unengineered islets 

to establish immune privilege at both sites.  Although we demonstrate the direct 

role of phagocytes and TGF- in the induction phase of tolerance, the exact 

reasons for the necessity of phagocytes and the source of TGF- remain to be 

elucidated and will be the subject of future studies. 

Despite tolerance being systemic during the induction phase, during the 

maintenance phase it is localized to the graft and requires Tregs present and graft 

tissue to maintain the immune privilege.  Although FasL has been implicated in 

acquired immune privilege92, 103, 104, to our knowledge this is the first study to 

provide direct evidence for such a role by demonstrating that a second set of 

unmanipulated islet grafts survive rejection following transplantation into the same 

site supporting the long-term survival of SA-FasL-engineered islets.   The immune 

privilege in our model was antigen-specific and could not be extended to an 

unmanipulated islet graft transplanted at a distant site, even in the presence of 

rapamycin with the potential to expand and mobilize Treg cells, which are required 

for immune privilege in our model.   The established immune privilege required the 

persistence of alloantigens in the form of the graft, as delayed (4 vs 20 days) 

transplantation of the second set of unmanipulated islet graft following the 

destruction of original graft with streptozotocin resulted in acute rejection. These 

observations are consistent with previous studies on FasL in physiological 
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immune privileged sites104, 133.  FasL in the eye contained herpes simplex virus-

induced inflammation by eliminating activated T cells104.  Corneal grafts 

expressing FasL under normal physiological conditions from wild type, but not 

mutant mice lacking this molecule, showed long-term survival in allogeneic 

recipients103.  Our findings are also consistent with studies using tissues with 

increased expression of FasL.  Syngeneic myoblasts transfected to express FasL 

protected unmodified allogenic islets from rejection when co-transplanted under 

the same kidney capsule92.   

Tolerance was antigen and tissue specific, as SA-FasL-engineered islets 

failed to protect third party islet and donor-matched skin and heart grafts.  These 

observations are consistent with previous studies showing tolerance specificity of 

tissue-specific antigens134.  However, rejection of donor heart and skin, but not 

the third party skin, also resulted in the rejection of SA-FasL-engineered islet 

grafts. This may be described by the nature of the immune response to different 

tissues. The immune response to skin and heart allografts may elicit a systemic 

response which is stronger than the response to islets. SA-FasL-engineered 

islets exhibited some tolerance when combined with heart transplantation, as 

heart grafts were somewhat prolonged when compared to heart grafts alone. 

Skin grafts were not prolonged in the same fashion, which is consistent with 

previous studies showing their immunogenicity63.  We have previously shown 

that transfer of SA-FasL-engineered splenocytes induces tolerance to cardiac 

allografts in rats 99. This study shows that SA-FasL induced tolerance depends 

on the nature of the tissue engineered with SA-FasL, treatment dose, and 
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setting. In the case of SA-FasL-engineered splenocyte treatment, several 

systemic injections of cells were required99.   

The transient display of immunomodulatory ligands on the surface of grafts 

has the potential to induce permanent graft acceptance in the absence of chronic 

immunosuppression.  The advantage of a tolerance inducing treatment using SA-

FasL is antigen specificity that is localized to the graft, which would allow a 

competent immune system to fight off infections while leaving the graft as an 

immune privileged site. 

Immune privilege generated by SA-FasL to islets transplanted with PEG 

microgels in chapter 3 also involved Tregs and was localized to the graft. This 

was demonstrated by the ability of splenocytes in long-term tolerant mice to 

respond normally to donor antigens. These results are consistent with the 

established role of FasL in immune privileged tissues, such as the eye and the 

testes55, 104, 135. This is also consistent with a study demonstrating that primary 

myoblasts transfected to express FasL conferred immune privilege to co-

transplanted allogeneic islet grafts92.  

SA-FasL engineering of microgels have several advantages over gene 

therapy, including controlled loading, presentation, and retention of SA-FasL in 

the graft microenvironment.  This is in contrast to gene therapy, which utilizes 

uncontrolled, continuous expression of FasL, which possesses multiple functions 

and different modes of expression that may be regulated differentially by the 

target tissues in membrane bound or soluble form.  SA-FasL presented on 

microgels induces localized tolerance without causing major toxicity as compared 
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to agonistic Fas antibodies which have been shown to cause toxicity64. Finally, 

SA-FasL-engineered microgels can be prepared and mixed with islets when the 

transplantation is to take place, avoiding the multiple manipulations and washing 

of islets required by some tolerance protocols. Additional studies in large animal 

or humanized mouse models will be necessary for further proof-of-efficacy and 

translation to the clinic.  

 Chapter 3 also showed the use of biomaterial scaffolds in combination 

with SA-FasL in order to transplant islets with long-term survival at a site outside 

the liver and kidney capsule. This protocol proved to be effective as SA-FasL-

engineered islet allografts were tolerated and regulated blood glucose for more 

than 200 days under a transient cover of rapamycin when transplanted on PLG 

scaffolds into an extrahepatic site with translational potential114. 

Similar to engineering microgels, engineering SA-FasL on PLG scaffolds 

allows for minimal manipulation of islets prior to transplantation.  This would 

lessen the damage islets during engineering and washing steps, and as such 

may result in better clinical outcomes. As a potential off-the-shelf product, further 

studies will be needed to test long-term storage of SA-FasL pre-engineered 

scaffolds. Scaffolds were able to be loaded with protein in an enhanced manner 

when compared to particles. This is probably due to the higher surface area of 

scaffolds. Protein loading and efficiency were similar to other techniques like 

carbodiimide coupling to PLG particles136, 137.  

Both particles and scaffolds engineered to display SA-FasL were able to 

induce apoptosis. Interestingly, for concentrations between 40 and 400 ng/mg, 
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the extent of binding was highly consistent within experiments, yet considerable 

variation in apoptosis was observed between experiments, suggesting a 

sensitivity to the protein loading or presentation within this range. Previous 

studies using surface anchored polymer chains with covalently linked agonistic 

Fas antibodies were only able to induce up to 34% apoptosis in cells expressing 

Fas, while the SA-FasL engineering of biomaterials in our studies was able to 

induce 92% apoptosis138. This result may be due to the far greater surface 

density of protein (up to 150 ng/cm2 vs 1.6 ng/cm2) and the differences in SA-

FasL compared to Fas antibody. 

Importantly, microporous scaffolds engineered with SA-FasL supported 

engraftment and function of the transplanted unmodified allogeneic islets that 

maintained normoglycemia for more than 200 days, while islets transplanted on 

unmodified PLG scaffolds promptly rejected within 30 days, consistent with our 

previous results in subrenal islet transplantation 74. As in the other models, this is 

likely due to Tregs in the graft microenvironment.  When rapamycin was not 

included in the treatment protocol, SA-FasL was able to prolong the graft, which 

was also consistent with our findings in the subrenal transplant model74.  

In conclusion, engineering allogeneic islets with SA-FasL induces systemic 

tolerance during the induction phase, and sustains immune privilege at the graft 

site during the maintenance phase. The induction of this immune privilege 

requires TGF-β and phagocytes, while maintenance requires Tregs and the graft.  

SA-FasL-engineered islets are also able to induce tolerance in when transplanted 

in conjunction with PEG microgels or PLG scaffolds. Engineering of both microgels 
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and scaffolds also induces tolerance to islet allografts. Utilizing these biomaterials 

to lessen the damage to islets and transplant them in new locations may be helpful 

in translating SA-FasL based tolerance into the clinic. 

 

Summary, implications, and  future directions 

In chapter 2, we  showed that SA-FasL and rapamycin require TGF-β, 

Tregs, and phagocytes to induce tolerance to allogeneic islets. This induction of 

tolerance is systemic, as evidenced by protection of a simultaneously transplanted 

unmodified allogeneic islet graft under the contralateral kidney capsule. It is antigen 

specific, as skin, heart, or third party islet grafts were rejected.   

In chapter 3 we showed that SA-FasL-engineered PEG-4MAL microgels in 

conjunction with a short course of rapamycin were effective at inducing long-term 

tolerance to cotransplanted allogeneic islets in a BALB/c-to-C57BL/6 mouse model 

of diabetes. Long-term tolerance was not achieved without rapamycin, although 

rejection was significantly delayed when microgels and islets were both engineered 

with SA-FasL in the same model. This tolerance also required Tregs as their 

depletion by diphtheria toxin resulted in prompt graft rejection.  We also showed the 

effectiveness of microporous PLG scaffolds loaded with SA-FasL-islets and 

transplanted in the EFP to induce long-term tolerance in this model when 

accompanied with a short course of rapamycin administration. SA-FasL-engineered 

scaffolds and rapamycin were also effective at inducing long-term tolerance to 
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loaded islets. Engineering both the scaffolds and loaded islets induced long-term 

tolerance in one third of the mice in the absence of rapamycin. 

In all of these studies, maintenance of tolerance was localized to the graft, 

as splenic T cells from long-term tolerant mice proliferated in a manner similar to 

control splenocytes when stimulated with allogeneic splenocytes. This indicates 

that, if translated into the clinic, a treatment using SA-FasL-engineered islets or 

biomaterials would have little effect on graft recipients’ overall immune system, 

reducing their risk of infections and malignancies compared to graft recipients on 

chronic immunosuppressive drugs. In addition, such a treatment would reduce the 

damage to kidney, liver, and islets present in current clinical transplant recipients 

due to the toxicity of immunosuppressives. 

As a substitute for the murine epididymal fat pad, the omentum could be 

used in future clinical trials. Indeed, islet transplants have been done on the 

omentum utilizing scaffolds in nonhuman primates and humans 139, 140. Before 

clinical trials can commence utilizing SA-FasL-engineered PLG scaffolds loaded 

with islets, we may first test the viability using a humanized mouse model. 

Additionally, since SA-FasL is derived from rat FasL, we will first start by creating 

chimeric human SA-FasL and testing it in humanized mouse models of islet 

transplantation.  

Additionally, we must also consider the difference in mouse versus human 

immunity in other aspects. As humans come in contact with more organisms which 

can generate inflammation in transplant recipients, and also because of higher 
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levels of preexisting memory T cells (heterologous immunity)57, 58 as compared to 

clean laboratory mice, more stringent tolerance protocols must be utilized for 

clinical trials. Such protocols could simply include additional immunosuppressive 

drugs currently used for intraportal transplants, daclizumab and tacrolimus. 

However, there may not be a need to use them long-term if SA-FasL is effective at 

inducing apoptosis of graft specific T cells and inducing Tregs which take up 

residence within the graft as seen in the mouse transplant model.  

Further studies will investigate injection of soluble SA-FasL. While soluble 

FasL was shown to cause chemotaxis of neutrophils and inflammation68, SA-FasL 

forms tetramers and oligomers, and can cause apoptosis in vitro. Soluble SA-FasL 

injection is a simple addition to our protocol as it does not require incubation steps. 

Indeed, if soluble SA-FasL were used in place of engineering, less islets would be 

lost due to washing and time spent in media.  On top of this, soluble SA-FasL would 

be easy to modify dosage timing and amounts. However, soluble SA-FasL would 

likely influence the systemic immune system. 

 Finally, we will explore other chimeric proteins with potential for influencing 

tolerance, such as SA-IL-2 or SA-TGF-β. These two may specifically attract or 

generate Tregs at the site of the transplant. In addition to its ability to generate 

Tregs, membrane bound TGF-β on Tregs was shown to be protective against 

diabetes in NOD mice141. Therefore, we may look into Treg therapies using SA-

TGF-β.  
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