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        ABSTRACT 

REVISITING NEUTROPHIL RESPONSES TO TOLL-LIKE RECEPTOR 4: 
INFLUENCE OF LIGAND STRUCTURES AND CELLULAR ENVIRONMENTS 

                                                 Shuvasree SenGupta 

                                                        July 14, 2017 

 

Neutrophils respond to bacterial LPS through Toll-like receptor 4 (TLR4), 

which activates or potentiates immune defensive functions and prolongs cell survival. 

Activation of TLR4 signaling in neutrophils is beneficial for effective clearance of LPS-

bearing Gram-negative bacteria, but may also drive aberrant inflammation if not 

stringently regulated. The regulatory processes by which neutrophil functions are 

calibrated to respond appropriately to different LPS-bearing bacteria are incompletely 

understood. Described here are investigations that reveal an unexpected sensitivity of 

TLR4 in neutrophils to small changes in LPS structure typical of various Gram-negative 

bacteria, including those that are dangerously virulent (Escherichia coli and Salmonella 

enterica), opportunistically pathogenic (Pseudomonas aeruginosa), or beneficial 

inhabitants of healthy tissue (commensal bacteria). TLR4 signal strength varies with 

heterogeneity in the extent of phosphorylation and acylation of lipid A, the active center 

of LPS. Neutrophils respond vigorously to fully phosphorylated lipid A structures 

typical of virulent bacteria, but were surprisingly refractory to monophosphorylated 

variants of lipid A. This pattern may reflect the low threat posed by commensal 
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bacteria, many of which are naturally monophosphorylated, and helps explain the low 

endotoxicity of a therapeutically useful vaccine adjuvant manufactured from LPS 

through chemical dephosphorylation (Chapter II). TLR4-mediated effects on neutrophil 

survival were found to be responsive to changes in cellular microenvironment such as 

growth in suspension or as adherent cells, in the presence or absence of non-neutrophilic 

accessory cells. A loss of intrinsic TLR4 survival signaling in adherent neutrophils 

relative to those cultured in suspension was discovered, and has important implications 

as a checkpoint at which neutrophil abundance can be controlled through withdrawal of 

survival factors (Chapter III). Unchecked neutrophil accumulation is a serious problem 

for cystic fibrosis (CF) disease patients chronically infected with P. aeruginosa (PA). 

Tests of neutrophil responses to a lipid A variant that is seen only in severe, late stages 

of CF were conducted for the first time. The variant lipid A, with a unique hepta-

acylated structure, robustly primed neutrophil respiratory bursts, stimulated high levels 

of IL-8 secretion and prolonged neutrophil survival, but failed to stimulate neutrophil 

granule exocytosis This pattern is consistent with late stage CF disease in which PA is 

paradoxically not cleared despite provoking highly inflammatory influxes of activated 

neutrophils (Chapter IV). Stringent regulation of neutrophil survival and function is 

necessary for health and occurs in part through the precision with which TLR4 detects 

structural variants of lipid A, successfully for some Gram-negative bacteria but as an 

exploited host vulnerability by others. 
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CHAPTER I 

                                                        INTRODUCTION 

 

Revisiting neutrophil responses   

Polymorphonuclear leukocytes (PMNs) or neutrophils are first responders to 

microbe or host-derived danger signals. They are also crucial in determining the 

magnitude and the duration of inflammatory courses. Neutrophils contribute to a 

variety of inflammatory conditions including sepsis-associated injuries in multiple 

organs, cystic fibrosis (CF) associated lung inflammation, autoimmune disorders like 

rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) and cardiovascular 

diseases (1-8). Complete understanding of neutrophil-specific responses has not been 

achieved, even a century after their recognition by Metchnikoff as a first line of host 

defense. This is partly due to limitations of in vivo studies where it is difficult to tease 

apart what neutrophils are doing independent of other cells. Isolation of highly 

purified neutrophils with advanced cell purification techniques and in vitro study 

systems provide an alternative approach to delve into the intrinsic responses of human 

peripheral blood neutrophils to inflammatory stimuli and how they are influenced by 

the presence of other immune cell types or cell-derived factors or both.  The intrinsic 

and extrinsic factors that shape inflammatory responses of neutrophils could be 

potential therapeutic targets for many disease conditions. An important example is 

understanding neutrophil responses to lipopolysaccharide (LPS) which has immense 
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clinical significance in the context of tissue damage during acute and chronic 

endotoxemia (9-12).  

 

TLR4-MD2 receptor complex, the LPS sensor  

LPS, a major constituent of the outer membrane of Gram-negative bacteria, is a 

danger signal to the host. It is recognized by Toll-like receptor 4 (TLR4), a member of 

the TLR family of type I transmembrane proteins with extracellular leucine-rich repeats 

(LRRs) that form bent solenoid or horseshoe-like shapes (Fig.1). The cytoplasmic tail of 

most TLRs contains a conserved region called the Toll/IL-1 receptor (TIR) domain that 

serves as a docking site for intracellular signaling factors. TLR4 forms a heterodimer 

with LPS co-receptor myeloid 

differentiation factor 2 (MD2). A 

large hydrophobic pocket in MD2 

and an adjacent extracellular 

domain of TLR4 serve as the 

binding site for a single LPS 

molecule. The accessory proteins 

LPS binding proteins (LBP) and 

membrane bound or soluble CD14 

help in the transfer of monomeric 

LPS from bacterial membrane  

fragments or soluble micelles to 

Figure 1. Side view of the TLR4-MD2-LPS complex. The 
lipid A component of LPS is colored red, and the inner 
core carbohydrates of LPS are colored pink. Park et al. 

2009 
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the TLR4-MD2 receptor complex. Accessory proteins also increase the sensitivity of 

LPS detection by TLR4 expressing cells (13). LPS binding to the TLR4-MD2 receptor 

complex induces a rapid, strong inflammatory response and modulates adaptive 

immune responses, both of which are essential to fight off infections. However, 

dysregulated inflammatory responses by the TLR4 signaling system can lead to fatal 

septic shock (14, 15). 

 

TLR4 signaling pathways  

LPS binding induces TLR4-MD2 receptor dimerization which in turn brings 

intracellular TIR domains closer in order to initiate a signaling cascade. Four different 

adaptors are associated with TLR4 signaling: myeloid differentiation primary response 

gene 88 (MyD88), MyD88 adaptor-like (MAL, also called TIRAP), TIR domain-

containing adaptor inducing interferon-β (IFN-β) (TRIF), and TRIF-related 6 adaptor 

molecule (TRAM) (16, 17). While the signaling events through MyD88-Mal/TIRAP 

adaptor pairs are initiated from the cell surface, events dependent on TRIF-TRAM 

pairing are propagated from an endosomal compartment after TLR4-MD2 receptor 

complexes are endocytosed in a CD14 dependent manner (18, 19). Signaling through 

MyD88 results in early activation of mitogen activated protein kinase or MAPK and NF-

κβ that together induces proinflammatory cytokine expression and hence is crucial for 

triggering rapid innate immune responses whereas the TRIF pathway is absolutely 

required for IFN-β production (15). We previously demonstrated that IFN-β participates 

in autocrine-paracrine signaling to amplify the expression of several downstream genes 

(20) that are crucial for adjuvant effects on T cell priming (21, 22). However, TLR4 is the 
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only TLR that activates both MyD88- and TRIF dependent signaling pathways, which 

can synergize in the expression of an overlapping set of genes at high signal strength. 

 

LPS structures  

LPS is a major constituent of the outer leaflet of the outer membrane in Gram-

negative bacteria. In general, LPS contains three structural domains: the outermost highly 

heterogeneous O-antigen 

chain, the core 

oligosaccharide and the 

highly conserved 

innermost lipid A (Fig. 2). 

LPS is anchored in the 

outer membrane by 

acylated domains of lipid A where 

it maintains the structural integrity of the outer membrane (15, 23).  

 Lipid A alone is sufficient to induce most immune responses associated with the 

complete LPS molecule (24, 25). Therefore, it is considered to be the active center for the 

endotoxic properties of LPS (15).  Lipid A consists of a diglucosamine backbone with up 

to 7 acyl chains and 2-3 phosphate groups.  In general, up to 4 primary acyl chains are 

attached directly to the diglucosamine headgroup through amide or ester linkages. These 

primary chains, through their hydroxyl groups, can bear up to 3 additional secondary acyl 

chains (23).  

Figure 2. General structure of LPS. Erridge et al. 2001 
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Lipid A is the most conserved structural component of LPS molecules in different 

bacteria, but it can nevertheless vary strikingly with respect to the length, number, 

saturation and attachment points of acyl side chains (23, 26-28). Even bacteria from the 

same species can have variations in acyl side chains as adaptations to environmental 

conditions, such as temperature, pH, cationic antimicrobial peptides (CAMPs) and other 

components of the immune system (29-31). For example, environmental isolates of 

Pseudomonas aeruginosa (PA) have a penta-acylated lipid A but in the airways of patients 

with cystic fibrosis (CF) lung disease, PA synthesizes a variety of lipid A structures 

comprising of both hypo- and hyper-acylated isoforms (30, 32, 33).  

Modifications in phosphate groups of lipid A are also common among many 

pathogens as well as commensals (32-35). Bacteria can remove the anionic phosphate 

group from 1- or 4’- positions of lipid A to gain resistance to CAMPs. Alternatively, adding 

positive residues such as amine-containing sugars like aminoarabinose and galactosamine 

or other amine-containing groups like phosphoethanolamine to phosphate groups also 

counteracts negative charge of lipid A phosphates in order to promote resistance to 

antimicrobial peptides (34).  

 

 

 

 

 



6 
 

TLR4 is sensitive to variations in LPS structure 

Maximal inflammatory activity of lipid A typically requires two phosphate groups 

and six acyl chains of 12-14 carbons, 

a structure predominantly found in 

biological preparations of E. coli 

LPS or chemically synthesized 

compounds with the E. coli 

chemotype such as  lipid A 

compound 506 (Fig. 3)  (15, 36, 37). 

Deviation from this structure is 

associated with attenuated activities. 

For example, the vaccine adjuvant 

monophosphoryl lipid A (MPLA) is a 

chemically degraded structural variant of LPS from Salmonella enterica serover 

Minnesota Re595. MPLA is 0.1 % as inflammatory as its parental LPS, but still retains 

beneficial immunomodulatory properties allowing it to be approved by the FDA for use 

as an adjuvant component of Cervarix, an HPV vaccine (38, 39). The mechanism behind 

such low pro-inflammatory activities, but sufficient adjuvanticity of MPLA may be 

explained by the TRIF biased nature of the TLR4 signaling network (20). MPLA is 

chemically refined from S. enterica LPS but naturally occurring monophosphorylated 

lipid A structures that carry either a 1’ or a 4’ phosphate group, can also be found in 

commensal bacteria and are also associated with weak or partial stimulation of TLR4 (23, 

35, 40).  

Figure 3. Structure of E. coli type 
synthetic lipid A (Compound 506) 
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Monophosphorylated lipid A variants expressed by commensals are commonly 

hypo-acylated relative to hexa-acylated MPLA as these variants have five fatty acid 

chains (35, 40). Several pathogenic bacteria also express hypo-acylated LPS structures, 

presumably as a bacterial strategy for evading detection by TLR4-MD2 (31).  Because 

our knowledge is incomplete, studies focused on defining inflammatory activities 

associated with various LPS structures are needed to understand and prevent 

inflammatory diseases caused by Gram-negative pathogens. 

 

Cross-species differences in the recognition of LPS structural variants 

Inflammatory responses to certain LPS structures can be host species specific. For 

example, tetra-acylated lipid IVa, a biosynthetic precursor of LPS, and penta-acylated 

lipid A from the photosynthetic bacterium Rhodobacter sphaeroides (RSLA) act as TLR4 

agonists in mice and horses, respectively. However, both fail to activate TLR4 signaling 

in human. Instead, they inhibit LPS induced responses in human and thus, act as TLR4 

antagonists (41-43). Attenuated responses by human but not murine TLR4 are also 

reported for penta-acylated lipid A from Pseudomonas aeruginosa (44). Such species-

specific discrimination of LPS structures may differentially impact bacterial virulence, 

hence susceptibility to infections in human versus conventional mouse models (45).  

 

Neutrophil functions 

Recurrent bacterial and fungal infections associated with neutropenia or functional 

disorder in neutrophils underscores their fundamental role in immune responses (46). 

Neutrophils are the predominant leukocytes, comprising ~ 50-70% of the white blood cell 
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population in human circulation (6, 47). They are produced in bone marrow at a massive 

rate, an estimated 1011/day, that can further increase during infections (6). Under 

homeostatic conditions, circulating neutrophils exist in a resting state to avoid causing 

tissue damage through premature release of their toxic intracellular contents. Upon 

pathogenic invasion or injury, however, several pathogen associated molecular patterns or 

PAMPs or host-derived factors such as cytokines, complement components, damage 

associated molecular patterns or DAMPs and other inflammatory mediators activate 

effector functions of neutrophils (48-52). Activated neutrophils give optimum protection 

to the host against infections, but their dysregulated activation can also contribute to many 

inflammatory conditions including endotoxemia, cystic fibrosis (CF) or chronic obstructive 

pulmonary disease (COPD) (9, 53-57).  

Neutrophils are professional phagocytes. Once activated, they efficiently 

phagocytose and clear 

pathogens and tissue debris 

(58, 59). They kill pathogens 

(Fig. 4) either by phagocytosis 

and subsequent respiratory 

burst inside the phagosomes or 

by releasing reactive oxygen 

species and granule contents 

in the extracellular milieu. Neutrophils can also kill bacteria by trapping them in neutrophil 

extracellular traps (NETs) which are mesh like structures made of DNA, antimicrobial 

histones and granule proteins (60-62).  

Figure 4. Microbicidal mechanisms in neutrophils.  
Kolaczkowska et al. 2013 



9 
 

Apart from these direct anti-microbial functions, neutrophils also synthesize 

various chemokines and cytokines that facilitate recruitment and activation of other 

innate and adaptive immune cells (63, 64).   

Neutrophil survival 

Neutrophils are terminally differentiated cells with a very short half-life (65, 66). 

In ex vivo culture, the lifespan of human neutrophils is usually less than 24hrs but varies 

as a function of culture techniques (67). Under basal conditions in vivo, aged neutrophils 

undergo constitutive apoptosis and are cleared by Kupffer cells in the liver, red pulp 

macrophages in the spleen or stromal macrophages in the bone marrow,  a process that 

helps maintain homeostatic levels of neutrophils (68). Apoptotic death also prevents 

neutrophils from spilling their toxic contents into healthy tissue and promotes their safe 

clearance by tissue macrophages from the inflammatory sites (69).   

Conserved apoptosis pathways in neutrophils and associated changes 

Most pathways leading to neutrophil apoptosis activate a common executioner 

caspase, caspase-3, a cysteine protease that evokes many of the apoptosis associated 

biochemical and morphological phenotypes. Caspase -9 and -8 are initiator caspases that 

catalyze proteolytic processing and activation of caspase-3. Major changes during 

neutrophil apoptosis include cell body shrinkage, membrane blebbing, cytoplasmic 

vacuolation, plasma membrane asymmetry while retaining membrane integrity, nuclear 

condensation, and DNA fragmentation. 

Neutrophils die spontaneously through the intrinsic pathway where apoptosis 

initiating signal such as generation of ROS, originate within the cells (67, 70, 71). An early 

key event in the intrinsic pathway is mitochondrial outer membrane permeabilization 
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(MOMP) which is tightly regulated by a balance between pro-apoptotic (e.g, Bax, Bid, 

Bim) and pro-survival (e.g, Mcl-1, A1) proteins of the Bcl-2 family. Once the balance tips 

towards apoptosis, MOMP leads to the release of cytochrome C and other pro-apoptotic 

factors from mitochondrial intermembrane spaces into the cytosol. Released factors 

promote apoptotic protease activating factor-1 (APAF-1) mediated activation of caspase-

9, the characteristic initiator caspase of the intrinsic pathway in neutrophils. Neutrophils 

can also undergo apoptosis through a mitochondria-independent pathway (72). For 

example, Loison et al. (73) reported proteinase-3 mediated caspase 3 activation leads to 

spontaneous apoptosis in aged neutrophils. In the extrinsic pathway, caspase-8 is activated 

when death receptor (DR) ligands such as members of the TNF cytokine family, FASL or 

TNF-α or TNF-related apoptosis inducing ligand (TRAIL) bind to their respective surface 

death receptors. A third route of neutrophil apoptosis is induced following phagocytosis of 

certain pathogens, in a process known as phagocytosis induced cell death (PICD)(67, 68). 

Therefore, apoptosis pathways in neutrophils are regulated by multiple intrinsic and 

extrinsic factors. 

Relevance of neutrophil apoptosis in inflammatory diseases 

Apoptotic neutrophils become functionally quiescent through downregulation of 

several cell surface receptors (71, 74). Changes in cell surface molecules also signal 

macrophages to recognize dying neutrophils and internalize them via a process known as 

efferocytosis. Uptake of apoptotic neutrophils induces anti-inflammatory TGF-β 

production from the macrophages while suppressing their pro-inflammatory activities and 

reprogramming them to a resolution of inflammation phenotype (68, 75, 76). Hence 

dysregulation of neutrophil turnover can contribute to many inflammatory diseases by 
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abnormally prolonging their lifespans, including sepsis, acute respiratory distress 

syndrome (ARDS), chronic conditions like chronic obstructive pulmonary disease 

(COPD), cystic fibrosis, autoimmune diseases like rheumatoid arthritis, inflammatory 

bowel diseases (77-83).  

 

LPS recognition and signaling pathways in neutrophils 

Neutrophils express the TLR4-MD2 receptor complex as well as membrane- 

bound CD14 (84-87). Because neutrophils are the first immune cells to infiltrate sites of 

infection, they are likely to encounter and respond to LPS very early. Neutrophils in 

circulation are also likely to respond to LPS during endotoxemia as a driver of systemic 

inflammation (88, 89). LPS activates only MyD88 signaling pathway in neutrophils. The 

absence of a functional TRIF signaling pathway appears to result from failure to activate 

transcription factors downstream of TBK-1, such as AP-1, IRF-3, needed for expression 

of IFN-β (90). Because IFN-β is important for TLR4’s adjuvant effects through T cell 

priming (22), lack of TRIF signaling in neutrophils, teleologically, may reflect the 

commitment of these cells primarily to induce rapid innate immune responses instead of 

slower adaptive defense. 

 

LPS influencing neutrophil functions 

Phagocytosis and respiratory burst priming 

LPS sensing enhances or primes several functions of neutrophils (51).  Pre-

exposure to LPS enhances neutrophil phagocytosis of foreign particles like opsonized 
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bacteria. Engulfed bacteria are also killed more efficiently as LPS further boosts their 

respiratory burst activity and hence, toxic reactive oxygen species (ROS) generation (48, 

91). Respiratory bursts are mediated by NADPH oxidase, a multicomponent enzyme 

complex, that is inactive in circulating neutrophils. LPS pre-stimulation primes or 

potentiates the respiratory burst activity in response to secondary stimuli like bacterial 

peptide, fMLF (52). Studies suggest LPS priming of the oxidative burst may involve 

cellular or biochemical events that facilitate NADPH oxidase assembly and activation 

(92, 93). Activated NADPH oxidase catalyzes the reduction of molecular oxygen at the 

expense of NADPH, generating anti-microbial ROS that kill the bacteria inside the 

phagosome.  However, when released in the extracellular milieu, these oxygen 

metabolites can also contribute to tissue injury (94).  

Enhanced granule exocytosis 

Activated neutrophils also release the contents of their intracellular vesicles and 

granules either into phagosomes or in the extracellular space through a process known as 

granule exocytosis. LPS stimulation induces mobilization of all the four major granules 

in neutrophils (Fig. 5) (48, 95).  Granules contain a diverse array of lytic enzymes and 

antimicrobial 

peptides. Various 

granule proteins 

either synergize 

with the ROS to 

augment bacterial 

killing or act independently for optimal microbicidal activity (92). Granules also 

Figure 5. Neutrophil granules from Pham et al. 2006 
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replenish the plasma membrane with key proteins required for neutrophil responses to 

environmental stimuli (96). However, inappropriate activation of neutrophils can lead to 

an uncontrolled release of granule contents, particularly, proteases that have been linked 

to inflammatory conditions in diseases like CF and COPD (56, 57).  

Enhanced cytokines and chemokines 

LPS stimulates neutrophils to secrete a number of cytokines and chemokines, 

which can facilitate trafficking and further activation of other leukocytes and thus, 

amplify both innate and adaptive immune responses (63, 89, 97-101). The CXC 

chemokine family member, interleukin-8 (IL-8) is a potent neutrophil chemoattractant 

(102-104). LPS stimulated neutrophils release IL-8 (101) which potentially attract more 

neutrophils at sites of infection. Monocyte chemoattractant protein-1 (MCP-1) is also 

secreted from LPS stimulated neutrophils that may facilitate monocyte recruitment in the 

subsequent waves of immune cell influx (105). 

Prolonged survival 

LPS delays neutrophil apoptosis and extends their functional life-spans (106-109). 

Intracellular mediators involved in survival signaling by TLR4 include mitogen activated 

protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERK), p38 

MAPK, PI3K/Akt and NF-κβ (106, 110-112). Most of these pathways provide protection 

to anti-apoptotic proteins like Mcl-1 and A1 whose abundance in neutrophils correlates 

with TLR4 survival effect (68, 83, 107, 113).  However, neutrophils used in these earlier 

studies were isolated by traditional gradient protocol which mostly leaves a small 

percentage of contaminating PBMCs. With recent studies using highly purified 

neutrophils (purity > 99%) there have been major shifts in perspective regarding the 
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direct role of TLR4 stimulation in modulation of several responses of neutrophils, 

including survival (66, 84, 114). Our knowledge of which responses to LPS are triggered 

directly through TLR4 on neutrophils or indirectly through TLR4 on other cell types is 

still incomplete. 

 

Neutrophils in cystic fibrosis 

Chronic inflammatory lung disease in patients with cystic fibrosis is characterized 

by neutrophil accumulation in the airways in massive numbers. Paradoxically, recruited 

neutrophils fail to clear bacterial infection, especially the infection with Pseudomonas 

aeruginosa (PA). A continuous predominance of neutrophils contributes to disease 

exacerbation through the release of toxic contents (Fig. 6) (54, 115, 116).  

 PA, the most 

predominant pathogen 

found in patients with CF, 

is associated with worse 

prognoses (117, 118). PA 

lipid A undergoes CF 

specific adaptations 

starting from very early 

age of the patients (< 3 

years old, infants), (33, 54, 119), however, their relevance to disease progression remains 

ill-defined. PA synthesizes a variety of lipid A structures carrying five to seven fatty acid 

Figure 6. Mediators of neutrophil dominated inflammation in CF. James 
F. Chmiel and Pamela B. Davis, The Cystic Fibrosis Transmembrane 

Conductance Regulator, 2003 
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chains in the CF airways (30, 32, 33) with undefined inflammatory activities on 

neutrophils. 

 

Difficulties in studying TLR4-stimulated neutrophil functions with a murine model 

Murine models are invaluable tools to perform studies and broaden our 

understanding of the immune system but are not always an ideal choice for translating the 

findings to the human system. Significant differences exist between human and murine 

neutrophils. Neutrophils constitute only 10-25% of total leukocytes in mouse blood, 

versus 50-70% in human blood (120). Human neutrophils have antimicrobial peptides 

defensins in their azurophilic granules that mouse neutrophils lack (121). LPS stimulation 

induces mouse neutrophils to express IL-10. But, human neutrophils do not express IL-10 

regardless of activation state, due to an inactive chromatin configuration at the IL-10 

genomic locus (122, 123). These and other differences indicate the need for verifying 

observations from murine studies in human primary neutrophils. 

Cross-species differences in recognition of certain LPS isoforms as previously 

described adds further complexity. A few studies show that human TLR4-MD2 receptor 

complex has evolved discriminatory mechanisms for sensing lipid A structural variants 

differently from the mouse counterpart, which is more promiscuous in recognizing 

different structures (124). For example, Hajjar et al. (44) reported a penta-acylated LPS 

expressed by P. aeruginosa, is weakly recognized by human TLR4-MD2 but induces 

robust proinflammatory responses by the mouse macrophage cell line (RAW264.7) or 

mouse TLR4 expressing reporter human embryonic kidney cells (HEK-293) suggesting 

murine model may not be ideal to study immune responses to PA infection.  
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Dissertation Goals 

Neutrophils, as front-line soldiers, are critically important for protection from 

invading pathogens or from injuries. They are also the cause of persistent inflammation in 

many chronic conditions. Yet, several aspects of neutrophil biology in response to TLR4 

engagement, a potent initiator of inflammatory responses, are still not well characterized.  

The goal of this dissertation was to expand our understanding of how neutrophil responses 

are influenced by the structural variations among TLR4 ligands and the cellular 

environments commonly encountered during inflammation. 

Chapter II: We compare TLR4 stimulating activities of the vaccine adjuvant MPLA to 

LPS in human neutrophil and analyze their influence on phagocytic response and 

survival. 

Chapter III: We reinvestigate the effect of LPS in extending neutrophil longevity with 

the aim of defining the roles of accessory cells and cell-derived soluble factors, with or 

without neutrophil-substratum adhesion.  

Chapter IV: The immunostimulatory activities of lipid A structural variants expressed 

by Pseudomonas aeruginosa and exclusively found in the lung of cystic fibrosis (CF) 

patients are characterized. We evaluate a variety of responses of human neutrophils 

stimulated with PA lipid A isoforms to determine if they correlate broadly with disease 

severity and progression. 
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Importance 

Determining the effect of LPS structural isoforms on neutrophil responses may 

provide insights into bacterial adaptation with the host, help predict medical outcomes 

and advance the goal of developing clinically relevant strategies to manipulate immune 

responses in neutrophil dominated inflammatory diseases. Characterizing neutrophil 

survival response under different cellular environments may help identify cellular 

targets for controlling neutrophil lifespan without compromising their protective 

functions. 
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            CHAPTER II 

NEUTROPHILS CALIBRATE THEIR RESPONSES BASED ON STRUCTURAL 

DIFFERENCES OF LPS VS. MPLA  

Introduction 

Monophosphoryl lipid A (MPLA) (Fig. 7) is a chemically modified derivative of 

LPS. Ribi and colleagues, 35 years ago, showed that MPLA is 0.1 % as inflammatory as 

LPS but retains most of its beneficial immunostimulatory properties (39, 125). Toxicity 

and immunomodulatory functions were assessed through chick embryo lethality, rabbit 

pyrogenicity and tumor regression tests in a guinea pig tumor model (39, 125, 126). 

Ribi’s seminal work led to eventual approval of MPLA for use as a vaccine 

immunostimulant, one of the most significant achievements in the field of vaccine 

adjuvant development. The clinical grade form of MPLA, MPL adjuvant®, is used by 

GlaxoSmithKline Biologicals (GSK Biologicals) as a component of its vaccine adjuvant 

system AS04. Approval of AS04 for use in the hepatitis B virus vaccine Fendrix in 

Europe and in the human papillomavirus (HPV) vaccine Cervarix in the USA shows the 

safety and efficacy of MPL based adjuvants. 

MPLA is isolated from the LPS fraction of Salmonella enterica serovar 

Minnesota Re595. Subsequent acid-base hydrolysis yields a mixture of structures where 

the most active isoform is a 4′-monophosphorylated hexa-acylated lipid A (Fig. 7) (15, 

38). Like LPS, MPLA is also sensed through TLR4/MD2. But unlike its parent 

compound, MPLA activates MyD88 associated pro-inflammatory events at markedly 
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reduced magnitude. In contrast, it more efficiently activates the TRIF branch of TLR4 

signaling, which is associated with the initiation of adaptive immune responses through 

antigen presenting cell (APC) maturation, antigen-specific T cell proliferation and T cell 

survival (21, 22). Preferential activation of the beneficial TRIF dependent genes by 

MPLA over MyD88-TRIF co-dependent pro-inflammatory outcomes appears to be one 

mechanism for the low toxicity immunostimulatory properties of MPL adjuvant®. We 

have previously reported, using mouse BMDCs, that it is not the ligand structure but 

TLR4 signaling network itself that is TRIF biased via autocrine or paracrine signaling by 

IFNβ, the defining product of the TRIF signaling pathway (20).  

 In human neutrophils, the TRIF branch is nonfunctional due to a lack of IRF-3 

activation, the transcription factor that is absolutely required for expression of IFN-β. 

MyD88-dependent signaling pathway remain functional in neutrophils, which is 

suggestive of their primary role in innate immunity (127). Neutrophils as first responders 

migrate quickly to sites of infection or vaccination. A detailed understanding of how 

human neutrophils respond when they encounter MPLA in comparison to LPS is needed 

to improve the safety and efficacy of vaccines adjuvanted with AS04. Tight regulation of 

neutrophil survival is vital for mounting appropriate immune responses and for the timely 

resolution of inflammation (69, 128, 129). Neutrophils undergo delayed apoptosis in the 

presence of LPS in vitro (108) and in in vivo studies where LPS is used to induce acute 

lung injury (83). Surprisingly, whether or not MPLA has an effect on neutrophil survival 

has not been tested.   

As with survival, little is known about what effect MPLA has on the phagocytic 

ability of neutrophils (130). Neutrophils are professional phagocytes. Antibody or 
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complement opsonization helps neutrophil recognize their targets more efficiently such 

that they can internalize IgG-opsonized latex beads in <20 sec (131). LPS pre-stimulated 

human neutrophils have enhanced phagocytic response (51). In a in vivo murine model, 

MPLA injection induces pronounced recruitment of neutrophils (132, 133). Veer et al 

(132) also reported increased recruitment of fluorescent bead positive neutrophils, at 

bead-MPLA co-injected sites, but the phagocytic function was not enhanced in the 

presence of MPLA. Here, we sought to compare MPLA with LPS in vitro, to characterize 

the inflammatory profile of the former in terms of sustaining neutrophil lifespan and 

stimulating phagocytic ability as it seems with LPS (51).   

 

Methods 

Reagents 

 Lipopolysaccharide (LPS) from Salmonella enterica serover Minnesota Re595 

and monophosphoryl Lipid A (MPLA) manufactured by acid hydrolysis of Salmonella 

enterica serover Minnesota Re595 LPS were purchased from ENZO Life Sciences. 

Carboxylated polystyrene sky blue beads (0.76µm) and AccuCount blank beads (3-

3.9µm) were purchased from Spherotech. Pooled human male AB serum was purchased 

from Sigma-Aldrich. FBS was purchased from Gibco, ThermoFisher Scientific.    

 

Isolation and culture of human neutrophils 

Neutrophils were isolated from venous blood of healthy donors using plasma-

percoll gradients as described elsewhere (134). Human donor recruitment and blood 

draws were in accordance with the guidelines approved by the Institutional Review Board 
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of the University of Louisville. Isolated cells were > 90-95% neutrophils, as evaluated by 

microscopy. Trypan blue exclusion indicated that > 97% of cells were viable. Cells were 

resuspended in complete RPMI-1640 medium (Gibco) containing 2 mM L-glutamine, 50 

units/ml penicillin, 50 mg/ml streptomycin, 1 mM sodium pyruvate. As a source of 

soluble CD14, LPS-binding protein (LBP) and growth factors (135-137), the medium 

was also supplemented with 10% heat-inactivated human AB serum or fetal bovine 

serum. 

 

Survival assay 

Neutrophils were cultured in a total volume of 200 µl at 0.5x106/well of a 96 well 

tissue culture plate with LPS, MPLA or culture medium for 24 hr at 370C. After overnight 

culture, the cells were washed with HBSS (Gibco) and stained with APC-conjugated 

Annexin V (BD Bioscience) and 7-AAD (Molecular ProbesTM, Life Technology) 

according to the manufacturer’s protocol. Cell viability was assessed by measuring the 

proportion of cells that were double negative for Annexin V and 7-AAD using a BD LSR 

II flow cytometer and FlowJo software. 

 

Phagocytic target preparation 

Carboxylated (sky blue) beads were opsonized with human IgG (Sigma-Aldrich) 

by covalent coupling using N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (Sigma-Aldrich). Briefly, 0.75x109 sonicated beads were added to 0.7 mg 

IgG in the presence of 7 mg EDAC and 100 mM sodium acetate buffer in a total volume 

of 1 ml in 1.5 ml Eppendorf tubes and mixed vigorously in the dark at room temperature 
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for 2 hr. This was followed by washing twice in 1x wash buffer (1x PBS plus 0.1% 

glycine) by spinning the vials at 8000 rpm for 15 sec. Bead pellets were resuspended in 

storage buffer (1x PBS plus 0.1% glycine and 0.1% NaN3) and sonicated briefly. Any 

aggregated beads were removed by membrane filtration (0.8 µm). IgG binding to the 

beads was confirmed using PE-conjugated anti-human IgG antibody (Fcγ specific) (BD 

Bioscience) and flow cytometry. Beads were counted by flow cytometry using 

AccuCount beads as a standard and stored at 40C, with brief sonication before each use. 

 

Phagocytosis assay 

Neutrophils were plated at a density of 0.8x106 /100 µl in a 96 well plate and pre-

stimulated for 30 min with LPS or MPLA or medium as vehicle control at 370C. Cells 

were then co-cultured with the opsonized beads at 5:1 or 10:1 bead: cell ratios. After 20 

min co-culture, the cells were washed, fixed with 2% formaldehyde (Polysciences) and 

analyzed for the presence of fluorescent beads using a BD LSR II flow cytometer. 

 

Statistical analysis 

GraphPad Prism software was used for statistical analysis as described in each 

figure legend. Tests used included linear regression, 1-way and 2-way ANOVA with 

Sidak’s or Dunnett’s multiple comparisons. Neutrophil half-lives in culture were 

quantified with  
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Results 

MPLA does not prolong neutrophil survival 

Neutrophils undergo spontaneous apoptosis under normal physiological 

conditions. Because dying neutrophils become functionally unresponsive, tight control of 

the apoptotic process is crucial for avoiding excessive inflammation. At times of tissue 

injury or infection, neutrophil apoptosis can be delayed by many host-derived factors or 

by pathogen-associated molecular patterns (PAMPS) including LPS (108, 112, 138). To 

determine if MPLA has similar pro-survival effects on human neutrophils, we compared 

it to LPS in a neutrophil survival assay. 

   We first compared the half-lives of primary human neutrophils (purity 

>90%) resuspended in medium supplemented with 10% heat-inactivated FBS or with 

pooled human serum to determine whether the origin of serum influences the cellular 

response. As expected, the viability of unstimulated (UT) neutrophils as quantified by 

Annexin V-APC and 7-AAD staining, gradually went down over a 72 hr culture period. 

Surprisingly, neutrophils cultured with human serum had a half-life of ~ 30 hr, almost 

twice the half-life measured with FBS present (Fig. 8A). Therefore, human serum was 

selected for use in subsequent experiments.  

We next tested neutrophil half-lives in the presence of LPS or MPLA. LPS 

stimulation did not completely rescue neutrophils from undergoing apoptosis but 

significantly prolonged their viability at a dose as low as 10 ng/ml such that the half-life 

was extended to approximately 50 hrs (Fig. 8B). In contrast, MPLA had no significant 

effect on neutrophil viability even at a dose as high as 1000 ng/ml. The half-life of 
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neutrophils in the presence of MPLA was the same as that of the unstimulated cells (~ 

30hr) (Fig. 8B).  

 

MPLA is weak at priming Fc receptor-mediated phagocytic responses of human 

neutrophils 

Phagocytosis by neutrophils can be initiated by binding opsonized targets to Fc 

or complement receptors. Pre-exposure of neutrophils to TLR agonists like LPS greatly 

enhances their ability to phagocytose opsonized targets (51). To determine if this 

response is also boosted by pre-stimulation with MPLA, we compared it to LPS for its 

ability to prime Fc receptor mediated phagocytosis of IgG opsonized beads. 

Neutrophils were exposed to LPS or MPLA for 30 min and then to opsonized 

beads for 20 min at 5:1 or 10:1 bead to cell ratios. Formalin-fixed neutrophils incubated 

with beads were used to distinguish bead uptake from bead binding to the plasma 

membrane through Fc-receptors. As shown in Fig. 9B, a limited percentage of 

unstimulated neutrophils (UT) were positive for beads at lower bead to cell ratios (5:1) 

but increased significantly at 10: 1. At either bead to cell ratio, as little as 1 ng/ml LPS 

significantly increased the proportion of bead positive cells. There was a trend of increase 

in bead positive cells with MPLA pre-stimulation. However, it did not reach statistical 

significance, indicating no or weak activity of MPLA in neutrophil priming. 

 

Discussion  

The goal of this study was to determine if human neutrophils respond distinctly 

to MPLA compared to LPS. We found that while LPS significantly prolonged neutrophil 
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half-life and increased their phagocytosis of opsonized beads, MPLA had little or no 

effect on neutrophil survival or phagocytosis. 

Neutrophils maintain homeostasis by undergoing constitutive apoptosis. As with 

many other inflammatory mediators, the extension of neutrophil survival by LPS (108) 

represents a double-edged sword. On one hand, the persistence of activated neutrophils 

can ensure an optimal defense but on the other, uncontrolled release of toxic mediators 

can inflict tissue damage and aggravate inflammation (69, 128, 129). To our knowledge, 

there is no prior study describing how neutrophil half-life is modulated by MPLA. We 

showed that human neutrophils in ex vivo culture in the presence of human serum have a 

half-life of about 30 hrs paralleling the observations by Colotta et al (108). We also found 

that FBS is not as efficient as the human serum at keeping neutrophils healthy, and 

therefore, selected human serum for rest of our studies. In the presence of human serum, 

LPS significantly extended the half-life of neutrophils whereas MPLA completely failed 

to prolong their survival.  

LPS pre-stimulated neutrophils likely had robust phagocytic responses because 

LPS upregulates the surface expression of phagocytosis-assisting complement or Fc 

receptors (139, 140). The weak phagocytosis priming activity of MPLA is consistent with 

earlier observations (130, 132, 141). One possible mechanism for such low activity of 

MPLA could be due to its relative inability to trigger neutrophil granule exocytosis, a 

process through which primed neutrophils equip their plasma membrane with proteins 

that assist in phagocytosis and other effector functions (48). Preliminary studies 

(unpublished observations) indeed showed that MPLA is defective at inducing exocytosis 
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of neutrophil secretory vesicles as well as secondary or specific granules, the intracellular 

sources of opsonin receptors (96, 142). 

Our observations of limited phagocytic priming by MPLA contradicts results 

reported by Michaud et al (143). They demonstrated that MPLA enhanced Aβ 

phagocytosis in vitro using mouse monocytes and a microglia cell line, and reduced Aβ 

abundance and associated pathology in an Alzheimer’s Disease mouse model. We 

reasoned that MPLA induced signaling may not be regulated in similar fashion in all cell 

types which also highlights why it is important to define cell type-specific responses to 

MPLA. Perhaps the relative ease of stimulating TRIF pathway in mouse monocytes 

explains these differential results. Much stronger phagocytic responses after LPS pre-

stimulation were in agreement with Michaud et al (143), confirming that MPLA is a 

comparatively weak stimulator of neutrophil functions.  

Low or absent MPLA activity in these neutrophil culture assays was not 

completely unexpected. This is because both the biological and synthetic preparations of 

MPLA have been characterized before as weakly pro-inflammatory in other cell types 

(21, 144).  For example, MPLA is relatively weak at inducing TLR4/MD2 heterotetramer 

formation which probably explains why it is a poor activator of MyD88-associated 

signaling events (145), the only branch of TLR4 signaling network present in neutrophils.  

In conclusion, our study showing a weak activity of MPLA on human 

neutrophils suggests a lower risk of neutrophilic inflammation at vaccination sites.  

Certain commensal bacteria that reside in intestinal mucosal niche naturally express 

monophosphorylated isoforms of LPS (35, 40). Therefore, it is tempting to speculate that 
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very weak activities of these detoxified isoforms on neutrophils that constantly patrol the 

mucosal surfaces might potentially help to avoid undesired inflammation in the gut. 
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Figure 7. Structures of the major species of MPLA and LPS as prepared from 

Salmonella enterica serovar minnesota Re595. Monphosphoryl lipid A, right, is derived 

from lipopolysaccharide, left, by acid-base hydrolysis. The active component in MPLA 

has six acyl side chains, no polysaccharide side chains and one phosphoryl group.  
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Figure 8. Survival effect of MPLA on neutrophils. Purified human neutrophils (>90%) 

were incubated 72 hr with S. minnesota LPS or MPLA or medium and cell viability was 

analyzed by Annexin V-APC/7-AAD staining and flow cytometry.  Percentage of viable 

neutrophils (negative for Annexin V-APC and 7-AAD) and the calculated half-lives (A) 

in medium with 10% FBS vs. 10% pooled human serum or (B-C) after culture with the 

indicated doses of LPS or MPLA, or medium, with 10% pooled human serum. Bars show 

percent means +/- SEM from 3 to 4 individuals. ***P ≤ 0.001, **P ≤ 0.01 when 

comparing (A) FBS with human serum, (B) ***P ≤ 0.001, **P ≤ 0.01when comparing 

LPS with medium (agonist= 0 ng/ml). 
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Figure 9. Priming neutrophil phagocytic response by MPLA. Neutrophils were 

incubated with LPS or MPLA at the indicated concentrations (ng/ml) or medium for 30 

min and co-cultured with IgG opsonized fluorescent skyblue beads, at 5:1 or 10:1 bead to 

cell ratios. Phagocytic response was assessed by measuring percentage of cells associated 

with beads by flow cytometry. Formalin fixed cells with beads were used for recognizing 

bead binding on surface. (A) Histograms (P2 gate) and dot plots (Q4 gate) represent 

neutrophils associated with beads at 10:1 (B) Percentage of LPS or MPLA pre-stimulated 

neutrophils associated with beads. Bars show percent mean +/- SEM from 3 individuals. 

***P ≤ 0.001, **P ≤ 0.01 when compared with untreated neutrophils.
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     CHAPTER III 

NEUTROPHIL SURVIVAL RESPONSE TO TLR4 STIMULATION IS TUNED BY 

CELLULAR ENVIRONEMENTS 

Introduction 

Neutrophils undergo delayed apoptosis in vivo when LPS is used experimentally 

to induce acute lung injury (83, 146). Many in vitro studies also show pro-survival effects 

of LPS on human neutrophils (106, 108, 111, 138, 147-149). Prolonged neutrophil 

longevity can benefit host defense by enhancing anti-microbial activities (69), but this 

may also prolong the course of inflammation, inadvertently causing tissue damage during 

endotoxemia and other chronic infections  (146, 150, 151). The major goal of this study is 

to expand our knowledge of how the survival response of primary neutrophils to TLR4 

stimulation is influenced by cellular environments. Identifying the factors that regulate 

neutrophil survival and characterizing the underlying mechanism will help in designing 

effective therapeutic strategies without compromising immune functions. 

The circulatory lifespan of neutrophils is generally less than a day (68, 152, 153).  Under 

normal physiological conditions, homeostasis is maintained as neutrophils undergo 

spontaneous apoptosis and are cleared by macrophages. However, once recruited to sites 

of infection or tissue injury, neutrophil survival can be prolonged by microbial 

components, host-derived cytokines, chemokines or DAMPs in the local tissue 

microenvironment (109).  Because apoptosis shuts down key functions of neutrophils by 

preventing the release of potentially cytotoxic cargo and favoring their ‘anti-
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inflammatory’ removal by tissue macrophages (74, 154), prolonged persistence of 

neutrophils hinders inflammation resolution.  

LPS, a classic ligand of TLR4, is a well-documented pro-survival factor for 

neutrophils (106, 108, 111, 138, 148). Extracellular signal-regulated kinase (ERK), a 

mitogen activated protein kinases (MAPK), contributes to this survival signal (106, 110). 

The p38 MAPK, on the other hand, is also activated by LPS and can have either an 

inhibitory (111) or no role (106) on the anti-apoptotic effect of LPS. Other partially 

overlapping signaling pathways that may contribute to TLR4 survival signaling include 

activation of PI3K/Akt and NFκβ (147). However, Klein et al.(106) reported no role of 

PI3K/Akt in the survival effect of LPS indicating that a full understanding of survival 

signaling in neutrophils remains to be achieved. 

Most of studies demonstrating pro-survival activity of LPS have been performed 

with partially purified neutrophils (>90% pure), isolated by Ficoll or Percoll based 

density gradient centrifugation, a commonly used method that leaves small percentages 

of contaminating mononuclear cells. Recent studies with highly purified neutrophils 

(>99% pure) obtained from the partially purified population by negative magnetic 

selection reveal a profound effect of low percentages of mononuclear cells on certain 

responses of neutrophils (155, 156). Sabroe et al. (84) reported that LPS could 

only protect monocyte-depleted neutrophils from apoptosis when they were co-cultured 

with PBMCs. In contrast, Francois et al. (112) showed that LPS maintains significant 

pro-survival activity on highly purified neutrophils, although the effect was weaker as 

compared with neutrophils in whole blood. These results point towards a role for 
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accessory cells in fine tuning neutrophil survival during infection with Gram-negative 

bacteria. 

Some effects of external stimuli on neutrophil survival are influenced by 

environmental conditions like adhesion, probably through the engagement of integrin 

receptors (157-159). Several in vitro studies showed pro-survival effects of integrin 

mediated adhesion (157, 159, 160) on neutrophils.  But integrin activation does not 

always promote survival as it can potentiate apoptosis in the presence of other stimuli, 

such as TNF-α (157, 161). What effect neutrophil adhesion has on the intrinsic survival 

effect of direct TLR4 signaling has not been tested. 

We undertook this study to determine how survival responses of neutrophils to 

TLR4 stimulation are influenced by accessory immune cells and neutrophil adhesion. 

Partially pure (PP) and highly pure (HP) neutrophils were cultured under conditions that 

either favored (adherent culture) or inhibited (suspension culture) surface adhesion. We 

found that TLR4 signaling is anti-apoptotic in some but not all cellular environments. 

Adherent HP PMNs lacked a direct response to TLR4 survival signaling. Survival of the 

same cells was restored by cell-free culture supernatants from lipid A stimulated PP 

PMNs. Interestingly, TLR4 stimulation prolonged survival of HP PMNs when they were 

cultured in suspension.  Together, these findings suggest the presence of multiple 

checkpoints for regulation of TLR4 survival signaling in neutrophils.  
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Methods 

Reagents 

Synthetic E. coli lipid A (Compound 506, LA-15-PP (37)) was purchased from 

Peptide Institute Inc. Lipid A was dissolved in sterile vehicle (2% glycerol in sterile 

water from WFI for tissue culture, Gibco) at 0.2 mg/ml and stored at 40C. Recombinant 

GM-CSF was purchased from Prospec and reconstituted in water plus 0.1% BSA at 0.1 

mg/ml and stored as single use aliquots in -200C. Recombinant IL-6 and IL-8 were 

purchased from Prospec and reconstituted in sterile 1x PBS (pH 7.2) plus 0.1% BSA or 

sterile mQ water plus 0.1% BSA, respectively. Both were stored as single use aliquots at 

-800C. Bacterial peptide fMLF ( Sigma) was diluted in Krebs+ buffer to achieve a 30µM 

stock concentration and stored in aliquots at -200C. ERK Inhibitor II (FR180204) was 

purchased from Cayman Chemical, dissolved in 100% DMSO to 3mM stock and frozen at    

-200C. Neutralizing antibody against human IL-8 (cat # MAB208-100) and an isotype, 

control mouse IgG1 (clone #11711) were purchased from R& D systems. Both were 

formulated in sterile PBS (pH 7.2) at 0.5 mg/ml and aliquots were stored at -800C.  

Primary antibodies for the Western blotting analysis of the following targets were 

purchased from Cell Signaling Technology: Phospho-p44/42 MAPK (ERK1/2) 

(Thr202/Tyr204), cat # 4370, total p44/42 MAPK (ERK1/2), cat # 4695, Phospho-p38 

MAPK (Thr180/Tyr182), cat#9215, total p38 MAPK, cat # 9212. All horseradish 

peroxidase (HRP)-conjugated secondary antibodies were purchased from Jackson 

ImmunoResearch. 
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Isolation and purification of human neutrophils 

Neutrophils were isolated from venous blood of healthy donors using plasma-

percoll gradients as described elsewhere (134). Cells isolated by this method were > 90-

95% neutrophils and > 97% viable as evaluated by microscopy and will be referred to as 

partially pure (PP) neutrophils in this study. PP populations were further enriched to 

obtain highly pure cells (HP) (>99%) by negative magnetic selection using the 

EasyEights™ EasySep™ Magnet and human neutrophil enrichment kit (StemCell 

Technologies). Cell purity was assessed by simultaneously staining with FITC-

conjugated anti-CD66b (clone G10F5, BioLegend), and APC-conjugated anti-CD16 

(clone CB16, eBioscience) antibodies and determining the percentage of CD66b+CD16+ 

cells using BD LSR II flow cytometer. Both PP (> 90-95%) and HP (>99%) neutrophils 

were resuspended in complete RPMI-1640 medium (Gibco) containing 2 mM L-

glutamine, 50 units/ml penicillin, 50 mg/ml streptomycin, 1 mM sodium pyruvate. The 

medium was supplemented with 5% heat-inactivated human AB serum (Sigma-Aldrich), 

an amount determined to be optimal for stimulation of IL-8 secretion by LPS in pilot 

experiments (data not shown), as a source of basal survival factors, LPS-binding protein 

(LBP) and soluble CD14 (135-137). 

 

Isolation of human monocytes 

Peripheral blood mononuclear cells (PBMCs) were isolated using Histopaque -

1077 (Sigma-Aldrich) gradients of whole blood of normal healthy donors. Monocytes 

were purified from the isolated PBMCs using EasyEights™ EasySep™ Magnet and 

EasySepTM human monocyte isolation kit (StemCell Technologies). Monocytes were 
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resuspended in complete RPMI-1640 medium (Gibco) containing 2 mM L-glutamine, 50 

units/ml penicillin, 50 mg/ml streptomycin, 1 mM sodium pyruvate and 5% heat-

inactivated human AB serum (Sigma-Aldrich). Purity, generally 70-90%, was assessed 

by simultaneously staining with APC-eFluor 780-conjugated anti-CD45 (clone HI30, 

eBioscienceTM), and PE-conjugated anti-CD14 (clone 61D3, eBioscienceTM) antibodies 

and determining the percentage of CD45+CD14+ cells using BD LSR II flow cytometer. 

 

Culture Conditions 

For adherent culture conditions, neutrophils (5x105 cells/well) or monocytes 

(5x104 cells/well) were plated in a total volume of 200 µl in a 96 well tissue culture plate. 

In experiments with matrix protein coated plates, wells were coated with 100 µg 

fibrinogen or 10 µg fibronectin (Millipore) for 2 hr at room temperature followed by 

gentle washing with HBSS (Gibco). Stationary plates containing cells were incubated at 

370C for 20-24 hr. In suspension culture, neutrophils were kept in 0.5 ml Eppendorf tubes 

at 5x105 cells/tube in a total volume of 200 µl and placed in a water bath at 370C with 

gentle movement. 

 

Neutrophil survival assay 

 
PP (>90-95%) or HP (>99%) neutrophils were suspended in complete RPMI 1640 

medium supplemented with 5% heat-inactivated human AB serum. Cells were cultured under 

adherent or suspension culture conditions with TLR4 agonists, GM-CSF positive control 

(CYT-838-b, Prospec) or with medium for 24 hr at 370C. In ERK inhibition assays, cells 

were pre-treated for 30 min at 370C with 20 µM ERK Inhibitor II (FR180204, Cayman 
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Chemical) or diluted vehicle control (DMSO). Following pre-treatment, the cells were 

cultured with lipid A for 24 hr. After culture, the cells were washed with HBSS (Gibco) and 

stained with APC-conjugated Annexin V (BD Bioscience) and 7-AAD (Molecular 

ProbesTM, Life Technology) according to the manufacturer’s protocol. Cell viability was 

assessed as the proportion of cells that were double negative for Annexin V and 7-AAD, 

using a BD LSR II flow cytometer and FlowJo software. 

 

Surface marker analysis 
 

PP or HP PMNs were stimulated with lipid A or positive control 300 nM fMLF 

(Sigma-Aldrich) for 1 hr in adherent or suspension culture. Following incubation, cells 

were washed and stained at 40C for 1 hr with antibodies specific for the surface markers; 

CD62L, CD66b, and CD11b which are either enhanced (CD66b, CD11b) or lost 

(CD62L) upon activation via functional TLR4. After washing, alteration in plasma 

membrane expression of the markers was determined by measuring Geometric mean 

fluorescence intensity, (geo MFI) of each activation marker with CD66b (FITC-

conjugated anti-human CD66b antibody; clone G10F5, BioLegend), or CD11b (APC- 

conjugated anti-human CD11b antibody; clone ICRF44 BioLegend) of CD62L (PE- 

conjugated anti-human CD62L antibody; clone DREG-56, BioLegend). 

 

Soluble factor quantification  

PP and HP PMNs were plated at 0.5 x 106 cells/well of a 96-well plate and 

cultured with lipid A or medium for 20 h. Cell-free supernatants were collected, 

distributed in 100 µl volumes in aliquots and stored at -800C. Aliquots were tested for the 

quantification of IL-8, IL-6, IL-1β, TNF-α and IFN-γ using V-PLEX Human 

Proinflammatory Panel and electrochemiluminescence (Meso Scale Discovery). They 
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were tested for the presence of GM-CSF by eBioscience™ Human GM-CSF ELISA 

Ready-SET-Go!™, according to the manufacturer’s protocol.  

 

Measuring survival activity of supernatants  

PP and HP PMNs were plated at 0.5 x 106 cells/well of a 96-well plate and 

cultured with lipid A or medium for 20 h. In assays with ERK inhibitor, PP PMNs were 

pre-treated for 30 min at 370C with 20 µM ERK Inhibitor II (FR180204) or diluted vehicle 

control (DMSO), following which they were stimulated with lipid A for 20 hr. Cell-free  

supernatants were collected, distributed in 100 µl volumes in aliquots and stored at -800C. 

Aliquots were used at a volume of 100 µl, to measure the survival activity of the 

supernatants on HP PMNs. In assays with an IL-8 neutralizing antibody, test supernatants 

were incubated with antibody or isotype control for 30 min at RT before adding them to 

HP PMNs. The IL-8 neutralizing antibody was used at a concentration,10 µg/ml, found 

sufficient to block survival effects of 100 ng/ml of recombinant IL-8. Viability was 

measured and analyzed as described above (Neutrophil survival assay). 

 

Western blotting analysis 

 

HP PMNs (4 × 106 per condition) were cultured in 24 well tissue culture plates 

(incubator) or 1.5ml Eppendorf tubes (gently shaking waterbath on a Stovall rotator), in 

the presence of 100 ng/ml lipid A or medium for 5, 15, 30 and 60 min at 37°C. At the end 

of each time-point, neutrophils were washed with ice-cold Ca++, Mg++ negative HBSS. 

Cell pellets were resuspended in freshly diluted 1x Laemmli buffer containing 5 % β-ME. 

Cells were lysed by boiling the cell suspension at 950C for 5 min.  An equal volume of 



41 
 

samples (30 µl cell lysates) were loaded into each well and resolved by 10% SDS–

polyacrylamide gel electrophoresis. Proteins were transferred onto PVDF membrane 

(Millipore) by wet-transfer under an electric current. The membranes were blocked with 

5% nonfat dry milk for 1 hour and then were incubated overnight at 4°C with primary 

antibodies in 5% BSA, washed and incubated for 1 hr at RT with HRP-conjugated 

secondary antibodies were resuspended in 5% nonfat dry milk and incubated with the 

Western blots for 1 hour. Bound antibody was visualized with Pierce™ ECL Western 

Blotting Substrate (Thermo Fisher Scientific) in ChemiDoc imaging system (BioRad). 

Data were quantified with BioRad software Image Lab. 

 

Statistical analysis 

GraphPad Prism software was used for statistical analysis by tests (see each figure 

legend). Tests used included linear regression, 1-way and 2-way ANOVA with Sidak’s or 

Dunnett’s multiple comparisons. 

 

Results 

Survival response of neutrophils to TLR4 stimulation is influenced by cellular 

environments 

To characterize the survival response of neutrophils to TLR4 stimulation under 

different cellular environments, we stimulated PP and HP neutrophils with lipid A at 10, 

100 and 1000 ng/ml under adherent or suspension culture conditions. GM-CSF, 0.1 

ng/ml, was added to unstimulated replicate wells as positive control. 
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After 24 hr, approximately 50% of unstimulated PP PMNs remained viable under 

adherent conditions (Fig. 10C). Control GM-CSF, which is a neutrophil survival factor 

(162, 163), increased the percentage of viable PP PMNs to 80%. Lipid A had a similarly 

robust survival effect at all concentrations tested (Fig. 10C). In contrast, HP neutrophils 

appeared to be refractory to stimulation with lipid A. Lipid A did not improve the 

viability of adherent HP PMNs even at a high dose of 1000 ng/ml while GM-CSF was 

similarly effective as in PP culture (Fig.10D). HP PMNs also lacked any survival 

response to lipid A under more physiologically relevant culture conditions in which the 

matrix proteins, fibrinogen or fibronectin were used to coat the plates before adding 

neutrophils (Fig. 10E-F). Without stimulation, approximately 40% of HP PMNs were 

viable after 24 hr, consistently lower than the 50% viability of unstimulated PP PMNs, 

suggesting accessory cells present in the latter may contribute to basal neutrophil survival 

(Fig. 10D).  

In suspension culture, lipid A maintained the viability of PP PMN, to a similar 

extent as under adherent conditions (Fig. 10G). The viability of suspended HP PMNs 

cultured without stimulation was lower than PP counterparts, a trend similar to that of 

adherent populations (Fig. 10H). However, lipid A also maintained the viability of 

suspended HP PMNs, although the survival response was not as robust as that of the PP 

populations (Fig. 10H).  Taken together these results indicate that the survival response 

of neutrophils to TLR4 stimulation can vary based on the presence of accessory immune 

cells and on adherence to plastic or to physiologically relevant matrices such as 

fibronectin or fibrinogen. 
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TLR4 is functional in adherent HP neutrophils 

HP PMNs were non-responsive to TLR4 survival signaling when cultured under 

adherent conditions (Fig 10D), indicating either (i) TLR4 is not functioning or (ii) TLR4 

function is altered relative to cells cultured in suspension.  To determine whether TLR4 is 

functional in adherent HP PMNs, we compared plated HP PMNs with PP PMNs for 

surface expression of the activation marker CD62L selectin which is released from cells 

in response to TLR4 stimulation (164, 165). We found that lipid A stimulated equivalent 

CD62L shedding from HP as from PP PMNs over a wide dose range (1 to 1000 ng/ml), 

whether measured by MFI per cell (Fig. 11A) or by the proportion of cells that became 

CD62L-negative (Fig. 11B). Hence, TLR4 is functional in adherent highly purified 

neutrophils at the level of neutrophil activation markers. 

 

Adhesion modulates selective responses of neutrophils to TLR4 stimulation 

Because the TLR4 survival response of HP PMNs in suspension but not in 

attachment plates, was functional (Fig.10H), we asked if HP culture conditions affect 

neutrophil responses to TLR4 stimulation. HP PMNs were stimulated with lipid A in 

suspension or adherence plates and surface expression of CD62L as well as two 

activation markers, CD66bb and CD11b, that are upregulated (48, 165) in response to 

TLR4 stimulation, were quantified. 

 Lipid A, at all the doses tested, induced similar CD62L shedding (Fig. 12A-B) 

from adherent as from suspended HP PMNs. Another activation marker, CD66b, which is 

associated with neutrophil adhesion (166, 167), was upregulated by lipid A more strongly 

in adherent HP PMN (Fig. 12C).  However, upregulation of the adhesion molecule 
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CD11b was similar in both culture conditions (data not shown). Together, these data 

suggest that adhesion differentially affects selective responses of highly purified 

neutrophils to TLR4 stimulation. 

 

TLR4 survival effects on adherent PP PMNs is mediated by soluble factors 

Although LPS is reported to be a survival factor for neutrophils (106-108, 112, 

138, 148), some have questioned its ability to directly modulate neutrophil viability (84). 

In our experiments with an exclusively TLR4-specific agonist, syntheticed lipid A, we 

found that TLR4-mediated survival effects on neutrophils were lost when accessory cells 

were removed (Fig. 10D). One possible explanation for this differential survival response 

is that soluble factors produced by or in the presence of accessory cells mediate TLR4 

survival effects on PP cell populations. To test this hypothesis, we collected cell-free 

supernatants from adherent PP or HP PMNs with lipid A at 100 and 1000 ng/ml for 20 hr 

and transferred them onto adherent HP PMNs. Supernatants from PP (Fig. 13A) but not 

HP (Fig. 13B) cell populations had significant survival activity, similar to that of positive 

control GM-CSF. The appearance of survival activity required at least 8 hr and reached a 

plateau by 20 hrs (data not shown) which is suggestive of de novo synthesis of survival 

factors that are secreted only in PP cultures in response to TLR4 activation. 

 

Potential soluble survival factors in PP PMN culture supernatants 

Neutrophil longevity is prolonged by many inflammatory mediators including 

cytokines, chemokines, and lipid mediators (109). To determine whether the survival 

factors present in PP PMN supernatants are heat-labile proteins or heat-resistant lipid 
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mediators, we subjected them to heat-inactivation at 750C overnight, conditions 

determined to be necessary for complete loss of the survival activity of recombinant GM-

CSF. Supernatants lost their survival activity following heat-inactivation, suggesting the 

soluble factors are probably proteins (Fig. 14A).   

To identify survival factors in PP culture supernatants, we measured a panel of 

candidate factors including IL-8 (168-172), IL-6 (173-175),  IL-1β (107, 108, 176), TNF-

α (108, 161, 177) and IFN-γ (108, 161, 178). Multiplex analysis was performed on 

supernatants harvested from lipid A stimulated PP and HP PMNs from 6 healthy blood 

donors. IL-8 was five-fold more abundant in the supernatants from PP (Fig. 14B) versus 

HP (Fig. 14C) populations. A moderate amount of IL-6, very little IL-1β and TNF-α and 

no IFN-γ were detected in the supernatants of PP PMNs (Fig. 14B). None of these latter 

factors were present in the supernatants from HP culture (Fig. 14C). We also tested 

supernatants from PP PMNs for the presence of GM-CSF by ELISA but could not detect 

any above the limit of detection (10 pg/ml). Given their relative abundance in 

supernatants, IL-8 and IL-6 seemed the most likely candidate factors mediating the 

survival effect of TLR4 signaling in PP PMN cultures.  

 

IL-8 is not required for the survival effects of the PP supernatants 

IL-8, a potent neutrophil chemoattractant, is reported to prolong neutrophil 

survival in several contexts (168-171) as is IL-6, another cytokine that neutrophils 

encounter during inflammation (108, 173, 175). We first compared the abundance of IL-8 

and IL-6 to survival activity in individual supernatants generated from 6 different blood 

donors to determine if they were correlated. Neither IL-8 (Fig. 15A) nor IL-6 (Fig. 15B) 
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were correlated with HP PMN viability suggesting no probable or major role of either 

factor in the pro-survival activity. Recombinant GM-CSF, used as positive control, 

showed a linear correlation of dose to PMN viability, as expected (Fig. 15C).  

Most of the studies describing IL-8 and IL-6 as survival factors used PP 

neutrophil populations to measure changes in viability. Hence, whether the activity 

observed was an indirect effect due to the presence of ‘contaminating’ accessory cells is 

unclear. To determine if these two mediators have direct survival effects, we measured 

the viability of adherent HP PMNs cultured with recombinant IL-8 (Fig. 15D) or IL-6 

(Fig. 15E). Both factors had detectable survival effects, but only at doses ≥100 ng/ml, 

much higher than in any of the culture supernatants, which had at most 2 ng/ml IL-8 and 

0.8 ng/ml IL-6. Therefore, these data once again suggest neither IL-8 nor IL-6 are likely 

to be responsible for the survival activity of the supernatants. 

 To further test for any role of IL-8, we added 10 µg/m IL-8 neutralizing antibody 

to the supernatants and then tested for survival activity on HP PMNs. Even though this 

amount of antibody was sufficient to completely block the survival effect of 100 ng/ml 

recombinant IL-8 (Fig. 15F). their survival responses to supernatants were unchanged 

(Fig. 15G). The survival activity of PP culture supernatants is, therefore, highly unlikely 

to dependent on IL-8.  

 

Survival response of suspended HP PMNs might be TLR4 intrinsic 

As noted previously, we found that lipid A prolonged HP PMN survival only 

when the cells were in suspension culture (Fig. 10H). Because soluble survival factors 

were not detected in the absence of accessory cells, we hypothesized that the increased 
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viability of suspended HP PMNs is a direct TLR4 intrinsic effect. To test our hypothesis, 

we compared survival activities of the supernatants collected from lipid A-stimulated HP 

PMNs cultured in suspension or attachment plates. As seen earlier (Fig. 13B), there was 

minimal survival activity in supernatants collected from adherent HP neutrophils. 

Supernatants from suspended HP neutrophils had similar weak effects (Fig. 16). 

Therefore, the survival response of suspended HP PMNs may be a direct effect of TLR4 

signaling with little or no secretion of soluble survival factors. 

 

Pro-survival effects of TLR4 signaling on suspended neutrophils is ERK 

independent 

Several signaling mediators that are activated in LPS stimulated neutrophils might 

contribute to its direct survival activity. LPS activates two members of the mitogen 

activated protein kinase (MAPKs) family in neutrophils; p42/p44 extracellular signal-

regulated kinase (ERK) and p38 MAPK (48, 106, 110, 179, 180). Others have reported 

previously that both p42/p44 and p38 MAPKs participate in neutrophil survival 

regulation (65, 110, 111, 181-185). Therefore, we tested for ERK and p38 MAPK 

phosphorylation in HP PMNs by stimulating them with 100 ng/ml lipid A for 5 min 

through 60 min in suspension vs. adherent culture conditions. Suspended HP PMNs 

stimulated with lipid A showed stronger ERK phosphorylation relative to the adherent 

cells across 4 neutrophil donors. In contrast, p38 MAPK phosphorylation was similar 

whether lipid A was present or not (Fig. 17B). Because ERK activation is reported to 

contribute to anti-apoptotic effects of LPS on neutrophils (106, 110), we hypothesized 

that ERK is required for survival signaling via TLR4 in suspension culture.  
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To test this hypothesis, we pre-treated suspended neutrophils with a chemical 

inhibitor of ERK kinase activity and then exposed them to lipid A for 24 hr. The inhibitor 

itself did not affect the viability of unstimulated neutrophils. Survival activity of lipid A 

on neutrophils was also unchanged by the inhibitor (Fig. 17C, E).  As a control, for the 

efficacy of the ERK inhibitor, we tested it for effects on the survival activity of lipid A in 

adherent PP PMN where it has been reported to play a role (110). ERK inhibition, as 

reported before (110), significantly decreased the survival effect of lipid A on PP PMNs 

and there was also a trend of decreased viability of the PP PMNs treated with inhibitor 

alone compared with vehicle control (DMSO), but it did not reach statistical significance. 

(Fig. 17D, F).  Taken together, these data suggest the survival effects of TLR4 signaling 

on suspended HP PMNs is independent of ERK because its inhibitor was effective in 

control cultures (adherent PP PMN).  

 

ERK contributes to soluble survival factor production 

We confirmed the initial report of McLeish and colleagues (106) that ERK is 

needed for the survival effects of lipid A on adherent PP PMNs (Fig. 17D, F). One possible 

explanation is that ERK contributes to TLR4 survival effects by contributing to soluble 

factor production by accessory cells rather than their survival signaling in neutrophils.   

To test our hypothesis, we pre-treated HP PMNs with ERK inhibitor and 

measured their survival response to the unidentified factors in supernatants collected 

from lipid A stimulated PP PMNs. Survival activity of the supernatants on inhibitor pre-

treated HP PMNs was moderately weaker than that on vehicle treated culture (Fig. 18A). 

Conversely, we pre-treated PP PMNs with ERK inhibitor, before stimulating with 100 
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ng/ml of lipid A in overnight culture. Survival activity of these supernatants had 

significantly reduced when added to adherent HP PMNs, as compared to vehicle pre-

treated controls (Fig. 18B). These results suggest that ERK activity mostly contributes to 

survival factor production by accessory cells in response to TLR4 stimulation but may 

also play a role in the response of neutrophils to those survival factors. 

 

Monocytes are potential sources of survival factors 

The major accessory cell types in PP PMN preparations are eosinophils, 

lymphocytes and monocytes (Fig 19A) among which the latter have been previously 

suggested to influence neutrophil survival in the presence of LPS (84). Because 

monocytes are known to migrate to sites of inflammation as a second wave of immune 

cell recruitment following neutrophils, it is important to understand how their presence 

influences neutrophil survival.  

To determine if monocytes provide neutrophils with survival factors, we 

stimulated purified monocytes with lipid A (100 ng/ml) and tested if the supernatants 

collected from the cultures have survival effect on adherent HP PMNs. As shown in Fig. 

19B, supernatants from unstimulated monocytes had no effect on HP PMN viability. 

However, supernatants from lipid A stimulated cultures significantly increased the 

percentage of viable HP PMNs. Thus, our results support monocytes as potential sources 

of neutrophils survival factors found in PP cultures.  
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Discussion 

The major aim of this study was to understand how cellular environments regulate 

TLR4 survival effects on neutrophils. With the help of advanced cell purification 

techniques, we teased apart neutrophil intrinsic TLR4 responses from those that result 

from more complex signaling networks operating in mixed cultures of neutrophils, 

monocytes etc.  We found that both the presence of accessory cells and neutrophil 

adhesion influence their survival responses to TLR4 signaling: adherent neutrophils 

depend on soluble factors from accessory cells to mediate TLR4 survival signaling 

whereas non-adherent neutrophils maintain an autonomous survival response to lipid A. 

Because lipid A induced CD62L shedding similarly from both HP and PP PMNs 

(Fig. 11), TLR4 function was not impaired in HP neutrophils. But those neutrophils 

lacked a survival response unless accessory immune cells were present (Fig.10D). We 

found that neutrophils require survival factors that are exclusively produced in the 

partially pure culture (Fig.13).  We speculate that lipid A stimulates accessory cells to 

produce survival factors for adherent neutrophils, which are responding to the paracrine 

effect of these factors rather than direct TLR4 signaling. Sabroe et al. (186) found that 

monocyte-depleted neutrophils were protected from apoptosis by E. coli LPS only at an 

early incubation time-point (4 hr) but not after overnight culture (22hr) unless the 

cultures were supplemented with 5 % PBMCs. We did not find any survival activity of 

lipid A early during incubation (5 hr, data not shown), but this different outcome may be 

explained by the use of human serum in culture media which, unlike FBS used by Sabroe 

et al. during preparation (186), helps unstimulated neutrophils retain more than 95% 

viability.  Overall, however, lack of survival response to LPS after long-term incubation 
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(Fig. 10D) is consistent with published results (186), supporting a role for accessory cells 

in regulating neutrophil viability.  

We also found that culture supernatants from lipid A stimulated monocytes had 

robust survival activity on highly pure neutrophils (Fig. 19B) indicating monocytes are a 

potential source of survival factors in the PP culture. However, we do not rule out a 

contribution of other cell subsets. Indeed, cross-talk between neutrophils and 

monocytes/macrophages or lymphocytes including T cells, Natural Killer (NK) cells, 

NKT cells has been implicated in several inflammation-associated pathologies (64, 187).  

Costantini et al. (114) showed that activated NK cells potentiate neutrophil survival 

through soluble factors in vitro. Pelletier et al. (66) also reported pro-survival effects of 

soluble factors released from activated CD4+ and CD8+ T cells on neutrophils. Further 

studies are needed to identify and understand the different types of accessory cells that 

are potentially promoting neutrophil survival through soluble factor production in 

response to TLR4 stimulation.  

We found no evidence that IL-8 plays a role in neutrophil survival, at least in our 

culture system. Others have shown IL-8 is a survival factor for neutrophils (168-171), 

although most of the studies were performed with PP populations, in which cytokine 

cross-talk is likely because 5-10% of the cells are not neutrophils. Cowburn et al. (170) 

reported that an IL-8 autocrine effect mediates the late survival activity of TNF-α but not 

that of GM-CSF, although both TNF-α and GM-CSF induce neutrophil IL-8 production, 

suggesting that any survival effect of IL-8 is context dependent. In our experiments, HP 

PMNs responded to the survival activity of recombinant IL-8 but only at a concentration 

(100 ng/ml), at least 50 times higher than measured (~1.5-2 ng/ml) in supernatants from 
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PP PMN. Using neutralizing antibody at a concentration sufficient to abrogate the 

survival effect of exogenously added IL-8 on HP PMNs, we found no change in the 

survival activity of the supernatant. This confirms that IL-8 is dispensable in the context 

of TLR4 stimulated survival effects on neutrophils in our hands.  

No GM-CSF was detected in the PP culture supernatants, as determined by 

ELISA with a limit of detection around 10 pg/ml. However, others have shown robust 

survival activity of GM-CSF on HP PMNs at concentrations as low as 1 pg/ml (114). 

Therefore, additional studies are needed to address whether GM-CSF or another factor is 

responsible for the survival effect on PP PMNs which will require use of more sensitive 

detection assays and neutralizing antibody.  

In contrast to adherent culture, HP PMNs in suspension culture retained some 

survival responses to TLR4 stimulation (Fig. 10H). Such retention of function in 

suspension culture is dissimilar to several other neutrophil responses including 

degranulation, reactive oxygen intermediate generation, cytokine production that are 

favored by adherent culture conditions in response to certain stimuli (188, 189). The 

underlying mechanisms for TLR4 survival effect on suspended HP PMNs are not clear. 

Because the supernatants from these cultures had minimal survival activity, abundant 

production of soluble factors is unlikely, rather it seems a direct response to TLR4 

signaling. A significant reduction in survival effects of TLR4 signaling on PP PMNs but 

not on suspended HP PMNs by ERK inhibitor was seen. This pattern indicates no role for 

ERK in intrinsic survival responses to TLR4 stimulation by neutrophils. Perhaps other 

signaling pathways such as PI3K/Akt and NFκβ that are reported to be activated by 

TLR4 stimulation (112) are involved in propagating direct survival signals. 
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In conclusion, our observations indicate cellular environments such as the 

presence of accessory cells and adhesion can modify neutrophil survival responses to 

TLR4 stimulation. We speculate that neutrophils autonomously respond to TLR4 survival 

signals while encountering LPS in the circulation, as occurs during low-grade chronic 

inflammation associated with metabolic endotoxemia (190, 191). This may help 

neutrophils stay functionally competent until they reach the sites of infection, a process 

that involves adhesion, following which neutrophils turn off their intrinsic survival 

response to LPS and become completely dependent on accessory cells that are recruited 

in subsequent waves (Fig. 20). Thus, both adhesion and accessory cells may serve as 

important checkpoints that act in concert to enhance neutrophil life-spans so long as they 

are needed to clear infection without exacerbation of inflammation. 
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Figure 10. Differential survival response of neutrophils to TLR4 stimulation. 

Neutrophils were incubated for 24 hr in the absence (untreated, UT) or presence of 

control GM-CSF (0.1 ng/ml), or lipid A (10, 100 and 1000 ng/ml) in adherent or 

suspension culture conditions. Cell viability was analyzed by Annexin V-APC/7-AAD 

staining and flow cytometry. (A) Representative dot plots of partially purified [PP] 

(>90% pure, in blue) or highly purified [HP] (>99% pure, in red) neutrophils detected as 

positive for CD16 and CD66b. (B) Dot plots from a representative experiment showing 
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the percent of cells that were viable (negative for Annexin-V and 7-AAD) at 0 or 24 h 

after the indicated treatments in specified culture conditions. Percentage of viable (C) PP 

or (D) HP neutrophils after adherent culture (tissue culture plate), HP neutrophils in (E) 

fibrinogen- or (F) fibronectin-coated adherent culture (tissue culture plate), (G) PP or (H) 

HP neutrophils after suspension culture. PMN, Polymorphonuclear neutrophils. Bars 

show percent means +/- SEM from (C-D, G-H) ≥14 or (E-F) = 3 individuals. ****P ≤ 

0.0001, ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05 when compared with untreated.  
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Figure 11. Adherent highly purified neutrophils have functional TLR4. HP and PP 

neutrophils were stimulated for 1 hr with control fMLF peptide (300 nM), or increasing 

doses of lipid A (1, 10, 100 or 1000 ng/ml) or with medium (UT) in adherent culture. 

Neutrophil activation by TLR4 stimulation was analyzed with flow cytometry by 

measuring decreases in surface expression of CD62L. Bars show (A) mean geo MFI or 

(B) mean percentage of positive cells +/- SEM from 4 individuals. 
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Figure 12. Surface adhesion influences selective responses of neutrophils to TLR4 

stimulation. HP Neutrophils were stimulated for 1 hr with control fMLF (300 nM), or 

indicated doses of lipid A (1, 10, 100 or 1000 ng/ml) or with medium (UT) in adherent or 

suspension culture. Neutrophil activation by TLR4 stimulation was analyzed with flow 

cytometry by measuring (A, B) decreases in surface expression of CD62L or (C) 

increases in surface expression of CD66b. Bars show (A) mean geo MFI or (B) mean 

percentage of positive cells +/- SEM from 4 individuals or (C) mean increases in geo 

MFI over 0hr (= baseline) +/- SEM from 3 individuals. **P ≤ 0.01, *P ≤ 0.05 when 

comparing expression by adherent and suspended neutrophils.   



59 
 

 

Figure 13. Survival effect of lipid A on adherent neutrophils is mediated by 

soluble factors. Neutrophils were incubated for 24 hr in the absence (untreated) or 

presence of control GM-CSF (0.1 ng/ml), or lipid A or supernatants (supnts) collected 

from heterologous neutrophils stimulated with indicated concentrations of lipid A for 

20 hr in adherent condition. Cell viability was analyzed by Annexin V-APC/7-AAD 

staining and flow cytometry. Percentage of viable (A-B) HP PMNs after cultured with 

lipid A at 100 and 1000 ng/ml or supernatants from (A) PP PMNs or (B) HP PMNs. 

Bars show percent means +/- SEM from ≥ 6 individuals. ****P ≤ 0.0001, ***P ≤ 

0.0001, **P ≤ 0.01, *P ≤ 0.05 and nsP > 0.05, when compared with untreated 

neutrophils.   
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Figure 14. Potential soluble factors driving TLR4 survival effects. Cell viability 

was analyzed by Annexin V-APC/7-AAD staining and flow cytometry. (A) 

Percentage of viable HP PMNs after incubation for 24 hr in the absence (UT) or 

presence of lipid A (100 ng/ml), non-heat inactivated (NHI) GM-CSF (0.1 ng/ml), 

heat inactivated (HI) GM-CSF or NHI and HI culture supernatants collected from 

heterologous neutrophils stimulated with lipid A (100 ng/ml) for 20 hrs. (B-C) 

Neutrophils were stimulated in the absence (UT) or presence of lipid A (100 ng/ml) 

for 20 hr in adherent culture. Collected supernatants were tested for the presence of 

IL-β, IL-6, IL-8, TNF-α or IFN-γ by multiplex assays using 
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electrochemiluminescence. Bars shown are mean concentrations +/- SEM of the 

indicated analytes present in the supernatants collected from (B) PP or (C) HP PMNs 

of 6 individuals.  
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Figure 15. TLR4 survival effect on PP PMN culture is not IL-8 dependent. (A) 

HP PMNs were cultured for 24 hr with supernatants from lipid A stimulated PP PMNs 

(Supnt donor = 6), or directly with recombinant GM-CSF, IL-8, IL-6 or lipid A. Cell 

viability was analyzed by Annexin V-APC/7-AAD staining and flow cytometry. 

Survival activities of (A-B) supernatants or (C) GM-CSF were plotted against the 

amount of (A) IL-8 or (B) IL-6 present in the supnts as detected earlier (Figure 14) or 

(C) with indicated concentrations of recombinant GM-CSF. Percentage of viable HP 

PMNs after culture with increasing doses of (D) IL-8 or (E) IL-6 or (F) with IL-8 at 

100 ng/ml in the absence or presence of neutralizing Ab specific to IL-8. (G)  

Percentage of viable HP PMNs cultured with supernatants from medium (Supnt UT) 

or lipid A (Supnt lipid A 100) exposed PP PMNs, in the absence of presence of IL-8 

neutralizing antibody or the isotype antibody or with positive control GM-CSF (0.1 

ng/ml) or lipid A (100 ng/ml). (A-C) Each dot represents (A-B) individual supnt donor 

(N = 6) or (C) mean response from 3 individuals for all the doses, except 5 pg/ml 
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where N = 2.   Bars show mean viability from (D, E, G) 3 individuals or (F) viability 

of 4 individuals.  
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Figure 16. Supernatants from suspended HP PMNs have minimal survival effect. 

HP PMNs were incubated under adherent culture conditions for 24 hr in the absence (UT) 

or presence of control GM-CSF (0.1 ng/ml) or lipid A (100 ng/ml) or with supernatants 

collected from HP PMNs stimulated with lipid A (100 ng/ml) in adherent plate or 

suspension culture. Cell viability was analyzed by Annexin V-APC/7-AAD staining and 

flow cytometry. Bars show mean percentage of viability +/- SEM from 4 individuals. 

***P ≤ 0.0001, ns P ≥ 0.05, when compared with untreated neutrophils. 
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Figure 17. TLR4 survival effects on suspended HP PMNs are ERK independent. 

(A) HP PMNs were stimulated with 100 ng/ml lipid A in suspension or adherent plate 

for indicated time-course (5 min through 60 min). Cell lysates were then analyzed by 

Western blotting with antibodies specific for the indicated proteins. The abundance of 

phospho-ERK and -p38 MAPK were quantified by densitometric analysis and 

normalized to those of respective total protein. Representative blots are shown. (B) 

Normalized values from 4 individual blood donors were plotted in a time course. (C, 

E) HP PMNs in suspension and (D, F) PP PMNs in adherence plates were incubated 
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with 20 µM ERK inhibitor or diluted vehicle (DMSO) for 30 min before they were 

cultured with 100 ng/ml lipid A for 24 hr. GM-CSF was used as positive control. Cell 

viability was analyzed by Annexin V-APC/7-AAD staining and flow cytometry. (C-D) 

Each symbol represents one donor. Data show mean percentages of PMN viability 

from 5 individuals. ****P ≤ 0.0001, and ns, P > 0.05 when compared with the 

corresponding vehicle group. (E-F) Bars show mean percentage of viability +/- SEM 

from 5 individuals. **P ≤ 0.01, *P  ≤ 0.05, when compared with untreated neutrophils. 
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Figure 18. ERK is involved in soluble survival factor production. (A) HP PMNs pre-

treated with ERK inhibitor or vehicle for 30 min were cultured with supernatants from 

lipid A (100 ng/ml) stimulated (Sup Lipid A 100) or untreated (Supnt UT) PP PMNs for 

24 hrs in adherent culture conditions (B) HP PMNs were cultured with supernatants 
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collected from ERK inhibitor or vehicle pre-treated PP PMNs that were subsequently 

stimulated with 100 ng/ml of lipid A. Cell viability was analyzed by Annexin V-APC/7-

AAD staining and flow cytometry. Each symbol represents one donor. Data are mean 

percent viability from (A) 5 or (B) 6 individuals. ***P ≤ 0.001, and *P ≤ 0.05 when 

compared with the corresponding vehicle group. 
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Figure 19. Monocytes are a potential source of neutrophil survival factors in PP 

PMN preparation. (A) Representative dot plots show the major accessory cell types in 

the CD45+ population: CD66b+Siglec-8+ eosinophils, CD66b-CD3+ lymphocytes and 

CD66b-CD14+ monocytes, present in PP cultures (upper) and eliminated from HP 

preparations (lower) (B) Percentages of viable HP PMNs cultured under adherent 

conditions for 24 hr with supernatants collected from lipid A (100 ng/ml) stimulated 

monocytes or as control with GM-CSF (0.1 ng/ml) or lipid A (100 ng/ml).  Cell viability 
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was analyzed by Annexin V-APC/7-AAD staining and flow cytometry. Bars show mean 

percent viability +/- SEM from 3 individuals. ****P ≤ 0.0001 and ***P ≤ 0.001 when 

compared with untreated. 
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Figure 20. A proposed model for how cellular environments influence TLR4 

survival effects on neutrophils. Neutrophil adhesion and the presence of accessory cells 

are potential checkpoints for keeping neutrophil survival in balance during infections 

with Gram-negative bacteria to limit tissue injury. Neutrophils in circulation 

autonomously respond to the survival effects of LPS and stay functionally competent 

until they reach the site of infections in tissue. As they move through the blood vessels 

into the infected tissue, associated adhesive events to vessel wall or matrix components 

make them turn off their intrinsic survival response to LPS. In inflamed tissue, 

neutrophils become completely dependent on accessory immune cells for their survival. 

Availability of accessory cells or cell-derived survival factors determine neutrophil 

persistence or their rapid clearance by tissue macrophages, a process that favors 

inflammation resolution. 
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     CHAPTER IV 

DIFFERENTIAL IMMUNOSTIMULATORY ACTIVITIES OF LIPID A 

STRUCTURAL VARIANTS EXPRESSED BY PSEUDOMONAS AERUGINOSA IN 

HUMAN NEUTROPHILS 

Introduction 

The progression of cystic fibrosis (CF) disease is marked by massive neutrophil 

infiltration that is ineffective with respect to clearance of bacterial pathogens such as 

Pseudomonas aeruginosa (PA).  PA isolated from the airways of patients with CF 

express unique lipopolysaccharide (LPS) structural variants (30) but none of these 

variants have been tested for their effects on neutrophil function. Hence, this study was 

undertaken to provide the first such characterization, and it reveals a surprisingly broad 

range of response patterns to the CF-specific lipid A variants. 

Neutrophils are the most abundant immune cells in human peripheral blood, and 

are rapidly recruited to sites of infection to attack invading pathogens (60, 192). Exposure 

to LPS, a cell-wall component of Gram-negative bacteria, activates several functional 

responses needed for immune defense, including phagocytosis, oxidant release, cytokine-

chemokine production and prolonged survival (51, 108, 186, 193). However, activated 

neutrophils can also contribute to inflammatory disorders, as occurs during CF 

progression when neutrophils accumulate in lung tissue but fail to clear the bacteria that 

drew them there (54, 115, 116).   

CF is a genetic disorder resulting from mutation in the gene that encodes the CF 

transmembrane conductance regulator, an anion channel. In CF-associated obstructive 
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lung disease, clogging of the airway by thick, sticky mucus favors persistence of 

opportunistic pathogens. The ensuing inflammation further impairs lung function, often 

resulting in premature death. Innate immune cells, predominantly neutrophils and 

alveolar macrophages, drive this strong inflammation but paradoxically fail to clear 

pathogens, such as PA, which infects almost 80% of patients with CF by early adulthood 

(32, 115, 194, 195) In the airways of these patients, PA is known to acquire multiple 

distinct characteristics, as it establishes a chronic infection, of which one of the most 

prominent involves structural modifications to LPS and its TLR4 stimulatory core 

component, lipid A (32, 33, 117). 

Lipid A, the bacterial membrane anchor of LPS, consists of a phosphorylated 

disaccharide head group with up to 7 fatty acid side-chains. The positions and numbers of 

the acyl chains are highly variable among Gram-negative bacteria, as determined by the 

activities of several biosynthetic enzymes (31, 196, 197). PA has at least 3 modes of lipid 

A biosynthesis that reflects its ability to thrive in a wide range of environments (Fig. 21). 

First, PA, isolated from environmental samples or from non-CF patients with acute or 

chronic infections, synthesizes a penta-acylated lipid A, which is designated here as penta-

1419, reflecting its acyl chain number, followed by m/z in mass spectrometry. Second, in 

CF patients, beginning as early as 3 yr of age, PA converts to synthesis of a mixture of lipid 

A isoforms, designated penta-1447 and hexa-1685, in which penta-1447 is typically
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predominant. Finally, in a subset of patients with late-stage CF disease, characterized by 

severe pulmonary dysfunction, PA is observed to synthesize an unusual lipid A with 7 acyl 

side-chains, hepta-1855 (33, 198, 199). The consistent recurrence of these patterns of 

synthesis strongly suggests that each lipid A variant helps PA adapt successfully to the 

respective environments from which it can be isolated. 

Many pathogens also alter the number and distribution of the fatty acid chains to 

subvert recognition by TLR4/MD-2 and the subsequent immune-defensive response (29, 

200). In general, hexa-acylated LPS, produced by enteric bacteria, such as Escherichia coli 

and Salmonella, induces robust TLR4 signaling, whereas hypo-acylated (tetra- or penta-) 

forms show weak or antagonistic activity (41, 200, 201). PA lipid A acylation variants are 

similarly associated with a differential recognition by human TLR4. For example, 

compared with penta-1447, hexa-1685 induces a robust TNF-α response in the human 

monocytic cell line THP-1, higher IL-8 response in endothelial cells, and strong NF-κβ 

activation in a reporter assay (30, 44, 199). However, the response of human neutrophils, 

key players in CF-related lung inflammation, to each of these variants is unknown. In the 

case of the novel hepta-1855 variant, no studies of any kind have been performed.  

The transition of PA in CF lung disease from acute to chronic phases is associated 

with reduced expression of many of its virulence factors, suggesting that hepta-1855 may 

be similarly attenuated. On the other hand, establishment of chronic infection with PA is 

also known to be associated with intense inflammation in the late stages of disease, which 

might indicate that hepta-1855 is highly immunostimulatory.
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Studies of hepta-acylated lipid A variants from other Gram-negative bacteria 

show unpredictable activities; some are weak (202), and others are strong (203) 

stimulators of TLR4. In the first tests of its activity, we found the late stage-specific 

hepta-1855 PA lipid A variant to be a strong stimulator of both neutrophils and 

monocytes with high TLR4 agonist activity in a reporter cell system. These findings may 

provide a rational basis for the association of the unique hepta-acylated form of PA LPS 

with disease severity during late stages of CF. In addition, we found that penta-1447 is 

likely a partial agonist/antagonist of TLR4, which has important implications for its role 

in establishment of chronic infection early in the CF disease process. 

 

Methods 

 

Bacterial strains and growth conditions 

PA was grown in Lysogenic broth (LB) supplemented with 1 mM or 8 µM MgCl2 

to   suppress or favor lipid A acylation modifications regulated by the two-component 

system PhoP/Q  (30, 44, 198, 204).  

Bacterial strains and growth conditions used in preparation of PA LPS variants 

LPS acyl variant PAK strain MgCl2 
concentration 

Reference 
 

penta-1419 ∆htrB1 1 mM (204) 
penta-1447 Wild-type 1 mM (44) 
hexa- 1685 Wild-type 8 µM (44) 
hepta-1855 ∆PagL 8 µM (198) 
hexa- 1616 ∆PagL 1 mM (198) 

 
LPS acyl variants are identified by the number of acyl chains and observed m/z from 

mass spectrometry analysis. PA strain K (PAK), with the indicated mutations, was 
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cultured in LB supplemented with high (1 mM) or low (8 µM) magnesium before LPS 

extraction. htrB1, 2-hydroxy lauryl transferase. 

 

LPS and lipid A isolation 

PA LPS was extracted by the hot phenol/water method (204). Freeze-dried 

bacterial pellets were resuspended in endotoxin-free water at a concentration of 10 

mg/ml. A volume of 12.5 ml 90% phenol (Thermo Fisher Scientific, Waltham, MA, 

USA) was added, and the resultant mixture was vortexed and incubated for 60 min in a 

hybridization oven at 65°C. The mixture was cooled on ice and centrifuged at 12,096 g at 

room temperature for 30 min. The aqueous phase was collected, and an equal volume of 

endotoxin-free water was added to the organic phase. The extraction was repeated, and 

aqueous phases were combined and dialyzed against Milli-Q-purified water to remove 

residual phenol and then freeze dried. The resultant pellet was resuspended at a 

concentration of 10 mg/ml in endotoxin-free water and treated with DNase (Qiagen, 

Valencia, CA, USA) at 100 mg/ml and RNase A (Qiagen) at 25 mg/ml and incubated at 

37°C for 1 h in a water bath. Proteinase K (Qiagen) was added to a final concentration of 

100 mg/ml and incubated for 1 h in a 37°C water bath (205). The solution was then 

extracted with an equal volume of water-saturated phenol. The aqueous phase was 

collected and dialyzed against Milli-Qpurified water and freeze dried as above. The LPS 

was further purified by the addition of chloroform/methanol 2:1 (vol:vol) to remove 

membrane phospholipids (206) and further purified by an additional water-saturated 

phenol extraction and 75% ethanol precipitation to remove contaminating lipoproteins 

(207). No protein contamination was observed by the Bradford protein assay (Thermo 
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Fisher Scientific). For mass structural analysis, 1 mg purified LPS was converted to lipid 

A by mild-acid hydrolysis with 1% SDS (Sigma-Aldrich, St. Louis, MO, USA) at pH 4.5, 

as described previously (208).  

TLRgrade LPS from E. coli serotype O55:B5 (product number ALX-581-013-

L001; Enzo Life Sciences, Farmingdale, NY, USA) was used as a positive 

control for the experiments (see all figures except Fig. 3), in which Salmonella 

minnesota R595 (product number ALX-581-008-L001; Enzo Life Sciences) was 

used to prime superoxide release. Tests of these LPS preparations confirmed that they 

were equally active in that assay (data not shown).   

 

MALDI TOF mass spectrometry 

Lipid A, isolated by small-scale lipid A isolation procedures, was analyzed on an 

Autoflex Speed MALDI TOF mass spectrometer (Bruker, Billerica, MA, USA). 

Data were acquired in reflectron negative and positive modes with a Smart Beam 

laser with 1 kHz repetition rate, and up to 500 shots were accumulated for each 

spectrum. Instrument calibration and all other tuning parameters were optimized 

using Agilent tuning mix (Agilent Technologies, Santa Clara, CA, USA). Data were 

acquired and processed using flexControl and flexAnalysis version 3.3 (Bruker). 

 

Assay for TLR4 activity 

HEK-Blue TLR4 cells (InvivoGen, San Diego, CA, USA) are HEK 293, stably 

transfected with plasmids expressing human TLR4, MD-2, and CD14 genes and a 



80 
 

SEAP reporter gene, under the control of a minimal promoter with multiple NF-κβ and 

AP-1 binding sites. Cells were cultured in DMEM medium (Thermo Fisher Scientific) 

containing 1 mM sodium pyruvate, 50 units/ml penicillin, 50 mg/ml streptomycin, and 

10% heat-inactivated FBS (Thermo Fisher Scientific). Cells were plated at 5 x104 

cells/well of a 96-well plate and stimulated with agonists or medium as control for 24 h at 

37°C. For all assays, 100 ng/ml of lipid A used is a physiologically relevant 

concentration, whereas further higher doses are for determining plateau. Cell-free 

supernatants were analyzed for SEAP activity using the QUANTI-Blue colorimetric 

enzyme assay, as directed by the manufacturer (InvivoGen). 

 

Isolation and purification of human neutrophils 

Neutrophils were isolated from venous blood of healthy donors using plasma-

Percoll gradients, as described elsewhere [34]. Isolated cells were > 90–95% neutrophils, 

as evaluated bymicroscopy, and are referred to as “pure” neutrophils in this study. Trypan 

blue exclusion indicated that 97% of cells were viable. Human donor recruitment, blood 

draws, and the use of the materials were in accordance with the guidelines approved by 

the Institutional Review Board of the University of Louisville. In some experiments, pure 

neutrophil populations were further enriched to obtain highly pure cells (> 99%) by 

negative magnetic selection using the EasyEights EasySep Magnet and human neutrophil 

enrichment kit (Stemcell Technologies, Vancouver, BC, Canada). Cell purity was 

assessed by simultaneously staining with FITC-conjugated anti-CD66b (clone G10F5; 

BioLegend, San Diego, CA, USA) and APC-conjugated anti-CD16 (clone CB16; 

eBioscience, San Diego, CA, USA) antibodies and determining the percentage of 
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CD66b+CD16+ cells using BD LSR II flow cytometer (BD Biosciences, San Jose, CA, 

USA). Both pure (> 90–95%) and highly pure (> 99%) neutrophils were cultured in 

complete RPMI-1640 medium (Thermo Fisher Scientific) containing 2 mM L-glutamine, 

50 units/ml penicillin, 50 mg/ml streptomycin, and 1 mM sodium pyruvate in a total 

volume of 200 ml in 96-well plates for all overnight experiments. As a source of soluble 

CD14, LPS-binding protein, and growth factors (135-137), the medium was also 

supplemented with 5% heat-inactivated human AB serum (Sigma-Aldrich), an amount 

determined to be optimal for IL-8 production in response to control LPS in pilot 

experiments (data not shown). 

 

Isolation of human monocytes 

PBMCs were isolated using Histopaque -1077 (Sigma-Aldrich) gradients or 

plasma-Percoll gradients from the whole blood of normal, healthy donors. Isolated 

PBMCs were resuspended in complete RPMI-1640 medium (Thermo Fisher Scientific) 

containing 2 mM L-glutamine, 50 units/ml penicillin, 50 mg/ml streptomycin, 1 mM 

sodium pyruvate, and 10% heat-inactivated human AB serum (Sigma-Aldrich) and 50 

mM 2-ME (both added freshly). Cells were plated at 5 x 105 cells/well of a 96-well plate 

and incubated for 2 h at 37°C. Nonadherent cells were washed by gently pipetting with 

Ca2+Mg2+ HBSS (Thermo Fisher Scientific) twice and RPMI medium once at room 

temperature. The remaining adherent monocytes were cultured in fresh complete RPMI 

medium in a total volume of 200 ml for all experiments, generally for 20 h. 
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Cytokine production 

Adherent monocytes at 0.5 x 105 (estimated) cells/well and pure (> 90–95%) or 

highly pure (> 99%) neutrophils at 0.1 x 106 cells/well of a 96-well plate were cultured 

with TLR4 agonists or medium as control for 20 h. IL-8 or TNF-α or both were measured 

in cell-free supernatants by ELISA (human IL-8 and TNF-α ELISA Ready-SET-Go! kit; 

eBioscience), according to the manufacturer’s protocol. 

 

Assay for partial agonist and antagonist activity 

EC75, the concentration of an agonist that gives 75% maximal response, was 

calculated for each of the CF hexa-1685, CF hepta-1855 lipid A, and E. coli LPS in 

HEK-Blue TLR4 cells for their SEAP-inducing activity and in primary cells for their 

cytokine response. EC75 is commonly used as the concentration of target agonists for 

testing inhibitory activity of partial agonists (209). The log EC50 value for each agonist-

induced response was calculated, as described in Kolb et al. (20), by generating a 4-

parameter logistic curve [log (agonist) vs. response 2 variable slope] by nonlinear 

regression, using GraphPad Prism software and the following equation. 

 

 

 

EC50 and Hill slope values were used to calculate EC75 further using the following 

equation 

 

 Y = Bottom +  
1 + 10

(logEC50-X)*HillSlope
 

(Top - Bottom) 
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Partial agonist and antagonistic activity of the penta-1447 lipid A was determined in 

HEK-Blue TLR4 cells and in primary cells. In brief, both cell types were cultured with 

EC75 values of the agonists, either alone or in the presence of increasing concentrations 

of penta-1447 lipid A or with penta-1447 alone. For IL-8 and TNF-α inhibition assays in 

monocytes, penta-1447 lipid A was used for 4–5 different individuals, whereas penta-

1447 LPS was used for 1–2 donors. 

 

Neutrophil survival assay 
 

Pure (>90–95%) neutrophils were suspended in complete RPMI-1640 medium, 

supplemented with 5% heat-inactivated human AB serum. Cells were seeded in 96-well 

plates at 5 x105 cells/well with TLR4 agonists, GM-CSF positive control (CYT-416; 

PROSPEC), or medium as control for 24 h at 37°C. Following incubation, the cells were 

washed with HBSS (Thermo Fisher Scientific) and stained with APC-conjugated 

Annexin V (BD Biosciences) and 7-AAD (Thermo Fisher Scientific), according to the 

manufacturers’ protocol. Cell viability was assessed by the proportion of cells that were 

double negative for Annexin V and 7-AAD, using a BD LSR II flow cytometer and 

FlowJo software. 

 

Priming of the respiratory burst activity 

Superoxide released by fMLF exposure in the presence or absence of TLR4 

priming was quantified, as described elsewhere (92, 210). In brief, pure neutrophils (>90–

95%) were resuspended at 4 x106 cells/ml/replicate Eppendorf (polypropylene) tube (1.5 

ml) in Krebs-Ringer phosphate buffer containing 0.2% dextrose (“Krebs +”) and 5% 

heat-inactivated human serum and preincubated for 5 min in a water bath at 37°C with 
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gentle shaking. TLR4 agonists or control (Krebs+ with serum) were added for 1 h, 

followed by addition of FCC (Sigma-Aldrich). One set of replicates was then stimulated 

with 300 nM fMLF (Sigma-Aldrich) for 5 min; another set was not further manipulated 

to determine any response to TLR4 priming agents alone. All tubes were centrifuged for 

10 min at 600 g at 4°C, and the cell-free supernatants tested for OD values at 550 nm 

and the amount of Cytochrome c reduction were calculated in nanomoles. 

 

Neutrophil granule exocytosis 

Pure neutrophils, 4 x106 cells/ml/polypropylene tube (1.5 ml), were stimulated 

with TLR4 agonists and diluted in Krebs+ buffer with 5% heat inactivated human serum 

or with control (Krebs+ with serum) alone for 1 h in a water bath at 37°C with gentle 

shaking. Following incubation, cells were washed and stained at 4°C for 1 h with 

antibodies specific for the granule specific markers CD35, CD66b, or CD63. Exocytosis 

of secretory vesicles, specific granules, and azurophilic granules was determined by 

measuring the increase in plasma membrane expression (by geo MFI) of CD35 (PE-

conjugated anti-human CD35 antibody; clone E11; BioLegend), CD66b (FITC-

conjugated anti-human CD66b antibody; clone G10F5; BioLegend), or (by geo MFI) 

CD63 (FITC-conjugated anti-human CD63 antibody; clone AHN16.1/46-4-5; Ancell, 

Bayport, MN, USA), respectively. A BD LSR II flow cytometer was used, and the 

data were analyzed with FlowJo software (Tree Star, Ashland, OR, USA). 
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Statistical analysis 

GraphPad Prism software was used for all statistical analyses as described in each 

figure legend. Tests used included nonlinear regression, log (agonist) versus response-

variable slope (4 parameter) analysis, comparison of fits on log EC50 using the Extra 

Sum-of Squares F-test, and 2-way ANOVA with Sidak’s or Dunnett’s multiple 

comparisons. 

 

Results 

 

TLR4 stimulation by fatty acyl variants of PA lipid A 

To determine whether human TLR4 responds differentially to fatty acyl variants 

of PA lipid A, we first tested individual lipid A preparations over a wide dose range 

(0.0003–1000 ng/ml) using HEK-Blue TLR4 reporter cells (Fig. 22). The positive control 

hexa-acylated E. coli LPS, a potent TLR4 agonist, showed robust activity as expected. 

CF-specific hexa-1685 PA lipid A, although less potent than E. coli LPS, reached a 

similar dose plateau, as reported previously (44, 199). The severe CF disease-associated 

hepta-1855 PA lipid A stimulated TLR4 with a potency and efficacy similar to the 

proinflammatory hexa-1685 variant. A precursor of both penta- 1447 and hepta-1855 

isoforms, hexa-1616, which is a minor component, was markedly less active, even at a 

very high concentration (1000 ng/ml). Both penta-acylated PA lipid A variants had 

similarly weak TLR4 activity, as shown by the shift in the dose curve to the right; only 

the non-CF penta-1419 reached the maximum plateau at higher concentrations. Taken 

together, these data indicate that lipid A fatty acyl variants of PA activate human TLR4 
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differentially in a reporter cell assay and demonstrate for the first time that CF hepta-

1855 is highly active as a TLR4 agonist. 

 

PA lipid A variants prime ROS production by human neutrophils 

Extracellular release of ROS is a potential mechanism for neutrophil mediated 

inflammatory damage in airways of patients with CF (211, 212), and TLR4 agonists can 

prime or potentiate neutrophil respiratory bursts that are triggered by activators, such as 

the bacterial peptide fMLF (137). Therefore, we determined whether PA lipid A variants 

with varying TLR4-stimulating potencies and efficacies differentially prime oxidative 

burst in human neutrophils.  

We quantified superoxide release from peripheral blood neutrophils primed with 

control LPS at 100 ng/ml (Fig. 23A and B) or different PA lipid A isoforms for 1 h at a 

physiologically relevant dose of 100 ng/ml (Fig. 23A) or a higher dose of 1000 ng/ml 

(Fig. 23B). Neither LPS nor any of the PA lipid A variants induced any ROS release on 

their own (Fig. 23A and B). The precursor hexa-1616 lipid A and both penta-acylated 

variants failed to prime significant ROS release at a dose of 100 ng/ml (Fig. 23A), and 

only hexa-1616 showed some priming effect at a higher dose of 1000 ng/ml (Fig. 23B). 

Hexa-1685 lipid A primed neutrophil respiratory burst at either dose. The late CF stage-

specific hepta-1855 variant primed neutrophils as strong as that of the hexa-1685 lipid A 

at both concentrations tested (Fig. 23A and B), in agreement with the TLR4 reporter cell 

assay (Fig. 22). Both isoforms were similarly weak in priming at concentrations lower 

than 100 ng/ml (data not shown). Thus, the robust TLR4 activation by hepta-1855 in 
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reporter cells was also seen in primary neutrophils at the level of an inflammatory 

function, superoxide release. 

 

PA lipid A variants induce neutrophil granule exocytosis differentially 

LPS is well known to induce neutrophil degranulation (48, 91, 130). Neutrophils 

contain 4 granule subtypes that are enriched in antimicrobial proteins and proteases. 

Degranulation or granule exocytosis involves incorporation of the granule membrane-

specific proteins onto the cell membrane and release of their luminal contents in the 

extracellular milieu. Once released outside of the cells, those granule contents not only 

help to kill extracellular pathogens but can also contribute to tissue destruction (96, 213).  

To determine whether the PA lipid A variants induce granule exocytosis, human 

neutrophils were treated (1 h) with positive control LPS at 1000 ng/ml or different PA 

lipid A isoforms at 100 and 1000 ng/ml concentrations. At both concentrations tested, 

the CF hexa-1685 variant induced the secretory vesicle and specific granule exocytosis 

measured as a plasma membrane increase of CD35 (Fig. 24A) and CD66b (Fig. 24B), 

respectively. Both hepta-1855 and hexa-1616 failed to increase either granule 

marker at 100 ng/ml, whereas at 1000 ng/ml, both showed minimum induction of 

secretory vesicle exocytosis (CD35), however, a stronger stimulation of specific granule 

exocytosis (CD66b; Fig. 24A and B). Both hexa-1685 and hepta-1855 variants induced 

azurophilic granule exocytosis (CD63) only at a higher dose of 1000 ng/ml (data not 

shown). penta-1447 had no activity in these assays at any dose. Therefore, these data 

suggest that only hexa-1685 PA lipid A, among all of the variants, is a potent inducer of 

neutrophil granule exocytosis. 
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Effect of PA lipid A variants on neutrophil survival 

Several studies showed that blood neutrophils from patients with CF undergo 

delayed apoptosis when cultured ex vivo (214, 215). As TLR4 agonists, such as LPS, are 

known to prevent neutrophil apoptosis, we next characterized the survival effect of PA 

lipid A variants using pure neutrophil populations (purity > 90–95%).  

Human neutrophils were cultured for 24 h in medium containing human serum 

with positive control GM-CSF at 0.1ng/ml or LPS at 1000 ng/ml or with PA lipid A 

isoforms at both 100 and 1000 ng/ml (Fig. 25B) and tested for cell viability. 

Approximately 55% of the untreated neutrophils remained viable after 24 h in 

independent assays (example shown in Fig. 25A; untreated, upper right). At both 

concentrations tested, hepta-1855 and hexa-1685 PA lipid A increased the percentage of 

viable cells similarly, as well as that by GM-CSF, a very potent survival factor of 

neutrophils (Fig. 25B). The survival effects of both isoforms were also indistinguishable 

when tested at concentrations lower than 100 ng/ml (data not shown). Hexa-1616 

increased neutrophil viability significantly at either concentration. No penta variants 

showed a substantial effect. Therefore, PA lipid A variants improve neutrophil survival 

differentially, with hepta-1855, hexa-1685, and the precursor hexa-1616 showing 

substantial activity. 

 

PA lipid A differentially induces IL-8 production from human neutrophils 

 

IL-8, a major chemoattractant of neutrophils, is elevated in BALF or sputum 

samples from patients with CF and negatively correlates with pulmonary function (216-

220). Respiratory infections in patients with CF have higher levels of IL-8 in their BALF 
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compared with uninfected patients (221, 222). The massive numbers of neutrophils 

infiltrating the CF airway can serve as a potential source of this chemokine (219). 

Moreover, LPS is a known IL-8 stimulator in neutrophils. Therefore, we compared the 

PA lipid A variants as stimulators of IL-8 production from purified blood neutrophils (> 

90–95% pure). Penta-1447 showed very little IL-8-inducing activity, even at 

nonphysiologically high concentrations, such as 10 mg/ml (Fig. 26A). In contrast, both 

the CF hexa-1685 and -1616, as well as hepta-1855, induced IL-8 to the same dose 

plateau as E. coli LPS (Fig. 26A and C).  

As even low levels of monocyte contamination in neutrophil preparations can 

contribute to IL-8 production (176), we next compared the PA lipid A variants using 

highly purified (> 99% pure) neutrophil populations (Fig. 26B and D). The amount of IL-

8 released from these highly purified preparations was approximately one-tenth of that 

from the less-pure cultures, but the relative patterns of IL-8 induction were nearly 

identical. As shown in Fig. 26B, hexa-1616, although less potent, reached the 

same dose plateau as E. coli LPS, whereas penta-1447 showed minimal IL-8-inducing 

activity. CF hexa-1685 and hepta-1855 lipid A variants were similarly potent in 

stimulating IL-8 (Fig. 26D). These 2 lipid A isoforms were further compared for their 

potencies, triggering IL-8 responses by pure neutrophils in more extensive dose curves. 

We calculated the log EC50 values, where EC50 represents the concentration of ligand 

that triggers one half of the maximum response. The difference between their log 

EC50 values was statistically significant, with hepta-1855 having a lower value (more 

potent) than hexa-1685 (Fig. 26E). 
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Characterizing the effect of CF-specific PA lipid A variants on human monocytes 

In addition to neutrophils, mononuclear phagocytes, namely monocytes or 

monocyte-derived cells and macrophages, are implicated in lung inflammation (223, 

224). Our finding that the presence of a small proportion of mononuclear cells can greatly 

amplify the IL-8 response of neutrophils to PA lipid A variants (Fig. 26) prompted us to 

determine whether those variants directly induce monocytes for differential IL-8 

responses. Interestingly, the IL-8 response pattern was distinct from that found 

in neutrophils (Fig. 26). Penta-1447 reached the dose plateau as E. coli LPS, although 

with lower potency (Fig. 27A). CF hexa-1616 was more potent than CF penta-1447 in 

reaching the same dose plateau. The hexa-1685 variant was the most potent of the PA 

lipid A variants, followed by hepta-1855 (Fig. 27C). To determine if this monocyte-

specific pattern of response was true for other cytokines, we also compared PA lipid A 

variants for their induction of TNF-α, another proinflammatory marker in CF lung 

disease (218, 222). Penta-1447 showed significantly lower TNF-α inducing activity 

throughout the dose range, never reaching the dose plateau as E. coli LPS (Fig. 27B). CF 

hexa-1685 was the most potent of the lipid A variants in stimulating maximal TNF-α, 

followed by hepta-1855 and hexa-1616, respectively (Fig. 27B and D). 

As our data also indicated a differential response of monocytes to hexa-1685 

versus hepta-1855 at lower concentration, we further compared their potencies by 

calculating log EC50 values for induction of IL-8 and TNF-α (Fig. 27E and F). Although 

hepta-1855 showed a similar potency as hexa-1685 for induction of IL-8, it was 

significantly less potent for TNF-a. Taken together, these data indicate that PA lipid A 
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variants modulate IL-8 versus TNF-a responses of monocytes differentially, with patterns 

that were, moreover, distinct from those seen in neutrophil populations. 

 

Inhibitory activity of penta-1447 PA lipid A 

We next focused on characterizing CF penta-1447, which we hypothesized is a 

partial TLR4 agonist that could interfere with the activities of other TLR4 agonists. To 

test our hypothesis, we first calculated the EC75 value of each of E. coli LPS, hexa-1685, 

or hepta-1855 PA lipid A for TLR4-stimulating activity in HEK-Blue TLR4 cells. The 

EC75 corresponds to the concentration of a ligand that leads to a 75% maximal 

response and is pharmacologically a more suitable target to evaluate the inhibitory effect 

of a candidate antagonist by remaining below the dose plateau. Reporter cells were 

treated with the EC75 doses of E. coli LPS, hexa-1685, or hepta-1855, alone or in the 

presence of increasing concentrations of penta- 1447. In parallel, a dose curve of penta-

1447 was performed, and as seen before (Fig. 22), penta-1447 failed to trigger maximal 

activity on its own. When added to the EC75 doses of each of the other agonists, 

increasing amounts of penta-1447 gradually reduced their activities to the penta-1447 

submaximal dose plateau (Fig. 28), a characteristic pattern of partial agonists. 

To determine if penta-1447 also functions as a partial agonist/ antagonist in 

primary cell cultures, human neutrophils were stimulated with EC75 doses of CF hexa-

1685, hepta-1855, or E. coli LPS alone (1:0 wt: wt) or in the presence of increasing ratios 

of penta-1447 (1:1, 1:2, 1:5, and 1:10). Penta-1447 significantly inhibited the IL-8 

response to hexa-1685 (Fig. 29A). Although mixtures of penta-1447 with hepta-1855 are 

not physiologic, as they are not synthesized at the same time, we tested its effect on 
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hepta-1855 and found inhibition (Fig. 29B) beginning at a 1: 2 ratio and increasing at 

greater ratios. Unlike the reporter cell assay, penta-1447 did not show any inhibitory 

effect on E. coli LPS in neutrophil cultures (Fig. 29C). 

To investigate the inhibitory effect of penta-1447 in primary monocyte cultures, 

we treated the cells with EC75 doses of CF hexa-1685, hepta-1855, or E. coli LPS for 

inducing IL-8 and TNF-α in the presence of increasing amounts of penta-1447 (Figs. 

29D–F and 30A–C). Unlike neutrophils, there was generally no inhibition of IL-8 

responses detectable in monocyte cultures other than at the highest ratios of penta-1447: 

hepta-1855 (Fig. 29E). TNF-α responses by monocytes to CF hexa-1685 (Fig. 30A) or to 

E. coli LPS (Fig. 30C) were not inhibited by penta-1447, a pattern similar to that of IL-8 

responses. However, significant inhibition of hepta-1855 was seen when the amount of 

penta-1447 was 5:1 or 10:1 of the agonist’s EC75 (Fig. 30B). To determine if penta-1447 

had an inhibitory effect at receptor-saturating concentrations, we stimulated adherent 

monocytes with > 4x the EC75; 100 ng/ml CF hexa-1685, hepta-1855, or E. coli LPS 

alone; or in the presence of 1000 ng/ml penta-1447. Under these conditions, we found 

significant inhibition by penta-1447 of TNF-α responses to either PA lipid A variant (Fig. 

30D). Together, these data suggest that penta-1447 lipid A functions as a partial agonist 

that lacks strong proinflammatory activity on its own but can moderate the activity of 

other TLR4 agonists, especially that of hexa-1685 lipid A, its co-expressed isomer. 

 

 

Discussion 

 The distinct inflammatory activities associated with different lipid A fatty acyl 

isoforms synthesized by PA only in CF disease are important to understand. We 



93 
 

manipulated the genetics and growth conditions of PA to isolate the major lipid A 

isoforms associated with CF and compared their immunostimulatory activities. Two 

major conclusions can be drawn from these comparisons: PA lipid A hepta-1855 is an 

effective stimulator of TLR4 and of most but not all neutrophil responses we tested, and 

penta-1447 is a weak/ partial agonist of TLR4 that can inhibit responses to the other 

major lipid A isoform, hexa-1685, which is present when penta-1447 is. 

One-third of PA isolates from patients with late-stage CF contain the hepta-1855 

lipid A variant instead of a mixture of penta-1447 plus hexa-1685 lipid A (Fig. 21) (33, 

198). Microbiological studies of PA with hepta-1855 lipid A reveal that it confers 

resistance to β-lactam antibiotics [unpublished results], perhaps as a selective adaptation 

to the frequency of antibiotic treatments needed to manage CF disease (124). Whether 

conversion of PA lipid A from mixed penta-1447/hexa-1685 to the hepta-acylated 

isoform increases or decreases immunostimulatory activity had been an open 

question given the range of immune activities observed for hepta-acylated lipid A from 

other pathogens (202, 203, 225, 226). Here, we report that relative to the well-

characterized hexa-1685, hepta-1855 lipid A was highly active in all neutrophil assays 

that we performed, except for granule exocytosis. Agonist activity of hepta-1855 

quantified in the HEK 293 TLR4 reporter cell assay (Fig. 22) correlated with induced 

priming of extracellular oxidative bursts (Fig. 23), prolonged survival in ex vivo culture 

(Fig. 25), and IL-8 secretion from primary neutrophils (Fig. 26C) and monocytes (Fig. 

27C) and TNF-α secretion from monocytes at the physiologically relevant dose of 100 

ng/ml (Fig. 27D). At the same dose, however, hepta-1855 was markedly less efficient 
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than hexa-1685 in inducing secretory vesicle and specific granule exocytosis, as 

determined by surface display of CD35 and CD66b, respectively (Fig. 24A and B). 

The relative inability of hepta-1855 to induce neutrophil granule exocytosis could 

be related to a bacterial strategy of immune evasion. On the other hand, the strong IL-8 

induction and inhibition of neutrophil apoptosis by hepta-1855 suggest that it could 

potentiate the influx and persistence of neutrophils, thus contributing to the characteristic 

CF airway neutrophilia. What is less clear is why PA appears to have been selected to 

retain a lipid A structure that is a robust activator of several neutrophil responses but 

selectively weak in induction of degranulation. In the CF airway, despite limited oxygen 

availability, PA can grow to densities as high as 109 cfu/ml, most likely through 

anaerobic respiration, using alternative electron acceptors, such as nitrites and nitrates 

(32, 227-229). As superoxide released by neutrophils favors production of nitrites and 

nitrates, hepta-1855-induced airway neutrophilia may help PA thrive by favoring 

extracellular ROS generation if release of antimicrobial peptides and proteases by 

degranulation is weak (228, 229). 

Others have shown that priming of the respiratory burst response can be achieved 

as a result of granule exocytosis through delivery of components of the NADPH oxidase 

complex, such as gp91phox and p22phox, from granule membranes to the plasma 

membrane (48, 91, 230). Here, a physiologic dose of hepta-1855 had a priming effect 

without inducing degranulation, which indicates that a distinct mechanism is responsible. 

For example, signaling by hepta-1855 may induce partial phosphorylation and 

translocation of cytosolic components, such as p47phox, to the cell surface in sufficient 

quantities to facilitate oxidase activation (48, 230).  
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We also found that penta-1447, the dominant isoform in all other infected CF 

patients, has the characteristics of a partial agonist, as it has a low-dose plateau and can 

antagonize the activity of stronger TLR4 agonists. penta-1447 was a weak TLR4 agonist 

in the HEK reporter cell assay (Fig. 22), induced limited cytokine responses from 

neutrophils (Fig. 26A and B) and monocytes (Fig. 27B), and inhibited responses to hexa-

1685 and hepta-1855 (Fig. 29A and B). Weak agonistic activity of penta-1447 is 

consistent with lipid A hypo-acylation as an immunoevasive strategy of PA and other 

Gram-negative bacteria (231, 232). Moreover, the fact that penta-1447 was antagonistic 

to hexa-1685 in its induction of IL-8 responses by neutrophils (Fig. 29A) suggests a 

potential role of this isoform in moderating hexa-1685-driven inflammation in CF 

airways. The inhibitory activity of penta-1447 is consistent with other published 

observations. Backhed et al.(233) reported that a commercially available penta-acylated 

LPS from PA antagonizes hexa-acylated E. coli LPS in bladder epithelial cell cultures. 

Hypo-acylated LPS from other pathogens, such as Shigella flexneri and Porphyromonas 

gingivalis, has also been shown to have antagonistic effects on TLR4 stimulation (231, 

232).  

Interestingly, IL-8 responses by monocytes were not inhibited by penta-1447 (Fig. 

29D–F), which may be consistent with the reported amplifying autocrine loop that exists 

for IL-8 in monocytes but not in neutrophils (234). The fact that penta-1447 was 

ineffective in inhibition of responses to the most potent TLR4 agonist used in this study, 

control E. coli LPS, is an indication that its inhibitory activity is moderate. As a partial 

agonist/antagonist, the relative abundance of penta-1447 in a lipid A mixture may 

therefore be particularly critical in terms of understanding the progression of CF disease 
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severity. For example, the presence of high amounts of antagonistic penta- 1447 might 

mitigate hexa-1685-driven inflammation in early stages, whereas its absence from the 

subset of late PA isolates expressing hepta-1855 might enable more severe inflammation. 

These observations indicate that continued efforts to monitor the PA lipid A profile in 

patients can make invaluable contributions to our understanding of CF disease 

progression. 



97 
 

 

Figure 21. Lipid A variants synthesized by PA. All lipid A variants are named by the 

number of acyl chains and m/z of each, and arrows with text show precursor-product 

relationships in biosynthesis pathways and the enzymes involved. PagL, a 3-O-deacylase, 

removes the 3 position 3-OH C10 fatty acid, and PagP, an acyltransferase, adds a 

palmitate (C16 fatty acid) at the 2 position. Chemical structures are shown for the lipid A 

portion of (A) PA LPS isolated from environmental samples and acute and chronic 

infections other than in CF disease. (B and C) Variants present in all early and two-thirds 

of late CF stage-specific PA isolates, as a result of expression of PagP and PagL. (D) The 

hepta-acylated variant expressed uniquely by one-third of late CF stage-specific PA 

isolates that have lost PagL activity. (E) Hexa-1616, the biosynthetic precursor of hepta-

1855 and penta-1447. (F) Summary of disease associations. 
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Figure 22. Differential stimulation of human TLR4 by PA lipid A variants. HEK-

Blue TLR4 cells were cultured for 24 h with increasing doses of the indicated PA lipid A 

or E. coli LPS as control. The colors used to identify agonists are the same in all figures. 

TLR4-stimulating activity was measured in a SEAP reporter assay and normalized to E. 

coli LPS activity (E. coli = 100%). Data points show means +/- SEM from at least 3 

independent experiments. 
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Figure 23. Similar priming of neutrophil respiratory burst by CF-specific hexa-1685 

and hepta-1855 PA lipid A. O2
-  released (nM) by human neutrophils in response to 

fMLF stimulation after priming with control S. minnesota LPS (Sm LPS; 100 ng/ml) or 

(A) 100 ng/ml or (B) 1000 ng/ml of the indicated PA lipid A, as quantified by FCC 

reduction. Data show means +/- SEM from 4 to 11 experiments. UT, Untreated. ****P ≤ 

0.0001, **P ≤ 0.01, *P ≤ 0.05 when compared with fMLF only; and ns, P > 0.05 when 

compared with hexa-1685 PA lipid A. 
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Figure 24. Differential induction of neutrophil granule exocytosis by PA lipid A 

variants. Human neutrophils were treated with the indicated PA lipid A or E. coli LPS 

(Ec LPS; 1 mg/ml) as control and tested for neutrophil granule exocytosis by flow 

cytometry to measure increases in surface expression of (A) the secretory vesicle marker 

CD35 or (B) the specific granule marker CD66b. PA lipid A of 100 ng/ml and 1000 

ng/ml are represented by left and right sides of the triangles, respectively. Bars show 

mean increases in geo MFI over untreated (=baseline) +/- SEM from 4 to 8 individuals. 

***P ≤ 0.001, **P ≤ 0.01 when compared with untreated. 
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 Figure 25. Hexa-1685 and hepta-1855 PA lipid A have similar survival effects on 

neutrophils. Purified human neutrophils (>90%) were incubated 24 h in the absence 

(untreated) or presence of control GM-CSF (0.1 ng/ml), E. coli LPS (1 mg/ml), or PA 

lipid A variants. Cell viability before and after culture was analyzed by Annexin V-

APC/7-AAD staining and flow cytometry. (A) Dot plots from a representative 

experiment showing the percent of cells that were viable (negative for Annexin-V and 7-

AAD) at 0 or 24 h after the indicated treatments. (B) Percentage of viable neutrophils 

after culture with the indicated PA lipid A at 100 and 1000 ng/ml (by left and right sides 

of triangle, respectively) or controls. Bars show percent means +/- SEM from 3 to 6 

individuals. PMN, Polymorphonuclear neutrophils. ****P ≤ 0.0001, ***P ≤ 0.001, **P ≤ 

0.01 when compared with untreated. 
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Figure 26. Strong IL-8 induction in human neutrophils by CF-specific hexa-1685 

and hepta-1855 PA lipid A variants. ELISA measurement of IL-8 released from (A and 

C) pure neutrophils (>90%) or (B and D) highly pure neutrophils (>99%) after 20 h 

stimulation with the indicated dose range of PA lipid A or E. coli LPS. (E) Log EC50 of 

hexa-1685 and hepta-1855 PA lipid A in stimulating IL-8 production by pure neutrophils, 

calculated as described in Materials and Methods. Data shown are the means +/- SEM 
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from (A–D) 3 to 9 or (E) 3 donors. ***P ≤ 0.001, **P ≤  0.01, *P ≤  0.05; and ns, P > 

0.05 when comparing (A and B) hexa-1616 with penta-1447 or (C and D) hexa-1685 

with hepta-1855 at the indicated dose or (E) over the full curves.  
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Figure 27. CF-specific PA lipid A variants differentially modulate IL-8 versus TNF- 

α responses by human monocytes. (A and C) IL-8 and (B and D) TNF-α released from 

adherent monocytes after 20 h culture with the indicated dose range of PA lipid A 

variants or E. coli LPS, as quantified by ELISA. (E) Log EC50 of CF hexa-1685 and 

hepta-1855 in IL-8, or (F) TNF- α induction was calculated as described in Materials and 

Methods. Data shown are means +/- SEM from (A–D) 3 to 7 or (E and F) 3 individuals. 
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***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05; and ns, P > 0.05 when comparing (A and B) hexa-

1616 with penta-1447 or (C and D) hexa-1685 with hepta-1855 lipid A at the indicated 

dose or (E and F) over the full curves. 
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Figure 28. CF-specific penta-1447 PA lipid A is a partial TLR4 agonist with 

inhibitory activity. HEK-Blue TLR4 cells were stimulated for 24 h with the EC75 dose 

of E. coli LPS (1 ng/ml), CF hexa-1685 (16 ng/ml), or CF hepta-1855 (6 ng/ml) PA lipid 

A alone or in combination with increasing doses of penta-1447. Yellow bars show the 

activity of penta-1447 alone. TLR4 stimulation was measured by SEAP reporter assay, 

with normalization to the E. coli LPS dose plateau (E. coli = 100%). Bars show means +/- 

SEM from 3 independent experiments. ****P ≤ 0.0001, ***P ≤ 0.001 when compared 

with the corresponding agonist alone (1:0). 
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Figure 29. CF penta-1447 PA lipid A efficiently inhibits IL-8 production by other 

PA agonists in neutrophils but not in monocytes. (A–C) Pure neutrophils were 

stimulated for 20 h with the EC75 doses of CF hexa-1685 (81 ng/ml), CF hepta-1855 (36 

ng/ml), or E. coli LPS (309 ng/ml), alone or with increasing mass ratios of CF penta-

1447. (D–F) Human monocytes were stimulated with the EC75 doses of CF hexa-1685 

(11 ng/ml), CF hepta-1855 (25 ng/ml), or E. coli LPS (0.1 ng/ml), alone or with 

increasing mass ratios of CF penta-1447. After culture, IL-8 was quantified by ELISA. 

Each symbol represents 1 donor. Data are mean IL-8 responses from (A–C) 4 or (D–F) 7 

individuals. ****P ≤ 0.0001, ***P ≤ 0.001, *P ≤ 0.05; and ns, P > 0.05 when compared 

with the corresponding agonist alone (1:0) group. 
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Figure 30. CF penta-1447 PA lipid A is a weak inhibitor of TNF- α responses 

induced by other PA lipid A agonists in monocytes. (A–C) TNF- α responses by 

human monocytes stimulated with the EC75 doses of CF hexa-1685 (11 ng/ml), CF 

hepta-1855 (25 ng/ml), or E. coli LPS (0.7 ng/ml), alone or with increasing mass ratios 

of CF penta-1447. (D) TNF-α responses by monocytes stimulated with 100 ng/ml E. 

coli LPS, CF hexa- 1685, or CF hepta-1855 PA lipid A, alone or with 1000 ng/ml CF 

penta-1447. Each symbol represents 1 donor. Black symbols show responses to CF 

penta-1447 plus the indicated agonist; colored symbols show agonist alone. Bars 

indicate the mean values from (A–C) 8 or (D) 4 individuals. ***P ≤ 0.001, **P ≤ 0.01, 

*P ≤ 0.05; and ns, P > 0.05 when compared with each agonist alone (1:0). 
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            CHAPTER V 

          CONCLUSION 

NEUTROPHILS CALIBRATE THEIR RESPONSES BASED ON STRUCTURAL 

DIFFERENCES OF LPS VS. MPLA 

Safety profile of MPLA 

MPLA, a detoxified version of LPS, has been proven less inflammatory and 

hence more safe as an adjuvant in a variety of in vivo and in vitro systems (21, 39, 

125, 126). Studies in murine models of acute bacterial infection showed that 

prophylactic treatment with MPLA improved bacterial clearance and resistance to 

systemic infection (141). Phagocytic functions of neutrophils on a per-cell basis 

remained unaltered; instead, their recruitment in large numbers accounted for MPLA-

associated protection (141). Other than these findings, little is known about how 

MPLA influences the responses of human neutrophils (130).  In our study of human 

primary neutrophils, we show that MPLA is very weak at priming phagocytic activity. 

To our knowledge, the effect of MPLA on neutrophil longevity has not been 

determined. We now know that MPLA also fails to prolong neutrophil survival. The 

lack of TRIF-mediated signaling in neutrophils and the low potency of MPLA in 

activation of MyD88 associated signaling events likely account for the differential 

response of neutrophils to MPLA as compared to LPS.  
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Because of its beneficial properties, MPLA is a potential candidate for the 

treatment and prevention of various pathological conditions including, infections, 

allergic hypersensitivities, Alzheimer’s disease, cancer and ischemic reperfusion 

injury (235-240). The clinical grade form of MPLA, MPL adjuvant® is used by GSK 

in adjuvant system 04 (AS04), where it is adsorbed onto a particulate form of 

aluminium salt. AS04-adjuvanted vaccines induce a more robust innate immune 

response and a stronger and more persistent humoral response compared to those 

containing aluminium salt alone, with minimal safety risk (241, 242).  AS04 or AS04-

adjuvanted vaccines also induce a transient recruitment of immune cells and local 

inflammatory reactions at intramuscular injection sites (243). As first responders to 

inflammation, neutrophil responses to MPL adjuvant® may determine how well a 

vaccine is tolerated. Our finding of very weak stimulation of neutrophil responses by 

MPLA suggests a lower risk of MPLA triggered neutrophilic inflammation at the 

injection sites and is consistent with its robust safety profile.  

MPLA, a safety bridge between commensal bacteria and innate immunity 

Monophosphorylated lipid A analogs with low inflammatory activities are 

expressed naturally by certain commensal bacteria inhabiting mucosal niches (35, 40, 

244). Interestingly, these low toxicity isoforms can also result from active remodeling by 

vertebrate host enzymes such as intestinal alkaline phosphatase (IAP). IAP catalyzes 

dephosphorylation of lipid A at 1-phosphate group from the resident gut bacteria, at least 

in a zebrafish model. Bates et al. (245) showed evidence of increased neutrophil 

recruitment in the gut of IAP-deficient zebrafish. This suggests a vital role of lipid A 
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detoxification in establishing immune homeostasis in the presence of commensal 

microbes.  

MPLA also has antagonistic effects on LPS induced pro-inflammatory cytokine 

responses, at least in endothelial cells (246). In human neutrophils, MPLA inhibits 

release of cytotoxic mediators such as superoxides and myeloperoxidase (MPO) induced 

by LPS pre-exposure (130). Whether MPLA also inhibits the pro-survival effect of LPS 

on neutrophils needs to be determined. Perhaps, a combination of antagonism and mild 

stimulation by MPLA allows patrolling neutrophils to mount limited immune responses 

sufficient for maintenance a beneficial mutualism between vertebrate hosts and gut 

microbiota. 

 

NEUTROPHIL SURVIVAL RESPONSES TO TLR4 STIMULATION ARE TUNED BY 

CELLULAR ENVIRONEMENTS 

Support from accessory cells 

Our observation that neutrophil require support from other immune cells fits well 

with the concept of accessory cell-client cell interactions being needed for optimum 

performance by specialized cells. This concept has been recognized most prominently in 

studies of highly specialized tissue macrophages such as microglial cells in the nervous 

system (247). In general, accessory cells are assigned to carry out some of the ‘house-

keeping’ jobs for their client cells which can then devote more resources to their highly 

specialized primary functions. For example, microglial cells provide neurons with 

neurotrophins that are important for optimizing learning and memory-associated neuronal 

functions (248). Supportive roles of astrocytes and microglial cells for neurons have been 
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shown during spinal cord injury where they may potentially help in wound repair by 

enhanced neurotrophin production (249).  Similarly, accessory immune cells may help 

maintain survival of client neutrophils after microbial insult. Studies showing better 

survival of neutrophils when co-cultured with activated T cells, NK cells or mesenchymal 

stromal cells further supports an accessory cell model (66, 114, 250).  

We hypothesize that the accessory cells themselves provide neutrophils with 

survival factors in order to regulate their functions. Our work shows that soluble 

factors are sufficient to explain LPS survival effects on neutrophils suggesting they do 

not require direct contact with LPS stimulated accessory cells for prolonged survival. 

 Cell-free supernatants from lipid A stimulated monocytes showed strong 

survival effects on highly pure neutrophils, supporting our hypothesis. In general, 

monocytes reach inflammatory sites following the first waves of neutrophil influx 

(251) and thus, presumably support neutrophil persistence through soluble factor 

production. Neutrophil fates may also be tuned by the other immune cells that are 

recruited, either along with monocytes or in subsequent waves of cellular infiltration. 

Tests to determine whether other accessory cells including NK cells, lymphocytes or 

dendritic cells also produce survival factors, are underway.  Once we identify the cell 

types involved in such supportive function, it will be interesting to determine how 

each of them determines neutrophil fate in in vivo infection models. 

Which soluble factors are responsible for TLR4 induced pro-survival effects?  

A variety of host-derived factors including cytokines, chemokines, lipid 

mediators, and DAMPs have been shown to promote neutrophil viability (108, 109, 



113 
 

168-172, 252). But very few have been shown to be relevant when tested on highly 

purified neutrophils (66, 114). As described in chapter III, the amounts of TNF-α or 

IL-1β found in PP PMN supernatants were very low, indicating they may not be 

relevant in this cell system. There were significant amounts of IL-8 and IL-6 

suggesting their potential contribution to survival. However, the survival activity of 

the supernatants did not correlate with how much IL-8 or IL-6 was present, 

respectively. Using recombinant IL-8 or IL-6, we also showed that neither were potent 

survival factors as it required very high concentrations (100 ng/ml) to improve 

neutrophil viability detectably. With IL-8 neutralizing antibody, we further confirmed 

that the survival activity of the supernatant is not IL-8 dependent. Future studies are 

needed to identify which soluble factor/s are providing neutrophils these survival 

advantages. 

 

TLR4 induced direct survival signaling in suspended neutrophils  

Neutrophils cultured in suspension, rather than attachment plates required no 

help from accessory cells to respond to TLR4 survival signaling. This surprising result 

suggests a role for adhesion in regulating neutrophil survival responses to TLR4 

activation. 

 We used a heat-inactivated human serum in the medium as a source of soluble 

CD14, LPS-binding protein and basal maintenance factors (135-137). Serum also 

contains matrix components such as fibronectin and fibrinogen that promote cell-

surface adhesion and spreading when they are cultured in plastic tissue culture plates 

(253-255).  We speculate that the absence of cell-surface adhesion or cell spreading 
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from suspension culture allow neutrophils to respond directly to TLR4 survival 

signaling. The absence of survival effects of supernatants collected from these 

suspended neutrophils supports our hypothesis that it is not a paracrine effect of 

soluble mediators but an intrinsic response to TLR4 stimulation.   

We showed that ERK pathway is not involved in lipid A enhancement of the 

survival of suspended neutrophils. Previous studies (106, 110) where ERK was found 

to contribute to the survival effect of LPS, used partially pure neutrophils. Hence, it is 

possible that ERK may be involved indirectly by participating in the production of 

soluble factors rather than by provision of direct survival signals. 

The survival effect of LPS on partially pure neutrophils correlates with the 

abundance of anti-apoptotic proteins like Mcl-1 and A1 (107, 110, 113). In general, 

RNA transcripts for A1 and both transcripts and Mcl-1 proteins are extremely short-

lived (113, 256). Unless they are stabilized by pro-survival factors like LPS or GM-

CSF, more stable pro-apoptotic proteins predominate and shift the balance towards 

apoptosis (107, 256). Therefore, it is plausible that direct TLR4 signaling in suspended 

conditions might be stabilizing either or both of these anti-apoptotic proteins which in 

turn prevent neutrophils from undergoing apoptosis.  

Implications of differential survival response of neutrophils in adherent vs. suspended 

culture conditions 

Prolonged neutrophil life-span potentially contributes to unwanted tissue damage 

at inflammatory sites. However, sufficient longevity is also vital for immune defense. 

Therefore, a fine balance between neutrophil survival and apoptosis is crucial (128, 129, 
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257). Our observations of differential survival response of suspended vs. adherent and PP 

vs. HP neutrophils to TLR4 stimulation imply that a balance might be maintained at two 

potential checkpoints; adhesive events and accessory immune cells. We speculate that 

when free-flowing neutrophils in circulation are exposed to LPS, a plausible situation 

during low-grade inflammation (190, 191, 258), they retain their autonomous survival 

response. This intrinsic survival boost may help them stay functionally competent, at 

least until they reach a site of infection. Adhesive events occur as neutrophils leave the 

circulation and transmigrate across the endothelium into the inflamed tissue (55, 60). In 

vitro studies have shown a pro-survival effect of integrin-mediated adhesion (157, 159, 

160) on neutrophils.  However, prolonged persistence of activated neutrophils can inflict 

by stander tissue damage. Therefore, once recruited to tissue, neutrophils may switch off 

their intrinsic survival response to LPS and become dependent on other accessory 

immune cells. A better understanding of the specific factors involved in such potential 

checkpoints will help to manipulate neutrophil responses without compromising their 

protective function.  

 

DIFFERENTIAL IMMUNOSTIMULATORY ACTIVITIES OF LIPID A ACYL VARIANTS 

EXPRESSED BY PSEUDOMONAS AERUGINOSA EXCLUSIVELY FOUND IN THE 

LUNG OF CF PATIENTS  

 

Variations in lipid A fatty acid chains alter neutrophil responses 

A sufficient number of fatty acid chains attached to the glucosamine backbone of 

lipid A is crucial for TLR4 stimulatory activity. Human TLR4-MD2-LPS crystal 
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structures indicate that lipid A isoforms with six acyl chains induce maximal 

inflammatory activity, whereas those with five or fewer chains have partial or no 

agonistic activity at all, because six lipid chains favor the dimerization of one TLR4-

MD2 receptor complex with another needed to initiate TLR4 signaling (36).  Consistent 

with such structure-activity relationship, we also found that PA hexa-1685 lipid A, an 

early adaptation unique to CF (33), is the most potent activator of primary neutrophils 

amongst all the PA lipid A isoforms tested.  As expected, the penta-1447 variant, which 

is also the dominant lipid A structure among most of the infected CF patients (30), was 

very weak at stimulating any of the neutrophils responses studied here. Surprisingly, 

another hexa-acylated variant, hexa-1616, which is a precursor of the penta-1447 variant 

(198), was not as strong a neutrophil activator as hexa-1685.  This suggests that not only 

the number but also the length and position of fatty acid chains determine the strength of 

TLR4 signaling. Most interestingly, we found strong activity of a hepta-acylated PA lipid 

A, hepta-1855, a variant exclusively found in a subset of late stage CF patients with more 

severe pulmonary dysfunction (33, 198, 199).   Thus, alteration in the degree of acylation 

of PA lipid A structures can have  profound effects on the immune responses of 

neutrophils, the key players in CF associated chronic lung inflammation (116). 

 

Implications of varying degrees of acylation on PA colonization in the CF airway 

A pathological hallmark of cystic fibrosis associated lung disease is excessive 

(mostly neutrophilic) inflammation in the airway, chronic bacterial infections and 

eventual loss of pulmonary functions that ultimately cause the morbidity and mortality of 

CF patients (117, 211, 259).  Although early infections occur with diverse microbes, by 
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the age of five years PA becomes the most frequently isolated bacteria from the airways 

of CF patients. Moreover, PA infection is strongly associated with worse clinical 

outcomes (117, 118).  

Lipid A structural modification is one of the many adaptations that PA undergoes 

to successfully colonize and persist for years in the CF lung (117). Other bacteria also 

remodel their lipid A structures so that they can survive and thrive in their respective 

niches, either inside the hosts or in the environment (29).  For example, synthesis of 

penta-acylated lipid A helps bacteria evade immune recognition by TLR4-MD2 (260-

262). Our results showing a weak neutrophil stimulating activity of CF penta-1447 is 

consistent with previous results (44) and thus, suggests that PA might deploy it to 

facilitate initial colonization. Penta-1447 is a precursor of the highly inflammatory hexa-

1685 variant, achieved with the addition of a palmitate chain.  Palmitate addition to PA 

lipid A has been shown to be associated with increased resistance to cationic 

antimicrobial peptides like polymyxin and thus is likely to foster bacterial protection 

from innate immune effector molecules (30). How it is that robust activation of 

neutrophils by palmitate positive hexa-1685 might benefit PA in the CF airway is not 

clear. Perhaps the TLR4 antagonistic activity of its co-expressed isomer penta-1447, 

discovered in our experiments with neutrophils, helps moderate pro-inflammatory 

responses triggered by the hexa-1685 isomer.    

The relatively strong activity of the hepta-1855 variant which is selectively 

synthesized in the late stages of CF disease, came as a surprise. This is because, PA 

undergoes remarkable phenotypic and genotypic changes in order to gradually become 

less virulent with chronic colonization in the CF airway (259, 263, 264).   As described in 
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chapter IV, we speculate that selective activation of neutrophil functions by hepta-1855 

might be important for the bacteria to acquire nutrients (nitrites and nitrates) needed to 

thrive in the hypoxic niche of CF airways (228, 229).    Thus, with the characterization of 

individual PA lipid A acyl variants exclusively associated with CF lung disease, this 

dissertation provides deeper insights about how each modification might help the bacteria 

to successfully occupy their niche in the CF airway and make it a safe haven for them.  

SIGNIFICANCE  

This study demonstrates how subtle changes in LPS structures and variations 

in cellular environments can influence neutrophil responses.  Because neutrophils are 

an essential arm of innate immunity, having a detailed knowledge of what 

immunomodulatory effect each LPS structural variant has on their functions, will 

provide key insights into the bacterial strategy of immune manipulation and what 

counterstrategy we need to deploy to prevent it while ensuring minimum host tissue 

damage. This dissertation thus makes clear the need for future studies to achieve a 

detailed understanding of neutrophil-specific responses and how those are modified by 

other elements of inflammatory microenvironment, including other immune cells or 

molecules involved in adhesion, to the benefit of human health.  
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