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ABSTRACT 

SA-4-1BBL AS A PLATFORM TO DEVELOP ADJUVANT SYSTEMS FOR 

PROPHYLACTIC AND THERAPEUTIC VACCINES 

Gunes Dinc 

March 13, 2014 

Vaccines against infectious diseases are one of the most critical accomplishments 

in modern medicine. Despite significant progress in vaccinology, there is still a dire need 

for developing vaccines against various acute and chronic infections and cancer. In 

general, vaccines are categorized as prophylactic, given to healthy individuals to prevent 

disease, and therapeutic, administered to people who already have disease. As such, the 

nature, quality, and quantity of immune responses required for the efficacy of these two 

types vaccines are different. Prophylactic vaccines against infectious diseases primarily 

rely on the generation of neutralizing high titers of antibody for their efficacy. These 

vaccines are generally effective because they target a host with an unaltered and 

competent immune system. In marked contrast, the efficacy of therapeutic vaccines has 

been a major challenge since they are administered into a host with a compromised 

immune system. Therapeutic vaccines need not only to generate effective adaptive 

cellular, particularly CD8+ T cell, immune responses to chronic infection and cancer, but 

they also need to overcome various immune evasion mechanisms employed by infection 
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and progressing tumor. For both types of vaccines, the generation of a long-lasting 

adaptive immunity is the key.    

Historically, prophylactic vaccines against infections were made from live-

attenuated or inactivated forms of the microbes, but there were concerns about stability, 

side effects and safety of such vaccines. Advancements in molecular biology and DNA 

technologies led to the development of recombinant subunit vaccine with well-defined 

antigens. In particular, vaccines based on recombinant proteins present an attractive 

approach because of their ease of production, storage, distribution, and safety profiles. 

However, recombinant protein based subunit vaccines are poorly immunogenic and 

require adjuvants for efficacy. Most of the adjuvants that have been approved for clinical 

use, and those under development primarily target innate arm of the immune system for 

the generation of subsequent adaptive immunity. Key to the initiation of adaptive 

immune responses is the interactions between an APC and T cells and acquisition of 3 

distinct singles by T cells. Signal 1 is delivered by the interaction of TCR on T cells with 

an MHC/peptide complex on APC. This signal is then qualified by costimulatory receptor 

ligand interaction on the APC and T cells, providing signal 2. Signal 3 is provided by 

various cytokines elaborated by activated APCs and T cells and critical for the expansion 

of the immune response. The lack of costimulation during these interactions results in T 

cell anergy or apoptosis. Costimulation is not only important for the generation of 

adaptive immunity, but also is involved in the regulation of the various immune evasion 

mechanisms employed by cancer and chronic infections. Therefore, we hypothesized that 

costimulatory ligands may serve as the preferred adjuvants for generating effective and 

long-lasting adaptive immunity. We particularly focused on the natural costimulatory 
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ligands of tumor necrosis factor (TNF) family given their pleiotropic function on cells of 

innate, adaptive, and regulatory immunity. The TNF family represents a critical group of 

costimulatory molecules since their receptors (TNFR) are inducibly expressed on 

activated cells and may serve as preferred targets for antigen specific responses through 

induction of expansion, survival of T cells and establishment of long term memory. 

Among these family members, 4-1BB/4-1BBL interaction has received the most attention 

as signaling through 4-1BB provides essential signals for CD8+ T cell expansion, effector 

function, and survival. Importantly, this signaling also endows effector CD8+ T cells 

resistant to suppression by regulatory T cells that are the predominant mechanism of 

immune evasion used by cancer and chronic infections.  

Since 4-1BBL has costimulatory function as a cell surface membrane-bound 

protein and has no function in soluble form, our laboratory has previously generated a 

novel form of this molecule chimeric with streptavidin, SA-4-1BBL. This molecule was 

demonstrated to have robust costimulatory activity with a Th1 bias as a soluble protein.  

The main premise of this PhD thesis is to use SA-4-1BBL as an adjuvant platform to 

develop adjuvant systems for subunit vaccines with desired immune activities for 

targeted indications. We particularly focused on subunit vaccines against two indications; 

Y. pestis and breast cancer for the development of prophylactic and therapeutic vaccines, 

respectively. First, we tested if SA-4-1BBL can improve the immune efficacy of a lead 

subunit vaccine, rF1-V (a recombinant Y. pestis fusion protein), adjuvanted with alum 

with a Th2 bias against plague. Inasmuch as the lead candidate vaccine generates a Th2 

response, and Th1 cellular responses have been shown to be important in protection 

against Y. pestis infection, we hypothesize that SA-4-1BBL as a Th1 adjuvant will 
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improve the immune efficacy of the lead candidate vaccine. Single immunization with a 

vaccine formulation containing rF1-V as antigen and SA-4-1BBL as single adjuvant 

generated increased TNFα and IFN  signature cytokines for Th1 responses in both CD4+ 

and CD8+ T cells without detectable antibody titers against rF1-V. This vaccine 

formulation protected 20% of mice against bubonic plague. However, in a prime-boost 

setting, SA-4-1BBL and rF1-V generated long lasting high titers of antibodies and 

protected all mice from bubonic Y. pestis infection. Alum adjuvanted rF1-V vaccine 

generated high titers of antibodies against rF1-V without a significant Th1 response, and 

protected 80% of mice against bubonic plague. A combination of SA-4-1BBL and alum 

as an adjuvant system generated at balanced Th1 cellular and humoral responses that 

resulted in 100% protection in bubonic plague model.  

Next, we tested if SA-4-1BBL has efficacy as adjuvant component of a Her-2/neu 

protein-based subunit vaccine against breast cancer and if the therapeutic efficacy of this 

subunit vaccine can further be improved by using toll-like receptor 4 (TLR4) agonist 

monophosphoryl lipid A (MPL) as adjuvant system. We hypothesize that MPL will work 

in synergy with SA-4-1BBL by targeting antigen presenting cell for activation, antigen 

presentation to T cells, leading to T cell activation and up regulation of 4-1BB receptor.  

Activated T cells will then serve as a direct target of SA-4-1BBL for expansion, 

acquisition of effector function, and establishment of long-term memory. A prime-boost 

immunization with extracellular domain of the rat Her-2/neu protein and SA-4-1BBL 

resulted in eradication of established Her-2/neu expressing A2L2 tumors in 10% of 

BALB/c mice. In contrast, MPL monotherapy did not have a therapeutic effect. However, 

vaccination with combined adjuvants resulted in eradication of established tumors in 30% 
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of BALB/c mice, and showed better therapeutic efficacy over individual therapies.  

Furthermore, immunization with combined adjuvants resulted in eradication A2L2 

tumors in 20% of tolerogenic BALB/neuT mice. Depletion of Tregs prior to tumor 

challenge increased the efficacy of combined adjuvants to 40%. The therapeutic efficacy 

of combined adjuvant platform correlated with increased tumor specific killing response 

and pro-inflammatory cytokine IFN  production. The combination of SA-4-1BBL and 

MPL achieved therapeutic efficacy in the absence of detectable toxicity as assessed by 

various indicators of toxicity, including liver enzymes, total number of various 

lymphocyte populations in several lymphoid tissues, vaccine-induced organ damage, and 

histological analysis of the liver. 

Taken together, these data provide scientific rationale for using SA-4-1BBL as a 

novel adjuvant platform with other adjuvants having synergistic immune activities for the 

development of subunit vaccines against intracellular infections and cancer.  
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CHAPTER 1 

INTRODUCTION 

 

Successful vaccine development has significantly reduced the rate of highly 

infectious diseases and human mortality. As such, viral vaccinations against measles, 

rubella, and poliomyelitis dramatically reduced the incidence of these diseases. Further, 

vaccination for small-pox successfully eradicated small-pox, one of the most deadly 

diseases in the world, while poliomyelitis is in the verge of eradication [1]. These critical 

accomplishments in medicine demonstrate the importance of immune therapy. The 

tremendous impact of vaccination on humans was greatly demonstrated by vaccinologist 

Stanley Plotkin when he stated: “The impact of vaccination on human health of the 

world’s peoples is hard to exaggerate. With the exception of safe water, no other 

modality, not even antibiotics, has had such a major effect on mortality reduction and 

population growth” [2]. While the development and worldwide use of such vaccines have 

had a dramatic impact on human health, still vaccines are not available for many 

infectious diseases and cancer. 

The first human vaccine was developed against smallpox, and introduced by 

Edward Jenner in 1798 using related but weaker animal virus, cowpox [3]. However, the 

successful history of vaccination was started with Louis Pasteur when he first discovered 
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the attenuation of gram negative bacteria, Pasteurella multocida in 1881. Subsequently, 

chemically attenuated rabies vaccine was developed for humans by Louis Pasteur  and 

Emile Roux in 1885 [3], which was followed by the development of numerous attenuated 

and inactivated viral and bacterial vaccines. While these vaccine strategies were 

effective, possibly because inherently they contain natural adjuvants, such as particulated 

proteins, oligonucleotides, and lipids [4], there were concerns about stability during 

storage, occurrence of adverse effects and safety, especially in immunocompromised 

individuals [5]. Therefore, in the last several decades, as a result of advancement in 

molecular biology and genetic engineering, numerous strategies, such as DNA vaccines, 

viral or bacterial vector based vaccines, and recombinant protein/peptide vaccines have 

been employed to generate new human vaccines. 

Naturally, in the early phase of infection, microbial compounds activate the innate 

arm of immunity through recognition by pattern recognition receptors (PRRs) on antigen-

presenting cells (APCs). This leads to activation of APCs and induces the production of 

proinflammatory cytokines and upregulation of costimulatory molecules on the cell 

surface, which in turn primes the long-lasting adaptive immunity mediated by T and B 

lymphocytes [6]. This process provides T cells with three important signals, signals 1, 2, 

3 [7] for their activation, acquisition of effector function, and long-term immune 

memory.  Signal 1 is mediated by T-cell receptor (TCR), recognizing foreign peptides in 

the peptide binding groove of major histocompatibility complex (MHC) molecules on the 

surface of cells. Signal 2 is provided by various costimulatory molecules, while signal 3 

is mediated by cytokines, such as IL-1β, and IL-12 produced by activated APCs [8]. 

Failure to receive the second signal can lead to T cell anergy or apoptosis. As a result, an 
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ideal vaccine should mimic the natural infection to generate a potent immune response 

with the induction of long-lived adaptive immune response.  

Vaccine formulations should be chosen based on type of the treatment since 

prophylactic vaccines are given to healthy individuals to prevent infections and virally 

derived cancers. Generation of the long term immune memory, particularly humoral 

immunity, is the main goal. Otherwise, induction of an acute effector response may 

induce undesired side effects, such as inflammation, and may not provide protection for 

the future infections [9]. As a result, most of the traditional prophylactic vaccines against 

infections are targeting the generation of long-term antibody response. On the other hand, 

therapeutic vaccines are given to people with established infections and compromised 

immune system.  Therapeutic vaccines primarily rely on CD8+ T cell responses for the 

elimination of viruses, such as HIV and herpes virus, intracellular bacteria, and cancer. 

Furthermore, generation of a long term memory is also critical for therapeutic tumor 

vaccines to control recurrences. For both prophylactic and therapeutic vaccines, induction 

of adaptive immunity which is mediated by T and B lymphocytes, and activation of 

innate immunity to shape the long-lasting adaptive immune response are crucial. 

In addition to efficacy, some other criteria for new vaccine candidates for human 

use should be sufficed, such as; (1) safety, (2) stability, and (3) low cost for widespread 

use, especially for third world or developing countries. Finally, it is desirable that vaccine 

should not require frequent administrations [10]. Therefore, recombinant protein-based 

subunit vaccines containing well characterized single or a combination of proteins, fusion 

proteins, or peptides serving as antigens have been attractive strategies in the field of 

vaccinology in the last few decades since they can be administered safely and produced 
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easily in a cost effective manner. However, protein-based subunit vaccines are poorly 

immunogenic and need to be administered with immune stimulant components known as 

adjuvants to generate an adequate and efficient appropriate immune response with long-

lived immune memory against target antigens [11, 12].  

Adjuvants: 

The first description of adjuvants (Latin word adjuvare, means “to help or aid”) 

was made by Ramon as “substances used in combination with a specific antigen that 

produced a more robust immune response than the antigen alone” [13]. Adjuvants are a 

critical determinant of the success or failure of vaccines and the use of adjuvants as 

components of protein-based vaccine formulations can also reduce the amount of antigen 

needed for the generation of effective immunity and the number of vaccine administered.  

Because of the undefined nature of these adjuvants and their molecular complexity, it has 

been a challenge to fully understand mechanisms underlying their immune efficacy[5]. 

As a result, adjuvants have been described as “the immunologists dirty little secret” by 

Charlie Janeway.  

Adjuvants are necessary to boost the immune response to naturally weak antigens.  

In 1920, the first adjuvants were developed and variety of substances, such as chemicals 

and microbial components, have been used to boost the immune system [14]. Adjuvant 

selection is made based on some parameters, including the physical and chemical nature 

of the antigen, type of desired immune responses, population age, and route of 

administration [4]. Historically, the importance of the humoral immune response for 

vaccine effectiveness has put the emphasis on the development of adjuvants, which are 
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capable of enhancing antibody responses. As a result, many adjuvants are effective in 

increasing antibody titers, but do not elicit significant Th1 or cytotoxic T lymphocyte 

(CTL) responses [15]. However, for some diseases, such as malaria and tuberculosis, it is 

difficult to generate a broad antibody response to clear primary infection, and both 

humoral and cellular responses are required for protection from some viruses (e.g. HIV-

1) and intracellular bacteria (e.g. Y. pestis). Development of therapeutic cancer vaccines 

face an even greater challenge since their target often consists of tumor associated self-

antigens (TAA) which are poorly immunogenic and expressed heterogeneously by tumor 

cells that undergo mutation. Although tolerance to TAAs is not absolute since Her-2/neu 

TAA generates antibody and CTL responses in some breast and ovarian cancer patients 

[16, 17], these responses are not potent enough to eliminate the tumor cells as tumors 

continue to grow and metastasize. Therefore, induction of potent cellular immunity is 

critical for the generation of therapeutic immune responses for chronic infections and 

cancer, and more importantly for the induction of long-term memory response to control 

tumor recurrences [18]. 

Importance and role of vaccine adjuvants: 

T cell responses are critical for protection from cancer and infectious diseases, 

elimination of infected and tumor cells, and the induction of long lasting memory 

response to control recurrences. Moreover, induction of T helper (Th) responses is also 

important to improve humoral and cellular response durability and quality. Recombinant 

protein antigens generate modest antibody responses while they induce little to no T cell 

responses when administered in the absence of adjuvants. As a result, adjuvants which 
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are capable of inducing protective levels of humoral, CTL and Th cellular responses have 

been used in recombinant protein based vaccines.  

Adjuvants can induce high antibody responses to vaccine antigens by increasing 

not only overall antibody titers but also functional antibodies [19]. In addition, adjuvants 

can also broaden antibody response, which is critical for the elimination of many 

pathogens that are capable of mutating their antigens (antigenic drift), such as malaria, 

influenza virus, HIV, and HPV. For example, it has been reported that in influenza and 

HPV vaccines, adjuvants broaden the antibody response to target antigens [20, 21]. 

Induction of strong CTL responses has also been observed against target antigens using 

adjuvants [22]. As such, immunization with immunostimulating complexes (ISCOMs) 

and HIV-1gp160 envelope glycoprotein or influenza haemagglutinin generates long 

lasting antigen specific CD8+ T cell reponses [23]. Further, QS-21 (saponin based 

adjuvant) has also been shown to induce CTL responses to subunit viral antigens such as 

HIV-1 gp120, and human cytomegalovirus gB, and induced neutralization of the 

respiratory syncytial virus (RSV) by heightening Th1 driven IgG2a antibody titers to virus 

fusion (F) protein [24]. 

Recombinant protein based sub-unit vaccines may require multiple 

administrations to elicit sufficient humoral immune response. Recruitment of adjuvants 

may reduce the number of immunizations or the amount of antigen used in the vaccine 

formulation. As such, it has been demonstrated that immunization with glucopyranosyl 

lipid adjuvant–stable emulsion (GLA-SE) and recombinant influenza H5 protein reduced 

the amount of antigen required for the generation of proper antibody response after one 

immunization more than 30-fold compared to antigen alone [25].   
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Currently FDA approved or adjuvants under development 

With the development of recombinant vaccines (particularly recombinant protein 

based vaccines) that are less immunogenic, the investigation and design of new adjuvants 

have been the object of industry and academic in the last few decades.  However, 

development of new adjuvants has been challenging due to their molecular complexity 

and lack of significant insight  in their mechanisms of action [5]. The idea of using 

inactivated or live attenuated microbes in vaccine formulations is primarily based on their 

ability to activate innate immunity through activation of APCs, and presentation of 

exogenous antigens to T cells. As a result, several adjuvant candidates have been under 

development, such as oil emulsions, cytokines, or saponin-based adjuvants, and mineral 

salts such as aluminum hydroxide (alum) and less toxic version of bacterial 

lipopolysaccharide (LPS), monophosphoryl lipid A (MPL), have already been approved 

by FDA. The adjuvants target primarily innate immunity through activation of APCs and 

uptake and presentation of antigens by these cells to T cells [26]. Finally, activation of 

innate immunity leads to the prime of adaptive immune responses where cellular arm 

plays an important role for clearance of infected and transformed cancer cells, while 

humoral arm clears pathogens through antibodies. 

Adjuvants can be divided into three major groups according to their mechanisms 

of action, such as delivery vehicles, immunomodulators, and both delivery and 

immunomodulatory components [4]. Delivery vehicles do not contain immune 

stimulatory molecules, and instead they induce the desired immune response through (1) 

sustained release of antigen by forming an antigen depot and (2) increasing antigen 

uptake and presentation by APCs to increase the specific immune response to the antigen. 
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Vehicles include mineral salts, emulsions, liposomes or virosomes. On the other hand, 

immunomodulatories directly act on the immune system by (1) up-regulation of 

cytokines and chemokines, (2) recruitment of specific cell types to the inoculation site, 

(3) activation and maturation of APCs by induction of the costimulatory molecule 

expression and signaling, and (4) activation of inflammasomes [13, 27]. 

Immunomodulatories include saponins, cytokines, TLR ligands, and costimulatory 

molecules. Vehicles which also deliver immunostimulatory components are in the third 

group such as mineral salts, emulsions, and immunostimulating complexes (ISCOM) 

[28]. 

Delivery vehicles 

Aluminum based adjuvants: 

In human vaccines, the most widely used adjuvants are aluminum based adjuvants 

and FDA approved Alhydrogel was the first and only adjuvant until MPL approval in the 

context of the prophylactic HPV vaccine in 2009. Aluminum hydroxide or phosphate 

adjuvants are currently being used in Diphtheria, Tetanus, HBV and HPV vaccines. Alum 

acts by inducing the formation of an antigen depot at the injection site which has been 

shown to be critical in alum adjuvanticity [13] and slowly releases antigen to stimulate 

the immune system continuously, and enhance the antigen uptake [29, 30].  

Alum is a potent adjuvant for the generation of antibody responses to target 

antigens and primarily induces Th2 responses (IgG1, IgE and the production of IL-4), 

rather than Th1 responses in many of the traditional childhood vaccines against bacterial 

or viral surface molecules [29-31]. Since the induction of cellular immunity is critical for 

protection from cancer and infection, new vaccine approaches utilize another adjuvant, 
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MPL, along with alum  (e.g., AS04) to induce the generation of cellular immunity, 

particularly Th1, for optimal effectiveness [32]. Although alum based adjuvants have 

been shown to be efficacious, they are associated with severe inflammatory site reactions 

due to recruitment of blood cells, formation of granulomas, and increased allergenicity 

due to high IgE titers. Moreover, aluminum based adjuvants cannot be frozen and 

lyophilised [33, 34], limiting their widespread use.  

Oil in water emulsions: 

Particulate adjuvants, such as oil-in-water emulsions, are naturally utilized for 

uptake by APCs to induce potent immune responses. MF59 is the first oil-in-water 

adjuvant licensed for use in Europe for seasonal and pandemic influenza (H1N1 and 

H5N1) vaccines. It consists of the oil squalene encircled by non-ionic surfactants. Fluad, 

a subunit influenza vaccine containing MF59 licensed in Europe by Novartis [35], has 

been distributed as more than 27 million doses since 1997 [36] and has shown to provide 

strong memory and sustained antibody responses compared to the non-adjuvanted 

vaccine. Aflunov is another influenza vaccine containing MF59 licensed by Novartis and 

marketed in 2010 to protect against H5N1 flu. MF59 has also been evaluated as an 

adjuvant in vaccines for other viral infections, such as HIV, hepatitis C, and 

cytomegalovirus.  

MF59 generates its immune stimulatory activity by the induction of an 

inflammatory environment at the inoculation site characterized by enhanced cytokine and 

chemokine responses, which in turn induce the trafficking of CD11b+ and MHC II+ cells 

to the muscle [37]. Moreover, it is demonstrated that it targets macrophages and DCs at 

the inoculation site and draining lymph nodes, enhancing antigen uptake by forming 
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antigen depot [38], increasing antibody production against target antigen, and favoring a 

Th2 response [39]. Although, oil in water emulsions were associated with generation of 

autoantibodies in non-autoimmune mice [40], MF59 adjuvanted influenza vaccines did 

not induce autoantibodies.  However, emulsion adjuvants may induce side effects, such 

as inflammatory reactions, granulomas and ulceration at the inoculation site. 

Immunomodulators 

Saponin based adjuvants: 

Saponins are natural glycosides of steroid or triterpene found in plants, lower 

marine animals and some bacteria [41]. They have the ability to modulate immune 

responses by different action mechanisms, such as antitumor, antiviral, antifungal, and 

anti-inflammatory [42]. They can induce not only antibody responses, but also cellular 

immune responses against target antigen with the advantage of the requirement of low 

doses needed for adjuvanticity. It has been demonstrated that saponins induce production 

of Th1 cytokines (IL-2 and IFN-γ) and antibodies of the IgG2a isotype, and they may 

interact with APCs to modulate immune responses [22, 43]. Most likely, saponins 

perform these stimulatory activities through the interaction with APCs. Although it is not 

known yet, the adjuvant effect of saponins might be related to their ability to induce pore 

formation. It is also likely that pore formation induces antigen uptake and presentation 

and subsequent activation of CTL responses [44]. 

The lead candidate saponin based adjuvants are Quil A and its derivative QS-21. 

QS-21 has been tested as an adjuvant initially for cancer vaccines (melanoma, prostate, 

and breast) and subsequently for infectious diseases (malaria, herpes, HIV-1, influenza, 

or hepatitis B) in clinical trials and showed promise [24]. Further, QS-21 adjuvant is also 
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being tested in ACC-001 vaccine for mild to moderate Alzheimer’s disease in a clinical 

trial conducted by Pfizer since 2009 and in sialyl Lewis-keyhole limpet hemocyanin 

conjugate vaccine for metastatic breast cancer by NCI since 2007. The critical advantage 

of the use of Quil A and QS-21 in vaccine formulations is that they stimulate both Th1 

and CTL responses against vaccine antigens [23, 45, 46]. However, a balance of efficacy 

versus side effects is the key for these adjuvants since Quil A and QS-21 are highly toxic 

and have hemolytic activity due to their structure and cause hemolysis of the red blood 

cells which restricts their use in human vaccines [47].  

Cytokines: 

Cytokines are naturally derived substances that play an important role in 

controlling the immune system. They can improve both humoral and cellular immune 

responses by inducing antibody production, proliferation and differentiation of B and T 

cells, enhancing cytokine production and improving cytotoxicity activity of T cells [48]. 

IL-2 has been extensively studied as an adjuvant for vaccines due to its pleiotropic effects 

and critical role in T-cell responses. IL-2 is the first cytokine administered in clinical 

trials in cancer vaccines. However, its action mechanism depends on the form of 

administration. Continuous IL-2 administration increase the proliferation of antigen 

specific T cells and IL-2 in oil-in-water emulsion induces antibody response [49]. 

Although IL-2 has been used as an adjuvant in clinical trials for melanoma [50-54], it has 

been reported by NCI that melanoma vaccines given with IL-2 do not generate better 

anti-tumor responses than IL-2 alone [55]. However, dosing and timing of IL-2 

administration still need to be well determined. Even though high doses or multiple 

administrations of IL-2 induce better clinical outcome, at high doses, the use of IL-2 is 
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associated with toxicity [56]. Furthermore, while IL-2 enhances cytotoxic activity of NK 

cells and CTLs, it can also induce the expansion of CD4⁺CD25⁺Foxp3⁺ regulatory T cells 

(Tregs), which in turn contribute to tumor immune suppressive activity [57].  

There are other cytokines, such as IL-7 and IL-21, have been tested in clinical 

trials against cancer. IL-7 does not stimulate expansion of Tregs or induce toxicity like 

IL-2, but it did not generate an anti-tumor effect either [58-60]. On the other hand, IL-21 

showed anti-tumor activity [61], but it also has some limitations due to the expression of 

its receptor on multiple tumor cells [62, 63]. IL-15 is another cytokine under 

development by NCI to be tested in clinical trials [56]. 

Toll like Receptor (TLR) agonists: 

Understanding the recognition of microbial structures by innate immunity and its 

important role in host defense against infection has showed rapid progress. Due to the 

critical role of TLR signaling in innate immunity and bridging innate immunity with 

adaptive immune responses, several well characterized and defined TLR ligands have 

been developed as adjuvants in human vaccines. TLRs are a family of pattern recognition 

receptors (PRR) which recognize the pathogen associated molecular patterns (PAMP), 

such as proteins, lipids, lipoproteins, and nucleic acids of microbes. TLR ligation induces 

the activation of APCs, and the production and release of proinflammatory cytokines, 

such as TNF, IL-1, IL-6, which in turn prime and activate antigen specific T cells.  

Among all the members in this family, TLR4 agonists are the most developed 

adjuvants. TLR4 responds to LPS, an outer membrane component of Gram-negative 

bacteria. MPL, a derivative of LPS from Salmonella Minnesota, is the second adjuvant to 

be approved by FDA in the USA. It is currently used as one of the components of the 
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adjuvant system in the Cervarix (HPV) and Fendrix (HBV) vaccines from GSK along 

with L1 recombinant protein and hepatitis B surface antigen (HBsAg).  

The TLR7/8 pathway plays an important role against viral infections which 

recognizes single stranded RNAs. TLR7 stimulation induces production of IFNα, while 

TLR8 stimulation leads to production of proinflammatory cytokines through NF-kB 

activation. TLR7 agonist imiquimod has been approved by FDA for topical 

administrations for the treatment of basal cell carcinoma (BCC) and actinic keratosis 

(AK) [27]. However, TLR7/8 agonist, resiquimod, has shown inconsistent results in 

clinical trials for genital herpes simplex virus (HSV)-2 infection [64].  

TLR9 also plays an important role for recognition of pathogens and signaling 

through TLR9 leads to secretion of pro-inflammatory cytokines. TLR9 agonist CpG 

oligodeoxynucleotide (ODN) 1018 is the adjuvant in the Heplisav (Dynavax) vaccine 

candidate for HBV, which has completed a phase III clinical trial. It has been shown that 

Heplisav induces rapid and increased antibody production and sustains the antibody 

response in healthy adults [65]. It was recently announced that another TLR9 agonist 

adjuvant called IC31 is currently undergoing Phase I/IIa clinical trial for a candidate 

tuberculosis vaccine. In preclinical studies, it has been demonstrated that IC31 promotes 

highly efficient Th1 responses through MyD88 signaling pathway [66].  

Nevertheless, inappropriate TLR signaling may result in acute and chronic 

inflammation, and systemic autoimmune diseases, even though it is giving promising 

results in the clinic. Defects in the negative regulation of TLR signaling lead to 

development of such diseases. Furthermore, endogenous compounds released by dying 
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cells can stimulate TLR signaling, and contribute to inflammation and autoimmune 

diseases [67].  

Costimulatory molecules: 

For the generation of protective immune responses through vaccination, it is 

critical to activate antigen specific T cells. T cell activation is regulated by successive 

signaling events from first signal, TCR/MHC interaction; second signal, costimulatory 

molecules, and third signal, proinflammatory cytokines [8]. Failure to receive second 

signal can lead to T cell anergy or apoptosis. In early phase of natural infections, 

microbial compounds are recognized by PRRs on the APCs, which lead to generation of 

second and third signals for T cell activation [7]. However, these signals can also be 

provided by vaccines with the recruitment of adjuvants such as costimulatory molecules 

[68]. Costimulatory receptors could be divided into two super families; immunoglobulin 

family (IgSF) and tumor necrosis factor receptor family (TNFRSF). It has been proposed 

that for initial T cell activation signaling from IgSF is important, while TNFRSF 

costimulation is critical for T cell effector function, survival and memory [69, 70].  

Use of costimulatory molecules targeting activation and effector function of T cell 

responses in vaccines is divided into two approaches, those enhance the antigen specific 

immune response or shape it for desired immunity, and others to block or remove 

negative regulatory mechanisms to generate potent immune responses [71]. In the case of 

poorly immunogenic tumors, such as B16 melanoma, both approaches have been utilized 

to generate better anti-tumor responses. For example, co-administration of agonistic 

antibody for 4-1BB receptor in TNFRF and blocking antibody for CTLA-4 in IgF along 

with B16-Flt3-ligand vaccine (FVAX), promoted B16 melanoma tumor rejection in a 
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synergistic manner [72]. Moreover, combined treatment with anti-DR5, anti-4-1BB, and 

anti-CD40 mAbs successfully eradicated established 4T1 mammary tumors [73]. 

Immunoglobulin superfamily: 

In IgSF, perhaps the most well characterized and described members are CD28 

and B7 families. The CD28 glycoprotein is constitutively expressed on naive CD4+ and 

CD8+ T cells, while its ligands B7-1 and B7-2 are inducibly expressed on the surface of 

APCs upon activation. CD28 ligation with B7-1 and B7-2 molecules provides essential 

signal for T cell activation, expansion and differentiation. Therefore, tumor cells 

transfected with B7 family members have been used in cancer immunotherapy to 

promote them to act as APCs and induce T cell activation [74, 75]. Moreover, CD28/B7 

interaction prevents apoptosis of T cells and sustains their proliferation, which was 

determined by the upregulation of bcl-xL gene expression [76].  

The inhibitory receptor cytotoxic T lymphocyte antigen 4 (CTLA-4) expression is 

induced following T cell activation and subsequent to CTLA-4 upregulation, CD28 

expression is downregulated. While the B7/CD28 interaction positively stimulates T cell 

responses, B7/CTLA-4 ligation negatively regulates these responses. To overcome the 

inhibitory mechanism of CTLA-4 for T cell responses which is critical for elimination of 

cancer cells and pathogen infected cells, antibodies targeting CTLA-4 have been 

developed. As such, Ipilimumab (Yervoy), a humanized monoclonal antibody (mAb), 

was developed by Bristol-Myers Squibb and approved by FDA in 2011 for the treatment 

of melanoma. A fusion protein consisting Fc region of IgG1 and extracellular domain of 

CTLA-4 targeting B7 molecules on APCs, called Abatacept (Orencia), was also 

developed by Bristol-Myers Squibb and licensed in the US for the treatment of 
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rheumatoid arthritis [77]. Furthermore, another fusion protein called Belatacept, which 

differs from Abatacept with only two aminoacids, has also been approved by the FDA in 

2011 to provide engraftment in transplantation [78]. The mechanism of these fusion 

proteins is to prevent T cell activation by binding to B7 molecules and blocking CD28 

mediated co-stimulatory signaling to T cells.  

Employment of the molecules targeting IgSF members has the common goal of 

targeting APCs, as a subsequent event they either induce or prevent T cell activation. 

Moreover, cytokines such as IL-2 and IFN-  have also been utilized to target T cells by 

inducing their proliferation and responsiveness to the signals generated by APCs in 

response to antigen, but these treatments showed limited efficacy [79, 80]. Therefore, an 

alternative approach to directly target activated T cells is the use of TNFRSF members, 

due to their expression on only activated T cells and their important roles in the 

activation, acquisition of effector function, and establishment of long-term T cell 

memory.    

TNF receptor superfamily: 

Development of vaccines which are capable of inducing T cell responses, 

especially CTLs, is critical for infectious diseases and cancer. Regulation of Treg 

suppressive function is another important aim for immunotherapy. While in the case of 

autoimmune or inflammatory diseases, enhancing Treg numbers or activity is beneficial; 

in cancer or infectious diseases decreasing Treg numbers and suppressing their function 

is essential for the therapy [70]. In this context, TNFRSF play important roles in 

regulating both adaptive and regulatory immunity. Moreover, these receptors are 

inducibly expressed on activated T cells upon antigen stimulation, unlike CD28, which 
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gives another advantage to serve as adjuvant candidates for vaccines to generate antigen-

specific immune responses [70]. Importantly, the expression of TNF ligands on the APCs 

are also induced after the receiving innate immune signals, such as TLRs, and adaptive 

signals, such as IFN- .  

Targeting TNFR/TNFL interaction could be divided into two strategies: (1) 

Blocking these interactions to suppress the pathogenic immune responses in autoimmune 

and inflammatory diseases and (2) augmenting the signaling generated by TNFR ligation 

to stimulate the protective immune responses in cancer. 

Different types of therapies, such as gene therapy, recombinant molecules, 

antibodies and Fc fusion proteins containing the TNFRSF ectodomains, targeting TNF 

ligands or TNFRSF members have been tested in the clinic and approved for human use. 

Infliximab (Remicade; Centocor Ortho Biotech), a chimeric TNF-specific antagonistic 

antibody, was the first drug approved in 1998 to treat RA, Crohn’s disease, and ulcerative 

colitis [81]. Adalimumab was the first fully human TNF-specific antagonistic antibody 

approved in 2002 to treat RA, JIA, psoriatic arthritis, psoriasis, and Crohn’s disease [81]. 

In the case of cancer, agonistic therapies and depleting antibodies have been evaluated in 

clinical trials. Tasonermin, a recombinant TNF molecule, and Brentuximab, depleting 

antibody specific for CD30 molecule have been approved for the treatment of sarcoma 

and Hodgkin’s lymphoma, respectively [81]. Other agonistic antibodies targeting the 

members of TNFRSF, such as CD40, OX40, or 4-1BB, have been tested in clinical trials 

for cancer, but the main concern with the use of such antibodies is the potential of 

deleterious side-effects [82, 83]. 

Adjuvant systems: 
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The combination of immunostimulatory components in different adjuvant systems 

have been developed to promote appropriate protective and therapeutic immune 

responses generated by vaccination. When alum adjuvanted Gardasil vaccine and alum + 

MPL adjuvanted Cervarix vaccine were compared, it has been reported that Cervarix 

treatment resulted in significant increase in the neutralizing antibody titers for HPV-16 

compared to Gardasil [84], which displays the contribution of MPL and importance of 

combining adjuvants with different action mechanisms. 

MPL + alum is present in AS04, and MPL + QS-21 is present in AS01 (liposome 

based) and AS02 (emulsion based) adjuvant systems [85]. AS04 adjuvant system is a part 

of hepatitis B vaccine called Fendrix (GSK) and HPV vaccine: Cervarix (GSK). AS04 

adjuvant system directly activates the innate immunity by activation of NF-kB and 

induction of cytokine production, which in turn, induces the activation of antigen specific 

adaptive immune response [6]. Although synergistic effect of alum and MPL has not 

been noted, it has been suggested that alum prolongs the cytokine response of AS04 at 

the injection site [6].  

AS01 and AS02 adjuvanted candidate malaria vaccines consist of two proteins, 

RTS (a sporozoite surface antigen of P. falciparum) and S (surface antigen of Hepatitis B 

virus). Although there are no AS01 and AS02 adjuvanted vaccines licensed yet, they 

have been studied in clinical trials. GSK’s RTS, S vaccine candidate for malaria 

containing AS-01 adjuvant system has reduced the clinical malaria cases up to 46% in 

children and 27% in infants in a phase III clinical trial.  

AS03 is another adjuvant system composed of squalene, α-tocopherol, and 

polysorbate 80 in an oil-in-water emulsion similar to MF59, has been licensed for H1N1 
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influenza vaccine, Pandemrix (GSK), in Europe for 2009 H1N1 pandemic flu [84]. 

Recently, AS03 adjuvanted H5N1 influenza vaccine Q-pan (GSK) has been approved by 

FDA. On the other hand, Pandemrix was discontinued in Europe due to an increased risk 

of narcolepsy found following vaccination. It has been shown that AS03 activates the 

innate immunity and enhances antigen uptake and presentation by APCs in draining 

lymph nodes, which in turn, activates adaptive immune responses, principally antibody 

response and immune memory [86]. 

Generation of potent T cell responses against tumor and infection is critical for 

the elimination of transformed and infected cells. In the case of infection where the 

generation of neutralizing antibodies is not potent enough to block the infection and 

cancer where TAAs induce host tolerance, cellular immunity comprising Th1 and CTL 

responses is important. It is possible that the success of recombinant protein based 

vaccines, such as HBV and HPV, was because of the use of adjuvants (AS04 adjuvant 

system) with a distinct mechanism of action and targeting different immune cells for 

activation [10, 87]. Therefore for most of the infectious diseases and cancer vaccines, 

development of adjuvant systems which can induce both T cell, especially CD8+ T cells, 

and antibody responses is an important goal. In the case of enhancement of T cell 

responses, cytokines, TLR ligands and costimulatory molecules have been used as 

adjuvants in vaccine formulations. 

Costimulatory SA-4-1BBL as an adjuvant platform for development of vaccines: 

Although development of adjuvants targeting T cell stimulation is an important 

goal, in the case of therapeutic cancer vaccines, regulation of immune suppressive 

mechanisms is another important aim for immunotherapy since tumor cells employ these 
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mechanisms to evade immune attack. Not only tumor cells, but also viruses, such as 

hepatitis B virus, herpes, influenza, and retroviruses, exploit Tregs to evade immune 

responses. Therefore, strategies targeting the trafficking of Tregs to the site of 

immunization by small molecule antagonists have been explored [88, 89]. 

Among all the members in TNFSR family, targeting 4-1BB has been having 

growing interest due to its pleiotropic effects on cells of innate, adaptive, and regulatory 

immunity [90-94]. Its expression on the activated CD4+ T, CD8+ T, NK and NK T cells 

provides another advantage to target activated cells of innate and adaptive immunity, as 

such antigen specific CTL have been selected based on 4-1-BB expression [95]. 4-1BB 

signaling has been shown to be critical for T cell expansion, survival, acquisition of 

effector function and establishment of long-term memory [96, 97]. Additionally, we have 

previously reported that 4-1BB is constitutively expressed on a subset of DCs which may 

heighten antigen uptake and cross-presentation to T cells [98]. Ligation of 4-1BB has 

been shown to inhibit Treg suppressive activity in vivo and in vitro [93] through a direct 

effect by blocking Treg suppressive function or an indirect effect by rendering effector T 

cells resistant to Treg suppression [94].  

In clinical studies, agonistic human anti-4-1BB antibodies have been evaluated 

either alone or in the combination with rituximab (anti-CD20 antibody) to treat 

melanoma (BMS-663513; Phase I/II) and non-Hodgkin’s lymphoma (PF-05082566; 

Phase I), respectively. BMS-663513 mAb is also being used to treat a number of different 

solid tumors including renal cell carcinoma, ovarian carcinoma, and non-small cell lung 

carcinoma either as a single agent or in combination with chemotherapy, radiotherapy, or 

both [99]. However, liver toxicity was reported in the melanoma patients, which might be 
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because of nonspecific or excessive NK cell activity in liver, or accumulation of CTLs 

into the liver [81]. Toxicity issues may impede future studies and lead to termination of 

studies using agonistic antibodies. 

To overcome toxicity problems alternative strategies should be developed to 

target 4-1BB. For this purpose, we have focused to generate a novel form of 4-1BB 

ligand which is functional in soluble form and without having toxicity. Natural 4-1BBL is 

a cell membrane-bound protein and has no activity in soluble form [100]. Therefore, we 

generated a novel form of this ligand composed of the extracellular domain of murine 4-

1BBL fused to the C-terminus of a modified core-streptavidin (SA-4-1BBL) [101]. The 

SA domain allows the formation of tetramers and higher structures that have the ability to 

crosslink the 4-1BB receptor on immune cells for effective signaling [98, 102]. More 

importantly, this chimeric molecule has better costimulatory activity than an agonistic 

anti-4-1BB antibody without antibody associated severe toxicity [103]. The activity of 

this natural SA-4-1BBL has been established in our lab in various preclinical tumor 

models, and demonstrated that SA-4-1BBL adjuvanted recombinant protein or peptide-

based vaccines generate robust Th1 and CTL responses with therapeutic efficacy [98, 

102, 104-107]. More importantly, we have reported that SA-4-1BBL inhibits the 

formation of inducible Tregs and confers CD4+ and CD8+ T effector cells refractory to 

Treg suppressive activity [106]. Based on our previous observations, we sought to 

investigate if SA-4-1BBL can be utilized as a novel adjuvant for plague vaccine in an 

infection model, a tolerant tumor model with a self TAA, and if the efficacy of SA-4-

1BBL can be further improved by addition of other immune modulators to the vaccine 

formulation. Therefore, the first major goal of this Ph.D. dissertation was to test the SA-
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4-1BBL efficacy as monotherapy and in combination with alum for bubonic plague 

infection and determine the mechanistic insights of the vaccine efficacy. The second goal 

was to determine the therapeutic efficacy of SA-4-1BBL and MPL adjuvanted Her-2/neu 

based protein vaccine in A2L2 breast cancer model and to evaluate the mechanisms 

behind the efficacy.  
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CHAPTER 2 

SA-4-1BBL AS A NOVEL ADJUVANT FOR PLAGUE VACCINE 

 
Introduction 

 
Yersinia pestis is a Gram-negative facultative intracellular bacterium which 

causes bubonic and pneumonic plague and has a potential to be used as a bioweapon 

[108-110]. Currently there is no FDA approved vaccine available to protect the public 

from a potential epidemic or bioterrorism event. While Y. pestis infection can be treated 

with antibiotics, the effective treatment window for primary pneumonic infection is very 

short (less than 24 hours after exposure) [111]. Furthermore, naturally acquired resistance 

to antibiotics has been reported [112], and weaponized Y. pestis could likely be modified 

to be resistant to antibiotic treatment.  Therefore, development of novel vaccines with 

protective efficacy against plague is imperative. 

Historically, plague vaccines were made from live-attenuated or inactivated forms 

of the microbe. While these vaccines were effective against plague, there were concerns 

about stability during storage, occurrence of adverse effects and safety, especially in 

immunocompromised individuals [113]. Advancement in recombinant DNA technology 

allowed for the development of subunit vaccines containing well-characterized proteins 

serving as antigens. Such subunit vaccines overcome various issues related to the use of 

complete pathogens as vaccine. However, protein-based subunit vaccines are poorly 

immunogenic and need to be administered with immune-stimulant components known as 
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adjuvants [11, 12]. Although various Y. pestis antigens have been assessed for the 

development of subunit vaccines, the 17 kDa F1 extracellular capsule protein and the 37 

kDa LcrV virulent factor are currently considered the most promising antigens [114]. 

Immunization with a mixture of F1 and LcrV antigens provided protection against plague 

[113, 115, 116]. The current lead candidate subunit vaccine for plague is based on a 

recombinant fusion protein between F1 and LcrV called rF1-V. This vaccine is 

adjuvanted with alum and its protective efficacy against plague has been shown in rodent, 

guinea-pig, and non-human primate (NHP) models [117, 118], although in cynomolgus 

macaques it was protective 80-100 %, studies in African green monkeys were not 

satisfactory enough [119], and it is currently under clinical evaluation by the US 

Department of Defense to protect military personnel to aerosolized Y. pestis [120]. 

However, the inconsistent efficacy in NHP raises a significant concern for the protective 

efficacy in humans and indicates the need for further improvement of this subunit 

vaccine.   

The protection in rodents correlated with the generation of high titers of 

antibodies against rF1-V [121, 122]. Indeed, passive transfer of antibodies was effective 

in protecting mice against plague [121, 123, 124]. However, studies in nonhuman primate 

models have not been as clear [125][126]. For example, while cynomolgus macaques 

consistently generated high titers of antibodies against both the F1 and LcrV antigens 

when immunized with the rF1-V vaccine that correlated with protection, African green 

monkeys generated much lower titers against F1 (though consistent), demonstrated high 

variability in anti-LcrV antibody titers, and did not show a correlation between antibody 
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titers and protection [127]. Importantly, animals that failed protection had bacteria 

reservoir, suggesting antibodies failed to kill bacteria and disease progressed [128]. 

On the other hand, the Th1 cytokines TNF-α and IFN-  also appear to play a requisite role 

for protection against Y. pestis infection [129-132]. As such, exogenous administration of 

IFN-γ and TNF-α protects naïve mice against Y. pestis infection [132], and neutralization 

of either cytokines abrogates the protection in actively vaccinated mice [129]. 

Furthermore, IFN-γ and TNF-α also contribute to protection mediated by passive serum 

transfer or administration of F1 or LcrV specific mAbs which is demonstrated by 

abrogated efficacy in IFN-γR- and TNF-α-deficient mice and neutralization of these 

cytokines [129, 130]. Contribution of cellular immunity to plague vaccine has further 

been demonstrated by adoptive transfer of Y. pestis-primed T cells to naive B-cell-

deficient μMT mice. This resulted in protection against lethal Y. pestis challenge. 

Moreover, treatment of μMT mice with T-cell-depleting mAbs resulted in abrogation of 

protection conferred by vaccination with live Y. pestis [133]. Given the demonstrated role 

of Th1 responses in protection against plague, one potential way to improve the efficacy 

of the rF1-V plague vaccine would be to increase the Th1 response by altering the 

adjuvant system. 

Although alum, as the adjuvant component of the lead rF1-V vaccine, generates 

robust antigen-specific Th2 antibody responses, its efficacy in generating Th₁ responses is 

minimal [29]. Inasmuch Th1 responses play a critical role in long term immune memory 

and clearance of intracellular pathogens, many subunit vaccines, including rF1-V,  would 

likely benefit from a more balanced Th1/Th2 responses. Signaling through the 

costimulatory 4-1BB receptor of the TNFR superfamily is critical for the generation of 
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adaptive Th1 and CTL responses and establishment of long-term immune memory [98, 

102, 104]. Therefore, we have recently hypothesized that agonists of 4-1BB receptor may 

serve as an effective adjuvant with a Th1 bias. Inasmuch as the natural ligand, 4-1BBL, 

functions as a cell-surface protein and has no activity in soluble form, we generated a 

chimeric form of this agonist (SA-4-1BBL) by fusing its functional extracellular domain 

to a modified form of core streptavidin [98, 102, 134, 135]. SA-4-1BBL activates DCs 

and T cells to generate a robust antigen-specific Th1 response with demonstrated 

therapeutic efficacy in several preclinical cancer models [98, 102, 136].    

Given that both humoral and Th1 cell mediated immune responses are important 

for the control/clearance of Y. pestis, we herein assessed the efficacy of SA-4-1BBL and 

alum as an adjuvant system to produce a balanced Th1/Th2 immune response in a short 

term prime-only setting and the efficacy of SA-4-1BBL alone to generate humoral 

response in a long term prime-boost setting. In the short term study, when we compared 

SA-4-1BBL and alum, SA-4-1BBL generated robust Th1 cellular responses against rF1-V 

without a significant antibody response while in combination with alum, SA-4-1BBL 

generated a mixed Th1 and Th2 cellular response without a dramatic positive or negative 

impact on the titers of anti-rF1-V antibodies generated by alum alone. In this short term 

prime only study, a vaccine formulation containing the combined adjuvant system had 

better protection against plague as compared with those containing individual adjuvants. 

On the other hand, in the prime-boost long term study, vaccination with rF1-V antigen 

(different doses) and SA-4-1BBL generated significant titers of anti-rF1-V antibodies that 

lasted over a 190-day observation period and mice immunized with lowest dose of rF1-V 

antigen and SA-4-1BBL were completely protected against plague, displaying a dose-
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response. Taken together, our data demonstrate that SA-4-1BBL improves the efficacy of 

the lead rF1-V vaccine adjuvanted with alum for the generation of Th1 responses and SA-

4-1BBL alone generates a long-lasting anti- rF1-V humoral response and protects from 

plague in a prime-boost setting. This study provides the scientific rationale for the use of 

SA-4-1BBL for the development of subunit vaccines against infections that may benefit 

from a balanced Th1/Th2 response. 

 

Materials and Methods 

Mice, vaccinations, and bacterial challenge 

Female, 6 to 8-week-old C57BL/6 mice were purchased from The Jackson 

Laboratory or bred at the University of Louisville. Animals were cared for in accordance 

with NIH guidelines and all procedures were approved by the University of Louisville 

IACUC (Protocol No. 10-117 and 13-080). In the prime only short term study, vaccine 

formulations were prepared and incubated at 4°C O/N to allow for the adsorption of the 

antigen to alum, and mice were vaccinated once subcutaneously (s.c.) on day 0 with 0.2 

ml of one of the following vaccine formulations containing 1 µg of rF1-V protein: 1) rF1-

V, 2) rF1-V + SA-4-1BBL (12.5 µg), 3) rF1-V + alum (200 µg), or 4) rF1-V + SA-4-

1BBL (12.5 µg) + alum (200 µg). Anti-rF1-V antibody titers were assessed using serum 

collected on days 14 and 28 post-vaccination by sub-mandibular bleed.   

In the prime-boost long term study, mice were vaccinated twice subcutaneously 

(s.c.) on days 0 and 21 with 0.2 ml of one of the following vaccine formulations 

containing rF1-V protein: 1) 5 µg rF1-V, 2) 1 µg rF1-V + SA-4-1BBL (12.5 µg), 3) 5 µg 

rF1-V + SA-4-1BBL (12.5 µg), or 4) 10 µg rF1-V + SA-4-1BBL (12.5 µg). Anti-rF1-V 
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antibody titers were assessed using serum collected on days 14, 28, 35, 58, 98, 147, and 

190 post-prime by sub-mandibular bleed. 

For bubonic plague infection studies, immunized mice were transferred and 

maintained in the ABSL-3 vivarium at the University of Louisville's Center for Predictive 

Medicine Regional Biocontainment Laboratory. In the prime only setting 35 days post-

vaccination, and in prime-boost setting 202 days post-prime mice were lightly 

anesthetized with isoflorane and inoculated intradermally (i.d.) at the base of the tail with 

20 µl of ~200 colony forming units of fully virulent Y. pestis CO92 LuxPcysZK [137]. Mice 

were monitored twice daily for survival and moribund animals were humanly euthanized. 

Bacterial dissemination was assessed by optical imaging and images were taken using the 

IVIS Spectrum In Vivo Imaging System (PerkinElmer, Waltham, MA). Regions of 

interest within the images were generated using the LivingImage 4.4 (PerkinElmer) to 

calculate the average radiance (photons/sec/cm2) at the site of infection [137, 138].   

Reagents and antibodies 

Y. pestis recombinant rF1-V fusion protein (NR-4526) was obtained through the 

NIH Biodefense and Emerging Infections Research Resources Repository, NIAID, NIH 

by BEI Resources. SA-4-1BBL protein was expressed and purified in the laboratory 

using standard techniques as previously published [101]. Alhydrogel was purchased from 

Brenntag Biosector, Denmark. Anti-CD8-APC-Cy7, anti-CD4-Alexa700, anti-CD44-

APC, anti-TNFα-PE, anti-IFN -PE-Cy7, and isotype-matched antibodies with the same 

fluorochromes were purchased from BD Bioscience, eBioscience, or BioLegend, and 

used for flowcytometry. 

Intracellular cytokine analysis 
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In the short term study, C57BL/6 mice were vaccinated twice s.c. on day 0 and 35 

with vaccine formulations containing 1 µg of rF1-V protein: 1) rF1-V, 2) rF1-V + SA-4-

1BBL (12.5 µg), 3) rF1-V + alum (200 µg), or 4) rF1-V + SA-4-1BBL (12.5 µg) + alum 

(200 µg). Lymphocytes were isolated from draining lymph nodes five days after booster 

vaccination (Day 40) and processed into single-cell suspension. For intracellular cytokine 

analysis, 0.5 ml of lymphocytes (8x106 cells/ml) were plated in a 48 well-plate and 

stimulated with 20 µg of rF1-V protein in the presence of 20 U IL-2 and 25 ng SA-4-

1BBL for 24h. Cultures without rF1-V served as controls. Golgi Plug (1 µl/mL, BD 

PharMingen) was added to the cultures during the last 4h of incubation. Cells were 

surface stained first with anti-CD4-Alexa700, anti-CD8-APC-Cy7, and anti-CD44-APC 

and then fixed with 4% paraformaldehyde for 15 min. Following permeabilization, cells 

were stained with anti-IFN -PE-Cy7, anti-TNFα-PE, or isotype controls, acquired using 

multiparameter flow cytometer (BD FACS LSR-II), and analyzed by FACSDiva 

software. 

Anti-rF1-V antibody analysis 

The titers of anti-rF1-V antibodies in vaccinated C57BL/6 mice were determined 

using a standard ELISA. Briefly, 96-well titer plates were coated with 1 µg/ml of rF1-V 

overnight at 4°C, blocked with PBS containing 5% dry milk + 0.5% Tween 20 for 45 

minutes at RT, and then washed with PBS + 0.5% Tween 20. Fifty µl of two-fold serial 

dilutions of serum was added to wells and incubated for 90 min at RT. Wells were then 

washed 3 times with PBS + 0.5% Tween 20 and incubated with anti-mouse IgG-, IgG1- 

or IgG2c -HRP (Sigma and Jackson ImmunoResearch) for 60 min. Wells were washed 3 

times with PBS + 0.5% Tween 20, incubated with fifty ul TMB substrate (BD 
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biosciences) for 30 min, and reaction was stopped with 2N sulfuric acid. Absorbance was 

measured at 450 nm and anti-rF1-V antibodies were reported as Log10 titers of the 

greatest serial dilution with a mean OD450 > two-fold the OD450 value of naïve serum with 

the same dilution. Samples with an antibody titer of Log10 1.4 or less were considered 

negative. 

Statistical analysis 

Analysis of variance (ANOVA) was used to compare antibody titers and CD4⁺ 

and CD8⁺ effector responses among experimental groups. The Student t-test (2-tail) was 

used to compare titers of IgG subclasses (IgG1and IgG2c) and the ratios in alum and SA-

4-1BBL+alum treatment groups. Kaplan-Meier log-rank test was used to generate the 

survival curves. 

 

Results 

SA-4-1BBL and alum as adjuvant platform generates a Th1 response to the rF1-V 

antigen  

The lead rF1-V vaccine includes alum as a strong adjuvant for the generation of a 

robust Th2 regulated humoral response in mice [29, 139-141]. However, alum does not 

generate antigen-specific Th1 responses as assessed by Th1-regulated IgG2a titers and 

IFN  production [140, 142]. Because Th1 cellular response plays an important role in 

protection against plague and SA-4-1BBL has robust efficacy in generating such a 

response in other vaccine settings [98, 102, 104, 105], we tested SA-4-1BBL as an 

adjuvant for the generation of a Th1 response against rF1-V antigen. C57BL/6 were 

immunized with vaccine formulations containing 1 µg rF1-V antigen alone or antigen 
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admixed with 12.5 µg of SA-4-1BBL, 200 µg alum, or a mixture of both adjuvants 

followed by a booster injection 35 days later. As expected, immunization with rF1-V 

alone or rF1-V + alum did not result in significant increases in the absolute numbers of 

CD4+ or CD8+ T cells expressing the Th1 signature cytokine IFN  and proinflammatory 

cytokine TNFα (Fig. 1). In contrast, we observed elevated numbers of both CD4+ (Fig. 

1A-B) and CD8+ (Fig. 1C-D) T cells producing TNFα and IFN  from mice immunized 

with rF1-V + SA-4-1BBL. Interestingly, in spite of the Th2 bias of alum, the combined 

adjuvant platform was even more effective in generating TNFα and IFN  responses, with 

the only exception being in the IFN  response in CD8+ T cells, where SA-4-1BBL 

performed as well as the combined adjuvant system (Fig. 1D). In this model, generation 

of more robust Th1 response with SA-4-1BBL + alum therapy is consistent with previous 

findings where alum adsorbed IL-12 promoted antibody as well as type 1 cytokine 

responses to HIV-1 gp120 [143]. Collectively, these data demonstrate that: i) alum alone 

does not generate a significant rF1-V-specific Th1 cellular response, ii) as an adjuvant 

SA-4-1BBL induces an rF1-V-specific Th1 cellular response, and iii) alum is unable to 

inhibit the ability of SA-4-1BBL to generate a Th1 response and in the contrary 

significantly improves such a response. 

SA-4-1BBL and alum as adjuvant platform generates high antibody titers against 

rF1-V in a prime-only setting 

While SA-4-1BBL has been shown in multiple vaccines to generate robust 

antigen specific CD4+ and CD8+ cellular immune responses (Fig. 2 and [102, 104]), the 

ability of SA-4-1BBL to also generate humoral responses has not been examined. 

Furthermore, while alum did not appear to inhibit the SA-4-1BBL cellular response in the 
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combined adjuvant platform, the effect of SA-4-1BBL on alum-generated humoral 

responses has not been investigated. To address the impact of SA-4-1BBL on the 

generation of anti-rF1-V antibodies, serum samples were collected from vaccinated mice 

on days 14 and 28 post-prime and assessed for total IgG titers against rF1-V protein (Fig. 

2). Vaccination with 1 µg rF1-V alone did not generate detectable titers at day 14 or 28, 

with the exception of one mouse with low IgG titers at day 14 that declined by day 28, 

and a separate mouse that did not have titers at day 14 but detectable levels (albeit low) at 

day 28. SA-4-1BBL therapy alone was also ineffective in generating a sustained antibody 

response and all animals in this group were negative for anti-rF1-V titers by day 28. In 

marked contrast, vaccine formulations containing alum rapidly generated significant IgG 

titers by 14 days post-vaccination (Fig. 2, p < 0.0001) that were maintained for at least 28 

days post-vaccination (p < 0.0001). The combined adjuvant platform also yielded a 

significant increase in antibody titers compared to antigen alone and SA-4-1BBL therapy 

on days 14 (p < 0.0001) and 28 (p < 0.01). However, we did observe slightly lower IgG 

titers in the combined adjuvant vaccinated mice compared to the alum alone mice at both 

time points (Alum mean: 14 d =3.28 Log, 28 d =3.48 Log; Combination: 14 d =3.1 Log, 

28 d =3.21 Log; p < 0.05 for both days). Taken together, these data suggest that SA-4-

1BBL in a prime only situation does not elicit a robust rF1-V antibody response. 

However, SA-4-1BBL addition did not appear to drastically inhibit the generation of 

antibodies in alum immunized mice. 

SA-4-1BBL and alum as adjuvant platform shifts the immune response towards Th1 

direction in a prime-only setting 
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Analysis of T cell responses indicate that SA-4-1BBL generates Th1 cellular 

responses in vaccinated mice (Fig. 1). Generation of Th1 cytokines by T cells can also 

impact the humoral response by altering IgG class switching from Th2 associated IgG1 to 

IgG2a (IgG2c in C57BL/6 mice [144]. To determine if SA-4-1BBL influences the 

generation of IgG subclasses, IgG1 and IgG2c serum titers were determined for mice 

immunized with alum or SA-4-1BBL+alum 28 days post-vaccination. As expected, mice 

immunized with alum generated a robust Th2 IgG1 antibody response. We also observed a 

predominantly IgG1 response in animals immunized with the combination adjuvant. 

However, there was a significant reduction in the IgG1 titers compared to alum only 

immunized mice (alum mean: 4.34 Log; combination: 3.86 Log; p = 0.0087, Fig.3.A). 

Moreover, immunization with the combined adjuvant increased the IgG2c response 

compared to alum. As a result, the combined adjuvant therapy significantly increased the 

ratio of IgG2c to IgG1 compared to the alum alone mice (p=0.05, Fig. 3.B), suggesting a 

shift in the immune response towards a Th1 direction consistent with the cytokine 

response (Fig. 3).  

Vaccination with combination adjuvant platform provides protection against 

bubonic plague in a prime-only setting 

Addition of SA-4-1BBL to the rF1-V vaccine significantly enhanced the rF1-V-

specific Th1 immune response in animals. Next we tested whether a vaccine containing 

SA-4-1BBL could provide protection against pathogen challenge. Four groups of mice 

(n=10) were vaccinated once with one of four vaccine formulations: 1) 1 µg rF1-V 

antigen alone, 2) 1 µg rF1-V + 200 µg alum, 3) 1 µg rF1-V + 12.5 µg SA-4-1BBL, or 4) 

1 µg rF1-V + both adjuvants. Serum samples were collected at days 14 and 28 to 
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determine anti-rF1-V titers (Fig. 4.A). As seen previously, 30-40% of mice vaccinated 

with antigen alone or SA-4-1BBL generated modest titers on days 14 and 28, but 

significantly higher titers were achieved when alum was present in the vaccine (D14 p < 

0.05; D28 p < 0.01). Seven days after the last serum sample, mice were challenged i.d. 

with fully virulent Y. pestis LuxcysZ. Bacterial replication and dissemination were 

monitored throughout the course of infection by whole animal optical imaging for 

bacterial bioluminescence. As early as 24 hrs post-infection, we observed a difference in 

bioluminescence signal at the inoculation site of mice that received alum or SA-4-1-

BBL+alum compared to those that did not receive alum as part of the vaccine (Fig. 4.C). 

Furthermore, while the mean bioluminescence of the antigen alone and SA-4-1BBL 

groups increased at the inoculation site by 48 h post-infection, indicating bacterial 

replication, we did not observe an increase in the alum and SA-4-1BBL+alum groups 

(Fig. 4.D). Eventually, all of the antigen-alone vaccinated animals developed systemic 

disease (Fig. 4.B) and succumbed to infection by 7.5 days post-infection (Fig. 4.E). We 

also observed systemic disease in the SA-4-1BBL group. However, 20% of these mice 

did not develop systemic disease and eventually cleared the infection (Fig. 4B and E). 

Interestingly, the two surviving mice did not have detectable antibody titers on day 28, 

suggesting that cellular immunity generated by SA-4-1BBL alone was responsible for 

protection against plague. In contrast to these groups, animals vaccinated with alum 

demonstrated greater protection, supporting previous studies that anti-rF1-V antibodies 

generated by alum are important mediators of protection against plague  [121, 123, 145]. 

However, 20% of the alum group still succumbed to infection (Fig. 4.E). The greatest 

efficacy was seen in the combination adjuvant platform, in which all mice were protected 
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from infection (Fig. 4.E). Taken together, these data demonstrate that: i) while anti-rF1-V 

antibodies are important mediators of protection, they may not be sufficient to clear 

infection, as the animals that succumbed to infection in the alum group had similar titers 

to protected animals, ii) in the absence of protective antibody titers, an anti-rF1-V cellular 

response can protect against Y. pestis infection, as observed in the SA-4-1BBL groups, 

and iii) generating a balanced Th1/Th2 immune response by using a combinatorial 

adjuvant platform improved the outcome of vaccination with either adjuvant individually. 

SA-4-1BBL generates a long lasting anti-rF1-V humoral response and protects mice 

from plague in a prime-boost setting 

Since we observed that, SA-4-1BBL therapy does not elicit a humoral response 

for rF1-V in a prime-only setting, we wanted to explore the impact of SA-4-1BBL on the 

generation of anti-rF1-V titers in the prime-boost setting. To test this, mice were 

vaccinated twice with (1) 5 µg rF1-V alone, (2) 1 µg rF1-V + 12.5 µg SA-4-1BBL, (3) 5 

µg rF1-V + 12.5 µg SA-4-1BBL, and (4) 10 µg rF1-V + 12.5 µg SA-4-1BBL with 21 

days interval and serum samples were collected from vaccinated mice on days 14, 28, 35, 

58, 98, 147, and 190 post-prime and assessed for total IgG titers against rF1-V protein 

(Fig. 5). Mice that received SA-4-1BBL as part of the vaccine generated significant titers 

of anti-rF1-V antibodies that lasted over a 190-day observation period. Interestingly, 

although 5 µg rF1-V antigen-alone generated faster and better titers than SA-4-1BBL 

adjuvanted vaccines early on, these titers were short lived and all mice scored negative by 

day 98 post-vaccination.  

Since we observed that SA-4-1BBL induces the generation of long-lasting 

humoral response in a prime-boost setting (Fig. 5), and anti-rF1-V antibodies generated 
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by alum are important mediators of protection against plague [121, 123, 145], we wanted 

to examine the protective efficacy of SA-4-1BBL in a long term bubonic model. We 

challenged the mice i.d. 202 days after the prime with fully virulent Y. pestis LuxcysZ, and 

monitored the survival and bacterial replication. Eventually, 5 µg antigen alone 

vaccinated mice developed systemic disease (Fig. 6.A) and succumbed to infection by 7 

days post-infection (Fig. 6.B). We also observed systemic disease in the 5 µg rF1-V + 

SA-4-1BBL, and 10 µg rF1-V + SA-4-1BBL groups. However, one out of three mice in 5 

µg rF1-V + SA-4-1BBL group did not develop systemic disease and eventually cleared 

the infection (Fig. 6.A-B), while in the 10 µg rF1-V + SA-4-1BBL group all mice 

developed systemic disease and succumbed to infection by 10.5 days (Fig. 6.A-B). 

Interestingly, mice vaccinated with 1 µg rF1-V + SA-4-1BBL did not develop systemic 

disease and showed greatest efficacy in which all mice were protected from infection 

cleared the infection (Fig. 6.A-B). Taken together, these data suggest that SA-4-1BBL in 

a prime-boost setting induce the generation of long-lasting anti-rF1-V antibody response 

as compared to antigen alone and provides protection in an antigenic dose-dependent 

manner.  

 

Discussion 

The lead rF1-V subunit vaccine against plague includes alum as a strong adjuvant 

for the generation of a robust Th2 regulated humoral response in mice and protects mice 

against plague [29, 139-141]. However, the protective efficacy of the vaccine in NHP 

models has been variable, questioning the benefit of this vaccine for human use [120, 

146][147]. This may be due to the inability of the vaccine to generate a Th1 cellular 
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response. Indeed, accumulating evidence in the literature suggests that Th1 cellular 

responses are important and complement humoral responses for protection against plague 

[129-131]. Alum, as the adjuvant component of the lead rF1-V subunit vaccine, does not 

generate antigen-specific Th₁ responses as assessed by Th1-regulated antibody titers and 

IFN  production [140, 142]. Therefore, we projected that the rF1-V vaccine may benefit 

from SA-4-1BBL as a strong Th1 adjuvant. Consistent with this notion, a single 

immunization with SA-4-1BBL + alum adjuvanted rF1-V antigen generated a strong 

mixed humoral and Th1 cellular immune responses against rF1-V antigen that translated 

into better protective efficacy against plague in a mouse model as compared with the 

alum only adjuvanted vaccine. Further, prime-boost immunization with SA-4-1BBL and 

1 µg rF1-V antigen provided 100% efficacy in bubonic plague model with generation of 

a long-lasting antibody response. 

Recombinant protein-based subunit vaccines to infectious agents are attractive 

due to their ease of production and safety features. However, protein-based subunit 

vaccines heavily depend on immunostimulatory adjuvants for the generation of protective 

immunity against target infection [11, 12]. Alum is the most widely used adjuvant and is 

very effective in generating robust Th2-regulated humoral responses against the antigen 

component of subunit vaccines [29]. However, cellular immune responses are also 

important, and in select settings are required for optimal immunity to infections, 

especially in the case of viruses and intracellular bacterial pathogens. It has been 

suggested that aluminum adjuvants may not drive complete protection against diseases 

that require a strong Th1 response, such as malaria and cancer [148]. As such, to improve 

cellular responses of subunit vaccines, alum based vaccines have been adjuvanted with 
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immune modulators, such as IL-12 or synthetic ODNs containing CpG motifs, that 

promote Th1 cellular responses [149]. We herein proposed that the cellular response and 

overall efficacy of the plague subunit rF1-V vaccine could be improved by using SA-4-

1BBL costimulatory molecule as an adjuvant either alone or in combination with alum. 

The reasons behind the choice of SA-4-1BBL are several fold. First, signaling via 4-1BB 

is critical for T cell expansion, survival, acquisition of effector function, and generation 

of long-term immune memory [90, 96, 97]. Second, a subset of dendritic cells (DCs) 

constitutively express 4-1BB receptor and signaling via this receptor increases survival of 

DCs. This leads to increased antigen uptake and cross-presentation to T cells, and 

migration to T cell zone, culminating into enhanced T cell immune responses [98, 150, 

151]. Third, 4-1BB/4-1BBL interaction selectively promotes the generation/expansion of 

T cells producing IFN  and TNF  type 1 cytokines [152-154] that play an important role 

in protection against Y. pestis infection [129]. Fourth, 4-1BB expression is inducible and 

up-regulated on activated CD4⁺ and CD8⁺ T cells [70]. This provides an opportunity to 

specifically target antigen-specific, activated T cells for a more robust response, and as 

such avoid systemic/nonspecific activation of immune responses and associated adverse 

effects reported for other Th1 immunomodulators, such as IL-2, IL-12 or CpG ODN 

[155-157]. Finally, and important in the context of this study, 4-1BB costimulation 

primarily and directly works on T cells, whereas alum targets APCs [29, 30] and as such 

these two adjuvants may work in synergy to enhance immunity against rF1-V antigen. 

A prime-boost vaccination with rF1-V + SA-4-1BBL resulted in increased 

numbers of both CD4⁺ and CD8⁺ T cells producing TNF  and IFN . In particular, the 

most significant increase was observed for CD8+ T cells producing IFN . Given the 
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recently demonstrated role of CD8+ T cells in LcrV DNA-based vaccine protection 

against Y. pestis infection [158], our observations are significant. The administration of 

SA-4-1BBL with alum further improved the Th₁ cellular responses, except for IFN  in 

CD8⁺ T cells where SA-4-1BBL therapy performed as well as the combination therapy. 

These findings are consistent with the previously published studies by us [102, 103] and 

others [159, 160] demonstrating the CD8+ T cell-centric function of 4-1BB signaling. 

Importantly, our findings are consistent with previously published studies demonstrating 

that alum in combination with Th1 immune modulators, such as IL-12 or TLR4 agonists, 

promotes both Th2-mediated humoral as well as Th1 cytokine responses [6, 143].  

We observed that SA-4-1BBL alone increased the number of CD4⁺ T cells 

producing TNF  and IFN  as compared with alum, but such increases were not 

statistically significant. Alum when used in combination boosted the activity of SA-4-

1BBL, resulting in a statistically significant increase in the number of CD4⁺ T cells 

producing TNF  and IFN . These observations are novel as they demonstrate synergy 

between alum and SA-4-1BBL in generating a strong CD4+ Th1 cellular response. It has 

been shown that CD4+ T cells are required for the protective efficacy against Y. pestis 

conferred by CD8+ T cells in an adoptive transfer model [161]. Therefore, this synergy 

has important implications for the development of vaccines against intracellular 

infections where CD4+ Th1-regulated CD8+ cytotoxic T cell responses play important 

roles in clearance. Further, treatment with Th1 cytokines TNF  and IFN  has been shown 

to diminish the survival of Y. pestis within the macrophages [162].  

However, CD4+ T cells are not only critical for the generation of primary CD8+ T 

cell responses and the establishment of long-term memory, but also play important roles 
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in the generation and establishment of B cell responses that produce Ig isotypes, such as 

IgG2a (IgG2c in case of C57BL/6), involved in opsonization [163]. Although Y. pestis can 

evade from phagocytosis [164], it has been reported that neutrophils can control the 

bacteria growth within the first 2 days after infection [162]. Moreover, anti-LcrV 

antibodies enhances the Y. pestis phagocytosis indirectly by inhibiting Yop translocation 

[165] or production within the cells, and neutrophils are the major cell types in this 

protection against Y.pestis [166]. Here, we observed an increase in IgG2c antibody 

response while there was a significant decrease in IgG1 antibody response in mice 

vaccinated with the adjuvant system. As a result, the ratio of IgG2c to IgG1 was 

significantly increased, although the IgG1 was the predominant isotype. Cytokines can 

regulate the generation of antibody isotypes, for example, IFN  prevents IL-4 induced 

IgG1 responses, while IL-4 blocks IFN  induced IgG2a response [167]. As a result, the 

observed increased ratio of IgG₂c to IgG₁ in the combined adjuvant therapy might be due 

to the elevated levels of IFN  in these animals. Although all IgG subclasses contribute to 

clearance of bacteria, IgG2a can fix the complement system greater than IgG1 [163]. 

Therefore it can enhance the phagocytosis of Y. pestis by neutrophils [168].  

Many studies have shown that anti-rF1-V antibodies contribute significantly to 

protection and that passive transfer of antibodies can confer protection in mice challenged 

with Y. pestis [121, 123, 145]. Our data do not contradict these assumptions, as in the 

prime-only study, the alum alone animals had high antibody responses to rF1-V and 80% 

of these animals were protected against Y. pestis challenge. However, 20% of these mice 

still succumbed to infection despite no significant differences in anti-rF1-V titers, 

suggesting that while important, antibodies alone may not be sufficient for protection. 
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This notion is consistent with studies in nonhuman primates demonstrating lack of 

correlation between antibody titers and protection against plague [169]. Cynomolgus 

macaques generated high and consistent titers of F1 and V antibodies and there was a 

correlation with protection, while African green monkeys generated more individual 

titers of V antibodies and they did not show a correlation [170]. Furthermore, in the 

prime-only setting, SA-4-1BBL alone provided 20% protection, in spite of no detectable 

antibody titers against rF1-V in the mice that cleared infection, and mice immunized with 

the combined adjuvant were 100% protected in spite of having lower IgG titers compared 

to alum alone therapy. These observations are consistent findings from Elvin and 

Williamson which demonstrated that protection conferred by a similar F1 and V subunit 

vaccine requires a Th1 response. They reported that mice lacking the signal transducer 

and activator of transcription protein family 4 (Stat4), which regulates the Th1 response, 

were not protected against plague following vaccination. [171]. In marked contrast, mice 

deficient in Stat6, which regulates the Th2 response, had vaccine-induced protection. 

Importantly the antibody titers and IgG isotypes in both mice were similar, providing 

direct evidence for an important role of the Th1 cellular response in protection. This 

notion is further consistent with the studies reporting important roles of T cells and Th1 

cytokines IFN  and TNF  in protection against Y. pestis [129, 131]. 

However, in the case of prime-boost study, SA-4-1BBL adjuvanted vaccine with 

different rF1-V doses generated significant titers of anti-rF1-V antibodies that lasted over 

a 190-day observation period. On the other hand, vaccination with rF1-V alone was failed 

to do so. Although it has been demonstrated that agonistic 4-1BB antibody suppresses the 

T cell dependent humoral immunity through the induction of CD4+ T helper cell anergy 
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[172], and treatment of several autoimmune diseases have taken advantage from this 

[173, 174], it has also been reported that, the form of 4-1BB agonistic adjuvant can also 

influence the outcome of the cellular and humoral immune responses [175]. As such, 

treatment with agonistic anti-4-1BB antibody, and secreted form of the 4-1BBL suppress 

the humoral response to HIV-1 Gag DNA vaccine, while DNA plasmid expressing 

membrane bound 4-1BBL enhances the Gag-specific antibody titers [175]. Therefore, 

generation of long-lasting anti-rF1-V titers with the natural soluble form of SA-4-1BBL 

adjuvanted vaccine may not be surprising, and may need a booster dose as seen in prime-

boost setting for the generation of potent humoral response since in the prime-only 

setting we did not observe an increase in the antibody response against rF1-V antigen. 

Interestingly, here we observed an antigen-dose dependent efficacy of SA-4-1BBL 

therapy where administration of SA-4-1BBL with 1 µg rF1-V resulted in complete 

protection, while increasing the antigen dose abrogated the protection to 33% and 0% 

with 5 µg and 10 µg rF1-V, respectively. This could be due to the over-activation of 

CD8+ T cells with higher antigen doses, and subsequent generation of  CD8+ T suppressor 

cells which inhibit or suppress CD4+ T cell responses via IFN -dependent release of 

TGFβ [176]. On the other hand, vaccination with 1 µg rF1-V and SA-4-1BBL induced 

the generation of a robust long-lasting antibody response with a balanced effector cellular 

response which resulted in 100% efficacy in bubonic plague model in the prime-boost 

study. 

Collectively, our data demonstrate that in the short term setting, addition of the 

Th1 adjuvant SA-4-1BBL improves the efficacy of the lead alum adjuvanted rF1-V 

subunit vaccine by generating a strong Th1 cellular immune response without significant 
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impact on the generation of Th2 regulated antibody responses. The combined adjuvant 

system has better efficacy over individual adjuvants in protection against plague. 

Importantly, since we did not observe a correlation between antibody titers and survival 

in mice immunized with SA-4-1BBL (either alone or in combination with alum), we 

provide the first evidence that rF1-V-specific cellular immune responses can protect 

against plague and may provide an important contribution to the future success of the 

rF1-V subunit plague vaccine. This hypothesis is supported by previous reports that show 

that adaptive cellular modulators, such as CpG ODN or cytokines, can enhance the 

immune response in alum vaccinated animals [143, 177]. However, giving one more shot 

of SA-4-1BBL adjuvanted rF1-V vaccine induces the generation of long-lasting antibody 

response against the antigen, and confers 100% protection, highlighting the importance of 

humoral immune response for Y. pestis. Therefore, generation of a balanced Th1 and Th2 

immune response is critical for the elimination of bacteria. Finally, while these studies 

focused on the rF1-V subunit vaccine, we believe that our findings are not specific to 

rF1-V or plague, and that addition of SA-4-1BBL to other subunit vaccines will have 

similar effects and could dramatically improve efficacy of vaccines, especially against 

intracellular pathogens. 
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Figure 1  

 
SA-4-1BBL+Alum increases the cellular response of the plague vaccine. C57BL/6 mice 

were immunized with rF1-V with or without the indicated adjuvants or PBS only (n=5) 

on days 0 and 35. 5 days after the boost (Day 40), antigen specific cytokine response was 

determined in the dLN. Each bar represents the mean and S.D. of absolute numbers of 

CD4+CD44
hi

 and CD8+CD44
hi

 T cells producing TNFα (left) and IFNɣ  (right) cytokines 

in each group. Data are representative of two independent experiments. Upper panel 

shows the absolute numbers of CD4+ T cells, lower panel shows the absolute numbers of 

CD8+ T cells.**** = p< 0.0001; *** = p<0.001; ** = p<0.01; ns= not statistically 

significant. 
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Figure 2  

SA-4-1BBL + Alum induces antibody response for rF1-V in prime-only setting. 

C57BL/6 mice were immunized with rF1-V with or without the indicated adjuvants 

(n=5). 14 and 28 days post-immunization serum samples were harvested and IgG titers 

were determined. Dotted lines indicate limit of detection. Graph shows the individual 

values in each group. **** = p<0.0001; ** = p<0.01; * = p<0.05. 
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 Figure 3  

SA-4-1BBL + Alum shifts the cellular response towards Th1 in prime-only setting. 

C57BL/6 mice were immunized with rF1-V and indicated adjuvants (n=5). 28 days post-

immunization serum samples were harvested and titers of IgG1 and IgG2c subtypes were 

determined. A) The bar graph represents average log titers of IgG1 and IgG2c antibodies 

with SD, and dotted lines indicate limit of detection. Alum (Black); Alum + SA-4-1BBL 

(White). B) The bar graph represents average x value of IgG2c/IgG1 ratio in each group.  
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Figure 4  

One shot immunization with SA-4-1BBL + Alum protects mice from bubonic plague. 

C57BL/6 mice were immunized with rF1-V with or without the indicated adjuvants 

(n=10 per group). A) 14 d and 28 d post-immunization serum samples were harvested 

and IgG titers determined. Dotted lines indicate limit of detection. 35 days post-

immunization mice were challenged with Y. pestis LuxPcysZK by i.d. injection. B) 

Representative optical image of animals from each group at 24 h post-infection or at the 

time of euthanasia. C) 24 h and D) 48 h post-infection bacterial numbers (as a function of 

bacterial bioluminescence) were determined at the inoculation site by optical imaging 

(mean radiance (photons/sec/cm2) ± st. dev.). E) Survival comparison of vaccinated 

groups.*= p<0.05; **= p<0.01; ns= not statistically significant. 
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Figure 5 

SA-4-1BBL generates a long-lasting anti-rF1-V humoral response in a prime-boost 

setting. C57BL/6 mice were immunized with vaccine formulations containing (1) 5 µg 

rF1-V alone (n=3), (2) 1 µg rF1-V + 12.5 µg SA-4-1BBL (n=3), (3) 5 µg rF1-V + 12.5 

µg SA-4-1BBL (n=3), and (4) 10 µg rF1-V + 12.5 µg SA-4-1BBL (n=3) on days 0 and 

21. The role of SA-4-1BBL on humoral immune response was evaluated by the 

generation of anti-F1-V titers detected in the serum collected on days 14, 28, 35, 58, 98, 

147, and 190 post-prime. The bar graph represents average log value of IgG titers in each 

group. Dotted lines indicate limit of detection.  
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Figure 6 

SA-4-1BBL provides protection against bubonic plague with an rF1-V dose dependent 

manner. C57BL/6 mice (n=3 per group) were immunized with indicated vaccine 

formulations on days 0 and 21, and inoculated i.d. at the base of the tail with ~200 CFU 

of fully virulent Y. pestis CO92 LuxPcysZK. A) Representative optical image of animals 

from each group at 2.5, 6.5, 13.5 d post-infection. B) Survival comparison of vaccinated 

groups. 
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CHAPTER 3 

SA-4-1BBL AND MPL COMBINATION AS AN ADJUVANT SYSTEM FOR THE 

TREATMENT OF BREAST CANCER 

 

Introduction 

Breast cancer is the most common cause of cancer related death among women 

worldwide. Nearly 30% of human breast cancers over-express the human epidermal 

growth factor receptor 2 (Her-2/neu) [178]. Although Her-2/neu positive breast cancer 

could be treated with trastuzumab, a humanized anti-Her-2/neu mAb, these therapies 

require frequent administrations and more importantly tumor cells acquire resistance 

against antibody therapies [179, 180]. As a result, tumors are being relapsed. Moreover, 

response rate to trastuzumab therapy is limited in patients with metastatic breast tumor 

[181]. Therefore, active immunization against Her-2/neu is an alternative approach to 

mAb therapy primarily because of the activation of cytotoxic T cell responses, generation 

of humoral response and long-term immunological memory to control recurrences [182]. 

Her-2/neu is an attractive TAA for therapeutic vaccines against Her-2/neu 

positive breast cancers since it is over-expressed in cancer cells. Active immunization 

strategies against Her-2/neu include peptide and protein based, DNA based, dendritic cell 

based, and whole tumor cell based vaccines. In the clinical trials, the mostly tested 

vaccine strategy is peptide based, since they can induce antigen specific T cell (CD8+ and 
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CD4+ T cell epitopes) and antibody responses (B cell epitopes). However, this vaccine 

approach has some limitations due to the restricted immune response to one or two 

epitopes, or specific HLA haplotypes [182], and without generation of CD4+ Th cells, the 

induced CTL response cannot be long lived [183]. However, employing protein (entire or 

truncated) based vaccines may overcome these restrictions since they include both HLA 

class I and II epitopes, therefore activates both CTL and Th cellular, and humoral 

responses. As such, in several clinical trials it has been reported that use of Her-2/neu 

protein as a vaccine antigen, induces antigen specific T cell and antibody responses 

[184][185].    

Even though Her-2/neu is an immunogenic molecule since it generates specific 

antibody and CTL responses in some patients [16, 17], soluble Her-2/neu protein as a 

recombinant vaccine is not immunogenic [186]. Therefore, to generate potent immune 

responses to Her-2/neu protein, adjuvants should be formulated in Her-2/neu recombinant 

vaccines [184]. In cancer vaccines, induction of CD8⁺ T cell response is critical to 

generate potent anti-tumor immune response since antigen specific CTL response is 

required for the elimination of tumor cells and establishment of long term memory. For 

antigen specific T cell activation, the first target among the immune cells is the APCs 

since in turn they prime the adaptive arm of the immunity. As such, the importance of 

innate immunity for activation of cellular responses has put the emphasis on the 

development of adjuvants, which are capable of activating innate immune cells, and the 

only adjuvants approved by FDA for cancer vaccines are primarily targeting the innate 

arm of the immune system through APCs. For example, live-attenuated tuberculosis 

vaccine Bacille Calmette-Guérin (BCG) is the first adjuvant approved by FDA in 1990 
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for the treatment of bladder cancer, and MPL is the second one as a component of the 

adjuvant system (AS04) in Cervarix HPV vaccine [187, 188]. Consistent with the 

importance of activation of APCs and enhancement of antigen cross-presentation by 

APCs, vaccination with live attenuated Listeria monocytogenes vector expressing rat or 

human Her-2/neu gene segments induces tumor regression and prevent metastasis in 

murine models [189, 190]. The anti-tumor efficacy of the immunizations against Her-

2/neu has also been enhanced by targeted delivery of Her-2/neu to the APCs by fusion 

proteins consisting soluble CTLA-4 [191], or single-chain fragment variable specific for 

CD11c [192], or  Fc domain of IgG [193] in preclinical studies. 

Nevertheless, activation of the CD8+ and CD4+ T cells requires the first signal 

delivered upon MHC/peptide complex and TCR interaction together with a second signal 

from costimulatory receptors [8]. Failure to receive second signal can lead to T cell 

anergy or apoptosis. Moreover, regulation of Treg suppressive function is another 

important aim for cancer immunotherapy since tumor-derived soluble factors may induce 

the generation of regulatory cells as an immune escape mechanism. Among the T cell 

costimulatory receptor families, TNFRF signaling is crucial for T cell survival, cell cycle 

progression, effector function, and memory responses [69, 70], and plays important role 

regulating both adaptive and regulatory immunity. Moreover, these receptors are 

inducibly expressed on activated T cells upon antigen stimulation which provides another 

advantage to serve as adjuvant candidates for vaccines to generate antigen specific 

immune responses [70]. 

Since the importance of CD8+ T cells in breast cancer has been determined in 

preclinical and clinical studies [194-197], we, herein, particularly focused on 4-1BBL 
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among TNFRF members due to its critical role in the generation and maintenance of 

CD8+ T cell responses [92, 96]. Further, 4-1BBL co-stimulation confers CD8+ T cells 

resistant to suppression by Tregs [70], which may help to improve anti-tumor immune 

responses. However, 4-1BBL functions as a cell membrane protein and has minimal to no 

function in soluble form. Therefore, we generated a chimeric molecule (SA-4-1BBL) that 

exists as functional oligomers [102] and showed that SA-4-1BBL induces T cell 

activation, acquisition of effector functions, and generation of long-term memory [98, 

102, 103, 107, 198]. Most importantly, we reported that SA-4-1BBL modulates 

regulatory immunity by rendering Teff cells resistant to Treg suppressive activity [98], 

and inhibiting the conversion of Teff cells into Tregs through the production of IFN-  

[106]. As a result, SA-4-1BBL provides significant therapeutic efficacy in various 

preclinical models [98, 102-104, 136].  

Here, we tested the efficacy of a combined adjuvant therapy; SA-4-1BBL, for the 

activation of adaptive immunity, and MPL, for priming innate immunity, in a preclinical 

Her-2/neu positive breast cancer model. Since MPL primarily targets APCs, such as DCs 

and macrophages, for the initiation of adaptive immunity [6] and 4-1BBL targets CD8+ T 

cells for activation, acquisition of effector function, survival, and long-term memory [90, 

199, 200], here we hypothesized that these immunomodulators may work in synergy to 

improve the anti-tumor efficacy of rat Her-2/neu subunit breast cancer vaccine. We 

demonstrated that a prime-boost vaccination with combined adjuvant system (SA-4-

1BBL + MPL) generates 30% therapeutic efficacy in Her-2/neu positive A2L2 breast 

cancer model in BALB/c mice. On the other hand, SA-4-1BBL monotherapy provides 

10% survival, while MPL monotherapy cannot confer therapy. Furthermore, vaccination 
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with combined adjuvant system eradicates 20% of transplanted A2L2 tumors, while 

depletion of Treg cells further increases its therapeutic efficacy to 40% in tolerant Her-

2/neu transgenic BALB/neuT mice. Consistent with the therapeutic efficacy, combined 

adjuvant therapy induced better tumor specific killing responses than individual agents. 

Further, combined adjuvant therapy induced significant increase in pro-inflammatory 

cytokine IFN-  production. Taken together, these data demonstrate the utility of SA-4-

1BBL + MPL as a novel adjuvant system for the development of therapeutic rat Her-

2/neu-based breast cancer vaccine with significant therapeutic efficacy.  

 

Materials and Methods 
 

Cloning, expression, and purification of recombinant rat Her-2/neu ECD 

Extracellular domain (ECD) of the rat Her-2/neu cDNA (from Genscript) was 

subcloned into both 6X-His-pTWIN-1 and pTWIN-1-6X-His bacterial expression vectors 

(New England Biolabs) using Nde I and BamH I restriction sites. After transformation 

into C2566H competent E. coli cells (New England Biolabs), cultures were grown at 

37°C for 2 h and induced using 1 µl/ml of IPTG. After 3 h induction, cells were 

harvested, centrifuged, and resuspended in 100 ml lysis buffer containing 20mM Tris, pH 

7.0, 500 mM NaCl, 10 µM ZnCl2, 5mM imidazole, and 5mM β-ME. Cells were lysed 

using ultra-sonication, inclusion bodies were pelleted at 10,000xg for 10 min. Inclusion 

bodies were washed three times by lysis buffer + 1% Triton X-100 with rotation at RT for 

30 min, and centrifuged at 35,000xg for 30 min. After three cycles, the final pellet was 

resuspended in 100 ml lysis buffer + 6M Guanidine-HCl and rotated O/N at RT to 

solubilize inclusion bodies. Next day, supernatant was collected after centrifugation at 
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35,000xg for 30 min at 4°C, and used for IMAC purification using Talon resin with the 

advantage of His-Tag according to manufacturer’s protocol (Clontech). The only 

exception was adding 0.1 % Triton X-114 to help to remove endotoxin. In all purification 

steps, 10µM ZnCl2 and 5mM β-ME were used to enhance proper folding.  Protein was 

dialyzed against PBS, concentrated using an Amnicon Ultra MWCO 50,000, and sterile 

filtered using a 0.22 mm filter. Protein concentration was measured using BCA method 

(Pierce). 

ECD of the rat Her-2/neu cDNA (from Genscript) was subcloned into the Flag-

pMT/BiP vector and expressed in Drosophila Schneider (S2) cells (Drosophila expression 

system inducible/secreted kit from invitrogen life technologies). Briefly, 9x105 cells in 2 

ml serum free media (SFM, Hyclone SFX-insect) containing P/S and L-glu were plated. 

Cells were led to attach for 1 hour. Meanwhile, transfection solution was prepared by 

adding solution A consisting 2 µg rat Her-2/neu construct and 100 ng of pCoHygro in 

100 µl SFM to solution B consisting 5 µl of Cellfectin in 95 µl of SFM and incubated for 

45 minutes. After incubation, 0.8 ml SFM was added to Mix A+B to make transfection 

solution. Growth medium was removed from the cell culture and washed with SFM. 1 ml 

transfection solution was added to cells and incubated at 27°C for 5h. After 5 hours, 

transfection solution was removed and replaced with 2 ml SFM containing hygromycin 

and incubated at 27°C for 48h. Expression of rat Her-2/neu was induced with 1 mM 

CuSO4 in HyClone (w/o FBS) with the advantage of MT promoter. pMT/BiP vector 

carrying the Drosophila BiP signal sequence induced  rat Her-2/neu protein secretion to 

the culture supernatant. Culture supernatant was collected and rat Her-2/neu protein was 

purified and eluted using anti-FLAG M2 affinity gel and 3xFLAG peptide, respectively. 
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Protein was dialyzed against PBS, concentrated using an Amnicon Ultra MWCO 50,000, 

and sterile filtered using a 0.22 mm filter. Protein concentration was measured using 

BCA method (Pierce). Construction, expression, purification, and characterization of SA- 

4-1BBL have been previously described [98].  

Mice and cell lines 

Female BALB/c and BALBneuT mice were bred in University of Louisville 

animal facility. All animals were cared for in accordance with institutional and NIH 

guidelines. Female BALB-neuT mice 6–8 weeks old were used before autochthonous 

tumor appearance. Heterozygous females expressing rNEU verified by PCR were used 

throughout this work. Mouse mammary breast cancer cell line A2L2 transfected with rat 

Her-2/neu (H-2d) and its parental 66.3 cell line were kindly provided from Dr. Janet Price 

from UT M.D. Anderson Cancer Center, and maintained in MEM media supplemented 

with 5% FBS, 2X MEM vitamins, 0.1 mM non-essential aminoacids, 1 mM sodium 

pyruvate, 20 mM HEPES, 2 mM L-glutamine, 1% P/S and 400 µg/ml gentamicin. All the 

reagents were purchased from Gibco except for FBS from Atlanta biological. 

Antibodies and other reagents 

For intracellular cytokine analysis, fluorochrome-conjugated anti-CD3-V500, 

anti-CD8-APC-Cy7, anti-CD4-Alexa700, anti-CD62L-PerCp-Cy5.5, anti-CD44-APC, 

anti-CD69-PE, anti-CD25-PE-Cy7, anti-Foxp3-Alexa-488, anti-TNFα-PE, anti-IFNγ-PE-

Cy7, anti-IL-2-PerCp-Cy5.5, and isotype matched antibodies were purchased from BD 

Bioscience, eBioscience, and BioLegend.  

For toxicity studies, anti-CD3-FITC, anti- CD8-APC-Cy7, anti- CD4-Alex700, 

anti- CD11b-PerCp-Cy5.5, anti- CD19-PE-Cy7, anti- NK1.1-PE, anti- F4/80-Alexa647, 
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anti- CD11c-PE-Texas Red, and isotype matched antibodies with same fluorochrome 

were purchased from BD Bioscience, Invitrogen, eBioscience, and Caltag Lab. Fc Block 

was purchased from BD Bioscience. 

MPL was purchased from Sigma Aldrich. Rat Her-2/neu p66 (TYVPANASL) 

peptide (Her-266-74) corresponding to H-2Kd-restricted, dominant CTL epitope was used 

for in vitro stimulation of draining lymphocytes in intracellular cytokine assay was 

purchased from Peptide 2.0 Company.  

Tumor models and vaccination 

Tolerant BALB-neuT and BALB/c mice were challenged subcutaneously (s.c.) 

with 1x105 live A2L2 cells in the right flank. For therapy, mice were vaccinated s.c. on 

days 5 and 10 post-tumor challenge with various vaccine formulations containing rat Her-

2/neu protein (50 µg) with SA-4-1BBL (25 µg), or MPL (25 µg), or the combination of 

both agents (25 µg/agent). The doses of SA-4-1BBL, and MPL used in this study were 

based on our previously published and preliminary studies [98]. Tumor size was 

measured with a caliper twice weekly. Mice were sacrificed when tumor size reached 12 

mm in diameter, or showed external ulceration, or signs of poor conditions (weight loss, 

dehydration,  inactivity, or moribund). Anti-Her-2/neu antibody titers were assessed 

using serum collected on termination days when tumor size 12 mm diameter from tumor 

bearing mice and on Day 59 from tumor-free (TF) mice. Treg cells were depleted using 

anti-CD25 Ab (clone PC-61) at 300 µg/mice via intra peritoneal (i.p.) injection two days 

before A2L2 tumor inoculation. In the case of established tumor study, to determine T 

cell numbers and cytokine responses, mice with 3-5 mm established tumors were 
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vaccinated with indicated formulations and a booster dose was given 5 days later. 3 days 

after the boost mice were terminated to collect the dLNs.  

For toxicity studies, C57BL/6 mice were injected with vaccine formulations 

containing E7 protein (50 µg) with SA-4-1BBL (25 µg), or MPL (25 µg), or the 

combination of both agents (25 µg/agent). 18 h after immunization, mice were 

terminated. 

Cytotoxicity assay 

BALB/c mice were vaccinated twice on days 0 and 5 s.c. with different vaccine 

formulations containing rat Her-2/neu protein (50 µg) with SA-4-1BBL (25 µg), or MPL 

(25 µg), or the combination of both agents (25 µg/agent).  5 days after booster 

vaccination, animals were sacrificed, spleens were harvested and single cell suspensions 

were prepared. Splenocytes (3x106/ml) from vaccinated animals were re-stimulated in 

vitro for 5 days with 10 µg of Her-2/neu protein/ml in complete MLR medium 

supplemented with 50 IU/mL of IL-2 and 0.05 µg/mL of SA-4-1BBL. Viable 

lymphocytes were harvested 5 days later using a Ficoll gradient and cultured with A2L2, 

or 66.3 neo, or TC-1 target cells at various ratios for 5 hours at 37°C.  The percentage of 

killing was determined by the formula: percent specific lysis = 100 x (experimental 

release – spontaneous release)/ (maximum release - spontaneous release). 

Flow cytometry and cytokine bead array analysis 

5 days after booster vaccination, animals were sacrificed, dLNs were harvested, 

and single cell suspensions were prepared. Lymphocytes (8x106 cells/ml) were plated to 

the wells of 48 well plate and stimulated with 10 µg/ml Her-2 p66 peptide for a total of 6 

hours and GolgiPlug (1 µl/ml, BD PharMingen) was added at the last 4 hours. Cells were 
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surface stained with anti-CD3-V500, anti-CD44-APC, anti-CD8-APC-Cy7 and anti-

CD4-Alex700, fixed with 4% paraformaldehyde, and after permeabilization stained 

intracellular with anti-IFN-γ-PE-Cy7, anti-IL-2-Percp-Cy5.5, anti-TNF-α-PE, or isotype 

controls, acquired using multiparameter flow cytometer (BD FACS LSR-II), and 

analyzed by FACSDiva software. 

For toxicity studies, spleens, mLNs and dLNs were collected 18h post-

immunization to determine the number of different lymphocyte subsets in each treatment 

group. Cells were incubated with Fc Block, and stained with anti-CD3-FITC, anti-CD8-

APC-Cy7 and anti-CD4-Alex700, anti- CD11b-PerCp-Cy5.5, anti- CD19-PE-Cy7, anti- 

NK1.1-PE, anti- F4/80-Alexa647, anti- CD11c-PE-Texas Red, or isotype controls 

followed by acquisition and analysis using multiparameter flow cytometer (BD FACS 

LSR-II), and FACSDiva software respectively. 

For CBA analysis, mice were terminated 3 days after the boost and dLNs were 

harvested. Cells (2x106 cells/mL) were plated triplicate to the wells of 96 well U-bottom 

plate, and stimulated in vitro with 10 µg/ml of both Her-2/neu ECD protein and p66 

peptide for 48h at 37 °C. After 48h incubation, culture supernatants were harvested and 

IL-2, IL-4, IL-10, TNFα, and IFNγ cytokines were determined using Mouse Th1/Th2/Th17 

Cytokine Cytometric Bead Array Kit and protocols from BD Biosciences. For each assay 

tube, 10 µl aliquot of each capture bead were added and mixed in the same tube. 50 µl of 

mixed cytokine captured beads were mixed with 50 µl of sample or standart, and 50 µl of 

PE Detection reagent was added into each assay tube and incubated in the dark at RT for 

2h. After incubation, beads were washed with and resuspended in 300 µl wash buffer. 
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Beads were acquired using multiparameter flow cytometer (BD FACS LSR-II), and 

analyzed by BD CBA software. 

Analysis of Her-2/neu antibodies 

ELISA was performed to assess the presence of anti-Her-2/neu antibodies in 

vaccinated mice. Briefly, ninety six titer plates coated with 1 µg/well of rat Her-2/neu 

protein for 4 hours at 37 °C and blocked with PBS containing 5% BSA + 0.5% Tween 20 

for overnight at 4oC. Serum dilutions were added to wells and incubated at 37oC for 2 

hours. Wells were washed 3 times, incubated with anti-mouse IgG-HRP (Jackson 

Immunoresearch) diluted in blocking buffer for 1 hour at 37oC, washed, substrate was 

added and incubated at RT for 30 minutes. Absorbance was measured at 450 nm. 

Liver and Kidney functional status: 

C57BL/6 mice were vaccinated with E7 protein (50µg) + either MPL (25 µg), or 

SA-4-1BBL (25 µg), or the combination of both agents MPL + SA-4-1BBL (25 µg/ 

agent). Mice were sacrificed 18 hours after vaccination. Serum was collected and status 

of liver and kidney function was evaluated by serum alanine transaminase (ALT), 

aspartate transaminase (AST), blood urea nitrogen (BUN), and Creatinin (CREA) levels 

respectively. 

Hematoxylin-eosin staining of liver tissues: 

Mice treated with vaccine formulations as indicated above were terminated 18 h 

post immunization, and livers were collected from each treatment groups. PBS 

vaccinated mice used as negative control. Livers were fixed in 3.7% formaldehyde, 
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embedded in paraffin wax, sliced and stained with Hematoxylin and Eosin for 

pathological analysis. 

Statistical analysis: 

Analysis of variance (ANOVA) was used to compare antibody titers, CD4⁺ and 

CD8⁺ effector T cell responses, and CBA analysis among experimental groups. Two-tail 

student t-test was used to compare the number of each lymphocyte population in the 

spleen, mLN, and dLNs among the experimental groups for toxicity studies. Kaplan-

Meier log-rank test was used to generate the survival curves. 

 

Results 

Expression and purification of recombinant rat Her-2/neu ECD 

To generate a recombinant Her-2/neu protein as a TAA for the therapeutic 

vaccine, we first generated plasmid containing the 6X-His-pTWIN-1 expression vector, 

carrying the rat Her-2/neu ECD cDNA (Fig. 7.A). The recombinant Her-2/neu was 

expressed in bacteria, and its expression was induced with IPTG (Fig. 7.B). However, as 

shown in Fig. 7.B, the protein was degraded. Then, we expressed the rat Her-2/neu ECD 

cDNA in pTWIN-1-6X-His vector (Fig. 8.A), transfected the bacteria with this construct, 

and induced the protein expression with IPTG (Fig. 8.B). Although, we were able to 

express the ECD of rat Her-2/neu protein with the right size (approximately 85 kDa, Fig. 

8.C), after elution the protein was precipitated out and found to have high endotoxin 

levels.  

To overcome the endotoxin issue, we generated plasmid containing the pMT-BiP 

expression vector, carrying the rat Her-2/neu ECD cDNA and Flag residues at C-



63 
 

terminus (Fig. 9.A). The recombinant Her-2/neu was expressed in Drosophila S2 cells, its 

expression was induced with CuSO4 (Fig. 9.B), secreted into the culture supernatant, and 

purified and eluted using anti-FLAG M2 affinity gel and 3xFLAG peptide, respectively. 

The purified protein runs approximately as an 85 kDa band on SDS-PAGE (Fig. 9.C), 

and reacts with anti-ErbB2 antibody on a western blot gel (Fig. 9.D). 

Next, we tested if the A2L2 breast cancer cell line that we are planning to use for 

the tumor studies expresses rat Her-2/neu protein. We evaluated the Her-2/neu expression 

in the tumor cell lysate. As shown in Fig. 9.E, the whole Her-2/neu (185 kDa) was 

detected in the A2L2 cell lysate.  

SA-4-1BBL adjuvanted rat Her-2/neu TAA-based vaccine induces elimination of 

established A2L2 tumors in BALB/c mice 

We examined the therapeutic efficacy of SA-4-1BBL in different preclinical 

tumor models, such as E7 expressing TC-1 tumors [102], and survivin expressing 3LL 

tumors [98, 107]. We sought to investigate whether SA-4-1BBL with demonstrated 

adjuvant activity can generate an anti-tumor efficacy in a more tolerant self-TAA using 

rat Her-2/neu expressing A2L2 mouse breast cancer model in BALB/c mice. 

Immunization with rat Her-2/neu as a TAA and SA-4-1BBL as an adjuvant resulted in 

eradication of A2L2 tumors in 10% of BALB/c mice in a prime-boost setting. Moreover, 

mice that expired from tumor in this treatment group had significantly slow tumor 

progression and prolonged survival as compared to PBS control group (p<0.05; Fig. 

10.A-B). We hypothesized that SA-4-1BBL vaccine efficacy could be improved with the 

recruitment of MPL as a second adjuvant with primary effect on the innate immunity [6, 

201]. A prime-boost immunization with rat Her-2/neu protein mixed with SA-4-1BBL + 
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MPL resulted in the eradication of A2L2 tumors in 30% of BALB/c mice, which 

remained TF over an observation period of 90 days. Further, this combined adjuvant 

treatment resulted in slower tumor progression and prolonged survival significantly as 

compared to control group (p<0.05; Fig. 10.A-B). In contrast, rat Her-2/neu + MPL 

monotherapy did not provide protection and all mice expired from the tumor burden 

within 45 days (Fig. 10.A-B). Taken together, these data demonstrate that SA-4-1BBL + 

MPL as an adjuvant system is effective in eradicating the established A2L2 tumors with 

better therapeutic efficacy than the individual agents, and SA-4-1BBL monotherapy has 

better efficacy than MPL monotherapy.  

MPL induced antibody response against Her-2/neu does not correlate with survival 

Since antibody therapies against Her2/neu have been utilized and trastuzumab 

therapy has demonstrated clinical efficacy [183], generation of humoral response with 

long lasting antibodies against Her-2/neu ECD may increase the anti-tumor efficacy. 

Therefore, we collected serum samples from mice with different treatments as indicated 

above. Serum samples were collected from tumor bearing mice on termination days when 

tumor size reached 12 mm in diameter average and from TF mice on day 59, and 

assessed for anti-Her-2/neu titers. Tumor bearing PBS treated mice did not develop anti-

Her-2/neu antibody response, while mice vaccinated with Her-2/neu + SA-4-1BBL, and 

combined adjuvants generated moderate Ab response, which did not result in statistical 

significance compared to PBS alone (Fig. 11). Two TF mice in the combination treatment 

group were negative for anti-Her-2/neu titers while one mouse showed moderate titer 

against Her-2/neu protein on day 59, and one TF mouse in the SA-4-1BBL monotherapy 

did not generate antibody response for the target antigen. On the other hand, Her-2/neu + 
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MPL vaccination induced significant anti-Her-2/neu titers compared to other treatment 

groups. However, vaccination with Her-2/neu + MPL did not provide protection against 

A2L2 tumor challenge.  

Vaccination with combined adjuvants and rat Her-2/neu induces better anti-tumor 

killing response 

CD8+ T cell effector and memory responses is critical for the elimination of 

primary tumor and control recurrences in various tumor settings [98, 102, 198], and their 

importance in breast cancer has also been determined in preclinical and clinical studies 

[194-197]. As such, the number of tumor infiltrating CD8+ T cells is associated with the 

clinical responsiveness in breast cancer patients and they are critical for the elimination 

of primary tumor and control of metastasis [194-197]. Therefore, we assessed the anti-

tumor killing responses elicited by vaccine formulations containing rat Her-2/neu and 

MPL, or SA-4-1BBL, or MPL + SA-4-1BBL. Mice (n=3 per group) were vaccinated 

twice with 5 days interval s.c. with the same formulations, and euthanized 5 days later to 

test the cytotoxic activity of CD8+ T cells against rat Her-2/neu expressing A2L2 and 

Her-2/neu negative parental cell line 66.3neo breast cancer cells, (Fig. 12.A). Consistent 

with the therapeutic efficacy, vaccination with combined adjuvants generated a better 

A2L2 killing response than single adjuvants, and SA-4-1BBL as monotherapy generated 

better killing responses than MPL monotherapy (Fig. 12.A). The high cytotoxic killing 

response against Her-2/neu negative parental cell line 66.3neo in combined adjuvant 

treatment was not expected (Fig. 12.A). Therefore, we sought to determine the anti-tumor 

killing response in the combined adjuvant therapy against E7 expressing TC-1 cervical 

tumor cells to eliminate the possibility of low Her-2/neu expression on the 66.3 cell line 
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and killing response against other antigens common for both A2L2 and 66.3 cell lines.  

We observed that treatment with combined adjuvants did not result in killing of unrelated 

control TC-1 cervical cancer cells (Fig. 12.B), suggesting that the killing response 

generated by combined adjuvant therapy is not only Her-2/neu antigen specific, but also 

specific for other tumor antigens common for both A2L2 and its parental cell line. This 

might be due to ‘epitope spreading’; as vaccine kills tumor cells, they release more tumor 

associated antigens resulting in generation of immune responses to new epitopes [202]. 

Vaccination with rat HER-2/neu + SA-4-1BBL induces robust antigen specific 

cytokine responses in CD4+ and CD8+ T cells  

Although the importance of CD8+ T cells has been shown in breast cancer [194-

196] for the generation of primary CD8+ T cell responses and the establishment of long-

term memory, CD4+ T cells are also critical to provide help. We, therefore, assessed the 

Th1, and CD8+ T cell effector responses elicited by each vaccine formulations. Mice (n=5 

per group) were primed and boosted s.c. with rat Her-2/neu and either individual agents 

(MPL or SA-4-1BBL) or combination of both adjuvants with 5 days interval and 

euthanized 5 days the boost to test the intracellular cytokine response of CD4+ and CD8+ 

T cells to the dominant Her-266-74 CTL epitope in the vaccine dLNs.  

While vaccination with rat Her-2/neu + MPL did increase antigen-specific IFN-γ, 

IL-2 and TNF-α cytokine production (Fig. 13) in both CD4+ (upper panel) and CD8+ 

(lower panel) T cells, rat Her-2/neu + SA-4-1BBL therapy evoked much stronger 

production in these cytokines in both T cell types (most differences are reaching 

statistically significance; p<0.05, except for IL-2 responses in both CD4+ and CD8+ T 

cells and IFN-γ response in CD8+ T cells, Fig. 13). Interestingly, although vaccination 
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with combined adjuvants was more effective than MPL monotherapy in the generation of 

antigen-specific cytokine responses, it was either equal to (IL-2, and IFN-γ in CD8+ T 

cells) or not as effective as the SA-4-1BBL monotherapy (Fig. 13). Collectively, these 

data demonstrate that: i) vaccination with MPL does induce antigen-specific CD4+ and 

CD8+ cytokine responses, ii) SA-4-1BBL monotherapy induces higher cytokine 

production in both CD4+ and CD8+ T cells then MPL monotherapy, and iii) combined 

adjuvant therapy does not further improve the SA-4-1BBL effect on cytokine responses. 

Indeed, in the generation of some cytokines, it is less effective than SA-4-1BBL 

monotherapy.  

Vaccination with rat HER-2/neu + SA-4-1BBL increases the number of effector T 

cell populations in the dLNs of tumor bearing mice  

Since we observed the synergistic effect of MPL on the SA-4-1BBL therapy in 

therapeutic setting (Fig. 10), we sought to determine the anti-tumor mechanism of the 

vaccine formulations when tumor was in place. For this purpose, mice (n=3 per group) 

were inoculated with A2L2 tumors, and when the tumors were around 3-5 mm, mice 

were primed with the previously indicated vaccine formulations and received the booster 

dose 5 days later. Three days after the boost, absolute numbers of different effector CD4+ 

and CD8+ T cell populations were determined in the dLNs. Vaccination with Her-2/neu + 

SA-4-1BBL generated higher numbers of effector memory (CD44hiCD62Llo), resting 

memory (CD44hiCD62Lhi), and activated (CD69+) CD4+ T cells compared to the PBS 

vaccinated group (control vs. SA-4-1BBL: *** = p<0.001 in CD44hiCD62Llo; * = p<0.05 

in CD44hiCD62Llo; ** = p<0.01 in CD69+ cells; Fig. 14), but in doing so it also increased 

the numbers of these subsets in CD8+ T cells (control vs. SA-4-1BBL: *** = p<0.001 in 
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CD44hiCD62Llo; * = p<0.05 in CD44hiCD62Llo cells; Fig. 14). On the other hand, MPL 

monotherapy did not induce the numbers of effector subsets in CD4+ and CD8+ T cells as 

well as SA-4-1BBL monotherapy, although it was significantly higher than PBS 

vaccinated control group (Fig. 14). Therapy with rat Her-2/neu + both adjuvants did not 

further increase the number of effector CD4+ and CD8+ T cell populations generated by 

SA-4-1BBL monotherapy in the dLNs. Indeed, it was less effective than SA-4-1BBL 

monotherapy in CD8+ effector T cell populations (Fig. 14).  

However, the combined adjuvant therapy induced the highest number of Tregs 

(CD4+CD25+Foxp3+) in the dLNs, which was followed by SA-4-1BBL, and then MPL 

therapy (Fig. 14). Taken together, SA-4-1BBL monotherapy generates higher numbers of 

effector CD4+ and CD8+ T cells then MPL monotherapy, and combined adjuvant therapy 

does not improve the efficacy of SA-4-1BBL in such responses. On the other hand, 

addition of MPL to SA-4-1BBL adjuvanted vaccine enhances the number of Tregs. 

The therapeutic efficacy of SA-4-1BBL + MPL adjuvanted Her-2/neu vaccine is 

associated with the increased pro-inflammatory and decreased anti-inflammatory 

cytokine responses 

In addition to examining the numbers of effector T cell subsets along with Tregs, 

we next determined the functional status of lymphocytes in the setting above mentioned. 

Vaccination induced changes in pro-inflammatory (IL-2, IFN-γ, and TNF-α) and anti-

inflammatory (IL-4, and IL-10) cytokine production by lymphocytes from the dLNs were 

determined in the supernatant of 48 hrs cultured cells (Fig 15). SA-4-1BBL + MPL 

treatment resulted in highest IFN-γ production compared to other therapies (* = p<0.05 

Naive vs. SA-4-1BBL + MPL Fig. 15). However, combined adjuvant therapy did not 
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further improve the SA-4-1BBL efficacy in IL-2 and TNF-α production, and production 

of TNF-α was higher in SA-4-1BBL adjuvanted groups than control or MPL 

monotherapy. On the other hand, SA-4-1BBL monotherapy resulted in the increased 

production of IL-4 and IL-10 cytokines leading to a mixed pro and anti-inflammatory 

response, while addition of MPL decreased the amount of IL-10 (** = p<0.01 SA-4-

1BBL vs SA-4-1BBL + MPL), and IL-4 anti-inflammatory cytokines.  

Combined adjuvant therapy with SA-4-1BBL and MPL generates a significant anti-

tumor effect in tolerogenic BALB/neuT mice  

It has been demonstrated that treatment with agonistic antibodies against 4-1BB 

enhances the immune responses in BALB-neuT mice [203-206]. Therefore, we assessed 

the therapeutic effect of combined adjuvants in a more clinically relevant BALB-neuT 

model. First of all, we verified the expression of rat Her-2/neu gene (233 bp) in 

heterozygous female BALB/neuT mice with PCR (Fig. 16) [207], and used the transgenic 

mice in this study. Eight week old tolerant BALB/neuT mice (n=5) were challenged with 

A2L2 cells on day 0 and vaccinated with Her-2/neu + SA-4-1BBL + MPL on days 5 and 

10, or left untreated (PBS). As shown in Fig. 17, combination of SA-4-1BBL and MPL 

resulted in eradication of A2L2 tumors in 20% of BALB/neuT mice, and mice that 

expired from tumor in this treatment group had significantly slow tumor progression (*= 

p<0.05, Fig. 17.A-B). Since elevated Treg numbers is associated with a poor prognosis of 

cancer patients [208, 209] and depletion of Treg cells results in better immune efficacy of 

therapeutic vaccines [210, 211], we hypothesized that depletion of Treg cells in 

BALB/neuT mice may further increase the efficacy of combined adjuvant therapy. 

Therefore, mice (n=5) were depleted with Treg cells using PC61 mAb two days before 
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tumor challenge, and vaccinated with SA-4-1BBL + MPL adjuvanted Her-2/neu vaccine 

on days 5 and 10 after tumor inoculation. As expected, depletion of Tregs further 

increased the anti-tumor efficacy of combined adjuvant system, and increased the 

survival up to 40% (**= p<0.02, Fig. 17.A-B). Taken together, these data demonstrate 

that SA-4-1BBL + MPL as an adjuvant system is effective in eradicating the transplanted 

A2L2 tumors and prolongation of survival of tumor bearing mice, and depletion of Tregs 

further increase its anti-tumor efficacy. 

Therapeutic efficacy of the SA-4-1BBL + MPL adjuvant system is achieved in the 

absence of detectable toxicity  

           Toxicity and autoimmunity generated by effective self-TAA-based therapeutic 

vaccine formulations using potent adjuvants may lead to termination of the studies, and 

impede future trials [212]. Since, we used combination of two potent adjuvants, SA-4-

1BBL and MPL, for the treatment of breast cancer, we wanted to evaluate the toxicity 

profile of each vaccine formulation in a more relevant exogenous E7 (TAA) expressing 

TC-1 model in Th1 biased C57BL/6 mice, which are more conducive to toxicity studies 

[213]. C57BL/6 mice (n=4 per group) were immunized with each vaccine formulations 

(E7+ MPL, E7 + SA-4-1BBL, or E7 + both adjuvants) and terminated 18 h post-

immunization. Absolute numbers of T cells, B cells, DCs and Macrophages, NK cells and 

NK T cells in the spleen, mLN, and vaccine draining LNs were determined (Table1). We 

also evaluated liver and kidney functional status by measuring serum levels of ALT and 

AST as an indicator of liver function, and BUN and CREA for renal function (n=3 per 

group). Although, liver toxicity was reported in the melanoma patients with anti-4-1BB 

Ab treatment [81], as shown in Fig. 18, there was no significant difference in these 
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enzymes levels in SA-4-1BBL treatment group compared to naïve mice. Moreover, MPL 

monotherapy or combined adjuvant therapy also did not increase these enzyme levels 

compared to naïve mice. We further analyzed the liver tissue histology to evaluate the 

pathology of inflammation in the vaccine treated mice, which appeared normal with no 

observable differences compared to the liver tissues of naïve mice (Fig. 19). Taken 

together, these results indicate that combined adjuvant therapy did not generate detectable 

signs of toxicity, demonstrating the safety profile of this adjuvant system. 

 

Discussion 

One out of 5 women with Her-2/neu expressing mammary carcinoma relapses in 

spite of trastuzumab treatment [214]. To overcome this problem, many active vaccine 

strategies targeting Her-2/neu have been evaluated in clinical studies [182]. These 

strategies include peptide and protein based, DNA based, dendritic cell based, and whole 

tumor cell based vaccines [182]. However, recombinant peptide or protein based vaccines 

require an adjuvant to generate potent anti-tumor immune responses to target Her-2/neu 

protein because of their weak antigenic nature [11, 12]. In the current study, we tested if 

the costimulatory ligand SA-4-1BBL and TLR4 agonist MPL with distinct mechanisms 

of action can serve as a novel adjuvant system for the development of recombinant TAA 

based breast cancer vaccine. Here we demonstrated that MPL synergized with SA-4-

1BBL as the adjuvant component of rat Her-2/neu TAA-based vaccine to generate better 

anti-tumor killing response, enhanced pro-inflammatory, and reduced anti-inflammatory 

cytokine responses that translated into improved therapeutic efficacy in mouse A2L2 
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breast cancer model. More importantly, the combined adjuvant therapy induced the 

eradication of established A2L2 tumors in both BALB/c and more tolerant BALB/neuT 

mice, and its efficacy was further improved with the depletion of Tregs in BALB/neuT 

mice. 

In the case of poorly immunogenic tumors, targeting two arms of immunity using 

TLR ligands and agonists for TNF receptors has been evaluated for the generation of 

potent anti-tumor immune response. As an example, combined stimulation of TLR-9 and 

4-1BB enhances antigen specific CTL responses and induces the rejection of melanoma 

tumors [215]. Here we particularly focused on TLR4 ligand MPL, as an FDA approved 

adjuvant, to activate the innate arm of the immune system, and SA-4-1BBL, as a novel 

adjuvant for the activation of adaptive immunity. MPL interacts with TLR4 on the APCs, 

and induce their activation. This activation leads to the production of proinflammatory 

cytokines and upregulation of costimulatory molecules on the cell surface, which in turn, 

primes adaptive immune responses [6]. However, SA-4-1BBL, binds to the 4-1BB 

receptor on the activated CD4+ and CD8+ T cells, leading to their survival, expansion, 

acquisition of effector function, and long-term immune memory [90, 199, 200]. More 

importantly, 4-1BB costimulation has a predominant effect on CD8+ T cells that are 

critical for the elimination of tumors and generation of long term memory as 

demonstrated in various cancer settings including breast cancer [98, 194-198]. Therefore, 

here we hypothesized that MPL can co-operate with SA-4-1BBL for the activation of 

CD8+ T cells through APC activation and antigen presentation by APCs [216].  

Anti-Her-2/neu antibodies have been detected in breast cancer patients in the 

early stages, enhanced antibody response was observed when Her-2/neu is overexpressed 
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in the primary tumor [183], and antibody treatment against Her-2/neu has shown to be 

efficacious. Although Trastuzumab has been evaluated and shown to be efficacious, its 

mechanism of action is not well known. Some possible action mechanisms are: (1) Her-

2/neu downregulation; (2) reduced signaling of Her-2/neu; (3) inhibition of the shedding 

of Her-2/neu ECD; (4) blocking proliferation, and induction of apoptosis; (5) 

angiogenesis inhibition; and finally induction of Antibody-Dependent Cell-Mediated 

Cytotoxicity (ADCC) [217]. Therefore, in the recombinant protein-based vaccines, 

induction of humoral immunity to generate long-term anti-Her-2/neu titers along with 

cellular response might improve the protective efficacy of such vaccines. In this study, 

we reported that MPL monotherapy induced significant increase in the anti-Her-2/neu 

titers (Fig. 11), but it failed to provide protection. Even though, all these predicted 

mechanisms for Trastuzumab can inhibit the cancer cell growth, not all the antibodies are 

capable of doing so, instead they may stimulate cancer cell growth [218]. It is also 

possible that these different effects are due to epitope specificity of the antibodies and 

changes in signaling pathways [218]. Consistent with this, Ma et al. reported that 

immunization with four different domains of Her-2/neu ECD fused with CD19 scFv 

induced different IgG Ab levels, and while serum from mice immunized with scFv-D3 

induced growth inhibition of SKBR-3 cells despite low titers of IgG Ab, scFv-D1 

immunization did not generate an inhibitory effect despite high anti-Her-2/neu titers 

[219]. Therefore, anti-Her-2/neu antibodies generated by MPL treatment may not be 

helpful for tumor eradication. On the other hand, two TF mice in the combination 

treatment group were negative for anti-Her-2/neu titers while one mouse showed 

moderate titer against Her-2/neu protein on day 59, and one TF mouse in the SA-4-1BBL 
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monotherapy did not generate antibody response for the target antigen. Therefore, further 

studies such as evaluating the neutralization efficacy of the antibodies must be performed 

to understand the relation of antibody response with survival. 

We did not observe the synergistic effect of MPL on the SA-4-1BBL therapy in 

terms of cytokine production in CD4+ and CD8+ T cell subsets in the vaccine dLNs 5 

days after the boost. Instead, SA-4-1BBL monotherapy induced better cytokine responses 

than MPL and combined adjuvant therapy (Fig. 13). However, combined adjuvant 

therapy induced higher numbers of CD4+ and CD8+ T cell producing IFN-γ, TNF-α, and 

IL-2 cytokines than other treatment groups in the spleen (data is not shown). It is possible 

that cytokine producing effector T cells in the combined adjuvant therapy have already 

been migrated into the spleen, and determining such responses 5 days after the boost in 

the dLNs might be a late time-point. Next, we should investigate the cytokine responses 

in the dLNs at earlier time points such as 1 or 3 days after the booster immunization to 

determine the synergistic effect of SA-4-1BBL and MPL combined adjuvant therapy.  

Interestingly, in-vitro stimulation with rat Her-2/neu p66 peptide corresponding to 

H-2Kd-restricted, dominant CTL epitope increased the expression of proinflammatory 

cytokines in CD4+ T cells when compared to negative control (without p66 peptide 

stimulation in the in-vitro culture) (Fig. 13). This could be due to the memory response 

generated by a prime-boost vaccination, since in vivo generated CD8+ T cells were ready 

for a robust antigen specific secondary response in vitro. Therefore, cytokines, such as 

IFN-γ produced by CD8+ T cells in vitro, might have induced the production of Th1 

cytokines by CD4+ T cells. Further, since NK cells also express 4-1BB, IFN-γ produced 
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by in vivo activated NK cells may also enhance CD4+ T cell differentiation into Th1 

subtype, and production of type I cytokines [220-222].  

Although it has been demonstrated that 4-1-BB signaling preferentially activates 

CD8+ T cells over CD4+ T cells by us [102, 103] and others [159, 160], in this study SA-

4-1BBL monotherapy induced the production of inflammatory cytokines in both CD4+ 

and CD8+ T cells (Fig. 13). This could differ between models because Ganguly et al. 

demonstrated that agonistic anti-4-1BB antibody enhances Gag specific CD4+ but not 

CD8+ T cell responses, while membrane-bound 4-1BBL plasmid DNA induces antigen-

specific CD4+ and CD8+ T cell responses in an HIV infection model [175]. Further, these 

results may provide clinical benefit since CD4+ T helper cells significantly contribute to 

generation of antitumor responses [223-225] by providing essential signals to CTLs 

directly [226] or through APCs [227, 228]. 

When tumor was present, MPL worked in synergy with SA-4-1BBL to induce 

pro-inflammatory cytokine IFN-γ production in the lymphocyte cultures from the dLNs 

(Fig. 15). These results are consistent with the clinical outcome (Fig. 10.A-B), and anti-

tumor killing response (Fig. 12) since IFN-γ is required for the induction of MHC class I 

expression which is critical for the antigen specific CTL killing of the cancer cells [229]. 

On the other hand, immunization with Her-2/neu + SA-4-1BBL also induced anti-

inflammatory cytokine IL-10, and IL-4 production, suggesting a mixed response 

generated by SA-4-1BBL. Addition of MPL to SA-4-1BBL adjuvanted vaccine 

decreased the IL-10, and IL-4 production, and shifted the immune response towards 

inflammatory response. However, IL-10 effect on the immune system has been 

controversial since it can suppress the inflammatory cytokine production, while, in doing 
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so, it can induce CTL and NK cytotoxic activity [230-232]. Furthermore, its impact on 

tumor growth has also been controversial since it has been shown that IL-10 suppresses 

tumor growth and inhibits metastasis in several models, including breast cancer [233-

236], while it promotes tumor growth through Stat3 activation [237]. Nevertheless, both 

pro- and anti-inflammatory activity of IL-10 has been shown to be important in rejection 

of melanoma tumors [238]. As a result, the enhanced anti-tumor efficacy by combined 

adjuvant therapy might be due to the generation of a more balanced anti- and pro-

inflammatory response. 

Tregs are the critical players in the escape mechanism of cancer cells from the 

immune system attack [239], and they have a critical effect in tumor progression in 

different tumor models, including breast cancer [208, 240, 241]. Moreover, the number of 

intratumoral Tregs is a prognostic predictor in breast cancer patients [242, 243]. 

Therefore, in cancer immunotherapy, controlling the number and/or function of Tregs is 

another critical aim for better vaccine efficacy. As such, depletion of Tregs using 

antibodies or cyclophosphamide has been shown to improve the anti-tumor efficacy in 

preclinical models [244-247]. Consistent with preclinical studies, breast cancer patients 

with lower numbers of Tregs infiltrated into the tumor after neoadjuvant chemotherapy 

was associated with higher pathological response rates [243]. Our data further supports 

the role of Tregs in the vaccine efficacy since their depletion resulted in increased 

survival in BALB/neuT mice treated with combined adjuvants (Fig. 17.A-B). However, 

the difference was not statistically significant. This could be due to the timing, schedule 

of administration or dose of PC-61 antibody since we only used one dose of PC-61 at one 

time point. On the other hand, the augmented numbers of Tregs in the dLNs of the 
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treatment groups with better therapeutic efficacy was not expected. Combined adjuvant 

therapy induced the highest numbers of Tregs, which was followed by SA-4-1BBL, and 

MPL therapy (Fig. 14). However, our data do not contradict with previously published 

studies by us using SA-4-1BBL and others using agonistic anti-4-1BB antibody where 4-

1BB costimulation enhances the proliferation of Tregs [101, 248]. It is likely that SA-4-

1BBL renders T effector cells resistant to Treg suppression within draining lymph nodes 

and tumor [98, 101], or the high number of infiltrated Tregs in tumor draining lymph 

nodes may be a trafficking issue [72]. Therefore, the increased numbers of Tregs in the 

vaccine dLNs may not be a limiting factor for the efficacy of the SA-4-1BBL adjuvanted 

vaccines. On the other hand, it has been shown that TLR-4 is also expressed on CD4+ T 

effector and Tregs [249, 250], and stimulation with LPS induces Treg survival, 

expansion, and enhances their regulatory function in vivo [250], which might be the 

reason for increased number of Tregs in the dLNs of MPL treated group. Further studies 

must be performed to look at the Treg numbers within the tumor, to evaluate whether SA-

4-1BBL adjuvanted vaccines may suppress the trafficking of Tregs into the tumor. 

Costimulatory molecules have a critical role in generating protective cellular 

immune responses [70, 200]. Agonistic antibodies to costimulatory members of CD28 

and TNFR families are effective in generating immune responses against cancer and 

infectious agents [251-253]. However, agonistic antibodies can cause severe toxicity due 

to nonspecific lymphocyte activation systemically [103, 254], and toxicity generated by 

vaccination is a critical limiting factor. Towards this goal, we have developed the 

costimulatory molecule 4-1BBL in a novel soluble form as a novel adjuvant. As we 

reported previously SA-4-1BBL generates more potent and qualitatively different 
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immunostimulatory activity without detectible toxicity as assessed by systemic cytokine 

response, non-specific lymphoproliferation, lymphomegaly and splenomegaly, and 

hepatitis compared to the agonistic 4-1BB mAb [103]. In this study, we further 

investigated the possible induction of toxicity by two potent immunomodulators. 

Importantly, the therapeutic efficacy of SA-4-1BBL + MPL adjuvant system was 

achieved in the absence of detectable toxicity as assessed by various indicators, such as 

total number of various lymphocyte populations in dLNs, mLNs and spleen (Table 1), 

liver and kidney enzyme levels to determine functional status of these organs (Fig. 18), 

and histological analysis of liver to measure inflammation (Fig. 19). The lack of toxicity 

in SA-4-1BBL monotherapy is consistent with our previously published study where 

treatment of mice with 4-fold higher SA-4-1BBL over the therapeutic dose used in this 

study did not induce toxicity [103]. MPL has also been shown to be safe in preclinical 

and clinical studies [6, 201, 255], and our results further supports the safety of MPL 

adjuvanted vaccine. Therefore, the lack of detectable toxicity in the combined and 

individual adjuvant therapies provides another advantage along with therapeutic efficacy 

for the human use. 

In conclusion, here we demonstrate the efficacy of the SA-4-1BBL + MPL 

adjuvant system in inducing potent anti-tumor killing responses and antigen specific 

production of IFN-γ, a signature cytokine for CTL killing activity, and suppressing the 

anti-inflammatory IL-10 production by generating a more balanced pro- and anti-

inflammatory environment compared to SA-4-1BBL monotherapy which translate into 

potent therapeutic efficacy in Her-2/neu expressing A2L2 breast cancer model. 

Moreover, depletion of Tregs further increases the therapeutic efficacy of the adjuvant 
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system in tolerant BALB/neuT mice. Importantly, the therapeutic efficacy of the vaccines 

was observed in the absence of detectable toxicity which was tested in E7 expressing TC-

1 model. Enhancing the efficacy of individual adjuvants with the combined adjuvant 

therapy emphasizes the importance of combining the adjuvants with different action 

mechanisms for a better therapeutic efficacy. Finally, this combined adjuvant therapy can 

be utilized for other cancers, and infectious diseases for a better efficacy.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 



80 
 

 

 

 

 

 

 

 

 

 

 

Figure 7 

Production of recombinant rat Her-2/neu ECD in bacteria. A) Schematic representation of 

6X-His-pTWIN-1 expression vector with Her-2/neu. B) Coomassie blue staining of 

uninduced and induced samples with IPTG.  
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Figure 8 

Production of recombinant rat Her-2/neu ECD in bacteria. A) Schematic representation of 

pTWIN-1- 6X-His expression vector with Her-2/neu. B) Coomassie blue staining of 

uninduced and induced samples with IPTG. C) Western blot picture of recombinant rat 

Her-2/neu protein as detected by anti-ErbB2 antibody. 
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Figure 9 

Production of recombinant rat Her-2/neu protein ECD in Drosophila S2 cells, and Her-

2/neu expression in A2L2 cells. A) Schematic representation of pMT/BiP expression 

vector with Her-2/neu. B) Coomassie blue staining of CuSO4 induced samples. C) 

Purified rat Her-2/neu pattern (FT: flow through, WB: wash buffer). D) Western blot 

picture of recombinant rat Her-2/neu protein. E) Whole Her-2/neu protein expression in 

A2L2 cell lysate as evaluated by anti-ErbB2 antibody on western blot. 
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Figure 10 

A prime-boost vaccination with SA-4-1BBL and MPL adjuvant system results in 

eradication of established A2L2 tumors. BALB/c mice were challenged s.c. with 1x105 

live rat Her-2/neu expressing A2L2 tumor cells and left untreated (PBS) or vaccinated 

twice s.c. on days 5 and 10 post-tumor challenge with rat Her-2/neu (50 µg) mixed with 

MPL (25 µg), or SA-4-1BBL (25 µg), or combination of both agents (25 µg/agent). A) 

Individual tumor growths in each treatment group. B) Survival comparison of treatment 

groups. *= p<0.05.  
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Figure 11 

A prime-boost vaccination with Her-2/neu + MPL induces significant antibody response. 

Serum was collected from each treatment groups as indicated above on termination day 

of mice when tumor was around 12 mm diameter or on day 59 when tumor was 

eradicated. Anti-Her-2/neu titers were determined by ELISA. Bar graph shows the 

average log titers of anti-Her-2/neu in each treatment group. Dotted line represents the 

limit of detection.*= p<0.02; **= p<0.01. 
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Figure 12 

SA-4-1BBL + MPL adjuvant system induces a strong tumor-specific killing response. 

BALB/c mice were vaccinated twice with 5 days interval with indicated formulations. 5 

days after booster dose injection, lysis of target cells were determined. A) Tumor specific 

lysis of A2L2 and 66.3 neo target cells. B) Tumor specific (A2L2) and non-specific (TC-

1) target cell lysis were determined in mice treated with combined adjuvants.   
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Figure 13 

SA-4-1BBL based Her-2/neu vaccine induces a strong cytokine response. BALB/c mice 

were vaccinated twice with 5 days interval with Her-2/neu and indicated adjuvants. 5 

days after the boost, peptide specific cytokine responses were determined in the dLNs. 

Each graph represents the individual numbers of CD4+CD44
hi

 (Upper panel) and 

CD8+CD44
hi

 (lower panel) T cells producing TNFα, IL-2, and IFNɣ  cytokines. 

Horizontal line represents the mean value of each group. *** = p<0.001; ** = p<0.01; * 

= p<0.05. 
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Figure 14 

Vaccination with Her-2/neu + SA-4-1BBL induces high numbers of effector T cell 

subsets in the dLNs of tumor bearing mice. Tumor bearing (3-5 mm) BALB/c mice were 

vaccinated twice with 5 days interval. 3 days after the boost, absolute numbers of 

different CD4+ and CD8+ T cell populations were determined. Each bar represents the 

mean and S.D. of absolute numbers of T cell subsets in each treatment group. **** = 

p<0.0001; *** = p<0.001; ** = p<0.01; * = p<0.05. 
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Figure 15 

Addition of MPL to the SA-4-1BBL adjuvanted vaccine increases pro-inflammatory and 

decreases anti-inflammatory cytokine production in the dLNs of tumor bearing mice. 

Tumor bearing (3-5 mm) BALB/c mice were vaccinated twice with 5 days interval. 3 

days after the boost, lymphocytes from the dLNs were cultured in the presence of Her-

2/neu protein and p66 peptide for 48h. Culture supernatants were collected and cytokine 

responses were determined by CBA analysis. Each bar represents the mean and S.D. of 

cytokine amount in each treatment group. **** = p< 0.0001; ** = p<0.01; * = p<0.05. 
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Figure 16 

Verification of the expression of rat Her-2/neu gene in BALB/neuT mice with PCR. 

DNA gel picture of Her-2/neu gene (233 bp) in female BALB/neuT mice. 
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Figure 17 

While treatment with SA-4-1BBL and MPL adjuvanted vaccine results in eradication of 

established A2L2 tumors in 20% of BALB/neuT mice, depletion of Tregs further 

improves the vaccine efficacy. BALB/neuT mice were challenged s.c. with 1x105 live rat 

Her-2/neu expressing A2L2 tumor cells and left untreated (PBS) or vaccinated twice s.c. 

on days 5 and 10 post-tumor challenge with rat Her-2/neu (50 µg) mixed with MPL (25 

µg) and SA-4-1BBL (25 µg), or first treated with PC-61 depleting mAb (300 µg) two 

days before tumor inoculation and then treated with the combined adjuvant therapy. A) 

Individual tumor growths of mice in each treatment group. B) Survival comparison of 

treatment groups. *= p<0.05; **= p<0.02.  

 



94 
 

A. Total numbers of lymphocytes in the spleen 

 

 CD4+ T 
cells 

CD8+ T 
cells 

B cells NK cells NK T cells Macropha
ges 

DCs 

Naive 22±2 
(x106) 

 
 

12±2 
(x106) 

 
 

44±4 (x106) 
 

2±0.3 (x106) 
 
 

0.5±0.2 
(x106) 

 
 

0.4±0.1 
(x106) 

 

6±1 (x106) 
 
 

E7+MPL 20±3 
(x106) 

 
 

11±2 
(x106) 

 

44±12 
(x106) 

 

0.9±0.2 
(x106) (**) 

 

0.5±0.2 
(x106) 

 
 
 

0.3±0.2 
(x106) 

 

8±2 (x106) 
 

E7+SA-4-
1BBL 

22±2 
(x106) 

 

12±2 
(x106) 

47±3 (x106) 
 

1±0.1 (x106) 
 
 

0.5±0.1 
(x106) 

 

0.2±0.06 
(x106) (*) 

 
 

8±1 (x106) 
 

E7+MPL+S
A-4-1BBL 

21±4 
(x106) 

 

12±2 
(x106) 

52±10 
(x106) 

 

2±0.5 (x106) 
 
 

0.7±0.2 
(x106) 

 
 

0.4±0.1 
(x106) 

8±1 (x106) 
 

 

B. Total numbers of lymphocytes in the dLNs 

 

 CD4+ T 
cells 

CD8+ T 
cells 

B cells NK cells NK T cells Macropha
ges 

DCs 

Naive 34±20  
(x105) 

 

25±17 
(x105) 

 

15±9 
(x105) 

 

0.38±0.26 
(x105) 

 

0.17±0.15 
(x105) 

 

0.02±0.01 
(x105) 

1.7±1.4 
(x105) 
 
 

E7+MPL 21±5  
(x105) 

 

17±5  
(x105) 

 

14±5  
(x105) 

 

0.19±0.03  
(x105) (*) 

 

0.15±0.12  
(x105) 

 

0.02±0.01 
(x105)  (*) 

2±1.2 (x105) 
 

E7+SA-4-
1BBL 

22±6  
(x105) 

 

18±3  
(x105) 

 

14±6  
(x105) 

 

0.29±0.13  
(x105) 

 

0.11±0.05  
(x105) 

 

0.03±0.02 
(x105) 

1.5±0.7 
(x105) 
 

E7+MPL+S
A-4-1BBL 

24±8 
 (x105) 

 

20±7 
 (x105) 

 

17±7 
 (x105) 

 

0.28±0.06 
 (x105) 

 

0.13±0.04 
 (x105) 

 

0.05±0.01 
(x105) 

1.7±0.6 
(x105) 
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C. Total numbers of lymphocytes in the mLN 

 

 CD4+ T 
cells 

CD8+ T 
cells 

B cells NK cells NK T cells Macropha
ges 

DCs 

Naive 69±24  
(x105) 

 

45±14 
(x105) 

 

50±19 
(x105) 

 

0.7±0.4 
(x105) 

 

0.4±0.2 
(x105) 

 

0.1±0.07 
(x105) 

6±2 (x105) 
 
 

E7+MPL 43±11  
(x105) 

 

32±8.3  
(x105) 

 

29±13  
(x105) 

 

0.3±0.1  
(x105) (*) 

 

0.3±0.07  
(x105) 

 

0.05±0.01 
(x105)  

4±2 (x105) 
 

E7+SA-4-
1BBL 

55±29  
(x105) 

 

34±22  
(x105) 

 

49±16  
(x105) 

 

0.6±0.2  
(x105) 

 

0.3±0.1  
(x105) 

 

0.07±0.02 
(x105) 

5±2 (x105) 
 

E7+MPL+S
A-4-1BBL 

56±18 
 (x105) 

 

38±15 
 (x105) 

 

42±12 
 (x105) 

 

0.5±0.1 
 (x105) 

 

0.3±0.06 
 (x105) 

 

0.07±0.02 
(x105) 

5±1 (x105) 
 

 

 

Table 1 

SA-4-1BBL + MPL adjuvant system does not induce acute lymphocyte recruitment into 

the lymphatic tissues. C57BL/6 mice (n=3 per group) were vaccinated with indicated 

vaccine formulations or left untreated (PBS). 18 h after immunization, mice were 

terminated; spleen, dLNs, and mLN were harvested to determine the absolute numbers of 

indicated lymphocyte subsets. A) Absolute numbers of indicated lymphocytes in the 

spleen. ** p≤ 0.02 in E7+MPL vs E7+MPL+SA-4-1BBL; E7+MPL vs E7+SA-4-1BBL; 

E7+MPL vs Naïve in NK cells. * p≤ 0.05 in E7+SA-4-1BBL vs Naïve in macrophages. 

B) Absolute numbers of indicated lymphocytes in the dLNs. * p≤ 0.05 in E7+MPL vs 

E7+SA-4-1BBL+MPL in NK cells. * p≤ 0.05 in E7+MPL vs E7+SA-4-1BBL+MPL in 

macrophages. C) Absolute numbers of indicated lymphocytes in the mLN. * p≤ 0.05 in 

E7+MPL vs E7+SA-4-1BBL in NK cells.  
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Figure 18 

Treatment with SA-4-1BBL + MPL adjuvant system does not induce liver and kidney 

damage. C57BL/6 mice (n=3 per group) were vaccinated with indicated vaccine 

formulations or left untreated (PBS). 18 h after immunization, serum was collected to 

evaluate the kidney and liver enzyme levels. Rectangle area indicates the normal range 

for each enzyme level. ALT range: 28-132 U/L, AST range: 59-247 U/L, BUN range: 18-

29 mg/dL, CREA range: 0.2-0.8 mg/dL. 
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Figure 19 

Treatment with SA-4-1BBL + MPL adjuvant system does not induce acute lymphocyte 

infiltration into the liver. C57BL/6 mice (n=3 per group) were vaccinated with indicated 

vaccine formulations or left untreated (PBS). 18h after immunization, livers were 

collected to determine the histo-pathology. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE PROSPECTIVES 

 

 Prophylactic vaccines against infections have had a tremendous effect on 

individual health since it has significantly reduced the rate of deadly infectious diseases 

and human mortality. However, historically, vaccines were made from live-attenuated or 

inactivated forms of the microbe and there were concerns about stability, side effects and 

safety. As a result, with the development of molecular biology, different vaccine 

strategies have been investigated to generate new human vaccines. Vaccines based on 

recombinant proteins can overcome the limitations relating to the safety, and present an 

attractive approach because of their safety, ease of transportation, and storage. However, 

recombinant protein-based subunit vaccines are poorly immunogenic and need to be 

administered with adjuvants to generate an efficient appropriate immune response with 

long lasting immune memory against target antigens. 

 Historically, the importance of the humoral immune response for vaccine 

effectiveness has put the emphasis on the development of adjuvants, which are capable of 

enhancing antibody responses. As a result, many adjuvants are effective in increasing 

antibody titers, but do not elicit significant Th1 or CTL responses. However, for some 

viral and intracellular bacterial infections, generation of only antibody response is not 
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enough for the complete protection. In this regard, combination of adjuvants with distinct 

action mechanisms should provide a great potential against such infections. For example, 

combination of TLR ligands that target primarily innate immunity and stimulate Th1 

cytokine responses increases the efficacy of vaccines which primarily target the 

generation of antibody response (AS04 adjuvant system).  

Plague is one of those infections that require both antibody and Th1 cellular 

responses. Therefore, in this study, we utilized SA-4-1BBL that targets primarily 

adaptive immunity as an adjuvant component of prophylactic bubonic plague vaccine 

either alone or in combination with alum that targets the innate immunity to induce the 

generation of cellular immune responses, and enhance the protective efficacy of the 

vaccine. Here, it has been shown that combination of SA-4-1BBL + alum induced a 

robust antigen specific Th1 cytokine response in CD4+ and CD8+ T cells, along with high 

anti-rF1-V titers which lead to 100% efficacy against bubonic plague in a prime-only 

setting, while SA-4-1BBL monotherapy resulted in 20% efficacy without generation of 

antibody response. However, administration of SA-4-1BBL monotherapy twice in a 

prime-boost setting induced robust and long-lasting antibody response and enhanced 

cellular response which translated into 100% efficacy. These results further support the 

requirement of a balanced cellular and humoral response in the case of plague infection, 

and future vaccines should be designed to target both humoral and cellular immunity with 

the utilization of combination adjuvants.  
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Cancer, on the other hand, is a complex disease to overcome since tumor 

microenvironment can highly affect the disease progression and includes multiple cell 

types which interact with each other. Therefore, it affects millions of people and its 

incidence and human mortality is increasing all over the world. Although cancer 

immunotherapy has been chosen as breakthrough of the year for 2013 by Science’s 

editors, as two strategies have been shown to be effective including anti-CTLA-4 

antibody therapy, but the cost of these antibody therapies is too high, $120,000, for a 

course therapy. On the other hand, the complexity of the preparation of individualized 

vaccines limits the use of whole tumor cell and dendritic cell-based vaccines. Therefore, 

development of recombinant sub-unit based vaccines might present an attractive 

approach because of their potential low cost, and ease of production.  

Due to the low immunogenic nature of TAAs, adjuvants should be formulated in 

the subunit vaccines. However, not all the adjuvants are effective to generate anti-tumor 

immune responses with a therapeutic efficacy since the tumor-induced 

immunosuppressive mechanisms in the tumor microenvironment (TME) which are the 

biggest obstacles for therapeutic cancer vaccine development. The immunosuppressive 

mechanisms constitute expansion and/or recruitment of regulatory cells such as Tregs, 

MDSCs, and TAMs within the TME, and production and release of immune suppressive 

soluble factors such as TGF-β, IL-10, IDO via tumor cells. Therefore, immune 

modulators such as antibodies against CTLA-4, and PD-1 have been used to enhance the 

anti-tumor effector responses. However, such strategies are established to block or 

remove negative regulatory mechanisms, and may not be sufficient to induce potent anti-

tumor efficacy due to the lack of the stimulation of antigen specific immune responses, 
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and tumors are also capable of interfering innate and adaptive immune responses to evade 

from immune system attack. In this context, vaccines utilizing adjuvants which can 

modulate innate, adaptive and regulatory immunity will have better efficacy. Therefore, 

here we hypothesize that utilization of SA-4-1BBL as an adjuvant component of 

recombinant Her-2/neu subunit vaccine might improve the therapeutic efficacy of Her-

2/neu positive breast cancer vaccine due to its pleiotropic effects on the cells of innate, 

adaptive, and regulatory immunity either alone or in combination with MPL. 

Furthermore, its expression on the activated CD4+ T, CD8+ T, NK and NK T cells 

provides another advantage to target antigen specific cells of innate and adaptive 

immunity. We show that combination of SA-4-1BBL + MPL generated robust tumor 

specific killing response, and inflammatory cytokine IFN-γ production. The sum of these 

responses translated into better efficacy than the individual agents without detectable 

toxicity. As such, combined adjuvant therapy resulted in 30% eradication of established 

Her-2/neu breast cancer in BALB/c mice, while SA-4-1BBL monotherapy provided 10% 

protection and MPL monotherapy failed to do so. Furthermore, combined adjuvant 

therapy eradicated the tumors in 20% of BALB/neuT mice, while depletion of Tregs 

further improved its efficacy to 40%. These results further support the requirement of 

targeting both innate and adaptive immunity to generate potent immune response to 

eliminate the cancer cells and overcoming immune suppressive mechanisms employed by 

tumors. 

On the other hand, although critical, augmented CTL responses may not translate 

into better anti-tumor efficacy since another obstacle is the trafficking of tumor-reactive 

CTLs into the tumor from the periphery and for the immune surveillance activated 
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effector T cells must accumulate and function within the tumors. In this regard, SA-4-

1BBL seems to be a potential adjuvant candidate since our lab has previously shown that 

SA-4-1BBL adjuvanted HPV E7-based therapeutic cervical cancer vaccine enhances the 

number of infiltrating CD8+ T cells to the tumor, and addition of MPL to the SA-4-1BBL 

therapy further increases the number of intratumoral CD8+ T cells infiltration. Moreover, 

a significant reduction in the number of intratumoral Tregs in mice vaccinated with either 

SA-4-1BBL as a single adjuvant or in combination with MPL has also been observed in 

that study. In this regard, chemokines such as CCL5, CXCL9, CXCL10, and Leukotriene 

B4 receptor BLT1 have been shown to regulate the selective CTL recruitment. Although 

it is not known whether SA-4-1BBL is up-regulating the expression of such chemokines, 

it is likely that it enhances the production of leukocyte chemoattractants due to the high 

CD8+ T cell numbers in the tumor. 

There are three distinct steps that must be achieved to generate effective immunity 

against tumor or infection. First of all, DCs must be activated and present antigens 

derived from tumor, or pathogens. Activation signals could be generated with the 

recruitment of TLR ligands or agonistic antibodies against activating receptors such as 

CD40 in the vaccines. Next, antigen specific T cell activation must be induced in the 

lymphoid organs. In this context, the importance of co-stimulatory molecules for the 

activation of effector T lymphocytes has put the emphasis on the use of the agonists of 

co-stimulatory receptors as adjuvants in vaccines. Now, it has been realized that 

generation of the first signal through antigen presentation is not enough for T cell 

activation; rather this signal should be followed by signals from costimulatory molecules. 

Further, the quality of effector CD4+ and CD8+ T cells is more important than their high 
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quantity. Finally, antigen-specific T cells must be recruited into the site of infection or 

tumor to perform their effector function where immune suppression takes place. Any 

vaccine approaches have to overcome such barriers to be successful. As a result, the 

failure of immunotherapy is very likely, and combining immunotherapies has shown to 

be efficacious and encourage scientists to investigate other combination approaches.  

Although animal models show promising results for immunotherapy, human 

clinical trials have been somewhat disappointing because of the complexity and 

undefined differences between animals and humans. Despite the challenges to translate 

efficacy from animals to humans, vaccines against some infectious diseases and cancers 

have been developed and shown to be efficacious in humans with therapeutic efficacy, 

and some vaccines are already being tested in clinical trials and the ones which are 

effective and safe will be used in near future as well. However, there is still a dire need 

for developing vaccines against various acute and chronic infections and cancer. 

It still remains challenging to develop effective vaccines against infectious 

diseases and cancer with recombinant proteins because of their poor immunogenic nature. 

Development of adjuvants to improve immune response to such vaccines has been 

increased dramatically in the last several years, and some adjuvants are currently 

employed in human vaccines. Targeting 4-1BB receptor presents an attractive approach 

due to its 1) pleiotropic effect on the innate, adaptive, and regulatory immunity, 2)  

expression on the activated but not resting T cells, and 3) CD8+ T cell centric function 

which is critical for the elimination of pathogen infected and tumor cells, and generation 

of immune memory. Moreover, significant progress has been made for the development 

of antibodies specific for 4-1-BB receptor for human use. 
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The promising results from this overall Ph.D. study may provide a new scientific 

rationale for the utility of SA-4-1BBL costimulatory molecule as an adjuvant platform for 

the development of subunit vaccines either alone or in combination with other immune 

stimulators targeting primarily innate immunity against viral or bacterial infections 

requiring both humoral and cellular immune responses, and cancer. Use of immune 

stimulators targeting innate immunity provides enhanced APC activation and function 

which primes T cells, and use of SA-4-1BBL further increases T cell effector functions, 

survival, and memory responses.   

Although treatment with SA-4-1BBL + MPL therapy resulted in eradication of 

transplanted tumors in 30% of BALB/c mice and 20% of more tolerogenic BALB/neuT 

mice, vaccine schedule and dosage should be further evaluated for a better therapeutic 

efficacy. After finding the most efficacious schedule and administration dosage, this 

potent combined adjuvant therapy should be tested for a spontaneous breast cancer model 

in BALB/neuT mice.  Moreover, despite the 100 % protection generated by SA-4-1BBL 

+ alum in prime-only setting, and SA-4-1BBL adjuvanted vaccine in a prime-boost 

setting in the bubonic plague model, this potent adjuvant system should be tested in a 

more clinically relevant pneumonic plague model. To mimic the aerosol exposure to Y. 

pestis, and induce the immune response at mucosal surfaces, the vaccine could be 

administered intranasal. If it demonstrates efficacy in murine model, it should be tested in 

NHP models such as African green monkeys that have been difficult to confer protection. 

Although here we demonstrated effectiveness of the combined adjuvant systems in the 

clearance of intracellular bacteria and cancer, the mechanisms behind these therapies, and 

the synergistic effect should be further investigated for the clinical translation. SA-4-
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1BBL either alone or in combination with other adjuvants targeting different pathways 

should be tested in future pre-clinical models and clinical trials against plague and breast 

cancer. Eventually, testing these adjuvant systems in clinical trials will assess the 

therapeutic potential of these combined adjuvant platforms, and if efficacy is 

demonstrated, they can be utilized against other infection and cancer types.  
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