
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2014

Modulation of the ovarian cancer humoral
response by tumor-derived exosomes.
Carolyn Denise Roberson
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Microbiology Commons, and the Oncology Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Roberson, Carolyn Denise, "Modulation of the ovarian cancer humoral response by tumor-derived exosomes." (2014). Electronic
Theses and Dissertations. Paper 1771.
https://doi.org/10.18297/etd/1771

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=ir.library.louisville.edu%2Fetd%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/694?utm_source=ir.library.louisville.edu%2Fetd%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1771
mailto:thinkir@louisville.edu


 
 

MODULATION OF THE OVARIAN CANCER HUMORAL RESPONSE 

 BY TUMOR-DERIVED EXOSOMES  

 

 

 

 

 

By 

 

Carolyn Denise Roberson 

B.S., Stillman College, 1994 

M.S., Mississippi State University, 1999 

M.S., University of Louisville, 2011 

 

 

 

 

 

A Dissertation  

Submitted to the Faculty of the 

 School of Medicine of the University of Louisville 

In Partial Fulfillment of the Requirements  

for the Degree of 

 

 

 

Doctor of Philosophy 

 

 

Department of Microbiology and Immunology 

University of Louisville 

Louisville, Kentucky 

 

 

 

December 2014



 
 

Copyright 2014 by Carolyn Denise Roberson 

 

 

 

All rights reserved 

 

 

  



 
 

 



ii 
 

MODULATION OF THE OVARIAN CANCER HUMORAL RESPONSE 

BY TUMOR-DERIVED EXOSOMES 

 

By 

 

Carolyn Denise Roberson 

B.S., Stillman College, 1994 

M.S., Mississippi State University, 1999 

M.S., University of Louisville, 2011 

 

A Dissertation Approved on  

 

 

 

 

 

December 4, 2014 

 

 

 

 

by the following Dissertation Committee: 

 

 

 

        

Jill Suttles (Dissertation Co-Director) 

 

 

        

Tom Mitchell 

 

 

        

Jason Chesney 

 

 

        

Haribabu Bodduluri



iii 
 

 

DEDICATION 

 

This dissertation is dedicated to my biggest supporters… my parents, Lewis and Alberta 

Roberson.  Thank you both for always loving me, believing in me, praying for me, and 

encouraging me to do my absolute best. 

  



iv 
 

ACKNOWLEDGMENTS 

 

First and foremost, I must thank God for giving me this dream, for giving me the 

strength and endurance to see it through, and for maintaining my sanity throughout this 

journey. You truly are the reason that I live, breathe, and have my very being.   

On a professional level, I want to thank my mentor from 2010-2013, Dr. Douglas 

D. Taylor. I truly appreciate you “taking a chance” on this teacher who had been out of 

the lab for over 10 years. Your patience, encouragement, financial support, and 

guidance through the early stages of this project were instrumental in reigniting my love 

for research, and for that I will always be grateful. I am also thankful for the friendship 

that I was fortunate to develop with you and your wife, Dr. Cicek Gercel-Taylor while you 

were here at the university. I will always be grateful to you both for the “non-science” 

talks, laughter, and lab outings that we shared over the years. You made my transition 

from teacher to student such a pleasant experience and I will never forget it.  

A very special thanks to Dr. Jill Suttles for accepting me into your lab from 2013-

2014 and taking on the responsibility as my co-mentor in lieu of your husband, Dr. 

Robert Stout. This past year has been one of the most trying times of my life, but you 

made it so much easier to deal with.  You not only made a space for me in your lab, but 

you took an interest in me as a student and took on the responsibilities of guiding me 

and mentoring me, all while doing the same for your own student and managing your 

own loss. You did not have to do any of that, but you did…and I am eternally grateful.   I 

not only respect you as a mentor, but as a person.  From the very depths of my heart, I 

thank you.  Special posthumous thanks to Dr. Robert Stout for his encouragement and 



v 
 

positivity in reference to my project during those early stages when I was still trying to 

“figure things out.”  Thanks to the Suttles lab for accepting me into your lab home and 

into your lives.  

Thanks to my committee members, Dr. Tom Mitchell, Dr. Hari Bodduluri, and Dr. 

Jason Chesney for your invaluable input and guidance over the years. Thanks for 

foreseeing that I needed “a little more time” to get things done. That extra time made all 

the difference in the world. Thank you. 

Thanks to IPIBS for financially supporting me early in my academic pursuit and to 

the Microbiology and Immunology Department for the extended financial and emotional 

support over the last year. You made a somewhat stressful experience a lot more 

manageable by alleviating my financial concerns. Thank you. 

On a personal level, a tremendous thanks to my amazing family.  My parents, 

Lewis and Alberta Roberson… you are my biggest inspirations and the smartest people I 

know. Thank you for your love, your discipline, your prayers, and your encouragement 

over the years…and especially over the last 6 years. There were times when I didn’t 

think that I could go on, but one call to you both would alleviate any doubts that I had in 

myself, my abilities, or my purpose. How truly blessed I am to have you in my life and 

how truly fortunate I am to have you as my parents. I love you more than words can 

express. Thanks to my siblings: Fannie, Jr., Pat, Barbara, Julie and Janice… you guys 

have been wonderful! Thanks for entertaining my email gripes and complaints, thanks 

for the encouraging emails, texts, phone calls, and the continued prayers…you guys are 

the best and I love you deeply.  Thanks to my brother-in-laws and sister-in-law for your 

support and prayers. Thanks to my nieces and nephews for your well wishes over the 

years. Much love to my nephew, Darvin who unexpectedly passed away during my 3rd 

year (may you rest in peace).   



vi 
 

Finally, thanks to all of my wonderful, supportive friends and extended 

family…the Oak Ridge, Tennessee crew and the Louisville, Kentucky crew. You guys 

have been the listening ears and the strong shoulders that I’ve needed on this PhD 

journey. Thanks for the prayers, the laughter, the texts, the emails, the calls, the hugs, 

the “straight talk” and the shared tears...you will never know what you mean to me. I love 

you all. Thanks for your friendship and support.



vii 
 

 

ABSTRACT 

 

MODULATION OF THE OVARIAN CANCER HUMORAL RESPONSE  

BY TUMOR-DERIVED EXOSOMES 

 

Carolyn Denise Roberson 

 

December 4, 2014 

 

The pathogenesis of epithelial ovarian cancer is complicated by its diagnosis 

during the latter stages of the disease resulting from lack of symptoms or from presence 

of symptoms that mimic other conditions.  Because of the often fatal prognosis by the 

time of actual detection, efforts are being made to better understand the host immune 

response to ovarian cancer.  In this study, the contributions of the humoral immune 

response were investigated by focusing on the role of tumor-derived exosomes and their 

ability to modulate humoral immune responses. First, ovarian cancer patient-derived free 

circulating antibodies were investigated for immunoreactivity to patient antigen. The 

immunoreactivity allowed for the mass spectrometry identification of six proteins which 

have been shown to be correlated with cancer pathogenesis. The identity of these 

proteins were confirmed by immunoreactivity of patient-derived antibodies with 

recombinant proteins and their presence on in vivo  and in vitro ovarian tumor-derived 

exosomes (TDE) was defined.  Analysis of the TDE demonstrated bound tumor-reactive 
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immunoglobulin (predominantly IgG1 and IgG2) that exhibited immunoreactivity with the 

identified antigens.  Direct effects of the TDE on the B cell were investigated by 

coculture of B cells with patient TDE at different concentrations and time points. 

Surprisingly, B cells were induced to undergo apoptosis, with the greatest cell death 

seen at the latter time points and with the higher concentrations of exosomes. Apoptosis 

as the mechanism of cell death was confirmed by Western blot analysis with common 

apoptotic markers, PARP and caspase-3, and DNA fragmentation analysis using 

agarose gels.  Further analysis of the supernatant from the B cell/TDE cocultures 

revealed increases in three proteins (PAI-1, IL-16, and sICAM-1).  Collectively, data from 

this study suggests that ovarian patient-TDE express immunogenic antigen that binds 

IgG as a mechanism to divert the humoral antitumor response away from the tumor, 

while utilizing different subclasses to mediate strength of the antitumor response. 

Furthermore, ovarian patient-TDE induce apoptosis of B cells to diminish production of 

antitumor antibodies and promote secretion of proteins to assist the ovarian tumor in 

immune escape and promote its survival.
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CHAPTER 1 

INTRODUCTION 

IMMUNOPHYSIOLOGY OF EPITHELIAL OVARIAN CANCER  
AND THE TUMOR MICROENVIRONMENT 

 

Epithelial Ovarian Cancer 

Recognized as one of the most common malignancies worldwide [1], epithelial 

ovarian cancer (EOC) remains the 5th leading cause of cancer death among women [2] 

and in the United States, stands as the leading cause of gynecologic cancer death [3].  

Approximately, 21,980 U.S. cases are reported each year, with 14,270 estimated deaths 

[4].  From 2006-2010  reduction in mortality rates were documented  in younger ( <65 

years) and older (>65 years)  women (2.8%, 1.7 % respectively)  [5], which provides 

promise for improved future outcomes. Presently, the origins of ovarian cancer are 

undefined, but studies suggest that a number of factors contribute to increased or 

decreased risk for pathogenesis.   Anatomically, the ovarian surface is surrounded by a 

squamous/cuboidal layer of pelvic mesothelium  (called the ovarian surface epithelium—

OSE) which aids in the import/export of materials in the peritoneal cavity and assists with 

rupture and repair of the ovary during cycles of ovulation [6]. The promotion of ovulatory 

repair mechanisms enhances ovarian cell susceptibility to mutations and subsequent 

malignancies [7, 8]. This hypothesis, known as incessant ovulation [7],  has been 

validated by the relationship of the number of lifetime ovulations to risk of disease [9]. 

Studies indicate that decreases in factors such as: the number of full-term pregnancies, 

cycles of lactation, and usage of oral contraceptives are all related to decreases in 

ovarian cancer [10-12].  Other risk factors in ovarian oncogenesis 



2 
 

include excessive hormonal secretion ( e.g. gonadotropins [13] and 

androgens/progestins [14]), inflammation [15], and heredity [9].  Increases in follicle 

stimulating hormone (FSH) and luteinizing hormone (LH) concentration during ovulation 

promotes follicle maturation and ovarian cell division and proliferation, which heightens 

the chances of mutations and malignant transformation [13].  Additionally, the 

concentration of androgens increase within the follicle [16]  which upregulates ovarian 

androgen receptors and stimulates OSE proliferation [17].  Conditions displaying 

increased levels of circulating androgen (e.g.  polycystic ovarian syndrome) have been 

shown to be associated with increased risk of EOC [18], although the evidence linking 

androgen exposure to malignant transformation is variable.  Inflammation has been 

postulated to augment the risk of ovarian cancer through ovarian tumor cell release of 

pro-inflammatory cytokines [19], prostaglandins to promote ovarian tumor cell 

invasiveness [20, 21],  and OSE disruption resulting in the formation of inclusion cysts 

which favor differentiation towards a carcinogenic phenotype  [22].  Of all the risk factors 

associated with ovarian carcinogenesis, heredity has the most compelling impact [23].  

Women who have had multiple relatives diagnosed with ovarian cancer or who have had 

a relative diagnosed prior to 50 years of age display the greatest risk [24].  Inherited 

mutations in the autosomal dominant genes, BRCA1 and BRCA 2, have a strong 

association to familial breast and ovarian cancer [25]. Studies of high risk families 

revealed that the ovarian cancer risk for a woman who has both the familial history and 

the BRCA1 mutation ranges from 32-84%, with lower probability for BRCA2 [26, 27].  

The complexity of ovarian cancer is enhanced by its heterogeneity [28] 

demonstrated through the presentation of numerous histological subtypes [29] . The 

most common EOC subtypes are serous, endometrioid, clear cell, and mucinous [30] 

and are categorized by their primary pattern of differentiation [31].  Further discrimination 

between the EOC subtypes is established through their correlation with different 



3 
 

molecular oncogenetic events [32, 33] and with the stage of disease in which early 

stages are predominantly nonserous [34] and advanced stages are commonly serous 

[35]. There are two staging systems used in classification of ovarian cancer: 1) 

Tumor/Lymph Node/Metastasis (TNM) method and the 2) International Federation of 

Gynecology and Obstetrics (FIGO) system [36].  The TNM system describes the extent 

of the primary tumor (T), the presence or absence of metastasis to nearby lymph nodes 

(N), and the presence or absence of metastasis to distant organs (M) [37]. TNM staging 

includes the letters (T, N, or M) followed by a number (0-4) which indicates increasing 

severity or an X which indicates that the information could not be assessed [38]. The 

FIGO system evaluates the pathological and/or clinical spread of the tumor and 

classifies the results into 4 stages [39], which are further subdivided (A, B, C) to reflect 

specific biological, clinical, or pathological prognostic factors within each stage [40].  

Both systems are used in classification of ovarian carcinomas and display great 

similarity,  but FIGO does not contain a “0” classification (which indicates borderline or 

low potential for malignancy)  and is most frequently used by gynecologic oncologists 

[41].  The staging procedure is performed through exploratory laparotomy in which the 

abdominopelvic organs are examined and the omentum, diaphragm, neighboring lymph 

nodes, and peritoneal fluid are sampled for evidence of cancer [42].  Stage 

classifications include: Stage I (tumor confined to ovaries), Stage II (tumor involves 1 or 

both ovaries with pelvic extension), Stage III (tumor involves 1 or both ovaries with 

cytologically/histologically confirmed spread to the peritoneum outside the pelvis, and/or 

metastasis to the retroperitoneal lymph nodes), and Stage IV (distant metastasis, not 

including metastasis in peritoneum) [43].  The metastatic nature of ovarian cancer can 

be attributed to the exfoliation of the ovarian surface, which releases tumor cells that can 

implant on the peritoneal surface [44] and adjacent organs [45], and/or integrate into the 

peritoneal fluid for transport throughout the peritoneal cavity [45]. Since no anatomical 
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barrier exists between the ovary and other abdominopelvic organs [44], the entire 

peritoneal cavity is susceptible to metastatic lesions, designating the peritoneal cavity as 

the preferred site of metastasis [45].  Dissemination into the peritoneal cavity is generally 

followed by formation of ascites [45].  Under normal physiological conditions, capillary 

dynamics allow for the constant filtration of fluid into the peritoneum (to lubricate the 

serosal surfaces) and its partial reabsorption through the lymphatic channels of the 

diaphragm to eventually reunite with the blood circulation [46].  However, when 

peritoneal dissemination occurs, fluid accumulates (resulting from enhanced vascular 

permeability and lymphatic obstruction) [46, 47] and creates an imbalance in the rate of 

reabsorption, which leads to ascites formation.  The presence of malignant ascites is 

one of the general symptoms detected upon initial diagnosis [48] and can be presented 

in early stages (stage IC and IIC), but is most often seen in advanced disease (stage III 

and IV) [43].     

The pathogenesis of ovarian cancer is further complicated by the latent diagnosis 

[49], the unknown time requirement for the developmental period of invasive disease 

[50], and the decreased reliability of early detection methods [51].  Unfortunately, EOC is 

generally diagnosed at latter stages because of the lack of symptoms or presence of 

symptoms that could be indicative of other conditions (e.g. abdominal, gastrointestinal, 

urinary, pelvic) [52].  Current approaches for detection include a physical examination to 

detect the presence of a pelvic mass [53] , and serum screening for cancer antigen 125 

(CA-125) in conjunction with transvaginal ultrasonography (TVUS) [50] to detect 

changes in ovarian size and structure. Although serum levels of CA-125 are found to be 

elevated in 90% of advanced epithelial cancer patients [54], 50% of stage I patients also 

present elevated levels [55-57].  The nonspecificity of CA-125 [55, 56] and the 

subsequent variation in interpretation, scoring, and sensitivity of TVUS [58] warrants the 

discovery of specific biomarkers and /or detection methods with enhanced efficacy.  
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The Tumor Microenvironment and Humoral Immune Responses 

The tumor microenvironment consists of the tumor and its surrounding 

extracellular matrix, extensive vasculature, various proteins, and a variety of cellular 

components.  Because of its dynamic nature, the tumor microenvironment continuously 

evolves, resulting in alterations in the tissue, alterations in the metabolic capabilities of 

the tumor, and in the recruitment of cells to the microenvironment [59].  These 

components interact with surrounding cytokine signals  [60] to generate the functional 

paradox of the tumor microenvironment manifested through the promotion of 

antitumorigenic vs. protumorigenic responses.  This paradox forms the foundation  of the 

cancer immunoediting hypothesis which emphasizes the tumor-destroying  and tumor-

promoting functions of the immune system [61]. Antitumor responses are important for 

resistance of tumor growth and the eventual elimination of the tumor. As  a key 

component in cancer immunosurveillance, elimination works in conjunction with the 

tumor suppressor mechanisms that are intrinsic to the cell [62].  Utilizing both innate and 

adaptive responses, the mechanism of elimination collectively recognizes and presents 

tumor antigen, recruits innate immune cells into the tumor [63, 64], and generates tumor 

antigen-specific T cells [65] which home to the tumor and contributes to tumor 

destruction [66].  In consideration of the adaptive immune responses, elimination of the 

tumor primarily occurs through cell-mediated immunity [67]. However, humoral antitumor 

responses have been documented to occur.  In the humoral antitumor response, specific 

antibodies are produced against tumor antigen [68], and may kill the tumor by 

complement-dependent cytotoxicity (CDC; complement protein C1q binds Fc portion of 

antibody bound to antigen to trigger complement cascade) or antibody-dependent 

cellular cytotoxicity (ADCC; immune effector cells bind Fc portion of antibody bound to 

antigen via Fc receptors and mediate cytotoxicity) [69].  Immunogenic tumor antigen 

may be tumor-specific (unique to cancer cells) or tumor-associated (differential 
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expression between cancer cells and normal cells) [70] and its expression may be 

initiated by increases in the immunogenicity of self antigen [71] resulting from DNA 

mutation (causing subsequent mutation in protein), protein overexpression, and/or 

protein post-translational modification [72]. Humoral immune responses against a variety 

of extracellular and cellular proteins have been documented in multiple cancers [73].  

Free and immune-complexed natural antibodies to human MUC1 (a primary mucin in the 

ductal cell surface of normal glandular cells) have been identified in the circulation of 

breast cancer patients [74]. Autoantibodies against p53 have been documented in 

increased levels in gastric [75] and ovarian cancers [76]. In these aforementioned cases, 

the enhancement of antibodies correlated with a positive prognosis.  However, other 

humoral response studies to tumor antigen such as: NY-ESO-1 (in prostate cancer [77]), 

p53 (in breast [78], colorectal [79, 80], vulvar [81] and ovarian [82, 83] cancers), and 

MUC5AC (in colorectal cancer [84]), indicated associations with poor prognoses. The 

variation in prognoses and recognition of tumor antigen contributes to the complexity in 

understanding the role of autoantibodies in the humoral antitumor response. 

Those tumor cells that are not eradicated by the antitumor response may enter into 

equilibrium, the second phase of cancer immunoediting which involves the immunologic 

control of cellular outgrowth [61] and the “sculpting” of cells to produce new tumor 

variants [85] to result in dormancy of the tumor [61]. In the event that these tumor 

variants successfully evade innate and adaptive immunological defenses [85], they may 

transition into the escape phase (the third phase of immunoediting [86]), as a 

consequence of tolerance induction [87] , host immune modifications in editing the 

tumor, or enhanced immunosuppression in the tumor microenvironment [61].  

Modifications in the edited tumor target may range from decreased antigen recognition 

(e.g. loss of major histocompatibility complex (MHC I), loss of antigen processing) [61] to 

promotion of anti- apoptotic mechanisms (e.g. constitutive activation of STAT3 to 
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promote high levels of Bcl-xL [88]), which collectively promote survival of the tumor 

variants. Generation of an immunosuppressive tumor microenvironment can be 

facilitated through tumor cell-immunosuppressive cytokine release (e.g. vascular 

endothelial growth factor (VEGF) [87],  tumor growth factor- beta (TGF-) [89], 

indoleamine 2,3-dioxygenase (IDO) [90]) to inhibit dendritic and T cell effector function, 

recruitment of suppressive cellular populations (regulatory T cell (Treg) and myeloid-

derived suppressor cell (MDSC)) [91] to inhibit host antitumor responses, and chronic 

inflammation (resulting in continuous generation of pro-inflammatory factors) [92, 93] to 

disrupt host immune cell responses and signal transduction pathways [94].  The 

heterogeneity of the tumor microenvironment provides a complex, yet ideal setting for 

intercommunication between the cellular, stromal, and environmental components of the 

host in order to regulate and promote tumor progression. Continuous 

intercommunication is necessary in order to ensure productive growth and dissemination 

of the tumor [95]. Emerging evidence suggests that tumor-derived exosomes (TDE) are 

key contributors to intercommunication and are involved in both evasion of antitumor 

responses and promotion of protumor responses.  

Tumor-Derived Exosomes and their Role in Modulation of the Tumor 
Microenvironment 
 

Exosomes are endosome-derived nanovesicles secreted from a number of 

different cell types including immune cells (mast cells, [96, 97], dendritic cells [98], 

macrophages [99], T cells [100, 101], B cells [98, 102]), epithelial [103]  and neural 

[104]cells,  and tumor cells. The release of exosomes is acknowledged to be important 

in intercellular communication [105], and TDE have been shown to interact with their 

targets through a number of mechanisms ranging from direct stimulation of the target 

through exosome expression of surface ligands to acceptance of surface receptors from 

the tumor cell [106].  In addition to surface interactions with their target, TDE have also 
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been documented to transfer genetic information resulting in genetic transformation in 

their target [107].  The efficacy of exosomes as vehicles of intercellular communication is 

related to the three-dimensional structure of their proteins which enhances the stability of 

the exosome and protects the biological activity of the exosome protein [108].   The 

protein composition of exosomes is correlated (but not identical) to the cell from which 

the exosome is derived.   Therefore, TDE express tumor-related antigens, but are not 

molecular duplicates of the plasma membrane of their parental tumor cells. Instead, they 

represent a ‘micromap’ that displays increased expression of antigens associated with 

the tumor [109, 110].  TDE are abundantly found in plasma and malignant effusions 

derived from cancer patients [111-113], and their accumulation in malignant fluids 

appears to be instrumental in the transformation process [114].  Studies indicate that 

increased release of exosomes facilitates communication between the tumor 

microenvironment and the tumor cell [115, 116], and has been documented to contribute 

to the anti- and protumorigenic effects on the tumor.  TDE have been shown to induce 

specific antitumor responses after being exposed to stress which induced expression of 

molecules on (MHC, CD80, CD86) [117] or in (HSP70) [118] the exosome.  Utilizing their 

expression of tumor antigen, TDE have been used to pulse dendritic cells which resulted 

in cross-presentation of tumor antigen to induce CD8+T responses against the tumor 

[113].  From the humoral immune perspective, the antitumor response is demonstrated 

through the production of specific antibodies against tumor antigen [68], which is often 

correlated with poor survival [119].These antibodies may be deposited as IgG 

autoantibodies in the neoplastic parenchyma [120] or released into the circulation as free 

entities and/or associated with microvesicles/exosomes [112, 121].  Despite the 

presence of tumor-reactive IgG in the circulation of patients with various cancers 

including head and neck [122], melanoma [123], breast [124, 125], and ovarian [121, 

126, 127], an effective humoral antitumor response fails to be mounted. Protumorigenic 
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effects mediated by TDE range from regulation of tumor growth to invasion, 

angiogenesis, and metastasis [128-130] through expression of molecules such as matrix 

metalloproteinases (MMP-2, MMP-9)[131, 132] and horizontal transfer of growth factor 

receptors (EGFRvIII)[107]. Additionally, TDE have been shown to directly and indirectly 

modulate evasion of anti-tumor responses provided by effector T cells to assist in 

progression. Melanoma-derived exosomes have been shown to promote monocyte 

production of myeloid-derived suppressor cells [129] which can act to suppress T-cell 

responses [133, 134]. Ovarian TDE demonstrate induced apoptosis of T cells by 

enhanced expression of FasL on the exosomes and CD3-zeta suppression on the T cell 

[135], while nasopharyngeal TDE have been shown to express increased galectin-9 to 

induce T cell apoptosis via Tim-3 [136].  

Hypothesis and Goals 

Since the interaction of TDE with other immune cells is pleiotropic, it stands to 

reason that the TDE may also exert effects on B cells that could manipulate both anti- 

and protumorigenic constituents of the tumor microenvironment. Although it has 

previously been shown that B cells can produce exosomes that can activate T cells [102] 

and these exosomes have a number of targets including B cells [137], follicular dendritic 

cells [138], allergen-specific T cells [139], therapeutic CD20 antibodies [140], and 

cytokine-activated fibroblasts [141], little is known about the effects of TDE on B cells. A 

study conducted by Yang et al., 2012 revealed that mycoplasma-infected TDE 

preferentially activated B cells and induced robust pro- and anti-inflammatory cytokine 

production in splenic B cells [142]. However, that study focused more on the 

mycoplasma-inducing effects of the exosomes on immunomodulation. This study has 

primary interests in reasons behind the apparent, yet inefficient humoral response to 

ovarian cancer, and is proposing that TDE are exerting effects on B cells to mediate not 

only the humoral antitumor response, but also immunomodulation to support progression 
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of the tumor. Using human ovarian cancer as a model system, the hypothesis is that 

ovarian TDE compromise the functional ability of B cells to generate an adequate 

humoral antitumor response and exploit the B cell to modify the tumor microenvironment 

to support the tumor.  The main goals of this study are to investigate the role of the TDE 

in the efficacy of the humoral antitumor response and explore their impact on humoral 

modulation through 1) Characterization of the immunoreactivity of ovarian cancer 

patient-derived free antibodies and utilizing that reactivity to define ovarian tumor-

associated antigens; 2) Isolation and classification of ovarian cancer patient-derived 

exosome-associated antibodies;  and 3) Analysis of the effects of ovarian cancer patient-

derived exosomes on B cells. 
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CHAPTER 2 

IDENTIFICATION OF IMMUNOREACTIVE TUMOR ANTIGEN USING 
 CIRCULATING FREE HUMORAL RESPONSES 

 

Introduction 

In the cancer microenvironment, antigens are functionally and/or structurally 

altered by overexpression, mutation, aberrant degradation, or post-translational 

modification that makes them immunogenic [143]. In an effective immune response, 

these immunogenic proteins are detected and an antitumor response is promoted to 

eliminate the transformed precursors before they establish malignancy. Effective 

elimination is characterized by the simultaneous collaboration of innate and adaptive 

cell-mediated and humoral responses [144]. In the adaptive antitumor response, T cells 

(with cognate TCR) recognize tumor-associated antigen processed/presented on the 

MHC of antigen-presenting cells (APC)[145], along with subsequent costimulation [146] 

and cytokine expression for facilitation and maintenance of the response [147]. 

Elimination of the tumor  is accomplished through the activation of cytotoxic T (CTL) 

cells to induce tumor cell apoptosis [148], activation of CD4+T cells to promote cellular 

responses through stimulation of APC presentation of antigen [149], and promotion of 

humoral responses through activation of  B cells to produce antigen-specific antibodies 

that enhance tumor cell uptake by APCs [150]. The primary antitumor response is 

facilitated by the cellular arm of the adaptive immune system [151], however, humoral 

responses to tumor antigen are clearly demonstrated through the production of antitumor 

antibodies [152-154]. This production of antibodies is presented as elevated IgG in the 
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blood and sera [155-157].  As the most abundant plasma immunoglobulin [157], IgG is 

expressed through subclasses IgG1-IgG4, can exist in the circulation prior to detection 

of circulating antigen [143, 152, 158] and is long-lived, which allows for efficient 

opsonization of the target and complement activation against the target [157]. In ovarian 

cancer sera, levels of tumor-reactive IgG are elevated [159], suggesting intact humoral 

immunity in ovarian cancer patients and an effective humoral antitumor response. 

However, in the midst of this IgG-laden environment, ovarian tumors continue to thrive. 

A key factor in the progression of transformed cells to malignancy is the tumor 

microenvironment [160]. The tumor microenvironment consists of a number of cellular 

participants including immune cells which are critical for suppression of tumor growth 

[160]. However, the functional activities of these immune cells are often 

counterregulated by tumor cell expression and release of a number of biologic 

components [128] which act to promote the growth and metastatic progression of the 

tumor [161]. One essential biologic component in growth and progression is the tumor-

derived exosome (TDE).  Although the release of exosomes occurs in non-neoplastic 

cells, their accumulation in normal biological fluids is rare [162]. In contrast, TDE are 

abundant in malignant and pleural effusions [129, 163], but the effects of their presence 

on the survival of the tumor cell is somewhat ambiguous [164]. The majority of the 

available evidence suggests that TDE play a more active role in promoting progression 

of the tumor [164]. TDE have been documented to transfer and/or shed molecules in 

order to promote progression. TDE from mesothelioma and prostate cancer cell lines 

were found to transfer TGF-1 to fibroblasts and trigger their differentiation into 

myofibroblasts [165], which generate chemical and mechanical conditions  to encourage 

tumor progression [166].  Melanoma and liver carcinoma cells were found to release 

TDE that contain major histocompatibility chain (MHC-I) related chain ligands (MIC- A, 

MIC-B) as a means to subvert recognition by its receptor, natural killer group 2 member 
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D ( NKG2D), on natural killer (NK) and cytotoxic T (CD8+T) cells [167], thereby 

subverting cytolysis.  Another mechanism used by exosomes in tumor progression 

involves dampening the immune response against tumors.  Melanoma exosomes in the 

blood promoted the conversion of peripheral blood monocytes to myeloid-derived 

suppressor cells (MDSC) [133].  As a different means of dampening the immune 

response, ovarian cancer exosomes were shown to enhance FasL expression on their 

surface and suppress CD3-zetato stimulate tumor-reactive T cell apoptosis [135].  In 

addition, studies with melanoma TDE have demonstrated capabilities in programming 

the pre-metastatic niche and bone marrow progenitors toward a pro-metastatic, pro-

vasculogenic phenotype to support tumor growth and metastasis [168].   

Since TDE can mediate the progression of the tumor and its evasion of cellular 

antitumor responses, perhaps they may also intervene in the humoral antitumor 

response, thereby permitting further development of the tumor. Utilizing these circulating 

antitumor antibodies to identify  immunoreactive antigens may divulge proteins that are 

essential to carcinogenesis [51]. Likewise, analysis of antigens associated with TDE may 

unlock the mysteries of the existent, yet inadequate humoral response needed for 

efficient eradication of the tumor and the role of the TDE in tumor progression and the 

humoral response. We suggest that the circulating free and TDE-associated humoral 

immune response can be used to identify specific tumor-associated antigen, which in the 

context of TDE may be a mechanism for diverting the immune response from the tumor. 

Using human ovarian cancer as our model system, we investigate immunoreactivity of 

tumor-associated antigen of ovarian patient cancer cells, patient in vivo and in vitro-TDE 

antigen and patient-derived free antibodies. We establish that ovarian tumor-derived 

exosomes express tumor-associated antigen which is recognized by tumor-reactive 

antibodies, thereby indicating a role for TDE in the ovarian antitumor humoral response. 
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Materials and Methods 

Patient sera, Ascites, and Cell Lines 

Biofluids (sera or ascites) used in this study were derived from patients 

diagnosed with Stage III (T3c) serous carcinoma (designated UL-124,-167,-190,-207,-

351,-398), mucinous adenocarcinoma (UL-324), carcinosarcoma (designated UL-224), 

teratoma (designated UL-184), and serous/endometrioid mixed carcinoma (designated 

UL-472). Samples were obtained from the Gynecologic Oncology Repository at the 

University of Louisville, under an approved IRB protocol. Additional information about 

ascites sample UL-309 was unavailable. Control sera were derived from age-matched 

women with no evidence of ovarian disease. Primary ovarian tumor cell cultures were 

established from UL-124 ascites. Primary cultures were grown in 75 cm2 tissue culture 

flasks initially in Hyclone RPMI 1640 medium (ThermoScientific) supplemented with 

2mM L-glutamine, 10% fetal bovine serum (FBS, Biowest), 1mM sodium pyruvate 

(CellGro, Mediatech),  0.1 mM nonessential amino acids (CellGro, Mediatech), and 100 

units/mL penicillin-streptomycin (Gibco, Invitrogen) in a humidified incubator at 37C with 

5% CO2. After assurance of confluence, cells were transferred into Ultraculture General 

Purpose Serum-Free Media without L-glutamine, but supplemented with the same 

amount of sodium pyruvate, non-essential amino acids, and penicillin-streptomycin. Cell 

viability was evaluated by trypan blue exclusion and all cultures utilized were >95% 

viable. 

Preparation of Tumor Cell Lysates 

Prior to harvesting of cells, culture supernatant was removed and saved for 

subsequent culture exosome isolation. Cells were rinsed twice with cold Hyclone 

DPBS/Modified (ThermoScientific) and were solubilized with RIPA Buffer (1X, Pierce) 

supplemented with protease inhibitor cocktail III (100X, RPI) and phosphatase inhibitor II 
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(100X, Sigma).  RIPA-solubilized cells were kept on ice for 5-10 minutes and then cells 

were collected using a cell scraper. Solubilized cell lysate was collected into 1.5 mL 

microcentrifuge tubes (Eppendorf) and centrifuged at 14,000 x g for 15 minutes at 4C to 

pellet the cell debris. Resulting supernatant was collected and assayed for total protein 

by the Bradford assay (Bio-Rad) using bovine serum albumin (BSA) as a standard. 

Preparation of Tumor Cell Lysate for 1st Dimension Focusing  

To ensure low conductivity and reduced charged agent presence in the UL-124 

lysate, multiple samples of 100 g lysate were “cleaned up” using the Perfect-FOCUS kit 

(G-Biosciences) according to manufacturer’s instructions in preparation for isoelectric 

focusing and 2DE. Post clean-up, the protein pellets were rehydrated (according to 

manufacturer’s instructions) in 2D-Xtract Chaotropic Extraction Buffer (G-Biosciences) 

with the addition of 50 mM dithiothreitol (DTT), and 0.2% Bio-Lyte 3/10 Ampholyte (Bio-

Rad). Rehydrated protein was added to ReadyStrip Immobilized pH Gradient (IPG) 

Strips (11 cm, pH 3-10 NL, BioRad) placed into the Immobiline DryStrip Reswelling Tray 

(Pharmacia Biotech). Tray was sealed and strips were allowed to rehydrate overnight at 

room temperature. To facilitate the 1st dimension run, the Multiphor II Electrophoresis 

Unit (Pharmacia Biotech) attached to an Isotemp 1016S Refrigerated Heated 

Recirculating Waterbath was set to 20C and the protocol for 1st dimension focusing was 

followed. In short, PlusOne DryStrip Cover Fluid (Pharmacia Biotech) was added to the 

surfaces of the Multiphor II and Immobiline Strip Tray (Pharmacia Biotech). A drystrip 

aligner (GE Healthcare) was placed into the strip tray and the rehydrated IPG strips were 

placed into the aligner with the acidic end properly aligned. Two 11 cm IEF electrode 

strips (Pharmacia Biotech) were moistened with ddH2O and placed on top of the strips at 

the cathode and anode ends and covered by the electrodes. Strips were focused 16h 
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(300 V, 1h; 1400 V, 15h) using an EPS 3501XL Electrophoresis Power Supply 

(Pharmacia Biotech).  

IPG SDS-PAGE and Analysis of Immunoreactivity 

In preparation for 2nd dimension SDS-PAGE, IPG strips were equilibrated in 2 mL 

of IPG-Strip Equilibration Buffer (G-Biosciences) with 2% DTT (Research Products 

International, RPI) and incubated for 15 minutes at room temperature on a Mistral Multi-

Mixer (LabLine), low setting.  Incubation was repeated with IPG-Strip Equilibration Buffer 

with 2.5% iodoacetamide (Sigma). Criterion Tris-HCl IPG + 1 well gradient (8-16%) 

polyacrylamide gels (BioRad) were equilibrated for 10 minutes using 1X 

Tris/Glycine/SDS (TGS) buffer (10X, BioRad) on a Criterion Cell electrophoresis cell (Bio 

Rad). Post equilibration, strips were rinsed in 1X TGS buffer. An agarose sealing 

solution (G-Biosciences) was placed into the IPG well on the aforementioned Criterion 

Tris-HCl gel and the IPG strip placed into the well. Once the agarose had solidified, the 

single well was loaded with Precision Plus Protein Dual Color Standard (BioRad) and 

SDS-PAGE was carried out using the Criterion Cell and Power Pac 300 (BioRad). Gels 

were silver stained (BioRad) or subjected to Western blotting. Western blotting was 

performed using the Criterion Blotter (BioRad) and immunoreactivity patterns defined by 

probing membranes overnight at 4C with patient sera, diluted 1:250, followed by 

peroxidase-conjugated anti-human IgGAM  (1:4000, Sigma).  Dilution of sera was 

determined by serial dilution to identify the optimal dilution to distinguish seropositive 

patients and seronegative controls. Bound immune complexes were visualized by 

Immune Star HRP chemiluminescence (BioRad) and the resulting film was analyzed for 

similarity in reactivity between different sera. Bands/spots corresponding to similar 

reactivity were cut out of the silver stained gel and analyzed by mass spectrometry 

(Vanderbilt University, Nashville, TN).  
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Isolation of Tumor Cell Protein by Rotofor Fractionation 

Tumor cell lysate was desalted by column chromatography using P6 Desalting 

Gel (BioRad) and resulting protein was assayed by the Bradford method.  Desalted 

protein concentration was used to determine amount of ampholyte to combine with the 

protein sample. Desalted protein was combined with 0.5% Bio-Lyte 3/10 Ampholyte (Bio-

Rad) and ddH2O and loaded onto the Rotofor Cell (BioRad). Protein was focused for 4 h 

using the PowerPacHV (BioRad) under recirculated refrigeration. Focused proteins were 

collected into 20 fractions and the pH and protein concentration acquired for each.  50 

g protein of each fraction were loaded onto a Criterion Tris HCl 4-15% (BioRad) gel, 

electrophoretically separated, and silver stained or analyzed by Western blotting. 

Membranes were probed at 4C overnight with patient sera (1:250) followed by 

peroxidase-conjugated anti-human IgGAM (1:4000, Sigma).  Bound immune complexes 

were visualized by Immune Star HRP chemiluminescence (BioRad) and the resulting 

film was analyzed for similarity in reactivity between different sera.  Thirteen bands 

corresponding to shared immunoreactivity were cut out of the rotofor fractionated-silver 

stained gel and analyzed by mass spectrometry (Vanderbilt University, Nashville, TN).  

Mass Spectrometry (MS) Sample Preparation: In-Gel Digestion Procedure 

 Silver-stained protein gel bands were rinsed with water thoroughly to remove 

residual acetic acid. Fresh reducing reagents (30 mM of potassium ferricyanide, 100 mM 

of sodium thiosulfate) in a 1:1 ratio were mixed and immediately added in sufficient 

volume to cover the gel piece. Once the silver-brown color in each gel piece 

disappeared, the reducers were removed.  The gel slice was washed with HPLC H2O 

and 100 mM of NH4HCO3, alternatively, until the gel piece was clear.  Each gel slice was 

diced into small pieces (1 mm2) and placed into a clean tube, then washed twice with 

100 L (or enough to cover the gel pieces) of 25 mM NH4HCO3/50% ACN with vortexing 
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for 10 minutes.  The gel pieces were completely dried by Speedvac.  Dried gel pieces 

were partially rehydrated with 5 L of 100 mM NH4HCO3 and the proteins reduced in 25 

L of 10 mM DTT in 25 mM NH4HCO3 for 1 hr at 56C.  Supernatant was removed and 

discarded and proteins were alkylated with 25 L of 55 mM iodoacetamide in 25 mM 

NH4HCO3 in the dark for 45 minutes at room temperature. Gel pieces were washed 

twice in 100 L of 100 mM NH4HCO3 (with vortexing for 10 minutes), dehydrated with 

100 L of 25mM NH4HCO3 in 50% ACN (with vortexing for 5 minutes, repeated once), 

and were completely dried by Speedvac for 20 minutes.  Dried gel pieces were 

rehydrated with 5L of trypsin solution (0.1 g/mL trypsin in 100 mM NH4HCO3), and 

50-70 L of 100 mM NH4HCO3 was added until the gel pieces returned to their original 

size. Digestion was carried out overnight at 37C and then stopped by the addition of 1.5 

L of trifluoroacetic acid. The resulting peptides were recovered by two-25 minute 

extractions using 30 L of 50% ACN/5% formic acid at room temperature with 20 minute 

vortex/5 minute sonication cycles. The extracts were combined and dried in a Speedvac. 

The tryptic peptides were reconstituted in 25 L of HPLC water with 0.1% formic acid.  

Peptide separation and MS/MS analysis 

Digested peptides were separated and mass analyzed using an Eksigent Nano-

LC system connected to a LTQ Velos (Thermo Fisher Scientific) ion trap mass 

spectrometer.  Briefly, tryptic peptides were loaded onto a 150 m ID microcapillary 

fused silica pre-column, which was in-house packed with 4 cm x 5m C18 resin (Jupiter 

C18, 5 m particle size, 300Å pore size). The C18 trap column was coupled to a 

nanoflow analytical column packed with 10 cm of 3 m C18 reverse-phase resin (Jupiter 

C18, 3 m particle size, 300 Å pore size) constructed with an integrated electrospray 

emitter tip. Peptides were eluted with a 90 minute gradient (from 2%ACN with 0.1% FA 
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to 35% ACN with 0.1% FA) over 35 minutes, followed by 35% ACN to 90% ACN over 15 

minutes at a flow rate of 0.5 µL per minute. The LTQ Velos mass spectrometer was 

operated in data-dependent mode in which an initial MS scan was recorded, the mass-

to-charge range 300-2000u, and the 5 most abundant ions were selected for subsequent 

collision-induced dissociation. Dynamic exclusion (repeat count 1, exclusion list size 

150, and exclusion duration 60s) was enabled to allow detection of less abundant ions.  

MS Data Analysis  

LC-MS/MS raw files were converted into .dta files by a custom ScanSifter 

algorithm. Spectra that contained fewer than 25 peaks or that had less than 2e1 

measured total ion current were removed. DTA files for singly charged precursor ions 

were created if 90% of the total ion current occurred below the precursor ion m/z ratio 

and all other spectra were processed for doubly and triply charged ions. DTA files were 

searched against the human protein database Uniprot-human 155_200907_rev with 

20,914 total protein entries using the SEQUEST algorithm.  The search parameters used 

allowed for the following differential modifications: +57 on cysteine and +16 on 

methionine. SEQUEST-searched files (pepXML) were imported into ID Picker software 

for protein assembly. Results were filtered using the following criteria: a minimum 

peptide length of five amino acids,  a minimum of one unique peptide per protein 

(modifications to cysteines or methionines were not considered distinct from the 

unmodified peptides), overall maximum false positive rate (FDR) of 5%, a minimum of 

two additional peptides to establish a unique protein group, one protein reported per 

protein group, and single protein groups indicated by proteins that share the same set of 

peptides (indiscernible from each other based on available data).  

Verification of Mass Spectrometry-Identified Ovarian Cancer Antigen  

To verify the presence of the ovarian cancer antigen identified by mass 

spectrometry, immunoprecipitation of immune complexes was performed using Protein 
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G HP SpinTrap columns (GE Healthcare) and True Blot anti-rabbit or anti-mouse Ig IP 

Beads (eBioscience). In short, UL-124 serum-containing and serum-free lysate was 

precleared by combining 520 g lysate protein to a SpinTrap column or to 50 L of the 

anti-rabbit /anti-mouse Ig IP beads.  Lysate and beads were incubated at 4C on a 

Labquake rotisserie shaker (Barnstead Thermolyne) for 1 hour, centrifuged to acquire 

the precleared lysate, and protein concentration of precleared lysate obtained by the 

Bradford method. For SpinTrap IP: Commercial antibodies corresponding to the mass 

spec-identified antigens were conjugated to the Protein G SpinTrap matrix (20 g 

protein/column) for 3-4 hours at room temperature (with rotisserie rocking) and the 

Protein G SpinTrap cross-link protocol was followed.  Antibodies used include: GRP-78 

[rabbit polyclonal, Santa Cruz Biotechnology [SCBT], annexin 2, cathepsin D, alpha-

enolase, HSC 70, and PDI--all mouse monoclonal (SCBT). Tris-buffered saline (TBS) 

was used as an IP control.  Unconjugated antibody was removed and precleared lysate 

mixed with TBS was added to the conjugated Protein G SpinTrap beads for incubation 

overnight at 4C.  Supernatant was collected by centrifugation and the cross-link 

protocol was continued. Bound antigen was eluted using 0.1M glycine/urea as an elution 

buffer and Bradford protein assay performed. For dot blot analysis, 5 L (0.5 g) of each 

antigen sample (in duplicate) were spotted onto individual nitrocellulose membranes 

(BioRad) and allowed to air dry.  BSA (1 mg/mL) and HeLa or A431 (epidermoid 

carcinoma cell line) lysate were used as negative and positive controls respectively. 

Membranes were blocked in 5% nonfat milk/TBST, washed with 1X TBST (TBS + 0.1% 

Tween-20) and incubated at 4C overnight with corresponding commercial antibodies 

(diluted 1:1000) and control or ovarian patient sera (diluted 1:250). Secondary HRP goat 

anti-mouse/anti-rabbit (1:5000, BioRad) or peroxidase-conjugated anti-human IgGAM 

(1:4000, Sigma) was added and immunoreactivity analyzed by Immune Star HRP 



21 
 

chemiluminescence (BioRad).  For TrueBlot IP:  5 g of the aforementioned antibodies 

were added to the precleared lysate, incubated with rotisserie mixing for 3h at 4C , and 

the incubated GRP-78/lysate sample added to the True Blot anti-rabbit beads with the 

remaining Ab/lysate samples added to the anti-mouse beads for an overnight incubation 

at 4C.  Post incubation, supernatant was collected by centrifugation at 10,000 x g, 

beads were washed 3x in cold NP-40 Lysis Buffer (50 mM Tris HCl, pH 8, 150 mM NaCl, 

1% NP-40), supernatant aspirated, and beads combined with 50 L of 1 X Laemmli. 

Beads were boiled and centrifuged to collect supernatant containing the 

immunoprecipitated antigen.  Immunoprecipitated antigen samples were loaded onto 

Mini-Protean TGX Precast Gels (4-15%, BioRad), electrophoretically separated, and 

analyzed by Western blotting.  Membranes were blocked and probed overnight at 4C 

with corresponding commercial antibodies as previously mentioned. Secondary rabbit 

and mouse TrueBlot anti-rabbit/anti-mouse IgG HRP (eBioscience) was added followed 

by analysis of immunoreactivity using Immune Star HRP chemiluminescence (BioRad). 

Recognition of Recombinant Proteins by Ovarian Cancer Sera Antibodies 

To verify recognition of the mass spectrometry-identified proteins by ovarian 

cancer sera, 0.2 g human recombinant protein for GRP-78, Annexin 2, Cathepsin D, 

PDI (all from ProSpec Bio), Alpha-enolase (American Research Products), and HSC70 

(Enzo Life Sciences) were combined with 4X LDS Nonreducing Buffer 

(ThermoScientific), loaded onto a 10% SDS-PAGE gel, and analyzed by Western blot 

using sera from a non-cancer control (Ctrl, 1:250) and ovarian cancer patients [serous 

carcinoma (sample 167, 351, 398), serous adenocarcinoma (sample 190, 207), and 

mucinous adenocarcinoma (sample 324)]. All ovarian sera were used at 1:250 with the 

exception of the mucinous sample (1:100), due to lack of detection at the greater 

dilution. In addition, the recombinant proteins were probed with a mixture of commercial 
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antibodies against the identified proteins (1:1000) to further ensure detection of the 

recombinant antigen.   

Isolation of Ovarian TDE and Analysis of TDE Immunoreactivity 

Exosomes were isolated from ovarian tumor-patient (UL-124) ascites, serum-

containing and serum-free conditioned ovarian tumor culture media, patient ascites (UL-

472, UL-309, UL-316, UL-224) and a non-cancer serum control (NCC) by a two-step 

procedure developed in our laboratory [126].  In short, ascites and media (100 mL) were 

concentrated by ultrafiltration and applied to a 2% agarose (ABT) chromatography 

column (1.5 x 20 cm) equilibrated with ddH2O.  Fractions (1 mL) were collected and the 

absorbance (280 nm) of the elution was monitored. Fractions containing material greater 

than 50 million Daltons were obtained and ultrafiltrated, and the quantity of protein was 

assayed by the Bradford method.  15 g (UL-124 ascites and culture-derived) and/or 10 

g (remaining ascites) of exosome protein was mixed with 1X  Laemmli sample buffer, 

loaded on a 10% SDS-PAGE gel, and analyzed by Western blot.  Immunoreactivity of 

tumor-exosome derived protein was assayed by commercial antibodies (Santa Cruz and 

Cell Signaling Technology) corresponding to mass spectrometry-identified proteins as 

mentioned previously. 

Results 

Recognition of Ovarian Tumor Antigens by Patient Sera Antibodies 

In the initial two-dimensional gel electrophoretic (2-DE) analysis, traditional 

isoelectric focusing of ovarian tumor antigenic protein was evaluated by silver staining of 

IPG SDS-PAGE gels containing focused protein followed by Western blot with serum 

antibodies from an ovarian carcinosarcoma patient (UL-224) and an ovarian teratoma 

patient (UL-184). Bands corresponding to shared recognition between sera were 

subjected to mass spectrometry. As a comparative focusing tool to traditional IEF, 
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rotofor fractionation was used in a separate analysis, although it is typically used as a 

means of pre-fractionation to reduce complexity of crude protein.  Ovarian tumor 

antigenic protein was rotofor fractionated and the protein content of each fraction 

evaluated by silver-stain of gradient gels and subsequent Western blot with serum 

antibodies from patient UL-224 (Fig. 1A) and UL-184 (Fig. 1B). Thirteen bands (as 

indicated in figure 1) were randomly chosen for mass spectrometry analysis.  Similar 

reactivity between patient-derived antibodies to antigenic protein was noted with some 

variation in intensity (stronger recognition with UL-224: fraction 12; stronger recognition 

with UL-184: fraction 9, lower band).  

Confirmation of Ovarian Tumor Antigens by Patient Antibodies 

Mass spectrometry analysis identified multiple proteins. From the analysis, six 

proteins [GRP 78 (glucose-related protein 78), annexin 2, cathepsin D, alpha-enolase, 

HSC70, and PDI (protein disulfide isomerase)] were selected for focus due to their high 

or low protein scores, their association with tumor survival, and/or their present status as 

a potential biomarker. In order to verify the presence of these antigenic proteins in the 

ovarian cancer lysate sample, True Blot bead and Protein G SpinTrap Column 

immunoprecipitation was performed by complexing UL-124 serum-containing or serum-

free culture lysate with commercial antibodies corresponding to the proteins of interest, 

subjecting the eluted antigen to Western and dot blot, and probing with the commercial 

antibodies corresponding to the antigens of interest. For the dot blot assays, captured 

antigens were applied to the membrane in duplicate. Immunoreactivity of precipitated 

antigen for all antigens of interest were detected by dot blot (Fig. 2A) and confirmed by 

Western (Fig. 2B).  

Validation of Sera Antibody Detection Using Recombinant Proteins 

   Humoral responses in detection of GRP 78, annexin 2, cathepsin D, alpha-

enolase, HSC70 and PDI were evaluated by Western blot with sera from patients with 
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grade 3 serous adenocarcinoma/carcinoma and grade 1 mucinous adenocarcinoma. 

Using serous adenocarcinoma/carcinoma patient antibodies (Fig. 3A-E), Western blot 

identified the presence of annexin 2, alpha-enolase, and HSC70 with variations in 

intensities and isoforms between samples. Preliminary assays for antigen detection by 

serum revealed minimal detection of cathepsin D by the serous samples tested, with the 

exception of sample 351. Out of the serous carcinoma samples assayed, sample 351 

displayed lone recognition of the intermediate cathepsin D isoform (~46 kDa). 

Additionally, reactivity to isoforms of HSC70 (~30 kDa) and annexin 2 (~75-90 kDa) were 

detected in varying degrees by the serous samples. Mucinous adenocarcinoma patient 

antibodies (Fig. 3F) detected GRP78 and alpha-enolase, and faintly detected the 

intermediate form of cathepsin D (~46 kDa). Additionally, the higher molecular weight 

isoform was detected with annexin 2, as seen in some of the serous samples. A mixture 

of commercial antibodies (Fig. 3G) corresponding to recombinant proteins of interest) 

was utilized to detect viability of the antibodies and their ability to recognize the antigens 

at their standard molecular weights.  Of the 6 antigens assayed, the commercial 

antibodies recognized GRP78, annexin 2 (both isoforms), alpha-enolase, and PDI. 

Identification of recombinant antigens using serum antibodies from normal, non-cancer 

presenting controls (Fig. 3H) similarly recognized alpha-enolase and HSC70 at its 

standard molecular weight and the lower molecular weight form.  

Analysis of Ovarian Tumor-Reactive Antigens in in vivo and in vitro-derived  
Ovarian TDE 

 To determine whether ovarian tumor-derived exosomes are enriched with the 

same antigens identified by mass spectrometry of ovarian tumor cells, exosomes from 

UL-124 ascites or cell culture (with and without serum) were probed with commercial 

antibodies against the antigens of interest from the mass spectrometry analysis.  

Western blot analysis of ascites-derived and culture-derived exosomes demonstrated 
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the presence of GRP 78, alpha-enolase, PDI, and varying isoforms of cathepsin D (Fig. 

4). The presence of the cathepsin D active intermediate enzyme (~46 kDa) was detected 

in all samples, while the immature proenzyme (52-60 kDa) was detected in ascites and 

the serum-containing culture. The active mature form (~33 kDa) was detected in ascites 

only. Variation in recognition was seen between the culture-derived samples, particularly 

in the serum-containing identification of annexin 2 and HSC70, whose expression was 

shared in the ascites sample (Fig. 4). It is known that cells grown in serum-free media 

are more sensitive to factors such as pH, temperature, mechanical stresses etc., which 

can affect growth and may alter molecular expression. 

 Concern was raised over the multiplicity of bands detected in the in vivo-derived 

tumor exosomes from patient UL-124, which could suggest lack of specificity of the 

commercial antibodies used. In order to clarify presence of the tumor-reactive antigens 

in in vivo-derived exosomes, several patient-exosome samples were used and were 

probed with a different set of commercial antibodies.  Western blot analyses revealed 

the presence of annexin 2 (A2) as double bands ~38 kDa in patient samples UL-472, -

309, -124,-316 with faint recognition in patient sample UL-224 and no recognition in the 

corresponding non-cancer control (Fig. 5A). Utilizing the new anti-Enolase-1 (alpha-

enolase) antibody, however, presented an interesting result.  While the positive cellular 

control exhibited recognition at ~47 kDa (corresponding to Enolase-1), three of the 

exosome samples recognized bands at a lower molecular weight, around 30 kDa. We 

surmise that this lower molecular weight band is the isoform of enolase-1, c-myc binding 

protein-1 (MBP-1, 37 kDa) (Fig. 5B) or potentially an alternative splice variant of 

enolase-1. 

Discussion 

 Cellular proteins present in the tumor microenvironment can be functionally 

and/or structurally altered, resulting in their ability to become immunogenic and provoke 
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an autoantibody response.  These autoantibodies reflect responses to tumor-associated 

(differentially expressed on normal and cancer cells) [70] antigens and can be detected 

in the circulation regardless of the magnitude of tumor associated-antigen expression or 

tumor size [169].  As a result of the long-lived humoral response, the antigen presence is 

“amplified,” which facilitates ease in detection [170] . Since autoantibodies act as 

sentinels of aberrant cellular activity [171] and their presence reflects the execution of a 

humoral immune response to the tumor, detailed analysis of their immunoreactivity can 

provide a clearer understanding of the tumor associated-antigens that they recognize 

and their role in tumorigenesis.   

Progress in the characterization of human cancers has been attained through 

proteomic analyses of cancer-associated serum proteins [172]. Proteomic analysis 

involves extensive characterization of proteins, including identification of any 

modifications and interactions, and structural determination of isoforms and related 

functional components [173].  Traditional approaches to quantitative analysis of 

proteomes involve high resolution separation of the proteins (by size and charge) using 

2DE accompanied by identification of the resolved proteins using mass spectrometry 

(MS) [174, 175].  Protein profiles from such analyses can reveal differential protein 

expression between samples which may denote key molecules that are critical to protein 

function. 

In the investigation of the ovarian cancer patient humoral antitumor response, 

this study approaches the use of patient serum autoantibodies in the detection of ovarian 

cancer specific-antigenic protein.  Proteomic analysis allowed for the identification of 

numerous proteins with six of particular interest (GRP78, annexin 2, cathepsin D, alpha-

enolase, HSC70, and PDI) due to their roles in tumor survival and present status as 

potential biomarkers in different cancers.  Here, the identities of these antigenic proteins 

were confirmed by Western and dot blot analyses. One concern in this study was the 
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effects of denaturation on the ability of the antigenic protein to be recognized by our 

commercial antibodies. Hence, we utilized both Western and dot blot analysis to reduce 

the likelihood of “overlooking” the detection of the antigens. As expected, there was 

variability in detection between Western and dot blot analysis of some of the antigenic 

proteins, namely annexin 2, HSC70, and PDI. Dot blot analysis revealed detection of all 

antigens, while Western blot resulted in definitive detection of GRP 78, cathepsin D, and 

alpha-enolase.  

GRP78 (also known as BiP--binding immunoglobulin protein), a member of the 

heat shock protein 70 family, is a molecular chaperone commonly housed in the lumen 

of the endoplasmic reticulum (ER), and its increased expression in the ER is 

instrumental in allowing neoplastic cells to endure the tumor microenvironment [176]. It 

is also expressed on the cell surface in various cancers [177], and its location on the 

surface has been documented to form complexes with ligands important in signal 

transduction [178, 179].  Cell-surface expression of GRP78 in cancer cells has been 

shown to activate pathways that induce cellular survival and proliferation [180, 181], and 

to correlate with the expression of circulating autoantibodies in prostate [182] and 

ovarian [183-185] cancers. Previous studies of circulating ovarian cancer sera 

autoantibodies by the Taylor lab demonstrated recognition of GRP78 and cathepsin D 

(immature proenzyme form and mature form) in ovarian cancer patients [183]. In this 

study, immunoprecipitated antigen probed with commercial antibodies revealed bands 

~75 kDa (corresponding to GRP78), ~48 kDa (corresponding to the intermediate form of 

cathepsin D), and ~47 kDa (corresponding to alpha-enolase).  Cathepsin D is an 

aspartic lysosomal peptidase with a variety of functions including: degradation of 

proteins (intracellular [186], cytoskeletal [187],) activation/degradation of growth factors 

and chemokines [188, 189] , and activation of enzymatic precursors [190].  Synthesis of 

cathepsin D occurs by the rough ER as a “pre-pro” protein which loses its leader 
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sequence (“pre” portion) upon entering the ER lumen.  Processing of the single 

polypeptide immature (pro) form (52 kDa) of cathepsin D occurs through the transport of 

the protein through endosomal compartments and  involves removal of the pro-peptide 

to form the active intermediate isoform (48 kDa).  Eventual formation of the double-

chained mature isoform (34 kDa heavy chain, 14 kDa light chain) takes place in the 

lysosome [191].  The proteolytic activity is seen at the level of the endosome and 

lysosome compartments as a result of the acidic pH of the compartment environment 

[192]. Although present in normal cells, its overexpression has been reported in a 

number of cancers [193]. Functionally, cathepsin D is believed to act on tumor growth 

and metastasis by assisting with stromal remodeling, and affect angiogenesis of tumors 

through the stimulation of endothelial and cancer cells [194].  In the induction of 

apoptosis of human T cells,  cathepsin D appears to be the result of translocation from 

the lysosomes to the cytosol, which triggers Bax (apoptotic-inducing protein) activation 

to induce expression of apoptosis-inducing factor (AIF) [192].  Alpha-enolase is a 

glycolytic enzyme important in the catalysis of 2-phospho-D-glycerate (PGA) to 

phosphoenolpyruvate [195], and is upregulated under stressful conditions, like hypoxia, 

in order to mediate enhanced anaerobic metabolism [196]. Increased autoantibodies 

against alpha-enolase have been recorded in some cases of organ-specific 

autoimmunity [197], and in a number of metastatic cell lines [195]. This study indicates 

strong recognition of immunoprecipitated ovarian cancer antigen by commercial anti-

cathepsin D and alpha-enolase antibodies.  Consistent recognition of human 

recombinant alpha-enolase was seen by serous adenocarcinoma/carcinoma and 

mucinous adenocarcinoma serum antibodies with variation in cathepsin D and GRP78 

recognition between sera types. Additionally, recombinant alpha-enolase was also 

recognized by non-cancer controls.  GRP78 and alpha-enolase were also detected in all 

3 exosome samples, with detection of all 3 isotypes of cathepsin D among the exosome 
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samples. Exosome-associated antibodies also recognized alpha-enolase with faint 

detection of GRP78. Our data suggests that GRP78, cathepsin D, and alpha-enolase 

are tumor-associated antigens that are transported to the released exosome, and elicit a 

humoral response, indicated by the presence of antibodies to these molecules. 

During cellular quiescent phases, the translation of alpha-enolase is virtually 

undetectable but is upregulated in cellular growth phases [198, 199]. In the translation 

process, alpha-enolase can use an alternative start codon which yields the production of 

a 37 kDa isosform, c-myc promoter binding protein (MBP-1), which binds to c-myc P2 

promoter to negatively regulate transcription of c-myc [200], and lacks the enzyme 

activity of enolase [200, 201].  c-myc is an oncogene, commonly overexpressed in the 

majority of human cancers [202], and is responsible for a number of pleiotropic effects at 

the cellular (increases proliferation, metabolic transformation, metastasis) and molecular 

(increases glycolysis, protein biosynthesis, mitochondrial function) levels [203].  

Exogenous expression of MBP-1 has been shown to arrest growth in chronic myeloid 

leukemia cells [204], to suppress proliferation in non-small cell lung cancer [205], and to 

induce death of neuroblastoma cells [206]. The expression of MBP-1 in TDE may play a 

role in the anti- and protumorigenic functions of the TDE.  From the antitumorigenic 

perspective, the transport of MBP-1 in the TDE may be a mechanism for delivery to 

other tumor cells in order to induce c-myc suppression, thereby affecting tumorigenesis. 

In a study conducted by Ghosh et al.( 2002), the transduction of MBP-1 in MCF-7 

(breast carcinoma) cells acted to induce cytochrome c release from the mitochondria, 

which subsequently activated procaspases and cleavage of poly ADP-ribose polymerase 

(PARP) to initiate apoptosis [207].  From the protumorigenic perspective, tumor cells 

may shed MBP-1 in their exosomes as a mechanism to lose the suppressive constraints 

on c-myc so that the tumor cell can continue to proliferate.   
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Annexins are calcium-binding proteins with functions ranging from trafficking of 

vesicles, to apoptosis and regulation of cellular growth [208].  Annexin 2 is a key 

mediator in the plasminogen activator system, in which plasminogen binds to annexin 2 

and is converted to plasmin by tissue plasminogen activator (t-PA) and urokinase 

plasminogen activator (u-PA)  to promote production of products important in clot 

dissolution and wound healing [209].  Located on the surface of endothelial cells and 

various tumor cells [210, 211], annexin 2 can exist as a monomer (~36 kDa) or a 

heterotetramer (~90 kDa) where it complexes with S100A10 (p11), a cell surface 

receptor that regulates the generation of plasmin. Correspondingly, annexin 2 can bind 

to other proteins (e.g. tenascin C, procathepsin B) to facilitate proteolysis leading to 

extracellular matrix degradation instrumental in tumor progression, invasion, and 

metastasis [211].  Because of its functional importance in fibrin production, dysregulation 

of annexin 2 compromises fibrinolysis and may interfere with the proteolytic processes 

needed to ensure tumor dissemination. In disorders characterized by thrombosis (i.e. 

lupus and antiphospholipid syndrome), autoantibodies to annexin 2 were identified, and 

their presence is speculated to be key contributors to pathogenesis [212].  In the context 

of cancer, a study of sera from lung cancer patients displayed IgG1 and IgM 

autoantibodies to annexin 2, which were not seen in the non-cancer controls [213].  In 

our studies, the cellular presence of annexin 2 was validated by dot blot, while both 

isoforms were detected in the patient ascites TDE. In the group of patient TDE samples, 

the presence of annexin 2 was presented as double bands; however, it is not clear as to 

why.  It is known that proteins can undergo post-translational modifications which can 

alter the protein, and previous studies indicate modifications of annexin 2 by 

phosphorylation of tyrosine [214], splice variant formation [215], and partial proteolysis 

[216] .  Investigation of the immunoreactivity of ovarian cancer patient serum antibodies 

confirmed recognition primarily of the heterotetramer form of the antigen.  Annexin 2 is 
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also integral to cancer progression [217] by influencing migration, proliferation, and 

metastasis. Expression of annexin 2 is varied in different types of cancers [218] with 

increased expression in pancreatic [219] and breast [220] cancers, but variable 

expression in prostate cancer [221, 222].   In prostate cancer, annexin 2 has been 

shown to regulate adhesion and migration to endothelial cells and osteoblasts [223].  

Ovexpression of annexin 2 in multiple myeloma [224] and gastric cancer [225] has been 

shown to enhance proliferation and metastasis, respectively.  Conversely, the 

knockdown of annexin 2 by siRNA demonstrated the reduction in glioma migration [226]  

and multiple myeloma invasion [224].   

Chaperone proteins, HSC70 and PDI were detected by dot blot assay and were 

found to be associated with patient ascites and serum-containing TDE, with additional 

detection of PDI in serum-free TDE. HSC70 is a constitutively expressed cytoplasmic 

protein which binds to new peptides exiting the ribosomes to protect the hydrophobic 

residues from inefficient interactions [227]. Additionally, it can catalyze the disassembly 

of clathrin cages [227] and has been implicated in the regulation of tumorigenesis and 

apoptosis [228]. With the assistance of co-chaperones, HSC70 can be recruited to the 

intracellular membrane [227], but can be released from cells as a result of active 

secretion [229]. Humoral autoimmune reactions against HSC70 have been documented 

in patients with cancer-associated retinopathy (characterized by visual loss and 

impairment) an ocular manifestation of underlying cancer, generally small-cell lung 

carcinoma [230].   These autoantibodies are believed to contribute to the pathogenesis 

of the retinopathy and may not necessarily target the cancer, although other studies 

indicate that sera from cancer-associated retinopathy patients are immunoreactive to 

HSC70 protein from the tumor cell [231, 232].  In establishing malignancy, an 

interrelationship between cathepsin D and HSC70 has been documented.  Studies of a 

cell line transfected with cathepsin D showed that overexpression of cathepsin D 
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resulted in an increase in the malignant phenotype of the transformed cells [233]. 

Subsequent studies of these cells revealed that this overexpression prevented the 

release of HSC70, which led to the malignant phenotype [229]. In our study, the 

expression of cathepsin D was seen in the ovarian cancer cells and all cathepsin D 

isoforms on the exosomes. However, the ovarian patient serum antibodies failed to 

detect cathepsin D in all cases. The antigen expression of cathepsin D, the lack of 

antibodies to cathepsin D, and the reduced HSC70 expression on the cells may indicate 

a “protective” mechanism used by the tumor in order to maintain high cathepsin D 

expression so that HSC70 release can be minimized, and the tumor growth can be 

maintained. Furthermore, the exosome expression of all 3 isoforms may act to “block” 

recognition of antigen on the tumor cell, thereby protecting the tumor from 

immunosurveillance. PDI is a key endoplasmic reticulum chaperone that catalyzes the 

breakage of disulfide bonds within a protein and rearranges them to form the native 

protein [234]. Because accumulation of misfolded proteins in the cell can lead to 

enhanced cellular stress and death [234], upregulation of PDI can act to reduce stress-

associated apoptosis [235].  In the manifestation of an antitumor response to 

spontaneous hepatic carcinoma, PDI autoantibodies have been identified in Long Evans 

Cinnamon rats [236].   At the present, there appears to be minimal information on 

autoantibody production against PDI in humans. However, human immune responses to 

PDI have been documented. Studies of IgA in human tears revealed immunoreactivity to 

PDI in Toxoplasma gondii [237, 238].  Human PDI-family member, ERp5, has been 

shown to promote shedding of MICA from epithelial tumors [239].  MICA is the ligand for 

NK group member 2D (NKG2D) receptor on NK, CD8+T, NKT, and T cells [240] and 

upon ligation, activates cytolysis of the target cell.  Tumor-derived exosomes have been 

shown to express MICA/B, which downregulates NKG2D expression to reduce NKG2D-

mediated killing [241, 242].  In our studies, PDI was strongly expressed in ascites TDE, 
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with less expression in the culture-derived exosomes. Expression of PDI in TDE may 

participate in the facilitation of MICA expression, resulting in interference of innate and 

adaptive immune effector cell function against the tumor, thereby contributing to tumor 

survival. 

TDE do express tumor antigen, and antibodies to those antigens may be 

expressed in the biologic fluids of the tumor patient, as indicated in this study. However, 

those antibodies do not effectively mediate an antitumor response that sufficiently 

eliminates the tumor. We propose that the tumor cell expresses certain antigens in their 

exosomes in order to divert the humoral immune response away from the tumor, thereby 

preventing its effective detection and elimination and allowing for progression. Because 

of the defined presence of autoantibodies in the circulation, and the known association 

of antibodies with exosomes, we further wanted to investigate the antibodies associated 

with these ovarian TDE to potentially gain greater insight on the ineffective antitumor 

response. 
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MOLECULE NAME 

 
BIOLOGICAL FUNCTION 

 
CELLULAR LOCATION 

 
SIGNIFICANCE IN CANCER 

 
 

GRP78 (BiP, HSPA5) 

 
Assists in unfolded protein response 
Binds Ca

2+
; assists in Ca

2+ 
homeostasis 

(Induced by glucose deprivation) 
 

 
ER 
Cell surface 
Colocalizes with COP9 signalosome  
 
 

 
Promotes invasion/metastasis 
Inhibits activation of apoptosis 

 
ANNEXIN 2 (A2) 

 
Binds phospholipids (Ca

+2-
dependent)  

Converts plasminogen plasmin 
 
 

 
Early endosome 
Cytosol 
Plasma membrane (post cell 
stimulation) 

 
Promotes progression/metastasis 

 
CATHEPSIN D 

 
Degrades proteins 
Regulates apoptosis 
 
 

 
Rough ER  
Translocates to 
endo/lyso/phagosomes 

 
Promotes invasion/metastasis 
 

 
ALPHA ENOLASE 

(Enolase-1) 

 
Key enzyme in glycolysis 
Gluconeogenesis 
 

 
Cytoplasm/cytosol 
Plasma membrane 

 
Enhances glycolysis 

 
HSC70 (HSPA8) 

 
Folds proteins  
 
 

 
Cytosol 
Plasma membrane 
 

 
Assists with autophagy of 
cytoplasmic proteins 

 
PDI (protein disulfide 

isomerase, P4HB) 

 
Folds proteins 
Catalyzes formation of disulfide bonds 
Reduces/isomerizes disulfide bonds 
 
 

 
ER 
Plasma membrane 
 

 
 
Promotes survival/proliferation 
 
 

TABLE 1: Characteristics of the 6 mass-spectrometry identified antigens 
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A. UL-224 SERUM  

    M   1   2   3    4     5     M   6   7   8    9    10   M  11   12  13 14 15  M 16  17  18 19 20     

 
 Increasing pI 

 

B.  UL-184 SERUM  

   M   1   2   3    4     5     M   6   7   8    9    10   M  11  12  13 14 15  M 16  17  18 19 20     

 
Increasing pI 

 

Figure 1:  Shared immunoreactivity of rotofor-fractionated cellular lysate with 

antibodies from ovarian tumor patient sera. Serum antibodies of patient  A) UL-224 

(1:250) and B) UL-184 (1:250) were used to detect immunoreactivity with cellular  lysate 

protein  from patient UL-124.  Boxes indicate the shared immunoreactivity between 
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randomly chosen bands. Molecular marker (M) and rotofor fractions (1-20) are indicated 

above each image.  Increasing isoelectric point (pI) is indicated by the arrow beneath 

each image. 
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Figure 2: Validation of identified antigens of interest using commercial antibodies.  

UL-124 cellular antigen was immunoprecipitated by A) Protein G HP SpinTrap columns 

(applied in duplicate) and subjected to dot blot); and B) TrueBlot IP beads and subjected 

to Western blot (representative immunoreactivity shown). Arrows indicate identified 

antigen. Molecular marker (M), immunoprecipitated antigen (IP Ag).  Molecules identified 

in Table 1.
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Figure 3:  Validation of ovarian cancer patient serum antibody recognition of antigens of interest using recombinant 

proteins.  Boxes indicate immunoreactivity of recombinant proteins with ovarian cancer patient sera (A-F).  Recombinant 

proteins indicated as: G78 (GRP78), A2 (Annexin 2), CD (Cathepsin D), AE (Alpha-enolase), H70 (HSC 70), PDI (Protein 

disulfide isomerase). Ovals indicate recognition of CD.  Molecular marker indicated by M. Ovarian cancer cell types (A-F) 

indicated as: sa (serous adenocarcinoma), sc (serous carcinoma), ma (mucinous adenocarcinoma). G indicates a mixture of 

commercial antibodies and H, the ncc (non-cancer control). Initial assays showed no reactivity of CD with other sera samples. 
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Figure 4:  Analysis of the association of antigens of interest with in vivo and in vitro-derived exosomes.  Western 

blots of UL-124 ascites-derived (ASC), serum-containing (SC), and serum-free (SF) culture-derived exosomes demonstrating 

immunoreactivity to commercial antibodies corresponding to the antigens of interest (indicated by arrow).   Cathepsin D 

isoforms: immature (IMM), intermediate (INTM), mature (MAT). 
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Figure 5:  Validation of tumor-reactive antigen presence in tumor-derived exosomes using different 

commercial antibodies.  Western blots of TDE patient samples (UL-472, -309, -124, -316,- 224) and a serum 

non-cancer control (NCC) demonstrating immunoreactivity to  A) Annexin 2 and B) Enolase-1 antibodies from 

Cell Signaling Technology. Positive control (+CTRL) cellular lysate, H929 (B cells), indicates molecular 

weights of Annexin 2 ( ~38 kDa) and Enolase-1 (47 kDa). Additional bands detected in the TDE by Annexin 2 

(~50 kDa) and Enolase-1 (~30KDa) suggest the presence of isoforms of these molecules. 
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CHAPTER 3 

ISOLATION OF TDE-ASSOCIATED IMMUNOGLOBULIN REVEALS PRESENCE OF 
SUBCLASSES AND IMMUNOREACTIVITY TO TUMOR ANTIGEN 

 

Introduction 

 

Malignant cells are often a consequence of aberrant gene expression which 

influences  production of abnormal cellular proteins presented as new or altered antigen 

[243]. Often, these antigens are shed from the malignant cells [244, 245], leading to their 

enhanced expression in the body fluids. Although shedding has been identified as an 

immunosuppressive mechanism used by tumors to escape antitumor immunity [246], 

studies indicate that shed antigen can be detected by the immune system and elicit 

cellular and humoral antitumor responses in different cancers [86, 247-249]. These 

antitumor responses are manifested by increased frequency of antigen-specific CD8+ 

and CD4+ T cells [247] and tumor-reactive antibodies [143, 152, 158] in the peripheral 

circulation. In experimental animal models the appearance of tumor-reactive antibodies 

is evident promptly after induction of the tumor and prior to the detection of palpable 

tumors or tumor antigen [143, 152, 158].   In a number of malignancies, the distinct 

presence of circulating autoantibodies has been documented  [250], and unlike other 

circulating components, they have long half-lives and are stable [159].  Collectively, the 

early emergence, availability, and stable presence of tumor-reactive antibodies establish 

a promising platform for investigation of the humoral antitumor response. 

 Expression of this humoral antitumor response is reflected through increased 

levels of IgG in the blood and sera [155, 156], which is characteristically indicative of 

maturation of the antibody response.   IgG is the predominant immunoglobulin in the 
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serum of healthy adults [251], and is distributed as four subtypes (IgG1, IgG2, IgG3, and 

IgG4) named in accordance with their normal abundance in the serum [252].  The 

relative serum concentration of IgG is dependent upon the number of plasma cells 

producing that particular subtype and their metabolic rates in the 

intravascular/extravascular space [251].  However, during the humoral immune 

response, the distribution of the subclasses is adjusted, resulting in an altered IgG profile 

and consequently, modification in effector activity. Immunoglobulin levels in the serum 

can provide critical information on the status of humoral immunity [253], and may be 

instrumental in defining humoral immunodeficiencies [254] or other disorders or 

malignancies [255].  In patients with primary Sjorgen’s syndrome (chronic autoimmune 

disorder targeting moisture-producing glands), analysis of the sera revealed increases in 

IgG1 and IgG3, substantiating the pathogenicity of the disease [256]. Studies of the 

isotype patterns of multiple myeloma sera indicated variation among subclasses and 

heterogeneity in hypogammaglobulinemia patterns [257]. The correlation of 

immunoglobulin effector activity with IgG subclass expression suggests the importance 

of investigating subclass distribution because of its potential for insight into the 

ineffective immune responses seen in other conditions or disorders. 

Tumor-reactive IgG is elevated in the sera of ovarian cancer patients [159], and 

in experimental animal models,  is expressed in the circulation before palpable tumors or 

circulating tumor antigens [258].  IgG may exist as free immunoglobulin or may be 

associated with tumor-derived membrane fragments [126] which include vesicular 

structures ranging from high molecular weight complexes to microvesicles and 

exosomes.  Originally demonstrated in the peripheral circulation of patients with ovarian 

cancer [121, 259, 260], tumor-derived exosomes (TDE) express a membrane molecular 

representation of the tumor cell and enhanced expression of tumor antigen [115, 261].  

Early studies conducted by this lab demonstrated that these tumor-derived exosomes 
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displayed high levels of IgG bound to their surface [115, 121, 126], suggesting a humoral 

immune response to surface antigenic protein. The antibody response to antigen 

expressed on the exosome indicates that these antibodies are specific and display high 

affinity for the tumor antigen. Isolation of these antibodies could provide information on 

the immunoreactivity, structure, subclass, and effector function of the tumor-reactive 

IgG.  Furthermore, exploiting the use of TDE as the antibody source for detection of 

tumor antigen may be more informative than free antibody in sera because the antibody 

is bound to the antigen, and the antigen has been “selected” in the formation of the 

exosome. Therefore, we hypothesize that the ovarian tumor humoral response 

associated with TDE can recognize and identify ovarian tumor antigen, which may be a 

mechanism used by the tumor cell to discourage recognition and stimulation of an 

antitumor response. 

 

Materials and Methods 

Patient Ascites 

Ascites used in this study was derived from ovarian tumor patients diagnosed 

with Stage III (T3c) serous carcinoma (UL-124, TB-0836, ML-457), serous/endometrioid 

mixed carcinoma (UL-472), and presentation of a pelvic mass (UL-309).  Control serum 

was derived from age-matched women with no evidence of ovarian disease.   

Isolation of Circulating Ovarian Tumor-derived Exosomes (TDE) 

Exosomes were isolated from ovarian tumor-patient ascites and control serum by 

a two-step procedure developed in our laboratory [126]. Initially, the biological fluids 

were centrifuged at 400 x g for 10 minutes (to remove whole cells). 10-20 mL of cell-free 

ascites was concentrated by ultrafiltration using an Amicon Stirred Cell (Model 8200) 

and a membrane with a molecular weight cut off of 500,000 Daltons (Millipore) to 

concentrate high molecular weight molecules. 1 mL-aliquots of the concentrated sample 
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was applied to a 2% agarose (ABT) chromatography column (1.5 x 20 cm) equilibrated 

with ddH2O or 1X TBS.  1 mL-fractions were collected and the absorbance (280 nm) of 

the elution was monitored. Fractions containing material greater than 50 million Daltons 

were obtained, ultrafiltrated, and the quantity of protein assayed by the Bradford method 

(Bio Rad).  

Nanoparticle Tracking Analysis (NTA) 

Exosome samples were diluted 1:10 with 1X  PBS and NTA measurements (at 

room temperature) were performed using a NanoSight LM10 (Nanosight Ltd). NTA 2.3.5 

software was used for capturing and analyzing the data.  

Isolation of Bound and Unbound Exosome Populations 

Exosomes were isolated from UL-124, UL-472, UL-309, TB-0836, ML-457 patient 

ascites and normal control serum using the aforementioned two-step procedure. 

Exosome fractions were pooled and ultrafiltrated 10-fold, and the concentrated sample 

prepped for use with the HiTrap Protein G HP column (GE Healthcare). In short, 1 mL of 

binding buffer (20 mM sodium phosphate, pH 7.0) was combined with the exosome 

sample prior to application onto the column. The column was washed with 10 column 

volumes of binding buffer at 1 mL/min, and the sample was applied to the column under 

closed recirculation for 1 hr. Post recirculation, the system was opened and the unbound 

material (U), fraction containing exosomes without associated IgG, was collected. The 

column was washed with 10 column volumes of 1X PBS, and the exosome-bound IgG 

fraction (B) was eluted isocratically using IgG Elution buffer, pH 2.8 (Pierce). Eluted 

fractions were neutralized with 1M Tris-HCl (pH 9) and unbound and bound fractions 

were concentrated by ultrafiltration. Protein concentration of bound and unbound protein 

fractions were quantitated by the Bradford method.  
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Western Blot Analyses of Exosome Protein Expression 

Western blotting was performed to analyze the presence of common exosome 

markers (CD63, CD81).  40 g of ascites bound and unbound exosome protein (TB-

0836, ML-457) was loaded onto a 10% SDS-PAGE gel, transferred  to nitrocellulose 

membrane (Bio Rad) on ice for 1h at 98 V, blocked with 5% blotting grade blocking 

grade nonfat dry milk (Bio Rad) and probed with commercial antibodies (1:1000, Santa 

Cruz Biotechnology) corresponding to common exosome markers. 

Isolation and Verification of Exosome-Associated IgG 

In preliminary experiments, 1 mL of patient UL-124, UL-472, and UL-309 ascites-

derived exosomes were subjected to different methods in order to ascertain the optimal 

method for isolation of IgG. Based upon the results, we proceeded with the vivaspin 

method of isolation. Here, the 1-mL exosome sample was combined with 50 L 

increments of IgG elution buffer until a pH of ~3.0 was obtained. Samples were 

incubated with end-over-end rotation on the Labquake rotisserie shaker (Barnstead 

Thermolyne)  for 30 minutes at room temperature and then added to a pre-rinsed (1X 

PBS) Vivaspin 2 centrifugal concentrator with a membrane MWCO of 1 x 106 (Sartorius 

Stedim Biotech). IgG was eluted from the exosomes by centrifugation (4000 x g, 20 

min.), collected from the filtrate tube, and neutralized using 1M Tris-HCl, pH 9.0. IgG 

protein was quantitated by the Bradford method. To verify IgG isolation from TDE, 0.5-1 

g isolated IgG was loaded onto a NuPAGE  4-12% Bis-Tris gel (Novex) along with 0.1 

g human IgG subclass control serum (1:20, The Binding Site), electrophoretically 

separated using MOPS SDS Running Buffer (1X, Novex) under reducing conditions, and 

transferred/blocked according to aforementioned methods.  Efficient IgG isolation was 

analyzed by immunoreactivity of peroxidase-conjugated anti-human polyvalent 

immunoglobulin IgGAM (1:10,000,Sigma). 
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Analysis of Immunoreactivity and Subclasses of Isolated Exosome-associated IgG 

Post verification of IgG isolation, 0.5g of GRP78, annexin 2, cathepsin D, 

protein disulfide isomerase (PDI; all from ProSpec Bio), alpha-enolase (American 

Research Products), and HSC70 (Enzo Life Sciences) human recombinant proteins 

were combined with 4X  LDS Nonreducing Buffer (ThermoScientific), loaded onto a Mini 

PROTEAN TGX 4-15% gel and electrophoretically separated.  Immunoreactivity of the 

isolated exosome-associated IgG was analyzed by Western blot using the isolated IgG 

at 1:50. For the subclass analysis: 3 g of isolated IgG protein was loaded on to a 

Criterion TGX 4-20% gel, electrophoretically separated, transferred using Trans Blot 

Turbo Transfer System (Bio Rad) with TransBlot Transfer Pack Midi Format –

Nitrocellulose (Bio Rad), blocked with 5% nonfat milk, and probed with monoclonal 

mouse anti-human IgG1, IgG3, IgG4 (1:10,000, Sigma) and IgG2 (1:20,000, Sigma). 

 

Results 

 Acquisition of TDE Populations 

In the isolation of exosomes from patient biological fluids it is expected that a 

subset of the exosome population is derived from the tumor and the remaining may be 

derived from normal cells. To investigate the differences between these exosome 

populations, exosomes were first isolated from ovarian tumor-patient ascites and normal 

serum. Using the two step isolation procedure, samples were concentrated by 

ultrafiltration and applied to 2% agarose columns, monitoring elution at 280 nm. The 

fractions containing the exosome populations were acquired, combined with sodium 

phosphate (to enhance the affinity of any IgG associated with the exosomes to the 

protein G) and further separated using a HiTrap Protein G HP column.  HiTrap Protein G 

HP columns specifically recognize all subclasses of IgG.  In the application of the 

exosome samples to the column, those exosomes that have IgG bound to them (those 
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that express tumor antigen) bind to the column, while exosomes that lack bound IgG 

(those that express normal antigen) “flow through”. The “flow through” represents the 

unbound fraction of exosomes. Using low pH buffers to reduce affinity between protein G 

and IgG, bound exosomes were eluted, collected, and neutralized with Tris buffer (pH 9) 

to maintain the stability of the eluted IgG after being exposed to acidic conditions (Fig. 

6). 

Verification of Exosome Acquisition 

Protein concentrations of eluted bound and unbound exosome fractions were 

obtained, analyzed by SDS-PAGE, and subjected to Western blot.  Since CD63 and 

CD81 have been demonstrated as markers of exosomes, their presence on bound and 

unbound populations were analyzed.  CD63 and CD81 were present in both bound and 

unbound populations with slight variation in intensity between patient samples (Fig. 7A). 

Additionally, the sizes of the isolated nanoparticles were verified using Nanoparticle 

Tracking Analysis (NTA) (Fig. 7B), with bound fractions in the 30-100 nm range and 

unbound fractions in the higher ranges (primarily >100 nm), thereby confirming the 

isolation of exosomes. 

Association of IgG with TDE Populations 

 To establish the association of immunoglobulin with TDE, fractions collected by 

our two-step method were prepared as aforementioned, applied to a HiTrap Prot G HP 

column, and eluted.  Since exosomes from non-malignant cells can be present in 

malignant effusions, the association of IgG with bound and unbound populations was 

investigated to distinguish between exosomes of malignant and non-malignant origin.  

Patient bound exosome fractions revealed bands corresponding to the IgG heavy (50 

kDa) and light chains (25 kDa), while little to no immunoreactivity was seen in the patient 

unbound fractions and serum control (Fig. 8A).  
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Isolated IgG displays Immunoreactivity to Cellular Antigen 

 Because IgG association to TDE suggests the occurrence of an immune 

response, further analysis of the exosome-associated IgG should provide insight on the 

specificity and affinity of the TDE for tumor antigen. To isolate the exosome-associated 

IgG, exosomes were subjected to chemical treatment to separate the IgG from the 

exosome surface and concentrated using nanomembrane centrifugation to separate the 

extracted IgG from the exosome. The protein concentration of the isolated IgG was 

acquired and its presence verified by Western blot which identified IgG heavy and light 

chains (Fig. 8b). The affinity and specificity of the isolated IgG was evaluated by 

analyzing its immunoreactivity to the six immunogenic proteins identified via mass 

spectrometry. Immunoreactivity was seen with annexin 2 (higher and lower molecular 

weight forms), alpha-enolase, and HSC70, with faint recognition of GRP78 (Fig. 8C). 

Subclass Characterization of Exosome-Isolated IgG 

 Since human IgG is comprised of different subclasses, it was of interest to 

analyze the isolated IgG to see if particular subclasses are associated with TDE (Fig.9). 

Analysis of total IgG revealed heavy and light chains in the commercial control and 

patient samples, with no IgG seen in the non-cancer control. Although multiple bands 

were seen in the cancer patient samples in all subclasses, there were variations of 

intensity between the subclasses. Banding patterns with anti-IgG1 and IgG2 were more 

intense and similar to anti-total IgG for patient sample 472, 124 (double bands), and 309, 

suggesting that IgG1 and IgG2 may be the predominant subclasses associated with the 

ovarian TDE. 
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Discussion 

Tumor progression and metastasis is influenced by the tumor microenvironment 

[161] which facilitates the expression and release of a number of biological constituents 

[128], including enhanced release of microvesicles/exosomes into the circulation [115, 

116]. The enhancement of circulating TDE has been implicated not only as a 

communicative mechanism with the microenvironment in order to expedite effector 

functions in the target cell [106] and mediate tumor progression [113, 163, 262-264], but 

also as a diagnostic mechanism to be utilized as an approach in cancer detection [265, 

266].  Proteomic analysis of effusion-derived exosomes has demonstrated the presence 

of both common and unique proteins, which has expanded the present knowledge of 

exosome composition. In addition to the expression of common surface antigen, TDE 

display immunogenic  antigen specific to the tumor from which it is derived such as 

MelanA/Mart 1 in melanoma [113] and carcinoembryonic antigen (CEA) in colon 

carcinoma [111]. In the context of ovarian cancer, several tumor cellular antigens (e.g.  

Her2/neu, MUC-1) [267-270], ovarian antigen-3 (OA-3) [271], and cancer testis antigen  

(NY-ESO-1) [272]) have been identified . However, the association of these antigens 

with ovarian cancer exosomes is somewhat ambiguous. In this study, proteomic 

analyses of circulating antibody immunoreactivity to ovarian cancer lysates led to the 

identification of six proteins (GRP78, annexin 2, cathepsin D, alpha-enolase, HSC70, 

PDI) and further investigation revealed the association of these same proteins with 

ovarian tumor exosomes.  

The association of immunogenic antigen to ovarian cancer exosomes elicits an 

immune response resulting in the production of immunoreactive antibodies which bind to 

exosome-associated antigen. The antibody-associated exosomes are what we are 

defining as “bound exosomes.” To isolate bound exosomes, exosome fractions were 

applied to HiTrap Protein G columns which contain Protein G, a Group G Streptococci 
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cell surface FcRIII which binds the Fc portion of IgG.  The bound exosomes are eluted 

from the column using low pH buffers. As the exosome sample flows over the column, 

those exosomes that are associated with IgG are trapped onto the column, allowing 

exosomes without IgG to flow through. The flow-through fraction is what we define as 

“unbound exosomes.” In previous studies (not shown here), analysis of the association 

of the proteomics-identified proteins with bound and unbound exosome fractions 

confirmed the presence of each of the six proteins, with suggested enrichment in the 

bound fractions.  Since bound exosomes are likely derived from the tumor cells, it is 

expected that the identified proteins from the tumor would be enriched in its exosome 

derivative.  

In order to gain a deeper understanding of the humoral response to ovarian 

tumor antigen, the antibodies associated with the bound exosomes were isolated using 

centrifugal concentration of bound exosome fractions in low pH buffers. Eluted antibody 

was verified and then used to investigate immunoreactivity to recombinant antigens 

corresponding to the proteomics-identified proteins.  Although recognition of only 4 

(annexin 2, alpha-enolase, HSC70 and faint recognition of GRP78) of the six proteins 

was seen, it is important to remember that immunogenic proteins typically display 

modifications which are instrumental in their immunogenicity.   Moreover, these 

modifications may or may not be present in the recombinant protein, which would affect 

recognition of the epitope by its corresponding antibody. 

To acquire further insight into the exosome humoral response, we verified the 

presence of exosome-associated IgG and analyzed the subclass distribution of the 

isolated exosome-associated IgG.  IgG is a large (150 kDa), bilaterally symmetric 

glycoprotein made of two heavy (50 kDa) and two light (25 kDa) polypeptide chains 

associated by inter- and intra-chain disulfide bonds [273].  It is composed of 3 

functionally distinct regions—2 Fab (“fragment antigen-binding”) regions which bind the 
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antigen, and a single Fc (“fragment crystallizable”) region which interacts with effector 

cells and molecules [157].  In humans, IgG is further categorized into 4 subclasses: 

IgG1, IgG2, IgG3, and IgG4. Although the general structure of the subclasses is the 

same, there is some variation seen in the flexibility of the hinge region and the positional 

attachment of the light chain to the heavy chain [251]).  These structural variations in the 

hinge region and in the Fc region are important in establishing the biological functions of 

the subclasses [274].  The key biologic functions of the IgG subclasses are complement 

fixation and opsonization.  In the fixing of complement, the Fc portion of IgG (bound to 

pathogenic surfaces) is bound by complement protein 1 (C1). This triggers a cascade of 

reactions, eventually leading to the formation of a membrane-attack complex (MAC) 

which lyses the target [275, 276].  Of the IgG subclasses, IgG1 and IgG3 are the most 

efficient at fixing complement, followed by weak fixation by IgG2 and the absent fixation 

of IgG4 [273].  The process of opsonization involves the coating of antibodies onto the 

surface of a pathogen or foreign substance in order to promote Fc receptor-mediated 

phagocytosis [157] .  The Fc regions of IgG (particularly IgG1 and IgG3 and to a lesser 

degree, IgG2) are recognized by the Fc-gamma receptor of phagocytes, triggering 

phagocytosis and eventual killing of the target [277].   

Here, isolated TDE IgG was subjected to SDS-PAGE and Western blotted with 

IgG subclass antibodies.  Immunoreactivity to all antibodies was evident with the 

revelation of IgG heavy (50 kDa) and light (25 kDa) chains in all of the cancer patient 

samples.  However, with the IgG1 and IgG2 antibodies, the heavy chain bands were 

more distinct, suggesting that IgG1 and IgG2 are the predominant subclasses 

associated with TDE.  Additionally, doublet bands appeared in the heavy chain migration 

of patient sample UL-124, suggesting heterogeneity of that protein [278] or a potential 

post-translational modification.  Expression of IgG1 and IgG2 as predominant subtypes 

on the TDE may be an important mechanism used by to tumor to mediate the antitumor 
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response and promote immunomodulation.  The expression of tumor antigen on the TDE 

and ovarian tumor cell stimulates a humoral antitumor response in which alI subclasses 

would bind to the tumor antigens, but all may potentially be unable to actively participate 

in the antitumor response. Research indicates that some IgG subclasses are functionally 

more protective. IgG1 and IgG3 are known as cytophilic antibodies (have a strong 

affinity for FcR) and are able to mediate cell destruction by complement-dependent 

cytotoxicity (CDC) and antibody-dependent cell mediated-cytotoxicity (ADCC). In clinical 

studies of IgG isotype distribution in the sera of individuals protected from and affected 

by Plasmodium falciparum (causative agent of malaria), higher levels of IgG1 and IgG3 

were found in protected adults, while IgG2 and IgG4 levels predominated in 

nonprotected individuals [279]. Because of their ability to bind and recognize the same 

epitopes, it is hypothesized that the IgG2 and IgG4 are binding in order to block the 

protective activity of the other isotypes [280]. In vitro analyses of Plasmodium falciparum 

in the presence of blood monocytes inhibited phagocytosis and opsonization as a result 

of IgG2 and IgG4 presence, and allowed continued growth of the microorganism [281, 

282]. In our analysis, we speculate that the predominant presence of IgG1 (to invoke an 

immune response against the tumor) and IgG2 (to block the strength of the immune 

response against the tumor) on the TDE surface may be humoral contributors to the pro- 

vs. anti-tumor dichotomy. Additionally, we surmise that the ovarian tumor utilizes its 

release of TDE as a “decoy” to capture opsonizing antibodies in the attempt to promote 

its own survival.  

In summary, analyses of the ovarian TDE humoral response revealed the 

presence of all IgG isotypes and their ability to recognize ovarian tumor antigen, thereby 

suggesting the mobilization of an anti-tumor response. However, the prevalence of non-

cytophilic antibodies (i.e. IgG2) indicates a potential defense mechanism exploited by 

the tumor to minimize efficacy of the antitumor response, which is further enhanced by 
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TDE “absorption” of cytophilic antibodies. Collectively, these mechanisms may be 

instrumental in promoting survival of the ovarian tumor and protecting it from the 

humoral antitumor response. 
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concentrated exosomes 

IgG-bearing exosome 

capture by Protein G, 

exosomes without IgG 

“flow through” 
+ IgG elution buffer (pH~ 2.9) 

 “flow through” exosomes 

(unbound fraction) 
 eluted IgG-bearing exosomes 

(bound fraction) 

Figure 6:  Separation of IgG –bound vs. unbound exosomes.  Concentrated 

exosome fractions are recirculated onto a HiTrap Protein G HP Column to allow 

exosomes that bear IgG to bind to the column. Post recirculation, the exosome 

fractions without IgG are allowed to “flow through” and are collected. These fractions 

represent the “unbound exosomes.” To elute the IgG-bearing exosomes from the 

column, IgG elution buffer (pH 2.9) is applied. These fractions, which represent the 

“bound exosomes,” are neutralized with 1M Tris (pH 9). 

+ 1M Tris (pH 9) 
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Figure 7:  Verification of exosome acquisition utilizing common exosome 

markers and nanoparticle tracking analysis (NTA).  Bound and unbound 

exosome fractions of patient TB-0836 and ML-457 ascites exosomes were acquired 

and verified by Western blot for  A) CD63 and CD81, and the nanoparticle size 

distribution in the fractions determined by B) nanoparticle tracking analysis.  TB-B 

(bound exosomes from patient TB-0836), TB-U (unbound exosomes from patient TB-

0836), ML-B (bound exosomes from patient ML-457), ML-U (unbound exosomes 

from patient ML-457. 
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Figure 8: Verification and isolation of patient-bound ascites exosome IgG and 

its immunoreactivity to mass-spectrometry identified antigen. A) Western blot of 

patient UL-472, UL-124, UL-309, and non-cancer control (NCC) bound (B) and 

unbound (U) exosome fractions reveal association of IgG with exosomes. B) Western 

blot of isolated IgG (IS) from patient UL-124 ascites bound exosomes (0.5 g, 1 g) 

along with commercial IgG control (CC; 0.1 g).  C) Western blot of immunoreactive 

isolated patient IgG to recombinant proteins corresponding to mass spectrometry 

antigens of interest. Recombinant protein abbreviations indicated in Figure 3.  Heavy 

chain (IgGH), Iight chain (IgGL). 
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Figure 9:  Subclass characterization of isolated tumor-derived exosome-IgG.  Western blot of isolated patient ascites 

exosome- IgG probed with  a) anti-human IgGAM (1:5000), B) anti-human IgG1, C) anti-human IgG2, D) anti-human IgG3, E) 

anti-human IgG4.  Anti-human IgG2 (1:15,000), all other antibodies (1:10,000).  Molecular marker (M), commercial IgG control 

(CC), patient ascites exosome- IgG (UL-472, UL-124, UL-309), patient non-cancer control ( NCC).   
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CHAPTER 4 

OVARIAN TDE MEDIATION OF THE HUMORAL RESPONSE BY  
INDUCTION OF B CELL APOPTOSIS 

 

B Cell Biology and Responses in the Normal and Tumor Microenvironment 

 As one of the lymphocyte derivatives of the common lymphoid precursor, B cells 

begin their earliest development in the fetal liver and subsequent post-birth development 

in the hematopoietic bone marrow via adhesive and chemical interactions with bone 

marrow stromal cells.  Within the bone marrow, early B cells differentiate and functionally 

rearrange their immunoglobulin gene segments with the assistance of recombination 

activating genes (RAG-1/RAG-2), to produce a heavy chain and or light chains, 

resulting in production of immature B cells that express the surface B cell receptor 

(BCR), IgM [157]. The immature B cells leave the bone marrow and migrate into the 

periphery, continuing their development through transitional stages where they undergo 

negative selection processes in order to generate B cells that are capable of survival and 

progression towards maturity [157]. As a consequence of transitional differentiation and 

BCR signaling strength [283], immature B cells form mature subpopulations, namely  

marginal zone B cells which assist in ensuring a rapid antibody response during the 

lapse between innate and T cell dependent adaptive antibody responses [284] and  

follicular B cells which may recirculate and enter/exit the follicular microenvironment of 

secondary lymphoid organs in search of antigen [285].  In response to chemokine cues, 

mature B cells enter the follicles of secondary lymph organs and undergo rapid 
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proliferation to create germinal centers (specific microenvironments of dividing cells 

[286] in which antibody affinity maturation takes place [287]). In response to the rapid 

proliferation, anatomically and functionally distinct polar regions are created i.e. the dark 

zone (contains the rapidly dividing B cells called centroblasts) and the light  

zone (contains fewer B cells called centrocytes, but a number of follicular dendritic cells) 

[288].  The interactions of these B cells with helper T cells (within the dark zone) and 

follicular dendritic cells (within the light zone) are critical in initiating class switch 

recombination (CSR) and somatic hypermutation (SHM), two processes that target the 

rearrangement and mutation of immunoglobulin genes in order to produce the high-

affinity immunoglobulin needed to facilitate an adequate humoral response [289].    

 In the context of pathogenesis, the behavior and function of B cells is not as well 

documented or characterized as that of other immune cells.  In autoimmune or organ-

specific disorders, the formation of germinal centers is common [290],  resulting from the 

pro- inflammatory conditions/cytokines which promote germinal center organization [291, 

292].  As a result, B cell production is generally abundant. However, in some 

autoimmune conditions, the presence of these B cells suggests more harm than benefit 

due to their potent antigen-presenting function to their cognate helper T cells [293] and 

their production of autoantibodies [294].  In the tumor microenvironment, B cells have 

been proposed contribute to immunomodulation by:  1) altering cytokine and/or 

chemokine levels in the circulation [120] and  2) producing antibodies to human tumor-

associated antigen which in a study of bladder cancer, correlated with decreased patient 

prognosis and survival [295].  Additionally, the elevated levels of antitumor antibodies 

typically result in the formation of immune complexes which accumulate [296] and 

further contribute to an unfavorable prognosis [297-299].  Alternative contributions to 

immunomodulation in the tumor microenvironment are demonstrated through the release 

of exosomes by the cancer cells. Enhanced exosome release has been documented in 



 

60 
 

cancer cell cultures [300]  and malignant effusions [113] including mesothelioma patient 

pleural fluid [112] and peritoneal ascites [301].  Evidence suggests that in a number of 

cancers, tumor-derived exosomes (TDE) act as an “immunological accomplice” to 

promote the progression of their parent cells.  One of the mechanisms used by 

exosomes is the induction of apoptosis in effector immune cells, particularly T cells.  A 

study of melanoma-derived exosomes revealed the induction of T-cell apoptosis via 

expression of FasL [302], while human colorectal microvesicles were found to induce 

apoptosis of CD8+T cells through expression of both FasL and  tumor necrosis factor-

related apoptosis inducing ligand (TRAIL) [111]. In ovarian cancer patients, T cells have 

been shown to display enhanced apoptosis and diminished expression of CD3-zeta 

[303, 304].  To address these findings, previous studies by the Taylor lab indicated that 

ovarian cancer exosomes suppress both CD3-zeta and JAK-3 and suggested that the 

exosomes could be the link between the reduced expression of CD3-zeta and apoptosis 

of T cells [305]. Taking these immunomodulatory characteristics into account, this 

current investigation explores the relationship between ovarian tumor-derived exosomes 

(TDE) and the ovarian cancer humoral antitumor response by evaluating the effects of 

these exosomes on B cells.  Our findings indicate that ovarian cancer TDE induce 

apoptosis in B cells in a dose-dependent manner and enhance the expression of 

immunomodulatory molecules which have been documented to mediate apoptosis and 

assist in immune escape. Based upon these findings, we propose that ovarian cancer 

TDE can induce apoptosis in B cells as a mechanism to divert the ovarian cancer 

antitumor humoral response away from the tumor in order to support progression. 
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Materials and Methods 

Cell Cultures 

Ramos B cell line (human Burkitt’s lymphoma, ATCC) was maintained in  

Hyclone RPMI 1640 medium (ThermoScientific) supplemented with 10% fetal bovine 

serum (FBS, Biowest), and 100 units/mL gentamicin 10 (Atlanta Biologicals) in a 

humidified incubator at 37C with 5% CO2. For cocultures, cells were transferred into 

culture medium with 10% exosome-depleted FBS (Exo-FBS, SBI).  As previously 

mentioned (chapter 3), primary ovarian tumor cell cultures were established from UL-124 

ascites and grown in Hyclone RPMI 1640 medium (ThermoScientific) supplemented with 

2mM L-glutamine, 10% fetal bovine serum (FBS, Biowest), 1mM sodium pyruvate 

(CellGro, Mediatech),  0.1 mM nonessential amino acids (CellGro, Mediatech), and 100 

units/mL penicillin-streptomycin (Gibco, Invitrogen) in a humidified incubator at 37C with 

5% CO2. After assurance of confluence, cells were transferred into Ultraculture General 

Purpose Serum-Free Media without L-glutamine, but supplemented with the same 

amount of sodium pyruvate, non-essential amino acids, and penicillin-streptomycin in 

order to ensure that the exosomes later collected would be derived from the tumor cells 

and not the FBS. Later, exosome-free FBS (Exo-FBS, SBI) was purchased and 10% 

was added to this media. 

Isolation and Preparation of Culture Supernatant Exosomes 

Supernatant from the UL-124 ovarian cancer cell culture was collected and 

centrifuged at 400 x g for 10 minutes to pellet any cells present in the supernatant. The 

cell-free culture supernatant was ultrafiltrated (under sterile conditions) using an Amicon 

Stirred Cell (Model 8200) and a membrane with a molecular weight cut off of 500,000 

Daltons (Millipore) to concentrate high molecular weight molecules. 1 mL-aliquots of the 

concentrated sample was applied to a 2% agarose (ABT) chromatography column (1.5 x 
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20 cm) equilibrated with sterile ddH2O.  1 mL-fractions were collected and the 

absorbance (280 nm) of the elution was monitored. Fractions containing material greater 

than 50 million Daltons (exosome fractions) were obtained, ultrafiltrated, and the quantity 

of exosome protein assayed by the Bradford method (Bio Rad). A chromogenic LAL 

assay (GenScript) was performed to assess endotoxin levels in the exosome 

preparations. Preparations with detectable levels above the acceptable range were 

subjected to endotoxin removal (MoBio) and endotoxin content reassessed. All 

endotoxin content levels were < 0.2 EU/mL. Exosome protein concentration was 

reacquired by BCA protein assay (ThermoScientific Pierce) and exosome preparations 

were dispensed into 100 g/mL aliquots in preparation for cocultures. 

Coculture of B cells with Ovarian TDE 

 Ramos cells (1 x106) were cocultured alone or with UL-124 culture supernatant 

exosomes at varying concentrations (10, 20, 50, and 100 g/mL) for 3, 6, 18, and 24h.  

Cells were pelleted (2000 rpm, 5 min) and supernatant collected for human cytokine 

array analysis. Cells were washed with sterile 1X  DPBS (CellGro, Mediatech) and lysed 

on ice using lysis buffer (125 mM Tris (pH 6.8), 2% SDS, 20% glycerol, 100 M PMSF, 

protease inhibitor cocktail and phosphatase inhibitor (100X)). Lysed cells were 

centrifuged at 13,000 rpm for 10 minutes to pellet debris. Lysate was stored at -20°C 

until use.  

Trypan Blue Assay 

Post culture, 20 L of the culture suspension was mixed with an equal amount of 

0.4% trypan blue (Sigma) and live and dead cells counted using the Neubauer 

hemocytometer (Reichert).  Each sample was assayed three times in triplicate. 

Percentage of dead cells (% dead) were calculated and expressed as mean ± standard 

deviation (SD). T-test statistical analyses were performed using GraphPad Prism 4 
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(version 4.03) graphing and statistical software. A p-value <0.05 was considered 

statistically significant. 

Analysis of B Cell Apoptosis 

 Apoptosis was analyzed by agarose gel electrophoresis and Western blot using 

antibodies to common apoptotic markers. Agarose gel analysis was performed as 

indicated by Kasibhatla et al. [306], with some modifications. In short, 2.5 x105 cells were 

cocultured with UL-124 exosomes as previously mentioned. Cells were collected, 

supernatant removed, and cells lysed using TES (Tris, EDTA, SDS) buffer with added 

RNase cocktail (Ambion) and incubated at 37°C for 1 h. Proteinase K (Qiagen) was 

added and cells incubated at 50°C for 1 h, followed by a 5 minute incubation at 65°C. 

Samples were mixed with 5X Loading Dye (Qiagen) and loaded onto a 1.2% agarose 

FlashGel DNA Cassette (12 +1, Lonza) with the Flash Gel DNA marker (100-4000 bp, 

Lonza).  Marker and samples were electrophoresed on the FlashGel system (Lonza) at 

237 V. Images were captured using the FlashGel camera and capture software.  For 

Western blot analysis: 10 g coculture cell protein was loaded onto a 4-20% Criterion 

TGX Precast Gel (Bio Rad), electrophoresed and transferred using Trans Blot Turbo 

Transfer System and transfer pack (0.2 m nitrocellulose, Bio Rad).  Membranes were 

blocked with 5% nonfat dry milk and probed with PARP, caspase-3 (Cell 

Signaling,1:1000), and -actin (Jackson ImmunoResearch, 1:5000) commercial 

antibodies. To analyze potential mechanisms of apoptosis by TDE, in vivo-derived (UL-

472, 309, 316, 224) and in vitro-derived (UL-124, UL-OY) exosomes were isolated (as 

mentioned previously) and solubilized in reducing buffer (62.5 mM Tris-HCl pH 6.8, 25% 

glycerol, 2% SDS, 0.01% bromophenol blue, 5% -mercaptoethanol) and boiled for 5 

minutes. 20 g of in vivo exosome protein and 45-60 g of in vitro exosome protein was 

loaded onto a 12.5% and 4-15% (Mini-PROTEAN TGX Precast, Bio Rad) gel, 
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respectively, and transferred at 98 V (on ice) for 1h. Membranes were blocked and 

probed with anti-CD40L (for in vivo sample) and anti-FasL ( for in vitro sample), both 

1:1000 (Santa Cruz Biotechnology).   

Analysis of Coculture Supernatant using an Antibody Array 

 To investigate the effects of TDE on B cell cytokine and chemokine profiles, the 

relative levels of coculture proteins including cytokines and chemokines in the 

supernatant was analyzed by ProteomeProfilerTM Human Cytokine Array Panel A (R&D 

Systems) according to the manufacturer’s instructions. In short, coculture supernatant 

was incubated with array assay buffer and detection antibody, then added to blocked 

array membranes to incubate overnight at 4°C. Membranes were washed with assay 

wash buffer (1X) and incubated at room temperature for 30 minutes with horseradish 

peroxidase conjugated-streptavidin (1:2000). Membranes were washed and revealed 

using the array chemiluminescent peroxidase substrate reagent 1 and 2 (1:1).  Results 

were scanned and quantitated using UN-Scan-IT gel and graph digitizing software 

version 6.1 (Silk Scientific). Positive controls at three spots were used to normalize the 

results and to orient the membranes. For each spot, the net pixel value was determined 

by subtracting the background pixel value from the raw pixel values. The average of the 

reference spots (positive controls) was obtained and multiplied by the net pixel value to 

normalize the values. To calculate the fold change in cytokine levels between samples, 

the normalized treated value was divided by the normalized control value corresponding 

to that particular spot. Differences in cytokine levels ± 2 fold  (compared to 

corresponding controls) were considered significant. 

Results 

Coculture of UL-124 Patient-Derived Exosomes with Ramos B cells 

 Since this study investigates the role that TDE play in mediating the humoral 

response, it was essential to analyze any direct effects that TDE have on B cells and to 
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see if exosome dosage and length of exposure modified the outcomes. To do so, Ramos 

cells were cocultured with exosomes at different doses (10, 20, 50, and 100 g/mL) for 

3, 6, 18, and 24h. Post coculture, cells were collected and a fraction saved for 

hemocytometer counts using trypan blue to ascertain viability. Counts revealed 

decreases in cell viability with increasing dosages of exosomes and longer lengths of 

exposure (Fig. 10).  To distinguish whether these exosome-mediated mechanisms of cell 

death were a result of apoptosis or necrosis, Western blot with several apoptotic 

markers was utilized along with analysis of DNA fragmentation using agarose gels. 

Presence of uncleaved PARP was seen at all time points with enhanced presence at 6h 

followed by subsequent increases at the latter time points (Fig. 11). Cleaved PARP  

(indicative of apoptosis) is evident at 6h with enhanced presence in the latter time points, 

particularly in the samples cocultured with the highest dosage of exosomes (T6, T18, 

T24--Fig. 11A).  Additionally, the greatest amount of cleaved PARP is seen at 18h, 

which suggests that this time point may be critical in the apoptotic response for the B 

cell. Furthermore, the seemingly absent  -actin at 18 and 24h at the highest dosage 

suggests death of these cells, with death resulting from apoptosis since cleaved PARP 

presence is strong at these points. Uncleaved caspase-3, also known as procaspase-3, 

follows a similar pattern as uncleaved PARP-- present in all samples and enhanced at 

the latter time points (Fig. 12).  Reduction in uncleaved caspase-3 is seen at 18 and 24h 

with the highest dosage of exosomes. Cleavage of caspase-3 (which indicates 

apoptosis) is not evident for either subunit in 3 and 6h, but is seen at the 18, 24h time 

points, with both subunits present in several of the titrations (10, 20, 50 g/mL).  Neither 

cleaved subunit is evident in the 100 g/mL dose at these time points.  To further 

differentiate apoptosis from necrosis, DNA was extracted from cocultured cells, 

combined with RNase and proteinase K (to eliminate RNA/protein to ensure presence of 
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genomic DNA) and electrophoresed on an agarose gel to detect fragmentation, which 

indicates apoptosis (Fig. 13). Ramos cells cultured for 3, 6,18, 24h without exosomes do 

not exhibit DNA fragmentation. In the case of Ramos cells cocultured with exosomes for 

3 and 6 h, apoptosis is seen with the highest concentration of exosomes, with 

diminishing effects as the exosome titration decreases. However, in the 18 and 24h 

exosome cocultures, apoptosis is strongly detected at both 100 and 50 g/mL, with 

diminishing effects in the lower doses. 

 To address potential mechanisms of apoptotic induction in B cells by TDE, 

culture (UL124, UL-OY) and ascites-derived exosomes were isolated, solubilized, and 

subjected to electrophoresis and subsequent Western blot, utilizing FasL (for culture-

derived) and CD40L (for ascites-derived) detection antibodies (Fig. 14).  Of the two 

culture-derived samples, UL-124 indicated presence of both membrane and soluble 

FasL in all amounts, with greater expression of the membrane isoform in the higher 

quantities of protein. Expression of CD40L was seen in all ascites-derived exosomes 

analyzed. The presence of these molecules suggest potential mechanisms for exosome 

communication with B cells, and subsequent induction of apoptosis 

Coculture with TDE Enhances Particular Molecules 

 To further evaluate the direct effects of TDE on B cells, 24h coculture 

supernatant (T24) and the corresponding control (C24) was analyzed for comparative 

expression of various molecules using a human cytokine array (Fig. 15).  The expression 

of several molecules appeared to be enhanced in the exosome-treated sample, with 

three (soluble intercellular adhesion molecule (sICAM-1), IL-16, and plasminogen 

activator inhibitor-1 (PAI-1)) exhibiting a greater than 2 –fold difference in comparison to 

the corresponding control. 
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Discussion 

 As a collaborator in the effector immune response, mature B cells employ a 

number of tactics in recognizing and destroying microorganisms. They can produce 

antibodies, express various molecules (e.g. costimulatory molecules [307],  toll-like 

receptors (TLRs) [308, 309]) to enhance the promotion of antibody function [310], act as 

antigen presenting cells [311], produce inflammatory cytokines and reactive oxygen 

intermediates [312], and release exosomes which display exosomal proteins and B cell 

surface antigens [313] which are believed to enhance cognate interaction with CD4+T 

and subsequent B cell activation and exosome production [314].  Although the specific 

function of B cell exosomes has yet to be fully elucidated, the roles of tumor-derived 

exosomes/microvesicles in intercellular communication are rapidly emerging.  One such 

role is the induction of apoptosis of effector cells to facilitate immune escape and 

mediate tumor progression. Human colorectal cells were reported to release 

microvesicles containing FasL and TRAIL which induced apoptosis in activated CD8+T 

[111]. In a study investigating the role of immunosuppression in glioblastoma patients,  

glioblastoma-derived exosomes were found to induce apoptosis in T cells via the Fas 

signaling pathway [315].  Correspondingly, tumor-derived microvesicles isolated from the 

sera of melanoma and head and neck squamous cell carcinoma patients promoted the 

expansion of regulatory T cells by inducing apoptosis of CD8+T cells [316].  This 

investigation seeks to gain a clearer understanding of the role of TDE in the ovarian 

cancer humoral response, by analyzing the effects of TDE on the B cell. Because our 

TDE express CD40L, our initial hypothesis was that TDE could activate the B cell 

(possibly via CD40 ligation) thereby initiating the production of antibodies and potentially 

the induction of antibody class switch. A series of preliminary experiments post coculture 

of TDE with Ramos B cells revealed that activation of the B cells to produce antibodies 
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may not be likely due to the undetected phosphorylation of molecules in the CD40L 

signaling pathway.   However, upon extension of culture times (3, 6, 18, 24h) it became 

apparent through cell counts for viability and culture appearance post incubation that an 

effect was taking place. Cells cocultured with UL-124 TDE (100 g/mL) displayed a 

shrunken morphology.  Furthermore, RTPCR analysis (data not shown) revealed a 

reduction in gene expression in the TDE-treated cells in all housekeeping genes tested   

(-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 2-microglobulin, 

hypoxanthine-guanine phosphoribosyltransferase (HPRT)), which suggested a potential 

issue with toxicity. In order to distinguish whether these cellular alterations were the 

result of apoptosis or necrosis, several mechanisms were employed.  First, cellular 

lysates from the cocultures were obtained, subjected to Western blot and probed with 

known apoptotic markers, caspase-3 and PARP. Apoptosis (programmed cell death) is 

the active, controlled intracellular disassembly by which the cell coordinates self-

destruction [317] without inducing inflammation or damage to neighboring cells [318].  In 

apoptosis, activation of initiator caspases (caspase-8 and 9) result in the activation of 

executioner caspases (e.g. caspase-3) which can result in cleavage of downstream 

substrates including poly-ADP Ribose polymerase (PARP) [317].  PARP, a DNA-binding 

enzyme, transfers poly ADP-ribose polymers to DNA strand breaks [319] to assist in 

DNA stability and repair [320].  In facilitation of apoptosis, cleaved caspase-3 can cleave 

the 116 kDa PARP into 89 and 24 kDa fragments, thereby inhibiting the catalytic activity 

of PARP [321].   This inhibition results in lack of repair to DNA strand breaks and 

activation of endogenous Ca2+ and Mg2+ endonucleases that promote DNA degradation, 

producing DNA fragments 180-200 base pairs in length [322].  In our study, treating B 

cells with ovarian cancer exosomes (in a dose-dependent manner) not only induced 

cleavage of PARP into the requisite fragments that renders it inactive, but also resulted 
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in fragmentation of DNA, particularly with the higher concentrations of exosomes 

(100g/mL at all time points and 50 g/mL at the latter time points, 18 and 24 h).  

Collectively, these data implicate ovarian TDE as an inducer of apoptosis in B cells. The 

induction of apoptosis in human immune effector cells by tumor-derived 

exosomes/microvesicles has been documented in several different cancers, each 

mediating the process in various ways. One of the common mechanisms of mediation is 

through the release of exosomes that contain apoptosis-induction signal molecules, such 

as FasL or TRAIL. Studies have implicated exosome/microvesicle associated FasL as 

the signal for apoptotic induction in activated T cells [323], in peripheral blood 

mononuclear cells [324], and CD8+T cells [315, 325].  FasL is a tumor necrosis factor 

receptor (TNF-R) family cytokine [326] which can be synthesized in soluble or 

membrane-bound form, the latter shown to be more active than the soluble form in 

apoptotic induction of primary T cells [327, 328] and hepatocytes [329].  Mechanistically, 

FasL engages and induces trimerization of its cognate receptor, Fas [330], resulting in 

Fas activation and recruitment of adaptor proteins (i.e. Fas-associated death domain—

FADD) to its cytoplasmic death domain to form a death receptor-induced signaling 

complex (DISC) [331, 332].  Procaspase-8 is recruited into the DISC [333] and is 

proteolytically activated to caspase-8 which activates downstream effector caspases, 

like caspase-3 [334], resulting in cleavage of substrates including PARP and the inhibitor 

of caspase-activated DNase (ICAD) [335]. Cleavage of ICAD releases caspase-

activated DNase (CAD) which cleaves the chromosomal DNA which is responsible for 

the DNA fragmentation detected during apoptosis [336].  In analysis of our UL-124 

culture-derived exosomes used throughout this study, the expression of both soluble and 

membrane-bound FasL suggests that these exosomes may be activating the Fas/FasL 

pathway in the induction of B cell apoptosis.  A plausible yet equally important 

contributor to this exosome-mediated apoptotic induction of B cells is the CD40/CD40L 
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pathway.  CD40 is a TNF-R family member transmembrane receptor [337] that is 

trimerized and activated upon engagement by its cognate ligand, CD40L [338]. Under 

normal conditions in conjunction with signals from the engaged B cell receptor (BCR), 

CD40 ligation triggers B cell activation, characterized by increases in tyrosine kinase 

activity [339] and DNA synthesis [340], expression of costimulatory molecules [341] and 

transcription factors [342], and immunoglobulin class switch [343].  Correspondingly, the 

engagement of these receptors have been shown to induce Fas expression on the B cell 

surface, with greater amounts of Fas when both receptors were ligated [344].  In spite of 

the expression of fewer Fas molecules, murine B cells with ligated CD40 without  BCR 

engagement are more sensitive to apoptosis [345, 346].  Likewise, apoptotic induction 

via upregulation of Fas by CD40 ligation has been corroborated in normal and malignant 

human B cells [347]. With this in mind, we propose that the exosome-associated FasL 

and CD40L ligate their respective receptors on the B cell to mediate apoptosis of the B 

cell as a mechanism of modulating the humoral immune response.  Further analysis is 

needed to verify the contributions of CD40L and FasL in the mediation of B cell 

apoptosis. Additional investigation could include coincubation of blocking antibodies to 

CD40L and FasL with TDE or to their respective receptors with the B cells prior to 

coculture.   Post coculture, analysis of apoptotic induction would implicate exosome-

associated CD40L as the activator of the B cell to upregulate Fas expression and 

exosome-associated FasL as the extrinsic mechanism that induces apoptosis. 

 To further investigate potential contributors to the TDE-mediated apoptosis of B 

cells, the supernatants from the 24h control (C24) and treated (T24, highest 

concentration) cultures were analyzed for the presence of soluble mediators.  Analyses 

revealed a greater than 2-fold expression of three molecules (PAI-1, IL-16, sICAM-1) in 

the exosome- treated sample in comparison to the non-treated control. A closer 

investigation of the literature suggests that these molecules may contribute to immune 
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escape of malignant cells, either through mechanisms that assist with evasion or 

promotion of apoptosis, or progression of the tumor.  PAI-1 is a key inhibitor of 

plasminogen activators (serine proteases responsible for plasmin production which leads 

to fibrinolysis [348] and activation of matrix metalloproteinases and growth factors [349]).  

PAI-1 subsequently inhibits plasmin production, thereby preventing these responses and 

affecting cell migration [349].  The expression of PAI-1 has been shown to be elevated in 

different cancers [350, 351], and its enhanced presence is linked to tumor cell survival 

[351-353].  In the promotion of apoptosis, PAI-1 binds to vitronectin (extracellular 

glycoprotein),which interferes with cellular adhesion by blocking cell receptors and 

integrins [354].  B cells display the vitronectin receptor (v3) [355, 356] which plays a 

role in mediating phagocytosis of cells that are undergoing apoptosis [357].  In 

consideration of the apoptotic induction of B cells by TDE, we propose that in the tumor 

microenvironment, PAI-1 may allow the exosomes to interact with vitronectin in an 

attempt to block B cell interaction, which would induce apoptosis of the B cell because of 

its inability to adhere. Because the vitronectin receptor on the B cell surface would 

remain unbound, it would act as a signal to phagocytes to remove the B cells from the 

microenvironment. We believe that PAI-1 is also associated with the exosomes, which 

the tumor cell would release as a means of interacting with B cells and other effector 

cells.  IL-16 is an immunomodulatory cytokine typically released at the site of 

inflammation [358] as a chemoattractant for eosinophils, monocytes, and T cells [359].   

Synthesized in its precursor form (pro IL-16), this precursor is cleaved by caspase-3  to 

release the active form, IL-16 [358] which is secreted by epithelial, mesenchymal, and a 

number of immune cell types [360], including B cells [361]. In the context of cancer, 

documented levels of IL-16 are elevated in the serum of cancer patients [362] and 

correlate with the progression of disease [363].  Furthermore, enhancements in IL-16 

expression have been associated with apoptotic activity. A study of human monocytes 
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indicated that spontaneous activation of caspase-3, resulted in apoptosis and 

extracellular increases in IL-16 [360]  In this study, greater than 2-fold expression of IL-

16 was seen in the TDE-treated sample in comparison to the control. We propose that 

as the TDE interact with the B cells through CD40L and FasL to activate apoptotic 

pathways, they activate caspase-3 which is able to cleave pro IL-16 in the B cell, thereby 

allowing the release of IL-16 into the extracellular environment. This released IL-16 

could be instrumental in recruiting a number of immune cells to facilitate apoptotic B cell 

clearance.  ICAM-1 is a membrane glycoprotein expressed on a number of cells, 

including endothelial cells and B cells, that mediates cell-matrix and cell-cell interactions 

by binding with its ligand, leukocyte function-associated antigen-1 (LFA-1) [364].  ICAM-

1 also exists in soluble form, sICAM-1, a product of proteolytic cleavage of the 

membrane-bound version [365, 366].  Correlation between heightened serum levels of 

sICAM-1 and tumor progression and/or poor prognosis is evidenced in various cancers.  

Increases in sICAM-1 in colorectal cancer [367] and melanoma [368] were found to be 

linked to tumor progression.  In studies of human melanoma cell lines, sICAM-1 was 

found to obstruct the interactions between T cells and the tumor cells [369] and to block 

the tumor from the cytotoxic effects of NK cells [370].  Breast cancer patients were 

documented to have increased levels of sICAM-1 in their sera correlating with tumor 

progression and poor prognosis [371, 372].  In cancer patients, sICAM-1 is thought to 

derive from the cancer cells themselves or from some component of the tumor 

microenvironment [371, 373, 374].  Investigation of the efficacy of prostate cancer 

exosome-associated ICAM-1 revealed the presence of both membrane-bound and 

soluble forms, but the sICAM-1 was shown to be less effective in interacting with LFA-1 

and in modulating the immune response [375].  In our studies, we propose that the 

increases in sICAM-1 in our TDE-treated samples indicate its association with the 

exosomes. Shedding of ICAM-1 by tumor cells has been proposed as an 
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immunosuppressive mechanism that prevents interaction between the tumor cell target 

and the cytotoxic effector [376].  The ovarian tumor may preferentially release  

exosomes with sICAM-1 associated with them in an attempt to subvert interaction with 

cytotoxic effectors, thereby contributing to their survival and progression. 
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Figure 10:  Percentage of cell death in Ramos cells cocultured with patient tumor-derived exosomes.  The percentage 

of dead cells in culture as determined by trypan blue staining.  Ramos B cells were cocultured with patient UL-124 exosomes 

for different lengths of time (3, 6, 18, 24 h) and at different exosome doses (10, 20, 50, 100 g/mL). C (control, untreated), T 

(treated with exosomes). The number following the letter indicates the time point (h). The number following the time point 

indicates the exosome concentration (g/mL). Asterisks indicate significance levels of t-test control comparisons with treated 

at the corresponding time point, *p< 0.05, **p< 0.01.  
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Figure 11: Coculture of patient tumor-derived exosomes enhance presence of apoptotic 

marker, PARP.  Western blot analysis of PARP and PARP cleavage in total cell lysates from 3, 6, 

18 and 24h cocultures of Ramos cells with UL-124 OC exosomes (10-100 g/mL).  Densitometric 

quantification of the ratio of PARP (cleaved and uncleaved) to -actin is shown. Data represents 3 

independent experiments with similar results.  
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Figure 12: Coculture of patient tumor-derived exosomes enhance presence of apoptotic marker, 

caspase-3.  Western blot analysis of caspase-3 and caspase-3 cleavage in total cell lysates from 3, 6, 

18 and 24h cocultures of Ramos cells with UL-124 OC exosomes (10-100 g/mL).  Densitometric 

quantification of the ratio of caspase-3 (cleaved isoforms and uncleaved) to -actin is shown. Data 

represents 3 independent experiments with similar results. 
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Figure 13:  DNA fragmentation analysis of B cell apoptosis induced by coculture with TDE. Ramos B cells were 

cocultured for 3, 6, 18, and 24h with tumor-derived exosomes at concentrations ranging from 10-100 g/mL. Apoptosis is not 

detected in control samples (C3, C6, C18, C24) while exosome-treated samples (T) undergo apoptosis to varying degrees. 

The greatest fragmentation is seen with the higher concentrations of exosomes (T 100) with gradual decreases as exosome 

concentration decreases.  C (control), T( treated with exosomes). Number following C or T represents length of time for 

coculture (3, 6, 18, or 24 h). Numbers (10, 20, 50,100) represent concentration of exosomes added in g/mL.  PC represents 

the positive control (Ramos + cycloheximide (5 ng/mL)) cocultured for 24h.   
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Figure 14:  Analysis of in vitro and in vivo derived-exosomes reveal presence of potential activators of B cell 

apoptosis.   

A) Western blot of UL-124 (1) and UL-OY (2) culture-derived patient exosomes ( UL-124:1; UL-OY: 2) using varying amounts  

of exosomal protein (45, 50, 55, 60 g/lane)  reveal presence of  both soluble (26 kDa) and  membrane-bound  (40 kDa) 

forms of FasL in the UL-124 sample.  B) Western blot of OC patient-derived ascites exosomes (UL-472, 309, 316, 224) reveal 

presence of CD40L. Both Fas L and CD40 L have been implicated in inducing B cell apoptosis.
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Figure 15:  Molecule induction in Ramos B cells cocultured for 24h with tumor-

derived exosomes.  Analysis of coculture supernatant using a human antibody array 

revealed the increase of several molecules. Asterisks indicate changes> 2 fold. 
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CHAPTER 5 

CONCLUSION AND SIGNIFICANCE OF WORK 

 

 In countless studies, tumor-derived exosomes (TDE) demonstrate their ability to 

orchestrate communication between the tumor cell and the microenvironment in order to 

facilitate antitumor and protumor responses.  Previous investigations have analyzed 

TDE interactions with a number of immune cells including T cells, myeloid-derived 

suppressor cells, and dendritic cells, but little to no investigation is evident on the effects 

of TDE on B cells. This study began to explore the role that TDE may play in the efficacy 

of the humoral immune response by analyzing the exosome-associated humoral 

antitumor response and the impact of exosomes on humoral modulation through their 

interaction with B cells.  In the ovarian cancer framework, humoral responses are 

evident by the presence of enhanced  IgG in the circulation, yet the cancer continues on 

its aggressive course, all while presenting non-obvious symptoms. The presentation of 

symptoms that mimic other conditions and/or the lack of obvious symptoms contribute to 

the latent diagnosis of ovarian cancer.  

Utilizing human ovarian cancer as the model cancer system, ovarian TDE were 

found to display some of the same antigenic proteins as their parent cells, and bound 

immunoreactive IgG, primarily of the IgG1 and IgG2 subclasses. These findings indicate 

that TDE may express immunogenic antigen as a mechanism to divert the humoral 

antitumor response away from the tumor and towards itself. In the diversion of the 

response, IgG1, which is one of the complement-fixing, opsonizing antibodies important 

in Th1 antitumor responses, binds to the antigen and sets the stage for mediating the 
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antitumor response.  Additionally, IgG2 antibodies are produced and also bind to the 

antigen on the exosome, which is believed  to block the opsonization, phagocytosis, and 

antibody-dependent cell cytotoxicity (ADCC) of the IgG1 [281].  Therefore, the presence 

of IgG2 may counteract the immune response against the exosome-associated antigen, 

resulting in a decreased antitumor response, which would further benefit the ovarian 

cancer cell by allowing it to progress.  Additionally, ovarian TDE were found to induce B 

cell apoptosis and promote increases in PAI-1, IL-16, and sICAM-1 to assist in 

promoting the survival of the ovarian tumor.  Overall, this study indicates that ovarian 

TDE are able to modulate the humoral immune response at the anti- and protumorigenic 

levels through direct effects on the exosomes, and the effects of the exosomes on the B 

cells (Fig 16). 

Taking all of these factors into consideration, the hyperexpressed but seemingly 

ineffective IgG in the ovarian cancer patient sera may be a direct result of this battle 

between protumorigenic and antitumorogenic responses mediated by ovarian TDE.  

Further biochemical analysis of this exosome-associated IgG may provide additional 

insight on potential structural modifications induced which could further interfere with the 

ability of IgG to adequately mediate an immune response.  Much remains to be defined 

and elucidated regarding the mechanisms of the host immune response to ovarian 

cancer. However, this study does provide perspective on a different facet of the immune 

response which has previously been unexplored.  Further consideration of the humoral 

immune response component of ovarian cancer may shed some light on this enigmatic 

disease and contribute an additional strategy to be utilized in the fight against ovarian 

cancer.   
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Figure 16:  Proposed mechanism of TDE modulation in the ovarian cancer humoral response.  Immunogenic 

antigen expressed by the ovarian tumor induces a humoral antitumor response, resulting in the production of 

immunoreactive antibodies. The ovarian tumor releases TDE which may also express immunogenic antigen, thereby 

allowing the secreted antitumor antibodies to bind to both the tumor and the TDE. Intercommunication between TDE 

and B cells through Fas and CD40 ligation may induce B cell apoptosis in an effort to reduce production of more 
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antitumor antibodies. In the interaction between B cells and TDE, relative expression of plasminogen activator 

inhibitor-1 (PAI-1), IL-16, and soluble intercellular adhesion molecule-1 (sICAM-1) is enhanced to potentially contribute 

to immune escape of the ovarian tumor.  
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