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ABSTRACT 
 
 

THE ROLE OF O-GLCNACASE 
DURING HEART FAILURE 

 
 
 

Sujith Dassanayaka 
 
 
 
 

July 28, 2016 
 

 
  Global augmentation of protein O-GlcNAcylation occurs in response to a 

myriad of stressors and confers a survival advantage at the cellular level.  This 

protective phenomenon has been demonstrated to mediate cardioprotection 

through various in vitro and in vivo studies during ischemia-reperfusion, 

myocardial infarction, and oxidative stress; however, relatively little is known of 

the regulation of protein O-GlcNAcylation. Protein O-GlcNAcylation is regulated 

by two antagonistic enzymes, namely, O-GlcNAc transferase (OGT) and O-

GlcNAcase (OGA). Ablation of cardiomyocyte OGT, the enzyme that catalyzes 

the addition of O-GlcNAc to proteins, exacerbates cardiac dysfunction during 

infarct-induced heart failure (HF). However, little is known of the enzyme 
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mediating the removal of the O-GlcNAc modification, OGA, in the context of HF. 

The present study focused on this limitation in the field.  

 We characterized the temporal expression of OGA following myocardial 

infarction (MI) and found that OGA expression is decreased and remains 

suppressed for 4 wk post MI. Conversely, OGT expression is augmented early, 

but normalizes by 4 wk post MI. Despite the normalization of OGT expression, O-

GlcNAcylation remains elevated, which may be due to chronic OGA suppression. 

Furthermore, we observed upregulation of miRNA-539 in HF. In vitro studies 

confirmed induction of miRNA-539 negatively regulated OGA expression. These 

data indicate that suppression of OGA could be mediated by miRNA-539. 

 Next, we developed a genetic model of cardiomyocyte specific OGA 

ablation to test whether ablation of OGA would augment O-GlcNAcylation and 

attenuate HF. Our model successfully suppressed OGA expression, augmented 

cardiac protein O-GlcNAcylation, and did not induce cardiac dysfunction; 

however, genetic ablation of OGA prior to coronary ligation hastened cardiac 

dysfunction within 1 wk compared to wild-type mice. Hearts from OGA KO mice 

were more dilated and less efficient, which suggests rejection of our hypothesis. 

These data indicate that OGA expression may be proadaptive during HF. 

 Because O-GlcNAcylation of mitochondrial complexes has been 

implicated to depress mitochondrial respiration we hypothesized that augmented 

O-GlcNAcylation may mediate mitochondrial dysfunction and may help explain 

the exacerbation in cardiac dysfunction we observed after 1 wk of HF.  We virally 

augmented either OGT or OGA in cardiomyocytes to alter overall protein O-
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GlcNAcylation. Neither overexpression of OGA nor OGT mediated mitochondrial 

dysfunction. Though induction of O-GlcNAcylation through hyperglycemia did 

suppress mitochondrial reserve capacity. This depression in mitochondrial 

function was recapitulated with an osmotic control. We concluded that 

modulation of O-GlcNAc alone did not cause mitochondrial dysfunction.  

 These data indicate that suppression of OGA occurs during HF and may 

be mediated by posttranscriptional regulation by miR-539. In addition, ablation of 

OGA expression can hasten HF. Furthermore, the exacerbation in cardiac 

dysfunction is not likely due to O-GlcNAc-mediated mitochondrial dysfunction. 

These data indicate that chronic augmentation of O-GlcNAcylation may be 

detrimental in HF. More specifically they indicate that dynamic cycling of O-

GlcNAcylation may be more beneficial in HF than permanently driving O-GlcNAc 

levels in one direction.  
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CHAPTER I 
 

       BACKGROUND AND LITERATURE 
 

      REVIEW
 
 

 

 In every year since the turn of the twentieth century, except 1918, cardiovascular 

disease (CVD) has claimed more lives than any other major cause of death in the 

United States1. Roughly 2,200 Americans die of CVD each day, which 

accumulates to 803,000 CVD-related deaths a year1. More than one-third of all 

global deaths in 2013 were attributed to CVD1. CVD is also the leading cause of 

death worldwide accounting for 17.3 million deaths per year in 20131. CVD is 

essentially a worldwide pandemic.  

 CVD encompasses a variety of diseases including, but not limited to, 

diseases of arteries, high blood pressure, HF (HF), stroke, and coronary heart 
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disease. Within these subsections of CVD, coronary heart disease accounts for 

46% of all CVD-related deaths in the United States1.  Impediments to coronary 

artery flow can lead to myocardial infarction, which is the primary antecedent for 

HF. Following an infarction, the significant loss of cardiomyocytes is replaced 

with akinetic scar tissue, rather than contracting cardiomyocytes.  Such ‘wound 

healing’ satisfies the short-term goal of retaining ventricular integrity; however, 

the chronic implications include progressive fibrosis, stiffness, and dilation of the 

ventricle.  The central element of HF is the heart’s inability to pump sufficient 

blood to meet the metabolic demands of the body. 

 Although improvements in acute management of HF have improved 

outcomes, efforts to halt the inexorable deterioration of cardiac function are 

largely futile.  The current clinical approach focuses on disease management 

rather than curing HF – because there is presently no cure.  Primary treatment 

consists of angiotensin-converting enzyme inhibitors, beta-blockers, and 

mineralocorticoids antagonists. And, although a new class of agents (i.e. 

neprilysin inhibitor) has shown promise in a Phase 3 clinical trial, collectively, 

these drugs only delay the progression of HF.  Given the general stagnation in 

the progress of clinical treatment of HF, the need to further elucidate the 

pathobiology of HF is self-evident.  
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Heart failure and metabolism 

 In the healthy heart, 95% of cardiac ATP is derived from oxidative 

phosphorylation in the mitochondria2. The remaining 5% of ATP is derived from 

glycolysis and the citric acid cycle2. From the pool of cardiac ATP, 60-70% is 

designated as fuel for contraction2. The rest is designated to the functioning of 

various ion pumps, including the Ca2+-ATPase in the sarcoplasmic reticulum2. 

The cardiac energy pool consists of ATP (5 µmol/g wet weight) and 

phosphocreatine (PCr; 8 µmol/g wet weight) 2. PCr serves as an ATP transporter 

because the high energy bond in ATP can be transferred to creatine by 

mitochondrial creatine kinase to form PCr. This small transport molecule can 

readily diffuse through the mitochondrial membrane into the cytosol and can be 

used to generate ATP from ADP. The continuous mechanical work generated by 

the heart requires a high rate of ATP hydrolysis (0.5 µmol/g wet weight per 

second) 2. As a result, the ATP pool in the heart can be exhausted within 

seconds. Thus, any alteration in cardiac ATP production can dramatically affect 

the contractile function of the heart.  

 Despite the progression of HF, the metabolic demands of the heart are not 

reduced. The heart still requires high rates of ATP turnover necessary for 

contraction; however, these ATP demands become largely unmet following 

myocardial infarction and cardiac metabolism is impaired in patients with dilated 

cardiomyopathy3. Myocardial phosphocreatine-to-ATP (PCr:ATP) ratios were 

measured noninvasively with 31P-MR spectroscopy and demonstrated that HF 

patients had lower PCr:ATP ratios than normal healthy patients3. In addition, 
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decreased PCr:ATP ratios were associated with increased mortality and lower 

ejection fractions in patients with dilated cardiomyopathy3. Essentially, cardiac 

metabolic remodeling may play a key role in the pathophysiology of HF.  

 In HF cardiac metabolism becomes altered and substrate utilization 

changes.  Normally the adult heart relies on fatty acid oxidation (FAO) for 

generation of 70-90% of cardiac ATP pool2. The remaining 10-30% of ATP is 

derived primarily from glycolysis and lactate. Small amounts of ketone bodies 

and amino acids also contribute to ATP production. Substrate utilization changes 

in HF2, 4-6. Studies on HF have reported reduction in expression of FA 

transporters in the presence of systolic cardiac dysfunction7. Similarly, FA 

oxidation rate and expression of FA enzymes were suppressed in early stages of 

compensated LV hypertrophy8, 9. FA uptake and oxidation is reduced in HF. 

Studies on glucose oxidation are less consistent. Most evidence suggests that 

glucose oxidation is unchanged in compensated hypertrophy but decreased in 

HF; however, several non-ATP generating pathways of glucose metabolism 

become enhanced during HF2.  

 

Accessory pathways of glucose utilization 

Glucose functions not only as a ubiquitous source of energy but also 

confers significant capacity for cellular signaling.  Upon entering a cell, glucose is 

phosphorylated to glucose-6-phosphate.  During glycolysis, it is further 

metabolized to fructose-6-phosphate permitting entry into a host of accessary 

pathways of glucose metabolism, including, glycogen synthesis, the Pentose 
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Phosphate Pathway (PPP), and the Hexosamine Biosynthetic Pathway (HBP). 

These pathways are upregulated in HF2. This thesis focuses heavily on the end 

product of the HBP pathway and its role in HF.  

Hexosamine biosynthetic pathway 

Approximately 5% of intracellular glucose enters the HBP10. Four 

enzymatic reactions convert fructose-6-phosphate to uridine diphosphate-N-

acetylglucosamine (UDP-GlcNAc), the monosaccharide donor for the post-

translational O-GlcNAc modification on nuclear and cytoplasmic proteins.  The 

first reaction is the rate-limiting conversion of fructose-6-phosphate to 

glucosamine-6-phosphate by L-glutamine: fructose-6-phosphate 

amidotransferase (GFAT)10, 11. The second reaction is the conversion of 

glucosamine-6-phosphate to N-acetylglucosamine-6-phosphate through 

glucosamine-6-phosphate acetyl-transferase (Emeg32; Gnpnat1)12 using acetyl-

CoA.  The penultimate reaction converts N-acetylglucosamine-6-P to N-

acetylglucosamine-1-P with phosphoglucomutase 3 (Pgm3).  Interestingly, 

deletion of either Emeg3212 or Pgm313 is embryonic lethal.  Finally, 

pyrophosphorylase catalyzes the conjugation of a uridine nucleotide to form 

UDP-GlcNAc, which serves as the monosaccharide donor for O-GlcNAcylation.  

As shown in Figure 114, nutrient-derived glucose, glutamine, acetyl-CoA, and 

glucosamine all feed into the HBP at different points linking it with most major 

metabolic processes. Because the production of UDP-GlcNAc requires nutrients 

derived from other metabolic pathways, O-GlcNAcylation may serve as a nutrient 

or metabolic sensor15-19. However, the !-O-linkage of N-acetylglucosamine (O-
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GlcNAc) to proteins has been predominantly implicated in altering expression, 

translation, and function of the target proteins.  Recently, O-GlcNAc has emerged 

as key player in the primary pathophysiology of many cardiovascular diseases. 
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Figure 1. Hexosamine biosynthetic pathway (HBP). Glucose becomes phosphorylated upon 
entering the cell and can become committed to the HBP (reactions in blue oval). The culmination of 
the HBP is the formation of UDP-GlcNAc. OGT adds the O-GlcNAc moiety to proteins and OGA 
removes it. Effective inhibitors of the enzymes in the pathway are listed in parenthesis.  
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Regulation of O-GlcNAc: GFAT, OGT, and OGA 

GFAT 

Flux through the HBP can be altered based on the availability of nutrients 

and activity of enzymes. The first and rate-limiting enzyme of the HBP is GFAT10, 

which is highly conserved and exists in two different isoforms, GFAT1 and 

GFAT220. Although all tissues express GFAT, the specific isoform expressed 

varies. GFAT1 is expressed in the pancreas, placenta, testes, and skeletal 

muscle21, 22.  GFAT2 is expressed in the heart and the central nervous system.  It 

can be regulated transcriptionally, post-transcriptionally, and through negative 

feedback inhibition by UDP-GlcNAc11, 23-25.  GFAT uses glutamine as a substrate 

for the formation of glucosamine-6-phosphate10.  GFAT antagonists, such as O-

diazoacetyl-L-serine (azaserine) and 6-diazo-5-oxonorleucine (DON), irreversibly 

inhibit GFAT, resulting in reduced flow of glucose through the HBP; however, a 

primary issue with such analogs of glutamine is that they are general 

amidotransferase inhibitors.  The rate-limiting nature of GFAT can be bypassed 

by exogenously administered or naturally occurring glucosamine.  Given the 

conceptual difficulty in targeting GFAT via a glutamine analog approach and the 

fact that the ultimate product, UDP-GlcNAc, is essential for traditional complex 

glycosylation as well as other sugar nucleotide synthesis, GFAT seems to be a 

poor target to specifically reduce O-GlcNAcylation. 

OGT 

 Ultimately, two highly conserved enzymes, OGT and OGA, directly 

regulate O-GlcNAcylation of proteins.  The X-linked gene, OGT, catalyzes the 
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addition of a single GlcNAc moiety to serine/threonine residues on proteins26-29. 

In addition to glycosylation, OGT can function in a proteolytic capacity. OGT is 

expressed ubiquitously but is found to be most abundant in glucose-sensing cells 

of the brain and pancreas. Alternate splicing of the message produces three 

isoforms of OGT: nucleocytoplasmic OGT (ncOGT), mitochondrial OGT (mOGT), 

and short OGT (sOGT)26, 29. The predominant isoform of OGT is 

nucleocytoplasmic in localization. Interestingly, a gene with functional 

relationship to OGT, EGF repeat-specific O-GlcNAc transferase (Eogt), was 

identified in flies and later in mammals.  Eogt O-GlcNAcylates EGF-repeats, may 

be sequestered in the ER, and, unlike OGT, may be restricted to a specific 

consensus sequence30, 31.   

The mechanism of substrate specificity of OGT has yet to be determined; 

however, recent advances in the study of its structural and kinetic properties yield 

important insights.  OGT consists of an N-terminal domain with tetratricopeptide 

repeats (TPR) and an intervening domain flanked by two glycotransferase 

catalytic domains32, 33.  The 34 amino acid TPR motif produces a structure with 

two antiparallel "-helices34, 35.  Multiple tandem arrays of TPRs generate a right-

handed helical structure with potential to mediate protein-protein interactions.  

The different isoforms of OGT vary only in the number of TPR regions.  As 

determined by X-ray crystallography, the N-terminal region of human OGT has a 

canonical superhelical fold typified by TPRs and a groove36. Further studies with 

bacterial OGT demonstrated that the TPRs and the catalytic domain are 

juxtaposed such that the superhelical groove extends into the active site37, 38.  
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Through binding with the continuous groove, protein substrates may influence 

substrate specificity in the catalytic center39. This notion was consistent with in 

vitro studies that identified the role of TPR in modifying O-GlcNAcylation of 

proteins40.  

The interactions between OGT and protein substrates require the 

presence of UDP-GlcNAc.  Kinetic studies by the Walker group indicated that 

OGT employs an ordered bi-bi kinetic mechanism where UDP-GlcNAc binds first 

followed by the substrate41. The interaction between UDP-GlcNAc and OGT 

induces a conformational change between TPR 12 and 13 that is hypothesized to 

allow protein substrate entry into the catalytic domain active site.  Post-

translational modifications involving tyrosine kinases, nitrosylation of cysteine 

residues, and O-GlcNAc modification may also regulate OGT activity.  Yet, unlike 

most kinases, there is no known consensus sequence for OGT.  Thus, the splice 

variants themselves, interacting proteins, and potentially the concentrations of 

UDP-GlcNAc may largely regulate substrate selection. 

The Walker laboratory also identified, through a high-throughput screen, a 

number of potential OGT inhibitors42. Two compounds, TT04 and TT40, 

characterized with an oxobenzooxazole core were found to have irreversible 

action through modifying the catalytic base at the active site43; however, these 

compounds demonstrated low water solubility, which limited their application44. 

TT04 has been successfully used in the Jones lab as an OGT inhibitor in 

neonatal rat cardiomyocytes, though the effective dose range appears relatively 

narrow45.  Recent work by Vocadlo led to the development of an O-GlcNAc 
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substrate analog named 5-thioglucosamine (5SGlcNAc)46. The acetylated 

5SGlcNAc readily crosses the cell membrane due to its hydrophobic nature, 

becomes converted to UDP-5sGlcNAc and ultimately binds to the active site of 

OGT competitively inhibiting its function.  Preliminary cell culture treatment with 

the inhibitor resulted in marked reduction in overall O-GlcNAcylation and did not 

affect cell viability. 

Genetic deletion and translational silencing techniques have also been 

employed to reduce activity of OGT.  Neonatal cardiomyocytes from loxP-flanked 

OGT mice were infected with adenoviral Cre recombinase (to knockout OGT) or 

transfected with short interfering RNA directed against OGT; both approaches 

decreased global O-GlcNAcylation and sensitized cardiomyocytes to post-

hypoxic death45. Accordingly, there are several biological methods to suppress 

OGT activity; however, the efficacy of such traditional pharmacologic inhibitors 

requires further validation and may require the development of new compounds. 

 

OGA  

OGA catalyzes the removal of the O-GlcNAc modification from proteins32.   

It resides primarily in the cytoplasm but can be found in nuclei and, potentially, 

mitochondria.  The structure of OGA consists of two main domains: an N-terminal 

domain with glycoside hydrolase activity and a C-terminal histone 

acetyltransferase (HAT) domain.  These domains flank a region containing a 

caspase-3 cleavage site47. There are two confirmed splice variants of OGA.  The 

full-length protein variant is predominately found in the cytosol whereas the 
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shorter variant, which lacks the C-terminal domain, resides in the nucleus48. The 

shorter form of OGA also lacks apparent HAT activity. 

 Human OGA employs a two-step catalytic mechanism and the transient 

formation of a bicyclic oxazoline intermediate.  The highly conserved active site 

has two adjacent aspartate residues39, 49.  They are proposed to play a key role in 

the cleavage of O-GlcNAc from protein substrates.  The first aspartate residue 

acts as a base to attack the 2-acetamido group of the anomeric carbon.  The 

second aspartate acts as an acid to permit the departure of the leaving group. 

 Accessibility to the sugar moiety and restricted conformational freedom of 

the modified protein dictate OGA substrate specificity39. Recent work with the 

mutagenesis of !-N-acetylglucosaminidase from Oceanicola granulosus, an 

enzyme homologous to human OGA in sequence (37%) and function, revealed 

that peptide binding on the surface of human OGA is important for its function50. 

Further studies with the Clostridium perfringens OGA homologue demonstrated 

the importance of conformational restraint when deletion of hydrogen bonding 

within glycopeptides resulted in decreased affinity for human OGA50. These 

studies extend the hypothesis that accessibility to the sugar is important and that 

conformational change in protein substrates serves to impair OGA processing39. 

Several OGA inhibitors have been developed to study the biological roles 

of O-GlcNAc.  O-(2-acetamido-2-deoxy-D-glucopyranoseylidene)amino N-phenyl 

carbamate (PUGNAc), GlcNAcstatin, and Thiamet G are three inhibitors that limit 

OGA activity44.  PUGNAc acts as a transition state analog but is unstable in 

aqueous solutions. GlcNAcstatins, following a similar structure to PUGNAc, were 



! 13 

developed to have higher selectivity to human OGA51.  These proved to 

penetrate the cell and increase global O-GlcNAcylation 2-3 fold but at the cost of 

low solubility in aqueous solutions51. Yuzwa et al. mimicked electrostatic 

interactions that occur once the bicyclic oxazoline intermediate forms during the 

reaction mechanism of OGA to produce another inhibitor called Thiamet G.  

Currently, it is the most potent inhibitor of OGA and is exceptionally stable in 

aqueous solutions52. 

In addition to traditional pharmacologic approaches, Ngoh et al. 

demonstrated successful inhibition of OGA through RNA inference.  Neonatal rat 

cardiomyocytes (NRCMs) transfected with short interfering RNA directed against 

OGA resulted in significantly augmented O-GlcNAc levels when compared to 

addition of a scrambled non-silencing control sequence.  Primed with increased 

O-GlcNAcylation, these myocytes were less susceptible to post-hypoxic cell 

death53.  Compared to OGT inhibitors, OGA inhibitors are generally more reliable 

and better characterized. 

 

O-GlcNAcylation and phosphorylation 

Because it shares some similarities with phosphorylation, O-

GlcNAcylation, and its impact on signaling, can become exceptionally 

complicated.  Both O-GlcNAcylation and phosphorylation modifications occur on 

serine and threonine residues, are dynamically added and removed, and alter 

function of proteins54. Although hundreds of genes regulate phosphorylation, only 

two known mammalian genes encode enzymes for the addition and removal of 
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O-GlcNAc. Part of the complexity arises within sites of occupancy for O-GlcNAc 

and O-phosphate.  Site mapping studies have revealed evidence for at least 

three types of interplay between these signaling mechanisms55. The first is 

competitive site occupancy where O-GlcNAc and O-phosphate compete for the 

same threonine or serine moiety at the same site56. The second is alternative 

occupancy at adjacent sites.  Here, occupancy of O-GlcNAc and O-phosphate at 

adjacent sites can influence the turnover or function of proteins. A third type of 

interaction involves O-GlcNAc and O-phosphate at the same sites, on adjacent 

sites, or on distant sites. Although O-GlcNAc and phosphorylation are often 

described as having a Yin-Yang relationship57, it is difficult to imagine such a 

relationship as universal and obligatory. 

 

O-GlcNAc acts as an alarm or stress signal 

The O-GlcNAc post-translational modification may sense and trigger a 

pro-adaptive response to cellular stressors.  Some of the earliest evidence to 

support such a contention involved the association between hyperglycemia and 

O-GlcNAcylation and/or OGT58.  Although these can be retrospectively viewed as 

‘stress’ studies, the first bona fide investigation of O-GlcNAc as a stress signal 

came in 200459. Zachara et al. found that O-GlcNAcylation increased in response 

to various forms of stress, including heat, oxidative, osmotic, ultraviolet light, and 

others59. O-GlcNAcylation increased in a roughly dose-dependent manner in 

response to these stressors in various cell lines.  More importantly, augmenting 

O-GlcNAc levels promoted cell survival, whereas depressing O-GlcNAc levels 
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reduced survival59. Such insights offered the clarion call for new investigations 

into a previously unrecognized role for O-GlcNAcylation in cell survival. 

 

The role of O-GlcNAc in the cardiovascular system 

Acute cardioprotection 

 The O-GlcNAc modification confers protection to subsequent lethal insults, 

which has been reviewed extensively, elsewhere.  Briefly, in response to 

myocardial ischemia-reperfusion injury – which is characterized by calcium 

overload, oxidative stress, and ER stress – global levels of O-GlcNAcylation are 

augmented.  Temporal changes in O-GlcNAcylation have been observed in vitro 

and in vivo studies of cardiomyocyte survival.  In in vitro studies, O-GlcNAc levels 

decrease during hypoxia then increase during reoxygenation in isolated, 

perfused hearts subjected to simulated ischemia-reperfusion60. This same effect 

occurs during hypoxia-reoxygenation of NRCMs61. Interestingly, in vivo 

myocardial ischemia-reperfusion studies demonstrate similar findings62. The 

elevation in O-GlcNAc before and after ischemia functions to reduce cell death60 

and, antecedent elevation of O-GlcNAcylation promotes myocardial tissue 

viability in other models of tissue injury.  Regulation of the HBP and enzymatic 

regulators of O-GlcNAcylation may provide potential targets for therapeutic 

intervention in cardiovascular disease. 
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O-GlcNAc modulates vascular activity 

 Sustained alteration of cardiovascular reactivity can result in hypertension, 

a primary risk factor for cardiovascular disease.  Deranged vascular activity, 

endothelial reactivity, and hypersensitivity to vasoconstrictors are all hallmarks of 

hypertension and vascular dysfunction.  Interestingly, the development of these 

hallmark characteristics appears to coincide with augmented O-GlcNAcylation.  

Lima et al. described increased O-GlcNAcylation in the vasculature of 

hypertensive rats63, 64, which had impaired endothelium-dependent relaxation and 

enhanced sensitivity to vasoconstrictors.  Augmenting O-GlcNAcylation with 

PUGNAc was sufficient to recapitulate these vascular effects in normoglycemic 

conditions, indicating a potential role for O-GlcNAc in the development of 

hypertension. 

 Furthermore, Lima et al. correlated a link between O-GlcNAcylation and 

endothelin-1 (ET-1), a major player in the development of vascular dysfunction65. 

ET-1 is responsible for inducing vasoconstriction and triggering a host of 

transcription factors that lead to inflammation, oxidative stress, and eventually 

tissue death65. The authors found that protein O-GlcNAcylation increases 

following incubation with ET-1 and alters vascular reactivity, and, when OGT is 

inhibited in the presence of ET-1, the effect of ET-1 on O-GlcNAc and vascular 

reactivity is abrogated.  Moreover, blocking the ETA receptor with atrasentan, 

resulted in decreased O-GlcNAcylation.  ET-1 treatment depresses OGA 

expression and activity, which could result in the observed increase in O-
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GlcNAcylation.  Thus, a complex interplay exists between ET-1 and the induction 

of O-GlcNAcylation. 

 Conversely, data from the Oparil lab supports a role of O-GlcNAc in 

preventing vascular dysfunction.  First, they demonstrated that the induction of 

O-GlcNAcylation inhibits acute inflammatory responses to endoluminal injury 66. 

Further studies showed that pretreatment of aortic rings with Thiamet G and 

glucosamine lead to increased global O-GlcNAcylation and prevented TNF" 

induced hypo-contractility and endothelial dysfunction67. This inhibition of TNF"’s 

effects may be the result of O-GlcNAcylation of the p65 subunit of NF#B68. As in 

the myocardium, the vasculature may host divergent responses to O-

GlcNAcylation, which may largely relate to duration of the stimulus. 

 

O-GlcNAc in the failing heart 

 Nowhere has the rebirth of metabolic investigation in the cardiovascular 

system been more evident than in HF. Metabolic changes during HF result in 

changes in substrate utilization and the reversion to a fetal metabolic profile. The 

heart suppresses fatty acid oxidation and augments its reliance on carbohydrate 

oxidation69, 70. Flux through accessory pathways of glucose metabolism such as 

the HBP become enhanced and result in augmented protein O-GlcNAcylation. 

Watson et al. reported increased O-GlcNAcylation and OGT expression during 

HF in mice.  In this infarct-induced HF model, OGT expression was elevated and 

OGA expression was reduced71.  In a loss of function study, cardiac-specific 

deletion of OGT and consequent reduction in cardiac O-GlcNAcylation 
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significantly exacerbated infarct-induced HF71. Specifically, survival was 

somewhat reduced, ventricular dysfunction was significantly depressed, and 

apoptosis was augmented.  These results demonstrate that the pro-adaptive 

increase in O-GlcNAc is required in the failing heart. Interestingly, cardiomyocyte 

OGT deletion did not result in any acute signs of HF in otherwise naïve (non-

infarcted) mice.   

 

O-GlcNAc and cardiac hypertrophy 

In response to MI or hypertension, cardiac hypertrophy is essential 

process to preserve cardiac function. Unsurprisingly, O-GlcNAc signaling has 

been implicated in cardiomyocyte hypertrophy. In models of pressure-overload 

hypertrophy, UDP-GlcNAc concentrations are greatly increased72. Accordingly, 

levels of O-GlcNAc and GFAT increased in Brown-Norway rats as their hearts 

with age-related cardiac hypertrophy73. This observation suggests that HBP 

and/or O-GlcNAc may be involved in the development of hypertrophy. 

To identify directly the role of O-GlcNAcylation in hypertrophy, Facundo et 

al. determined that NFAT activation during cardiomyocyte hypertrophy required 

O-GlcNAcylation. O-GlcNAc-dependent activation of NFAT resulted in 

hypertrophy whereas depressing O-GlcNAcylation blunted cardiomyocyte NFAT 

activation and hypertrophy74. Because others showed that NFAT could be a 

target of O-GlcNAc in other model systems75, and that NFAT is phosphorylated 

when excluded from the nucleus (i.e. not activated76), it is tempting to speculate 

that cardiomyocyte hypertrophy is driven by direct O-GlcNAcylation of NFAT. 
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O-GlcNAc and diabetes 

Diabetes mellitus, characterized by elevated blood glucose levels, 

represents a primary, independent risk factor for cardiovascular disease.  Given 

the simple association of hyperglycemia with diabetes and elevated O-

GlcNAcylation10, 58, 77-83, it is not surprising that protein O-GlcNAcylation has been 

linked to diabetes.  Indeed, several reports indicate elevated O-GlcNAcylation in 

diabetic models58, 60, 77, 79-81, 83.  Although some may question this relationship in 

individual tissues or cell types – particularly insulin sensitive tissues – evidence 

supports a general relationship between diabetes and O-GlcNAcylation.  

Interesting proof-of-concept studies demonstrated a relationship between the 

HBP and insulin resistance in vitro.  Specifically, overexpression of GFAT1 in rat 

fibroblasts leads to decreased insulin sensitivity84, and transgenic overexpression 

of GFAT resulted in insulin resistance85.  Marshall et al. rescued hyperglycemia-

induced insulin resistance through GFAT inhibition.  Similarly, overexpression of 

OGT in muscle and adipose tissue leads to insulin resistance and 

hyperleptinemia17, 18 while inhibiting O-GlcNAcase with PUGNAc (to increase O-

GlcNAcylation) leads to insulin resistance in cell culture86. Such findings support 

a role for the HBP and O-GlcNAcylation in promoting, or at least participating in, 

the pathogenesis of insulin resistance and diabetes.   

Other groups have published varying results regarding the role of O-

GlcNAc in triggering diabetes87. Treatment with PUGNAc, in addition to 

increasing O-GlcNAcylation, has been found to induce proteins involved in 

ubiquitin-proteasome degradation and insulin signaling pathways88.  Specifically, 
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PUGNAc appears to increase ubiquitination of proteins and decrease not only 

Akt phosphorylation but also the protein itself88.  Similarly, recent studies from the 

Buse lab contend that elevating O-GlcNAc alone may be insufficient to induce 

diabetes89, 90.  The Vocadlo group used a more selective OGA inhibitor than 

PUGNAc (i.e. NButGT) to determine a correlation between insulin resistance and 

O-GlcNAcylation.  NButGT rapidly increased O-GlcNAcylation without the added 

effect of causing insulin resistance in 3T3-L1 adipocytes91. Neither inducing O-

GlcNAcylation through overexpression of OGA nor ablating O-GlcNAcylation 

through knockout of OGT appeared to be engender insulin resistance92; 

however, Dentin et al. showed overexpression of OGA in a diabetic mouse model 

rescues glucose tolerance and insulin sensitivity93.  Taken together, these results 

suggest that global O-GlcNAcylation may not necessarily cause insulin 

resistance on its own.  Thus, the causative role of the HBP and O-GlcNAc in 

diabetes may not be as clear as initially thought. 

 

O-GlcNAc in diabetic cardiac dysfunction 

 Similar to the basic cell studies tying O-GlcNAc to diabetic pathogenesis, 

several groups have suggested an association between increased O-

GlcNAcylation and cardiac dysfunction.  At a reductionist level, cells grown in 

hyperglycemic conditions demonstrate reduced ATP production as a potential 

result of altered mitochondrial proteins80. Increased O-GlcNAcylation, secondary 

to hyperglycemia, may depress function of mitochondrial electron transport 

complexes I, III, and IV in NRCMs which may be attenuated by overexpression of 
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OGA.  Nevertheless, it still remains unclear whether all of the necessary 

components (i.e. OGT, UDP-GlcNAc, appropriate binding partners) to produce 

O-GlcNAcylation are present in the mitochondria, and, although such studies are 

exciting, further work is required to fully understand how O-GlcNAc may regulate 

mitochondrial function. 

Not only may O-GlcNAc alter basic aspects of mitochondrial function, it 

may also affect cardiac contractile function through altering calcium handling. 

Cardiomyocytes subjected to high concentrations of extracellular glucose, 

glucosamine, or PUGNAc exhibited delayed calcium transients74, 79, 80, 94. 

Overexpression of OGT in cardiomyocytes similarly delayed calcium transients 

while OGA overexpression rescued calcium transients.  The interaction between 

phospholamban and SERCA2a may also be modified by O-GlcNAcylation95.  O-

GlcNAcylation at Ser16 on phospholamban, a reported manifestation in diabetes, 

results in reduction in phosphorylation of phospholamban and a decrease in its 

association with SERCA2a, thereby decreasing the pump’s activity95. Such 

studies suggest the increased O-GlcNAcylation during hyperglycemia/diabetes 

may be part of the cause of the pathology, either at the mitochondrial level and/or 

the level of calcium handling.  Yet, it remains unclear how cardiomyocytes, which 

(according to conventional wisdom) normally require insulin for most glucose 

uptake, might exhibit increased glucose uptake during diabetes, at least to a level 

sufficient to drive flux, and consequently O-GlcNAcylation, through the HBP.  On 

an even larger scale, some investigators contend that myocardial insulin 
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resistance serves as a pro-adaptive, defensive response against nutrient 

excess96.  

 

Summary 

 O-GlcNAcylation plays a vital role in cardiac and vascular function, 

especially during disease.  Although O-GlcNAcylation uniformly promotes 

cardiomyocyte survival in the context of acute cell injury, the role of O-GlcNAc in 

the vasculature or in the chronically failing/diabetic heart is less clear-cut.  

Nevertheless, modulation of O-GlcNAcylation is ripe with tremendous therapeutic 

potential. In the case of acute cardioprotection, therapeutic augmentation of O-

GlcNAc levels is a clinically feasible option.  One such strategy would be to limit 

de-O-GlcNAcylation through pharmacological inhibition of OGA.  Another method 

would be to prime cardiomyocytes through genetically enhancing O-

GlcNAcylation.  Either approach could be used in cases such as heart transplant 

or coronary artery bypass grafting – both of which involve predictable 

stress/ischemic events in the heart. The implementation of targeted O-

GlcNAcylation, though difficult to imagine at this point, may provide a therapeutic 

benefit to the cardiovascular system prior to or following acute cardiovascular 

injury.  These strategies may provide protection during ischemic events in the 

heart resulting in improved survival and cardiac function.   

In the meantime, laboratory efforts should be directed toward 

understanding O-GlcNAc biology. There are many questions to be resolved 

regarding the role of O-GlcNAcylation in the pathology of diseases. Previous 
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studies have demonstrated that protein O-GlcNAcylation increases in response 

to stress. Two highly conserved enzymes regulate cellular O-GlcNAc levels, 

though, we have virtually no understanding of their transcriptional or 

posttranscriptional regulation. Another facet of O-GlcNAc biology is that O-

GlcNAcylation of proteins is transient and acute augmentation of O-GlcNAc 

signaling is cytoprotective. However in the context of disease (ie. HF and 

diabtetes) O-GlcNAc levels become chronically elevated. Much of the detrimental 

effects on mitochondrial function in metabolic disorders such as diabetes, where 

flux through the HBP is elevated, have been attributed to dysregulated protein O-

GlcNAcylation. The question remains whether prolonged augmentation of  O-

GlcNAcylation is protective or maladaptive. 

This project addresses these queries through elucidating the role of 

OGA/O-GlcNAc in HF. It will determine the temporal changes in expression of 

the machinery necessary to regulate O-GlcNAcylation: OGT and OGA. The 

project will identify a novel posttranscriptional regulator of OGA in response to 

myocardial stress. In addition, through ablation of cardiac OGA, we will 

demonstrate the effect of prolonged O-GlcNAcylation on cardiac function alone 

and then in the context of HF. These studies will provide insight into the role that 

prolonged O-GlcNAc plays in HF. Finally, this project will shed light on the long 

purported link between O-GlcNAcylation and mitochondrial function.  

!
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CHAPTER II 
 
 

HYPOTHESIS AND SPECIFIC AIMS 
  

 

Current treatments for HF are largely palliative.  As a result, the prognosis 

for patients with HF remains grim.  New approaches to understand basic 

pathophysiology of the heart could create new treatment options. Although 

metabolic changes clearly occur in HF, we lack sufficient understanding of some 

of the peripheral aspects of metabolism; that is, HF is not simply an ATP-

deficient pathology.  Accordingly, this project will identify the role of a unique 

accessory pathway associated with glucose metabolism, which is distally 

regulated by OGA, in the failing heart. 

Recent studies in our laboratory have identified the significant induction of 

a stress signal, O-GlcNAc, following myocardial infarction (MI). Furthermore, our 

laboratory described the role of OGT in the failing heart and found that it was 

necessary for the heart’s post-MI response. Using a somewhat complementary – 

though mechanistically more advanced – approach, the present proposal will 

unequivocally determine the role of OGA (the enzyme that removes the O-

GlcNAc modification).  We posit that genetic abrogation of OGA activity could 

attenuate the severity of HF. 
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Overarching Hypothesis:  OGA suppression favors O-GlcNAcylation and 

attenuates HF through preservation of mitochondrial function. 

  

Specific Aim 1.  Establish the temporal changes of OGA in HF. 

 A) Identify temporal changes of OGA expression in the failing heart. 

 B) Identify regulators of OGA expression in the failing heart.  

 

Specific Aim 2.  Determine the role of OGA in HF. 

 A) Characterize inducible, cardiomyocyte-specific OGA deficient  

  mouse. 

 B) Perform HF studies in the setting of OGA deletion. 

  

Specific Aim 3.  Assess the contribution of OGA to cardiomyocyte mitochondrial 

function. 

 A) Interrogate changes in mitochondrial respiration following alteration  

  of OGA expression or activity. 

 



! 26 

 
 
 
 

CHAPTER III 
 

MATERIALS AND METHODS 
 
 
All de-identified human samples were obtained with informed consent and in 

accord with the institutional review board of the University of Louisville. All human 

HF samples (in collaboration with Dr. Sumanth Prabhu) were collected from 

males, age 50-58 years; were classified NYHA IIIb-IV; had elevated BNP levels; 

and had ejection fractions below 25%. Control samples were purchased from 

Integrated Laboratory Services – Biotech (ILSbio; Chestertown, MD). All animals 

were used in compliance with the Guide for the Care and Use of Laboratory 

Animals issued by the National Institutes of Health. The experimental protocols in 

this study have been reviewed and approved by the University of Louisville 

Institutional Animal Care and Use Committee. 

 

Tamoxifen treatment: 4-hydroxytamoxifen (25 mg, Sigma, St. Louis, MO) was 

added to 1 mL of warmed (37°C) 100% ethanol. The mixture was vortexed and 

sonicated until fully dissolved. Then the mixture was added to 9 mL peanut oil 

(Sigma, St. Louis, MO) and was vortexed and sonicated until dissolved. A bolus 

of 4-hydroxytamoxifen (20 mg/kg) was injected intraperitoneally on alternating 
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sides for 5 d. Residual 4-hydroxytamoxifen was allowed to “wash out” for 5 d 

prior to experimentation. 

 

Non-reperfused myocardial infarction (MI) surgery:  Initial HF studies were 

conducted in three-month-old wild-type C57BL6J mice for Aim 1.  In Aim 2 we 

used three-month-old i-cmOGA+/- mice and wild-type littermates and subjected 

them to MI surgery following 4-hydroxytamoxifen treatment. Mice were 

anesthetized with ketamine (50 mg/kg, intraperitoneal) and pentobarbital (50 

mg/kg, intraperitoneal), orally intubated with polyethylene-60 tubing, and 

ventilated (Harvard Apparatus Rodent Ventilator, model 845) with oxygen 

supplementation. The left anterior coronary was visualized through an intercostal 

incision and a 7-0 silk suture was looped around the coronary. The suture was 

tied. Successful occlusion of the coronary artery was assessed visibly through 

pallor. The chest was sutured with 4-0 silk suture and the skin was sutured with 

4-0 polyester suture. Analgesia (ketoprofen, 5 mg/kg, subcutaneous) was given 

before mice recovered from anesthesia and at 24 h and 48 h of the postoperative 

period. Mice were extubated upon recovery of spontaneous breathing and were 

allowed to recover in warm, clean cages supplemented with oxygen. At the end 

of each study, mice were euthanized and the hearts were rapidly excised and 

weighed. The hearts were then immediately frozen in liquid nitrogen and stored 

at -80ºC, or, perfused and fixed for immunohistochemical analyses. 
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Histopathology: Histology was performed using previously published 

methods71. Briefly, formalin-fixed, paraffin embedded hearts from sham and MI 

mice were sectioned, deparaffinized, and rehydrated. Masson’s trichrome 

(Richard-Allan Scientific, Masson’s trichrome kit, Fisher Scientific, Ottawa, 

Ontario) was used to detect collagen. Cardiac collagen content was determined 

as the percentage of collagen in long-axis sections of the LV. 

 

Echocardiography: Transthoracic echocardiography of the left ventricle was 

performed as previously described97-103 with adjustments for the Vevo 770 

echocardiography machine. Body temperature was maintained (36.5°C-37.5°C) 

using a rectal thermometer interfaced with a servo-controlled heat lamp. Mice 

were anesthetized with 2% isoflurane, maintained under anesthesia with 1.5% 

isoflurane, and examined. Mice were placed chest up on an examination board 

interfaced with the Vevo 770. The board was outfitted with EKG electrodes for all 

limbs. Next, depilatory cream was applied to the mouse’s chest and wiped clean 

to remove all hair in the area of interest. The 707-B (30 MHz) scan head was 

used to obtain 2D images (100 fps) of the parasternal long axis. M-modes were 

taken from the same images. The probe was then rotated to acquire a short axis 

view of the heart. Beginning at the level of the papillary muscles and moving 

apically, serial 2D images were taken every millimeter. All measurements were 

taken by utilizing the Vevo 770’s rail system to maintain probe placement and 

allow for minute adjustments of position. Left ventricular inner diameter during 

diastole (LVIDd) and left ventricular inner diameter during systole (LVIDs) and 
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heart rate (HR) were determined from M-modes. Left ventricular fractional 

shortening (%FS) was calculated as: ((LVIDd-LVIDs)/LVIDd)x100%. Applying 

Simpson’s rule of discs to the serially acquired, short-axis images provided 

diastolic and systolic volumes. Stroke volume (SV) was calculated as: Diastolic 

volume - Systolic Volume.  Ejection Fraction was calculated as: (SV/Diastolic 

Volume) x 100%. Cardiac output was determined by: SVxHR.   

 

miRNA microarray and real-time PCR: Total RNA from the 5- and 28-day 

sham and infarcted mouse hearts (n = 4/group/time point) was isolated using 

TRIzol reagent (Invitrogen). Rodent miRNA microarray kit (Applied Biosystems) 

was used according to the manufacturer's protocol. In brief, 1 µg of total RNA 

was reverse-transcribed with Megaplex RT primers (Megaplex RT Rodent Pool 

A), followed by a real-time PCR with TaqMan Rodent MicroRNA Array performed 

on an Applied Biosystems 7900HT System. SDS software version 2.3 and 

DataAssist version 3.0 (Applied Biosystems) were used to obtain the 

comparative threshold cycle (Ct) value. U6 small nuclear RNA included in the 

TaqMan Rodent MicroRNA Array was used as an endogenous control. 

Quantitative RT-PCR (qRT-PCR) analyses were carried out using TaqMan 

miRNA assays (Applied Biosystems) according to the manual. Relative 

expression of miR-539 was calculated using the $$CT method normalized to the 

expression of U6 small nuclear RNA (Applied Biosystems). Relative levels of 

OGA and OGT mRNA were examined with specific primers (OGA: forward, 5%-

TGGAAGACCTTGGGTTATGG-3% and reverse, 5%-
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TGCTCAGCTTCTTCCACTGA-3%; GT, orward, %-

CCTGGGTCGCTTGGAAGA-3% and reverse, 5%-TGGTTGCGTCTCAATTGCTTT-

3%) using Fast SYBR Green (Applied Biosystems) and normalized to levels of 18 

S mRNA. All qRT-PCRs were performed in duplicate. 

 

In situ hybridization: MicroRNA-539 in situ hybridization was performed using 

the protocol described by Obernosterer et al104. In brief, frozen sections of sham 

and infarcted mouse hearts (5 and 28 days) were prepared as mentioned earlier, 

washed in PBS for 10 min, placed in acetylation solution (98% diethyl 

pyrocarbonate-treated water, 1.3% triethanolamine, 0.175% HCl, 12% acetic 

anhydride) for 20 min and digested by Proteinase K (25 µg/ml) for 5 min at room 

temperature, washed in PBS for 5 min, and prehybridized (50% formamide, 25% 

20& SSC, 10% 50& Denhardt's, 1.25% 20 mg/ml of yeast tRNA, 5% 10 mg/ml of 

salmon sperm DNA, 0.4 g of blocking reagents in 20 ml of solution and 8.75% 

diethyl pyrocarbonate-treated water) at 50 °C for 4 h. The digoxigenin-labeled 

mmu-miR-539 LNA probe (Exiqon, Woburn, MA). Probes (1 nM) were denatured 

with denaturing hybridization solution (50% formamide, 25% 20& saline-sodium 

citrate (SSC), 10% 50& Denhardt's, 1.25% 20 mg/ml of yeast tRNA, 5% 10 mg/ml 

of salmon sperm DNA, 0.4 g of blocking reagents in 20 ml of solution, 2.5% of 

10% CHAPS, 0.5 of 20% Tween, and 5.75% diethyl pyrocarbonate-treated 

water) at 95 °C for 5 min, then added to the slides and hybridized at 50 °C for 

overnight. The slides were washed in 5& SSC for 5 min followed by 0.2& SSC for 

60 min at 60 °C. After blocking for 1 h (2% fetal bovine serum), the sections were 
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incubated with anti-digoxigenin antibody (Roche Applied Science; 1:2000) 

overnight at 4 °C. The bound antibody was detected by AP substrate, nitro blue 

tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate, toluidine salt for color 

development for 24–48 h at room temperature in the dark, and imaged using a 

NS-F12 camera mounted on a Nikon Eclipse Ni microscope. 

 

NRCM and HEK293 cell culture: NRCMs were isolated from 1–2-day-old 

Sprague-Dawley rats according to the protocol as previously described105. The 

isolated cardiomyocytes were cultured in DMEM containing 10% fetal bovine 

serum, penicillin/streptomycin, and vitamin B12 in the presence of anti-mitotic 

BrdU (0.1 mM) for 4 days to inhibit fibroblast growth and subsequently grown in 

the absence of BrdU. HEK293 cells were grown in DMEM containing 10% fetal 

bovine serum and penicillin/streptomycin. 293FT cells cultured in DMEM 

Glutamax (Invitrogen) containing 10% fetal bovine serum, penicillin/streptomycin, 

and Geneticin (Invitrogen) were used for the lentivirus preparation. 

 

Luciferase reporter assay: For luciferase assay, we transiently co-transfected 

(Lipofectamine 2000, Invitrogen) pLenti6/V5-miR-539 or pLenti6/V5-scrambled 

(250 ng) overexpressing constructs with luciferase reporter plasmid containing 

wild-type OGA-3%UTR (Genecopoeia, Inc.) or miR-539 binding seed mutant OGA-

3%UTR (250 ng) in 60–70% confluent HEK293 cells grown in a 12-well plate. 

Renilla reporter plasmid (10 ng) was used as transfection control. At 48 h post-

transfection, cells were lysed and assayed for luciferase activity using a dual 
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luciferase assay kit (Promega). 

 

miRNA-539 construct and lentivirus preparation: The precursor miRNA-539 

was amplified from mouse genomic DNA using forward (5%-

CACGTGTGAGGAGTGGTGAT-3%) and reverse (5%-CCTTGTGCCCAGGTAAGG-

3%) primers containing EcoRI and XhoI restriction sites, respectively. Scrambled 

sequence amplified from pEZX-MR04 (GeneCopoeia, Inc.) using forward (5%-

ACACCCTGTTTATTGATGCTGA-3%) and reverse (5%-

CCTGTTATTCTCTGCTAACGCC-3%) primers was used as a control. The 

amplified precursor miRNA-539 and scrambled control were cloned into 

pLenti6/V5 plasmid and verified by sequencing. The integrity of miRNA-539 and 

scrambled control stem loop structure was analyzed using mfold version 2.3. 3 

µg of pLenti6/V5-miR-539 was mixed with 9 µg of ViraPower Packaging Mix 

(Invitrogen) and transfected in 293FT cells using Lipofectamine 2000 transfection 

reagent according to the manufacturer's instruction. The pseudolentiviral particles 

released in the medium were concentered using Lenti-X Concentrator (Clontech 

Laboratories, Inc.) and titrated in NRCMs by qPCR using SV40 forward, 5%-

GCTCCCCAGCAGGCAGAAGTATG-3% and reverse, 5%-

TGGGGAGCCTGGGGACTTTCCAC-3% primers. pLenti6/V5-mCherry was used 

as a transduction control. 

 

Functional study of miRNA-539: We examined the effect of miR-539 on OGA 

and OGT by transducing NRCMs and HEK293 cells with miR-539 lentivirus or 
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scrambled or mCherry control lentiviruses. The cells were maintained in their 

regular growth medium for 2 days and selected with blasticidine for 5 days. 

Alternatively, cells were transfected with mirVanaTM miR-539 inhibitor or a 

negative control Oligonucleotides (10 nmol/liter) using LipofectamineTM 

RNAiMAX (Invitrogen) after 5 days of lentivirus treatment. Overexpression of 

miR-539 expression was verified by qRT-PCR using miRNA assay as described 

above and the loss or gain of OGA expression followed by miR-539 

mimic/inhibitor was analyzed by Western blotting. 

 

In vitro hypoxia-reoxygenation injury: To determine whether additional insults, 

such as hypoxia-reoxygenation alter miR-539 levels, NRCMs were subjected to 

hypoxia-reoxygenation as described. In brief, cells were subjected to 3 h hypoxia 

in Esumi lethal ischemia medium for glucose and nutrient deprivation (containing 

117 mmol/liter of NaCl, 12 mmol/liter of KCl, 0.9 mmol/liter of CaCl2, 0.49 

mmol/liter of MgCl2, 4 mmol/liter of HEPES, 20 mmol/liter of sodium lactate, and 

5.6 mmol/liter of L-glucose; pH 6.2) in a sealed humidified hypoxic chamber 

(Billups-Rothenberg, Inc.) flushed with 5% CO2 and 95% N2, and maintained at 

37 °C. After 3 h, the cells were switched to Esumi control medium (containing 

137 mmol/liter of NaCl, 3.8 mmol/liter of KCl, 0.9 mmol/liter of CaCl2, 0.49 

mmol/liter of MgCl2, 4 mmol/liter of HEPES, and 5.6 mmol/liter of D-glucose, pH 

7.4) and allowed to reoxygenate for 3, 6, and 12 h in the modular incubator. Cells 

grown in the Esumi control medium for the same durations were used as 

normoxic controls. The expression of miR-539 and OGA protein level was 
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analyzed as described above. 

 

Protein isolation: NRCM or HEK292 cellular protein content was harvested 

using a cell scraper in buffer containing: HEPES (5 mmol/L), EDTA (1 mmol/L), 

EGTA (1 mmol/L), KCl (50 mmol/L, mannitol (200 mmol/L) and sucrose (68 

mmol/L, pH = 7.4 with KOH). The following reagents were freshly added to the 

buffer: DTT (1 mmol/L), protease inhibitor (0.0001%), Triton X-100 (0.4%), NP-40 

(0.4%), sodium orthovanadate (1 mmol/L), sodium fluoride (1 mmol/L), alloxan 

(OGT inhibitor, 1 mmol/L) and O-(2-Acetamido-2-deoxy-D-

glucopyranosylidenamino) N-phenylcarbamate (i.e., PUGNAc, which is an OGA 

inhibitor, 1 'mol/L) were added to the buffer in order to avoid artificial O-GlcNAc 

addition or removal, respectively, to the proteins in vitro. NRCM lysates were 

sonicated twice at 4ºC for 25 sec each, with 30 min separating each sonication. 

After the second sonication, the NRCM lysates were centrifuged at 16,000xg for 

5 min. The supernatant was collected, snap frozen, and stored at -80ºC until 

used. 

 

Protein isolation from heart tissue: Hear tissue was minced, weighed, and 

placed in buffer containing: Tris-HCl (50 mmol/L, pH 7.4), NaCl (150 mmol/L), 

deoxycholic sodium salt (0.01 mmol/L), EDTA (1 mmol/L), sodium orthovanadate 

(1 mmol/L), sodium fluoride (1 mmol/L), PUGNAc (0.001 mmol/L), alloxan 

monohydrate (0.001 mmol/L). Protease Inhibitor 556 'l/L (P8340, Sigma-Aldrich) 

and NP-40 (10%) were freshly added to the buffer. To this solution, 1.4 mm 
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diameter stainless steel beads were added at a ratio of 3:1 (mass of bead:mass 

of tissue) in 1.5 mL tubes. Tubes were transferred to a Bullet Blender and 

subjected to bead-homogenization at 4ºC. Lysates were centrifuged at 14,000xg 

at 4ºC for 5 min.  Supernatant was saved and precleared with sepharose G (GE 

Healthcare) to limit the interaction of the secondary antibody (anti-mouse) with 

endogenous immunoglobulins. Heart lysates were frozen in liquid nitrogen and 

stored at -80ºC until used. 

 

Protein quantification: NRCMs, HEK293, and heart lysate protein concentration 

were determined by Bradford assay with Bio-Rad protein assay dye reagent (Bio-

Rad Laboratories) using different concentrations of bovine serum albumin as 

standards. Protein concentrations were measured with a Thermo Multiskan 

Spectrum spectrophotometer. 

 

Immunoblotting: NRCM, HEK293, or whole heart protein samples were 

subjected to electrophoresis in SDS-PAGE gels (4-12%, Invitrogen) and 

transferred to PVDF membrane (Immobilon-P, EMD Millipore, Billerica, MA) at 

4°C.  For O-GlcNAc immunoblotting membranes were allowed to dry at room 

temperature for 1 hr. Then the blot was probed with primary antibody against: O-

GlcNAc: CTD 110.6 (1:1000; Covance) or RL2 (1:1000, Affinity Bioreagents) in 

PBS-casein (Bio-Rad Laboratories) overnight at 4ºC. Membranes were washed 

three times with 1x PBS. Membranes were incubated at room temperature with 

secondary antibody goat anti-mouse IgG-HRP (1:4000, sc-2005; Santa Cruz 
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Biotechnology) in PBS-casein. Membranes were again washed three times with 

1x PBS and then imaged. All other western blotting followed standard protocols. 

Briefly, membranes were blocked at room temperature using Tris-buffered saline 

pH 7.5 (TBS) containing nonfat milk (5%), washed with TBS containing Tween-

20 (TBS-T, 0.1%), and probed with primary antibody. Antibodies for OGT (SQ-17 

- 1:2000, Sigma-Aldrich), OGA (NCOAT – 1:1000, Santa Cruz Biotechnology), 

GATA-4 (14353 – 1:1000, Cell Signaling Technology), and "-tubulin (1:2000, 

Sigma-Aldrich) were made in TBS containing nonfat milk (1%). After overnight 

incubation at 4ºC, blots were washed in TBS containing Tween-20 (TBS-T, 

0.1%). The blots were blocked for 15 min in TBS-T containing 1% milk, washed, 

and then incubated with goat anti-rabbit IgG-HRP (sc-2004; Santa Cruz 

Biotechnology or 7074; Cell Signaling Technology) or goat anti-mouse IgG-HRP 

(Santa Cruz Biotechnology), in 1:2000 dilution (for OGT, OGA, GATA-4, "-

smooth muscle actin, and "-tubulin). After washing three times with TBS-T, the 

membrane was saturated with SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Fisher Scientific) and imaged on a Fuji LAS-3000 bio-imaging 

analyzer. To confirm the linear range of the signal, multiple exposures from every 

experiment were performed. Levels of proteins in each lane were normalized to 

loading protein content ("-tubulin) or to Ponceau stain and expressed as relative 

to control (set as 100%). 

 

Reverse transcriptase PCR and real-time PCR:  The total RNA from OGA KO 

and WT hearts was extracted with Trizol reagent (Invitrogen, Carlsbad, CA). 
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Total RNA levels were quantified using the ratio of absorbance at 260 nm to 280 

nm (A260/A280 ratio) with the NanoDropTM 1000 Spectrophotometer (Thermo Fisher 

Scientific). To check for organic contaminants like phenol and other aromatic 

compounds (Trizol, for example), the total RNA was verified by the absorbance 

ratio of 260 nm to 230 nm (A260/A230). We limited the use of RNA to samples 

with 260/230 ratio greater than 1.8. Total RNA (1 'g) was then subjected to 

transcription in a final volume of 20 'L for 30 min to synthesize cDNA using 

iScriptTM cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA). The relative 

levels of mRNA transcripts were quantified by real-time PCR using SYBR® 

Green (Thermo Fisher Scientific) on a real-time PCR system (ABI 7900 HT, 

Applied Biosciences). All primers were made using NCBI Primer Blast except 

HPRT primers (PPM03559E-200, QIAGEN). The data were normalized to mouse 

HPRT mRNA threshold cycle (CT) values by using the $$CT comparative 

method.  

 

Generation of inducible, cardiac-specific OGA deficient mice:  We received 

OGA-loxP flanked mice as a generous gift from the Hanover lab. Progeny from 

these mice were then bred with either the "-MHC MerCreMer (MCM) or "-MHC 

Cre transgenic mouse lines to generate inducible or constitutive cardiac-specific 

OGA ablated mice respectively. Inducible, cardiomyocyte-specific Oga deficient 

(i-cmOga+/-) mice and their wild-type (MCM positive) littermates were bred based 

on strategy (Figure X). All mice used in this study were on a C57BL/6J 

background. 
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Genotyping of transgenic mice: At 3-4 weeks of age, mice were ear tagged,  
 
and tail snips were taken.  Total DNA was isolated from tail snips using the  

Qiagen DNeasy Tissue Kit.  The DNA was stored at -20°C until PCR is 

performed.  PCR was performed using the Taq PCR Core Kit from Qiagen.  

Mixes were created as follows: tube 1 contained 1 'l DNTP, 1ul of 20 'mol/L 

forward primer 1 'l of 20 'mol/L reverse primer, 10 'L Enzyme Q, and 7 'L 

water per sample.  Tube 2 contained 5 'l 10X buffer, 0.5 'L Taq, and 14.5 'L 

water per sample.  20 µL of each tube were added to a PCR tube containing 10 

'L of purified DNA.  PCR was performed at the following conditions: 1 cycle of 

94°C for 3 min, 35 cycles of 94°C for 30 sec, 61°C for 1 min and 72°C for 1 min, 

1 cycle of 72°C for 2 min then held at 4°C ad infinitum.  PCR samples were then 

run on a 1.2% agarose gel with SYBR Safe stain (Invitrogen).  Gels were 

visualized under UV light using a Fuji LAS-3000 imaging system.  All primer 

sequences used for genotyping are listed in Table 1. 
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NRCM culture for extracellular flux analysis: 

NRCMs were isolated as previously described. NRCMs were plated at a density 

of 850000 cells/ml in six-well plates for protein isolation or 75000 cells per well in 

Seahorse plates for bioenergetic assay. For the first 4 days following isolation, 

NRCMs were cultured in medium containing BrdU (bromodeoxyuridine;0.1 mM),

 5% FBS, penicillin (100units/ml), streptomycin (100mg/ml) and vitamin B12 

(2 µg/ml). On day 4 (post-isolation), NRCM medium was changed to Dulbecco’s 

Modified Eagle’s medium (DMEM) supplemented with 4 mM glutamine, 1 mM 

pyruvate and the corresponding treatment (5 mM D-glucose, 33 mM D-glucose 

or 5 mM D-glucose + 28 mM mannitol). A 5 mM D-glucose + 28 mM mannitol 

treatment served as the osmotic control. Cells were cultured in their respective 

treatment for 48 h prior to protein or bioenergetics assays. 

 

 
 Table 1. Genotyping Primers 

Primer Name Primer Sequence 5’-3’ 

 OGA UTR1F   ACC GCA CAC TCT CCA TCG CCA TAA 

 OGA UTR4R   CCC GCT TCC TGT TTA TCC GCA CTG 

 OGA R7   CAC CGC CTC CTC CTC CGA CAA ATC 

 Neo F   TGC TCC TGC CGA GAA AGT ATC CAT CAT GGC 

 Neo R   CGC CAA GCT CTT CAG CAA TAT CAC GGG TAG 

 MCM F   GTC TGA CTA GGT GTC CCT TCT 

 MCM R   CGT CCT CCT GCT GGT ATA G 
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Gene transfer and OGA inhibition: For gene transfer experiments, NRCMs 

were serum-starved overnight and then transduced with 100 multiplicity of 

infection (MOI) of replication deficient adenoviruses carrying OGT gene (Ad-

OGT), OGA gene (Ad-OGA) or null virus (Ad-Null) in medium containing 5 % 

FBS for 5 h. After 5 h, the medium was replenished with medium lacking virus. 

Bioenergetics profiling and protein isolation occurred 48 h post- transduction. To 

pharmacologically augment O-GlcNAc levels, we used Thiamet G (TMG; 

Cayman Chemicals), which inhibits OGA and increases protein O-GlcNAcylation. 

NRCMs were treated with 1 µM TMG or vehicle (DMSO). Bioenergetics profiling 

of intact NRCMs was conducted 48 h after TMG treatment. Bioenergetics 

profiling of permeabilized NRCMs was conducted 24 h after TMG treatment. 

 

Bioenergetic profiling of intact, adherent cells: The bioenergetics of intact, 

adherent NRCMs that were seeded at 75000 cells per well was measured using 

a Seahorse Bioscience XF24 Flux Analyzer (Seahorse Biosciences). For these 

experiments, the treatment medium was replaced with 675 µl of assay medium: 

unbuffered DMEM supplemented with glucose ((5 or 33 mM; or appropriate 

concentration of mannitol osmotic control), 4mM glutamine and 1mM pyruvate) 

and plates were placed in a non-CO2 supplemented incubator 1 h before assay. 

Following microplate insertion, the XF24 automated protocol consisted of a 

10min delay followed by baseline oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR) measurements (3 & (3 min mixing, 2 min 

wait and 3 min measure)). To interrogate mitochondrial function, the following 
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compounds were injected following three baseline measurements: Port A, 

oligomycin; Port B, FCCP; and Port C, antimycin A (AA). After each injection, one 

measurement was recorded, with each having a 3 min mixing, 2 min wait and 3 

min measure cycle. Stocks (1 mM) of oligomycin (Sigma), FCCP (Sigma) and AA 

(Sigma) were prepared in 100% DMSO(Sigma). Prior to assay, stocks were 

diluted in assay medium to yield 0.01 mM oligomycin, 0.01 mM FCCP and 0.1 

mM AA, which, after injection, yielded final concentrations of 1.0 µM oligomycin, 

1.0 µM FCCP and 10.0 µM AA. All experiments were conducted at 37 ( C. 

Parameters of mitochondrial function were calculated as previously described. 

Protein concentration measured following XF analysis was not significantly 

different between groups. 

 

Bioenergetic profiling of permeabilized, adherent cells: Bioenergetic profiling 

for electron transport chain activity was performed as recently described. Prior to 

bioenergetic profiling, NRCMs were changed to mannitol and sucrose (MAS) 

medium {220mM mannitol, 70mM sucrose, 5mM MOPS (3-(N-

morpholino)propansulfonic acid) and 4% fatty-acid free BSA, pH 7.2). NRCMs 

were permeabilized following a Port A injection of 25 µg/ml saponin. Complex II-

specific substrate (10 mM succinate, 1 µM rotenone (Rot) and 1 mM ADP) was 

also contained in Port A to support cellular respiration. Following State 3 rate 

measurements, oligomycin (1 µg/ml) was injected from Port B; following State 4o 

measurement, AA (10 µM) and Rot (1 µM) were injected from Port C to inhibit 

mitochondrial oxygen consumption. Parameters of mitochondrial function were 
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calculated essentially as described. Protein concentration measured following XF 

analysis was not significantly different between groups. 

 

Cell fractionation: NRCMs (n=3) were fractionated to assess O-GlcNAcylation 

of mitochondrial proteins following treatment with 5 or 33 mM glucose, osmotic 

control (5 mM glucose + 28 mM mannitol), TMG, Ad-Null or Ad-OGA. 

Cardiomyocytes were trypsinized with 0.25 % trypsin–EDTA (Thermo Fisher) for 

5 min at 37°C. Trypsin was neutralized and cells were counted. Cardiomyocyte 

fractionation was performed with a standard Cell Fractionation Kit (Abcam). 

 

Statistical analysis: Results are shown as mean ± SD. The statistical analysis 

(GraphPad 5.0d) was conducted using student’s t test or by one-way ANOVA 

followed by Newman-Keuls Multiple Comparison Test, when appropriate. 

Differences were considered statistically significant if p < 0.05. 
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CHAPTER IV 

RESULTS 

 
Protein O-GlcNAcylation is augmented in human HF patients 

Transplant-listed patients with end-stage HF occasionally receive left ventricular 

assist devices (LVADs) as a bridge to transplantation due to limited availability of 

donor hearts. We assessed cardiac O-GlcNAc levels in patients’ myocardial 

samples to determine whether O-GlcNAcylation was altered in failing human 

hearts (Figure 2). Specifically, apical cores removed during LVAD implantation 

were saved; this tissue served as our HF (HF) group. Cardiac tissue from severe 

HF patients prior to LVAD implantation (HF) demonstrated augmented protein O-

GlcNAcylation when compared with patients without heart disease (Control; C) 

(Figure 2, p < 0.05). These data combined with our published data are consistent 

with the notion that increased protein O-GlcNAcylation is a relevant, chronic 

feature in human HF.  

 

Expression of OGT, OGA are temporally altered after MI   

Wild-type C57BL6J mice were subjected to Sham or MI for 5 d or 28 d and 

cardiac function was assessed via echocardiography. Cardiac dysfunction was 

exhibited within 5 d of MI and after 28 d of MI compared with Sham mice (Figure 
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3). Fractional shortening, ejection fraction, and cardiac output were all 

significantly diminished in infarcted mice 5 and 28 d post MI (Figure 3, p<0.05).  

 

Because protein O-GlcNAcylation is augmented during human HF, it was 

necessary to identify temporal changes in protein expression of OGT and OGA 

during HF. We assessed expression of OGT and OGA, and protein O-

GlcNAcylation in hearts 5 d and 28 d post MI. After 5 d of MI, OGT protein and 

mRNA were upregulated compared to 5 d Sham (Figure 4, p<0.05). After 28 d MI 

OGT mRNA was still upregulated; however, protein expression was not different 

between Sham and MI groups. OGA protein and mRNA expression remained 

suppressed throughout the 28 d period (Figure 4). Protein O-GlcNAcylation was 

upregulated after 5 d MI and remained augmented after 28 d MI (Figure 4, 

p<0.05). These data suggest that suppression of OGA could drive augmentation 

of protein O-GlcNAcylation in HF. How OGA suppression occurs remains 

unknown. Regulators (transcriptional or posttranscriptional) of OGA expression 

have yet to be discovered. 
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Figure 2. Protein O-GlcNAcylation is augmented in human heart failure. Human O-GlcNAcylation 
was measured from cardiac biopsies of disease free patients (Control; C) and heart failure (HF) 
patients. *p <0.05 vs. control human heart group.  
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Figure 3. Myocardial infarction induces cardiac dysfunction 5 and 28 d post coronary ligation. Masson's 
trichrome staining shows collagen fibers (blue) and healthy myocardium (red) in sham and infarcted mouse hearts 
5 d and 28 d post MI (A,B). Infarcted hearts exhibit decreased left ventricular wall thickness with increased 
collagen deposition and loss of myocardium compared with their respective sham hearts (A,B). Magnification at 
!2; scale bar = 1000 µm. Mice subjected to MI had severely dilated left ventricles (C,D), reduced fractional 
shortening (FS)(E), reduced ejection fraction (EF)(H), and reduced stroke volume (SV)(J). Cardiac output (CO) 
was significantly diminished at both 5 and 28 days (K). LVIDD, left ventricular internal diameter " diastole; LVIDS, 
left ventricular internal diameter " systole.* indicates a p <0.05.  
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Figure 4. Down-regulation of OGA expression and increased protein O-GlcNAcylation in the failing heart. 
OGA expression was measured by qRT-PCR and normalized to the expression of 18 S rRNA, which shows 
significant down-regulation in the failing heart compared with the sham heart at 5 and 28 days (A). Western blot 
analysis from the 5- and 28-day failing heart shows significant down-regulation of OGA at the protein level (B). 
QRT-PCR analysis shows significant up-regulation of OGT in the failing heart compared with sham heart at 5 and 
28 days (C). Western blot analysis shows and increased OGT protein level in 5-day failing heart but not at 28 
days (D). Significant increase in protein O-GlcNAcylation compared with sham heart (E). Data are expressed as 
the mean ± S.D. (n = 4/group). IB, immunoblot. 
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miRNA-539 is upregulated in the failing heart 

Alteration of O-GlcNAc levels is not limited to heart failure. It occurs in diseases 

such as diabetes, cancer, and neurodengerative disorders. In order to better 

understand the pathophysiology of disease it is necessary to determine the 

underlying mechanisms that regulate the O-GlcNAc machinery (OGT and OGA). 

Because OGA expression was suppressed following MI we proceeded to study 

the possible regulatory mechanisms of OGA expression. These possible 

regulatory mechanisms included miRNAs. 

 We assessed global miRNA expression in both 5 d and 28 d failing hearts 

compared with respective sham hearts. This profiling analysis revealed several 

miRNAs are differentially expressed in HF (Table 2). We performed target 

prediction analysis (TargetScan and MiRanda algorithms) and found a potential 

binding site in the OGA-3’UTR for miRNA-539. This binding site is conserved 

among mouse, rat, and human (Figure 5). Next we performed qRT-PCR to 

determine whether miRNA was upregulated in the failing myocardium. miRNA-

539 was increased at both 5 d and 28 d post MI hearts compared with respective 

shams hearts. (Figure 5). Next, we determined in which region of the failing heart 

miRNA-539 was localized. We performed in situ hybridization analysis using a 

miRNA-539 LNA probe and demonstrated that miRNA-539 expression was 

upregulated in remote zone (non-infarcted) of the failing heart (Figure 5). 

Additionally, histomorphological analysis revealed perinuclear localization of 

miRNA-539 in cardiomyocytes (Figure 5). In summary, we found the first 
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potential negative regulator of OGA whose expression coincides with 

suppression of OGA protein during HF.  
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Figure 5. Up-regulation of miR-539 in the failing heart. MiRNA-539 binding sites in the OGA-3!UTR are 
conserved among mouse, rat, and human. TargetScan 6.2, where human OGA-3!UTR has two putative miR-539 
binding sites (A). Expression of miR-539 was measured by qRT-PCR and normalized to the expression of U6 in 
each sample. The failing heart shows significant up-regulation of miR-539 in 5 and 28 d compared with sham 
heart (B). Probing of miR-539 LNA in the cryosections using in situ hybridization shows increased miR-539 
expression (in purple) in the remote zone of the failing heart (II and IV) compared with the sham heart (I and III) 
(C). Histological observation also reveals perinuclear localization of miR-539 in the cardiomyocytes (insets). Low 
magnification images were taken at "20; insets are at "60 magnification. Scale bar = 10 µm. * indicates a p <0.05.  
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5 d MI  28 d MI 
Mean SD Mean SD 

mmu-let-7g 0.54 0.04 0.48 0.01 
mmu-miR-126-5p 0.73 0.05 0.48 0.01 
mmu-miR-127 5.89 0.34 3.87 0.01 
mmu-miR-128a 0.86 0.15 0.69 0.01 
mmu-miR-133a 0.58 0.14 0.48 0.00 
mmu-miR-133b 0.52 0.06 0.49 0.00 
mmu-miR-135a 0.49 0.04 0.48 0.01 
mmu-miR-135b 0.40 0.09 0.24 0.01 
mmu-miR-139-5p 0.52 0.04 0.48 0.01 
mmu-miR-140 1.77 0.14 1.95 0.01 
mmu-miR-142-3p 4.23 1.18 3.24 0.59 
mmu-miR-142-5p 3.80 0.25 3.23 0.01 
mmu-miR-143 0.64 0.05 0.48 0.00 
mmu-miR-145 0.65 0.04 0.48 0.01 
mmu-miR-148b 0.70 0.13 0.69 0.01 
mmu-miR-150 0.64 0.04 0.49 0.02 
mmu-miR-15b 2.36 0.15 1.94 0.01 
mmu-miR-181a 1.15 0.10 0.48 0.01 
mmu-miR-184 4.88 2.54 4.59 0.96 
mmu-miR-187 0.77 0.13 0.48 0.01 
mmu-miR-18a 4.24 1.11 2.76 0.02 
mmu-miR-194 0.61 0.15 0.48 0.58 
mmu-miR-199a-3p 5.23 0.30 3.92 0.01 
mmu-miR-200b 0.20 0.15 0.94 0.03 
mmu-miR-203 0.56 0.05 0.48 0.01 
mmu-miR-204 0.57 0.14 0.49 0.01 
mmu-miR-208 0.88 0.13 0.68 0.01 
mmu-miR-21 4.59 0.39 3.95 0.01 
mmu-miR-214 4.22 1.36 2.75 0.58 
mmu-miR-215 0.66 0.04 0.48 0.02 
mmu-miR-223 3.17 0.86 1.93 0.02 
mmu-miR-224 2.40 0.15 1.93 0.01 
mmu-miR-26a 0.61 0.05 0.48 0.04 
mmu-miR-296-5p 5.46 0.82 3.92 0.02 
mmu-miR-29b 1.07 0.14 0.70 0.58 
mmu-miR-30a 0.61 0.04 0.48 0.01 
mmu-miR-30b 0.56 0.04 0.49 0.02 
mmu-miR-30c 0.52 0.11 0.34 0.58 

5 d MI  28 d MI 
Mean SD Mean SD 

mmu-miR-30e 0.64 0.12 0.34 0.01 
mmu-miR-31 3.19 0.16 1.93 0.01 
mmu-miR-328 0.62 0.05 0.48 0.01 
mmu-miR-335-3p 2.30 0.18 1.93 0.01 
mmu-miR-337-3p 4.31 0.32 3.86 0.01 
mmu-miR-337-5p 5.40 0.79 3.89 0.01 
mmu-miR-342-3p 1.21 1.38 0.96 0.01 
mmu-miR-345-5p 0.62 0.12 0.48 0.01 
mmu-miR-34a 0.66 0.05 0.48 0.02 
mmu-miR-34b-3p 1.68 0.16 1.94 0.01 
mmu-miR-351 2.91 0.17 1.94 0.03 
mmu-miR-361 0.88 0.05 0.48 0.01 
mmu-miR-362-3p 2.49 0.67 1.36 0.58 
mmu-miR-376a 13.82 1.94 6.51 0.02 
mmu-miR-376b 3.45 1.56 3.86 0.03 
mmu-miR-376c 4.34 0.28 3.89 0.01 
mmu-miR-382 4.47 0.48 7.96 0.01 
mmu-miR-384-5p 0.60 0.17 0.34 0.02 
mmu-miR-409-3p 7.78 3.22 7.71 0.58 
mmu-miR-410 6.91 0.36 3.92 0.01 
mmu-miR-411 4.62 1.30 3.88 0.01 
mmu-miR-434-3p 4.00 1.12 2.74 0.58 
mmu-miR-434-5p 3.35 0.99 2.73 0.01 
mmu-miR-486 0.46 0.04 0.49 0.01 
mmu-miR-487b 4.05 1.04 2.73 0.58 
mmu-miR-495 3.96 0.23 3.93 0.01 
mmu-miR-499 0.55 0.04 0.48 0.01 
mmu-miR-500 2.82 0.73 2.77 0.01 
mmu-miR-503 3.54 0.33 3.85 0.01 
mmu-miR-539 6.98 2.82 5.50 0.01 
mmu-miR-542-5p 0.66 0.04 0.48 0.03 
mmu-miR-543 1.79 0.16 1.94 0.00 
mmu-miR-652 1.71 0.14 1.95 0.01 
mmu-miR-667 4.73 0.27 3.82 0.01 
mmu-miR-674 2.18 0.60 1.93 0.58 
mmu-miR-685 1.52 0.42 1.93 0.02 
mmu-miR-7a 2.64 0.81 1.94 0.00 

 
Table 2: MiRNA expression in the failing heart. Table shows summary of several miRNAs differentially 
expressed in 5 d and 28 d infarcted mouse heart by miRNA microarray analysis. miR-539 (red font) is significantly 
upregulated at both 5 d and 28 d in the failing hearts compared to sham hearts.  
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MiRNA-539 targets the OGA-3’UTR region 

Next, we queried whether miRNA-539 directly targets the OGA-3’UTR.  First we 

made a reporter plasmid with luciferase upstream to the wild-type OGA-3’UTR to 

serve as our control. Then we made a reporter plasmid with luciferase upstream 

of a miRNA-539 binding site mutant. We co-transfected these plasmids with 

scrambled control or miRNA-539 expression plasmids in HEK293 cells. Co-

transfection of the wild-type OGA-3’UTR with miRNA-539 significantly reduced 

luciferase activity compared with the scrambled control (p<0.05, Figure 6B). 

Luciferase activity was not affected with co-transfection of mutated OGA-3’UTR 

with miRNA-539. These findings suggest that miRNA-539 binds to the predicted 

OGA-3’UTR indicating a possible role in the regulation of OGA.  
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Figure 6. miR-539 regulates OGA expression. Reporter plasmid containing luciferase upstream to the 
OGA-3!UTR was obtained from Genecopoeia and the miR-539 binding site seed sequence (AUUUCUC) was 
mutated (ACGCGAG) by site-directed mutagenesis using mutated forward and reverse primers (A). Luciferase 
activity was measured after 48 h from HEK293 lysates co-transfected with OGA-3!UTR or miR-539 binding site 
mutant with scrambled or miRNA-539 expression plasmids (B). Luciferase activity was normalized with internal 
Renilla control. Significant down-regulation of luciferase activity was determined by miR-539 when co-transfected 
with OGA-3!UTR, whereas the miR-539 binding site mutation was unaffected. QPCR analysis a shows significant 
level of miR-539 expression in NRCMs and HEK293 cells transduced with lentivirus encoding miR-539 (n = 3/
group) compared with mCherry-transduced cells (C,D). Western blot analysis and respective quantitative analysis 
shows around 40 and 30% reduction of OGA expression in miR-539 overexpressing NRCMs and HEK293 cells, 
respectively, compared with scrambled controls (n = 3/group) (E,F). IB, immunoblot. * indicates a p <0.05.  
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miRNA-539 suppress OGA expression in vitro 

Because we verified that miRNA-539 binds OGA-3’UTR, we then queried 

whether this interaction would affect OGA expression. We designed a lentivirus 

to overexpress miR-539 in neonatal rat cardiomyocytes (NRCMs) and human 

HEK293 cells. Transduction of NRCMs and HEK293 cells resulted in 170-fold 

and 35,000-fold respective increase in miR-539 compared with a scrambled 

control lentivrus (Figure 6 C,D). This upregulation of miRNA-539 resulted in a 

reduction of OGA protein expression by 40% in NRCMs and 30% in HEK293 

compared with mCherry-transduced NRCMs or scrambled control respectively 

(Figure 6 E,F). Inhibition of miRNA-539 rescued OGA expression in NRCMs and 

HEK293 overexpressing miRNA-539 (Figure 7).  
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Figure 7. Inhibition of miR-539 rescues OGA expression and O-GlcNAcylation in NRCMs. Western blot 
analysis shows a significant reduction of OGA and OGT levels transduced with miRNA-539 upon negative control 
treatment, whereas anti-miR-539 transfection rescued the OGA expression toward the normal level (n = 3/group)
(A-D). Western blot analysis shows a significant increase in protein O-GlcNAcylation by miR-539 overexpression, 
and inhibition of miR-539 brought the O-GlcNAc level to normal (n = 3/group) (E,F). IB, immunoblot. * indicates a 
p <0.05.  
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 Because induction of miRNA-539 was sufficient to reduce OGA protein 

levels, we assessed whether this reduction mediated a change in protein O-

GlcNAcylation. Overexpression of miRNA-539 significantly increased O-GlcNAc 

levels (p<0.05, Figure 8) compared with scrambled control. Inhibition of miRNA-

539 equilibrated O-GlcNAc to control levels (Figure 8). MiRNA-539 is negative 

regulator of OGA and consequently induces protein O-GlcNAcylation.      
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Figure 8. Negative regulatory effect of miR-539 on OGA expression in human, non-cardiac cell types. 
Western blot analysis shows a significant reduction of OGA and OGT levels in HEK293 cells transduced with 
miR-539; anti-miR-539 transfection rescued OGA expression toward the basal level (n = 3/group) (A-D). Western 
blot analysis shows a significant increase in protein O-GlcNAcylation by miR-539 overexpression, and inhibition of 
miR-539 returned O-GlcNAc levels to normal (n = 3/group) (E,F). IB, immunoblot. * indicates a p <0.05.  
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Hypoxia-reoxygenation increases miR-539 and suppresses OGA 

expression 

Despite demonstrating that miRNA-539 is upregulated in the failing heart, the 

miRNA-539-mediated regulation of OGA we observed was conducted in an in 

vitro setting devoid of a pathological insult. As such, we wanted to test whether a 

similar pathological stimulus would elicit miRNA-539 upregulation in vitro. We 

chose hypoxia-reoxygenation to serve as a pathological proxy for MI in NRCMs. 

NRCMs were subjected to 3 h of hypoxia and 3, 6, and 12 h of reoxygenation. 

MiRNA-539 and OGA protein expression were assessed at each time point. 

MiRNA-539 was augmented after 3 h of hypoxia, which was concomitant with 

suppression of OGA protein at 6 and 12 h after reoxygenation (p<0.05, Figure 9). 

Thus, the induction of miRNA-539 and subsequent suppression of OGA occurs 

following hypoxic conditions.  
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Figure 9. Hypoxia-reoxygenation induces miR-539 expression followed by a decrease in OGA expression. 
NRCMs subjected to 3 h of hypoxia were reoxygenated for 3, 6, and 12 h. qRT-PCR analysis shows a significant 
increase in miR-539 expression at 3 h reoxygenation (A). Western blot analysis shows a significant decrease in 
OGA protein level at both 6 and 12 h of reoxygenation (n = 4/group) (B). IB, immunoblot. * indicates a p <0.05.  
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Generation of an inducible cardiomyocyte-specific OGA knockout mouse 

We have shown that suppression of OGA occurs through 4 wk of HF and that 

may be sufficient to augment protein O-GlcNAcylation.  In addition, negative 

transcriptional regulators of OGA are upregulated to mediate suppression of 

OGA. Hence, suppression of OGA may be a proadaptive process in HF. We 

hypothesized that ablation of OGA may favor O-GlcNAcylation and attenuate HF. 

To test this hypothesis, it was necessary to generate a model where we could 

ablate cardiomyocyte OGA and augment O-GlcNAcylation.   

 We developed both a constitutive and inducible model of OGA ablation 

through breeding of a MHC cre or Mer Cre Mer mice with OGA floxed mice. The 

constitutive OGA knockout resulted in suppression of cardiac OGA mRNA and 

protein (data not shown) compared to WT mice. Despite generating a successful 

constitutive KO, we were not able to generate sufficient cohorts to execute a HF 

study. As such, we focused on an inducible cardiomyocyte specific model of 

OGA ablation. To generate the inducible OGA knockout, we crossed an OGA 

floxed mouse with an alpha MHC driven Mer-Cre-Mer mouse (Figure 10). This 

cross led to the production of an inducible cardiomyocyte-specific knockout of 

OGA following the administration of tamoxifen. To verify successful cardiac 

depletion of OGA, we harvested hearts 5 d post tamoxifen treatment and 

assessed OGA expression. OGA mRNA and protein levels were significantly 

reduced and cardiac O-GlcNAcylation was enhanced in the OGA ablated hearts 

(Figure 11 and 12). To demonstrate that OGA deletion was specific to the heart, 

we isolated protein from skeletal muscle, kidney, and lung. OGA expression was 
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unaltered in these tissues (Figure 12). Thus, we generated an inducible 

cardiomyocyte-specific KO of OGA.  
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Figure 10. Scheme generation of inducible cardiomyocyte specific OGA ablation in mice. A) OGA floxed 
mice were cross with aMHC driven cre recombinase mouse to generate inducible OGA KO. (B) Induction of 
tamoxifen results in deletion of OGA containing exon.  
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Figure 11. OGA ablation depresses OGA expression in the heart. Surgically naïve WT and OGA 
KO mice were harvest 5 d post tamoxifen. Immunoblot of cardiac OGA protein expression (A). 
Immunoblot of cardiac protein O-GlcNAcylation (B). Immunoblots of OGA protien in skeletal muscle, 
lung, and kidney from WT and OGA KO mice (C). * indicates a p<0.05.   
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Next, we queried whether cardiomyocyte OGA deletion was sufficient to alter 

cardiac function. First, we verified that the MCM gene alone was insufficient to 

induce cardiac dysfunction (Figure 12). Then, we subjected OGAF/WMCM+ 

positive and OGAW/W (wild-type), MCM+ mice to echocardiography at baseline 

(prior to tamoxifen) and up to 8 weeks post tamoxifen treatment. Parameters of 

cardiac function remained unaltered despite ablation of OGA (Figure 13). Neither 

induction of MCM alone nor ablation of OGA was sufficient to induce cardiac 

dysfunction in surgically naïve mice. 
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Figure 12. MerCreMer does not induce cardiac dysfunction. WT and MCM+  mice were subjected to 
echocardiography at baseline, and 1, 2, 4, and 8 wk post tamoxifen injection. EDV; end-diastolic volume. ESV; 
end-systolic volume. EF; Ejection fraction. SV; stroke volume. HR; heart rate. CO; cardiac output. LVIDd; left 
ventricular inner diastolic diameter. LVIDs; left ventricular systolic inner diameter. FS; fractional shortening. * 
indicates a p<0.05.  
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 We then tested the hypothesis that ablation of OGA would attenuate HF. 

We subjected mice to inducible OGA deletion and performed MI. Mice were 

 
Figure 13.  OGA KO does not induce cardiac dysfunction. Surgically Naïve WT and OGA KO mice 
were subjected to echocardiography at baseline, 2, 4, 6, and 8 wk post tamoxifen injection. 
Representative frames from B-mode imaging of WT and OGA KO hearts 8 week post tamoxifen (A). 
Ejection fraction (EF) (B). n=4 WT; n=3 OGA KO. 
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subjected to echocardiography 1 and 4 wk post MI. Surprisingly, cardiac 

dimensions were altered in infarcted OGA KO hearts; they were more dilated 

than the WT (Figure 14). Moreover, OGA ablation hastened cardiac dysfunction 

when compared with WT control (Figure 15, p<0.05). However, after 4 wk there 

was no difference in cardiac function between OGA KO and WT (Figure 16). 

OGA suppression and augmentation of O-GlcNAcylation were preserved 4 wk 

post MI in OGA KO hearts compared to WT hearts (Figure 16, p<0.05). We 

assessed infarct size after 24 h of MI to determine whether the hastening of HF 

could be attributed to differences in infarct size between the two groups; 

however, we found no discernable difference in infarct size (Figure 17). Ablation 

of OGA prior to MI hastens HF within one week.  
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Figure 14. Cardiac dimensions are altered in infarcted OGA KO hearts. Representative frames 
from B-mode imaging of WT and OGA KO hearts 1 week post MI.  

WT KO 
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Figure 15. OGA KO exacerbates infarct-induced cardiac dysfunction. OGA KO and WT mice were subjected 
to tamoxifen treatment to induced OGA deletion. Mice were subjected to MI 5 d post tamoxifen and subjected to 
echocardiography after 1 wk. EDV; end-diastolic volume. ESV; end-systolic volume. EF; Ejection fraction. SV; 
stroke volume. HR; heart rate. CO; cardiac output. LVIDd; left ventricular inner diastolic diameter. LVIDs; left 
ventricular systolic inner diameter. FS; fractional shortening. * indicates a p<0.05.  
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Figure 16. OGA deletion does not alter cardiac function at 4 wk post MI. OGA KO and WT mice 
were subjected to tamoxifen treatment to induced OGA deletion. Mice were subjected to MI 5 d post 
tamoxifen and subjected to echocardiography after 4 wk. EDV; end-diastolic volume. ESV; end-systolic 
volume. EF; Ejection fraction. SV; stroke volume. HR; heart rate. CO; cardiac output. LVIDd; left 
ventricular inner diastolic diameter. LVIDs; left ventricular systolic inner diameter. FS; fractional 
shortening. * indicates a p<0.05.  
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Figure 17. Cardiac OGA KO does not affect infarct area. WT and OGA KO mice were subjected to MI for 24 h. 
Hearts were harvested and stained with TTC. Infarct area was measured.  
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OGA or OGT overexpression does not alter bioenergetic reserve 

In the previous in vivo studies, we demonstrated that ablation of OGA hastened 

cardiac dysfunction following 1 wk of MI. We suspected that this hastening in the 

decline of cardiac function could be due to suppression of mitochondrial function. 

Because augmented O-GlcNAcylation has been associated with mitochondrial 

dysfunction, we queried whether modulation of O-GlcNAcylation through altering 

expression or activity of OGA and OGT would affect mitochondrial respiration. 

Therefore, we used extracellular flux analysis to assess parameters of 

mitochondrial function in NRCMs (Figure 18). NRCMs were transduced with 

adenovirus containing either OGT or OGA genes prior to euglycemic glucose 

treatment for 48 h (Figure 19).  Transduction resulted in a corresponding 

increase in OGT and OGA protein expression (Figure 19A) and commensurate 

changes in protein O-GlcNAcylation (Figure 19B).  Overexpression of either OGT 

(n=5) or OGA (n=5) induced a small but statistically significant depression in 

basal respiration (Figure 19C,D), and OGA overexpression decreased proton 

leak (Figure 19; p<0.05).  Overexpression of neither OGT nor OGA affected 

maximal respiration or reserve capacity (Figure 19E,F). Thus, neither promoting 

nor antagonizing O-GlcNAcylation via genetic means was sufficient to cause 

substantial mitochondrial dysfunction. 
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Figure 18. Extracellular flux analysis (XF). A) XF measures cell oxygen consumption. B) Parameters of 
mitochondrial function assessed during XF analysis. Adapted from Sansbury et al. Chem Biol Interact. 2011.  
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Figure 19. Overexpression of OGT or OGA does not affect bioenergetic reserve. NRCMs were subjected to 
adenoviral overexpression of OGT and OGA. A) Immunoblot for OGT and OGA protein expression following 
adenoviral treatment. B) Immunoblot for protein O-GlcNAcylation demonstrated an induction of O-GlcNAc in 
response to Ad-OGT and a reduction in response to Ad-OGA. C) Mitochondrial function assay of NRCMs 48 h 
post-transfection. Parameters of mitochondrial function were calculated from part C) including: D) Basal 
respiration, E) Maximal respiration, F) Reserve capacity, G) ATP-linked respiration, and H) Proton leak.  As 
indicated in bars n=5 independent experiments, * indicates p<0.05, vs. Ad-Null    
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Inhibition OGA does not affect oxygen consumption in NRCMs 

 To further investigate whether protein O-GlcNAcylation could be 

responsible for the bioenergetic derangement, we used a potent pharmacologic 

inhibitor of OGA, Thiamet G (TMG), to increase robustly whole cell protein O-

GlcNAcylation (Figure 20A, B). To determine whether mitochondrial proteins 

were indeed O-GlcNAcylated we isolated mitochondrial fractions from vehicle 

and TMG treated NRCMs. We observed O-GlcNAcylated mitochondrial proteins, 

but there was no net significant increase in protein O-GlcNAcylation, with the 

exception of one band (n=3, Figure 20C).  Regardless, XF analysis in the intact 

cell preparations indicated that TMG did not significantly affect basal respiration, 

maximal respiration, or reserve capacity (Figure 20, D-F).  TMG treatment slightly 

but significantly decreased ATP-linked respiration (Figure 20H); however, proton 

leak (Figure 20I) and non-mitochondrial OCR (data not shown) were not different.  

Thus, inhibition of OGA (via TMG) increased O-GlcNAcylation but did not 

suppress mitochondrial reserve capacity. 
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Figure 20. Inhibition of OGA has negligible effects on mitochondrial function. NRCMs were treated with 
TMG (1 !M) for 48 h to induce protein O-GlcNAcylation.  A) Immunoblot for whole cell protein O-GlcNAcylation.  
B) Densitometric measurement of O-GlcNAcylation.  C) Immunoblot for mitochondrial protein O-GlcNAcylation 
following treatment with 1 !M TMG.   D) Mitochondrial function assay of NRCMs following 48 h treatment with 
TMG.  Parameters of mitochondrial function were measured from D) including E) Basal respiration, F) Maximal 
respiration, G) Reserve capacity, H) ATP-linked respiration and I) Proton leak. As indicated in bars n=6 
independent experiments, * indicates p<0.05  
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Inhibition of OGA increases Complex II-dependent State 3 respiration 

without affecting Complex I, III, or IV respiration 

  Hu et. al demonstrated impaired mitochondrial complex respiration upon 

induction of protein O-GlcNAcylation through hyperglycemia106. As such, we 

wanted to verify whether augmented O-GlcNAcylation may affect mitochondrial 

function We determined whether increasing O-GlcNAcylation with TMG (which 

inhibits OGA) might affect Complex II-dependent oxygen consumption in the 

permeabilized cell assay.  Inhibition of OGA significantly increased protein O-

GlcNAcylation and Complex II-dependent State 3 and 4o respiration (Figure 

21F,G); however, OGA inhibition did not significantly change respiration 

stimulated by provision of pyruvate and malate (Complex I), and it did not affect 

Complex III+IV-dependent OCR (Figure 21 A-C).  Thus, pharmacologically 

augmenting protein O-GlcNAcylation is not sufficient to depress mitochondrial 

function, and may actually increase Complex II-dependent mitochondrial 

respiration under euglycemic conditions. 
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Figure 21. Inhibition of OGA increases Complex II-dependent State 3 respiration. NRCMs were treated for 
24 h with 1 !M TMG to induce protein O-GlcNAcylation.  During XF analysis NRCMs were permeabilized and 
provided with succinate (to support Complex II-dependent respiration) as well as Rot (to inhibit Complex I activity).  
A) XF assay of Complex II-dependent respiration: following three baseline OCR measurements in MAS buffer, the 
permeabilization agent, saponin, and succinate+Rot were injected.  After two measurements, oligomycin (Oligo) 
and AA + Rot (AA / Rot) were injected sequentially, with two measurements recorded after each injection.  B) 
State 3 OCR: The AA + Rot rate was subtracted from the succinate-stimulated rate to determine the State 3 rates.  
C) State 4o OCR: The AA + Rot rate was subtracted from the oligomycin rate to obtain State 4o rates.  D) RCR: 
State 3 / State 4o.  As indicated in bars n=7 independent experiments,  * indicates a p <0.05  
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High glucose increases protein O-GlcNAcylation 

Thus far, the evidence indicating a role for O-GlcNAcylation and mitochondrial 

dysfunction was determined in the context of hyperglycemia attributable to a 

diabetic state. Indeed flux through the HBP is enhanced in diabetes leading to 

enhanced protein O-GlcNAcylation. Hence, we wanted to verify if enhanced O-

GlcNAcylation as a result of hyperglycemia would affect cardiomyocyte 

mitochondrial function. To determine whether high glucose promotes protein O-

GlcNAcylation, NRCMs were cultured for 48 h in medium supplemented with 0, 

5, 10, 20, or 33 mM glucose (the osmotic control group was 5 mM glucose + 28 

mM mannitol), and O-GlcNAc levels were assessed via immunoblotting (Figure 

22A).  Quantification of protein O-GlcNAc levels in whole cells demonstrated that 

the 33 mM glucose treatment resulted in a significant increase in O-

GlcNAcylation when compared to 5 mM glucose (Figure 22B); however, when we 

isolated the mitochondrial fraction from similarly treated cells and probed for 

mitochondrial protein O-GlcNAcylation, we observed a much smaller effect 

(Figure 22C). Because we confirmed that high glucose induced protein O-

GlcNAcylation in our system (similar to others79, 106), we next queried whether 

high glucose compromises mitochondrial function.  
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Figure 22. High glucose depresses the bioenergetic reserve capacity of cardiomyocytes 
A) Immunoblot of whole cell protein O-GlcNAcylation following 0, 5, 10, 20, and 33 mM glucose treatment.  An 
osmotic control (Osm, 5 mM glucose + 28 mM mannitol) was also used.  B) Densitometric measurement of O-
GlcNAcylation in relation to 5 mM control demonstrated a significant induction of protein O-GlcNAcylation 
following 33 mM glucose.  C) Immunoblotting for mitochondrial protein O-GlcNAcylation.  NRCMs were 
fractionated to isolate mitochondrial protein following treatment with 5 mM glucose, 33 mM glucose, and the 
osmotic control.  D) Representative XF assay and diagram of how mitochondrial measurements were calculated.  
E) Mitochondrial function assay following 48 h of high glucose treatment.  From part E) parameters of 
mitochondrial function were assessed (as described in D);  F) Basal respiration;  G) Maximal respiration;  H) 
Reserve capacity;  I) ATP-linked respiration;  and J) Proton leak.  As indicated in bars n=7 independent 
experiments, * indicates p<0.05, vs. 5 mM. 
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High glucose depresses mitochondrial bioenergetic reserve capacity 

 We performed XF analysis of NRCMs to determine whether high glucose-

mediated increases in O-GlcNAc could affect mitochondrial bioenergetics in the 

intact cell. Protein concentration measured following XF analysis was not 

significantly different between groups. High glucose (33 mM, n=7) depressed 

basal respiration (Figure 22E; p<0.05), maximal respiration (Figure 22F; p<0.05), 

reserve capacity (Figure 22G; p<0.05), and proton leak (Figure 22I; p<0.05) 

compared to the normal glucose control (5 mM, n=7).  ATP-linked respiration 

remained unaltered following hyperglycemic treatment (Figure 22H).  To address 

the contribution of an osmotic influence in the depression of mitochondrial 

function, we used an osmotic control (5 mM glucose + 28 mM mannitol, n=7), 

which recapitulated the depression (p<0.05) in basal respiration, maximal 

respiration, reserve capacity, and proton leak (Figure 22E-I).  We also queried 

whether the osmotic stress also augmented O-GlcNAc levels (similar to the high 

glucose treatment) and found that the osmotic control (see lane “Osm” in Figure 

22A) did not affect O-GlcNAc levels.  Similarly, mitochondrial O-GlcNAcylation 

was largely unaffected by the osmotic control treatment (Figure 22C).  

Collectively, these findings indicate that the high glucose-induced suppression of 

basal respiration, maximal respiration, and reserve capacity were associated with 

an increase in osmolarity and not the high glucose-induced increase in O-

GlcNAcylation (Figure 22A).  Interestingly, much of the basal differences in OCR 

were attributable to reductions in proton leak, which was reduced in both the high 

glucose and osmotic control groups (p<0.05) (Figure 22I) compared to the 
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normal glucose group.  Despite this apparent improvement in mitochondrial 

coupling, cells that were treated with high glucose or exposed to osmotic stress 

showed diminished mitochondrial reserve capacity.  Thus, we suggest that 

osmotic stress caused by high glucose mediates loss of mitochondrial reserve 

capacity. 

 

High glucose suppresses Complex II-dependent respiration 

We demonstrated that inhibition of OGA alone enhanced Complex II-dependent 

State 4o and Stat 3 respiration under euglycemic conditions. We wanted to test 

whether hyperglycemia-induced protein O-GlcNAcylation would recapitulate this 

effect. We subjected cardiomyocytes to euglycemia or hyperglycemia for 48 h 

and then examined mitochondrial activity in permeabilized cells. We found 

Complex II-dependent respiration was depressed by high glucose (Figure 23).  

Succinate-supported State 3 and State 4o respiration was approximately 40% 

lower in cardiomyocytes incubated in high glucose (p<0.05; Figure 23A-C).  

Similar to findings in intact cells, an osmotic control recapitulated the high 

glucose-induced suppression of State 3 respiration (p<0.05; Figure 23B).  No 

change in RCR was found after high glucose treatment or in the osmotic control 

(Figure 23D).  These data are consistent with intact cell data, suggesting that 

high osmolarity mediates depression in mitochondrial function. 
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Figure 23. High glucose depresses Complex II-dependent State 3 and 4o respiration 
NRCMs were treated for 48 h with 5 mM, 33 mM glucose, or an osmotic control.  During XF analysis NRCMs 
were permeabilized and provided with succinate (to support Complex II-dependent respiration) as well as Rot (to 
inhibit Complex I activity).  A) XF assay of Complex II-dependent respiration: following three baseline OCR 
measurements in MAS buffer, the permeabilization agent, saponin, and succinate+Rot were injected.  After two 
measurements, oligomycin (Oligo), then AA + Rot (AA/Rot) were injected sequentially, with measurements 
recorded after each injection.  B) State 3 OCR: The AA + Rot rate was subtracted from the succinate-stimulated 
rate to determine the State 3 rates.  C) State 4o OCR: The AA + Rot rate was subtracted from the oligomycin rate 
to obtain State 4o rates.  D) RCR: State 3 / State 4o.  As indicated in bars n=6 independent experiments,  * 
indicates p <0.05 vs. 5 mM glucose. 
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OGA overexpression does not rescue the high glucose-induced 

bioenergetic defect 

 Because our data suggest that protein O-GlcNAcylation is an unlikely 

culprit in high glucose-induced mitochondrial dysfunction, we reasoned that if 

enhanced protein O-GlcNAcylation is necessary (though clearly insufficient) for 

the high glucose-induced depression in bioenergetic reserve capacity, then 

decreasing protein O-GlcNAcylation should rescue this defect.  To this end, we 

overexpressed OGA, which as expected decreased O-GlcNAcylation (Figure 

24A,B) and produced detectable OGA in mitochondrial fractions; however, there 

was not a significant difference in O-GlcNAcylation in the mitochondrial fraction 

(Figure 24C,D). OGA overexpression did not rescue suppression of 

mitochondrial reserve capacity induced by high glucose (p<0.05; Figure 5H).  In 

fact, in cells incubated with high glucose, overexpression of OGA depressed both 

maximal respiration (p<0.05; Figure 24G) and reserve capacity (p<0.05; Figure 

24H).  Overexpression of OGA did not affect ATP-linked respiration or proton 

leak (Figure 24I,J).  These results suggest that an elevated level of O-

GlcNAcylation is neither necessary nor sufficient to explain high glucose-induced 

suppression of mitochondrial bioenergetics.  
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Figure 24: Overexpression of OGA does not rescue high glucose-induced suppression of bioenergetic 
reserve. NRCMs were transduced with virus to overexpress OGA prior to treatment with hyperglycemia.  Ad-Null 
virus was used as a vector control. A) Immunoblot for whole cell OGA protein expression following viral 
transduction.  B) Whole cell protein O-GlcNAcylation levels following adenoviral transduction.  C) Immunoblot for 
mitochondrial OGA following adenoviral overexpression.  D) Immunoblot for mitochondrial protein O-
GlcNAcylation following adenoviral overexpression of OGA.  E) Mitochondrial function assay following 48 h of 
hyperglycemic treatment.  From assay in part E) parameters of mitochondrial function were measured; F) Basal 
respiration; G) Maximal respiration; H) Reserve capacity; I) ATP-linked respiration; and J) Proton leak.  As 
indicated in bars n=5 independent experiments,  * indicates p <0.05 vs. 5 mM glucose + Ad-Null. 
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CHAPTER V 

DISCUSSION 

Since the discovery of O-GlcNAc in 1984, roughly 1,000 nuclear and 

cytoplasmic proteins have been identified to be O-GlcNAcylated. These targets 

are involved in a host of cellular processes such as transcription, translation, 

signal transduction, and cell cycle control55, 107-109. O-GlcNAcylation occurs on 

serine and threonine residues, which are potential sites for phosphorylation. 

Thus, protein O-GlcNAcylation may alter protein function and affect downstream 

signaling in a manner similar to protein phosphorylation. Augmented protein O-

GlcNAcylation has been implicated to be cytoprotective in response to a myriad 

of stressors including ischemia-reperfusion, myocardial infarction, and oxidative 

stress. Several studies indicate that this protective effect could be mediated 

through maintaining mitochondrial membrane stability. Nevertheless, 

dysregulation of protein O-GlcNAcylation is associated with pathology and 

highlights the importance of understanding the regulation of this phenomenon. 

The enzymes that regulate protein O-GlcNAcylation, OGT and OGA, are 

ubiquitously expressed. OGT catalyzes the addition of O-GlcNAc to protein 

serine residues while OGA catalyzes their removal. Elevation of OGT precedes 

augmentation of O-GlcNAcylation and favors cell survival. Ablation of OGT in 
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cardiomyocytes exacerbates MI-induced cardiac dysfunction and enhances 

myocardial apoptosis; however, the role of OGA in HF was not as clear. Hence, 

the purpose of this thesis was to elucidate the role of OGA in HF. We 

hypothesized that ablation of OGA would favor O-GlcNAcylation and attenuate 

infarcted-induced cardiac dysfunction through preserving mitochondrial function. 

Our findings indicate that downregulation of OGA contributes to the 

augmentation of O-GlcNAcylation in non-reperfused myocardial infarction. 

Suppression of OGA expression can be posttranscriptionally regulated. In 

addition the timely suppression of OGA is necessary for the development of HF. 

Lastly, acute alterations in O-GlcNAc levels alone do not contribute to 

mitochondrial dysfunction manifested in HF. These findings emphasize that the 

regulation of OGA expression is an important facet of HF whose mechanism of 

action may be independent of mitochondrial function.  

In our first aim (Figure 25), we identified the temporal and spatial changes 

of OGA expression following HF. Within 5 d of MI, OGA protein expression 

decreased, while OGT expression and protein O-GlcNAcylation increased. This 

elevation in O-GlcNAcylation persisted despite normalization of OGT expression 

by 28 d post MI – though at this time point OGA expression remained 

suppressed. Chronically, OGA suppression is the likely arbiter of augmented 

protein O-GlcNAcylation in HF. Additionally, we discovered a negative regulator 

of OGA expression in HF, miR-539, which is elevated at both 5 d and 28 d post 

MI. In a series of molecular studies, we found that miR-539 binds to the 3’UTR of 

OGA mRNA and inhibits OGA expression. In additional experiments, we found 
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that miR-539 may mediate reduction in OGA expression in response to hypoxia-

reoxygenation. This is the first miRNA identified to regulate expression of the O-

GlcNAcylation machinery (i.e. OGT or OGA).  

 

 

 

The majority of studies regarding miRNAs have focused on ones that play 

a prominent role in cardiovascular disorders such as MI, cardiac hypertrophy, 

HF, fibrosis, and pressure overload-induced cardiac remodeling110-113. Relatively 

few studies have focused on miRNAs involved in metabolic disorders114, 115. 

Moreover, there are no prior studies implicating miRNAs in the regulation of OGA 

of OGT expression. Here, for the first time we report a novel paradigm of miRNA-

mediated down-regulation of OGA with concomitant augmentation of O-
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Figure 25. Aim 1 summary. In response to myocardial stress, such as MI, miRNA-539 is upregulated, 
OGA is suppressed, and protein O-GlcNAcylation is augmented.  miRNA-539 is a negative 
posttranslational regulator of OGA mRNA. miRNA-539 can suppresses OGA expression and which 
may contribute to elevated protein O-GlcNAcylation observed in HF. Image of ligated heart from 
https://www.unil.ch/caf/en/home/menuinst/services/micro-surgery.html. 
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GlcNAcylation in the failing heart. Examination of miR-539 by both miRNA 

microarray followed by qRT-PCR demonstrated its upregulation in the failing 

heart.  

OGA may be a potential conserved target of miR-539 since we 

demonstrated significant downregulation of OGA in both miR-539 overexpressing 

NRCMs (rat) and HEK293 (human) cells.  Furthermore, inhibition of miRNA-539 

in both NRCMs and HEK293 cells overexpressing miR-539 resulted in 

augmented OGA expression and concomitant reduction in O-GlcNAcylation. 

These data indicate that miR-539 may be a potential marker/target of disease.  

 Interestingly, miR-539 could have several other targets in addition to 

simply regulating OGA. Although OGT does not have target sites for miR-539 

binding, reduction of the OGT protein level by miR-539 overexpression reveals 

that there could be indirect mechanisms involved in the regulation of OGT by 

OGA or other targets of miR-539. A recent study indicates that miR-539 

regulates mitochondrial fission and apoptosis by targeting prohibitin 2 (PHB2) in 

cardiomyocytes116. In mast cells, CD117 represses miR-539 expression, thereby 

de-repressing microphthalmia-associated transcription factor expression and 

promoting proliferation117. In other cell types, miR-539 expression may be biotin-

sensitive, and miR-539 targets the mRNA of holocarboxylase synthase, which 

participates in genetic stability118. Such collective findings create interesting 

implications for a more detailed understanding of the molecular interactions 

governing O-GlcNAc-dependent cell function; however, there is no evidence, at 

present to directly link the aforementioned observations to one another, at least 
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at the level of O-GlcNAcylation. 

 Understanding the regulation of O-GlcNAcylation holds critical importance 

not only in HF but also in multiple diseases; no disease exemplifies the potential 

impact better than diabetes. Several studies suggest that elevated O-GlcNAc 

levels contribute to diabetic cardiomyopathy82. In humans, the OGA/MGEA5 

chromosome locus 10q24.1 is associated with late-onset Alzheimer disease119. 

Experimental observations demonstrated that inhibition of OGA decreases 

phosphorylation of Tau and protects against Tau-mediated neurodegeneration as 

well as prevents amyloid-! load by increasing the amount of secreted amyloid 

precursor protein (sAPP")52, 120.This line of evidences suggests that increased O-

GlcNAcylation by OGA inhibition improves neuronal outcome. 

 In addition, numerous studies showed hyper O-GlcNAcylation, increased 

expression of OGT, and decreased OGA expression in various cancers121, 122. In 

part, hyper O-GlcNAcylation was also observed as a mechanism that promotes 

cancer cell survival and stress resistance. Similar to the approach of targeting 

kinases, targeting OGA and OGT could be a valuable approach in many cancer 

therapies. Thus, the implications for our findings with miR-539 could be broad 

and manifold. Moreover, it is imperative to more carefully investigate the 

transcriptional and post-transcriptional regulation of OGT and OGA in relevant 

disease models. 

 Suppression of OGA appears to be a necessary protective response to 

enhance protein O-GlcNAcylation in response to stress. In our second aim 

(Figure 26) we hypothesized that ablating OGA prior to myocardial infarction 
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would attenuate cardiac dysfunction exhibited after MI. To do so, we generated 

an inducible cardiac specific OGA knockout mouse. Induction of tamoxifen only 

induced ablation of OGA in the heart. OGA remained present in skeletal muscle, 

kidney, liver, and lungs. Cardiac function was assessed from 5 d and up to 8 wk 

post tamoxifen. No differences were observed in parameters of cardiac function; 

EF, CO, and FS. When cohorts were subjected to MI 5 d post tamoxifen, EF was 

suppressed in the OGA KO at 1 wk post infarction. At 4 wk no difference in EF 

between OGA KO and WT MI groups was observed.  

 

It was surprising to find that OGA ablation actually hastened HF at 1 wk 

post infarction. When we examined cardiac function 4 wk post MI we saw no 

difference in EF between WT and KO groups despite augmentation of O-

 
 
Figure 26. Aim 2 summary. Cardiomyocyte-specific ablation of OGA suppresses OGA expression 
and augments protein O-GlcNAcylation. Ablation of OGA prior to MI exacerbates cardiac dysfunction 
within 1 wk. M-mode image adapted from Watson et al. 2010. Image of normal and ligated heart from 
https://www.unil.ch/caf/en/home/menuinst/services/micro-surgery.html.  
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GlcNAcylation in KO cohort. We verified that OGA deletion did not affect infarct 

area 24 h post MI. However there is evidence that OGA gene mutation may be 

detrimental. The OGA gene has been identified as a diabetes susceptibility 

locus123. Multiple single nucleotide polymorphism sites of OGA have been 

associated with increased onset of diabetes among Mexican Americans124, 125. 

Similarly “Goto Kakizaki” rats, which have a deletion at exon 8 in the OGA gene, 

demonstrate spontaneous diabetes. Perturbations in O-GlcNAc cycling have 

been often attributed to be maladaptive in chronic metabolic diseases such as 

diabetes and cancer. Augmented O-GlcNAc has been implicated in affecting 

mitochondrial function thereby altering cardiac function.  

Even though we saw no differences in genes involved in metabolism 

between WT and KO, loss of OGA may impact transcriptional machinery and 

other aspects of infarct healing. Alterations in O-GlcNAc signaling may impact 

the O-GlcNAcylation status of transcription factors, histones, and even RNA 

polymerase II thereby affecting their function. The Hanover group demonstrated 

notable deregulation of genes involved in immunity, cell proliferation, and 

metabolism in a conditional whole body OGA KO model. These could be other 

possible avenues of interest to pursue as potential mediators of the observed 

cardiac dysfunction.  

In our third aim (Figure 27) we addressed the contribution of protein O-

GlcNAcylation to mitochondrial dysfunction. Recent studies have implicated 

perturbations in O-GlcNAc cycling may be complicit in mediating cardiomyocyte 

mitochondrial dysfunction in the context of diabetes. We directly addressed 
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whether O-GlcNAcylation alone could mediate mitochondrial dysfunction. 

Increasing O-GlcNAcylation through either OGA inhibition or OGT 

overexpression was insufficient to induce mitochondrial dysfunction. Surprisingly, 

inhibition of OGA enhanced Complex II state 3 and 4o mediated OCR. Most 

evidence of O-GlcNAc-mediated mitochondrial dysfunction was conducted in the 

context of hyperglycemia or diabetes. Hence, we addressed the relationship 

among high glucose, mitochondrial dysfunction, and O-GlcNAcylation. We 

confirmed that high glucose increased protein O-GlcNAcylation and induced 

mitochondrial dysfunction.  However our osmotic control exerted a similar 

suppressive effect on bioenergetic reserve without augmenting O-GlcNAcylation. 

We went a step further to see if rescuing high glucose-induced O-GlcNAcylation 

via OGA overexpression would revert the depression in mitochondrial reserve 

capacity. The suppressive effect remained despite our manipulation of O-

GlcNAcylation. Thus, increased O-GlcNAcylation is neither sufficient nor 

necessary for high glucose-induced mitochondrial dysfunction in isolated 

cardiomyocytes. 
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 Consenting studies demonstrate that reliance on fatty acid oxidation 

decreases during HF. However there is debate as to whether glycolysis is 

altered. Nevertheless, flux through the HBP is increased and is demonstrated 

through increased protein O-GlcNAcylation. Similarly in diabetes elevated 

extracellular glucose floods accessory pathways of glucose metabolism and 

induces perturbations in O-GlcNAc levels. As such, protein O-GlcNAcylation has 

received growing attention as a candidate component of diabetic 

pathophysiology126. Indeed, elevated extracellular glucose concentration 

enhances OGT activity, and promotes protein O-GlcNAcylation58, 77, 82, 106.  

Moreover, O-GlcNAcylation is enhanced in patients with diabetes.  Animal 

models of diabetes – such as streptozotocin-treated mice, Zucker rats, and db/db 

mice – all demonstrate elevated O-GlcNAcylation of at least some proteins in the 
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Figure 27. Aim 3 summary. Modulation of cardiomyocyte O-GlcNAcylation through overexpression of 
OGA or OGT resulted in no substantial changes in mitochondrial function. Decreasing (overexpression 
of OGA) or increasing O-GlcNAcylation (overexpression of OGT) does not mediate mitochondrial 
dysfunction. However hyperglycemia augmented O-GlcNAcylation and suppressed mitochondrial 
reserve capacity. Removing O-GlcNAc by overexpression of OGA does not rescue hyperglycemia-
induced mitochondrial dysfunction. O-GlcNAcylation alone is not sufficient to cause mitochondrial 
dysfunction.  
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heart60, 106.  Thus, the coincident observations of increased O-GlcNAcylation and 

cardiac dysfunction during diabetes is consistent with the notion that O-GlcNAc 

plays a role in diabetic cardiac dysfunction. 

 Given that mitochondria play a critical role in metabolism and preservation 

of their function is pivotal to cardiac function, several groups have investigated 

the potential role of hyperglycemia/high glucose in mitochondrial dysfunction127.  

Specifically, some have attempted to identify a connection between O-

GlcNAcylation and mitochondrial dysfunction106, 128. Hu et al identified high 

glucose-induced O-GlcNAcylation of cardiac mitochondrial Complexes I, III, and 

IV, and associated it with impaired mitochondrial function in permeabilized 

NRCMs.  Overexpression of OGA (to reverse the high glucose-induced increase 

in O-GlcNAcylation) largely rescued the observed defects in mitochondrial 

Complex activities. Despite our differences in observed outcomes there were 

several similarities between our work and the Dillmann group :1) both focused on 

mitochondrial function in NRCMs, and assessed it, in part, via oxygen 

consumption rates; 2) both used mannitol as an osmotic control; 3) both 

attempted adenoviral-mediated rescue of high glucose-induced mitochondrial 

dysfunction; 4) both studies (at least in part) assessed cell function in 

permeabilized cells.  Nevertheless, there were key differences in methodology 

between the two studies: 1) we evaluated mitochondrial function in adherent 

cardiomyocytes (intact and permeabilized); 2) we recapitulated the increase in O-

GlcNAcylation via genetic overexpression of OGT and pharmacologic inhibition 

of OGA (in the absence of high glucose); and 3) we maintained the intact cells in 
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the respective glucose conditions (i.e. the high glucose cells were subjected to 

the XF assay in high glucose conditions).  Ultimately, any of a number of these 

relatively subtle study differences may partially explain the discrepancies in our 

findings. 

 In a related and recent study, Tan et al used128 a proteomic approach to 

study the effect of altering O-GlcNAc on mitochondrial protein expression, 

morphology, and function in neuroblastoma cells.  They observed that 

overexpression of either OGT or OGA resulted in altered mitochondrial 

expression of proteins involved in transport, translation, and respiratory activity.  

Furthermore, these changes resulted in alterations in mitochondrial morphology 

and function.  On face value, it may appear that the results of Tan et al also 

disagree with our present results; however, the differences may be fewer than 

they appear.  We, too, found that overexpression of either OGT or OGA reduced 

OCR (including maximal OCR) in the context of high glucose.  Yet, when we 

overexpressed OGT or OGA in euglycemic conditions, only basal respiration was 

slightly depressed. Interestingly, TMG, which remarkably increased O-GlcNAc 

levels, did not negatively affect OCR.  Thus, these data indicate that there is not 

a clear and deleterious relationship between O-GlcNAcylation and mitochondrial 

dysfunction. 

The fact that modulation of O-GlcNAcylation in the context of 

hyperglycemia had little effect on mitochondrial energetics suggests an 

alternative mechanism by which hyperglycemia impairs mitochondrial function.  

Interestingly, the defect in reserve capacity caused by the hyperglycemic 
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condition was recapitulated with the osmotic control, mannitol.  Although we did 

not study the mechanism by which osmotic stress may have mediated changes 

in mitochondrial function, this observation could be relevant for response of 

myocytes to stress.  For example, elevated by-products of anaerobic metabolism 

occurring during ischemia create an osmotic load that has been estimated to be 

~60 mOsM.  This acute change in osmolality regulates cell volume, cation/anion 

transport and other phenomena such as ischemic preconditioning.  Hence, 

because cell volume is tightly linked with cation/anion transport, and cation 

transport is a key regulator of ATP demand and mitochondrial activity, it is 

possible that the osmotic stress induced by high glucose reduces reserve 

capacity in a manner dependent on changes in these critical processes.  Further 

studies are required to assess the full significance of osmotic stress to 

hyperglycemia-induced myocyte stress. 

Whether a mitochondrial O-GlcNAcylation system exists remains unclear. 

There is evidence of a mitochondrial (m)OGT129. This would suggest that a 

mitochondrial (m)OGA should exist as well. However, our studies demonstrate 

that under normal conditions cardiomyocyte mitochondria have little, if any, 

detectable OGA. We only detected mitochondrial OGA when we overexpressed 

OGA using adenovirus.  Because this is an overexpression system and 

fractionation procedures do not yield 100% pure subcellular fractions, it is 

possible that the OGA we found in the mitochondrial fraction was a contaminant 

from the cytoplasm.  More importantly, the transport mechanism for the essential 

substrate required for O-GlcNAcylation, UDP-GlcNAc, has never been identified 
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in the mitochondrion.  Hence, the nature of how mitochondrial O-GlcNAcylation 

occurs and whether it is due to a veritable mitochondrial O-GlcNAc-modification 

system, comprising a UDP-GlcNAc transporter, (m)OGA and (m)OGT, is still 

uncertain. Though, It it is possible that O-GlcNAcylation of mitochondrial proteins 

predominately occurs in the cytosol prior to mitochondrial protein targeting.  

Interestingly, we demonstrated that Complex II state 3 and 4o OCR was 

enhanced in response to inhibition of OGA and increased protein O-

GlcNAcylation. Though the acute enhancement of Complex II function did not 

result in mitochondrial dysfunction enhanced Complex II activity may lead to 

reactive oxygen species (ROS) production in a chronic setting. Mitochondrial 

studies have documented that both the forward and backward reactions of 

Complex II can generate ROS130. In fact ROS production is increased in the 

failing myocardium131, 132 and may contribute to structural and functional changes 

observed during the progression of HF. It is possible that under chronic 

conditions, elevated O-GlcNAcylation may affect mitochondrial function through 

augmented ROS production through Complex II.  

In conclusion, several approaches, including overexpression of OGA or 

OGT, exposure to high glucose, and pharmacological manipulation, were used to 

assess the role of O-GlcNAc in regulating cardiomyocyte bioenergetics.  We 

demonstrate that O-GlcNAcylation is likely not responsible for mitochondrial 

dysfunction occurring during hyperglycemic conditions, and that osmotic stress 

due to high glucose appears to underlie depression of mitochondrial reserve 

capacity.  Although these findings do not entirely rule out the involvement of O-
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GlcNAc in modulating bioenergetics in diabetes, they show that increasing O-

GlcNAc levels is not sufficient or necessary to cause high glucose-induced 

bioenergetic dysfunction.  
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CHAPTER VI 

SUMMARY AND FUTURE DIRECTIONS 

 

Acute global augmentation of protein O-GlcNAcylation occurs in response 

to a myriad of stressors and confers a survival advantage at the cellular level. 

Several in vitro and in vivo studies have demonstrated O-GlcNAc-mediated 

cardioprotection against ischemia-reperfusion, myocardial infarction, and 

oxidative stress. Recent studies have investigated the two antagonistic enzymes 

that regulate protein O-GlcNAcylation. In the context of HF, ablation of OGT, the 

enzyme that catalyzes the addition of O-GlcNAc to proteins, in cardiomyocytes 

exacerbates cardiac dysfunction. However, in the context of HF little is known of 

the enzyme involved in removing the O-GlcNAc modification namely, OGA. The 

present study focused on the role of OGA in HF.  

 First we characterized the temporal expression of OGA following 

myocardial infarction. After MI, OGA expression is decreased and remains 

suppressed for 4 wk post MI. Despite the reduction in OGA expression, protein 

O-GlcNAcylation remains elevated compared to sham hearts. Chronically, OGA 

suppression may be the likely mediator of O-GlcNAcylation. We probed further 

into the regulation of OGA and discovered a novel regulator of OGA suppression 
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in HF, miRNA-539. Augmented expression of miRNA-539 coincided with OGA 

suppression after 5 d and 28 d of MI. Furthermore, in vitro studies confirmed 

induction of miRNA-539 negatively regulated OGA expression. These data 

indicate that chronic suppression of OGA may in part contribute to he 

augmentation of O-GlcNAcylation in HF. Furthermore, we developed a genetic 

model of cardiomyocyte specific OGA ablation, which did not induce cardiac 

dysfunction, to test whether ablation of OGA would attenuate HF. However when 

we genetically ablated OGA prior to coronary ligation we observed a hastening of 

cardiac dysfunction within 1 wk. The OGA KO hearts were more dysfunctional, 

contrary to our hypothesis.  

 Augmented cardiomyocyte O-GlcNAcylation has been identified as a 

possible culprit involved in diabetic cardiomyopathy. As such, we assessed the 

contribution of OGA to mitochondrial function to explain the exacerbation of 

cardiac dysfunction we observed at 1 wk. We found little evidence to support this 

implication. Neither OGA nor OGT mediated mitochondrial dysfunction. Though 

induction of O-GlcNAcylation through hyperglycemia did suppress mitochondrial 

reserve capacity. However this effect was recapitulated with an osmotic control. 

Modulation of O-GlcNAc alone did not cause mitochondrial dysfunction.  

  According to our data regulation of OGA is imperative for the progression 

of HF. We identified a novel regulator of OGA expression, miR-539, which is up 

regulated in HF. Future studies could identify additional roles of miR-539 in the 

development of HF. Recent studies have indicated that it may regulate 

mitochondrial fission in cardiomyocytes. Mitochondrial fission and fusion appear 
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to be critical to the maintenance of normal mitochondrial function. Moreover 

miRNA-539 could play roles in cardiovascular diseases where altered O-

GlcNAcylation occurs such as hypertension and ischemia reperfusion. In light of 

results from this study, it will be interesting to see whether miR-539 expression is 

altered in these diseases and the use of miR-539 mimic or inhibitor may 

contribute a new and broad therapeutic approach to modulate O-GlcNAc 

signaling. 

 Along the lines of regulation of OGA, we could more specifically 

interrogate the timing effect of OGA suppression on HF. We see that suppression 

of OGA occurs within 5 days of MI. Future studies will assess the temporal effect 

of OGA in HF more clearly. Specifically, we will identify when OGA suppression 

is most imperative for the progression of HF. Since we have an inducible model 

of OGA deletion we could ablate OGA after MI instead of prior to MI.  

 In addition to regulating protein O-GlcNAcylation, OGA has other potential 

function that we have yet to explore. OGA has a HAT domain, which has both 

active and inactive states. It is possible that OGA could activate gene expression 

through acetylation of histones. Ablation of OGA may induce alterations in 

histone acetylation thereby causing altered gene expression necessary to 

attenuate cardiac dysfunction seen in MI.  

 Lastly, there is potential for a role of O-GlcNAcylation in the development 

of fibrosis. The death of cardiomyocytes immediately following MI triggers an 

inflammatory/reparative response that removes necrotic tissue and heals the 

heart with a collagen scar. Much of this healing process is mediated by resident 
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cardiac fibroblasts. Fibroblasts function to maintain the integrity of the cardiac 

matrix. Indeed they play prominent roles in the different phases of post-infarct 

repair: the inflammatory, proliferative, and maturation. During these phases the 

cardiac fibroblasts initiate inflammatory responses133, proliferate, activate, and 

transdifferentiate into myofibroblasts to heal infarcted myocardium. The 

inflammatory and proliferative phases are transient and last only up to a week134, 

135. Coincidentally we see an exacerbation in cardiac dysfunction in OGA KO 

hearts following one week of MI. This period of time is critical for post-infarct 

healing. It is possible that loss of cardiomyocyte OGA may alter cardiac 

remodeling through altering fibroblast activity or activation. Thus, altered O-

GlcNAcylation may affect these primary mediators of fibrosis. We have 

previously shown that abrogation of OGT enhanced cardiac fibrosis 4 wk post 

MI71. In addition, preliminary data from our lab from cardiac fibroblasts isolated 

after MI demonstrate altered protein O-GlcNAcylation (Data not shown). In 

addition, OGT mRNA was significantly suppressed 5 d post MI (Data not shown) 

in these fibroblasts. Therefore, it is plausible that alterations in OGA expression 

could affect them. Furthermore we have the tools to specifically assess the 

question in vitro through the use of OGA and OGT floxed fibroblasts isolated 

from our OGAF/W and OGTF/F mice. Adenoviral overexpression of Cre 

Recombinase in these fibroblasts should ablate OGA or OGT expression and 

alter O-GlcNAcylation.  Thus, we can specifically assess the contribution of O-

GlcNAcylation to fibroblast activation and function. These future studies may 
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provide further insight into more prominent roles of OGA in heart failure (Figure 

28).  
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Figure 28. Summary of findings. Suppression of OGA and augmentation of O-GlcNAcylation occurs 
following MI. This suppression of OGA could be due to upregulation of miRNA-539, a negative 
posttranscriptional regulator of OGA expression (Aim 1). We hypothesized that ablation of OGA prior to 
infarction may be proadaptive. We generated a cardiomyocyte-specific OGA deficient mouse. Ablation 
of OGA prior to MI hastens cardiac dysfunction (Aim2). We hypothesized that OGA ablation may 
mediate mitochondrial dysfunction. We assessed the contribution of O-GlcNAcylation to induce 
mitochondrial dysfunction. O-GlcNAcylation alone was insufficient to cause mitochondrial dysfunction 
(Aim 3). We propose that OGA may contribute to post-infarct remodeling (Future Studies). M-mode 
image adapted from Watson et al. 2010. Image of normal and ligated heart from https://www.unil.ch/
caf/en/home/menuinst/services/micro-surgery.html.  
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