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ABSTRACT 

CHARCTERIZATION OF TYPE II TOXIN/ANTI-TOXIN SYSTEMS IN 
AGGREGATIBACTER ACTINOMYTEMCOMITANS 

By 

Blair W. Schneider 

March 30, 2018 

 Microbes express many protective mechanisms in response to environmental 

stress. Toxin/anti-toxin systems encode a biologically active toxin and a labile anti-toxin 

that inhibits the toxin’s activity. These systems are known to contribute to persister cell 

and biofilm formation. A. actinomycetemcomitans thrives in the complex oral microbial 

community and is subjected to continual environmental flux. Little is known regarding 

the presence and function of TA systems in this organism or their contribution survival in 

the oral environment. Using BLAST searches and other informatics tools, we identified 

11 intact TA systems that are conserved across all seven serotypes of A. 

actinomycetemcomitans and represent the RelBE, MazEF and HipAB families of TA 

systems. The A. actinomycetemcomitans TA systems identified selectively responded to 

various environmental conditions that exist in the oral cavity. Transcription of two 

putative RelBE-like TA systems, D11S_1194-1195 and D11S_1718-1719, were induced 

in response to low pH, and were selected for further study. Deletion of D11S_1718-1719 

significantly reduced metabolic activity of stationary phase A. actinomycetemcomitans 

cells during prolonged exposure to acidic conditions. The mutant also exhibited reduced 

biofilm biomass when cultured under acidic conditions. The D11S_1194 and 
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D11S_1718 toxins inhibited in vitro translation of dihydrofolate reductase (DHFR), and 

degraded ribosome-associated, but not free mRNA. In contrast, the corresponding 

antitoxins or equimolar mixtures of toxin and antitoxin had no effect on DHFR 

production or RNA degradation. Preliminary results comparing the proteomes of acid 

stressed mutants to the acid stressed wild-type suggest that metabolism proteins are the 

most affected by these two TA systems. Among these, proteins involved in nucleotide 

metabolism are largely over-represented in the mutants. Other identified proteins are 

directly involved in quorum-sensing, iron transport and virulence (e.g. leukotoxin). 

Results of these studies indicate that the anti-toxin proteins inhibit the activity of the 

corresponding toxins and suggest that D11S_1194-1195 and D11S_1718-1719 are 

RelBE-like type II TA systems that are activated under acidic conditions.  The toxins of 

both systems may function to cleave ribosome-associated mRNA to inhibit translation in 

A. actinomycetemcomitans.   
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CHAPTER ONE: INTRODUCTION 

Periodontal Diseases 

 As far back 1500 BCE physicians were aware that infections within the mouth 

could lead to death if not treated properly (Olsen et al 2014). Though techniques and 

understanding have progressed over the centuries, dental care hit a setback in the late 19th 

century as dentists frequently removed all teeth, no matter how severe the infection or the 

number of teeth actually affected (Olsen et al 2014). In the late 1980s, the correlation 

between oral health and systemic health re-entered the minds of the general public as oral 

infections became associated with the conditions, such as cardiovascular disease, 

complications during pregnancy (including premature birth), and respiratory infections. 

During this time, we also started to see a rise in a class of immuno-compromised patients, 

for example, due to infection with HIV virus and chemotherapy treatments for cancer, 

which were at an increased risk for uncommon infections. 

Periodontal diseases are a group of inflammatory diseases of the periodontium, 

the tissues surrounding the teeth (Albandar 2014). The initial stage of periodontal disease 

is gingivitis, which is characterized by swelling and bleeding of the gingival tissue 

(Armitage 1995). At this point, gingivitis is reversible with proper oral hygiene. If left 

untreated, the disease progresses into a chronic inflammatory condition called 

periodontitis. Periodontitis is characterized by persistent inflammation that leads to the
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destruction of the supporting tissues surrounding teeth, resulting in recession of the 

gingiva and resorption of the alveolar bone. If still left untreated, the affected teeth will 

eventually be lost. At this point, proper treatment is necessary and it can involve 

antibiotic treatments, mechanical debridement of the area, and oral surgery (Dorfer 2003, 

Teughels et al 2014).  

Periodontal diseases are prevalent world-wide in both children and adults (Figure 

1). In the United States, approximately half of the adult population has some form of the 

disease and nearly 1% of children and young adults are affected by aggressive 

periodontitis (Susin et al 2014, Eke et al 2015). In the USA, approximately $14.3 billion 

was spent on periodontal dental care in 1999 and expenditures increased to $81 billion in 

2006, not including the cost of oral hygiene products found in stores (Brown et al 2001, 

Beikler et al 2010). It is also estimated that dental patients pay approximately 45% of 

associated costs out of pocket, which is about four times more than the cost of seeing a 

physician (Mariotti et al 2015). The high cost of treatment, both preventive and reactive, 

could possibly explain why only 40% of American adults visit the dentist regularly 

(Mariotti et al 2015). In addition to the high cost, many other risk factors can increase an 

individual’s likelihood of developing one of the diseases. Risk factors include genetics, 

smoking, other illicit drug use, nutrition, and socio-economic status.  

 Socio-economic status has significant impact on the overall progression of disease 

due to lack of access to care and/or poor education in oral healthcare procedures. It is 

estimated that more than 47 million Americans do not have regular access to dental 

treatment. These Americans are typically low-income, racial minorities, elderly, or from 

a rural community with a variety of reasons for not seeing a doctor (Mariotti et al 2015).  
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For example, cultural differences can influence how people respond to illness, such as a 

religious opposition to modern medicine. Genetic backgrounds can also increase 

disposition to illness, e.g., people of African descent tend to have higher rates of 

aggressive periodontitis when compared to other ethnicities. Another important risk 

factor is tobacco and illicit drug use. Tobacco users are more susceptible to periodontal 

diseases, and they often have more severe disease (Shekarchizadeh et al 2013). With the 

growing opiate epidemic nationwide and marijuana use becoming main-stream, more 

evidence is becoming available about the effects of these drugs on the oral cavity. Heroin 

users experience a variety of oral problems, but usually in the form a unique caries 

pattern, in addition to generalized periodontal diseases, while marijuana users may 

experience early onset of periodontitis that is dependent on how often they smoke the 

substance (Shekarchizadeh et al 2013).  

Periodontitis can be classified in a variety of ways, including chronic, necrotizing, 

or aggressive, as well as localized or generalized. Aggressive periodontitis, unlike the 

other forms, typically develops early in life and has historically been associated with 

children near puberty (Albandar 2014). First described more than 40 years ago, 

aggressive periodontitis is unique from chronic periodontitis for a number of reasons, 

including the age of onset (younger than 25 years old), the high rate of disease 

progression, and no systemic conditions that affect the host’s immune response (Albandar 

2014).  Unlike some of the other periodontitis types, aggressive periodontitis is often 

associated with elevated counts of certain bacterial species, such as Aggregatibacter 

actinomycetemcomitans and Porphyromonas gingivalis, as well as several of the 

herpesviruses (Kononen et al 2014). Prevalence of aggressive periodontitis varies around 
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the world, with 0.1% in Swiss children to 3% Sudanese children being afflicted (Susin et 

al 2014).  

Periodontal diseases are described as inflammatory diseases. Upon colonization of 

the oral cavity, the host innate immune system detects and responds to the microbes. 

Similar to the gastrointestinal tract, the biofilm within the oral cavity is necessary for 

health, which means that the periodontal tissues will constantly have a low-grade immune 

response in the area to maintain the biofilm (Kulkarni et al 2014). In the progression of 

periodontal disease, there is shift in the immune response from cell-mediated to humoral. 

In aggressive periodontitis, however, there is an increase in the number of T-cells and a 

decrease in the macrophage population, as well over-activated neutrophils in the blood 

and potentially defects in the neutrophil chemotaxis (Kulkarni et al 2014).  

 

Biofilms  

The microbiota within in the oral cavity is typically found in a biofilm, and is 

commonly called dental plaque. The formation of this biofilm is dependent upon the 

presence of glycoproteins coating the tooth surface that are derived from the saliva of the 

host, referred to as a pellicle (Huang et al 2011, Mahajan et al 2013). Early colonizing 

bacteria adhere to this saliva-derived film. As these bacteria begin to grow, an 

extracellular matrix is produced that stabilizes the biofilm by aiding in further attachment 

and enhancing bacterial communication. During this time, both the extracellular matrix 

and the adherent bacteria provide additional sites for additional bacterial species to 

adhere and join the biofilm, culminating in a mature microbial community (Figure 2). 
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 During this maturation process, more than 700 different species of bacteria may 

colonize the oral biofilm. As cell density increases, the extracellular matrix changes 

(secreted proteins, compounds, and extracellular DNA accumulate), a gradient of oxygen 

and nutrients forms, and ultimately, biofilm cells are dispersed to the planktonic state 

(Huang et al 2011, Mahajan et al 2013). Dispersion occurs when cells, both alive and 

dead, are released from the biofilm, by both active and passive processes (i.e. due to lack 

of sufficient nutrients or by the shear force of the saliva flowing across the tooth surface) 

and these cells can colonize other tissue or tooth surfaces, or may be cleared from the oral 

cavity. Importantly, bacterial cells in a biofilm take on phenotypic traits that are markedly 

different from characteristics seen during planktonic growth.  For example, Pseudomonas 

aeruginosa is a well-known opportunistic pathogen that is associated with biofilms on 

medical implants. Many early studies showed that Pseudomonas aeruginosa was resistant 

to antibiotics when grown in a biofilm, due to the inability of the antibiotic to disseminate 

into the extracellular matrix, resulting in an antibiotic gradient (Anwar et al 1989, 

Holmes et al 1989, Hoyle et al 1990, Hoyle et al 1991). 

 Since the extracellular matrix can act as a passive defense mechanism by limiting 

outside environmental influences on the biofilm, it also stands to reason that the 

extracellular matrix can form other gradients that will have influences on biofilm growth 

and which bacteria can adhere (Huang et al 2011, Mahajan et al 2013, Amarasinghe et al 

2009). For example, the pH in crevicular fluid can vary depending on health of the 

sample site and food consumption, yet many species of bacteria within the oral cavity are 

sensitive to pH fluctuation (Bickel et al 1985, Eggert et al 1991, Kleinberg et al 1969).  If 

a person frequently eats and drinks foods with high simple sugar content, the bacteria 
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within the oral cavity will produce massive amounts of lactic acid and other organic 

acids. This results in a shift of the pH in the biofilm, which will eventually lead to the 

elimination of acid sensitive bacteria. This shift in biofilm composition will allow the 

acid-tolerant bacteria, such as Streptococcus mutans, to survive and proliferate, which 

can result in the erosion of the tooth enamel, resulting in dental caries (Socranksy et al 

2005, Hajishengallis et al 2012).  

General studies looking at the biofilm composition of healthy and diseased oral 

cavities showed that certain species of bacteria are found in increased numbers in the 

diseased mouth. This suggests that disease is caused by a shift in biofilm composition, 

and may result in loss of normal host-microbe homeostasis (i.e. dysbiosis). If left 

untreated, disease progresses and bacteria can disseminate to have systemic effects. 

Multiple studies have shown that there is correlation between oral health and many 

systemic diseases, such as diabetes, endocarditis, brain and lung abscesses, rheumatoid 

arthritis and osteomyelitis (Yew et al 2014, Pyysalo et al 2016, Hagiwara et al 2009, 

Konig et al 2016, Sharma et al 2017). 

 

Aggregatibacter actinomycetemcomitans 

 A. actinomycetemcomitans is a gram-negative, non-spore forming, non-motile, 

facultative anaerobic coccobacillus commensal that is commonly located within the oral 

cavity (Figure 3). A. actinomycetemcomitans was first isolated in 1912 from an oral 

lesion, it was not considered a member of oral microbiota until 1975 (Klinger 1912, 

Kilian et al 1975). Although it is generally considered a commensal, it has the potential 

to be an opportunistic pathogen. A. actinomycetemcomitans has been associated with 
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many systemic conditions, such as aggressive periodontitis, endophthalmitis, 

endocarditis, urinary tract infections, rheumatoid arthritis, and brain abscesses (Binder et 

al 2003, Yew et al 2014, Townsend et al 1969, Konig et al 2016, Pyysalo et al 2016).  

A. actinomycetemcomitans, like many pathogens, expresses several virulence factors 

that aid its ability to survive within the host. The leukotoxin is a protein that is directly 

associated with disease progression in some populations. Leukotoxin is a protein of the 

RTX family (repeats in toxin) that binds to leukocytes to induce apoptosis (Raja et al 

2014, Taichman et al 1980, Yamaguchi et al 2004, Korostoff et al 2000). Studies have 

shown that a specific strain of A. actinomycetemcomitans, strain JP2, is highly associated 

with aggressive periodontitis. This strain has a deletion in the promoter region of the 

leukotoxin gene that results in high-level expression of this protein. Leukotoxin is unique 

among other RTX-family proteins due to the fact that the leukotoxin has a specific target 

(LFA-1), which allows it to target polymorphonuclear leukocytes, monocytes and T-cells 

(Spitznagel et al 1991, Brogan et al 1994, Hritz et al 1996, Taichmann et al 1986, 

Henderson et al 2002, Raja et al 2014). Strains of A. actinomycetemcomitans that express 

high levels of leukotoxin also tend to secrete more vesicles, which can contain the 

leukotoxin and actinobacillin, which is a bacteriocin produced by A. 

actinomycetemcomitans that inhibits the growth of other bacterial species (Henderson et 

al 2002, Raja et al 2014, Stevens et al 1987, Hammond et al 1987, Oldak et al 2017).   

 Other virulence factors include a catalase, IgG protease, ompA-like proteins, 

cytolethal-distending toxin, a chemotaxis inhibitor, a capsular polysaccharide 

biosynthetic enzymes, and fimbriae (Raja et al 2014). The cytolethal distending toxin is 

believed to suppress the host immune response by interfering with the cell division cycle 
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(Henderson et al 2002). OmpA proteins in E. coli have been associated with virulence; in 

the case of A. actinomycetemcomitans, Omp34 binds to the IL-10 receptor to modulate 

monocyte function (Henderson et al 2002).  Capsular polysaccharides are generally 

associated with the ability of a bacterium to evade the host immune response (i.e. by 

inhibiting the complement cascade, and mimicking host antigens) (Agarwal et al 2014, 

Cress et al 2014). There are currently seven recognized serotypes of A. 

actinomycetemcomitans and an unusual sugar, 6-deoxy-D-talose is found in many of the 

serotypes, but its function is currently not known (Henderson et al 2002, Nakano et al 

2000, Suzuki et al 2000). The fimbriae are important for disease as well as general 

survival within the oral cavity because they aid in adherence to tissues and biofilm 

formation, however, the presence of fimbriae is not the sole determining factor for 

biofilm formation. 

A. actinomycetemcomitans is also unique in that it prefers to utilize a carbon 

source that does not result in the highest growth rates. Instead, the organism 

preferentially utilizes lactate that is present in the biofilm extracellular matrix, but not 

utilized by many of the bacterial species found within the oral cavity (Brown et al 2007). 

It is not currently clear why A. actinomycetemcomitans prefers to use this growth limiting 

carbon source even in the presence of other carbon sources, such as glucose. As 

mentioned previously, many of the bacteria within the oral cavity can utilize simple 

sugars from the host’s diet to produce lactic acid as a by-product. With an abundance of 

lactate within the extracellular matrix and high competition for the simple sugars, it is 

plausible that A. actinomycetemcomitans evolved to prefer the carbon sources that are 

readily available in the gingival crevice.  
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Competition for nutrients in the biofilm can affect the composition and health of 

the bacterial community. One common limiting growth factor for many bacteria within 

the human body is iron. Many bacteria utilize siderophores that can be secreted to 

scavenge iron from extracellular sources, but A. actinomycetemcomitans does not encode 

any of the genes commonly associated these iron-acquiring systems (Rhodes et al 2006).  

Common sources of iron sources found in the human host include lactoferrin, 

hemoglobin, and transferrin, however, A. actinomycetemcomitans is not able to utilize 

these sources either (Rhodes et al 2006). Further experimental assays eventually revealed 

that A. actinomycetemcomitans is able to utilize hemin using a TonB-ExbB-ExbD-like 

system, as well as inorganic iron using a periplasmic-binding protein-dependent transport 

system (Rhodes et al 2006). A more recent study showed that A. actinomycetemcomitans 

may internalize host derived catecholamines, which can function as pseudo-siderophores 

by scavenging iron from host-derived chelators, such as lactoferrin (Figure 4; Weigel et 

al 2015, Freestone et al 2000, Sandrini et al 2010).  

Living in a multi-species biofilm presents a multitude of stimuli to the bacteria. It 

has been suggested that the progression of periodontal diseases is linked to the formation 

of the dental plaque and a shift in the biofilm composition at the inflamed sites (Kononen 

et al 2014). For example, A. actinomycetemcomitans can be detected in heathy children at 

all ages in very low numbers. There are multiple studies that suggest this number 

increases in patients that exhibit localized aggressive periodontitis.  

A. actinomycetemcomitans was one of the first oral pathogens to be examined for 

production of the quorum-sensing signal, autoinducer-2 (AI-2). Previous studies showed 

that A. actinomycetemcomitans contained the genes necessary to produce AI-2 (Blehert  
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et al 2003, Fong et al 2001, Frias et al 2001, McNab et al 2003, Novak et al 2010, Wen 

et al 2004). The AI-2 pathway in A. actinomycetemcomitans has been shown to regulate 

biofilm formation, leukotoxin expression as well as iron acquisition genes, all of which 

affect the virulence of the bacteria (Fong et al 2003, Shao et al 2007). Previous research 

in our laboratory using A. actinomycetemcomitans showed that the AI-2 induces the 

expression of the QseBC two-component system (Novak et al 2010). In E. coli, QseBC is 

a quorum sensing regulator for the motility genes and deletion of qseB resulted in a large 

descrease in biofilm mass (Gonzalez et al 2006). Figure 5 shows results of an assay in E. 

coli that suggests that the a functional MqsR protein is needed for biofilm formation and 

Gozalez et al were also able to show that deletion of the mqsR also resulted in a reduction 

in the transcription of qseB as well as more than 40 other genes by acting as a global 

regulator of gene transcription (Gonzalez et al 2006, Yamuguchi et al 2009). A mqsR-

like gene has also been identified in A. actinomycetemcomitans (Novak et al 2010).  

MqsR is part of a two-gene operon that has been associated with biofilm 

formation, motility, and persister cell phenotype (Karimi et al 2014, Merfa et al 2016, 

Kim et al 2010). MqsRA has previously been shown to be a global gene regulator that 

can inhibit bacterial growth and protein translation in vivo (Kasari et al 2010).  

Expression of this protein does not lead to cell death immediately, but rather enables the 

cells to survive for a short period when exposed to environmental stress. 
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Toxin/Anti-Toxin Systems 

 MqsR has since been determined to be a protein that functions as a sequence-

specific mRNA interferase (Yamaguchi et al 2009). MqsR has also been shown to be part 

of a small, two gene operon called a toxin/anti- toxin (TA) system. Unlike many other 

proteins that are called toxins, the toxin is only toxic within the bacterial cell; it is not 

intended to kill other bacteria or host cells. Toxins are often co-expressed with their 

associated anti-toxin. As the name implies, the anti-toxin acts on the toxin to inhibit its 

function.  There are currently six recognized classes of TA systems that are differentiated 

from each other based on how the anti-toxin interacts with the toxin (Kedzierska et al 

2016, Mruk et al 2014).  

In all classes of TA systems, the toxin is a protein that can act within the cell in a 

variety of modes to alter gene expression. The anti-toxin is usually labile and it does not 

need to be a protein to inhibit the toxin (Figure 6). In type I systems, the anti-toxin is an 

anti-sense RNA that binds directly to the toxin’s mRNA preventing its translation. In type 

II systems, the anti-toxin is a protein that binds directly to the toxin’s protein to inhibit 

function. In type III systems, the anti-toxin is an RNA that binds directly to the toxin 

protein to inhibit its function. In type IV systems, the anti-toxin is a protein that binds to 

the target of the toxin rather than the toxin itself. In type V systems, the anti-toxin is a 

protein that cleaves the mRNA of the toxin to inhibit its translation. In type VI systems, 

the anti-toxin acts as a protease adaptor to enable toxin protein degradation, which is not 

shown in the Figure 6 (Kedzierska et al 2016, Mruk et al 2014). There are also types of 

restriction-modification systems (Figure 6) that share many similarities to the TA 

systems.
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Figure 6. Types of TA systems. In all cases, the toxin itself is a protein. Type II 

restriction-modification system anti-toxins methylate the genomic DNA to protect it from 

cleavage by the toxin. Type I TA system anti-toxin is an antisense RNA that binds 

directly to the toxin’s mRNA. Type II TA system anti-toxin is also a protein that binds 

directly to the toxin protein. Type III TA system anti-toxin is RNA that binds to the 

protein toxin. Type IV TA system anti-toxin is a protein that binds to the target of the 

toxin. Type V YA system anti-toxin is a protein that cleaves the toxin mRNA. In the 

diagram above, A is anti-toxin; T is toxin. Copyright permission to reuse is granted by 

Creative Commons Attribution Non-Commercial License and the authors (Mruk et al 

2014). 
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 Type I and II systems are widely found among the entire prokaryotic world. In 

fact, many species contain multiple copies and many species contain no copies. There is 

growing evidence that TA systems respond to environmental cues to arrest cell growth. 

The advantage of these systems is that if environmental conditions are unfavorable to 

growth, such as lack of a carbon source, the toxins can temporarily stop cell growth 

without killing the cell until conditions become favorable. As some species contain 

multiple copies, it is theorized that different systems will respond to different stress 

conditions (Ghafourian et al 2014, Kedzierska et al 2016, Mruk et al 2014). With the 

type II TA systems, there are at least ten families of systems that are classified based on 

how the toxin functions (Table 1). Many of the systems, but not all, directly affect gene 

expression either by directly regulating translation, but also indirectly by acting as gene 

regulators. 

 Type II TA systems have been recently investigated as potential therapeutic 

targets. Possible applications include, artificial activation of the toxin since prolonged 

exposure to stress will lead to cell death, and the mass production of the toxin itself. 

Utilizing the bacteria’s own defense systems could prove to be a low-cost, non-invasive 

method to treat certain infections (Lee et al 2016).
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Table 1. Type II TA system families. There are currently ten recognized families of 

type II systems that all function to control cell growth and activity (Bukowski et al 2011, 

Ghafourian et al 2014, Mruk 2014, Van Melderen et al 2009). 

Family Activity Mechanism of Toxicity 

ccdAB Gyrase inhibitor Transcription inhibition 

parDE Gyrase inhibitor Transcription inhibition 

Phd/doc Binds 30S ribosomal subunit Translation inhibition 

maxEF Endoribonuclease Translation inhibition 

RelBE Ribosome-binding endoribonuclease Translation inhibition 

higAB Ribosome-binding endoribonuclease Translation inhibition 

vapBC Endoribonuclease Translation inhibition 

ζε Phosphotransferase 
Peptidoglycan biosynthesis 

inhibition 

hipAB Serine/Threonine Kinase Translation inhibition 

hicAB Endoribonuclease Translation inhibition 
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Type II Toxin/Anti-Toxin Systems and A. actinomycetemcomitans 

 The genome for A. actinomycetemcomitans encodes approximately 1877 open-

reading frames, with 32% having no known function. Among those unknown genes, 6% 

are unique to A. actinomycetemcomitans (Henderson et al 2003). Previous work in the lab 

suggests A. actinomycetemcomitans contains at least one type II TA system. More 

evidence that these systems may exist and function in A. actinomycetemcomitans is 

indicated by a number of studies.  

One general study looked at the effects of temperature and pH on the protein 

expression of A. actinomycetemcomitans (Goulhen et al 2003). This study showed that 

each of the stress conditions showed different protein expression patterns, with some 

proteins being more abundant and others being less abundant. Since it has been suggested 

that bacteria contain multiple TA systems to adapt to changing environmental stress 

conditions, it is possible that multiple TA systems exist within A. actinomycetemcomitans 

that respond differentially to stress. Another study determined viability of A. 

actinomycetemcomitans across a pH range (Bharracharjee et al 2011). By storing and 

passaging stationary phase bacteria, Bharracharjee et al showed a decrease in viability 

over time. As A. actinomycetemcomitans grows to stationary phase, the pH of the 

medium becomes acidic. However, if the pH of spent medium was adjusted to neutral, 

then the cells would continue to grow without added nutrients. Since stationary phase is 

not necessarily a marker for bacterial cell death, it is possible that the bacteria are able to 

survive for a period of time in the unfavorable environmental conditions before dying. 

 Most strains of A. actinomycetemcomitans contain a gene that encodes for a 

catalase and certain strains are highly resistant to killing by hydrogen peroxide (Miyasaki 
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et al 1986). Miyasaki et al did not investigate gene expression changes as a result of the 

reactive oxygen species stress, however, a study in C. crescentus suggests that ParDE and 

RelBE TA systems can and do respond to general oxidative stress.  Another study in M. 

smegmatis showed that a ParDE-like system also responded to oxidative stress (Fiebig et 

al 2010, Gupta et al 2016). As mentioned previously, A. actinomycetemcomitans prefers 

to use lactate as a carbon source when it is present. The utilization of lactate inhibits the 

transport of glucose into the bacterial cell, so it is possible that the gene expression 

changes responsible for this reaction are due to TA system activation (Brown et al 2007). 

Finally, certain isolates of A. actinomycetemcomitans have been shown to invade 

epithelial cells (Henderson et al 2003). This drastic change in environment could also 

activate TA systems to ensure survival of the bacteria within the host cell in a variety of 

ways, including increasing the likelihood of persister cell formation (Helaine et al 2014, 

Cardenas-Mondragon et al 2016).  

 At present, the presence of type II TA systems in A. actinomycetemcomitans has 

not been investigated. Based on previous work down within the laboratory, it is 

hypothesized that A. actinomycetemcomitans contains multiple type II TA systems and 

that these systems aid in the adaptation and survival of the organism with the oral cavity. 

Understanding how oral bacteria, especially the pathogens, survive within the oral cavity 

in the constantly fluctuating environment will help researchers develop novel therapies 

for pathogens, including A. actinomycetemcomitans, that utilize type II TA systems for 

survival that will be cost-effective and less invasive to the patient.  
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CHAPTER TWO: MATERIALS AND METHODS 

 

 Bacterial strains, plasmids, and media. The bacterial strains and plasmids used 

in this study are listed in Table 2A-D. Luria-Bertani (LB) broth and LB agar (LB broth 

plus 1.5% agar) were routinely used for the propagation and plating of E. coli. Bacteria 

were grown at 37oC in either a shaking incubator for planktonic growth or a 

microaerophlic (5% CO2) incubator for plates.  Brain-heart infusion (BHI) broth and BHI 

agar (BHI plus 1.5% agar), Super Optimal Broth with Catabolite repression (SOC; 2% 

tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, and 20 mM 

Glucose) and Tryptone-Yeast Extract Broth (TYE; 1% tryptone and 0.5% yeast extract) 

and TYE agar (TYE plus 2% agar)  were routinely used for the propagation and plating 

A. actinomycetemcomitans, A. actinomycetemcomitans strain 652 is afimbriated and was 

grown at 37oC under microaerophilic conditions, either in a candle jar for plates or in an 

incubator with 5% CO2 for broth cultures. In some assays, A. actinomycetemcomitans 

was grown in chemically defined medium (CDM) as described by Socransky et al. (1985) 

with some modifications (Table 3A-B). In some assays, the pH of the broth was adjusted 

to various points between 5.0 and 8.0.  When necessary, medium was supplemented with 

25 ug mL-1 kanamycin, 50 ug mL-1 spectinomycin, 12.5 ug mL-1 tetracycline, 50 ug mL-1 

ampicillin, 40% sucrose or 1mM isopropyl B-D-1-thiogalactopyranoside (IPTG).  
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Identification of putative TA systems. Putative type II toxin/anti-toxin (TA) 

systems in A. actinomycetemcomitans were identified by two methods. First, the genome 

of A. actinomycetemcomitans strain D11S-1, a serotype c strain that is related to strain 

652, (Chen et al 2009) was probed for sequence similarities to known E. coli TA systems 

using the protein basic local alignment search tool (pBLAST; NCBI). The sequences for 

known toxins that were used in these BLAST searches are listed in Table 4. Next, the 

entire genome of A. actinomycetemcomitans strain D11S-1 was examined using TAfinder 

(http://202.120.12.133/TAfinder/TAfinder.php) to identify operons composed of two 

small genes that were not previously identified in the BLAST searches.  TA Finder 

detects type II TA loci based on sequence alignments and conserved domain searches 

against a database of known TA families. The genes that were identified as putative TA 

systems in strain D11S-1 were subsequently used to probe 33 other A. 

actinomycetemcomitans genome sequences, representing all seven serotypes that were 

present in the NCBI database (Table 5).

http://202.120.12.133/TAfinder/TAfinder.php
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Table 2A. A. actinomycetemcomitans strains used in this study 

Bacterial strain Description Source 

652 Wild-type, serotype C Laboratory Strain 

652-BWS1 652 Δ1194-1195 This study 

652-BWS2 652 Δ1718-1719 This study 

652-BWS1C 652 Δ1194-1195::1194-1195 This study 

652-BWS2C 652 Δ1718-1719::1718-1719 This study 

 

 

 

Table 2B. Escherichia coli strains used in this study 

Bacterial strains Description Source 

XL1-Blue MRF1 
Δ(mcrA)183 Δ(mcrCB-hsdmSMR-mrr)173 
endA1 supE44 thi-1 recA1 gyrA96 relA1 
lac[F' proAB. lacIqZΔM15 Tn10 (Tcr)] 

Stratagene 

One Shot Top10 

 
F- mcrA Δ( mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 Δ lacX74 recA1 araD139 
Δ( araleu)7697 galU galK rpsL 

(StrR) endA1 nupG 

Thermo Fisher 
Scientific 
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Table 2C. Plasmids for A. actinomycetemcomitans 

Plasmid Description Source 

pJT1 SpR suicide vector Juárez-Rodríguez 2013b 

pJT4 KmR promoterless expression vector Juárez-Rodríguez 2013b 

pBWS1 pJT1 derived, 1194-1195 This study 

pBWS1 pJT1 derived, 1718-1719 This study 

pBWS1C pJT4 derived, 1194-1195 This study 

pBWS2C pJT4 derived, 1718-1719 This study 

 

Table 2D. Plasmids for E. coli 

Plasmid Description Source 

pQE60 

AmpR expression plasmid with C-terminal 
6X His-tag, multiple cloning site and T5 
promoter/lac operator, T5 transcription 

start 
 

Qiagen 

p1194 pQE60 derived, 1194 This study 

p1195 pQE60 derived, 1195 This study 

p11TA pQE60 derived, 1195-1195 This study 

p1718 pQE60 derived, 1718 This study 

p1719 pQE60 derived, 1719 This study 

p17TA pQE60 derived, 1718-1719 This study 
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Table 3. CDM composition 

Chemical/Compound 

Concentration 

(mg/L) 

Chemical/Compound 

Concentration 

(mg/L) 

ZnSO4 0.7 L-Serine 100 

KI 0.1 L-Lysine HCl 100 

CuSO4 0.065 L-Histidine 135.1 

Boric Acid 0.5 L-Glutamine 100 

MgSO4 · 7 H2O 700 L-Asparagine 113.6 

FeSO4 · 7 H2O 5 L-Methionine 100 

MnSO4 5 L-Isoleucine 100 

NaCl 100 L-Proline 100 

K2PO4 200 L-Aspartic Acid 100 

CaCl2 100 L-Phenylalanine 100 

KH2PO4 1000 L-Tyrosine 20 

NaMo4 0.5 L-Cystine 5 

KNO3 100 L-Ornithine HCl 20 

L-Glutamic Acid 249.6 L-Hydroxyproline 20 

DL-Alanine 200 Adenine 12.5 

L-Leucine 100 Guanine 10 

Glycine  100 Cytosine 13.5 

L-Valine 100 Thymine 10 

L-Tryptophan 100 Xanthine 10 

L-Threonine 100 Hypoxanthine 10 
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Table 3 (continued). CDM Composition 

Chemical/Compound 

Concentration 

(mg/L) 

Chemical/Compound 

Concentration 

(mg/L) 

Uracil 10 D-Biotin 0.1 

Choline Chloride 50 DL-6,8-Thioctic Acid amide 0.1 

Β-Alanine 10 Vitamin B12 0.01 

Pyridoxal 1 NaHCO3 1000 

Pyridoxine HCl 1 L-Cysteine 650 

Pyridoxamine · 2HCl 1 Glucose 3600 

Spermidine · 3 HCl 1   

Nicotinic Acid 1 Magnesium L-Lactate* 4050 

Nicotinamide 1   

Calcium Pentothenate 1   

Spermine · 4 HCl 1   

Thiamine HCl 1   

Myo-inositol 10   

Nicotinamide adenine 

dinucleotide 

1   

p-Aminobenzoic Acid 0.1   

Pimelic Acid 0.1   

Folic Acid 1   

Riboflavin 1 *MgSO4 was not added with lactate 



 

28 
 

Table 4. Protein sequences used for BLAST searches 

Toxin Toxin Sequence (protein) 

ccdB mqfkvytykr esryrlfvdv qsdiidtpgr rmviplasar llsdkvsrel ypvvhigdes wrmmttqmvs vpvsvigeev 

adlshrendi knainlmfwg i 

parE mlpvlwlesa dtdldditsy iarfdidaae rlwqrlrgcv lplsehpyly ppsdrvpglr eivahpnyii lyrvttssve 

vvnviharrq fp 

phD mqsinfrtar gnlsevlnnv eageeveitr rgrepavivs katfeaykka aldaefaslf  dtldstnkel vnr  

mazF mvsryvpdmg dliwvdfdpt kgseqaghrp avvlspfmyn nktgmclcvp cttqskgypf evvlsgqerd 

gvaladqvks iawrargatk kgtvapeelq likakinvli g  

chpK mtrgeiwwvd lgipfgsepg fqrpvlivqn nafnhsnint iivvplttnl hlatapgnsm lkkedtnlsk dsivnvsqiv 

tidrerfikk vteiknkhmk kveegmklvl sles  

kid xergeiwlvs ldptagheqq gtrpvlivtp aafnrvtrlp vvvpvtsggn fartagfavs  ldgvgirttg vvrcdqprti 

dmkarggkrl ervpetimne vlgrlstilt 

pemK mlkyqlknen gwmhrrlvrr ksdmergeiw lvsldptagh eqqgtrpvli vtpaafnrvt rlpvvvpvts ggnfartagf 

avsldgvgir ttgvvrcdqp rtidmkargg rlervpeti mnevlgrlst ilt  

chpBK mvkkseferg divlvgfdpa sgheqqgagr palvlsvqaf nqlgmtlvap itqggnfary agfsvplhce egdvhgvvlv 

nqvrmmdlha rlakriglaa devveeallr lqavve 

relE  mayfldfder alkewrklgs tvreqlkkkl vevlesprie anklrgmpdc ykiklrssgy rlvyqvidek vvvfvisvgk 

rersevysea vkril  

yoeB mkliwseesw ddylywqetd krivkkinel ikdtrrtpfe gkgkpeplkh nlsgfwsrri teehrlvyav tddslliaac 

ryhy  

ygjN mhlitqkalk daaekypqhk telvalgnti akgyfkkpes lkavfpsldn fkyldkhyvf nvggnelrvv amvffesqkc 

yirevmthke ydfftavhrt kgkk  

yafO mrvfktklir lqltaeelda ltadfisykr dgvlpdifgr dalyddsftw plikfervah ihlanennpf ppqlrqfsrt 

ndeahlvycq gafdeqawll iailkpephk lardnnqmhk igkmaeafrm rf  

ygiU mekrtphtrl sqvkklvnag qvrttrsall nadelgldfd gmcnviigls esdfyksmtt ysdhtiwqdv yrprlvtgqv 

ylkitvihdv livsfkek  
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Table 4 (continued). Protein sequences used for BLAST searches 

Toxin Toxin Sequence (protein) 

mqsR mekrtphtrl sqvkklvnag qvrttrsall nadelgldfd gmcnviigls esdfyksmtt ysdhtiwqdv yrprlvtgqv 

ylkitvihdv livsfkek  

yafQ miqrdieysg qyskdvklaq krhkdmnklk ylmtllinnt lplpavykdh plqgswkgyr dahvepdwil iykltdkllr 

fertgthaal fg  

higB mhlitqkalk daaekypqhk telvalgnti akgyfkkpes lkavfpsldn fkyldkhyvf nvggnelrvv amvffesqkc 

yirevmthke ydfftavhrt kgkk  

vapC mldtnicsfi mreqpeallk hleqsvlrgh rivvsaitys emrfgatgpk asprhvqlvd afcerldavl pwdraavdat 

teikvalrla gtpigpndta iaghaiaaca ilvtnnvref ervpglvled wvr  

Zeta manivnftdk qfenrlndnl eelvqgkkav esptafllgg qpgsgktslr saifeetqgn  vvvidndtfk qqhpnfdelv 
klyekdvvkh atpysnrmte alisrlsdqg ynlviegtgr ttdvpiqtat mlqakgyetk tyamavpkie sylgtierye 
tmyaddpmta ratpkqahdi vvknlptnle tlhktglfsd irlynregvk lyssletpsi spketlerel nrkvsgkeiq 
ptlerieqkm vqnqhqetpe fkaiqqkmes lqpptppipk tpklpgi  
 

hipA mpklvtwmnn qrvgeltkla ngahtfkyap ewlasryarp lslslplqrg nitsdavfnf fdnllpdspi vrdrivkryh 
aksrqpfdll seigrdsvga vtlipedetv thpimawekl tearleevlt aykadiplgm ireendfris vagaqektal 
lrigndwcip kgitptthii klpigeirqp natldlsqsv dneyycllla kelglnvpda eiikagnvra laverfdrrw 
naertvllrl pqedmcqtfg lpssvkyesd ggpgiarima flmgssealk drydfmkfqv fqwligatdg haknfsvfiq 
aggsyrltpf ydiisafpvl ggtgihisdl klamglnask gkktaidkiy prhflatakv lrfpevqmhe ilsdfarmip 
aaldnvktsl ptdfpenvvt avesnvlrlh grlsreygsk      
   

hicA mgktdkllak flnskktfew delvvlfssl gyvkkemqgs rvrffnaein htilmhrphp esyikggtlk aikqnlkeag ll
  

yncN mkqsefrrwl esqgvdvang snhlklrfhg rrsvmprhpc deikeplrka ilkqlgls  
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Table 5. Strains of A. actinomycetemcomitans used for BLAST searches 

Strain Serotype GenBank Accession Number 

624 A CP012959.1 

D7S-1 A CP003496.2 

H5P1 A AEJK00000000.2 

D17P-3 A ADOA00000000.2 

A160 A AJME00000000.2 

ANH9381 B CP003099.1 

HK1651 B CP007502.1 

Y4 B AMEN00000000.1 

RhAA1 B AHGR00000000.1, JPZI00000000.1 

SCC1398 B AEJP00000000.2 

I23C B AEJQ00000000.2 

SCC4092 B AJMF00000000.2 

S23A B AJMH00000000.2 

D11S-1 C CP001733.2 

SC38S C AZTR00000000.1 

SCC2302 C AEJR00000000.2 

D17P-2 C ADOB00000000.2 

AAS4A C AJMG00000000.2 

SA2200 D AZTY00000000.1 

SA269 D AZTX00000000.1 

SA3033 D AZTW00000000.1 
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Table 5 (continued). Strains of A. actinomycetemcomitans used for BLAST searches 

Strain Serotype GenBank Accession Number 

SA3733 D AZTV00000000.1 

SC1083 E AEJM00000000.1 

SA2149 E AZTT00000000.1 

SC936 E AZTP00000000.1 

SA2876 E AZTS00000000.1 

ANH9776 E AZTZ00000000.1 

SA3096 E AZTQ00000000.1 

SCC393 E AEJN00000000.2 

SC29R F AZTO00000000.1 

D18P1 F AEJO00000000.2 

NUM 4039 G AP014520.1 
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Expression of putative TA systems under environmental stress. The 

expression of the putative TA systems was determined under various environmental 

stress conditions using real-time PCR. Cells were grown in CDM supplemented with 20 

mM glucose or 20 mM lactate (Brown et al 2007) at 37oC in an aerobic incubator to mid-

log phase and were subsequently exposed to various environmental stress conditions for 

20 minutes. Environmental conditions used were: acidic pH (pH 5.0), oxidative stress 

(0.1% hydrogen peroxide), microaerophilic conditions (5% carbon dioxide), elevated 

temperature (39oC), anaerobic conditions, iron starvation (250 μM bipyridyl), and 

reduced temperature (30oC). Bacteria were then harvested for RNA extraction using the 

cesium chloride step-gradient method as described by Reddy et al. (2001). RNA was 

reverse transcribed to cDNA using random primers provided in the cDNA synthesis kit 

(Quanta Bio), and the resulting cDNA was used in SYBR Green real-time PCR using 

primers for the TA system (Table 6A) as recommended by the manufacturer (Quanta 

Bio). Data was analyzed using the ΔΔCt method and fold change expression was 

determined by normalizing the results to the levels of an unstressed control (5S rRNA 

was used for normalization). 

 

 Generation of expression plasmids. DNA manipulations were carried out as 

described by Juárez-Rodríguez et al. (2013). PCR products were amplified using high 

fidelity PCR supermix as recommended by manufacturer (Invitrogen and Alkali Science). 

All primers (Table 6B) used in this study were flanked with restriction enzyme 

recognition sites. Primers were designed using the genome sequence of A. 

actinomycetemcomitans D11S-1 strain available in the NCBI database. Restriction 
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enzymes and ligation reactions were used as recommended by the manufacturer (New 

England Biolabs).  Transformation of both E. coli and A. actinomycetemcomitans was 

done by electroporation (2 mm cuvette with 1800 V, 25 uF, 200 Ω). For transformation 

of E. coli, ~3 ug plasmid was used for electroporation. Plasmids that were transformed 

into A. actinomycetemcomitans were first produced from 25 mL of E. coli harvested for 

plasmid extraction using a miniprep kit as recommended by the manufacturer (Qiagen 

and Zymo Research) and 20 ug of plasmid were used for each electroporation. 

Transformant colonies were recovered in SOC broth for 45 minutes or 5 hours, for E. coli 

and A. actinomycetemcomitans, respectively, and then plated on either LB agar or BHI 

agar supplemented with appropriate antibiotics. Samples were sent to the DNA 

sequencing facility for further confirmation of gene insertion. 

 

 Generation of isogenic deletion mutants. The generation of markerless deletion 

mutations was carried out as described by Juárez-Rodríguez et al. (2013) with some 

modifications. PCR fragments of the upstream and downstream flanking regions for the 

genes of interest were amplified by PCR and cloned into the pJT1 suicide vector (Table 

6B). pJT1 was first cloned into E. coli cells to ensure propagation of the plasmid. 

Colonies showing spectinomycin resistance were analyzed for gene insertion. Plasmids 

that were positive for gene insertion were analyzed by restriction digestion for 

appropriate size and sent to the DNA sequencing facility for further confirmation. Once 

confirmed, plasmid was harvested for use in A. actinomycetemcomitans. Electroporated 

cells were recovered in SOC broth for 5 hours before being plated. Colonies that 

underwent a single recombination event were selected on the agar using spectinomycin 
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resistance. Multiple colonies were selected and sub-cultured in BHI broth with antibiotics 

and then passaged into BHI broth lacking antibiotics for a minimum of two days. A final 

passage was performed into TYE broth supplemented with IPTG to induce the expression 

of levansucrase, encoded by sacB carried on the plasmid vector. Levansucrase is an 

enzyme that forms long levan chains from sucrose and is lethal to gram negative bacteria 

in the presence of sucrose. The cultures were then serially diluted and plated on TYE agar 

supplemented with IPTG and sucrose. A minimum of 100 colonies were replica plated 

from the TYE agar plate on to TYE agar plates with IPTG and sucrose and BHI with 

antibiotics. Colonies that were sucrose resistant and antibiotic sensitive were selected for 

PCR confirmation that the genes of interest were deleted. Colonies that were positive for 

deletion were sent to DNA sequencing facility for further confirmation. 
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 Measurement of metabolic activity. To assay for metabolic activity of isogenic 

mutants over time, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT) assay was performed as described by Wang et al. (2010) with some 

modifications. Cells were grown to stationary phase, removed from the incubator 

(t=0), and stored at room temperature for up to seven days. At each time point, 3 mL of 

culture was pelleted, re-suspended in fresh BHI, diluted 1:10 into fresh BHI broth 

containing MTT. Cultures were then incubated for two hours (approximately one 

doubling period) at 37oC under microaerophilic conditions before being harvested. When 

MTT is dissolved, the initial solution is yellow. Cells with metabolic activity will reduce 

the MTT via NADH+/NADPH+-dependent oxidoreductase enzymes in the electron 

transport chain into water-insoluble formazan (Stepaneko et al 2015). The resulting 

formazan crystals were harvested by centrifugation and allowed to air-dry for 30 minutes 

before being dissolved in dimethyl sulfoxide (DMSO). Absorbance was read at 550 nm. 

 

 Growth and analysis of static biofilms. Static biofilms were grown in multi-well 

tissue culture plates (Merritt et al 2005, Haase et al 2006, Izano et al 2008). A. 

actinomycetemcomitans cultures were grown in BHI broth overnight and OD600 was 

measured. To form mature A. actinomycetemcomitans biofilms, cells were diluted into 

fresh BHI broth to a final OD600 of 0.005 and this dilution was used to inoculate the plate 

wells. Cultures were incubated at 37oC for 72 hours and the resulting biofilms were 

supplied with fresh BHI broth that was pH adjusted from pH 5.0 – pH 8.0 to represent the 

entire range of conditions that might exist in the gingival pocket (Kleinberg et al 1969; 

Bickel et al 1985; Eggert et al 1991). Biofilms were incubated for an additional 24 hours, 
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then rinsed gently with sterile water before staining with 0.1% crystal violet. After 

staining, cells were rinsed with sterile water until the water was clear. After drying, 

crystal violet was solubilized with 30% acetic acid and the absorbance at OD570 was 

measured for each biofilm.  

 

 Statistical analysis. All assays were carried out in at least triplicate and data were 

analyzed using the unpaired t-test with statistical significance defined as P ≤ 0.05. 

 

 Functional analysis of putative TA systems. Individual toxin and anti-toxin 

proteins were cloned into pQE60 (Qiagen) for expression and isolation. Recombinant 

bacteria were grown in LB broth that was supplemented with ampicillin, tetracycline and 

IPTG in a shaking incubator at 37oC until late log phase. Cells were harvested and protein 

was extracted as follows: The cell pellet was suspended in a denaturing protein buffer (50 

mM phosphate, pH 7.8, 300 mM NaCl, 0.1% SDS) and sonicated on ice with 5 second 

bursts until clear. Samples were centrifuged and the supernatant was removed into a clean 

tube. The pellet was suspended in denaturing protein buffer and the sonication process 

was repeated. After centrifugation for a second time, the supernatant was transferred to a 

clean tube. Samples were analyzed via NuPAGE Bis-Tris SDS-PAGE gels (Thermo 

Fisher) according to manufacturer instructions. Samples were then transferred to a PVDF 

membrane (GE) for a western blot analysis. Membranes were probed with a primary 

antibody to the hexa-histidine tag (Takara) according to manufacturer instructions. A 

secondary antibody, a horseradish peroxidase conjugate (Sigma) and a 3,3’,5,5’-

tetramethylbenzidine (TMB) substrate (VWR) was used to visualize samples. As needed, 
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samples were affinity purified using cobalt resin (Takara and Goldbio) according to 

manufacturer instructions using buffers that were adjusted to a final concentration of 

0.1% SDS. Samples were then refolded according to Roussel et al (2013) using 2-methyl-

2,4-pentanediol (MPD). Samples were concentrated using Vivaspin-20 (Sartorius).  

 To eliminate the possibility of RNase contamination from protein expression and 

production in E. coli, peptides (Table 7) representing the toxin and anti-toxin proteins of 

each TA system were chemically synthesized (Biosynthesis Inc.). Synthetic peptides 

were dissolved in a protein buffer (0.05M Phosphate buffer, pH 7.8, 300mM NaCl, 

0.01% TFA) and peptide purity and size was confirmed using a NuPAGE Bis-Tris SDS-

PAGE gel (Thermo Fisher). Samples were prepared in NuPAGE LDS Sample Buffer, 

Reducing Agent and Antioxidant (Thermo Fisher) and gels were electrophoresed using 

NuPAGE MES Buffer (Thermo Fisher) in the XCell SureLock MiniCell as recommended 

by manufacturer. To test the ability of the synthetic toxins and anti-toxins to interfere 

with protein translation, a cell-free protein synthesis system was used. Toxin (200 ng), 

anti-toxin (200 ng), and equal concentrations of both were added to the PURExpress In 

Vitro Protein Synthesis Kit (New England BioLabs) using the control plasmid DNA that 

expresses dihydrofolate reductase (DHFR). Reactions were incubated in a thermocycler 

at 37oC for 2 hours. 5 uL of the reaction was used for analysis on a Tris-Glycine SDS-

PAGE gel (Thermo Fisher) according to manufacturer’s instructions. All protein 

gels were stained with AcquaStain 1-Step Protein Gel Stain (Bulldog Bio) overnight and 

destained with sterile water for 20 minutes before imaging. To determine if the toxin and 

anti-toxin proteins function to degrade mRNA in the presence of ribosomes, 

MS2 bacteriophage genomic RNA (Roche) was mixed with toxin (200 ng), anti-toxin 
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(200 ng) or both together in the presence and absence of ribosomes. Reactions were 

incubated at 37oC for 30 minutes before the reaction was stopped with RNA loading dye 

containing 47.5% formamide (New England BioLabs). Reactions were denatured at 85oC 

for 15 minutes before analysis on TBE-Urea gels (Thermo Fisher) according to 

manufacturer’s recommendation. Gels were rinsed in DEPC-treated water for 10 minutes 

and were stained for 20 minutes with ethidium bromide and rinsed twice with DEPC-

treated water before imaging.  

 

Protein-Protein Interactions. To determine if the toxin and associated anti-toxin 

bind together, samples were analyzed on a Superdex 75 Increase, 10/300 GL column 

according to the manufacturer instructions using a AKTApurifier UPC10 FPLC (flow 

rate = 0.5 mL/min, Pressure = 1.25 MPa, Temperature = room temperature). 1 mg of each 

peptide was analyzed separately as well as mixed together in HPLC-grade PBS with 

0.5% TFA.  

 

 Proteomic analysis. Cultures of A. actinomycetemcomitans wild-type and both 

isogenic mutants were grown to mid-log phase in CDM. Cells were gently pelleted and 

the media decanted. The pellet was suspended in fresh CDM at pH 5.0, and incubated for 

4 hours (approximately two doubling periods). The cultures were harvested with gentle 

centrifugation and the pellet was suspended in a denaturing buffer (50 mM phosphate 

buffer, pH 7.8, 300 mM NaCl, 8M Urea). Samples were sent to the Proteomics Core at 

the University of Louisville for analysis. Results were analyzed using the Scaffold 

Software (Proteome Software) by comparing the number of hits for a given protein 
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sequence between a mutant and wild-type as well as between the both mutants. Limits 

were set to only examine sequences that were present at least twice within a given 

sample. The resulting ratio (mutant vs wild-type) indicates a fold-change in abundance in 

the mutant as it relates to the wild-type. A number greater 1.0 indicates that the protein 

was found more frequently in the mutant than in the wild-type whereas a number below 

1.0 indicates that the protein was found less frequently in the mutant 

 Proteins that were differentially represented were analyzed using the Pfam (Finn 

et al 2016) and String Protein-Protein Interaction Networks Database (ELIXIR 

infrastructure) to determine the function, when possible, of each protein and what other 

pathways may be affected by the gene of interest. 

 

 

 

Table 7. Peptide sequences for toxins and anti-toxins. 

Protein Sequence M.W. 

D11S_1718 MNVISYSAFRAELATTLDQVVADHSPVMITRQNGKHAVVMSLEDFAA
YEETAYLLRSPKNRERLLASIDQLNSGKIIERELQE 

9394.6 

D11S_1719 MILAWTETAWEDYLYWQQVDKKTLLRINKLIQNITRAPFEGLGNPEPL
KHQLSGFWSRRIDKEHRLVYQVSDSHLTIIQCRYHY 

10201.6 

D11S_1194 MDYVLSKEYKRDLKKLPVEIQSGPEYAEVLYCLFNQKSLPERYKDHALQ
GNWQGFRDCHIKNDLILIYKIEADTLYFARLNSHSEVFK 

10515.9 

D11S_1195 MLDSAVNFRTQADIKEQAFNVIKSYGLTPAQVLNMFLTQIAKTNTIPLS
LDYQPNTKTANAINELMSGKGERFSVDSFDEFQQKMRDLSK 

10165.5 
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CHAPTER THREE: IDENTIFICATION AND CHARACTERIZATION OF PUTATIVE 

TYPE II TOXIN/ANTI-TOXINS IN AGGREGATIBACTER 

ACTINOMYCETEMCOMITANS 

 

Introduction 

 Microbes have evolved many mechanisms to detect and respond to environmental 

cues. Type II toxin/anti-toxin (TA) systems are small gene systems that encode a 

biologically active protein, the toxin, and a labile protein, the anti-toxin, that prevents 

toxin activity by binding to it. Type II TA systems have been found in both bacteria and 

archaea and many species contain more than one TA system. The toxins function in a 

variety of ways, including controlling gene expression by inhibiting transcription or 

translation, and controlling cell growth by inhibiting peptidoglycan synthesis (Syed et al 

2012). These systems typically respond quickly because of the labile nature of the anti-

toxin.  

 Under normal conditions, the anti-toxin and the toxin form a stable complex that 

inhibits the toxin function, but many TA complexes also auto-regulate their own 

expression. When a bacterial cell encounters environmental stress, general proteases, 

such as Lon and Clp, become active and the anti-toxin is quickly degraded. The toxin is 

more stable and is not as readily degraded. Once the toxin is active, gene expression of 

the TA system increases and the toxin is free to perform its task.
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The oral cavity is an environment that experiences constant change due to the 

intake of food, beverages, and the constant flow of saliva. Normal consumption of food 

and drink can result in changes in temperature, pH, osmotic conditions and nutrients. It is 

feasible that bacteria within the oral cavity utilize TA systems to temporarily alter cell 

growth to adapt to environmental stress. The presence of TA systems in A. 

actinomycetemcomitans has not been fully investigated as of yet.  

 

Results 

A. actinomycetemcomitans growth is affected by environmental stress:  

 To determine the effects of environmental stress on wild-type bacteria, A. 

actinomycetemcomitans was grown in CDM under one of five stress conditions for 48 

hours. The five test conditions were: iron limitation (250 μM bipyridyl), aerobic (no 

added carbon dioxide), anaerobic, and microaerophilic (5% carbon dioxide) conditions, 

and reduced temperature (30oC). In Figure 7, bacteria growing in aerobic conditions 

exhibit a doubling time of approximately two hours. Doubling time has previously be 

calculated within the laboratory and these growth curves are consistent with those assays 

(data not shown). Iron limitation reduced the OD600 at stationary phase but had little 

effect on doubling time. One possible explanation for this is that A. 

actinomycetemcomitans is able to store iron for use when it cannot acquire iron from its 

environment (Fong et al 2003).  Reduced temperature and anaerobic conditions did not 

significantly affect the growth of the bacteria when supplemented with glucose, 

suggesting that bacteria adapt rapidly to these conditions. Growth under microaerophilic 

conditions also reduces the OD600 at stationary phase, but doubling time is also 
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unaffected . Taken together, these results suggest that A. actinomycetemcomitans is 

capable of efficiently responding to environmental stress. 

 Since previous studies show that A. actinomycetemcomitans prefers to utilize 

lactate as a carbon source, cells were also cultured in CDM that was supplemented with 

lactate instead of glucose. As shown in Figure 8, doubling time in CDM/lactate increased 

to four hours and cell density began to drop significantly after 48 hrs. Utilization of 

lactate under anaerobic or microaerophilic conditions resulted in a loss of cell density 

after 24 hours.   

CDM itself is hypotonic and contains only 100 mg/L (1.7 mM) of sodium 

chloride, whereas BHI contains 5.0 g/L (85mM). To determine if salt concentration 

influences the growth of A. actinomycetemcomitans, cultures were grown in CDM with 

increasing concentrations of sodium chloride. As shown in Figure 9, sodium chloride 

concentration in CDM has little effect on growth. However, the growth of bacteria in BHI 

when compared to the growth in CDM with additional sodium chloride is still greater, 

indicating that the growth difference is not due to osmotic stress.  
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BLAST results for type II toxin/anti-toxin systems in A. actinomycetemcomitans:

 Type II TA systems encode two small proteins (each between 41-206 amino 

acids) that can regulate bacterial cell function. Previous studies have shown that TA 

systems are involved with biofilms, antibiotic stress, and starvation (Horak et al 2017). 

To determine if the A. actinomycetemcomitans genome encodes type II TA systems, 

protein sequences of known type II TA systems found in E. coli were used to perform 

BLAST searches of the A. actinomycetemcomitans D11S-1 genome (Chen et al 2009). 

Table 8 shows the results of these BLAST searches. The BLAST searches identified nine 

putative TA systems. Two have homology to the MazEF-family, which inhibit translation 

through endoribonuclease activity that cleaves mRNA independently of ribosome 

binding. One TA system has homology to HipAB-family, which inhibits translation 

through a serine/threonine kinase that targets tRNA. The remaining six putative TA 

systems exhibit homology to the RelBE-family, which cleave mRNA, but 

endoribonuclease activity of these TA systems is ribosome dependent. 

 Since approximately 32% of the genes in A. actinomycetemcomitans do not have 

a known function, it is possible that unique TA systems may exist that were not identified 

in the BLAST searches. To address this possibility, the entire genome was examined 

using TAfinder to identify two gene operons that encode small proteins in the size range 

of known toxin and anti-toxin proteins. Five additional putative TA systems were 

identified from this search. Using the protein sequence of these genes, a BLAST search 

was performed and no significant results for known TA systems were found, suggesting 

that these five putative TA systems may be unique to A. actinomycetemcomitans. In 

addition, D11S_0469-0470 and D11S_2094-2095 were unique in that each putative TA 
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system contains a third open reading frame, which encodes a gene unrelated to the toxins 

or antitoxins, with homology to diadenosine tetraphosphatase and O-succinylbenzoate 

synthase, respectively. Finally, sequence analysis suggested that three of the putative TA 

systems may contain pseudogenes (indicated by an asterisk in Table 8). Hence, the A. 

actinomycetemcomitans D11S-1 genome encodes at least 14 putative type II TA loci, 

three of which may contain pseudogenes and may be non-functional. 

 There are currently seven recognized serotypes of A. actinomycetemcomitans and 

there are marked differences in their ability to cause disease (Minquez et al 2014, Brigido 

et al 2014). Using the sequences from E. coli toxin and anti-toxin protein sequences 

described above, BLAST searches were performed across 33 A. actinomycetemcomitans 

genome sequences present in the NCBI database. Table 9A-G summarizes the results of 

these searches. Each ‘X’ in the chart indicates a BLAST match that showed sequence 

similarity across the entire probe peptide sequence. A majority of the A. 

actinomycetemcomitans strains examined possess only the TA systems that were 

identified in the initial BLAST search of the D11S-1 genome.  None of the other E. coli 

TA systems were found in the A. actinomycetemcomitans genome sequences tested, with 

the exception of the presence of a TA system related to E. coli yncN in two serotype c 

strains of A. actinomycetemcomitans (SCC2302 and AAS4A).  In addition, several 

serotype d and e strains lack homology to several E. coli systems, e.g., strain SA2200 

serotype d lacks homologs of PemK, ChpBK and YafO (see Table 7D).  Finally, the 

HipA toxin is a large protein compared to many other toxins classified as type II TA 

systems. Many of the homologs found in A. actinomycetemcomitans are annotated as 
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Table 8.  Type II TA systems identified in A. actinomycetemcomitans D11S-1 using BLAST and 

TAFinder. 

Toxin 

Anti-

toxin 

Gene Identity Family 

Total 

Score 

Query 

Cover 

E Value 

Max 

Identity 

mazF mazE D11S_0905-0906 mazEF 101 92% 2e-28 33% 

chpBK chpBI D11S_0919-0920 mazEF 88.6 93% 2e-23 42% 

hipA hipB D11S_1069-1070 hipAB 108 21% 1e-28 45% 

yafQ dinJ D11S_1194-1195 relBE 89.7 95% 2e-24 36% 

yoeB yafM D11S-1718-1719 relBE 125 100% 1e-38 63% 

relE relB D11S_1798-1799 relBE 112 94% 6e-33 57% 

relE relB D11S_2133-2134 relBE * 44.7 88% 2e-7 12% 

relE relB D11S_1417-1418 relBE 102 98% 3e-30 54% 

relE relB D11S_1144-1145 relBE 149 97% 2e-46 59% 

  D11S_1023-1024      

  D11S_0150-0151 *     

  D11S_0499-0500 *     

  D11S_0469-0470 **     

  D11S_2094-2095 **     

*  -  sequence analysis indicated this operon contained a toxin and/or antitoxin pseudogene 
**  -  identified by TAfinder but present in a 3 gene operon with a non-TA related gene (see text) 
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smaller proteins and are usually present as multiple open reading frames that are 

identified as hipA-like. It is likely that these sequences in A. actinomycetemcomitans 

represent a hipA gene that has undergone deletion or rearrangement during its evolution.  

A second BLAST search was performed using the sequences identified in D11S-1 

to determine if the type II TA systems identified in the D11S_1 strain are conserved in 

other strains within the C serotype, as well as across all known serotypes. As shown in 

Tables 10A – E, most of the D11S-1 TA systems are highly conserved across all of the 

other A. actinomycetemcomitans serotypes.  Two exceptions were D11S_150-151 and 

D11S_1069-1070.  A complete D11S_1069-1070 operon was present in only three of the 

33 strains examined (D11S-1, Sc383s and ANH9381); the other strains either lacked the 

toxin open reading frame or possessed a truncated gene, but interestingly most contained 

the anti-toxin gene. D11S_150-151 was present in all serotype a, b, d, f and g strains but 

was absent in the serotype c organisms except for D11S-1 which possessed a truncated 

pseudogene.  For many of the strains across all of the serotypes, some TA systems were 

present in multiple copies.  For example, serotype b strain RhAA1 possesses at least 19 

TA systems including two copies of D11S_0469-0470, D11S_0905-0906, D11S_1418-

1419 and D11S_2133-2134, and three copies of D11S_1023-1024 and D11S_1798-1799, 

yet this strain also lacked D11S_1069-1070, D11S_1194-1195, and D11S_2094-2095.  

Finally, PCR reactions using A. actinomycetemcomitans 652 (serotype c) DNA as a 

template indicated that all of the D11S-1 TA systems were present (not shown).  

Although a complete genome sequence is not yet available, strain 652 has been 

extensively characterized in our laboratory and was used for the functional 

characterization of the A. actinomycetemcomitans TA systems described below.  Overall, 
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these results suggest that the TA systems identified in the D11S-1 genome are highly 

conserved in all A. actinomycetemcomitans serotypes suggesting that they may play an 

important role in A. actinomycetemcomitans physiology.  However, D11S_150-151 and 

D11S_1069-1070 were more limited in distribution than the other TA systems. 

 

Putative TA systems in A. actinomycetemcomitans respond to environmental stress. 

 Previous work done within the laboratory and elsewhere has shown that A. 

actinomycetemcomitans growth is influenced by environmental stress, such as iron 

starvation or pH and temperature fluctuations (data not shown). Since it is possible that 

TA systems are responsible for controlling bacterial growth when activated, mRNA 

expression of the putative TA systems was examined under different stress conditions. 

During normal cell activity, the anti-toxin is bound to the toxin. This inhibits toxin 

activity and in many cases, the complex of the two proteins has been shown to auto-

regulate its own operon expression by binding to the promoter. When cells experience 

environmental stress, general proteases such as the Lon and Clp proteases are activated 

and the labile anti-toxin is rapidly degraded which de-represses operon expression. 

 To assess the effect of environmental stress on TA expression, wild-type bacteria 

were grown to mid-exponential phase and cells were exposed to various stress conditions 

for 20 minutes and then harvested for RNA extraction. RNA was converted into cDNA 

and the cDNA was analyzed via real-time PCR to determine changes in TA gene 

expression change.  

 Figure 10A displays the results obtained for the three of putative TA systems that 

were unique to A. actinomycetemcomitans. D11S_0150-0151 was upregulated under 
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anaerobic (no oxygen) and under iron limiting (250μM bipyridyl) conditions, and slightly 

under acidic stress (pH 5.0). The other two systems showed very little change from the 

control, however, D11S_0499-0500 was down-regulated under acidic (pH 5.0) and in the 

presence of hydrogen peroxide (0.1% hydrogen peroxide).  

 Figure 10B shows the HipAB homolog was largely unresponsive to most stress 

conditions tested. However, there was an induction in expression of this TA operon when 

the cells were cultured under anaerobic conditions and when the cells were exposed to 

elevated temperature (39oC).  

 Figure 10C focuses on the two putative systems with homology to MazEF-family 

systems. Interestingly, both systems exhibit a similar pattern of expression. Both systems 

also show large up-regulation under microaerophilic (5% carbon dioxide) and anaerobic 

conditions, and to a lesser extent under acidic stress (pH 5.0) and when lactate is the 

carbon source. Since these systems were activated in almost all stress conditions tested, 

with the exception of oxidative stress (0.1% hydrogen peroxide), these systems may aid 

in the adaption of the bacteria to a variety of environmental stimuli. These results also 

suggest functional redundancy may exist in the MazEF-like systems since both respond at 

similar levels to environmental stress.  

Figure 10D focuses on four of the five RelBE-family homologs. There is a 

significant up-regulation of two of the systems under acidic conditions (pH 5.0), but the 

other two systems were not as responsive. One system was induced under iron starvation 

(250μM bipyridyl) but the other three systems were not responsive under this condition. 

Three of the systems experienced a large up-regulation under anaerobic conditions, but 

one was not responsive. For oxidative stress (0.1% hydrogen peroxide), microaerophilic 
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(5% carbon dioxide), elevated temperature (39oC), lactate for a carbon source, and 

reduced temperature (30oC), all of the systems were not responsive.  

 The results taken together suggest that the putative TA systems differentially 

respond to environmental stress and clearly, not all systems respond to every stress. 

Seven of the 11 systems compromising members of each of the TA families were induced 

under anaerobic conditions, suggesting that a high degree of functional redundancy may 

exist in the TA systems contributing to adaption to anaerobic growth. In contrast, only 

two systems were significantly induced when cultures were either grown under 

microaerophilic conditions, acidic conditions, or under iron limiting conditions, which 

suggests that some TA systems are functionally more specific. Only one of the TA 

systems, D11S_1023-1024, did not respond to any of the environmental stress conditions 

that were tested. 
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CHAPTER FOUR: GENERATION AND CHARACTERIZATION OF ISOGENIC 

DELETION MUTANTS 

 

Introduction 

 As A. actinomycetemcomitans enters stationary phase, the pH of medium drops 

from an initial pH of 7.5 to approximately a pH of 5.5 - 6.0 in stationary phase, 

depending on the medium used for culture. Previous work showed that when the pH of 

spent medium was adjusted back to neutral, A. actinomycetemcomitans continued to grow 

without any other additives (Bhattacharjee 2011), suggesting that A. 

actinomycetemcomitans entrance into stationary phase may be dependent on 

environmental pH rather than the lack of nutrients. 

 Two of the putative TA systems were highly responsive to acidic stress, which 

suggests that these systems may be important for overall fitness of the bacteria under 

acidic conditions. Since the pH of the gingival pocket can vary significantly, it is possible 

that these two systems are important for colonization and maintenance of biofilms in the 

oral cavity. Some studies have shown that removal of TA systems in bacteria has a 

noticeable effect on biofilm formation and stability (Yamaguchi et al 2009). Since the 

presence of a biofilm in the gingival crevice is crucial for progression of disease, these 

two systems in A. actinomycetemcomitans were chosen for further studies. 
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Results  

Generation of isogenic deletion mutants: 

 Using a suicide vector that was previously designed in the laboratory, two 

isogenic mutants were created. The suicide vector contains two separate selection 

mechanisms: the first is to permit the identification of single recombination events that 

incorporate the plasmid into A. actinomycetemcomitans genome (Campbell 1957) and 

subsequently to isolate mutants that have undergone a second recombination that results 

in deletion of the target gene and the loss of the plasmid sequences. This results in a 

markerless and scarless deletion mutant. Colonies that appeared to have experienced two 

recombination events were analyzed with PCR to determine if the gene of interest was 

deleted (Figure 11A-B). 
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Figure 11A-B. PCR of isogenic mutants to show gene deletion. A) Lane 1 is the 

ladder, labeled in kDa. Lane 5 and 6 are the Δ1194-1195 mutants and Lanes 7 and 8 are 

the wild-type. B) Lane 1 is wild-type, lane 3 is the Δ1718-1719 mutant, and lane 7 is the 

ladder. 

A B 

1                2        3    4       5     6     7    8                             1      2      3      4        5     6        7  
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Metabolic activity at stationary phase decreases over time. 

 Previous work showed that viable wild-type A. actinomycetemcomitans could be 

recovered from broth cultures for up to a week after entering stationary phase, when the 

cultures were maintained at room temperature (Bhattacharjee 2011). As A. 

actinomycetemcomitans grows into stationary phase in BHI broth, the pH of the medium 

drops from approximately 7.5 to near 5.0 in 24 hours. The pH of the medium is 

maintained  over time and there is no difference between the wild-type strain and two 

isogenic mutants(data not shown). Since the two putative TA systems chosen for further 

analysis were responsive to acidic conditions, cell viability in stationary phase was 

determined using a MTT assay.  

 As shown in Figure 12A, the wild-type strain maintains a steady loss of metabolic 

activity over 120 hours. The Δ1718/1719 is the more sensitive to sustained exposure to 

acidic conditions in stationary phase and lost metabolic activity to a greater extent than 

the wild-type, especially between 72 and 120 hours. Complementation of the deletion 

mutant with a functional copy of D11S_1718-1719 restored the metabolic activity to 

wild-type levels. The Δ1194-1195 mutant phenotype was similar to the wild-type strain 

through 72 hours, but exhibited a significant decrease in metabolic activity relative to the 

wild-type strain at 96 and 120-hour time points (Figure 12B). Complementation of the 

mutant restored metabolic activity to the wild-type level. Interestingly, the OD600 of the 

cultures did not significantly decrease over the incubation period for any of the strains 

(data not shown), suggesting that cell lysis may not be occurring as metabolic activity 

decreases. 
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Figure 12A-B. Metabolic activity of stationary phase A. actinomycetemcomitans. 

Metabolic activity was measured using a MTT assay. Asterisks indicate the time points 

where metabolic activity of the mutant strain was significantly reduced relative to the 

wild-type (P ≤ 0.05) and restored to wild-type levels when complemented with a 

functional copy of the TA system. Copyright permission to reuse granted by the Creative 

Commons Attribution License (Schneider et al 2018).
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Isogenic mutants exhibit reduced biofilm growth 

Type II TA systems have been implicated in biofilm formation in various 

bacterial species (Cardenas-Mondragon et al 2016, Wood et al 2016, Sun et al 2017, 

Schneider et al 2018). A. actinomycetemcomitans is an oral commensal that forms 

biofilms within the gingival pocket. Biofilms are important for survival of the bacteria 

within the oral cavity and necessary for disease progression.  

To determine if the type II TA systems of interest are involved in biofilm 

formation, biofilms were grown in multi-well cell culture plates using BHI. Static 

biofilms were allowed to grow untouched for 72 hours and then provided with fresh 

medium at pH 5.0 to pH 8.0. After incubation for an additional 24 hours, biofilms were 

quantified by crystal violet staining. Figure 13 shows that biofilm biomass of the wild-

type strain increased after the addition of fresh medium at pH 6.0, 7.0, or 8.0, consistent 

with previous findings of Bhattacharjee et al. However, a significant decrease in biomass 

occurred when the wild-type biofilm was incubated in fresh medium at pH 5.0. Biomass 

of the Δ1718-1719 strain was significantly less than that of the wild-type at pH 5.0 and 

6.0, but was restored to wild-type levels when the deletion strain was complemented with 

a function copy of the TA system. Biomass of the Δ1194-1195 strain did not differ 

significantly from wild-type; however, complementation of the strain resulted in a 

significant increase (P ≤ 0.01) in biofilm biomass relative to the wild-type at pH 5.0 and 

pH 6.0, possibly arising from the presence of the TA system in multiple copy in the 

complemented strain. Together, these results suggest that the putative TA systems may 

contribute to the persistence of A. actinomycetemcomitans in mature biofilms exposed to 

acidic conditions.
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Figure 13A-B. 72 hour biofilms are sensitive to pH stress. Biofilms were allowed to 

grow for 72 hours before media was refed with fresh BHI at pH 5.0 to pH 8.0. Biomass 

was quantified after staining with crystal violet. Control is a biofilm that was not refed 

with fresh medium. Asterisks indicate conditions where biofilm biomass of the mutant 

strain was significantly reduced (P ≤ 0.05) relative to the wild-type strain and restored to 

near wild-type levels after complementation. Copyright permission to reuse granted by 

the Creative Commons Attribution License (Schneider et al 2018).
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CHAPTER FIVE: PUTATIVE TOXIN/ANTI-TOXIN SYSTEMS INHBIT 

TRANSLATION AND FUNCTION AS AN ENDORIBONUCLEASE 

 

Introduction 

 Type II TA systems encode two proteins, the toxin and the anti-toxin. The toxin 

has a biologically relevant function that is necessary for the survival of the cell under 

environmental stress. The two systems that have been chosen for further analysis, 

D11S_1194-1195 and D11S_1718-1719 both belong to the RelBE-family of TA systems. 

Goltfredsen et al first identified relEB has a toxin/anti-toxin gene family where the 

induction of the RelE protein was resulted in an inhibition of growth that was prevented 

in the presence of the RelB (Goltfredsen et al 1998).  Since then, the relEB has been 

shown to be a type II toxin/anti-toxin system where the RelE protein is a toxin that binds 

to the bacterial ribosomes to cleave mRNA in A-site of the ribosome in a sequence 

specific manner (Galvani et al 2001, Pedersen et al 2003).  RelEB has specifically been 

implicated in apoptosis in human cells, adaption of pathogens to macrophages, antibiotic 

resistance, and persister cell formation (Yamamoto et al 2002, Korch et al 2009, Singh et 

al 2010, Tashiro et al 2012).  Interestingly, the anti-toxin, RelB, has been shown to form 

a dimer is able to bind to the operator region of its own operon to repress its own 

expression and this autorepression is enhanced in the presence of the toxin protein (Li et 

al 2008, Overgaard et al 2009).  
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RelEB-like systems have been shown to differentially respond to environmental 

stressors, such as amino acid starvation, glucose starvation, and oxidative stress (Averina 

et al 2015, Christensen-Dalsgaard et al 2010, Yang et al 2012, Marsan et al 2017). Based 

on the real-time PCR data shown previously, two of the RelEB-like homologs were able 

to respond acidic pH stress. Deletion of D11S_1718-1719 results in a more rapid loss of 

cell metabolic activity after cells enter stationary phase, suggesting that this TA system 

plays an important role in maintaining cellular fitness during stationary phase; deletion of 

D11S_1718-1719 also resulted in a loss of biomass of mature biofilms when exposed to 

acidic stress conditions. To determine if these putative type II TA systems act at the level 

of translation, as many other RelBE TA systems do, and function as endoribonucleases, 

the functional properties of purified proteins representing full-length toxin and anti-

proteins were examined. 

 

Results 

Inducible expression of putative TA system 

To determine if the genes of interest truly encode TA systems, expression of the 

proteins by an inducible plasmid was carried out. The toxin only and anti-toxin only were 

cloned separately into pQE60, an inducible vector for expression of proteins in E.coli that 

produces proteins containing a C-terminal hexa-histidine fusion tag. 

Initial experiments to express the TA system proteins showed that the tagged 

proteins were present in the insoluble fraction after cell lysis, but not likely in an 

inclusion body since it could be made partially soluble in low molarity solutions of urea 

(Figure 14A). There are many protocols suggesting a variety of methods to increase 
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solubility without the need to use a denaturant, including using a lower temperature for 

induction of expression, using more sonication buffer during lysis, and altering the buffer 

composition (i.e. increase salt concentration). Dialysis can be a long, difficult process to 

refold protein. While many companies offer membranes with an appropriate molecular 

weight cut off (MWCO), small proteins may be susceptible to degradation during this 

process, so other non-denaturing methods were considered and tested.  

The most successful method to drive protein into the soluble fraction was to use a 

two-step sonication. Using a standard sonication buffer (50 mM phosphate, pH 7.8, 300 

mM NaCl), the samples were sonicated and then pelleted. The supernatant was removed 

into a clean tube for further use and the pellet was suspended in fresh sonication buffer. 

The pellet was sonicated for a second time and pelleted again. Most of the tagged protein 

was present in the soluble fraction (Figure 14B) using this method. 

The soluble protein obtained through this method did not bind to the metal affinity 

agarose beads commonly used to purify histidine tagged proteins. All of the His-tagged 

protein eluted in the initial flow through after allowing time for the protein to bind to the 

beads (data not shown). One explanation for this is that the His-tag is sterically shielded 

from interacting with the affinity resin. Since sonication and purification worked under 

denaturing conditions, samples were sonicated in protein buffer containing 0.1% SDS. 

The SDS denatures the proteins and this percentage is compatible with the affinity 

purification procedure. To verify this was effective, cultures of E. coli were induced at 

37oC until late exponential phase. Cells were harvested and the pellet was suspended in 

the denaturing sonication buffer for lysis. The lysate was centrifuged to remove insoluble 

debris and the supernatant was purified using the cobalt agarose resin. Figure 15 shows 
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two representative dot blots of the purification process. Samples were refolded as 

described using 2-MPD and then samples were concentrated. Elution samples were 

analyzed on Bis-Tris SDS-PAGE gels (Figure 16). 

 

 

Figure 14A-B. Putative TA systems can be expressed in an inducible plasmid. 

Western blot of crude protein extract following Bis-Tris SDS-PAGE. A) Crude protein 

extract following lysis with sonication. Lanes 1 – Ladder, 2-1194 soluble,3- 1194 

insoluble, 4-1194 4M Urea soluble, 5-1194 4M Urea insoluble, 6-1719 soluble, 7-1719 

insoluble, 8-1719 4M urea soluble, 9-1719 4M Urea insoluble B) Crude protein extract 

following lysis with two separate sonication steps. 1-3: 1194 soluble, 4-6: 1719 soluble, 

7-9: 1194 insoluble, 10-12: 1719 insoluble, 13- Ladder 
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Figure 15. Dot Blot after purification on agarose beads. Representative dot blot of 

1194 (A) and 1195 (B)after SDS denaturation. SDS denatured proteins were purified 

using cobalt agarose beads. Each square represents a sample of fluid collected during the 

purification process. 1: Flow-through after initial binding period; 2: Wash Step #1 – 0 

mM imidazole; 3: Wash Step #2 – 0 mM imidazole; 4: Wash Step #3 – 0 mM imidazole; 

5: Elution #1 – 10 mM imidazole; 6: Elution #2 – 100 mM imidazole; 7: Elution #3 – 200 

mM imidazole; 8: Elution #4 – 400 mM imidazole 
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Figure 16. Toxin proteins after refolding and concentration. Lane 1 is empty, Lane 2 

is 1194, Lane 3 is 1719, Lane 4 is empty and Lane 5 is the Ladder. Representative SDS-

PAGE gel to show that soluble protein remained after purification, refolding, and 

desalting. Arrow indicates where the protein of interest is located. 
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Putative toxins inhibit protein synthesis and degrade mRNA: 

RelE-like proteins are able to inhibit translation by cleaving mRNA. To determine 

if the putative toxins of interest act in a similar manner, the ability of the toxins to 

degrade mRNA was characterized. Initial tests (data not shown) showed that the purified 

protein obtained from expression in E. coli had RNase contamination that was not fully 

inhibited by traditional inhibitors. To ensure RNAse free protein, synthetic peptides were 

produced by Biosynthesis, Inc. and were analyzed for purity by gel electrophoresis 

(Figure 17). 

 These peptides were tested for inhibition of translation using the PURExpress In 

Vitro Protein Synthesis system and a control plasmid that expresses mRNA encoding 

dihydrofolate reductase (DHFR). Synthetic peptide was added at 200 ng to the translation 

reaction (or 100 ng of each when mixtures were analyzed). The reaction was allowed to 

incubate for two hours before being analyzed on a Tris-Glycine SDS-PAGE gel (Figure 

18). As shown in Figure 18, DHFR (indicated by a white arrow in Lanes 1 and 8) is 

readily produced when the control translation reaction was carried out in the absence of 

synthetic peptide. In contrast, no DHFR is produced when the reaction is conducted in the 

presence of the synthetic 1194 toxin (Lane 2). DHFR production is unaffected by the 

synthetic 1195 anti-toxin peptide (Lane 3) or by the presence of equal amounts of both 

the synthetic 1194 toxin and 1195 anti-toxin (Lane 4). This result indicates that the 

synthetic 1194 peptide functions as a toxin that inhibits DHFR translation and that the 

1195 protein represents its corresponding anti-toxin that is capable of preventing toxin 

activity when applied together. 
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 Similarly, synthetic 1718 protein prevents translation of DHFR (Lane 5) whereas 

the 1719 peptide or an equal mixture of 1718 and 1719 proteins have no effect on DHFR 

production (Lanes 6 and 7, respectively). This result was unexpected since from the 

structural organization of many RelBE TA operons, the open reading frame encoding the 

1719 protein would be predicted to encode the toxin component. Our results clearly show 

that 1719 does not inhibit DHFR translation and thus functions as an anti-toxin and that 

the 1718 peptide represents the toxin in this TA system.   
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Figure 17. Synthesized peptides are the correct size for the proteins of interest. 

Peptidess were dissolved in protein buffer containing 0.01% TFA. Samples need the TFA 

to go completely into solution. Samples were analyzed with a Bis-Tris SDS-PAGE gel. 

Lane 1 – Ladder, Lane 2- 1194, Lane 3-1195, Lane 4 – 1194/1195 together, Lane 5- 

1718, Lane 6- 1719, Lane 7 – 1718/1719 together 
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Figure 18. In vitro translation of DHFR in the presence of synthetic peptides. Tris-

Glycine SDS-PAGE gel of in vitro translation samples that were incubated with the toxin 

or anti-toxin proteins of the TA system, either alone or in combination. Lane 1 – positive 

control (no inhibition), Lane 2 – 1194 only, Lane 3 – 1195 only, Lane 4- 1194/1195 

together, Lane 5 – 1718 only, Lane 6 – 1719 only, Lane 7 – 1718/1719 together, Lane 8 – 

Positive Control, Lane 9 – empty, Lane 10 – ladder. Arrow marks the positive control 

protein. Copyright permission to reuse granted by the Creative Commons Attribution 

License (Schneider et al 2018). 
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To examine the mechanism of translation inhibition, we next determined if the 

toxin proteins function as a ribosome dependent ribonuclease.  To accomplish this, 

purified ribosomes were mixed with bacteriophage MS2 RNA (MS2 contains a positive-

sense, single stranded RNA genome), and synthetic toxin and/or anti-toxin proteins, 

incubated at 370C for 25 minutes and electrophoresed in a TBE-Urea gel. As shown in 

Lane 1 of Figure 19A, MS2 RNA exhibits only minor degradation in the absence of 

ribosomes and synthetic protein. In contrast, Figure 19B shows that MS2 RNA is 

significantly degraded in the presence of ribosomes and synthetic 1194 peptide (Lane 2) 

but not by synthetic 1195 or an equimolar mixture of 1194 and 1195 peptides (Lanes 3 

and 4, respectively).  Similarly, addition of ribosomes and synthetic 1718 results in MS2 

degradation (Lane 5) whereas little degradation is observed in the presence of 1719 or a 

mixture of 1718 and 1719 proteins (Lanes 6 and 7, respectively). These results are 

consistent with the translation inhibition results and strongly suggest that the 1194 and 

1718 toxins function as ribosome dependent endoribonucleases, which are inhibited by 

the 1195 and 1719 anti-toxin proteins. 
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Figure 19A-B. MS2 RNA degradation occurs in the presence of ribosomes. RNA 

samples were incubated in the presence or absence of ribosomes and were analyzed on a 

TBE-Urea gel stained with ethidium bromide. Lane 1: Control – no toxin or anti-toxin 

proteins; Lane 2: D11S_1194 toxin only; Lane 3: D11S_1195 anti-toxin only; Lane 4: 

equal mixture of D11S_1194 and 1195; Lane 5: D11S_1718 toxin only; Lane 6: 

D11S_1719 anti-toxin only; Lane 7: equal mixture of D11S_1718 and 1719. Copyright 

permission to reuse granted by the Creative Commons Attribution License (Schneider et 

al 2018). 
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Putative toxins and associated anti-toxins interact and bind to each other:  

 An important aspect of the TA system is that the type II TA systems are 

composed of two small proteins in which the anti-toxin inhibits the activity of the toxin 

by directly binding to the toxin. To further demonstrate this interaction, the proteins were 

analyzed by FPLC. The peptides were solubilized the day of the experiments by 

suspending the peptide in HPLC grade PBS with 1% TFA and mixed before loading. The 

column was standardized using a variety of markers before the protein samples were 

loaded on to the column (data not shown). There is a large peak at 10 mL, which 

corresponds to the size of the individual peptides. However, there is a second peak that is 

observed at 20mL, which represents the size if protein or protein complex with a 

molecular weight 2-fold greater than the monomer (Figure 20A). Since both proteins in 

the TA system are approximately the same size, this peak likely represents a dimer of 

toxin and anti-toxin. The size of this second peak is small, suggesting that under these 

conditions, dimer formation may not be favored.  

The D11S_1718-1719 mix shows three peaks: one near where each monomer 

peptides elute, and a third peak that represents the proteins binding (Figure 20B). As seen 

with the D11S-1194-1195 system, the peak that corresponds to a complex appears to 

indicate a weak interaction between the two proteins under these conditions. The 

presence of three peaks and the low mAU readings in the D11S_1718-1719 are both 

likely to do incomplete solubility of the peptides in the solutions needed for the FPLC.  
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CHAPTER SIX: EVALUATION OF PROTEOME UNDER STRESS 

 

Introduction 

 As previously shown, the two TA systems are ribosome-dependent 

endoribonucleases that likely cleaves mRNA to inhibit protein translation.  Many 

examples of type II TA toxins show that recognition of mRNA is sequence specific and 

that these sequences are found throughout most of the genome. Since many bacteria 

contain a multiple type II TA systems that can differentially respond to environmental 

cues, it is likely that different proteins are required to adapt to the local environment. The 

two type II TA systems of interest in this study are from the same family of systems and 

they respond to some of the same environmental stressors in the similar manner, 

suggesting that they may affect the proteome in a similar manner under certain stress 

conditions. 

Cultures of wild-type and both isogenic deletion mutants were grown to mid-log 

phase in CDM and then gently pelleted. The medium was decanted and the pellet was 

suspended in fresh CDM at either pH 7.0 or pH 5.0. The cultures were then allowed to 

grow for four hours or two doubling periods. Cultures were once again gently pelleted 

and suspended in a protein lysis buffer containing 8M Urea. 

Samples were sent to the Proteomics core at the University of Louisville for 

analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS) on an LTQ-

Orbitrap. Briefly, the denatured proteins were processed within the core facility by 
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trypsin digestion to form smaller peptides. Peptides were first separated using liquid 

chromatography. After elution, the samples were then subjected to an ionization source 

and the particles were analyzed by mass spectroscopy. The LTQ-Orbitrap utilizes a 

quadrupole to process the charged particles. The first quadropole allows certain sized 

particles through into the collision cell. Here, the particles are further fragmented before 

being sent to another quadrupole for further analysis. After the entire sample has been 

processed, software is able to identify the peptide fragments after comparison to the 

protein database and to quantitate the proteins that were present in the sample. Fold 

change was determined by comparing the number of times a specific protein was 

identified within wild-type to the number of times it was found in a mutant.  

 

Results 

Δ1194-1195 Mutant vs Wild-Type 

 The Δ1194-1195 mutant had 58 proteins that were differentially represented when 

compared to wild-type: 43 were over-represented and 15 were under-represented (Table 

11A and 11B). Of the 43 proteins that were over-represented, four were not detected 

within the wild-type sample. The majority of the over-represented proteins were involved 

in metabolism: 25% are involved in amino acid metabolism, and 25% are involved in 

nucleotide metabolism (Figure 21A-B). Proteins involved in virulence and transport 

across the membrane are the next two most common groups of proteins over-represented 

(19% each), followed by proteins involved in membrane formation (12%). Two of the 

proteins identified have no known function at this time. Since the toxins of these TA 

systems work by acting as endoribonucleases, it can be suggested that the activation of 
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the toxin results in the degradation of ribosome-associated mRNA in the wild type strain, 

which results in a decrease in translation of specific gene products. Our results suggest 

that the D11S_1194-1195 TA system, under acidic stress, targets the mRNAs encoding 

the proteins identified above to enable survival.  

On the other hand, there are 15 proteins that are under-represented in the mutant 

when compared to wild-type. Seven of the 15 proteins that were under-represented were 

not detected within the mutant. As with the over-represented proteins, the majority of the 

proteins affected are involved in metabolism; two of which are involved in the synthesis 

of molecules that are secreted (Figure 22A-B). Proteins involved in transcription are the 

second most affected by the absence of the D11S_1194-1195 TA system. There are a 

variety of reasons that these proteins could be under-represented, including gene 

regulation of the identified proteins by the anti-toxin or the toxin/anti-toxin complex, or 

the activation of other TA systems to compensate for the loss in the mutant. 
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Table 11A. Proteins over-represented in Δ1194-1195 vs Wild-type 

Gene Name Accession Number 
Fold 

Change 

AsnC tr|C9R706|C9R706_AGGAD 2.048150677 

N-acetylmuramoyl-L-alanine amidase tr|C9R3G4|C9R3G4_AGGAD 2.04816057 

tRNA-specific 2-thiouridylase MnmA tr|C9R2L0|C9R2L0_AGGAD 2.048171276 
Short-chain dehydrogenase of various 
substrate specificities tr|C9R2U6|C9R2U6_AGGAD 2.048178364 

Cytochrome D ubiquinol oxidase, 
subunit II tr|C9R5W5|C9R5W5_AGGAD 2.048183128 

Uncharacterized protein tr|C9R2Q7|C9R2Q7_AGGAD 2.048186174 

Putative GTP cyclohydrolase 1 type 2  tr|C9R3S8|C9R3S8_AGGAD 2.048186591 
HTH-type transcriptional regulator 
MalT  tr|C9R480|C9R480_AGGAD 2.0481882 

Conserved ABC-type transport system 
protein, ATPase component  tr|C9R4W3|C9R4W3_AGGAD 2.048200208 

MdlB protein  tr|C9R1V9|C9R1V9_AGGAD 2.048200995 
Molybdopterin biosynthesis MoeA 
protein  tr|C9R3L9|C9R3L9_AGGAD 2.048203593 

Tellurite resistance protein TehB  tr|C9R481|C9R481_AGGAD 2.048204445 

D-ribose transporter subunit RbsB tr|C9R6M8|C9R6M8_AGGAD 2.048205478 

Uridine kinase tr|C9R397|C9R397_AGGAD 2.048205996 

Lipoprotein, putative tr|C9R5G6|C9R5G6_AGGAD 2.048207305 
Acetyl-coenzyme A carboxylase 
carboxyl transferase subunit beta  tr|C9R4D5|C9R4D5_AGGAD 2.048207976 

Sodium/proline symporter tr|C9R3A6|C9R3A6_AGGAD 2.048213425 

Anaerobic C4-dicarboxylate transporter  tr|C9R1M8|C9R1M8_AGGAD 2.048213537 
Glycerol-3-phosphate transporter (G-3-
P transporter) (G-3-P permease) tr|C9R5Y5|C9R5Y5_AGGAD 2.048214244 

Succinyl-diaminopimelate 
desuccinylase  tr|C9R308|C9R308_AGGAD 2.048215854 

Coproporphyrinogen-III oxidase tr|C9R6L7|C9R6L7_AGGAD 2.048220049 

ABC transporter, ATP-binding protein  tr|C9R4W0|C9R4W0_AGGAD 2.048223512 

Integration host factor subunit alpha tr|C9R4L0|C9R4L0_AGGAD 2.048225273 

AcrA protein tr|C9R4I9|C9R4I9_AGGAD 2.048228579 

Alpha/beta superfamily hydrolase tr|C9R4E8|C9R4E8_AGGAD 2.048229416 

Transport associated protein 4 tr|D0UIW9|D0UIW9_AGGAD 2.04824494 

Lipoprotein, putative tr|C9R5U7|C9R5U7_AGGAD 2.048252468 
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Table 11A. Proteins over-represented in Δ 1194-1195 vs Wild-type, Continued 

Gene Name Accession Number 
Fold 

Change 

Opacity-associated protein OapB tr|C9R653|C9R653_AGGAD 2.048259203 

Biotin synthase tr|C9R407|C9R407_AGGAD 2.048303541 

50S ribosomal protein L28  tr|C9R211|C9R211_AGGAD 2.048311174 

Shikimate 5-dehydrogenase tr|C9R1M6|C9R1M6_AGGAD 3.072280136 

Uncharacterized protein tr|C9R586|C9R586_AGGAD 3.0722832 

Hemolysin  tr|C9R260|C9R260_AGGAD 3.072302014 

Conserved outer membrane protein  tr|C9R2Q8|C9R2Q8_AGGAD 3.072350744 
Inosine-5'-monophosphate 
dehydrogenase  tr|C9R3E7|C9R3E7_AGGAD 3.072384397 

UDP-N-acetylmuramoyl-L-alanyl-D-
glutamate--2,6-diaminopimelate ligase  tr|C9R2Z2|C9R2Z2_AGGAD 3.072384397 

Putative integrase tr|C9R439|C9R439_AGGAD 3.072408089 

Adenylosuccinate lyase tr|C9R251|C9R251_AGGAD 3.584469387 
Dihydrolipoyllysine-residue 
succinyltransferase component of 2-
oxoglutarate dehydrogenase complex 

tr|C9R5N0|C9R5N0_AGGAD 4.09647951 

PotD protein tr|C9R463|C9R463_AGGAD Not Detected 
in WT 

Fructose-1,6-bisphosphatase class 1  tr|C9R630|C9R630_AGGAD Not Detected 
in WT 

Lipopolysaccharide assembly protein B tr|C9R5A2|C9R5A2_AGGAD Not Detected 
in WT 

Nodulation efficiency protein D (NfeD)  tr|C9R5E8|C9R5E8_AGGAD Not Detected 
in WT 
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Table 11B. Proteins underrepresented in Δ1194-1195  vs Wild-type 

Gene Name Accession Number Fold Change 

Cell division protein ZapA  tr|C9R1Y4|C9R1Y4_AGGAD 0.256027213 
RNA polymerase sigma factor tr|C9R2V1|C9R2V1_AGGAD 0.341358857 
ATP-dependent RNA helicase 
SrmB  tr|C9R7E4|C9R7E4_AGGAD 0.341363892 

Methionine import ATP-
binding protein MetN  tr|C9R779|C9R779_AGGAD 0.341368982 

30S ribosomal protein S15  tr|C9R6D9|C9R6D9_AGGAD 0.341384509 
Outer membrane protein 
assembly factor BamD  tr|C9R1Y6|C9R1Y6_AGGAD 0.409630534 

Macrolide export ATP-
binding/permease protein 
MacB  

tr|C9R4F0|C9R4F0_AGGAD 0.409646276 

Ferric uptake regulation 
protein (Ferric uptake 
regulator) 

tr|C9R597|C9R597_AGGAD 0.438899439 

Amylovoran biosynthesis 
glycosyltransferase AmsE  tr|C9R5I9|C9R5I9_AGGAD Not Detected 

PEBP family protein  tr|C9R782|C9R782_AGGAD Not Detected 
Shikimate 5-dehydrogenase  tr|C9R3U7|C9R3U7_AGGAD Not Detected 
DNA-binding protein  tr|C9R4U2|C9R4U2_AGGAD Not Detected 
Sugar efflux transporter  tr|C9R399|C9R399_AGGAD Not Detected 
UDP-3-O-acylglucosamine N-
acyltransferase tr|C9R1I0|C9R1I0_AGGAD Not Detected 

Phosphohistidine phosphatase 
SixA tr|C9R3E0|C9R3E0_AGGAD Not Detected 
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Δ1718-1719 vs Mutant 

 The Δ1718-1719 isogenic mutant had 92 identified proteins as being differentially 

represented when compared to the wild-type. Unlike the Δ1194-1195, many of the 

proteins identified were underrepresented rather than over-represented. Of the 92 

proteins, 38 are over-represented and 54 were underrepresented (Table 12A-B). Of the 38 

proteins that are over-represented, six were not detected in the wild-type sample. As seen 

in the Δ1194-1195 mutant, the majority of the over-represented proteins identified are 

involved in metabolism: 22% involved in nucleotide metabolism and 21% involved in 

amino acid metabolism (Figure 23A-B). Unique to the Δ1718-1719 mutant, is the 

involvement of nitrogen metabolism. The protein that was identified is related to the 

cytochromes c-type protein, NrfB, in E. coli. NrfB is a protein that is involved in nitrite 

reduction and is involved in the electron transport chain under anaerobic conditions. This 

is followed by proteins involved in virulence (18%), transport across the membrane 

(11%), membrane formation (8%), and translation (8%). There are also two proteins 

identified that have no known function at this time. It is highly probable that the 

activation of the D11S_1718-1719 TA system results in the degradation of the ribosome-

associated mRNA for these proteins to enhance survival. This is also consistent with the 

real-time PCR data which suggests that the two TA systems respond to some of the same 

environmental conditions. Importantly, the D11S_1718-1719 system was responsive to 

anaerobic stress whereas the D11S_1194-1195 system was not, which is consistent with 

the inclusion of nitrogen metabolism proteins seen in the Δ1718-1719 mutant. 

 The Δ1718-1719 deletion mutant exhibited many more proteins that are 

underrepresented compared to the over-represented. Of the 54 proteins identified, 20 
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were present in wild type but were not detected in the mutant sample. These proteins are 

involved with many different pathways including iron transport, LPS synthesis, cell 

formation, stationary phase survival, and type IV secretion. The majority of the identified 

proteins were involved in metabolism: 16% involved in amino acid metabolism and 11% 

each for nucleotide and carbohydrate metabolism (Figure 24A-B). As seen in the over-

represented proteins, we also see the involvement of nitrogen metabolism. This protein is 

identified as another cytochrome c-type protein, but instead of being involved in the 

electron transport chain, this protein is involved in the denitrification pathway, which is 

the reduction of nitrate to dinitrogen, which can in turn act as a terminal acceptor for 

electron transport in place of oxygen. 

The lack of so many metabolism genes, compared to the Δ1194-1195, strain is 

consistent with the loss of metabolic activity seen over time in stationary phase. 

Following metabolism, proteins involved in transport across the membrane (13%), 

virulence (11%), and replication (9%) are the next most identified proteins. Also of 

interest, 9% of the underrepresented proteins in this strain have no known function. 

Taken together, these results appear to be consistent with the phenotype seen in mutant’s 

ability to survive stationary phase and resist acidic stress. 
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Table 12A. Proteins over-represented in Δ1718-1719 vs Wild-Type 

Gene Name Accession Number Fold Change 

HTH-type transcriptional regulator MalT  tr|C9R480|C9R480_AGGAD 2.33323847 

tRNA-specific 2-thiouridylase MnmA tr|C9R2L0|C9R2L0_AGGAD 2.33326575 
Cytochrome c nitrite reductase, 
pentaheme subunit  tr|C9R6A6|C9R6A6_AGGAD 2.333270941 

Molybdopterin biosynthesis MoeA 
protein  tr|C9R3L9|C9R3L9_AGGAD 2.3332763 

Tellurite resistance protein TehB  tr|C9R481|C9R481_AGGAD 2.33328287 
Acetyl-coenzyme A carboxylase carboxyl 
transferase subunit beta  tr|C9R4D5|C9R4D5_AGGAD 2.33329127 

Mannonate dehydratase  tr|C9R506|C9R506_AGGAD 2.33329162 

Putative GTP cyclohydrolase 1 type 2  tr|C9R3S8|C9R3S8_AGGAD 2.3332931 

Anaerobic C4-dicarboxylate transporter  tr|C9R1M8|C9R1M8_AGGAD 2.33330228 
Conserved ABC-type transport system 
protein, ATPase component  tr|C9R4W3|C9R4W3_AGGAD 2.33330528 

Alanine racemase  tr|C9R3J0|C9R3J0_AGGAD 2.33330792 

7-cyano-7-deazaguanine synthase  tr|C9R316|C9R316_AGGAD 2.333308559 

Chaperone protein HscA homolog  tr|C9R384|C9R384_AGGAD 2.333311488 

Methyltransferase domain family  tr|C9R693|C9R693_AGGAD 2.333315617 
Putative N-acetylmannosamine-6-
phosphate 2-epimerase  tr|C9R562|C9R562_AGGAD 2.333316888 

Trk system potassium uptake protein 
TrkA (K(+)-uptake protein trkA tr|C9R719|C9R719_AGGAD 2.33331717 

Succinyl-diaminopimelate desuccinylase  tr|C9R308|C9R308_AGGAD 2.33332003 
Dihydrolipoyllysine-residue 
succinyltransferase component of 2-
oxoglutarate dehydrogenase complex 

tr|C9R5N0|C9R5N0_AGGAD 2.3333477 

Guanylate kinase  tr|C9R4V0|C9R4V0_AGGAD 2.333348296 
UDP-N-acetylmuramoyl-L-alanyl-D-
glutamate--2,6-diaminopimelate ligase  tr|C9R2Z2|C9R2Z2_AGGAD 2.33335056 

Phosphohistidine phosphatase SixA tr|C9R3E0|C9R3E0_AGGAD 2.333355213 

50S ribosomal protein L31  tr|C9R205|C9R205_AGGAD 2.333358038 

50S ribosomal protein L28  tr|C9R211|C9R211_AGGAD 2.33338839 

HemY protein  tr|C9R2R4|C9R2R4_AGGAD 2.333406739 

ABC transporter, ATP-binding protein  tr|C9R4W0|C9R4W0_AGGA
D 2.91662946 

MdlB protein  tr|C9R1V9|C9R1V9_AGGAD 3.49985374 
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Table 12A. Proteins over-represented in Δ1718-1719 vs Wild-Type (continued) 

Gene Name Accession Number Fold Change 

Uncharacterized protein tr|C9R586|C9R586_AGGAD 3.49990112 
Conserved outer membrane protein  tr|C9R2Q8|C9R2Q8_AGGAD 3.49996723 
Hemolysin  tr|C9R260|C9R260_AGGAD 3.49997777 
Inosine-5'-monophosphate 
dehydrogenase  tr|C9R3E7|C9R3E7_AGGAD 3.50002583 

Heavy metal-binding protein, putative  tr|C9R6G6|C9R6G6_AGGAD 3.50003706 
Phenylalanine--tRNA ligase alpha 
subunit  tr|C9R4L2|C9R4L2_AGGAD 4.666829217 

Capsular polysaccharide synthesis tr|C9R202|C9R202_AGGAD Not Detected 
in WT 

Excinuclease ABC subunit B  tr|C9R1Y9|C9R1Y9_AGGAD Not Detected 
in WT 

UvrABC system protein B  tr|C9R568|C9R568_AGGAD Not Detected 
in WT 

Fructose-1,6-bisphosphatase class 1  tr|C9R630|C9R630_AGGAD Not Detected 
in WT 

Lipopolysaccharide assembly protein 
B tr|C9R5A2|C9R5A2_AGGAD Not Detected 

in WT 
Nodulation efficiency protein D 
(NfeD)  tr|C9R5E8|C9R5E8_AGGAD Not Detected 

in WT 
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Table 12B. Proteins under-represented in Δ1718-1719 vs Wild-Type 

 Gene Name Accession Number 
Fold 

Change 

Macrolide export ATP-binding/permease 
protein MacB  tr|C9R4F0|C9R4F0_AGGAD 0.2333297 

UPF0319 protein D11S_1646  tr|C9R5C4|C9R5C4_AGGAD 0.233334914 

Ribulose-phosphate 3-epimerase  tr|C9R1U2|C9R1U2_AGGAD 0.291658268 

Cytochrome c-type protein  tr|C9R7G9|C9R7G9_AGGAD 0.291662013 
ATP-dependent Clp protease ATP-binding 
subunit ClpX tr|C9R6G1|C9R6G1_AGGAD 0.291667122 

UPF0250 protein D11S_2139  tr|C9R6Q4|C9R6Q4_AGGAD 0.291669942 

Putrescine-binding periplasmic protein  tr|C9R1Q1|C9R1Q1_AGGAD 0.3181806 

30S ribosomal protein S15  tr|C9R6D9|C9R6D9_AGGAD 0.38887493 

Glycerol-3-phosphate transporter  tr|C9R1W9|C9R1W9_AGGAD 0.388877596 

RNA polymerase sigma factor tr|C9R2V1|C9R2V1_AGGAD 0.3888784 

Uncharacterized protein  tr|C9R1K0|C9R1K0_AGGAD 0.388879949 

Opacity-associated protein OapA tr|C9R654|C9R654_AGGAD 0.388880892 

Regulator of ribonuclease activity B  tr|C9R717|C9R717_AGGAD 0.388880984 
Membrane-bound lytic murein 
transglycosylase A (Murein hydrolase A) 
(Mlt38)  

tr|C9R632|C9R632_AGGAD 0.388883054 

Putative aldolase YneB  tr|C9R4N8|C9R4N8_AGGAD 0.388883164 

Aldo/keto reductase  tr|C9R2N9|C9R2N9_AGGAD 0.38888338 

Uridine phosphorylase  tr|C9R707|C9R707_AGGAD 0.388883454 

Uncharacterized protein  tr|C9R3M9|C9R3M9_AGGAD 0.388883823 

Possible AAA+ superfamily ATPase  tr|C9R317|C9R317_AGGAD 0.388884928 

TadZ  tr|C9R2X0|C9R2X0_AGGAD 0.388886689 

Chromosomal replication initiation protein tr|C9R6K4|C9R6K4_AGGAD 0.388887077 
Phosphatidylserine decarboxylase 
proenzyme  tr|C9R6S9|C9R6S9_AGGAD 0.388887189 

Uncharacterized protein tr|D0UIV3|D0UIV3_AGGAD 0.38888734 

GTP cyclohydrolase-2  tr|C9R5H0|C9R5H0_AGGAD 0.388888038 

Cell division protein ZipA homolog  tr|C9R520|C9R520_AGGAD 0.388888889 

Queuine tRNA-ribosyltransferase  tr|C9R5T0|C9R5T0_AGGAD 0.437498099 
Outer membrane protein assembly factor 
BamD  tr|C9R1Y6|C9R1Y6_AGGAD 0.46664817 

Ribonucleoside-diphosphate reductase tr|C9R3K2|C9R3K2_AGGAD 0.466655995 

Phosphate transport regulator  tr|C9R5Q5|C9R5Q5_AGGAD 0.466660286 
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Table 12B. Proteins under-represented in Δ1718-1719 vs Wild-Type (continued) 

Gene Name Accession Number 
Fold 

Change 

tRNA uridine 5-
carboxymethylaminomethyl modification 
enzyme MnmG  

tr|C9R1N8|C9R1N8_AGGAD 0.466663115 

Aspartate--ammonia ligase  tr|C9R705|C9R705_AGGAD 0.466668996 

Lipoprotein, putative  tr|C9R2X8|C9R2X8_AGGAD 0.466673217 

30S ribosomal protein S6  tr|C9R1W3|C9R1W3_AGGAD 0.466684313 

Mannose-specific PTS system protein IID tr|C9R1Q9|C9R1Q9_AGGAD 0.5 

Aminotransferase, class-V  tr|C9R5E2|C9R5E2_AGGAD Not Detected 

Apolipoprotein N-acyltransferase  tr|C9R373|C9R373_AGGAD Not Detected 
Cluster of Binding-protein-dependent 
transport systems inner membrane 
component  

tr|C9R394|C9R394_AGGAD Not Detected 

Cystathionine beta-lyase  tr|C9R3C3|C9R3C3_AGGAD Not Detected 

D-3-phosphoglycerate dehydrogenase  tr|C9R2I2|C9R2I2_AGGAD Not Detected 
Enoyl-[acyl-carrier-protein] reductase 
[NADH]  tr|C9R3S7|C9R3S7_AGGAD Not Detected 

Iron-sulfur cluster insertion protein ErpA  tr|C9R533|C9R533_AGGAD Not Detected 

L-asparaginase, putative tr|C9R6E4|C9R6E4_AGGAD Not Detected 

Long-chain-fatty-acid--CoA ligase tr|C9R5F5|C9R5F5_AGGAD Not Detected 

Mce related protein  tr|C9R5N9|C9R5N9_AGGAD Not Detected 

N utilization substance protein B homolog  tr|C9R3J3|C9R3J3_AGGAD Not Detected 
Nicotinamide-nucleotide 
adenylyltransferase  tr|C9R2F0|C9R2F0_AGGAD Not Detected 

Possible heptosyltransferase II (Inner core)  tr|C9R207|C9R207_AGGAD Not Detected 

Putative transport protein D11S_0239  tr|C9R7K3|C9R7K3_AGGAD Not Detected 

DNA-binding protein  tr|C9R4U2|C9R4U2_AGGAD Not Detected 

Sugar efflux transporter  tr|C9R399|C9R399_AGGAD Not Detected 
UDP-3-O-acylglucosamine N-
acyltransferase tr|C9R1I0|C9R1I0_AGGAD Not Detected 

Glycerol-3-phosphate transporter (G-3-P 
transporter) (G-3-P permease) tr|C9R5Y5|C9R5Y5_AGGAD Not Detected 

Alpha/beta superfamily hydrolase tr|C9R4E8|C9R4E8_AGGAD Not Detected 

Transport associated protein 4 tr|D0UIW9|D0UIW9_AGGAD Not Detected 
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Δ1194-1195 vs Δ1718-1719 

 Since the real-time PCR data suggests that some functional redundancy between 

the two putative TA systems, the proteomics data was also analyzed to compare the two 

mutant strains to each other (Figure 25).  In total, 120 proteins were identified as being 

differentially represented when compared to wild-type. Of these, 34 were common to 

both mutant strains: 23 over-represented, 7 underrepresented, and four differentially 

represented. This data further supports the hypothesis that TA systems in the same family 

may exhibit some level of functional redundancy. It is also interesting that 59 

differentially represented proteins are unique to the Δ1718-1719 mutant strain, of which 

15 are over-represented and 44 are under-represented relative to the wild type strain.  

Twenty-seven differentially represented proteins are unique to the Δ1194-1195 mutant 

strain, of which 20 are over-represented and 7 are under-represented relative to the wild 

type.  These results confirm that functional redundancy exists for these TA systems but 

also clearly suggests that each TA system may also have specific functions, which is 

consistent with the phenotypic differences seen in these strains. 

 Looking at just the proteins that are represented in both isogenic deletion strains, 

proteins involved in metabolism and virulence are the most prevalent, and represent more 

than 50% of the differentially represented proteins when compared to wild-type. Of the 

metabolism proteins identified, amino acid metabolism was the most common pathway 

affected.  It is also interesting to point out that all of the proteins that are found in both 

mutant strains have known functions.  

 Examining the unique proteins to each strain, the majority (42%) of the proteins 

identified in the Δ1718-1719 strain are involved in metabolism (Figure 27A-B). The 



 

108 
 

majority of these metabolism proteins are involved in various general pathways, but 

nucleotide metabolism is the most common affected. The next most prevalent group is 

proteins with no known function (12%), followed by transport across the membrane and 

virulence (9% each). While metabolism is still the majority of identified proteins in the 

Δ1194-1195 strain, transport across the membrane is the next largest group, followed by 

proteins involved in transcription and membrane formation (Figure 28A-B). The majority 

of the metabolism proteins in the Δ1194-1195 strain are general enzymes, there’s only 

two other groups identified: amino acid and nucleotide metabolism. Both of which are 

equally represented.
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CHAPTER SEVEN: DISCUSSION 
 

Type II TA systems are one way that bacteria and archaea have evolved to 

respond rapidly to changing environments. The oral cavity is a constantly changing 

environment that is affected by everything that we eat and drink, saliva, and oral hygiene 

products. In order to sustain life in this environment, bacteria will grow in biofilms 

attached to the tooth surface. Biofilms are able to limit the effects of some of these stress 

conditions by creating gradients that make the bacteria resistant to changes. There is also 

substantial evidence that bacteria that are susceptible to a particular antibiotic in 

planktonic culture may exhibit resistance in a biofilm, yet the role that type II TA systems 

play in the response of oral organisms to stress is largely unknown. 

Here, we showed that an oral commensal with potential to be an opportunistic 

pathogen, A. actinomycetemcomitans, contains 14 putative TA loci that represent at least 

three of the six known families of type II TA systems. Three of these loci possess 

pseudogenes that have experienced partial gene deletion or rearrangement and these three 

systems are likely non-functional. Two of the systems identified in strain D11S-1 were 

not widely conserved across all seven serotypes. Of the 33 genomes examined, all three 

contained an intact HipAB-like system and 22 of the remaining genomes contained only 

the anti-toxin. Interestingly, most the 33 genomes examined were derived from human 

isolates, but many of the identified putative TA systems are conserved in the RhAA1 
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strain, which was isolated from the oral cavity of a rhesus monkey. The RhAA1 strain 

also contains more copies of the type II TA systems than any of the other strains, which 

may reflect the ability of this strain to adapt to environmental stress conditions that exist 

within the rhesus monkey oral cavity. 

A. actinomycetemcomitans, is able to respond to environmental stress. Some 

environmental conditions effect the growth of the bacteria. As with many human 

pathogens, A. actinomycetemcomitans has an iron requirement and iron starvation slows 

growth. Since A. actinomycetemcomitans prefers to utilize lactate as a carbon source 

(Brown et al 2007) and that lactic acid is produced by many of the oral streptococci in the 

oral cavity, it is interesting that when an iron chelator was added to the medium, it 

appeared to have no effect on growth when lactate was the carbon source. When the iron 

chelator bipyridyl, which is used in many commercially available colorimetric assays to 

determine concentration of iron in samples, is added to a medium that contains iron, the 

medium changes color as the iron is bound. The bipyridyl interacts with iron (II) to form 

a complex containing one iron ion connected covalently to 3 bipyridyl molecules that 

results in a red color being observed: the more intense the color, the more iron that is 

present in the solution (Kaes et al 2000). When bipyridyl was added to CDM containing 

lactate and iron, no color change was observed, but when it is added to CDM containing 

glucose and iron, the medium turns bright pink. One possible explanation for this is that 

lactate can complex with iron (Ali et al 2000) and thus lowers the concentration of iron 

that is available to the chelator. Also of interest is the effect that carbon dioxide has on 

growth since A. actinomycetemcomitans needs carbon dioxide to grow on plates.  
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The presence of type II TA systems in the genome of A. actinomycetemcomitans 

represents one mechanism for bacteria to respond and adapt quickly to the environmental 

changes. The presence of multiple systems in the genome is not unusual, but many 

species do not contain any of these systems and some species have dozens of copies. 

Previous studies have shown that TA systems can cross-talk by a variety of mechanisms 

including activating the transcription of other systems, anti-toxin inhibition of non-

cognate toxins, or enhancing the activity of other systems (Yang et al 2010, Kasari et al 

2013).  When considering the real-time PCR data to determine transcription levels of the 

putative TA systems, there were several TA systems that appeared to be largely 

unresponsive to the conditions tested. Two of the TA systems that were unique to A. 

actinomycetemcomitans exhibited little to no activation of transcription when exposed to 

the environmental conditions tested. One explanation for this result is that these systems 

respond to an environmental stimulus that was not tested in our approach.  A more 

common pattern observed across all families of the type II TA systems identified was that 

each system responded highly to only one or two stress conditions, but was largely 

unresponsive to others. This suggests that specificity exists in the response of various 

members of the TA system repertoire of A. actinomycetemcomitans in that specific TA 

systems respond to the greatest extent to certain environmental conditions.  However, our 

data also shows that many of the putative type II TA systems respond at least partially to 

many of the stress conditions tested. Interestingly, putative TA systems within a family 

appeared to exhibit functional redundancy. For example, the two systems in the MazEF 

family exhibited similar levels of activation across all conditions. This functional 

redundancy would protect against the loss of one system to ensure survival, which also 
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suggests these systems are important for the survival and adaption to the environment 

within the oral cavity. 

It is not currently clear how this specificity to environmental stress exists. Briefly, 

the inhibition of the type II TA system is due to the presence of the anti-toxin, which can 

inhibit the toxin’s activity and represses the systems transcription by binding to the 

promoter region (Muthuramalingam et al 2016, Hayes et al 2014).  To activate the 

system, general ATP-dependent bacterial proteases, such as Lon and Clp, will readily 

degrade the anti-toxin, thus depleting the cellular concentration of it and causing the 

activation of the toxin (Muthuramalingam et al 2016, Hayes et al 2014, Gerdes 2000).  

However, these are general proteases and they are responsible for a large percentage of 

the protein degradation within the cell (Muthuramalingam et al 2016, Van Melderen et al 

2009).  Interestingly, anti-toxins have been experimentally been shown to be substrates 

for Lon, however, it is has not been demonstrated in vivo. These same studies also 

indicate the activation of type II TA systems is more complex than a single protease 

degrading the anti-toxin, and more importantly, the reason for specificity of a response to 

a stressor has not been elucidated at present (Sat et al 2001, Christensen et al 2001, 

Muthuramalingam et al 2016).  It is possible that the anti-toxin only interacts with the 

protease under certain circumstances, such as stress, and cell density, or that the stressor 

causes the anti-toxin to become unfolded, thus activating the proteases (Micevski et al 

2013, Muthuramalingam et al 2016, Yang et al 2016, Gur 2013).  

 Wild-type bacteria exhibit reduced metabolic activity over the course of a week 

at stationary phase; the loss in activity was fairly steady from day to day. The Δ1194-

1195 mutant was able to survive at stationary phase, but experienced a significant drop in 
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metabolic activity after 96 hours. This suggests that the loss of this TA system may affect 

viability at stationary phase. Similar results were obtained with the Δ1718-1719 mutant 

but to a greater extent. This isogenic deletion mutant was much more susceptible to 

acidic pH in stationary phase when compared to wild-type; loss of metabolic activity was 

observed as early as 24 hours and was very evident at 72 hours. One possible explanation 

for this observation is that the activity of the D11S_1718-1719 TA system may 

effectively compensate for the loss of the D11S_1194-1194 system, however, the activity 

the D11S_1194-1194 system may not fully compensate for deletion of D11S_1718-1719. 

This is consistent with functional redundancy between the two systems and the loss of the 

D11S_1194-1195 system is not sufficient to greatly affect the overall metabolic activity 

of the bacteria. Similar functional redundancy has been observed in TA systems of other 

organisms. It has been shown in a strain of E. coli that possesses five TA systems that the 

loss of a single TA system had no impact on the fitness of the bacteria (Tsilibaris et al 

2007. However, another study went a step further and deleted all five TA systems and 

observed a phenotype when the bacteria were grown in a biofilm (Wang et al 2011). In A. 

actinomycetemcomitans, the generation of a double mutant was attempted multiple times, 

but was unsuccessful, which suggests that these systems are important for survival and 

that deletion of both may be lethal. It is also interesting to note that the D11S_1718-1719 

TA system was present in all 33 genome sequences of A. actinomycetemcomitans that 

were analyzed for presence of TA systems, but the D11S_1194-1195 was not present in 

all genomes. This could also indicate the importance of the D11S_1718-1719 in the 

overall fitness of the bacteria since its deletion was difficult to achieve and the deletion 

showed the greatest phenotype. 
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Both mutant strains also exhibited reduced biofilm biomass relative to the wild 

type when mature biofilms were exposed to acidic conditions and this phenotype was 

complemented with functional copies of the TA systems.  Importantly, initial biofilm 

formation of the mutant strains was similar to wild-type, indicating that the mutants are 

not deficient in the ability to form a biofilm. This is consistent with our earlier results 

showing that both systems may function to preserve metabolic activity during stationary 

phase.   

To further examine the function of the acid responsive TA systems, the activity of 

the individual toxin and anti-toxin proteins was determined. Since the TA systems chosen 

for further study are both RelBE-like homologs, we surmised that these putative systems 

may represent endoribonucleases that are dependent on the ribosome for activity. In vitro 

translation experiments using a control plasmid with a known protein product showed 

that both purified toxins inhibited translation and that the anti-toxins had no effect on 

translation.  In addition, when toxin and anti-toxin were mixed together in equimolar 

amounts, the activity of the toxin was inhibited and no effect on translation was observed.  

In many cases, the anti-toxin is encoded by the first gene in the operon and the toxin by 

the second. However, Figure 20 clearly shows that 1718 behaves as a toxin and 1719 

behaves as an anti-toxin. This is further supported by the mRNA degradation assay using 

MS2 bacteriophage genomic RNA (Figure 21). There are a few examples of this in the 

literature. It does not appear that function is affected by this reversal and phenotypes that 

have been seen are very similar to the phenotypes seen in the “normal” TA systems. 

(Budde et al 2007, Christensen-Dalsgaard et al 2009, Jorgensen et al 2009, Jurenas et al 

2017) The most noted example of this rearrangement is seen in higBA, where higB is the 
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toxin. HigBA belongs to a family of TA systems that resemble RelBE because it is an 

endoribonuclease that is dependent on the ribosome to function. Budde et al showed that 

deletion of higB only was possible, but deletion of higA was not possible. They also 

showed that activation of the HigB toxin resulted in slowed growth, but was not 

associated with cell death. Christensen-Dalsgaard et al also suggests that higBA is relBE, 

but in reverse. Taken together, our results suggest that the putative toxins degrade mRNA 

in the presence of ribosomes and inhibit translation.  This activity is prevented by the 

cognate anti-toxin proteins and thus, both systems appear to function as RelBE-like TA 

systems, regardless of the gene order. 

Proteomic analyses of the mutant and wild type strains identified differentially 

represented proteins that were common to the two mutants, but also a significant number 

of polypeptides that were unique to each mutant strain. This further supports the idea that 

multiple TA systems within a family may have functional redundancy, but are also able 

to differentially respond to different environmental cues. This is highlighted, in part, by 

the presence of the nitrogen metabolism proteins being identified in the Δ1718-1719 

mutant and not the Δ1194-1195 mutant. Furthermore, the real-time PCR data indicated 

that the D11S_1718-1719 TA system was responsive to anaerobic stress while the 

D11S_1194-1195 TA system was not.  

There are a wide variety of pathways that are affected by the presence of these 

systems, including virulence factors such as leukotoxin, which was over-represented in 

the mutants. This suggests that the expression of the leukotoxin may be regulated in part 

by the endoribonuclease activity of the toxins in the wild-type strain. Since the leukotoxin 

is an important virulence factor associated with aggressive periodontitis, it is possible that 
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exploitation of the TA system could be used to potentially target leukotoxin expression 

and reduce the potential for the bacteria to cause disease. It is also interesting that 

autoinducer-2 aldolase produced by A. actinomycetemcomitans is only affected by the 

Δ1718-1718 isogenic mutant and was less abundant in the mutant.  Since quorum sensing 

is important in the formation of mature biofilms, this may explain in part why the Δ1718-

1719 mutant exhibited reduced biofilm biomass after exposure to acidic conditions than 

the Δ1194-1195 mutant. Another interesting finding was the presence of a type IV 

secretion system component that was differentially expressed in the two mutants. BLAST 

results suggest that this particular component has homology to the VirB5 protein family, 

and that this particular protein is important for protein-protein interactions for pilus 

assembly (Yeo et al 2003). This protein was not detected in the Δ1194-1195 mutant, but 

was over-represented in the Δ1718-1719 mutant. Type IV secretion has not been well 

studied in A. actinomycetemcomitans, but of the available literature, we know that A. 

actinomycetemcomitans has a CagE-homolog, which is a protein that is commonly 

associated with type IV secretion in other organisms and that this CagE protein may be 

necessary to cause inflammation and tissue destruction in the host (Teng et al 2005). A 

more recent study looked at the prevalence of type IV secretion systems in periodontitis 

patients in Taiwan, and found that 90% of the samples with a complete type IV secretion 

system module were from patients with localized aggressive periodontitis (Liu et al 

2017). This suggests that the wild-type strain may also utilize the D11S_1718-1719 TA 

system to aid in the invasion of surrounding host tissues and enable disease progression. 

It is also important to note the proteomic analyses presented here were done on 

planktonic cells, not biofilms. It is possible that different proteins may be affected during 
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biofilm growth and thus it may be necessary to conduct the proteomic approach using 

biofilm cells to fully understand how these TA systems alter the proteome of A. 

actinomycetemcomitans exposed to acidic conditions. This is especially important since 

type II TA systems have been directly implicated in the formation and stability of 

biofilms in other bacterial species.  

Targeting type II TA systems as a way to control bacterial growth has been 

widely considered to result in the killing of the bacteria, without the need for antibiotics. 

This would prevent the evolution of antibiotic resistance strains of bacteria, and hosts 

may experience fewer side effects since humans appear to have no homologous proteins 

(Park et al 2013, Unterholzner et al 2013, Williams et al 2012). It is possible that by 

understanding how these systems respond to environmental stress and how they respond 

within the cell, novel therapies that exploit these systems could be developed. Some 

proposed methods of doing this involve chronic activation of the toxin, chronic activation 

of the proteases, or complete inhibition of the toxin to prevent survival. These therapies 

have the potential to be cost-effective to the consumer, in addition to being less painful 

than current methods. These novel therapies may also be able to target multiple species at 

once without difficulty. 
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CHAPTER EIGHT: FUTURE DIRECTIONS 

Persister Cell Formation and Anti-toxin Characterization: 

 One of the biggest questions in the literature of TA systems is: why do some 

bacteria have multiple copies?  Fasani et al suggest that one reason pathogenic bacteria 

have so many copies is to increase the likelihood that persister cells will develop. 

Persister cells cannot be identified through normal genomic methods since there is not a 

gene associated with the ability to form this type of cell. Persister cells can be assayed for 

by monitoring cell cultures for viability rather than metabolic activity. Many 

commercially available kits exist that allow the identification of viable cells that may 

otherwise be viewed as dead or dying. Preliminary tests within the laboratory suggest that 

viability between wild-type strain and the two mutants may not be greatly affected over 

time, but the assays still need to be optimized for use with A. actinomycetemcomitans. 

 Fasani et al also suggest that bacteria increase the likelihood for developing 

persister cells by utilizing TA systems at different times and that they may use growth 

rate as the signal for the activation. It is possible that this is why some of the putative TA 

systems identified did not appear to be responsive to any of the environmental stressors 

tested. It may be necessary to stress the bacteria for longer (or shorter) times or stress the 

bacteria at different stages of growth. Initial tests in the laboratory attempted to collect 

total RNA from early-log phase, mid-log phase, and late log phase for analysis. 

Unfortunately, early and late log phase were difficult to isolate enough usable mRNA for 
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analysis using the cesium chloride method. Since these initial tests, a commercially 

available kit for the isolation of mRNA from high lipid tissue culture has been 

successfully used with better yields from less starting sample than the cesium chloride 

method. It may be useful to repeat the real-time PCR assay using more time points, and 

more primer sets for the untested putative TA systems. 

 The anti-toxin of the TA pair and the TA complex has been shown in many cases 

to autoregulate the expression of the TA system, and in some cases to regulate the 

expression of other genes within the genome. Examining the promoter region of the TA 

operon and identifying the binding site for regulation will facilitate determining the 

regulon for each of the TA systems and highlight how TA complexes affect gene 

expression even when the toxin itself is not activated.  TA-mediated regulation at the 

transcriptional level may in part explain why the levels of some proteins were reduced in 

the mutant strains.  

 

Novel Therapies:  

To exploit TA systems to develop potential novel therapies, we first need to 

understand how the anti-toxin interacts with the toxin. Some 3D crystal structures have 

already been determined, which can provide a starting point to determine what is actually 

necessary for the toxin to be inhibited (Brown et al 2009, Francuski et al 2009, Shinohara 

et al 2010, Bogglid et al 2012, Heaton et al 2012, Schureck et al 2014). After the 

interaction of the toxin and anti-toxin has been elucidated more thoroughly, it may be 

possible to develop small molecules or peptides that could potentially mimic this binding. 

Since the anti-toxin is labile and is degraded easily, a presence of the mimic could 
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prevent the activation of the toxin even in the absence of anti-toxin, thus making the 

bacteria more susceptible to killing through biofilm disruption, antibiotics, or other 

environmental stressors. We anticipate that this approach would inhibit adaptation of A. 

actinomycetemcomitans to acidic conditions and may prevent the formation of persister 

cells.  By inhibiting toxin activation under acidic stress it is possible that infection could 

be contained or eliminated without the need for an antibiotic or painful debridement. 

It may also be possible to develop small molecules that inhibit the Lon and Clp 

proteases, which initiate the activation of TA systems. This could prove to be a more 

universal treatment pathway since more than one family of TA systems are activated by 

these proteases and may be more conserved across species than the individual TA 

systems. On the other hand, it may be possible to cause chronic activation of the toxin, 

which would cause the bacteria to stop growing, and since it would not be turned off 

under favorable conditions, it would eventually die. Small molecules may be developed 

that can inhibit the activation of the TA operon, thus preventing more anti-toxin from 

being transcribed and translated. Small molecules may also be able to developed that 

cause the activation of the general proteases, which would keep the supply of the anti-

toxin low. 

 

Other TA Systems and Stress: 

 Previous work in E. coli showed that a strain deficient in five TA systems was 

deficient in antibiotic resistance, but only in the biofilm. It may be necessary to repeat the 

proteomic assay done in this study with bacteria stressed in a biofilm. Optimization 

would need to be done to determine how long to stress the biofilm for optimal results.  
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There are multiple other TA systems that were not characterized during the initial 

real-time PCR experiments. More insight into how these systems work and when they 

work could be determined by repeating the assay here with more primer sets. Of the 

systems that were characterized, there are many others that can be examined as well. Of 

notable interest:  

1. Iron Starvation 

a. D11S_2133-2134 

2. Anaerobic  

a. D11S_2133-2134 

b. D11S_1068-1069 

c. D11S_0905-0906 

d. D11S_0919-0920 

e. D11S_1798-1799 

3. Lactate as a carbon source 

a. D11S_0905-0906 

b. D11S_0919-0920 

4. Microaerophilic Conditions 

a. D11S_0905-0906 

b. D11S_0919-0920 

These conditions are important for survival in the oral cavity and should be 

examined as well. Since only a handful of stress conditions were tested here, it is highly 

probably that some of the unresponsive systems, such as D11S_0499-0500, and 

D11S_1023-1024 have very specific stress conditions to which they respond. It is 
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possible that one or more of these TA systems are utilized for the invasion of epithelial 

cells and/or specifically when in a biofilm. 

This will enhance our understanding of why some bacteria have multiple copies 

of TA systems and will enable us to see how these systems cooperate with each other.  

 

Other strains of A. actinomycetemcomitans: 

 Since a BLAST search showed that the type II TA systems found in strain D11S 

were conserved across various serotypes, it may be of interest to examine the effects of 

environmental stress in other serotypes, such as serotype A and B, which are also 

associated with disease in humans. It would be important for the development of novel, 

non-invasive therapies to determine if the type II TA systems being targeted are 

responsive in all serotypes and how they are responsive.   

Of interest as it relates to this study, serotypes D, E, F, and G all contain a HipAB 

homolog when compared to the sequence in E. coli, but they do not contain of the HipAB 

homolog found in D11S. Interestingly, these serotypes, while they can be found in human 

oral cavities, are not typically associated with disease. The sequence in D11S appears to 

have experienced a deletion event that broke the protein into two different genes. It 

would be interesting to see what would happen with a full HipAB being introduced into 

the strain used here. It would also be interesting to see how the D11S HipAB system 

affects other strains with a full length HipAB system. 

 This will prove to be important when we look at the studies showing prevalence 

of serotypes across a population around the world. Different serotypes are prevalent in 

certain populations whereas others may not be found in certain areas.   
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