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ABSTRACT 

COMBINATION ORAL IMMUNOTHERAPY WITH IL-10 AND IL-12 EFFECTIVELY 

TREATS COLON TUMORS VIA SYNERGISTIC EFFECTS ON IL-17 PRODUCING T 

CELLS AND COLON EPITHELIAL BARRIER INTEGRITY 

Neal Bhutiani 

 

 

In this dissertation, the relationship between colon cancer and inflammation, the utility of 

novel imaging modalities for diagnosis of colitis and cancer, and the therapeutic efficacy 

of orally delivered, particle-based immunotherapy for the treatment of colon cancer are 

evaluated.  

 

In Chapters One and Two, multispectral optoacoustic tomography (MSOT) is 

demonstrated to effectively detect colon inflammation without the use of exogenous 

contrast prior to detection using conventional colonoscopy.  Oral particle uptake is 

demonstrated in the distal small intestine and proximal colon, confirming site-specific 

delivery.  
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In Chapter Three, administration of IL-10 and IL-12 containing particles is shown to act 

synergistically to significantly reduce tumor burden in the setting of established colon 

tumors.  Cellular mechanisms deriving from effects on CD8+ T cells and T17 cells as 

well as a physiologic mechanism stemming from combination therapy’s strengthening of 

colon epithelial barrier integrity are described.  

In Chapter Four, the lack of efficacy of orally administered anti-PD1 therapy is 

demonstrated.  IL-17 and γδ T cells, but not CD4+ T cells, are shown to be critical 

mediators of treatment failure.  The significant anti-tumor effect of combination treatment 

with either anti-IL-17A or anti- γδ TCR and anti-PD1 demonstrate exciting therapeutic 

targets for future clinical trials.  

 

Finally, in Chapter Five, a clinically relevant model of colon cancer is described.  This 

mutationally-driven model recapitulates the clinical scenario of single adenoma 

development, adenoma to carcinoma transition, carcinoma progression, and eventual 

metastasis to the liver.  Such a model provides an excellent platform for preclinical 

evaluation of many different aspects of colon cancer.   
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INTRODUCTION 

COLON CANCER 

EPIDEMIOLOGY, MOLECULAR AND IMMUNOLOGIC MECHANISMS, DIAGNOSIS, 

AND TREATMENT 

Colon cancer epidemiology 

Approximately 4.5 percent of men and women in the United States will be diagnosed 

with colon cancer in their lifetime.1,2  In 2018 alone, nearly 100,000 people will be 

diagnosed with a new colon cancer.1  More significantly, in this same period, 50,630 

people are expected die of colon cancer (including rectal cancer), making it the second 

leading cause of cancer-related deaths in the United States.1,2   

 

While the disease has been decreasing in incidence over time as a result of improved 

screening leading to detection of and intervention upon pre-malignant lesions, it still 

represents a clinically significant disease process that impacts a significant number of 

people.  Indeed, among those diagnosed with colon cancer, only about 40% are 

diagnosed with local disease (e.g. that confined only to the colon).2  The remaining 60% 

demonstrate evidence of disease in either the regional lymph nodes (35%) or distant 

sites, particularly the liver (Figure 1).2  While 5-year survival approaches 90% for 

patients with localized disease with surgery and modern chemotherapy, that number 



2 
 

drops to approximately 70% for patients with disease in their regional lymph nodes and 

less than 14% for patients with distant metastases (Figure 2).2           

 

Several risk factors have been shown to increase the risk of colon cancer (Table 1).1  

Behavioral risk factors include physical inactivity, obesity, a diet high in processed and/or 

red meat, smoking, and moderate to heavy alcohol use.  Aside from these, a family 

history of colon cancer has been associated with a two- to four- fold increased risk of 

developing colon cancer.3,4  This association becomes stronger with the larger the 

number of first degree relatives with colon cancer and the younger the age of those 

relatives at diagnosis.   

 

Among those with a family history of colon cancer, approximately 5% have a genetic 

syndrome that increases their predisposition to developing the disease.5  The two most 

prominent, hereditary nonpolyposis colon cancer (HNPCC) and familial adenomatous 

polyposis (FAP), represent distinct clinicopathologic entities characterized by defects in 

DNA mismatch repair (MMR) machinery (MLH1, MSH2, MSH6, PMS2) and the 

adenomatous polyposis coli (APC) gene, respectively.1,6  Patients with HNPCC exhibit 

both a higher likelihood of developing colon cancer over the course of their lifetime 

(nearly 50% by age 70) as well as a younger median age at diagnosis (45 years).7  FAP 

patients, meanwhile, manifest innumerable polyps throughout their colon by 

preadolescence and have a nearly 100% risk of developing colon cancer by age 40.8   
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In addition to lifestyle and genetic risk factors, medical comorbidities also significantly 

modulate an individual’s risk for colon cancer.  Type 2 diabetes and, more significantly, 

chronic inflammatory bowel disease (IBD; i.e. ulcerative colitis, Crohn’s disease), have 

both been shown to increase an individual’s risk of developing colon cancer.9-11  Indeed, 

patients with IBD have between a 2 and 5-fold greater likelihood of developing colon 

cancer over the course of their lifetime, particularly if diagnosed at a young age.  This 

association derives from the persistent chronic inflammatory processes in the colon 

leading to increased cell turnover, higher mutation potential, and other elements which 

will be subsequently discussed in greater detail.    

 

Natural history 

In general, the pathogenesis of colon cancer adopts two distinct paradigms depending 

on whether cancer arises spontaneously or in the setting of IBD.12,13  In the former case, 

colon cancer arises as a result of an accumulation of spontaneous mutations that lead to 

hyperplasia, dysplasia, and eventually, development of invasive adenocarcinoma.  

Disruption of the epithelial barrier and microbial invasion results in “tumor-elicited 

inflammation,” which enhances tumor growth.  Meanwhile, in the setting of inflammatory 

bowel disease, chronic underlying colonic mucosal inflammation leads to mutations that 

result in adenocarcinoma formation, with tumor development resulting in propagation of 

the pro-inflammatory milieu.   

 

The above differences are highlighted on a phenotypic and genotypic level.  While 

sporadic colon cancer usually demonstrates a defined adenoma to carcinoma sequence 

with serial accumulation of genetic mutations in a relatively defined fashion, cancer that 
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arises in the setting of inflammatory bowel disease usually is the result of progressively 

more dysplastic colon tissue with a different pattern and sequence of genetic mutations 

(Figure 3).12,14-17  

 

Further complicating matters, sporadic colon cancer comprises several distinct subsets 

that behave differently on several levels.  Microsatellite unstable tumors represent a 

particular entity that deserves attention.  These cancers, which usually arise in the 

setting of silencing of the aforementioned mismatch repair gene MLH1, carry a favorable 

prognosis and demonstrate different levels of neoantigen exposure and immunogenicity 

than their microsatellite stable (MSS) counterparts.18-20  The distinction between these 

tumor types will be subsequently discussed in greater detail and represents a critical 

area of focus for novel colon cancer therapies.      

 

Screening for colon cancer 

As previously mentioned, screening efforts have played a major role in decreasing the 

incidence of colon cancer in the United States.  Still, these measures, which can include 

colonoscopy, flexible sigmoidoscopy, or fecal occult blood test, demonstrate varying 

degrees of screening efficacy, with colonoscopy (the most invasive test) demonstrating 

the highest rate of polyp of dysplasia detection.1   

 

The need for an invasive test for optimal colon cancer screening has posed several 

issues for both patients and the healthcare system.  Many patients dislike the discomfort 

associated with colonoscopy, as it involves not only an invasive procedure but also a 
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pre-test cathartic (bowel prep) for stool evacuation.21,22  Additionally, since the test 

requires the expertise of a skilled physician and nursing staff, the costs associated with 

screening are not insignificant, and patients must travel to centers with all necessary 

infrastructure to have their screening performed.1  For these and other reasons, 

screening rates have stagnated at approximately 65-70% in the United States.   

 

The above factors, coupled with a larger number of American adults requiring colon 

cancer screening, point to the need for non-invasive, less operator-dependent 

modalities.  Recently, CT colonography has emerged as a potential alternative to 

colonoscopy.23  However, it remains limited in its ability to detect polyps smaller than one 

centimeter.  New technologies or new applications of existing technologies are thus 

needed as part of the effort to improve patient compliance with colon cancer screening 

guidelines and facilitate early detection of pre-malignant polyps, thereby reducing the 

overall burden of the disease. 

 

Current therapy for colon cancer 

While early stage colon cancer is treated effectively with surgical resection with or 

without systemic chemotherapy, locally advanced and metastatic disease portends a 

significantly worse prognosis.1,2  Indeed treatment of Stage 3 and Stage 4a and/or 4b of 

colorectal cancer (CRC) involves multiple rounds of chemotherapy, surgery, and 

possibly hepatic embolization or ablation, conferring significant morbidity.   
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Current standard of care for patients with locally advanced or metastatic colon cancer 

consists of 5-fluorouracil (5-FU) based chemotherapy (i.e. in combination with leucovorin 

and either oxaliplatin (FOLFOX) or irinotecan (FOLFIRI)).24-27  Systemic therapy in these 

patients focuses on delaying progression of disease and, if possible, reducing their 

disease burden/ thus rendering patients candidates for resection.28,29  Additionally, 

chemotherapy is employed in a subset of patients who undergo resection thought to be 

at high risk for recurrence postoperatively.  This usually consists of between 3 and 6 

months of FOLFOX or an oral 5-FU analog (capecitabine) plus oxaliplatin.30  Patients 

with isolated lung or liver metastases may be candidates for metastatic tumor resection, 

which, in appropriately selected patients, can significantly improve survival.31-34    

 

In patients receiving up-front chemotherapy for unresectable disease, approximately 30-

45% of patients respond to first-line therapy, and overall survival is approximately 20 

months.26,35,36  Meanwhile, patients receiving postoperative chemotherapy exhibit 

approximately 75% disease free survival at 5 years.30  Still, these chemotherapy 

regimens can cause significant toxicity, particularly nausea and vomiting, neurotoxicity 

(in the case of oxaliplatin), hepatotoxicity, and neutropenia, in over 60% of patients.37  

Indeed, the risk of severe toxicity increases among older patients, those with 

pretreatment comorbidities, and poor performance status.   

 

In recent years, targeted therapies against VEGF and EGFR have become standard 

elements of the antineoplastic armamentarium in patients with advanced colon cancer.  

Anti-VEGF and Anti-EGFR agents.  The former group, which includes bevacizumab and 

aflibercept and targets angiogenesis and aim to decrease blood supply to the tumor, has 
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been shown to be effective either as monotherapy or in conjunction with the multiagent 

chemotherapy regimens described above.38-40  However, its use significantly increases 

bleeding risk among patients undergoing surgery and incidence of severe toxicity.41-43  

The latter group, which blocks pro-tumorigenic signaling through the epidermal growth 

factor pathway receptor, has demonstrated effect in patients with wild type RAS 

oncogenes either as monotherapy or in combination with irinotecan- or, to a lesser 

extent, oxaliplatin-based regimens.44,45  While these agents have a less severe side 

effect profile than anti-VEGF agents, they are associated with an increase in toxicity 

when added to multi-agent chemotherapy regimens.46  These statistics, together with 

those presented above, highlight the importance of developing additional therapies for 

treatment of advanced stage colon cancer.   

 

The immune system in colon cancer  

As with many cancers, the immune system has been shown to play a significant role in 

intrinsic prevention of colon cancer.  In general, this involves both innate and adaptive 

immunity.  Specifically, natural killer (NK) cells have been demonstrated to prevent 

tumors and control their growth through recognition of activating ligands and decreased 

major histocompatibility complex I expression on tumor cells.47,48  Indeed, increased NK 

cell infiltration of colon tumors has been linked with improved prognosis in patients with 

colon cancer.49,50  Additionally, a subset of tumor infiltrating macrophages (M1 or M1-like 

macrophages) not only directly target tumor cells, but also increase major 

histocompatibility complex (MHC) and costimulatory molecule expression  in addition to 

producing pro-inflammatory cytokines like IL-12 and TNFα, thereby augmenting both the 

innate and adaptive immune responses.51   
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As previously alluded to, colon tumor cells, like many other kinds of cancer, overexpress 

certain antigens that allow for their recognition by the (adaptive) immune system.  Many 

of these antigens represent normal self-antigens that are simply overexpressed in tumor 

tissue (e.g. carcinoembryonic antigen (CEA), MUC-1, and p56) or proteins that result 

from mutations in genes such as Kras and p53.52,53  Prevalence of immunogenic tumor 

neoantigens is further increased in microsatellite instability (MSI) high tumors, leading to 

greater lymphocyte infiltration of the tumor.54,55  This phenomenon, is, to an extent, 

counterbalanced by increased regulatory T cell infiltration which can blunt the anti-tumor 

immune response.56   Still, the importance of tumor infiltration by cytotoxic CD8+ T cells 

and memory CD8+ T cells cannot be overstated.  Patients with higher proportions of 

infiltrating effector and memory CD8+ T cells have been shown to have improved 

prognosis across stages.57-61  Moreover, assessing these two parameters outperformed 

conventional tumor-nodes-metastasis (TNM) staging in predicting recurrence in these 

patients, highlighting the importance of the anti-tumor immune response in colon 

cancer.62 

 

Conversely, regardless of the mechanism by which colon cancer arises, immune 

dysregulation plays a major role in survival of tumor cells, tumor evasion of anti-tumor 

immune responses, and downregulation of said immune responses.  CD4+ CD25+ 

FoxP3+ T regulatory cells exert immunosuppressive effects that blunt anti-tumor 

responses through release of cytokines like TGFβ and metabolites like adenosine.56,63  

Regulatory T cell accumulation in tumors appears largely mediated by transformation of 

CD4+ T cells via TGFβ signaling, which can be secreted by a number of cells, including 
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immature DCs (e.g. those found under circumstances of inhibited DC maturation in the 

presence of VEGF).63-67   

 

The importance of regulatory T cells to outcomes in colon cancer is highlighted by the 

fact that murine models of colon cancer have demonstrated that regulatory T cell 

depletion was associated with improved response to anti-tumor vaccines.68  Similarly, in 

vitro depletion of regulatory T cells in peripheral blood of colorectal cancer patients 

augments lymphocyte responses against tumor-associated antigens.69,70 

 

In addition to Tregs, myeloid derived suppressor cells exert similar immunosuppressive 

functions and inhibit the functions of CD8+ T cells.  Their importance in promoting tumor 

survival and immunoevasion has been demonstrated in mouse models, where myeloid 

derived suppressor cell (MDSC) depletion resulted in improved anti-tumor response and 

tumor regression.71  These cellular mechanisms of immune evasion are complemented 

by the high expression of PD-L1 on the surface of colon tumor cells, which bind to PD-1 

on T cells and induce anergy and apoptotic cell death.72,73   

 

More so than in other cancer types, interleukin-17 has been shown to play a critical role 

in development and progression of colon tumors in both mouse models of disease and 

among patients with early stage colon cancer.61,74-76  Production of this cytokine by 

several different cell types (Th17 cells, γδ T cells, natural killer T cells, and innate 

lymphoid cells), appears induced by IL-23 generated by tumor associated myeloid cells 

due to weakened epithelial tight junction integrity and bacterial migration.77   Subsequent 
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signaling through IL-17RA on tumor cells results in signaling cascades involving 

mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinases (ERK), 

and NF-κB, among other factors, to promote survival and proliferation of neoplastic 

epithelial cells (Figure 4).77,78 

 

Moving beyond the immune system itself, disruption of colon epithelial barrier integrity 

and bacterial translocation have also been implicated in colon tumorigenesis and 

progression.  Regardless of the etiology of barrier disruption, the process promotes cell 

turnover and generation of a host of antimicrobial peptides and pro-inflammatory 

cytokines.77,79  The resulting change in the immune milieu essentially establishes a 

persistent pro-inflammatory state that is exacerbated by bacterial migration and the 

dysplastic transformation of epithelial cells (Figure 5).79   

 

Immunotherapy for colon cancer 

In light of the significant role of immune dysregulation in its development and 

progression, the oncology community has invested significant effort in evaluating the 

potential role for immunotherapy in the treatment of colon cancer.   In preclinical studies, 

vaccines, checkpoint inhibitors, and adoptive cell therapies have demonstrated 

significant anti-tumor effect.  However, as will be subsequently discussed, such 

therapies have met with more limited success in clinical trials. 

 

Beginning over 20 years ago, researchers began investigating the potential of immune-

based therapies in the treatment of colon cancer.  Until recently, much of these efforts 
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focused on non-specific immune stimulation in conjunction with multi-agent 

chemotherapy and development of colon cancer vaccines.  The former efforts have 

proven effective, particular the combination of granulocyte-monocyte colony stimulating 

factor (GM-CSF) with gemcitabine and FOLFOX.80-82  In a phase III clinical trial in 

patients with advanced colon cancer, this regimen was shown to result in a near 

doubling of response rate and a 50% increase in progression free survival compared to 

treatment with FOLFOX alone.82  The efficacy of this strategy was marked by increases 

in memory T cells and increases in circulating regulatory T cells.   

 

Vaccination efforts have focused on immunization with a wide variety of agents, 

including β-human chorionic gonadotropin, carcinoembryonic antigen, mutant RAS 

peptides, autologous tumor cells, and antigens loaded onto dendritic cells (DCs).  

Among these, the autologous tumor cell BCG vaccine (OncoVax) has demonstrated the 

greatest success.83,84  Studies demonstrated that OncoVax treatment resulted in 

decreased recurrence rates and improved 5-year recurrence free survival rates among 

patients with stage II colon cancer.  A multicenter phase III study is currently underway 

for patients with stage II colon cancer comparing OncoVax plus surgery to surgery 

alone.   

 

More recently, clinical trials investigating the effect of therapy with immune checkpoint 

inhibitors, particularly anti-PD1, have demonstrated a markedly different effect in 

patients with colon cancer based on their microsatellite status.  Indeed, patients with MSI 

high tumors exhibit response rates of 40-50% with significant improvements in 

progression free and overall survival.  On the contrary, patients with microsatellite stable 
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tumors respond only rarely (<5% of cases).85-88  The mechanisms of anti-PD1 resistance 

in MSS colon tumors remain unclear, though recently published work suggests that 

TGFβ signaling as well as mutations in JAK1/2 may play a role in this process.89,90  

Further preclinical studies aimed at elucidating such mechanisms and clinical trials 

attempting to use combination regimens to overcome this resistance are currently 

underway. 
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Figures and Tables 

 

Figure 1: Stage at diagnosis of colon cancer.  Surveillance, Epidemiology, and End 

Results Program. Cancer Stat Facts: Colorectal Cancer.  

https://seer.cancer.gov/statfacts/html/colorect.html. Accessed 5/9/2018, 2018. 
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Figure 2: Survival distribution function of patients diagnosed with colon cancer by stage 

From: Colon Cancer Survival Rates With the New American Joint Committee on Cancer 

Sixth Edition Staging 

J Natl Cancer Inst. 2004;96(19):1420-1425. doi:10.1093/jnci/djh275 

J Natl Cancer Inst | © Oxford University Press 
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Figure 3: Sequence of genetic mutations in sporadic and colitis-associated colon cancer.  

Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: the risk, 

pathogenesis, prevention and diagnosis. World journal of gastroenterology. 

2014;20(29):9872-9881. 
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Figure 4: IL-17 Signaling in normal versus neoplastic colon epithelial cells.  From 

Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial 

products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254-258. 
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Figure 5: Physiologic alterations associated with disruption of colon epithelial barrier 

integrity.  From Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal 

Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal 

Repair. Gastroenterology. 2016;151(4):616-632 
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Table 1: Risk factors for colon cancer.  Colorectal Cancer Facts and Figures 2017-2019. 

Atlanta, GA: American Cancer Society;2017 
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CHAPTER ONE 

ON THE RELATIONSHIP BETWEEN COLITIS AND CANCER 

NONINVASIVE IMAGING OF COLITIS INDUCED BY ENTEROTOXIC BACTEROIDES 

FRAGILIS 

 

 

Introduction 

Inflammatory bowel disease (IBD) has grown increasingly prevalent over the last half 

century, with an annual incidence of approximately 250–300 per 100,000 persons in 

North America.1 Diagnosis usually involves a combination of factors identified in a 

patient’s history and on physical examination, stool studies, and ultimately, colonoscopy 

with multiple biopsies.2 Furthermore, given the increased risk of colorectal cancer in 

patients with IBD, current practice guidelines recommend annual screening 

colonoscopies 8–10 y after onset of disease to assess for dysplastic changes and status 

of disease.3 In addition to being especially uncomfortable for patients with IBD, 

colonoscopy represents an invasive procedure that carries risk from both sedation or 

anesthesia and colonic perforation. To date, no noninvasive imaging modalities have 
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been developed that accurately identify early inflammatory changes in patients’ small 

bowel and colon, that can be used longitudinally to monitor the status of disease, or that 

detect changes concerning for malignancy. 

 

Multispectral optoacoustic tomography (MSOT) represents a novel modality that detects 

sound waves resulting from specific molecular excitation by light. Specifically, laser 

stimulation of tissues results in generation and emission of ultrasound waves. 

Ultrasound waves demonstrate a significantly decreased scatter compared with light 

waves before reaching the detecting transducer.4 Thus, MSOT retains speed and 

sensitivity while having an improved signal-to-noise ratio compared with conventional 

radiographic imaging modalities (e.g., CT and MRI4-13). To date, MSOT has 

demonstrated a resolution at 78.9 mm.5,7 Furthermore, it can detect changes in tissue 

architecture and the presence of oxygenated and deoxygenated hemoglobin,5-10 

permitting evaluation of changes in structure and vascularity, common in IBD. Recently, 

MSOT instrumentation has evolved and includes the potential for combination of 

detecting both optoacoustic and ultrasound signals, which increases its radiologic 

capabilities. Currently, MSOT has been used to effectively image tumor xenografts5-9  as 

well as several orthotopic tumor models, including pancreatic adenocarcinoma,6,7 but not 

to specifically assess inflammatory or dysplastic changes in the bowel in murine models.   

 

Colonization with enterotoxic Bacteroides fragilis (ETBF), a pathogenic variant of a 

human intestinal commensal organism, has been implicated in the pathogenesis of 

IBD.14,15 Indeed, wild-type C57B/6 mice inoculated with ETBF after antibiotic-mediated 

depletion of intestinal flora can either initiate colitis or worsen susceptibility to colitis 

induced by other means.14,15 Like colitis observed in IBD patients, the inflammation 

persists over time and comprises both local and systemic components. Here, we use 
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this model of ETBF-induced colitis in C57B/6 mice to evaluate the ability of MSOT to 

detect intestinal and colonic inflammation.    

 

Methods 

Mice  

C57B/6 mice (Jackson Labs) were bred in accordance with University of Louisville 

(UofL) Institutional Animal Care and Use Committee (IACUC) guidelines. Six- to 7-wk-

old mice of both genders were used for all experiments. A total of 9 mice were used for 

experiments. All experiments were conducted in accordance with UofL IACUC 

guidelines.  Figure 1 shows an experimental schematic. 

Bacteria 

ETBF strain 86-5443-2-2 was cultured under anaerobic conditions on brain–heart 

infusion 1 clindamycin agar plates. Plates were streaked with bacterial stock stored in 

glycerol and subsequently incubated under anaerobic conditions at 37C. After 48 h, 

bacteria were harvested and suspended in liquid brain–heart infusion 1 clindamycin 

broth before being incubated under anaerobic conditions for another 24 h. 

 

Induction of Colitis  

To deplete enteric pathogen load and facilitate ETBF colonization, mice were 

administered clindamycin (0.1 g/L) and streptomycin (5 g/L) dissolved in drinking water 

for 4 d before bacterial inoculation. Approximately 1 x 108 bacteria suspended in 200 mL 

of phosphate buffered saline were then administered via oral gavage into the 

gastrointestinal tract of these mice. Mice that received neither antibiotics nor bacteria 

were used as controls. All mice were fed casein-based, low-anthocyanin chow ad libitum 

(TekLad 2920X; Envigo) and monitored closely for signs of dehydration and provided 

daily with electrolyte-rich gel supplements. 
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Imaging and statistical comparison 

MSOT imaging was performed as previously described.5 Briefly, mice were anesthetized 

with 1.6% isoflurane inhalant delivered in 0.8 L of medical air and 0.1 L of O2, then 

depilated using a combination of shaving and application of Nair with aloe (Church & 

Dwight Co.), which was removed with moist gauze. Mice were subsequently placed 

prone and imaged from the superior thorax to inferior pelvis with the MSOT system 

InVision 256TF (iThera Medical) using wavelengths of 680, 710, 730, 740, 760, 770, 

780, 800, 850, and 900 nm with 25 averages per wavelength and an acquisition time of 

10 μs per frame. Accurate subject positioning within the MSOT device was ensured 

using the device's image preview function. Mice were evaluated before bacterial 

inoculation (untreated normal control), 2 d after bacterial inoculation, and 7 d after 

bacteria inoculation. Images were reconstructed via backprojection with 75-μm 

resolution. MSOT values for oxygenated and deoxygenated hemoglobin were 

determined using MSOT imaging software (ViewMSOT 3.5) and compared using linear 

regression (JMP software; JMP, SAS Institute Inc.). Region-of-interest analysis was 

used to determine oxy- and deoxy-hemoglobin separately (6) within the colon using a 

3.5-mm2 ellipse on 4 regions of the mouse colon per time point. The mean oxygenated 

hemoglobin signal intensity among the 4 regions was determined and compared using a 

1-way ANOVA test with Tukey honest significant difference with JMP software. 

Differences were considered significant for a P value of less than 0.05. 

 

Colonoscopy and statistical comparison 

 Mice were injected intraperitoneally with 0.1 mL/20 g mouse weight of a ketamine–

xylazine cocktail (87.5 mg/kg ketamine + 12.5 mg/kg xylazine). After an adequate level 

of anesthesia was achieved, an 8-French pediatric cystoscope was introduced into the 
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mouse anus and advanced proximally until the scope could no longer be advanced.15,16 

The colonoscope was then withdrawn slowly. The Murine Endoscopic Index of Colitis 

Severity was used to quantify colitis severity (Table 1). Colitis severity score was 

compared among and between groups using 1-way ANOVA with Tukey honest 

significant difference. Correlation between mean MSOT oxygenated and deoxygenated 

hemoglobin intensity and colitis severity score for mice evaluated with both MSOT and 

colonoscopy at all 3 time points was assessed using Pearson correlation. Statistical 

analyses were performed using JMP software. Differences were considered significant 

for a P value of less than 0.05. 

 

Histology 

After colonoscopy, mice were euthanized. The colon was resected in its entirety and 

flushed twice with phosphate-buffered saline to evacuate residual stool. Colons were 

then bisected, fixed in 10% neutral-buffered formalin, and embedded in paraffin. 

Sections were cut at 6-μm thickness and stained using hematoxylin and eosin. Samples 

were masked to the pathologist on histologic analysis by a diagnostic pathologist at the 

University of Alabama, Birmingham, Department of Pathology. 

 

Results 

Mice treated with ETBF showed a mild increase in vascularity 2 d after bacterial 

inoculation (Figs. 2 and 3), with an increase in mean signal intensity of oxygenated 

hemoglobin compared with untreated mice (1.150 vs. 2.716 MSOT arbitrary units 

compared with untreated mice; P = 0.004). These findings were more prominent 7 d 

after inoculation, with increased mean signal intensity of oxygenated hemoglobin (1.150 

vs. 2.716 vs. 3.422 MSOT arbitrary units for controls vs. 2 d after ETBF vs. 7 d after 

ETBF, P = 0.0002) and the development of punctate lesions on the colonic surface (Fig. 
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2C). Deoxygenated hemoglobin signal obtained via MSOT remained similar in all mice 

evaluated regardless of treatment or time point. 

 

The findings on MSOT correlated well with colonoscopic findings (r = 0.82, P = 0.013). 

Compared with untreated controls, mice at 2 d after ETBF inoculation demonstrated an 

increased colitis score (1.5 vs. 2.5), with mild colonic blunting and slightly deformable 

stool (Figs. 2D and 2E). At 7 d after ETBF inoculation, mice displayed colonic blunting, 

vascular aneurysms, fibrin coats, patchy granularity, and deeply deformable stool (Fig. 

2F), yielding an average colitis score of 5.5 (Figs. 2 and 3B). 

 

Additionally, findings on MSOT and colonoscopy corresponded well with masked 

histologic analysis. Mice showed evidence of increasing inflammatory cell infiltrate and 

architectural distortion at both 2 and 7 d after ETBF inoculation compared with controls 

(Fig. 4). A similar progression was also evident comparing mice 2 and 7 d after ETBF 

inoculation. Findings were consistent across all mice in each group. 

 

Discussion 

Our findings demonstrate that MSOT findings of hypervascularity and elevated levels of 

oxyhemoglobin are associated with inflammatory changes in the colon as well as 

inflammatory cell infiltrate evidenced on histology; this was associated with mild 

inflammatory changes on histology that were minimally detectable on colonoscopy in the 

same mice. 

 

Clinically, MSOT offers multiple advantages over all current imaging and monitoring 

modalities including higher resolution without requiring exogenous contrast agents. 

Because quantification of oxygenated hemoglobin correlates with vascular changes 
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seen on colonoscopy and inflammatory changes seen on histology, MSOT can provide 

an objective assessment tool that can be used to monitor the severity and progression. 

Additionally, given that polyposis and tumor growth are associated with local neo-

/hypervascularization, MSOT can be used to monitor IBD patients for tumorigenesis, 

with colonoscopy used only if concerning features are identified on imaging studies. 

 

Use of MSOT for diagnosis and monitoring of IBD has the potential to significantly affect 

disease prognosis. The MSOT apparatus for use in human subjects consists of a 

handheld probe similar to bedside ultrasound.7,10,17,18 Improvements in depth of tissue 

penetration of optoacoustic imaging beyond 1 cm have been demonstrated in humans 

using the clinical MSOT system, Acuity, with up to a 5-cm depth achieved.17,18 Therefore, 

MSOT could be used to provide noninvasive screening for IBD in patients at high risk for 

developing the disease because of factors such as family history and ethnicity, thereby 

enabling earlier detection of disease and commencement of therapy to prevent 

progression. Additionally, small changes detected on MSOT that may predict clinical 

worsening of disease (e.g., increased vascularity, development of small polyps) can 

prompt alteration of medical therapy or more timely colonoscopy and, if necessary, 

surgery to prevent clinical worsening of disease or delayed detection of malignancy and 

risk of local invasion or metastasis. Conversely, intervals between invasive monitoring 

with colonoscopy can be increased in patients lacking significant changes in colonic and 

mesenteric vascularity and polyposis on MSOT over time. This would decrease 

monitoring cost as well as procedural risks and discomfort for IBD patients.  

 

Conclusions 

MSOT represents a noninvasive diagnostic modality that effectively identifies colitis in a 

murine model. Its diagnostic accuracy is at least equivalent to current standards of 
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colonoscopy and tissue histology and surpasses that of conventional imaging modalities. 

With improvements in deep-tissue penetration, these factors, together with MSOT’s 

detection of oxygenated and deoxygenated hemoglobin as endogenous contrast agents 

and correlation of signal intensity with colitis severity, would allow MSOT to serve as a 

viable modality for diagnosis and monitoring of patients with IBD for both progression of 

disease and development of neoplastic intestinal lesions. 
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Figures and Tables 

 

Figure 1: Experimental schematic 
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Figure 2: MSOT depicts inflammatory changes in murine colitis. Wild-type C57B/6 mice 

were orally inoculated with either phosphate-buffered saline alone (control) or ETBF. (A) 

MSOT imaging of mice before ETBF treatment (untreated). (B and C) Images of mice 2 

and 7 d, respectively, after bacterial inoculation. Arrows indicate concentrated areas of 

oxyhemoglobin corresponding to colitis (B and C). Findings on MSOT were compared 

with colonoscopic findings (D–F) for each group of mice. Arrow indicates area of 

inflammation indicative of colitis (F). 
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Figure 3: Mean MSOT signal intensity for oxyhemoglobin correlates with colitis severity 

score. Region of intensity measurements acquired for MSOT images were correlated to 

colitis severity score determined from colonoscopy images. (A) Mean signal intensity of 

oxyhemoglobin for each group (control, 2 d after ETBF inoculation, and 7 d after ETBF 

inoculation). ***P < 0.001. (B) Average colitis severity score for each group. ***P < 

0.001. Error bars represent SD. (C) Correlation between mean signal intensity of 

oxyhemoglobin and mean colitis severity score for the 3 mice assessed using both 

MSOT and colonoscopy at all 3 time points (r = 0.82, P = 0.013). a.u. = arbitrary units. 
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Figure 4: Histology findings demonstrate inflammatory changes consistent with colitis. 

Hematoxylin and eosin analysis of mouse colon demonstrated no evidence of 

inflammatory cell infiltrate in control mice (A and D) and progressively increasing 

polymorphonuclear leukocyte infiltrate 2 d (B and E) and 7 d (C and F) after ETBF 

inoculation as indicated by arrows. Histology images shown in C and F are from mouse 

represented in Figure 1. 
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Table 1: Murine endoscopic index of colitis severity for objective quantification of 

colonoscopic findings.  Changes in colon thickness, vasculature, fibrin deposition, 

mucosal granularity, and stool consistence were all noted and assigned a score based 

on severity. These scores were summed to yield an overall colitis severity score. Table 

was modified from Becker, et al. (16). 
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CHAPTER TWO 

TRACKING ORAL MICROSPHERES 

EVALUATING THE UPTAKE AND DISTRIBUTION OF ORALLY-ADMINISTERED 

POLYLACTIC ACID PARTICLES 

 

Introduction 

In both colorectal cancer and inflammatory bowel disease, effective, orally administered 

therapies represent the ideal route of drug delivery due to ease of administration and 

patient preference.   Particularly in the case of immunomodulatory therapies, however, 

poor bioavailability and degradation by gastrointestinal enzymes prevents such 

administration from being more widely utilized.   Additionally, noninvasively yet 

accurately imaging both gastrointestinal cancers and inflammatory bowel disease has 

proven difficult due to issues with resolution and reliance on grossly detectable 

differences in tissue density and vascularity.   
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The development of micro- and nano-based carriers over the last twenty years 

represents an exciting mechanism to overcome these obstacles.  Several studies have 

demonstrated the potential utility of orally administered therapeutic particles for 

treatment gastrointestinal (GI) diseases.1-5  While these molecules demonstrate 

mucoadhesive properties, which allow their binding to and uptake by the intestinal 

mucosa before subsequent trafficking to the mesenteric lymph nodes1, it is essential to 

track the biodistribution of these delivery vehicles within the gastrointestinal tract in a 

longitudinal manner to progress these treatments into clinical trials. 

 

Multispectral optoacoustic tomography (MSOT) has recently emerged as a high 

resolution, non-invasive in vivo imaging modality.   To date, optoacoustic imaging has 

largely identified solid tumors, namely melanoma, breast cancer, and pancreatic ductal 

adenocarcinoma, and various aspects of vascularity.6-12   As MSOT does not require 

exposure to radiation and nephrotoxic contrast agents, it represents a significant 

improvement in resolution compared to conventional imaging modalities (e.g. computed 

tomography (CT), magnetic resonance imaging (MRI), ultrasound (U/S)) heightening its 

appeal as a tool for diagnosis and monitoring of various pathologies.  However, unlike 

other solid organs, accurately imaging the gastrointestinal tract using MSOT has proven 

difficult owing to the motility of the small bowel and colon in conjunction with motion 

artifact introduced by murine respiration.   

 

Our group has worked extensively with biodegradable polylactic acid particles for use in 

both intravenous and oral immunotherapy delivery.1-5,13-15   Furthermore, we have 

recently described high resolution imaging of the gastrointestinal tract using MSOT.16  
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This study aimed to evaluate the biodistribution and longitudinally track particle uptake 

through the murine GI tract in vivo after oral administration.           

 

Methods 

Orally Delivered Particles 

Polylactic acid particles containing either bovine serum albumin (BSA), BSA conjugated 

to AlexaFluor 680 dye, or BSA conjugated to AlexaFluor 594 dye were synthesized 

using a PIN as described previously.2  Briefly, BSA (Sigma Chemical Co., St. Louis, MO) 

or BSA-AF680 and PLA (Mr 24,000 and Mr 2,000; 1:1 (w/w)], Birmingham Polymers, Inc, 

Birmingham, AL) were suspended in methylene chloride (Fisher Scientific, Hampton, 

NH) before being quickly poured into petroleum ether (Fisher) in order to form particles.  

After formation, solvent was removed by particle filtration and lyophilization overnight.  

Polylactic acid particles containing BSA-AF680 were characterized using dynamic light 

scattering and transmission electron microscopy.  Multiple batches of particles were 

constructed to compare the repeatability of particle construction.  Additionally, optical 

density of particles was measured using a spectrophotometer prior to drawing them into 

the gavage needle as well as after the particles were expelled from the needle.  As less 

than 0.0001 change in OD was observed, we determined that the particles easily passed 

through at 24 gauge oral gavage needle. The encapsulation efficiencies for the BSA, 

BSA-AF680, or BSA-AF594 were extrapolated from the measurements of total protein 

encapsulated into the particles.   

Signal Assessment Ex Vivo in Tissue Phantoms 

To assess the ability of MSOT to detect AF-680 containing particles (hereafter PLA-

BSA-AF680), PLA-BSA-AF680 was added to tissue phantoms designed to simulate 

optical properties of murine tissue. The tissue phantom was constructed by following 

procedures:  Fixed cylindrical phantoms of 2 cm diameter were prepared using a gel 
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made from distilled water containing Agar (Sigma Aldrich, St. Louis, MO, USA) for 

jellification (1.3% w/w) and an intralipid 20% emulsion (Sigma Aldrich, St. Louis, MO, 

USA) for light diffusion (6% v/v), resulting in a gel presenting a reduced scattering 

coefficient of μ's ≈ 10 cm-1. Blank PLA particles, PLA-BSA-AF60, or BSA-AF680 samples 

were inserted into cylindrical inclusions approximately 3 mm diameter. The gel used to 

construct the tissue phantom was used to seal the samples in the appropriate well prior 

to MSOT imaging  

MSOT imaging of the phantoms was done at a single position located approximately in 

the middle of the phantom.  Data acquisition was performed at wavelengths of 680, 710, 

730, 740, 760, 770, 780, 800, 850, 900 nm, using 10 averages per wavelength resulting 

in 1 s acquisition time per wavelength.  Signal was measured using a Region of Interest 

method from MSOT images.  Data obtained in MSOT arbitrary units (a.u.) was 

statistically compared using ANOVA. 

Mice and particle delivery 

Balb/c mice were placed on a low anthacyanin, casein-based diet for 48-72 hours prior 

to particle administration.  They were then orally gavaged with and equal admixture of 

PLA-BSA-AF680 (10 μg AF680-BSA/1 mg particles) and PLA-BSA-AF594 (10 μg 

AF594-BSA/1 mg particles) suspended in phosphate buffered saline (PBS) or an equal 

admixture of naked AF680-BSA (hereafter BSA-AF680) and AF-594-BSA (hereafter 

BSA-AF594) suspended in PBS.  This was done to allow for particle visualization using 

both MSOT and fluorescent microscopy.  Mice each received a total of 5 mg of PLA-

BSA-AF680 + 5 mg PLA-BSA-AF594 in 100 μL PBS or 50 μg BSA-AF680 + 50 μg BSA-

AF594 suspended in 100 μL PBS.  After hair removal using Nair with aloe (Church & 

Dwight Co., Inc., New Jersey, USA), mice were imaged using multispectral optoacoustic 

tomography.   
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Multispectral Optoacoustic Tomography 

Multispectral optoacoustic tomographic (MSOT) imaging was performed as previously 

described.  Briefly, after anesthesia with 1.6% isofluorane, mice were prepared for 

imaging using a combination of manual shaving and Nair cream with aloe (Church and 

Dwight Co., Princeton, NJ, USA)17.  Mice were subsequently imaged using the MSOT 

system InVision TF 256 (iThera Medical, Munich, Germany) using wavelengths of 680, 

710, 730, 740, 760, 770, 780, 800, 850, and 900 nm with 25 averages per wavelength 

and an acquisition time of 10 µs per frame.  The water temperature was 35oC within the 

instrument during acquisition.    

 

MSOT Image Reconstruction and Analysis 

Raw data obtained with MSOT was reconstructed with multispectral analysis performed 

as previously described 10,18. Spectral analysis was performed at wavelengths 

corresponding to deoxy-hemoglobin and BSA-680.  Reconstruction was conducted using 

backprojection at a resolution of 75µm using ViewMSOT software version 3.5 (iThera 

Medical, Munich, Germany).   The Multispectral Processing was conducted using Linear 

Regression with ViewMSOT 3.5, where known molar absorptivity spectra (e.g. for oxy-

hemoglobin, deoxy-hemoglobin, and nanoparticle) are used to model the relationship 

between chromophore concentration and MSOT signal over a range of wavelengths. 

The approach assumes knowledge about all absorbers present in the imaged tissue in 

order to correctly attribute contributions from the different wavelengths to the unmixed 

component images19,20.  In order to ensure comparability among data sets, the 

reconstruction parameters (field of view, speed of sound, pixel size, and the high/low 

pass filters) and spectral unmixing parameters were consistently applied to all data. 

Spectral unmixing was performed in the absence of correction for fluence 

heterogeneities and attenuation as a function of tissue depth including spectral coloring. 
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The location of organs was identified based upon vascular pattern. In addition, a region 

of interest (ROI) method was applied to determine signal strength in the stomach, liver, 

small bowel, colon, spleen, and mesenteric lymph nodes (MLN) of mice acquired at 1 

min, 1 h, 6 h, 12 h, 24 h, and 48 h post-gavage using ViewMSOT software and reported 

as MSOT a.u. The ROI was manually created with an ellipse drawing tool using the 

deoxy-hemoglobin spectrally unmixed component as a guide for organ location. The ROI 

area was kept constant for all image slices 3.5 mm2, thus creating a non-uniform 

elliptical prism volume of interest (VOI).  The mean pixel intensity per cross-section in 

the VOI for the spectrally unmixed injected agent (BSA-680) was plotted as MSOT signal 

vs. position to assess the particle location. The maximal ‘mean signal per cross-section’ 

in the volume was used as a quantitative indicator of particle trafficking. Since 

optoacoustic signals using the detection geometry of this system are subject to out-of-

plane contributions, this method was used to find the center of signal intensity and 

minimize variability from out-of-plane artifacts. The capacity of this optoacoustic system 

to deliver semi-quantitative data reflective of relative probe accumulation in vivo in 

murine models using the aforementioned reconstruction and multispectral unmixing 

methods was previously established.21  The MSOT a.u. values for the particle containing 

BSA-680 were compared using SAS 9.3 (Cary, NC, USA). 

 

Organ Histology and Microscopy 

After imaging, mice were euthanized and abdominal organs were embedded in paraffin, 

sectioned at 6 micron thickness, and stained with hematoxylin and eosin (H&E) for 

evaluation using fluorescence microscopy.  Images were acquired using both 

conventional white light and fluorescence lamps.   MSOT images were correlated with 

fluorescence microscopy images to determine accuracy of MSOT based particle 

localization.  For an experimental schematic, please see Figure 1. 
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Results 

PLA particles were characterized as to size, polydispersity index, and ability to 

encapsulate BSA-680. As is characteristic of the discrepancy between TEM and DLS 

particle sizing, PLA particles averaged 33 nm using TEM and 46 nm using DLS (Figures 

2A-B).   The generation of 3 batches of PLA-BSA-680 particles also resulted in similar 

sizing results along with similar polydispersity index of 0.11-0.14 (Figure 2C).  Further 

comparison of the spectral signature of AF-680 and BSA-680 indicated very little 

spectral differences (Figure 2D). Assessment of particles in agar and intralipid tissue 

phantoms demonstrated that blank PLA particles produced no signal at any excitation 

wavelength (Figure 3).  PLA-BSA-AF680 produced MSOT signal with intensity 32 MSOT 

a.u. This was slightly less intense than but otherwise similar to the signal produced by 

AF680 of 38 MSOT a.u. (Figure 3).   

 

In in vivo studies, mice treated with PLA- BSA-AF680 exhibited MSOT signal in the 

stomach at 1 min after gavage.  After gavage, signal was noted in the wall of the small 

bowel at starting at 1 hr after gavage up through 24 hours after gavage, in the wall of the 

colon at 6, 12, and 24 h, in the MLN 12 and 24 h, and in the spleen 24 and 48h.  No 

signal was detected in the liver.  Maximum signal post-gavage was noted in the wall of 

the small bowel at 6 h, colon at 24 h, and MLN at 48 h (Figure 4).  Figure 5 demonstrate 

the signal noted in each respective organ at 24 hours after gavage.  Intralumenal and 

intraepithelial signal were differentiated through overlay of AF-680 signal on 

deoxyhemoglobin signal.  Mean MSOT signal intensity in target organs at each timepoint 

corresponded with the visualized signal intensity (e.g. 24 hours, Figure 5). 
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Compared to mice gavaged with PLA-BSA-AF680, those gavaged with BSA-AF680 

demonstrated similar a much shorter duration of signal visibility on MSOT with very little 

signal detected after 1 h, no signal detected after 6h, and decreased signal in target 

tissues.  BSA-AF680 was detected in the stomach immediately after gavage (data not 

shown) and progressed through the lumen of the gastrointestinal tract over the course of 

48 h, with minimal signal noted in the wall of the small bowel and colon and no signal 

noted in the spleen or liver.     

 

Particle localization on MSOT correlated well with findings on fluorescence microscopy, 

which demonstrated particle localization in organs identified on MSOT at each given 

timepoint (e.g. 24 hours, Figure 6).  Specifically, particle uptake was visualized at the 

apical aspect of epithelial cells in the small bowel and colon and in the MLNs.  BSA-

AF680 was visualized around splenic sinusoids at the timepoints when signal was 

observed on MSOT. 

 

Discussion 

Here, we describe high-resolution imaging of the murine gastrointestinal tract and 

histologically correlated, site-specific uptake of poly-lactic acid particles by cells in 

tissues along the gastrointestinal tract.  To our knowledge, this represents the first 

description of such high resolution MSOT imaging of the murine gastrointestinal tract, 

specifically that which allows for tracking of orally delivered particles.   

 

To date, high resolution gastrointestinal imaging using MSOT has proven challenging 

due to a combination of 1) intrinsic gastrointestinal motility, 2) lack of fixed organ position 

within the abdomen, 3) motion artifact conferred by respiration, and 4) artefactual signal 

produced by anthacyanins in murine food.  Ensuring an adequate level of anesthesia, 
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utilizing a casein-based, low-anthacyanin diet, and, most importantly, acquiring 25 

averages per wavelength proved critical to enabling detection of organ specific particle 

localization in our studies.  These techniques have also enabled us to image colitis in a 

murine model with detection of both general areas of inflammation/hypervascularity and 

individual blood vessels.16 

 

In addition to the MSOT imaging protocol, the mucoadhesive properties of the PLA 

particles facilitated organ identification and histologic correlation with MSOT imaging.  

While much of the gavaged fluid-particle mixture passes through the gastrointestinal 

tract, mucoadhesion enables some of the particles to be retained and taken up by 

absorptive tissues.  The mechanism of uptake remains unclear, but likely occurs via 

phagocytosis given the size of the particles (46 nm average diameter).  The importance 

of mucosal adhesion is illustrated in comparing BSA-AF680 to PLA-BSA-AF680.  The 

former passes through the GI tract with minimal absorption, with the small amount of 

absorption that occurs likely mediated by pinocytosis or passive transport with water 

uptake.   Meanwhile, the latter demonstrates discrete uptake and strong signal on both 

MSOT (Figure 4) and histology (Figure 6).   

 

Indeed, this correlates well with our previous findings that MSOT can reliably detect 

individual nanoparticles as small as 75 nm in diameter.22  Together, the ability of MSOT 

to detect such small particles as well as its ability to detect fluorophores or other 

fluorescent contrast agents of various wavelengths present numerous opportunities for 

clinical imaging applications within the gastrointestinal tract.  Of course, use of MSOT 

can avoid nephrotoxic contrast agents used in conventional imaging modalities such as 

CT and MRI.  However, with the ability to detect multiple fluorophores, MSOT also can 

allow for particles to be administered orally and intravenously and thus enable 
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simultaneous detection of inflammation, malignancy, and other pathologies.  

Furthermore, varying particle size, protein or small molecule tags, and biochemical 

properties (e.g. porosity and pore size, chemical composition, etc.) can allow for tissue 

specific uptake based on organ or cell type (e.g. tumor cell).17,23   

 

While MSOT accurately tracks particle uptake in the gastrointestinal tract and identifies 

fluorophore signal, it does not readily distinguish between encapsulated and naked 

fluorophore.  For example, we observe signal of similar intensity in the colon at 24 hours 

and spleen at 48 hours, but the former is produced by encapsulated fluorophore and the 

latter by naked fluorophore.  While this does not ostensibly impact imaging using 

particle-encapsulated fluorophore, it would become important in tracking fluorophore-

tagged particles.  In the case of PLA particles in this study, it remains unclear at which 

point the particles are degraded.  Discrete particles are observed in the small bowel, 

colon, and MLN but not in the spleen.  Degradation could be a factor of particle time in 

circulation, a function of being in the lymphatic circulation, or both.  Indeed, previous 

studies have demonstrated the lymphatic system’s role in metabolizing elements of the 

intercellular matrix and connective tissues (e.g. hyaluronan).24  Particle-specific studies 

would be required to determine in vivo degradation kinetics, which would in turn impact 

potential clinical applications. 

 

The findings of this study should be viewed in light of several limitations.  All imaging 

was performed on Balb/c mice, as skin pigment results in signal artifact that prevents 

high-resolution imaging and would have prevented particle localization.  Thus, the 

present of endogenous skin pigment (e.g. in the case of particularly dark-skin) would 

limit clinical MSOT utility using a hand-held probe, but would likely not inhibit an 

endoscopic probe in imaging such patients.  Also, MSOT cannot detect non-light 
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absorbing particles, so any clinical application would require incorporation of some 

absorbing material (e.g. protein conjugated fluorophore, gold) within the nanoparticle.  

All tissue was fixed in formalin for histology prior to H&E staining.  The totality of the 

processing may have resulted in the loss of some particles in target tissues at each 

timepoint.  Finally, the results presented herein do not necessarily reflect particle content 

delivery or reflect information regarding the minimum dose of particles that results in 

detectable MSOT signal in each target organ, but rather, describe the ability to monitor 

particle travel in vivo using MSOT,  

 

Despite these limitations, our findings present a number of opportunities for future 

investigation.  With the recently-developed clinical MSOT apparatus, nanoparticle-

tracking studies in the gastrointestinal tract can be replicated in humans to assess the 

diagnostic utility of MSOT in the clinical setting.  Within the last several months, 

researchers at the University of Erlangen-Nurnberg Medical School demonstrated the 

ability of MSOT to detect inflammatory changes without exogenous contrast in human 

subjects.25  Evaluating MSOT’s ability to track fluorophore-containing nanoparticles 

represents a logical extension of this work.  In examining various iterations of particles 

and dyes, we would be able to correlate particle uptake with enterocolonic inflammation 

as well evaluate tumor-specific uptake in the setting of enterocolonic malignancy.  

Finally, using fluorophore-tagged nanoparticles, we could use MSOT to actively track 

theranostic nanoparticles to actively establish pharmacokinetics of contrast and/or drug 

delivery.   

 

Conclusions 

MSOT detects orally administered AF-680 dye encapsulated PLA particles in vivo.  

These particles demonstrate site-specific uptake in the wall of the small bowel, colon, 
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and mesenteric lymph nodes with naked dye being visible in the spleen.  MSOT tracking 

of fluorophore containing particles could improve monitoring of drug delivery and lead to 

more optimal individualized dosing schedules.  Furthermore, with improved specificity, 

these particles could be further tested in humans in combination with the handheld 

MSOT to help surgeons identify sites of active disease or malignancy in the operating 

room. 
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Figures 

 

Figure 1: Experimental schematic for mouse experiments 
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Figure 2: Characterization of the PLA-BSA-680 nanoparticles. A) Transmission electron 

micrograph (TEM) images with an average particle size of 33 ± 12 nm. B) Dynamic light 

scattering (DLS) of the PLA particles resulted in an average size of 44 nm. C) 

Polydispersity Index (PDI) shows narrow polydispersed distribution as the PDI ranged 

from 0.12-0.135 over the course of 3 batches of particles evaluated. D) Spectral 

absorption was determined of AF-680 and BSA-680 which demonstrated a high degree 

of similarity.  
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A.  

B.  

Figure 3: Evaluation of optoacoustic signal within tissue phantoms of AF-680, PLA only, 

and PLA-BSA-AF680.  (A) MSOT signal of AF-680, particles only, and particle-

encapsulated AF-680 was determined using the spectral signature in Figure 2D in tissue 

phantoms clearly differs from particles alone.   (B) Uptake of BSA-680 within the PLA 

particles was demonstrated by similarities of signal intensity between AF-680 and PLA-

BSA-680 within tissue phantoms.  Both AF-680 and PLA-BSA-680 had significantly 

higher signal (p<0.05) than PLA only or empty. 
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Figure 4: MSOT signal in gastrointestinal organs after oral gavage of either PLA-BSA-

AF680 particles or BSA-AF680 alone.  (Top) MSOT imaging demonstrates nanoparticle 

localization and uptake in the proximal small bowel, distal small bowel, proximal colon, 

and mesenteric lymph node over the course of 48 h.  (Bottom) BSA-AF680 was 

undetectable after 1 h post gavage.  Deoxy-hemoglobin is shown in blue and BSA-

AF680 in the hot color bar.  All mouse images were equalized to the same intensity 

scale bar. 
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Figure 5: Mean MSOT signal intensity correlates with particle localization. Data shown 

here reflects mean MSOT signal intensity of PLA-BSA-680 or BSA-AF680 in colon, small 

bowel, and MLN 24 hours after gavage. Region of interest was determined using a 3.5 

mm2 elliptical region on the assigned area of small intestine, colon, or MLN using View 

MSOT 3.5.  Significantly higher levels of BSA-AF680 were observed in mice that 

received it via PLA particles than BSA-AF680 alone (p<0.001). 
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Figure 6: Histologic visualization of PLA-BSA-AF594.  (A-C) demonstrates proximal 

colon 24 hours after oral gavage with PLA-BSA-AF594 (20x), with (C) showing an 

overlay of particles (red) on intestinal epithelium (green).  (D-F) demonstrates small 

bowel 24 hours after oral gavage with particles containing AF-680 (20x), with (F) again 

showing an overlay of particles (red) on intestinal epithelium (green).  
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CHAPTER THREE 

TREATING COLON CANCER WITH ORAL IL-10 AND IL-12: THE SYNERGY 

MYSTERY 

IDENTIFYING THE MECHANISMS BEHIND THE SYNERGISTIC EFFECT OF IL-10 

AND IL-12 ON COLON TUMOR BURDEN AND DELINEATING THE EFFECT OF IL-10 

AND IL-12 ON COLON EPITHELIAL BARRIER INTEGRITY AND ITS RELATIONSHIP 

TO THE EFFICACY OF ANTINEOPLASTIC THERAPY 

 

Introduction 

 

The recent clinical success of immune checkpoint inhibitors (ICI) represents a major 

breakthrough in cancer therapy.1  At the same time, the effectiveness of ICI has not 

been uniform across different solid tumor types.2  A major cancer type that remains 

highly resistant to ICI, and immune therapy in general, is mismatch repair (MMR)-

proficient colorectal cancer (CRC).2,3  While the mechanisms underlying resistance of 

MMR-proficient CRC to immune therapy are not fully understood the need for the 

development of new therapeutic approaches is clear.3 
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One distinction between CRC and most other cancers is the unusual characteristics of 

the tissue within which the cancer arises.  The colon represents a unique environment 

due to the massive commensal microbiota burden and has evolved complex 

mechanisms to maintain the delicate balance between lumenal bacteria and the immune 

cells that patrol the lamina propria (LP).4  Breach of the single-cell thick epithelial barrier 

that separates the lumen from the LP can result in the loss of intestinal immune 

homeostasis and the development of severe inflammatory pathology.5  Indeed, if such 

pathology becomes chronic, it can lead to development of cancer as seen in colitis-

associated cancer.6  While inflammation that results from loss of epithelial barrier 

integrity can directly promote colon cancer, most sporadic CRC initially develops 

independent of chronic inflammation.  However, once dysplasia develops, it will result in 

local compromise of the barrier and lead to what has been termed “tumor-elicited 

inflammation,” a process that in turn promotes the growth of established adenomas.7  

Therefore, chronic inflammation is tightly intertwined both with tumorigenesis and tumor 

progression in the colon.  Consistent with this paradigm, a significant body of literature 

supports a major role for microbially-driven type 17 T-cell immunity (including Th17 and 

γδT-cell subsets) in colon cancer.7-10  Importantly, analysis of clinical CRC samples have 

revealed an inverse relationship in CD8+ cytotoxic T-lymphocyte (CTL)/Th17 cell ratio 

between MMR-deficient (high CTL, low Th17) and ICI-resistant MMR-proficient (low 

CTL, high Th17) tumors11  in support of the notion that the outcome of immune therapy 

in CRC may be dependent on the ability to alter the CTL – Th17 cell balance. 

 

Interleukin-10 (IL-10) is a pluripotent immune regulatory cytokine that is central to the 

maintenance of immune homeostasis in mucosal tissues.12  IL-10 converts immature 

blood monocytes to tolerogenic macrophages,13-15 has direct suppressive effects on 
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Th17 cell activity,16 and conversely enhances conventional regulatory T-cell (cTreg) 

function.17  A series of recent studies demonstrated that IL-10 directly activates antigen-

experienced CD8+ cytotoxic T-lymphocytes independent of its suppressive effects on 

CD4+ T-effector and/or myeloid cell subsets.18-20  Collectively, these properties have 

provided the rationale for our studies evaluating the therapeutic efficacy of a novel oral 

formulation of IL-10 in the treatment of intestinal polyposis21 and, more recently, of colon 

cancer.22  The findings revealed that oral IL-10 could suppress tumorigenesis in the 

above models via its dual activity on Th17 cells and CTL. 

   

In this study, we tested whether oral IL-10 would be effective in eradicating established 

disease either alone or in combination with IL-12, a canonical Th1 cytokine that can 

directly activate tumor-associated CTL.23  The results demonstrate potent synergy 

between IL-10 and IL-12, involving pleiotropic effects on immune cells and the gut 

epithelium, with the latter activity being critical to overall therapeutic efficacy. 

 

Materials and Methods 

 

Mice and the tumor model.  C57BL/6 (B6), C57BL/6J-ApcMin/J (APCMin/+) and B69SJL)-

IL-10ratm1.1Tlg/J (IL-10RA knockout) mice were purchased from Jackson Laboratory. 

Enterotoxic B fragilis strain 86-5443-2-2 was a kind gift from Dr. Cynthia L Sears (Johns 

Hopkins University School of Medicine, Baltimore, Maryland).  For colonization with B 

fragilis, 5-6 week old APCMin+ mice were administered clindamycin (0.1g/L) and 

streptomycin (5g/L) ad libitum in drinking water for 5 days before oral gavage (~5×107 

bacteria in PBS) as previously described.8  All studies were conducted in accordance 

with guidelines set forth by the Institutional Animal Care and Use Committee at the 

University of Louisville (Louisville, KY). 
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Reagents and treatments.  Two particle formulations were produced using a modified 

Phase Inversion Nanoencapsulation (PIN) process:37 (i) control (no cytokine) and (ii) 

recombinant murine IL-10 or IL-12-encapsulated (Peprotech, Inc.) with a loading of 0.5 

μg or 0.25 μg cytokine/mg of particles, respectively.  Particles were administered via oral 

gavage (1 mg particles in 0.2 mL sterile water for blank, IL-10, and IL-12 treatments and 

2 mL total particles in 0.2 mL sterile water for combination IL-10 and IL-12 treatment) 

starting 4 weeks after B fragilis inoculation three times per week for 3 weeks.  An 

experimental schematic is shown in Figure 1.  Administration of particles resulted in a 

transient but significant increase in cytokine levels in the gut lamina propria (Figure 2).  

For survival analysis, mice were treated until they reached the IACUC-approved 

euthanasia score as previously described by our group.21   

 

Gross intestinal preparation and tumor quantification. Colons were opened longitudinally 

before being fixed in 10% neutral buffered formalin. Tumor burden was quantified using 

a dissecting microscope. 

 

Histology.  Formalin-fixed, parrafin-embedded tissue from the distal colon was sectioned 

serially (5μm sections) and subsequently stained with Hematoxylin and Eosin (H&E).  

Colon histology was assessed in a blinded fashion by a single tumor pathologist.  Each 

section was classified as harboring no dysplasia, low grade dysplasia, or high grade 

dysplasia.  Colons were then scored according to the following system based on the 

average severity of dysplasia in the distal colon: 0 – no dysplasia; 1 – low grade 

dysplasia only; 2 – mixture of low grade and high grade dysplasia; 3 – high grade 

dysplasia only; 4 – invasive cancer. 
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Laser-scanning Confocal microscopy.  Colon and tumor tissues were harvested from 

mice, embedded in Tissue-Plus Optimal Cutting Temperature (OCT) Compound (Fisher 

HealthCare, Houston, TX, USA) and snap-frozen in liquid nitrogen.  Serial cryosections 

(25 μm) were prepared with a Cryostar NX70, Thermo Scientific cryostat at -19 °C 

(Kalamazoo, MI, USA).  Cryosections were kept at room temperature for at least 24 h 

prior to staining. A previously described immunostaining protocol was used with 

modifications.38   For analysis of IL-10RA expression, staining antibodies were added 

sequentially in the following order: IL-10RA- phycoerythrin (PE) (Novus Biologicals, 

Littleton, CO), CD324 (E-Cadherin) Alexa Fluor-488 (Thermo Fisher, Waltham, MA). 

Sections were washed twice with 1X PBS-T and processed for imaging.  For analysis of 

colon sections, staining antibodies were added sequentially in the following order: IL-

10RA- phycoerythrin (PE) (Novus Biologicals, Littleton, CO), CD324 (E-Cadherin) Alexa 

Fluor-488 (Thermo Fisher, Waltham, MA). Antibodies were diluted with 2% fetal calf 

serum (FCS) in 1X PBS pH 7.4 to 1:25 for IL-10RA-PE, and 1:25 for CD324 E-Cadherin 

Alexa Fluor-488.  Each antibody was sequentially incubated at 37 °C for 40 mins. 

Sections were washed twice with 1X PBS-T and Prolong Gold anti-fade reagent 

(Thermo Fisher, Waltham, MA) was added to the slides prior to imaging. Images were 

captured using a Leica SP5 confocal laser scanning microscope (Leica, Wetzlar, 

Germany) and processed using Fiji Software.39   Panels containing confocal images 

were generated using Adobe Photoshop version 13.0 x32. Images were marked using 

the drawing tools to highlight the results and to provide orientation of the tissues. 

 

Colon epithelial cell isolation.   Mouse (C57BL/6) colons were excised, flushed with PBS 

+ penicillin and streptomycin (P/S), hemisected longitudinally, and rinsed with ice cold 

PBS + P/S.  Colons were then cut into 5 mm pieces and placed in a 50 mL conical tube 

containing 20 mL HBSS + 1 mM DTT + 1 mM EDTA + 5% FBS.  Tubes were placed in a 
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hybridization oven and incubated at 200 RPM, 37°C for 40 minutes.  Contents were then 

passed through a 100 μm filter and centrifuged at 1500 RPM for 5 minutes.  Supernatant 

was discarded, and the pellet was subjected to density dependent centrifugation using a 

25%/40% Percoll gradient.  Cells were harvested at the interface of the solutions and 

placed in 2 mL 100% FBS.  Cells were centrifuged again at 1500 RPM for 5 minutes and 

reconstituted in 2 mL PBS + 0.1% BSA for FACS analysis. 

 

Flow cytometry.   Membrane and intracellular staining of MLN or epithelial cells were 

performed as described.22  The following antibodies were used: CD4 (GK1.5, 

BioLegend), CD8α (53-6.7, BD Biosciences), CD16/CD32 (93, BioLegend), IL-17A 

(TC11-18H10.1, BioLegend), RORγt (Q31-378, BD Biosciences), IFNγ (XMG1.2, BD 

Biosciences), IL-10RA (1B1.3a, BioLegend), and Ep-CAM (G8.8, BioLegend). 

 

Lymphocyte depletion and functional blockade studies.  Anti-mouse CD8α (53-6.72, 

BioXCell) was given intraperitoneally (ip) to APCmin/+ mice (0.2mg, three times per week 

for 3 weeks) to deplete CD8+ T lymphocytes. Anti-mouse IFNγ (XMG1.2, BioXCell) was 

injected ip (0.2mg, three times per week for 3 weeks).  All treatments were initiated on 

treatment day -1 (the day before receiving their first oral immunotherapy treatment) and 

again on treatment day 0 (the day of their first oral immunotherapy treatment).  Mice 

were subsequently treated IP twice weekly for the duration of their 3 week oral 

immunotherapy treatment regimen.  

 

Colon permeability study.  Colon permeability was assessed using a FITC-dextran assay 

as previously described.40  Briefly, APCmin/+ / B fragilis mice were treated with oral 

immunotherapy as described above.  After 3 weeks of treatment, they were water 

starved overnight before being gavaged with 44 mg/100 g body weight of FITC labeled 
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dextran (FD4, Millipore Sigma, St. Louis, Missouri, USA) suspended in sterile PBS at a 

concentration of 100 mg/mL.  After a period of 4 hours, 300 mL of blood was extracted 

retro-orbitally and placed in a BD SST collection tube (BD, Franklin Lakes, New Jersey, 

USA).  After centrifugation, serum was aspirated and diluted 1:1 with sterile PBS.  

Samples were pipetted into a 96-well plate and analyzed using a plate reader (em: 485 

nm, ex: 526 nm).  Concentration of FITC-dextran was calculated based upon a standard 

curve.   

 

Colon explant culture.  Colon tissue pieces (0.5-1 cm length) from APCmin+ / B fragilis 

mice were cultured in triplicates for 24 hours in complete DMEM-high glucose medium 

(supplemented with 10% fetal bovine serum, 1X penicillin-streptomycin solution) in a 

humidified atmosphere (37°C, 5% CO2) in the presence of recombinant murine IL-10 (30 

ng/mL, PeproTech, Rocky Hill, New Jersey, USA), recombinant murine IFNγ (20 ng/mL, 

PeproTech, Rocky Hill, New Jersey, USA), or a combination of recombinant murine IL-

10 and IFNγ.  The tissues were processed for protein preparation (tissue lysates with 

RIPA buffer) using a sonic dismembrator (Model 550, Fisher Scientific). These tissue 

lysates were used to determine the expression of IL-10RA, claudin-4, and occludin. 

 

Western blots.  Total protein lysates were collected either from colon tissue or colon 

epithelial cells as described above using radioimmunoprecipitation assay (RIPA) buffer 

(Millipore Sigma, St. Louis, Missouri, USA) and quantified using BCA protein 

quantification kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA) per 

instructional manual. Total protein (20-50 μg) of was resolved on Mini-PROTEAN TGX 

4-20% gels (Bio-Rad, Hercules, California, USA) and transferred to polyvinylidene 

difluoride membrane (0.22 μm pore; Novex, Carlsbad, California, USA).  After blocking 

with 3% (w/v) bovine serum albumin (BSA) (containing 1X TBS) for 1 h, the membrane 
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was then incubated with HRP-conjugated anti-claudin-4, anti-occludin, anti-IL-10RA and 

anti-β-actin antibodies (1:500, 1:500, 1:300 and 1:20,000 dilution, respectively) at 4 °C 

overnight. For all proteins, chemiluminescent substrate (SuperSignalTM West Femto 

Maximum Sensitivity Substrate, Thermo Scientific, Rockford, Illinois, USA) was used to 

detect the protein bands (ImageQuant LAS 4000). Densitometry analysis of bands was 

done using ImageJ software. Antibodies for claudin-4, occludin and β-actin were 

purchased from Santa Cruz Biotechnologies (USA).  The antibody for IL-10RA was 

purchased from Novus Biologicals (USA).  

 

Quantitative PCR.  Steady-state mRNA levels in colon tissue were detected with SYBR 

Green PCR Master Mix (Applied Biosystems) using the Mx3000p qPCR system (Agilent 

Technologies). Results were normalized to β-actin expression. The expression level was 

scaled using the 2−ΔΔCT method, with the average levels obtained for colons of APCmin/+ / 

B fragilis mice treated with blank (control) microparticles set arbitrarily to 1.  Primer 

sequences utilized were: β-actin forward 5’-TCACCCACACTGGCCCATCTACGA-3’, 

reverse 5’-TGGTGAAGCTGTAGCCACGCT-3’; IL-10RA forward 5’-

GCCAAGCCCTTCCTATGTGT-3’, reverse 5’-CCAGGGTGAACGTTGTGAGA-3’; IFNγ 

forward 5’-GGCACAGTCATTGAAAGC-3’, reverse 5’-TGCCAGTTCCTCCAGATA-3’; 

claudin-4 forward 5’-ATGGCGTCTATGGGACTACA-3’, reverse 3’- 

TTACACATAGTTGCTGGCGG-5’; occludin forward 5’- CCTCCAATGGCAAAGTGAAT-

3’, reverse 3’- CTCCCCACCTGTCGTGTAGT-5’. 

 

Statistical Analysis.  Two-tailed student’s t-test was used to determine the significance of 

the differences between control and experimental groups in pairwise comparisons.  In 

experiments with multiple groups homogeneity of inter-group variance was analyzed by 

one-way ANOVA with Tukey’s honest standard difference for multiple comparisons.  
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Log-rank test was utilized for analysis of survival studies. P values of 0.05 or less were 

considered statistically significant.  Statistical analyses were performed using GraphPad 

Prism 7 (GraphPad Software, La Jolla, California, USA) and MedCalc version 17.9.7 

(MedCalc Software, Ostend, Belgium).  

 

Results 

 

Previous studies demonstrated that oral administration of a slow-release biodegradable 

particulate formulation of IL-10 suppressed intestinal polyposis in APCmin/+ mice and 

early tumorigenesis the APCmin/+ / B fragilis compound colon cancer model.21, 22  We 

wanted to determine whether this approach would be effective in the treatment of 

established disease.  To this end, APCmin/+ mice were inoculated with B fragilis and were 

allowed to develop tumors prior to the initiation of therapy.  They were then administered 

IL-10 for 3 weeks, and colon tumor burden as well as histology were analyzed.  The 

results demonstrate that short-term treatment reduced tumor burden by 50% (Figure 3A) 

coupled with a modest decrease in maximum tumor diameter (Figure 3B).  In contrast, 

treatment did not affect tumor histopathology (Figure 3C). 

 

IL-10 suppresses colon tumorigenesis via its ability to reduce the prevalence of IL-17-

producing T-cells and concurrently enhance of CTL cytotoxicity.22  We therefore 

hypothesized that adding IL-12 to the treatment regimen could further augment the 

functional balance in favor of CTL.  To test this notion, mice with established disease 

were treated with each cytokine separately or the two cytokines in combination.  

Analysis of tumor burden in mice that received monotherapy confirmed the beneficial 

activity of IL-10 while IL-12 was found to increase average tumor number by 

approximately 30% (Figure 4A).  In contrast, combined therapy achieved near-complete 



59 
 

tumor elimination in the majority of mice (Figure 4A).  A similar trend was observed with 

regard to tumor size where combination therapy mediated a significant 30% reduction in 

maximum tumor diameter.  Importantly, and in contrast to treatment with IL-10 alone, 

histological analysis revealed a dramatic improvement in the pathological score of 

tumors in mice that received combination therapy (Fig 4B). 

 

The above findings suggested that combined therapy not only arrested tumor growth but 

actively promoted eradication of established disease.  To determine whether combined 

therapy could provide long-term benefit in this aggressive carcinoma model, mice with 

established tumors were treated continuously with IL-10 and IL-12 in a survival study.  

The data shown in Fig 4C demonstrate a 30% increase in median survival in the 

treatment (93 days) vs the control (71 days) group.  Importantly, approximately 30% of 

the experimental mice remained alive up to and beyond 140 days post-initiation of 

treatment (210 days of age), exceeding the maximum lifespan of the APCmin/+ mouse.21 

 

Next, we wanted to delineate the cellular mechanism(s) that were responsible for the 

synergy.  Quantitative as well as qualitative analysis of MLN T-cell populations were 

performed in control vs. treatment groups.  Analysis of the IL-10 alone group 

demonstrated a 35% reduction in the number of CD4+RORγt+IL-17+ Th17 cells with no 

significant impact on CD8+ T-cell activity (Figure 5A).  IL-12 monotherapy did not have a 

detectable effect on Th17 cell numbers but enhanced CTL prevalence and activity.  

Importantly, combination therapy reduced Th17 cell numbers and increased CTL activity, 

enhancing the CTL to Th17 cell ratio (Figure 5A). These data demonstrate that each 

cytokine modulated distinct effector mechanisms in gut-associated immune structures 

with minimal cross-antagonism.   
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To determine whether the observed synergy between IL-10 and IL-12 was simply due to 

enhanced CTL activity in the presence of reduced Th17 prevalence, combination 

treatment was performed in the presence or absence of CD8+ T-cell depletion.  Analysis 

of tumor burden revealed that depletion of CD8+ T-cells indeed resulted in reduced 

antitumor efficacy, though this loss was partial and did not reach statistical significance 

(Figure 5B).  This finding, in combination with the independent observation that IL-12 

alone actually worsened disease burden, suggested additional mechanisms 

underpinning the observed synergy. 

 

IL-12 mediates its immunological activity primarily via its immediate downstream effector 

IFNγ.23  To obtain further insight into the dichotomous effects of IL-12 in our model, we 

first investigated the requirement for IFNγ in the pro- vs anti-tumorigenic activity of IL-12 

when administered alone or in combination with IL-10, respectively.  In vivo 

neutralization of IFNγ in the control and experimental groups demonstrated that 

blockade of IFNγ activity resulted in the abrogation of both the detrimental and the 

beneficial activities of IL-12, confirming that both pathways required IFNγ signaling 

(Figure 6A).  This finding suggested that in the combination therapy setting, cooperation 

between IFNγ and IL-10, two cytokines that are traditionally thought to be antagonistic, 

was responsible for the unexpected synergy. 

 

In addition to their direct effects on immune effectors, IL-10 and IFNγ are known to 

reciprocally modulate the paracellular physiology of gut epithelium,24 with potential 

impact on pro-tumorigenic inflammatory processes.  Specifically, in the APCmin+/- model, 

modulation of gut permeability by DSS25 results in exacerbation of inflammatory activity 

and promotes tumorigenesis in the colon.26  Therefore, to determine whether the IL-10- 

and/or IL-12-IFNγ-epithelial barrier axis played a role in the observed synergy, we 
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undertook examination of gut epithelial barrier function in different treatment groups.  

Mice were fed FITC-labeled dextran particles, and serum levels of particles were 

determined to assess gut permeability in each group.  The data show that IL-10 slightly 

reduced whereas IL-12 substantially enhanced (by 3-fold) permeability compared to that 

in control mice (Figure 6B).  In contrast, co-administration of IL-10 with IL-12 restored 

serum FITC-dextran levels to steady-state, providing direct evidence that combination 

therapy had significant impact not only on immune cells but also on the integrity of the 

gut epithelium.   Importantly, neutralization of IFNγ during treatment abrogated the 

detrimental effect of IL-12 on barrier integrity, mechanistically linking the effects of the IL-

12-IFNγ axis on barrier integrity and tumor progression (Figure 6, panels A and C). 

 

We next addressed the mechanism underlying the ability of IL-10 to restore epithelial 

barrier function in IL-12-treated mice.  IL-10 is known to enhance tight junction protein 

expression in the gut epithelium.24,27-29  Separately, IFNγ was recently shown to induce 

IL-10RA expression on intestinal epithelial cells.30     We therefore hypothesized that 

sensitization of colon epithelium to IL-10 by the IFNγ-IL-10RA axis could be responsible 

for restoration of barrier integrity in mice receiving dual therapy.  To this end, we first 

determined whether oral IL-12 altered IL-10RA expression in the gut.  Quantitative PCR 

analysis revealed that IL-12 promoted 3- and 6-fold increases in IFNγ and IL-10RA 

mRNA expression in the colon, respectively; whereas IL-10 alone had no significant 

effect (Figure 7A).  To determine whether IL-10RA was upregulated on the colon 

epithelium, we analyzed colon tissue from control and experimental groups by confocal 

microscopy.  The data showed robust IL-10RA expression in the colon epithelium in 

mice treated with IL-12 or IL-12 + IL-10, whereas no significant protein could be 

visualized in the control or IL-10 only groups (Figure 7B).  We then quantitatively 

assessed IL-10RA expression on colonic epithelial cells of control vs experimental mice 



62 
 

by FACS analysis.  These data revealed an approximately 3-fold increase in IL-10RA+ 

epithelial cells in the colons of mice that received IL-12 particles (Figure 7C).  

Collectively, these results supported the hypothesis that restoration of barrier integrity in 

mice receiving dual treatment vs IL-12 alone was associated with increased 

responsiveness of IFNγ-conditioned epithelium to exogenous IL-10. 

 

We further pursued the above hypothesis using an in vitro colon explant culture system 

in which the predicted mechanism could be assessed directly.  Specifically, we 

evaluated the effect of cytokine exposure on select tight junction protein levels.  To this 

end, colons of B fragilis-infected APCmin/+ mice were incubated in media or media with IL-

10, IFNγ or IL-10 + IFNγ; and epithelial occludin, claudin-4 and IL-10RA expression were 

quantified by qPCR and Western blot.  The results demonstrated that IFNγ, alone or in 

combination with IL-10, enhanced IL-10RA transcript levels by 8 to 10-fold on average 

(Figure 8A).  Similar increases in both occludin and claudin-4 mRNA were also 

observed, but only in the combination group (Figure 6A).  Western blot analysis revealed 

a similar trend in protein expression in explants that were exposed to IFNγ + IL-10 for all 

markers (Figure 8B).  Collectively, these findings further supported the mechanistic 

hypothesis that the stromal effect of the cytokines was associated with enhanced tight 

junction integrity, which required IFNγ-dependent sensitization of the epithelium to IL-10 

(Figure 9). 

 

Discussion 

 

Herein, we demonstrate that oral delivery of IL-10 and IL-12 can effectively eradicate 

established tumors in the APCmin/+ / B fragilis colon cancer model.  Further, we provide 

mechanistic insight into the mechanisms that underlie the synergy between IL-10 and IL-
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12, two conventionally-antagonistic cytokines.  Specifically, we found that, in addition to 

their distinct immunological effects on Th17 and CTL activity, combined administration of 

IL-12 and IL-10 improved gut barrier integrity via the IFNγ-IL-10RA axis, greatly 

enhancing therapeutic outcome.  These findings have important clinical implications for 

immune-based therapy of colon cancer, which has traditionally been resistant to this 

modality. 

 

The primary immunological effects of IL-10 and IL-12 involved distinct activities on Th17 

and CD8+ T-cell activity, respectively.  Specifically, IL-10 diminished the prevalence of 

IL-17-producing CD4+ RORγt+ Th17 cells consistent with our previous observations.21,22  

IL-12, on the other hand, enhanced IFNγ-producing CD8+ T-cell numbers.  Importantly, 

these activities were independent and were not antagonistic.  We hypothesize that the 

lack of antagonism between the two cytokines was associated with the distinct and in 

some cases opposing effects of IL-10 on T-cells of different ontogeny and maturation 

stage.  Specifically, while IL-10 is known to globally suppress T-effector cell priming via 

its tolerogenic activity on antigen-presenting cells,12-15 recent data are consistent with 

differential effects on antigen-experienced effector subsets.  For example, while IL-10 

can directly suppress Th17 effector cell expansion,16 multiple reports have confirmed its 

ability to enhance the activity of primed CD8+ T-cells.18-20,22  Conversely, the 

suppression of IL-10 production by IFNγ, the downstream effector of IL-12, occurs at the 

level of transcription,31 and delivery of recombinant IL-10 would bypass such a 

mechanism.  It is therefore likely that these selective effects on terminally-differentiated 

T-effector cell subsets underlie the lack of immunological antagonism between the two 

cytokines in our system. 
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An unexpected finding in this study was that the sensitization of the gut epithelium to IL-

10 by IL-12 was ultimately responsible for the greater part of the synergistic antitumor 

effect.  Whereas our data demonstrate a link between barrier function and therapeutic 

outcome, they do not directly address the mechanistic basis of how loss of barrier 

integrity led to increased tumor growth. It is well-known that disruption of gut epithelial 

barrier can promote tumor growth via complex multi-pathway inflammatory processes 

that involve both microbial as well as non-microbial factors.32,33   Specifically, both type 

17 and type 1 T-cell activity, as well as innate inflammatory cells can contribute to tumor 

growth in the inflamed gut.32,33  In the case of the APCmin/+ / B fragilis model, microbially-

driven type 17 immunity has been shown to be essential to tumor development.8,22,34  

While our findings are consistent with this paradigm, the ability of IL-12 to exacerbate 

disease without significant impact on Th17 cells suggests that additional, yet 

unidentified, factors that are associated with increased gut permeability may also 

contribute to tumor pathogenesis in this model. 

 

Our data provide partial insight into the molecular mechanism(s) that underlie the 

combined effects of IL-12 and IL-10 on barrier function.  Consistent with previous 

reports, IL-12, through its downstream effector IFNγ, upregulated IL-10RA expression in 

the colon epithelium in vivo and in vitro.   Importantly, combined treatment of colon 

explants with IFNγ + IL-10 induced the expression of tight junction proteins occludin and 

claudin-4.  Collectively, these observations support the hypothesis that increased IL-10 

signaling in the IFNγ-conditioned gut epithelium ultimately restored barrier integrity via 

enhanced tight junction formation.  In this study, we examined only two tight junction 

proteins that are known to be critical to barrier function.  Given the variety and the 

complexity of tight junction protein family, a more detailed analysis of the global changes 

in tight junction protein levels as well as spatial localization could further delineate the 
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molecular pathways underlying the observed effect.  A question that remains is how IL-

10 signaling overcame the detrimental activity of IFNγ in the combination therapy group.  

IL-10 and IFNγ can cross-modulate each other’s signaling pathways.30,35  Whether the 

dominance of one over the other is determined simply via the relative strength of STAT1 

vs STAT3 signaling, and/or through additional pathways remains to be determined. 

 

The above findings demonstrate that colon physiology can be effectively modulated by 

orally-administered slow-release cytokine formulations, establishing further proof-of-

principle for the clinical potential of this therapy.  This strategy provides the advantages 

that drugs can be delivered in a tissue-specific manner to achieve sustained 

physiological levels in the disease microenvironment with minimal systemic toxicity.  We 

have, in the past, demonstrated similar success with oral cytokine formulations in 

models of IBD, intestinal polyposis and colon cancer.21,22,36  The current data not only 

confirm and extend previous findings but also further identify a novel therapeutic 

modality involving the synergistic use of two traditionally antagonistic cytokines. 
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Figures 

 

 

Figure 1:  Experimental schematic 
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Figure 2:  Oral delivery of cytokines to gut lamina propria.  Mice (C57BL/6) were 

administered a single dose of IL-10 and IL-12 particles (10 mg of each).  Distal small 

bowel, cecum, and proximal colon were harvested prior to particle administration (time 0) 

as well as 6, 12, and 24 hours after particle administration.  Tissues were flushed with 

ice cold PBS + P/S and placed in 1 mL 2x cell lysis buffer (Cell Signaling Technology, 

Danvers, MA) containing 1 mM PMSF and were homogenized using a disposable 

Biomasher II Closed System Microtissue homogenizer (Kimble Chase Life Science, 

Rockwood, TN) followed by sonication (Model 550, Fisher Scientific) for 20 seconds.  

Homogenates were then incubated on ice for 20 minutes, centrifuged for 20 minutes at 

12,000 x g and supernatants were analyzed for IL-10 and IL-12 by enzyme-linked 

immunosorbent assay (ELISA) using the LegendMax mouse IL-10 and mouse IL-12p70 

ELISA kits (BioLegend, San Diego, CA).  Error bars = SD, n = 5 mice/time point.  

Statistical significance: ** and *** denote p < 0.01 and 0.001, respectively. 
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Figure 3:  Oral IL-10 reduces tumor burden in mice with established disease.  (A, B) 

Colon tumor number and maximum diameter.  APCmin/+ mice were treated with oral 

particle-based therapy (either blank particles or particles loaded with recombinant 

murine IL-10) for 3 weeks beginning 4 weeks after enterotoxic B fragilis inoculation.  

Mice were then euthanized, and tumor number (A) and maximum tumor diameter (B) in 

the mouse colon were assessed.  Error bars = SD, n = 5 per group.  (C, D) Histologic 

severity of disease.  At the time of euthanasia, colons were fixed in 10% neutral buffered 

formalin, embedded in paraffin, and stained with hematoxylin and eosin as described in 

Methods and Materials (C).  Colons were serially sectioned and degree of dysplasia 
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classified according to the following scale: no dysplasia (0), low grade dysplasia (1), mix 

of low and high grade dysplasia (2), high grade dysplasia (3) and invasive cancer (4).  

Examples of no dysplasia (a); low grade dysplasia with pseudo-stratification of the nuclei 

and nuclear enlargement (b); cribriforming tumor glands significant for high grade 

dysplasia (c); and surface epithelium with higher grade tumor underneath significant for 

invasion (d) are shown. Magnification: 20X (D).  Error bars = SD.  n = 3 per group.  

Significance: *, **, *** denote p<0.05, 0.01, 0.001, respectively.     
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Figure 4:  Oral IL-10 and IL-12 act synergistically to eradicate established disease and 

improve overall survival.  (A, B) Colon tumor number and maximum diameter.  APCmin/+ / 

B fragilis mice were treated with oral particle-based therapy (blank, IL-10, IL-12, or a 

mixture of IL-10 and IL-12 particles) as in Figure 1.  Mice were then euthanized, and 

tumor number (A) and maximum tumor diameter (B) in the mouse colon were assessed.  

Error bars = SD, n = 7-8 per group.  (C) Histologic severity of disease.  At the time of 

euthanasia, colons were fixed and H&E-stained sections were analyzed as in Figure 1.  

Error bars = SD, n = 3 per group.  (D) Overall survival. APCmin/+ / B fragilis mice were 

treated until euthanasia.  n = 12 and 10 for control and experimental groups, 

respectively.  Significance: *, **, *** denote p<0.05, 0.01, 0.001, respectively.     
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Figure 5:  Distinct immunological effects of IL-10 and IL-12 on T-cell subsets are partially 

responsible for the antitumor synergy.  (A) Effect of orally administered IL-10 and IL-12 

on Th17 and CD8+ T cells.  APCmin/+ / B fragilis mice were treated with oral particle-

based therapy (blank, IL-10, IL-12, or a mixture of IL-10 and IL-12 particles) as in Figure 

1.  Mice were euthanized and lymphocytes were isolated from mesenteric lymph nodes.  

CD45+CD4+RORγt+ cells were gated on and analyzed for IL-17 production (Th17), and 

CD45+CD8+ T cells were analyzed for IFNγ production (CD8+ T-cells) by FACS.  Cell 
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numbers shown are per MLN.  For CD8+ T-cell panel: filled-in circles = % of total 

lymphocytes; box plot = number of CD8+ IFNγ+ cells.  Boxes have lines at the median 

plus lower and upper quartiles, with whiskers extending to show the remaining data.  

Error bars = SD, n=5 per group. (B) Effect of CD8+ T cell depletion on tumor burden.    

Tumor-bearing APCmin/+ mice were treated as in Figure 2 in the absence or presence of 

anti-CD8α monoclonal antibody administration and assessed for tumor burden.  Error 

bars = SD, n = 5-6 per group.  Significance: *, ** denote p<0.05, 0.01, respectively. 
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Figure 6: Therapeutic synergy requires IFNγ and is in part associated with the effects of 

cytokines on gut epithelial barrier integrity.  (A) Effect of IFNγ neutralization on 

therapeutic outcome.  Tumor-bearing APCmin/+ mice were treated as in Figure 2 in the 

absence or presence of anti-IFNγ monoclonal antibody administration and assessed for 

tumor burden. (B)  Gut permeability.  Experimental mice were administered FITC-labeled 

dextran via oral gavage at the end of treatment and sera were analyzed for fluorescence 

to assess leakage as described in Methods and Materials.  (C) Effect of IFNγ 

neutralization on gut permeability.  Mice were treated in the absence or presence of 

IFNγ-neutralizing antibody and sera were analyzed as above.  Naïve APCmin/+ mice 
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served as a control for baseline permeability. Error bars = SD, n = 5-6 per group for all 

studies.  Significance: *, **, *** denote p<0.05, 0.01, 0.001, respectively.   
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Figure 7:  IL-12 induces IFNγ and IL-10RA expression in the colon.  (A) Quantitative 

PCR analysis of IL-10RA and IFNγ mRNA.  Quantitative PCR was performed to evaluate 

relative changes in IL-10RA and IFNγ transcript levels in the colon in blank or cytokine 

particle-treated mice.  (B) IL-10RA expression on colon epithelium. Colon sections from 

control (blank), IL-10, IL-12 and IL-10+IL-12-treated mice were stained for DAPI (blue), 

E-cadherin (green), and IL-10RA (red) and visualized by laser-scanning confocal 

microscopy.  (C) FACS analysis of epithelial cell IL-10RA expression. Single cell 

preparations from colon epithelia of control and treated mice (along with a negative 

control, i.e. IL-10RA knockout wild-type B6 mice) were stained for EpCAM and IL-10RA 

expression and were analyzed by flow cytometry.  Representative panels and 
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quantitative data are shown.  Each circle indicates an individual mouse.  Error bars = 

SD.  n = 5 per group.  Significance: *, **, *** denote p<0.05, 0.01 and 0.001, 

respectively. 
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Figure 8: IFNγ and IL-10 jointly promote tight junction protein expression in the colon.  

(A) Quantitative PCR analysis of IL-10RA, occludin and claudin-4 transcripts.  Colon 

explants were cultured for 24 hours in high glucose medium in the presence of 

recombinant IL-10, IFNγ, or both as described in Materials and Methods.  RNA was 

extracted and IL-10RA, occludin and claudin-4 mRNA levels were quantified by qPCR.  

Error bars = SD, n = 6 per group. (B) Analysis of protein levels.  Protein was extracted 

from colon explants cultured as above and analyzed by Western blotting to detect and 

quantify IL-10RA, occludin and claudin-4.  Representative blot displaying the bands for 

each protein and β-actin (loading control) is shown.  Signal intensity of each band was 

normalized to β actin for loading in each lane and fold-change was calculated with 

respect to untreated (control) explants.  Combined data from two different blots are 

shown.  Error bars = SD, n = 5-6 per group.  Significance: * denotes p<0.05. 
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Figure 9: Hypothesized mechanism of action of IL-10 and IL-12 on colon epithelial 

barrier integrity.  IFN-γ produced by IL-12 activated T cells binds to IFNγR on the 

basolateral surface of colon epithelial cells.  Signaling through IFNγR results in 

weakening of tight junctions and epithelial barrier integrity as well as increased 

expression of IL-10R on the apical surface of colon epithelial cells.  IL-10 binding to IL-

10R results in restoration of tight junctions and epithelial barrier integrity.
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CHAPTER FOUR 

SAVING CHECKPOINT INHIBITORS 

IDENTIFYING MECHANISMS OF RESISTANCE TO IMMUNE CHECKPOINT 
INHIBITOR THERAPY IN COLORECTAL CANCER 

 

Introduction 

Over the last several years, the emergence of immune checkpoint inhibitors (ICIs), 

particularly those targeted against PD-1/PD-L1, has heralded a significant shift in clinical 

oncology.1-5  The therapeutic efficacy of these agents in melanoma and other solid 

tumors (including lung, kidney, and head and neck cancer) has underscored the 

powerful anti-tumor capacity of the immune system.6-11 

 

Despite the success of anti-PD1 in the aforementioned malignancies, one notable area 

in which such therapy has failed is in colon cancer.11,12  With the exception of tumors that 

demonstrate significant microsatellite instability and a concomitant defect in mismatch 

repair machinery, response rates to anti-PD1/PD-L1 therapy in colon cancer have 

ranged from 0-5%.13,14  Currently, the mechanisms of resistance to anti-PD1 therapy in 

such patients remain unclear.  Given that patients in the latter category comprise 

approximately 85-90% of all patients with colon cancer, understanding pathways 

facilitating resistance and identifying potential therapeutic targets represents a significant 

area of need in clinical oncology.15,16   
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To date, the majority of studies evaluating mechanisms of resistance to anti-PD1/PD-L1 

therapy have focused on melanoma given the significant role of such ICIs in treatment of 

this disease.  Various groups have demonstrated in both preclinical models and patient 

samples the roles of differential gene transcription among different tumor foci, Jak1/2 

mutations, loss of β2-microglobulin, and a number of other innate elements comprising 

cytokines, chemokines, and proteins involved in angiogenesis, among other things.17-21  

While these mechanisms of resistance are postulated to extend to other tumor types, 

which, if any, actually do apply in the setting of other malignancies and whether or not 

additional mechanisms may play critical roles in mediating resistance to ICIs remains 

unclear.   

 

Based on our findings demonstrating the importance of T17 cells to the persistence and 

progression of colon tumors (see Chapter 3), we believed that IL-17 producing cells 

could play a critical role in mediating resistance to anti-PD1 therapy in colon cancer.  In 

the present study, we sought to identify putative immunological mechanisms involved in 

failure of oral anti-PD1 therapy in a preclinical model of colon cancer.  The results 

presented herein demonstrate the importance of IL-17 and γδ T cells in colon cancer’s 

resistance to ICI therapy, thereby pointing toward possible combination therapy 

strategies to improve ICI efficacy in treatment of colon cancer.   

 

Materials and Methods 

Mice and the tumor model.  C57BL/6 (B6) and C57BL/6J-ApcMin/J (APCMin/+) mice were 

purchased from Jackson Laboratory. Enterotoxic B fragilis strain 86-5443-2-2 was a kind 

gift from Dr. Cynthia L Sears (Johns Hopkins University School of Medicine, Baltimore, 

Maryland). For colonization with B fragilis, 5-6 week old APCMin+ mice were administered 
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clindamycin (0.1g/L) and streptomycin (5g/L) ad libitum in drinking water for 5 days 

before oral gavage (~5×107 bacteria in PBS) as previously described. All studies were 

conducted in accordance with guidelines set forth by the Institutional Animal Care and 

Use Committee at the University of Louisville (Louisville, KY). 

 

Reagents and treatments.  Two particle formulations were produced using a modified 

Phase Inversion Nanoencapsulation (PIN) process: (i) control (no cytokine) and (ii) 

murine anti-PD1 (Clone J43, BioXCell) with a loading of 1.0 μg antibody/mg of particles.  

Particles were administered via oral gavage (2.5 mg particles in 0.2 mL sterile water for 

blank and anti-PD1 treatments) starting 4 weeks after B fragilis inoculation three times 

per week for 3 weeks.     

 

Gross intestinal preparation and tumor quantification. Colons were opened longitudinally 

before being fixed in 10% neutral buffered formalin. Tumor burden was quantified using 

a dissecting microscope. 

 

Histology.  Formalin-fixed, paraffin-embedded tissue from the distal colon was sectioned 

serially (5μm sections) and subsequently stained with Hematoxylin and Eosin (H&E).  

Colon histology was assessed in a blinded fashion by a single tumor pathologist. Each 

section was classified as harboring no dysplasia, low grade dysplasia, or high grade 

dysplasia.  Colons were then scored according to the following system based on the 

average severity of dysplasia in the distal colon: 0 – no dysplasia; 1 – low grade 

dysplasia only; 2 – mixture of low grade and high grade dysplasia; 3 – high grade 

dysplasia only; 4 – invasive adenocarcinoma. 
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Flow cytometry.   Membrane and intracellular staining of MLN cells and lamina propria 

lymphocytes (LPL) were performed as described.22  The following antibodies were used: 

CD4 (GK1.5, BioLegend), CD8α (53-6.7, BD Biosciences), CD45.2 (104, BD 

Biosciences), CD16/CD32 (93, BioLegend), γδTCR (GL3, BioLegend), IL-17A (TC11-

18H10.1, BioLegend), IFNγ (XMG1.2, BD Biosciences).   

 

Lymphocyte depletion and functional blockade studies.  Anti-mouse CD4 (GK1.5, 

BioXCell) was given intraperitoneally (ip) to APCmin/+ mice (0.2mg, three times per week 

for 3 weeks) to deplete CD4+ T lymphocytes.  Anti-mouse γ/δ TCR (UC7-13D5, Leinco 

Technologies) was given ip to APCmin/+ mice (0.25 mg, twice per week for 3 weeks) to 

deplete γ/δ TCR+ T lymphocytes.  Anti-mouse IL17 (17F3, BioXCell) was injected ip 

(0.2mg, three times per week for 3 weeks).  All treatments were initiated on treatment 

day -1 (the day before receiving their first oral immunotherapy treatment) and again on 

treatment day 0 (the day of their first oral immunotherapy treatment).   

 

Statistical Analysis.  Two-tailed student’s t-test was used to determine the significance of 

the differences between control and experimental groups in pairwise comparisons.  In 

experiments with multiple groups homogeneity of inter-group variance was analyzed by 

one-way ANOVA with Tukey’s honest standard difference for multiple comparisons.  P 

values less than 0.05 were considered statistically significant.  Statistical analyses were 

performed using GraphPad Prism 7 (GraphPad Software, La Jolla, California, USA) and 

MedCalc version 17.9.7 (MedCalc Software, Ostend, Belgium). 
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Results 

Orally administered checkpoint inhibitor monotherapy is ineffective against colon cancer 

Outside of cases with high microsatellite instability, previous work has demonstrated a 

general lack of efficacy of immunotherapy in colon cancer.  To evaluate whether orally 

administered anti-PD1, which would augment local delivery of checkpoint inhibitor to the 

colon, would result in effective treatment, mice were treated with either blank or anti-

PD1-containing particles by oral gavage for three weeks.  No significant differences were 

noted in tumor number, maximum tumor diameter, or histologic severity of disease 

(Figures 1A, 1B).  These findings confirmed failure of anti-PD1 monotherapy in treatment 

of colon cancer, suggesting that simply altering the method of delivery could not 

overcome therapeutic resistance.   

 

IL-17 blockade significantly improves the efficacy of anti-PD1 therapy in treatment of 

colon cancer. 

IL-17 has been demonstrated to play a significant role in the development and 

progression of colon cancer.  Given the known tumor-promoting role of IL-17 in this 

setting, we hypothesized that blockade of this signaling could result in a more favorable 

immune microenvironment that could augment the efficacy of anti-PD1 treatment.  

Towards this end, mice were subjected to IL-17 blockade and treated with either blank or 

either anti-PD1 containing particles for 3 weeks.  While IL-17 blockade significant 

improved tumor number, compared to treatment with either blank or anti-PD1 particles 

alone, the combination of IL-17 blockade and anti-PD1 treatment resulted not only in 

near complete eradication of tumors, but also significant reductions in both maximum 
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tumor diameter and histologic severity (Figure 2A-C).  These findings indicate that IL-17 

plays a critical role in mediating failure of anti-PD1 therapy in colon cancer. 

 

Γδ TCR+ T cells, but not CD4+ T cells, play a critical role in IL-17 mediated resistance to 

anti-PD1 therapy 

As previously mentioned, several cell populations are known to produce IL-17.  

However, as previously demonstrated, two subsets of T cells – γδ17 cells and CD4+ 

Th17 cells – play a critical role in promoting colon tumor development. To determine 

which of these cell populations contributed to IL-17 production involved in anti-PD1 

resistance, mice were subjected to either CD4+ T cell depletion or γδ TCR depletion in 

the context of treatment with either blank or anti-PD1 particles.  CD4+ T cell depletion 

had no significant effect on either tumor number of maximum tumor diameter, either 

alone or when combined with anti-PD1 therapy (Figure 4A, 4B).  However, depletion of 

γδ TCR+ T cells resulted in a significant reduction in tumor number but not maximum 

tumor diameter (Figure 3A, 4B).  These results suggest that γδ T cells may be major 

mediators of anti-PD1 resistance in colon cancer in an IL-17 dependent manner. 

 

Discussion 

Clinical trials of ICI therapy, particularly with anti-PD1/PD-L1, have demonstrated 

minimal, if any, effect in patients with microsatellite stable colon cancer.  Despite several 

mechanisms of resistance having been postulated, none have been conclusively shown 

in either preclinical models or human subjects.  Our results indicate that IL-17 represents 

a critical element mediating anti-PD1/PD-L1 resistance in microsatellite stable colon 
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cancer.  Moreover, a large component of this IL-17 effect appears to derive from γδ T 

cells in the tumor microenvironment. 

 

The tumor-promoting effects of IL-17 in colon cancer have been demonstrated both in 

preclinical models and IL-17’s role in colon cancer.  IL-17 binds to its ubiquitously-

expressed cognate receptor (IL17RA) to result in release of pro-inflammatory cytokines 

and chemokines as well as increased expression of angiogenesis promoting factors (i.e. 

VEGF, prostaglandin E1, prostaglandin E2).  Indeed, IL-17 has been shown to promote 

tumor growth and augment vascularity in murine models of colon cancer.23  Human 

studies have also demonstrated an association of IL-17 mRNA with increasingly 

dysplastic colon tumors along the adenoma to carcinoma pathway as well as increased 

levels of IL-17 in colon cancer tissue, with the IL-17E subtype related to tumor cell 

differentiation.24,25   

 

In colon cancer, two cell subsets have been strongly linked with IL-17 production: Th17 

cells and γδT17 cells.  The role of Th17 cells in promoting colon tumorigenesis has been 

previously demonstrated.26,27 However, recent evidence has suggested that IL-17 

producing γδ T cells play a critical role in tumor progression.  These cells, largely 

expanded in the tumor microenvironment, have been shown to accumulate in colon 

tumor tissue, potentially being polarized therein by cytokines (including dendritic cell-

produced IL-23) present in the tumor microenvironment.28  This situation results from 

weakened colothelial barrier integrity, bacterial translocation, and resultant attraction of 

dendritic cells into peritumoral tissue.28  The end result of γδT17 activation and 

proliferation is recruitment of PMN-type myeloid derived suppressor cells and 
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subsequent immunosuppression.28  Taken together with our findings, these data 

underscore the importance of γδT17 cells in supporting a microenvironment favoring 

tumor growth in colon cancer.   

 

In the context of previous work, our findings suggest that the relative importance of Th17 

and γδT17 to promoting tumor development and growth may exhibit temporal variation.  

As previously mentioned, Th17 cells have been shown to be important in colon 

tumorigenesis, findings supported by work from our group demonstrating the abrogation 

of tumor formation with CD4+ T cell depletion.22,26,27,29   In the setting of established 

colon tumors, however, our data suggest that γδT17 cells appear to play a more critical 

role in maintaining a tumor-promoting, immunosuppressive microenvironment.  While 

future work is required to elucidate the mechanisms underpinning this observation and 

appropriately test the hypothesis of a time-dependent importance of Th17 and γδT17 

cells in colon tumorigenesis and progression, the role of γδT17 cells later in disease may 

stem from the changes in colon permeability, bacterial translocation, and DC recruitment 

associated with increasingly dysplastic lesions. 

 

Our findings have exciting implications for future applications in treatment of patients 

with colon cancer.  Both IL-17 and γδ T cells represent putative targets for therapies that 

could be combined with anti-PD1/PD-L1 to augment the efficacy of the latter agent. 

While no anti-γδ T cell antibody is currently approved for clinical use, an FDA-approved 

anti-IL-17 antibody, secukinumab (Cosentyx; Novartis International AG, Basel, 

Switzerland), is currently being used in treatment of patients with plaque psoriasis.  With 

a low side-effect profile (approximately 10% adverse event rate), combination of this 
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agent with anti-PD1/PD-L1 represents an enticing possibility for future clinical trials in 

patients with colon cancer.30    If successful, such combination therapy would represent 

a significant advance in the treatment of colon cancer, providing patients and physicians 

with a presumably well-tolerated, effective treatment regimen with application in a wide 

variety of disease settings.   

 

Conclusions 

The results of these studies suggest that IL-17-producing γδ T cells play a critical role in 

mediating resistance of colon tumors to anti-PD1 therapy.  While the detailed 

mechanisms underlying this observation remain areas for future study, the phenomena 

described herein represent exciting possibilities for clinical trials combining existing anti-

IL-17 therapy with anti-PD-1 therapy in patients with microsatellite stable colon cancer, 

anti-PD1 refractory microsatellite unstable colon cancer, and, potentially, other tumor 

types with in which IL-17 plays a role in tumor development.   
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Figures 
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Figure 1:  Oral anti-PD1 monotherapy is ineffective in treatment of established colon 

tumors.  (A,B) Colon tumor number and maximum diameter.  APCmin/+ mice were treated 

with oral particle-based therapy (either blank particles or particles loaded with murine 

anti-PD1 antibody) for 3 weeks beginning 4 weeks after enterotoxic B fragilis inoculation.  



89 
 

Mice were then euthanized, and tumor number (A) and maximum tumor diameter (B) in 

the mouse colon were assessed.  Error bars = SD, n = 5 per group.   
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C.  

Figure 2:  IL-17 blockade significantly improves the efficacy of oral anti-PD1 in treatment 

of established colon tumors.  (A, B) Colon tumor number and maximum diameter.  

APCmin/+ / B fragilis mice were treated with oral particle-based therapy (blank, anti-PD1) 

for 3 weeks with and without IL-17 blockade by intraperitoneal injection of anti-IL-17A 

monoclonal antibody.  Mice were then euthanized, and tumor number (A) and maximum 

tumor diameter (B) in the mouse colon were assessed.  Error bars = SD, n = 6 per 

group.    
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Figure 3:  IL-17-based resistance to anti-PD1 therapy appears mediated by γδTCR+ T 

cells but not CD4+ T cells.  (A, B) APCmin/+ / B fragilis mice were treated with oral 

particle-based therapy (blank, anti-PD1) for 3 weeks with and without either CD4+ T cell 

depletion or γδ T cell depletion by intraperitoneal injection of α-CD4 or α-γδ TCR 

monoclonal antibody.  Mice were then euthanized, and tumor number (A) and maximum 

tumor diameter (B) in the mouse colon were assessed.  Error bars = SD, n = 2-5 per 

group.   
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CHAPTER FIVE 

THE NEXT FRONTIER 

ESTABLISHING A PRACTICAL MODEL FOR SPONTANEOUS COLON TUMORS 
 

 

Introduction 

 

Among patients with colorectal cancer, approximately 10-25% initially present with liver 

metastases.1  Moreover, even among patient who undergo successful resection of their 

primary tumor, nearly 50% will ultimately develop liver metastases.1  While a solitary 

liver metastasis or oligometastatic disease often responds well to systemic 

chemotherapy and resection, the metastatic disease setting still represents the area in 

which novel therapies are most sorely needed, particularly since chemotherapy 

converts patients to resectability in 7-50% of cases.2  Thus, a practical, high-fidelity 

preclinical model for colorectal liver metastases remains essential for the effective 

evaluation of new therapeutic agents. 

 

Currently, numerous models of colon cancer exist, ranging from those involving 

chemical induction (1,2-dimethyhydrazine (DMH) and azoxymethane (AOM)) to a 

combination of a germline mutation and bacterially-induced inflammation 

(APCMin/enterotoxic Bacteroides fragilis) to genetically modified mice that allow for site-

specific induction of mutations commonly found in patients with colon cancer (e.g. Apc, 

Kras, Msh2).3-6  While each has its own advantages and disadvantages, they all provide 

reasonable model systems for assessing the development and progression of both 
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sporadically arising colon tumors and those developing in the setting of chronic 

inflammation (i.e. colitis).  However, none of these models produce colon tumors that 

spontaneously metastasize to the liver, thereby limiting their ability in assessing both the 

process of metastasis development and the impact of antineoplastic agents on both 

primary tumors and metastatic disease.7   

 

To study colorectal liver metastases, researchers have largely had to rely upon 

orthotopic injection of tumor cells (i.e. injection directly into the liver), implantation of 

tumors into colons of nude mice, or injection of tumor cells into the portal vein to allow 

diffuse seeding of the liver.4,8-10   Unfortunately, none of these models accurately reflects 

the clinical setting in which such disease develops.  In order to address the need for a 

more clinically-relevant model of colorectal liver metastases (and colon cancer in 

general), KE Hung and colleagues developed a model utilizing site-specific, inducible 

mutations in Apc and Kras that reliably resulted in formation of one to two colon tumors 

that progress along the adenoma to carcinoma sequence and progresses to liver 

metastases in approximately 20% of mice.7 

 

Use of this model, while high-fidelity, has not been reported in any studies since its 

publication.  Several reasons likely explain this observation.  First, the model requires a 

significant amount of technical expertise due to multiple surgical elements (laparotomy, 

colostomy, and surgical repair of both incisions).  Additionally, the procedure is quite 

inefficient and time intensive, with only 50% of mice developing carcinomas at 20 weeks 

after tumor induction and metastases developing in only 20% of mice 24 weeks after 

tumor induction.7  Thus, the model, while clinically relevant, remains largely impractical 

for laboratory use. 
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Given the well-described use of mouse colonoscopy, we believed that using endoscopic 

methods would allow us to circumvent several of the technical complexities associated 

with this model.11,12  Additionally, such methods would allow for targeted mutation at a 

specific site in the distal colon which could be easily and reliably monitored for tumor 

development and progression.  Herein, we describe a minimally-invasive endoscopic 

methods for induction of Apc and Kras mutations resulting in distal colon 

adenocarcinoma development in addition to eventual development of gross liver 

metastases.     

 

Methods 

Animals 

Apc conditional knockout mice (C57BL/6-Apctm1Tyj/J, Jackson Labs) were crossed 

with mice bearing a latent mutant Kras allele (LSL-K-ras G12D, Jackson Labs).   Mice 

had Apc and Kras mutations, respectively, under control of an LSL system, with 

mutation inducible by insertion of a Cre recombinase-expressing adenovirus.  Breeding 

consisted of a C57BL/6-Apctm1Tyj/J male crossed with a LSL-K-ras G12D female.  

Progeny were genotyped using the methods described by Jackson Labs.  Progeny 

positive for both latent Apc and Kras alleles were utilized for experimentation.  

 

Mouse Colonoscopy and Adenovirus Infection of Colon Epithelium 

Mice were anesthetized using ketamine/xylazine anesthesia.  After achieving an 

adequate level of anesthesia an 8F pediatric cystoscope was introduced into the mouse 

anus and advanced proximally approximately 2-3 cm.  Air was insufflated during this 

time to allow for adequate visualization while avoiding perforation.  The colon was then 

flushed with 300 mL 1x PBS, and 200 mL 0.25% trypsin with EDTA was instilled via the 

working port of the colonoscopy while slowly withdrawing the instrument.  Mice were 
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positioned with their head down for 15 minutes to allow for trypsin digest of intercellular 

adhesion molecules between colon epithelial cells.  The colonoscopy was subsequently 

reinserted and biopsy forceps were used to create a discrete break in the epithelium of 

the distal colon under direct visualization.  Care was taken to avoid taking a full-

thickness biopsy and causing a colon perforation.  To induce gene mutation at the site 

of the biopsy, 109 PFU of Ad5CMVcre High Titer (HT) (Viral Vector Core, University of 

Iowa) in 50 μL of 1x PBS were injected into the muscularis mucosa using a microneedle 

inserted through the colonoscopy working port under direct visualization.  Care was 

taken not to allow transcolonic needle penetration with viral instillation into the 

peritoneal cavity.  After instillation, the needle was withdrawn into the working port, and 

the colonoscope was withdrawn slowly.  Mice were observed in cages placed on a 37°C 

heating pad until they began moving spontaneously.   

 

Monitoring Tumor Development 

To monitor for tumor development and progression, mice underwent serial biweekly 

colonoscopy as described above beginning two weeks after virus instillation.   

Adenomas were biopsied using biopsy forceps inserted through the working port of the 

colonoscope.  Biopsies were placed in 10% neutral buffered formalin for histologic 

analysis.  Mice were then euthanized at two week intervals beginning six weeks after 

adenoma formation to assess time to adenoma formation and time from adenoma 

formation to carcinoma development.  At time of euthanasia, colons were excised, 

bisected longitudinally, and rinsed with 1x PBS to remove stool and mucous before 

being placed in 10% neutral buffered formalin.  Colons were embedded in paraffin and 

sectioned at 10 μm intervals before being stained with hematoxylin and eosin (H&E) for 

pathology analysis.   
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Assessing for Metastasis Development 

To determine time to metastasis development, mice were euthanized beginning 12 

weeks after virus instillation.  Colon, mesenteric lymph nodes (MLN), and liver were 

excised.  Colons were treated as described above, and all organs were placed in 10% 

neutral buffered formalin.  Organs were embedded in paraffin and sectioned at 10 μm 

intervals before being stained with hematoxylin and eosin (H&E) for pathology analysis.   

 

Histologic Analysis 

H&E stained slides were reviewed by an experienced colorectal pathologist to 

determine the presence of adenoma, carcinoma, and metastatic disease (in the lymph 

nodes and liver).  Descriptive analysis was provided in addition to classification of 

lesions as adenoma or carcinoma.   

 

 

Results 

Endoscopic adenovirus instillation is feasible and safe 

As previously mentioned, we initially sought to determine whether we could employ 

endoscopic methods to improve the feasibility of the model previous described by Hung, 

et al.7  The apparatus and setup used are depicted in Figure 1.  For optimal execution, 

the procedure was noted to require two operators: one for operation of the biopsy 

forceps and microneedle and one for manipulation of the colonoscope.  This system 

enabled successful creation of a mucosal break and adenovirus injection in 20 of 22 

mice (91%) on five separate occasions.  Mice tolerated the procedure well; only two 

mice developed colon perforations and required euthanasia.   
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Endoscopic adenovirus instillation results in adenoma formation 2-3 weeks after 

mutation induction 

To evaluate whether endoscopic adenovirus instillation reliably resulted in tumor 

formation and the time to initial adenoma formation, mice underwent colonoscopy every 

two weeks beginning two weeks after adenovirus instillation.  Adenoma formation was 

noted at two weeks after adenovirus injection (Figure 2A).  Time to adenoma formation 

was similar in five mice injected with adenovirus.  Histologic analysis of biopsies 

obtained from the lesions confirmed development of adenomas (Figure 2B).   

 

Histologic analysis demonstrates adenoma to carcinoma transition at 12 weeks after 

adenovirus injection 

To assess the time from adenoma formation to the development of invasive carcinoma, 

three mice were euthanized at 12 weeks after adenovirus injection (10 weeks after 

adenoma development).  Histologic analysis of the tumors demonstrated invasive 

carcinoma (Figure 3A).  Histologic evaluation of the liver at this time demonstrated no 

evidence of metastatic tumor deposits (Figure 3B).   

 

Spontaneous development of liver metastases 

For evaluation of time to development of lymph node and/or liver metastases, mice were 

sequentially euthanized beginning at 20 weeks after adenovirus injection.  Histologic 

analysis did not demonstrate any evidence of microscopic disease in either mesenteric 

lymph nodes or colon until 48 weeks of age.  One of three mice euthanized at this time 

was noted to have gross evidence of widespread liver metastases (Figure 4).   
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Discussion 

As previously mentioned, current models of colorectal cancer in general and liver 

metastases in particular fail to accurately reflect the most prevalent clinical scenario of 

spontaneous arising colon tumors (adenomatous polyps) that eventually transition to 

carcinoma and, in certain cases, to colorectal liver metastases.4,13  Despite the 

development of a model that successfully recapitulates this scenario, its technical and 

logistic impracticality has limited its use.  The model described herein overcomes many 

of those obstacles and represents a significant practical improvement on the 

aforementioned system.  

 

The method we describe likely works reliably and efficiently for several reasons.  Using 

biopsy forceps to create a discrete mucosal break through which to perform submucosal 

adenovirus instillation allows for several key elements: 1) a tumor confined to a known, 

specific region in the distal colon, 2) the ability to administer a high concentration of virus 

in a small volume to a naturally confined region, avoiding the need to segmental colon 

occlusion and incubation, and 3) improved adenovirus penetration into cells with 

transformation potential (i.e. cells other than well-differentiated epithelial cells), 

maximizing transformation efficiency.  Furthermore, by utilizing colonoscopy for 

instillation, our method not only allows for visual confirmation of successful injection, but 

also facilitates stool clearance.  As previously mentioned, such an approach also spares 

mice the morbidity of a laparotomy and colostomy and, as a result, decreases the time 

mice must be under general anesthesia.   

 



100 
 

As previously discussed, the value of a high-fidelity model for colon cancer and 

colorectal liver metastases cannot be overstated.   Such a model would enable more 

granular, detailed analysis of the genetic, molecular, and immunologic elements 

associated with and responsible for the adenoma to carcinoma transition and the 

development of liver metastases.  Additionally, it would allow for realistic evaluation of 

the performance of novel imaging modalities (i.e. multispectral optoacoustic tomography 

(MSOT)) along with tracers and dyes in conjunction with existing modalities (i.e. 

magnetic resonance imaging (MRI), computed tomography (CT), or high-resolution 

ultrasound (U/S)) in early detection of primary colon tumors and liver metastases.  

Finally, such a model represents a significant improvement over those currently 

available for evaluation of the therapeutic potential of novel cytotoxic and immune-based 

therapies along the spectrum of colorectal cancer. 

 

Despite the findings presented herein, several aspects of this model system require 

further investigation.  The exact time at which mice develop microscopic liver 

metastases remains unclear, as does the proportion of mice who develop hepatic 

metastases.  Accurately elucidating these elements will likely require a large, longitudinal 

study employing a combination of colonoscopy and sequential non-invasive liver imaging 

using high-resolution ultrasound and euthanasia.  Furthermore, the degree to which this 

model reflects the known mutational and methylation profiles of human colon adenomas, 

carcinomas, and liver metastases remains unknown.  Targeted or whole genome 

analysis of tumor tissue from a large cohort of mice could help delineate the degree to 

which this model parallels human colon cancer on a genetic and epigenetic level. 
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Conclusions 

The results described herein demonstrate that a colonoscopy-based virus delivery to a 

site of mucosal disruption in mice with inducible Apc and Kras mutations represents a 

feasible, safe, and effective method of inducing spontaneous colon tumors that 

demonstrate a stepwise progression along the adenoma-carcinoma-metastasis pathway.  

Such a model enables evaluation of study of the genetic and immunologic perturbations 

both locally and systemically throughout this process.  Furthermore, it provides an 

extremely clinically-relevant system for evaluation of the therapeutic efficacy of novel 

antineoplastic agents as well as imaging modalities for detecting sub-clinical disease. 
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Figures 

A.  

B.  
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C.  

D.  

Figure 1: Mouse colonoscopy and adenovirus instillation.  (A) Complete setup for 

mouse colonoscopy, including colonoscope, colonoscope holder, and microneedle.  
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(B, C)  Biopsy forceps grasping tissue (B) and mucosal break following tissue biopsy 

(C).  (D) Microneedle inserted into mucosa for adenovirus delivery.  
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A.  

B.  

Figure 2:  Gross and histologic demonstration of colon adenoma formation.  (A) 

Endoscopic visualization of colon adenoma two weeks after adenovirus instillation.  

Black arrows indicate polyps.  (B) Histology of colon tumor biopsy (4x) demonstrating 

hyperplasia and mild architectural distortion consistent with a colon adenoma. 
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A.  

B.  

Figure 3:  Histologic evaluation of colon tumor, mesenteric lymph nodes, and liver 12 

weeks after adenovirus instillation.  (A) Histology of colon tumor (4x) demonstrates 

invasive adenocarcinoma.  (B) Representative histology of the liver (4x) showing no 

evidence of metastases.   
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A.  

Figure 4:  Gross demonstration of colorectal liver metastases 48 weeks after adenovirus 

instillation.  
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OVERALL SUMMARY AND FUTURE DIRECTIONS 

 

This dissertation began with an investigation into colon inflammation, demonstrating not 

only its severity in our main model system, but also the ability of a novel, non-invasive 

imaging modality to identify areas of inflammation in the mouse colon.  These findings 

provided support for application of such technology in evaluation of human subjects at 

risk for inflammatory bowel disease and colon cancer.  The dissertation proceeded to 

utilize that same imaging technology, together with fluorescence microscopy, to track 

orally-administered particles.  These studies allowed identification of sites of uptake of 

these particles as well as delineating of the time course of uptake, trafficking, and 

degradation.  These particles were then used as mechanisms of cytokine delivery for 

oral treatment of colon cancer.  Combining oral IL-10 and IL-12 resulted in significant 

decrease in tumor burden and histologic severity of disease as a result of modulation of 

CD8+ T cells, RORγT+ IL-17 producing cells, and, most interestingly, colon membrane 

permeability.  Using the same model and drug delivery system, the dissertation 

proceeded to demonstrate that IL-17 and γδ T cells mediate resistance of colon cancer 

to anti-PD1 therapy, providing exciting potentials for targeted clinical investigation.  The 

dissertation concluded with description of a feasible preclinical model of spontaneously 

developing colorectal liver metastases for the evaluation of genetic and immunologic 

changes associated with development and progression of colon tumors as well as the 

therapeutic effect of antineoplastic agents in the treatment of metastatic disease.    
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Taken together, this body of work incorporates novel technologies, spans a wide range 

of biologic investigations, offers potential solutions to significant clinical and preclinical 

problems, and offers exciting opportunities for future lines of investigation.  Indeed, as 

mentioned herein, clinical trials involving MSOT for detection of colon cancer and 

inflammatory bowel disease, and orally-delivered biodegradable particle-based therapy 

and combination immunotherapy with anti-IL-17 and anti-PD1/PD-L1 are all imminently 

realizable in the near future.  These, together with opportunities for future studies 

utilizing the C57BL/6-Apctm1Tyj/J x LSL-K-ras G12D adenovirus-based model, have the 

potential to significantly impact diagnosis and treatment of colon cancer across all 

stages of disease, thereby improving quality of life and oncologic outcomes for millions 

of patients.   
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Appendix 1: APCmin Genotyping Protocol 

1. Make a master mix of 150 μL tail lysis buffer  (Viagen DirectPCR (Tail), cat# 102-

T) per tail + 7.5 μL proteinase K (20 mg/mL) per tail.   

2. Add 150 μL master mix to a 1.5 mL Eppendorf tube containing each tail snip.   

3. Digest in hybridization oven under constant rotation for 1 hour at 57°C, vigorously 

shaking tubes halfway through digestion. 

4. Inactivate proteinase K by placing tubes in 95°C water bath for 1 hour.   

5. Create PCR master mix as follows: 

a. Promega Go Taq Green 2x (6.75 μL per tail) 

b. Notch1-F (5 μM) (0.38 μL per tail) 

c. Notch1-R2 (5 μM) (0.38 μL per tail) 

d. APC-M-C (5 μM) (1.3 μL per tail) 

e. APC-M-M (5 μM) (1.3 μL per tail) 

f. 25 mM MgCl2 (0.4 μL per tail) 

6. Add a total of 10.5 μL of master mix to each well.   

7. Add 2.5 μL of DNA to each well (one tail per well).   

8. Run PCR as follows: 

a. Step 1: 94°C x 10 minutes 

b. Step 2: 94°C x 30 seconds (x33) 

c. Step 3: 53°C x 55 seconds 

d. Step 4: 72°C x 1 minute 

e. Step 5: 72°C x 2 minutes 

f. 4°C x ∞ 

9. After PCR complete, pour 3% agarose gel 

a. Mix 3 g agarose with 150 μL 1x TBE buffer in a graduated cylinder 
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b. Microwave for 2 minutes or until all agarose is dissolved and mixture is 

clear and boiling. 

c. Add 2.5 μL ethidium bromide to solution. 

d. Pour into gel box. 

e. Let cool completely (approximately 1 hour). 

10. Load DNA ladder, negative control, positive control, tail samples into discrete 

wells. 

11. Run gel at 150V for 40 minutes or until adequate band separation occurs.   

12. Image gel using ultraviolet transilluminator, 302 nm.   

13. Compare to representative image below to differentiate APCmin/- from APCmin/+ 

mice.  
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Appendix 2: Enterotoxic Bacteroides fragilis (serotype 086) Growth Protocol 

 
Preparing B. fragilis strain (086-ETBF) for inoculation 
 
1. The B. fragilis strains should be first brought up from the stock (usually stored in 

30% glycerol at -80ºC) by picking one loop of the stock using sterilized inoculation loop 

and streaking on pre-made BHI/Clindamycin agar plates . The inoculation agar plates 

then should be incubated at 37ºC in an anaerobic condition for 2 days. 

2. After the 2 days’ incubation, take the agar plate out and exam the growth and the 

purity of bacteria. Pick a couple of colonies with pipette tip, swirl into a culture tube with 

5ml of BHI/Clindamycin broth. Cap the tube loosely and incubate at same condition as 

the agar plate above for 24-48 hours. 

3. Prepare a new tube with 10ml of BHI/Clindamycin broth and sub-grow the 

bacteria   

for 24 hours from the previous broth culture at a ratio of 1:100 dilution (inoculation 100 µl 

of culture into 10ml of  BHI broth). 

4. After overnight incubation, the bacteria should grow well (the broth turn from 

clear to  

cloudy).  Spin down bacteria (10,000rpm for 2 minutes), and wash the bacteria pellet 

twice with 1x PBS.  Re-suspend into 1x PBS at 80% of the original volume, then adjust 

the OD600 = 0.6-0.8. 

 

BHI Agar plates w/Hemin, Vitamin K, Clindamycin 

 

For 1 liter: 

 

BHI: 37g/L   (BD Bacto™ BHI, REF 237200) 
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Yeast Extract: 5g/L (BD Bacto™, REF 212750) 

L- Cysteine: 0.5g/L (Sigma C7352) 

Agar: 15g/L (BD Bacto™, REF 214010) 

 

• Combine ingredients in autoclavable container, add water to final volume of 1L 

       Autoclave (sterilization time should be 30 minutes) 

• Let broth cool down to room temperature, about 45 minutes 

• Add: 

Hemin solution: 10ml/L (Sigma H5533) 

          Vitamin K:  0.2ml/L (Sigma V3501) 

          Clindamycin: 6µg/mL  

• Mix well by swirling the bottle.  Do not shake the bottle (it will generate lots of 

bubbles) 

• Pour plates; after BHI/Agar solution solidified, turn plates upside down, store 

plates in plastic bag at 4°C. 

 

Liquid BHI broth 

 

BHI: 37g/L    

Yeast Extract: 5g/L  

L- Cysteine: 0.5g/L  

 

• Combine ingredients in autoclavable container, add water to final volume of 1L 

       Autoclave 

• Let broth cool to room temperature  

• Add: 
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Hemin solution:  10ml/L      

Vitamin K:  0.2ml/L      

Clindamycin: 6µg/mL 

       Mix the solution 

• Filter the broth, make aliquots, store at 4°C covered in silver foil.  

 

Hemin solution 

 

For 100ml: 

 

 Weigh 50mg hemin in a weighing boat 

 Add 1 ml of 1N NaOH directly on the weighing boat, let it dissolve 

 Add some dH2O 

 Pour hemin solution into a 100ml bottle and add water to bring the volume to 100 

mL. 

 Autoclave 

 Store at 4°C covered in silver foil. 

 

Vitamin K1 solution 

 

 Dissolve 0.15 ml of Vitamin K1 in 30ml of 95% ethanol 

 Filter 

 Store Vitamin K1 stock solution at 4°C in brown bottle or wrapped with aluminum foil.  
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Appendix 3: Enterotoxic Bacteroides fragilis (serotype 086) Inoculation Protocol 

1. Ensure mice are approximately 5 weeks of age.  Younger mice will have a high 

mortality rate.  In older mice, bacteria will be less effective at eliciting 

tumorigenesis. 

2. 5 days prior to planned inoculation, place mice on water containing clindamycin 

(0.1 g/L) and streptomycin (5 g/L).  Mice will take this water ad libitum until the 

day of inoculation. 

3. On day of inoculation, place mice on standard water.  Failure to do so will result 

in bacterial eradication after inoculation. 

4. Using a 24 gauge feeding needle, administer 200 μL ETBF suspension by oral 

gavage.   

5. Inject each mouse with 500 μL lactated ringers or normal saline intraperitoneally 

using a 26-30 gauge needle.   

a. Mice suffer from dehydration as a result of the diarrhea that bacterial 

inoculation induces.  IP fluid administration beginning on the day of ETBF 

inoculation helps prevent severe dehydration and decreases mouse 

mortality. 

6. Monitor the mice daily for at least 7 days after bacterial inoculation. Administer 

500 μL lactated ringers or normal saline intraperitoneally as described in (5) 

throughout this time period. 

7. For evaluation of early disease, begin treatment 7-10 days after ETBF 

inoculation.  For evaluation of later stage disease, begin treatment 4 weeks after 

ETBF inoculation.   
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Appendix 4: Lymphocyte Isolation and Staining for Flow Cytometry Analysis 

Protocol 

Reagents 

 Pre-digestion Buffer  

o 500 mL 1x PBS 

o 1 mM DTT (MW = 154.2, 1 mM = 0.077g in 500 mL) 

o 10 mM EDTA (MW = 372.2, 10 mM = 1.861g in 500 mL) 

 Digestion Buffer (PREPARE FRESH PRIOR TO EACH USE) 

o 95 mL RPMI 1640 

o 5 mL FBS 

o 0.10 g Collagenase (Roche) 

 Cell culture medium 

o 500 mL RPMI 1640 

o 5% FBS 

o 100 U/mL penicillin (50000 U/500 mL) 

o 100 U/mL streptomycin (50000 U/500 mL) 

 2% FBS-PBS 

 90% Percoll (to be used in making 67%, 44% Percoll solutions) 

o 90 mL Percoll 

o 10 mL 10x PBS 

 67% Percoll 

o 74.4 mL 90% Percoll 

o 25.6 mL  cell culture medium 

 44% Percoll 

o 48.9 mL 90% Percoll 
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o 51.1 mL cell culture medium 

 FoxP3 Wash Buffer 

o 5 mL FoxP3 wash buffer concentrate 

o 45 mL ddH20 

 Sample Fixing Buffer 

o 250 microliters fixing buffer concentrate 

o 750 microliters fixing buffer diluent 

 EC/IC Stain Master Mix 

o 10 microliters FoxP3 wash buffer per sample 

o 0.325-1.00 microliters fluorophore-labeled antibody per sample 

Procedure 

1. Place Pre-digestion Buffer and Digestion Buffer in water bath at 37°C 

approximately 30 minutes prior to starting procedure. 

2. Prepare ice tray for working with colon. 

3. Sac mice, resect colon, mesenteric LN.  Take care to remove excess mesenteric 

tissue from colon specimen, MLN. 

4. Place MLN in 7-8 cc cell culture medium. 

5. Lavage colon with ice cold PBS via plastic-tipped feeding needle to evacuate 

stool. 

6. Hemisect colon longitudinally. 

7. Place in petri dish with ice-cold PBS, wash vigorously for 10 seconds. 

8. Morcellate very finely using scissors.  Pieces should be between 0.2-0.5 mm in 

maximal diameter.   

9. Place colon in 15 mL Pre-digestion Buffer. 

10. Incubate colon at 37°C for 30 minutes in hybridization oven under slow rotation. 
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For MLN Processing 

11. Decant MLN + medium into small petri dish.  Homogenize MLN between two 

frosted microscope slides.   

12. Use 5 mL pipette to transfer cell suspension back to 15 mL centrifuge tube.   

13. Spin 400xg, 4°C, 5 min 

14. Decant supernatant, resuspend with 10 mL media.   

15. Transfer suspension into 50 mL centrifuge tube with 40 micron filter (green).  

Keep at 4C. 

For Colon Processing and LPL Isolation 

16. Decant colon after incubation into labelled 50 mL centrifuge tube with 100 micron 

filter (yellow).  

17. Add 10 mL room temperature 1x PBS to original centrifuge tube, decant into 

tube with filter.   

18. Scrape tissue atop filter into original centrifuge tube, add 15 mL Digestion Buffer.  

Return to hybridization oven, incubate at 37°C for 30 minutes under slow 

rotation. 

a. Note: This is a time-critical step.  Not enough time will result in 

inadequate connective tissue digestion and poor LPL yield.   Too much 

time will result in decreased cell viability.   

19. After incubation, vortex each tube vigorously for 20 seconds. 

a. Note: Vortexing for the full amount of time is critical to ensure 

connective tissue dissociation and liberation of LPL. 

20. After vortexing, decant digested colon into labelled 50 mL centrifuge tube with 

100 micron filter (yellow). 
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21. Rub any remaining pieces of colon in the 100 micron filter gently to mechanically 

break up any residual connective tissue.  

22. Add 10 mL cell culture medium to original 50 mL tube (the one in which the colon 

was digested), swirl, and decant into tube with 100 micron filter.   This will collect 

any cells remaining in the tube/filter.   

23. Centrifuge LPL samples at 400xg, 4°C, 5 min. 

24. Discard supernatant and resuspend pellet in 10 mL cell culture medium.  Decant 

into 50 mL centrifuge tube with 40 micron filter (green). 

25. Centrifuge LPL samples at 400xg, 4°C, 5 min. 

26. Discard supernatant.  Resuspend pellet in 8 mL 44% Percoll (room 

temperature) and pipette cell suspension into 15 mL centrifuge tube.   

27. Place glass Pasteur pipette (1 mL) in each centrifuge tube.   

28. Slowly pipette 5 mL 67% Percoll (room temperature) into each Pasteur pipette 

to underlay the 67% Percoll under the cell suspension (cells + 44% Percoll).  Be 

careful not to disturb sample and density gradient. 

29. Centrifuge at 600xg, 22°C, 20 mins.  Make sure Accel = SLOW, Decel = OFF. 

30. After slow spin, aspirate off supernatant above cell layer using transfer pipette.  

Get within 2 mL of cell layer (buffy coat) to remove as much fat and debris as 

possible. 

31. Pipette cell layer (about 1-1.5 mL) into 10 mL cell culture in 15 mL centrifuge 

tube.   

Cell Stimulation 

32. Centrifuge at 400 x g, 4°C, 5 mins for LPL, MLN.  Discard supernatant and 

resuspend pellet in 2 mL cell culture medium for LPL, 10 mL cell culture medium 

for MLN. 
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33. Count cells for each sample.  Adjust cell concentration to 1-2 million per mL. 

34. Add BFA (5 microliters per mL), PMA (0.5 microliters per mL), ionomycin (0.7 

microliters per mL), incubate at 37°C for 4-5 hours. 

Staining for FACS Analysis 

35. After incubation, transfer samples to labeled flow tubes.  Spin at 400xg, 3 mins, 

4°C. 

36. Resuspend in 100 microliters cell culture medium.  Add 0.7 microliters blocker 

(CD16/32) to each tube, incubate at room temperature x 8 mins. 

37. Make extracellular stain master mix 

38. Add 10 microliters master mix per sample of EC stain master mix, incubate at 

room temperature x 12 minutes 

39. Centrifuge at 400 x g, 4°C, 3 min. 

40. Resuspend in 2 mL 2% FBS/PBS, centrifuge 

41. Resuspend in 300 microliters per sample fixing buffer, incubate at 4°C x 30 mins 

42. Add 700 microliters FoxP3 wash buffer, centrifuge 1500 RPM, 4°C, 3 min 

43. Make intracellular stain master mix 

44. Resuspend in 50 microliters FoxP3 wash buffer.   Add 10 microliters IC master 

mix per sample.  Incubate overnight at 4°C. 

45. Add 700 microliters FoxP3 wash buffer, centrifuge 1500 RPM, 4°C, 3 min 

46. Reconstitute in 400 microliters FoxP3 wash buffer, ready for FACS analysis. 
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Appendix 5: APCCKO (C57BL/6-Apctm1Tyj/J) Genotyping Protocol 

1. Make a master mix of 150 μL tail lysis buffer  (Viagen DirectPCR (Tail), cat# 102-

T) per tail + 7.5 μL proteinase K (20 mg/mL) per tail.   

2. Add 150 μL master mix to a 1.5 mL Eppendorf tube containing each tail snip.   

3. Digest in hybridization oven under constant rotation for 1 hour at 57°C, vigorously 

shaking tubes halfway through digestion. 

4. Inactivate proteinase K by placing tubes in 95°C water bath for 1 hour.   

5. Create PCR master mix as follows: 

a. Promega Go Taq Green 2x (6.25 μL per tail) 

b. Primer 1 (WT Fwd 01MR) (5 μM) (1 μL per tail) 

c. Primer 2 (WT Rev 01MR) (5 μM) (1 μL per tail) 

d. ddH2O (2.25 μL per tail) 

6. Add a total of 10.5 μL of master mix to each well.   

7. Add 2.5 μL of DNA to each well (one tail per well).   

8. Run PCR as follows: 

a. Step 1: 94°C x 2 minutes 

b. Step 2: 94°C x 25 seconds  

c. Step 3: 65°C x 20 seconds 

d. Step 4: 68°C x 15 seconds 

e. Repeat Steps 2-4 x 10 (11 cycles total) 

f. Step 5: 94°C x 20 seconds 

g. Step 6: 50°C x 20 seconds 

h. Repeat Steps 5 and 6 x 25 (26 cycles total) 

i. 4°C x ∞ 

9. After PCR complete, place samples in -20°C overnight. 
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10. The next morning, pour 3% agarose gel 

a. Mix 3 g agarose with 150 μL 1x TBE buffer in a graduated cylinder 

b. Microwave for 2 minutes or until all agarose is dissolved and mixture is 

clear and boiling. 

c. Add 2.5 μL ethidium bromide to solution. 

d. Pour into gel box. 

e. Let cool completely (approximately 1 hour). 

11. Load DNA ladder, negative control, positive control, tail samples into discrete 

wells. 

12. Run gel at 150V for 40 minutes or until adequate band separation occurs.   

13. Image gel using ultraviolet transilluminator, 302 nm.   

14. Compare to representative image below to differentiate negative from positive 

mice.  
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Appendix 6: LSL-K-ras G12D (B6.129S4-Krastm4Tyj/J) Genotyping Protocol 

1. Make a master mix of 150 μL tail lysis buffer  (Viagen DirectPCR (Tail), cat# 102-

T) per tail + 7.5 μL proteinase K (20 mg/mL) per tail.   

2. Add 150 μL master mix to a 1.5 mL Eppendorf tube containing each tail snip.   

3. Digest in hybridization oven under constant rotation for 1 hour at 57°C, vigorously 

shaking tubes halfway through digestion. 

4. Inactivate proteinase K by placing tubes in 95°C water bath for 1 hour.   

5. Create PCR master mix as follows: 

a. Promega Go Taq Green 2x (7.5 μL per tail) 

b. Primer 1 (WT Fwd) (5 μM) (1 μL per tail) 

c. Primer 2 (Mu Fwd) (5 μM) (1 μL per tail) 

d. Primer 3 (Comm) (5 μM) (1 μL per tail) 

e. ddH2O (2.5 μL per tail) 

6. Add a total of 13.0 μL of master mix to each well.   

7. Add 2.0 μL of DNA to each well (one tail per well).   

8. Run PCR as follows: 

a. Step 1: 94°C x 2 minutes 

b. Step 2: 94°C x 20 

c. Step 3: 65°C x 15 seconds 

d. Step 4: 68°C x 10 seconds 

e. Repeat Steps 2-4 x 9 (10 cycles total) 

f. Step 5: 94°C x 15 seconds 

g. Step 6: 60°C x 15 seconds 

h. Repeat Steps 5 and 6 x 27 (28 cycles total) 

i. 4°C x ∞ 
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9. After PCR complete, pour 3% agarose gel 

a. Mix 3 g agarose with 150 μL 1x TBE buffer in a graduated cylinder 

b. Microwave for 2 minutes or until all agarose is dissolved and mixture is 

clear and boiling. 

c. Add 2.5 μL ethidium bromide to solution. 

d. Pour into gel box. 

e. Let cool completely (approximately 1 hour). 

10. Load DNA ladder, negative control, positive control, tail samples into discrete 

wells. 

11. Run gel at 150V for 40 minutes or until adequate band separation occurs.   

12. Image gel using ultraviolet transilluminator, 302 nm.   

13. Compare to representative image below to differentiate negative from positive 

mice. 
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