
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2016

Immune monitoring in recipients of combined
living donor kidney and hematopoietic stem/
facilitating cell transplants.
Mark DeWayne Badder
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, and the Medical
Immunology Commons

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted
for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository.
This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

Recommended Citation
Badder, Mark DeWayne, "Immune monitoring in recipients of combined living donor kidney and hematopoietic stem/facilitating cell
transplants." (2016). Electronic Theses and Dissertations. Paper 2614.
https://doi.org/10.18297/etd/2614

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/958?utm_source=ir.library.louisville.edu%2Fetd%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=ir.library.louisville.edu%2Fetd%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=ir.library.louisville.edu%2Fetd%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2614
mailto:thinkir@louisville.edu


IMMUNE MONITORING IN RECIPIENTS OF COMBINED LIVING DONOR 
KIDNEY AND HEMATOPOIETIC STEM/FACILITATING CELL TRANSPLANTS 

 
 
 
 
 
 

By 
 

Mark DeWayne Badder 
B.S., University of Louisville, 2009 

 
 
 
 
 

A Thesis 
Submitted to the Faculty of the 

School of Medicine of the University of Louisville 
In Partial Fulfillment of the Requirements 

For the Degree of 
 
 
 
 

Master of Science in Microbiology and Immunology 
 
 
 
 

Department of Microbiology and Immunology 
School of Medicine 

University of Louisville 
Louisville, Kentucky 

 
 
 

December 2016 
  



Copyright 2016 by Mark DeWayne Badder 

All rights reserved 

  



  



ii 
 

IMMUNE MONITORING IN RECIPIENTS OF COMBINED LIVING DONOR 
KIDNEY AND HEMATOPOIETIC STEM/FACILITATING CELL TRANSPLANTS 

 
By 

 
Mark DeWayne Badder 

B.S., University of Louisville, 2009 
 

A Thesis Approved on 
 
 
 
 

November 14, 2016 
 
 
 
 

by the following Thesis Committee: 
 

 
 

________________________________ 
Thesis Director 

Dr. Suzanne T. Ildstad 
 
 

 
________________________________ 

Thesis Co-Director 
Dr. Esma S. Yolcu 

 
 

 
________________________________ 

Dr. Nathan W. Schmidt 
 

  



iii 
 

DEDICATION 

I would like to dedicate this work to my son Fox, who is the light of my life.   May this 

work serve to inspire you to reach for the clouds, and capture them. 

  



iv 
 

ACKNOWLEDGEMENTS 

 I would like to extend my deepest appreciation to Dr. Suzanne Ildstad for taking 

me on as a student and allowing me to work with such a rare and amazing project.  Her 

work in human stem cell transplants will be a paradigm shift in organ transplantation and 

I am overjoyed with having the opportunity to be a part of that, doing what I love most 

with flow cytometry. 

 I want to thank Dr. Esma Yolcu for all of the time and effort she spent on me at 

every step along the way in this endeavor.  She has been invaluable with her guidance 

and encouragement.  I could not complete this degree without her direction and tough 

love approach.  Dr. Yolcu helped to strengthen me in a way that cannot be learned in a 

classroom setting. 

I also want to acknowledge Dr. Schmidt for taking the time away from his 

valuable work to serve on my committee. 

 I want to thank everyone at the Institute for Cellular Therapy, Northwestern 

Memorial Hospital, and Novartis for all the support and scientific challenges they 

provided. 

 Last, but not least, I want to show my appreciation to the Department of 

Microbiology & Immunology for making this degree challenging and a gratifying 

experience. 

  



v 
 

ABSTRACT 

IMMUNE MONITORING IN RECIPIENTS OF COMBINED LIVING DONOR 

KIDNEY AND HEMATOPOIETIC STEM/FACILITATING CELL TRANSPLANTS 

Mark DeWayne Badder 

November 14, 2016 

 

 Solid organ transplantation coupled with a hematopoietic stem cell transplant 

from the organ donor allows for the recipient to cease immunosuppressive therapy after 

transplant via a chimeric immune system.  This beneficial effect of stem cell transplants 

is negatively affected by graft versus host disease (GVHD).  Better understanding of the 

donor and recipient’s immune system is vital to mitigating graft versus host disease and 

induction of donor chimerism without GVHD.  In this study, flow cytometry was used to 

characterize immune cells of the recipients’ before and up to eighteen months post 

transplantation.  The recipients were categorized into their respective chimeric groups.  

Fully durable chimeric subjects did not reconstitute naïve T cells to pre-transplant levels 

by eighteen months post-transplant whereas the transiently chimeric subjects 

reconstituted.  The goal was to find an immune cell biomarker for chimerism but due to 

the limited number of transiently chimeric subjects, the data showed no significant 

difference. 
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INTRODUCTION 

 

 Hematopoietic stem cell (HSC) transplantation in conjunction with a solid organ 

transplant is in its infancy but has shown very promising results [1].  One of the major 

concerns with HSC transplantation is graft versus host disease (GVHD) [2].  The donor 

cells will mount an immune response against the recipient, ultimately causing rejection of 

transplanted cells and organ.  Without HSC transplantation along with the solid organ 

transplant, the recipient is confined to a regiment of constant immunosuppressive drug 

therapy for the remainder of his/her life [3].  This poses negative side effects which 

include a reduced immune system and an increased risk of developing cancer and 

opportunistic infections [4].  However, with the HSC transplant, the recipient will still 

take immunosuppressive drugs for a short period of time and then cease treatment to 

allow time for the donor and recipient cells to form a chimeric immune system where 

both the recipient and donor cells are active and cooperative [5]. 

 Due to the toxicity of immunosuppressive therapies [6] [7], Dr. Ildstad and her 

group have pioneered a HSC transplant model, known as facilitating cell treatment 

(FCRx), which relies on the enrichment of CD8+/TCR- facilitating cells (FC) and HSCs 

by depleting GVHD-producing cells.  FCRx transplants from the donor of a living kidney 

have been shown to induce a chimeric immune system in recipients of combined kidney 

and FCRx transplants [8].  This model is currently in FDA clinical trial for humans and 
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its aim is to eliminate the long term usage of immunosuppressive therapies via chimerism 

[9] [10]. 

The conditioning for FCRx transplant comprises a number of chemical and 

radiation treatments.  Fludarabine is administered at days -4, -3, and -2 pre-transplant and 

interferes with DNA synthesis.  Cyclophosphamide (Cy) is given at day -3 and interferes 

with DNA replication.  Tacrolimus, which inhibits IL-2 production to inhibit the 

development and proliferation of T cells, and mycophenolate mofetil (MMF), which 

inhibits an enzyme needed for the growth of T and B cells, treatment starts at day -2 and 

is continued after transplantation.  An irradiation of 200 cGy total body irradiation (TBI) 

is performed at day -1.  On day 0, the kidney transplant is performed and the FCRx 

infusion is performed day +1.  Another treatment of Cy is administered at day +3.  At this 

point, the recipient’s immune system is reduced to very low levels of white blood cells 

(WBC).  Engraftment of donor cells and recovery of recipient cells is monitored and 

determined at certain time points post-transplant.  MMF is ceased at 6 months post-

transplant and tacrolimus at 12 months if a stable level of donor chimerism is determined 

[5].  A timeline of conditioning and events is presented in Figure 1. 

Massachusetts General Hospital (MGH) and Stanford are also working with a 

combined HSC and organ transplant model to achieve chimerism.  The MGH group 

concentrates on tolerance via achieving transiently mixed chimerism [11].  Stanford 

achieved a persistent mixed chimerism in combined transplant subjects that were human 

leukocyte antigen (HLA) matched donor and recipient but zero chimerism in HLA 

mismatched transplants [11].  The Northwestern group with the Institute of Cellular 

Therapeutics (ICT, University of Louisville) has thirty five subjects that received a 
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combined transplant and eighteen recipients that have successfully ceased all 

immunosuppressive therapies with full donor chimerism induction. 

 While the FCRx transplant model aids in inducing chimerism, not all subjects in 

the clinical trial fully develop durable chimerism.  Within the scope of my work, there 

were eight human subjects that obtained a fully durable chimerism (100% donor DNA in 

recipient CD3+ cells and whole blood), four that showed chimerism after transplantation 

and infusion but regressed between months one and three post transplantation and are 

termed transient, and one that never developed chimerism.  The knowledge gap that we 

addressed in this work is to determine if there are differences in certain immune cell 

populations between the fully durable and transiently chimeric groups post 

transplantation. 

Hypothesis: 

 Characterizing the immune cell populations of the recipient pre- and post-

transplantation is important to determine if varying levels of chimerism result in 

differences in the repopulation of immune cell subsets.  Regulatory T cells are involved 

in downregulating the immune system [12] and may be involved in aiding induction of 

chimerism long term.  The hypothesis was that we would find a divergence of at least one 

immune cell type between the two chimeric groups, fully durable and transiently 

chimeric, that would be a novel biomarker for chimerism. 
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Figure 1. 

 

Figure 1.  Algorith for condition, kidney and FCRx transplant, and maintenance 

immunosuppression. 
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METHODS AND MATERIALS 

 

Institutional Review Boards (IRB) at Northwestern University and the University 

of Louisville approved all protocols in addition to the FDA (IDE 13947 & 7392).  Donors 

and recipients provided informed consent for admission into the clinical trial program. 

Obtaining Samples: 

Whole blood human samples from both recipient and donor were obtained in a 

Beckson Dickson (BD) acid citrate dextrose vacutainer tube from Northwestern 

Memorial Hospital in Chicago, Illinois and delivered the next day to the University of 

Louisville, Louisville, Kentucky.  A complete blood count (CBC) was performed in 

duplicate and the average WBC was recorded at receipt of each sample on a Horiba 

Micros 60 cell counter. 

Sample Staining: 

Third party, healthy human donor whole blood was used for unstained and single 

color compensation controls to properly set the parameters on the flow cytometer and 

followed staining steps for tubes that did not have intracellular markers added. 

Samples were stained in Fisher flow tubes using 20µl of BD extracellular 

antibodies that were previously titrated on third party, healthy human donor whole blood 

for optimal staining.  Upon antibody staining, the cells were incubated at 4°C for 30 

minutes.  After incubation, the cells were gently ratcheted to break up any pellets that 

may have occurred during incubation and washed with 2ml of an in-house flow stain 
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buffer and the tubes were placed in a centrifuge set for 200g, 4°C, for 5 minutes.  

The flow stain buffer was made by adding 1.8g sodium bicarbonate from Sigma-Aldrich 

(catalog #S8875), 5.0g Bovine Serum Albumin from Sigma-Aldrich (catalog #A7030), 

5.0g sodium azide from Sigma-Aldrich (catalog #S2002), to a Hank’s Balanced Salt 

Solution from Lonza BioWhittaker (catalog #10547F), which was diluted to a 1X 

concentration with endotoxin free water obtained from a Millipore water purification 

system.  After centrifugation, the supernatant was decanted from the tubes, ratcheted to 

break up pellets, and washed with 1ml Fixation/Permeabilization Buffer created using 

eBioscience Fixation/Permeabilization Concentrate (catalog #00-5123-43) and 

Fixation/Permeabilization Diluent (catalog #00-5223-56) and vortexed.  This step was 

used for all samples since some underwent intracellular staining and consistency in 

preparation was desired.  The cells were incubated at 4°C in the dark for 1 hour if no 

intracellular markers were to be used or 15 hours under the same conditions if 

intracellular markers were to be added.  Upon completion of the incubation, 2ml of the 

in-house flow stain buffer was added and the cells were placed in a centrifuge set for 

200g, 4°C, for 5 minutes.  The supernatant was decanted and the tubes ratcheted before 

adding 2ml of Permeabilization Buffer from eBioscience (catalog #00-833-56) diluted to 

a 1x concentrate with Dulbecco's phosphate-buffered saline (DPBS) from BioWhittaker 

(catalog #17-512Q) and placed in a centrifuge set for 200g, 4°C, for 5 minutes before 

decanting the supernatant and the tubes ratcheted. 

Subject sample cells that required intracellular staining had 20µl of 10% goat 

serum from Sigma-Aldrich (catalog #G9023) added as a blocking agent and incubated at 

4°C in the dark for 30 minutes, then BD intracellular antibodies were added to the tubes 
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and the tubes were incubated again at 4°C in the dark for 30 minutes.  After incubation, 

2ml of diluted Permeabilization Buffer was added to the tubes with intracellular markers.  

The supernatant was decanted and the tubes ratcheted. 

The sets of tubes with and without intracellular markers were washed with 2ml of 

the in-house flow stain buffer and the cells were placed in a centrifuge set for 200g, 4°C, 

for 5 minutes.  The supernatant was decanted and the tubes ratcheted.  400µl of the in-

house flow stain buffer was added to the tubes and they were vortexed before flow 

cytometry acquisition. 

Flow Cytometry: 

The prepared controls and subject samples were acquired on a BD LSRII flow 

cytometer with a threshold set to eliminate any remaining red blood cells still present in 

any of the tubes.  The flow cytometer rate was set at medium to reduce the possibility of 

doublets occurring in the flow cell.  Forward Scatter (FSC) and Side Scatter (SSC) were 

adjusted on the unstained subject sample tube after compensation was set.  Each tube was 

acquired until 100,000 total events were recorded. 

Samples were analyzed using BD FACSDiva software.  The number of CD4+ 

regulatory T cells was recorded along with the total number of events.  The absolute cell 

number was calculated by multiplying the WBC number by the percent of the cell 

population of interest. 

Statistical Analysis: 

Subjects were grouped into their respective chimerism groups and the average 

among the chimeric group was determined for each time point.  Standard error of the 

mean was calculated and used for generating error bars in the graphs.  A two-tailed 
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Student’s t-test with unequal variance was performed to compare the fully durable to the 

transiently chimeric groups at each time point.  This was because the two chimeric 

groups are unequal in the number of subjects in their respective groups.  A p-value of 

0.05 or lower is considered significant for the data presented. 
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RESULTS 

 

 Clinical subjects were sorted into sets of chimeric groups.  Fully durable 

chimerism includes subjects that developed a homeostatic chimeric immune system 

between the recipient and the donor.  These subjects were weaned off of 

immunosuppressive therapies by twelve months post kidney transplantation.  Transiently 

chimeric subjects started showing decreased levels of chimerism between months one 

and three post combined kidney/FCRx transplant, but showed zero percent chimerism in 

their whole blood by twelve months post transplantation.  These subjects have to continue 

immunosuppressive therapies.  One subject never obtained a level of chimerism above 

zero percent.  In total, there are eight subjects that are fully chimeric, four that are 

transient, and one that never became chimeric and the chimeric groups are listed in Table 

1. 

 Lineage reconstitution of FCRx recipients was monitored and assessed.  Due to 

the conditioning, the absolute cell number of CD3+ cells showed a decrease post-

transplantation.  B cells and NK cells recovered faster than T cells and, by six months 

post-transplant, were larger in number than pre-transplant levels in both chimeric groups 

and are shown in Figures 2 and 3 [5].  Interestingly, the transiently chimeric subjects’ NK 

cells exceeded the pre-transplant absolute cell number by eighteen months post-

transplantation.  Since the transiently chimeric subjects are no longer tolerant, their NK 
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cells could be mounting a response to the foreign graft including donor cells [13]. 

 CD4+ and CD8+ subpopulations of CD3+ T cells were also characterized.  Effector 

memory cells (Tem) were defined as CD45RA-/CD45RO+/ CD62Llow, central memory 

cells (Tcm) as CD45RA-/CD45RO+/ CD62Lhigh, effector cells (Teff) as 

CD45RA+/CD45RO-/CD62L-, and naïve T cells as CD45RA+/CD45RO-/CD62L+ and the 

gating strategy is shown in Figure 4.  Within twelve months post-transplantation, the 

CD4+ and CD8+ Tem, Tcm, and Teff subpopulations reconstituted to a level not 

significantly different than pre-transplant cell numbers for both chimeric groups as shown 

in Figures 5 and 6.  Naïve CD4+ subpopulations, however, did not return to pre-transplant 

levels and is reflected in both fully durable and transiently chimeric groups [5].  The 

naïve CD8+ cells did not return to pre-transplant levels for the fully durable group but did 

return to a similar state for the transiently chimeric subjects by nine months post-

transplant. 

 Regulatory T cells were defined as CD4+/CD25+/FoxP3+ and our gating strategy 

is listed in Figure 7.  Comparing the fully durable to the transiently chimeric groups, I 

found there to be no significant difference pre combined kidney/FCRx transplant, which 

was to be expected.  Three months post-transplant, data showed that both chimeric 

groups had drastically reduced levels of regulatory T cells due to the subjects’ irradiation 

and immunosuppressive therapies.  Considering Figure 8, once MMF was discontinued, a 

divergence of the regulatory T cells was observed between fully durable and transiently 

chimeric subjects, which became more prominent at twelve months, when tacrolimus was 

discontinued, and even more at eighteen months post-transplantation, though there was 

no significant difference.  The transiently chimeric subjects’ regulatory T cells never 
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completely recovered to pre-transplant levels and remained similar to their three month 

post-transplant levels. 
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Table 1. 

Chimeric Subject Groups of Living Kidney and FCRx Transplant 

Subject Chimeric Group 
Month 12 Percent Whole Blood Donor 

Chimerism 

NW1 Transient 0% 

NW2 Off Study Off Study 

NW3 Fully Durable 100% 

NW4 Transient 0% 

NW5 Fully Durable 100% 

NW6 Fully Durable 100% 

NW7 Fully Durable 100% 

NW8 Fully Durable 100% 

NW9 0% Chimeric 0% 

NW10 Fully Durable 100% 

NW11 Transient 0% 

NW12 Transient 10% 

NW13 Off Study Off Study 

NW14 Fully Durable 100% 

NW15 Fully Durable 100% 
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Figure 2. 

Figure 2.  Lineage populations for the fully durable chimeric group.  CD3+, CD19+ B 

cells, CD56+ NK cells, and CD14+ monocytes absolute cell numbers are shown.  This 

data was previously published in [5]. 
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Figure 3. 

Figure 3.  Lineage populations for the transiently chimeric group.  CD3+, CD19+ B cells, 

CD56+ NK cells, and CD14+ monocytes absolute cell numbers are shown.  This data was 

previously published in [5]. 

 

  



15 
 

Figure 4. 

Figure 4.  The gating strategy for T cell subpopulations on the BD LSRII is shown.  

lymphocytes were selected (P1 gate in top left dot plot), followed by CD4+ and CD8+ 

(bottom left dot plot) followed by effector memory cells (Tem) as CD45RA-/CD45RO+/ 

CD62Llow, central memory cells (Tcm) as CD45RA-/CD45RO+/ CD62Lhigh, effector cells 

(Teff) as CD45RA+/CD45RO-/CD62L-, and naïve CD4+ and CD8+ T cells as 

CD45RA+/CD45RO-/CD62L+. 
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Figure 5. 

Figure 5.  CD4+ and CD8+ subpopulations for the fully durable chimeric group.  Tem, 

Tcm, naïve, and Teff absolute cell numbers are shown.  Naïve CD4+ and naïve CD8+ cells 

did not return to pre-transplant levels.  This data was previously published in [5]. 
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Figure 6. 

Figure 6.  CD4+ and CD8+ subpopulations for the transiently chimeric group.  Tem, Tcm, 

naïve, and Teff absolute cell numbers are shown.  This data was previously published in 

[5]. 
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Figure 7. 

 

Figure 7.  The gating strategy for regulatory T cells on the BD LSRII is shown.  

Lymphocytes were selected (P1 gate in the top left dot plot), followed by CD4+ cells (top 

right dot plot), then CD25+ cells (bottom left dot plot), and finally CD25+/FoxP3+ cells 

(CD4+/CD25+/FoxP3+ regulatory T cells). 
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Figure 8. 

Figure 8.  CD4+ regulatory T cells shown for each time point as an average within the 

fully durable and transiently chimeric groups.  Though the transient subjects had higher 

levels of regulatory T cells, than the fully durable group, pre-transplant and lower levels 

post-transplant, there was no significant difference. 
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DISCUSSION 

 

 Studies on chimeric immune systems have not been able to show a biomarker that 

accurately predicts successful, durable chimerism after the cessation of 

immunosuppressive therapy.  Consequentially, 80% of subjects that are weaned off of 

immunosuppression undergo rejection and must be placed on immunosuppressive 

therapy again [14] [15].  This impact is of vital consequence because rejection has 

previously been linked to the survival of the sold organ transplant [16]. 

 The scope of this thesis’ work was to characterize the immune cells in these 

subjects and potentially find a trend of divergence between the fully durable and the 

transiently chimeric subjects.  While most cell types showed no significant difference 

between the two groups, the post-transplant CD8+ naïve T cells and CD4+ regulatory T 

cells, that were measured, alluded to a pattern of divergence from pre-transplant levels.  

Despondently, because the transiently chimeric group had only four subjects, the range of 

data for the aforementioned cell types is extensive and no significant difference between 

the chimeric groups was able to be ascertained. 

Future Experiments: 

 Due to the transiently chimeric group only having four subjects, it would be of 

scientific benefit to have a greater number of subjects that lost chimerism after transplant 

and before immunosuppressive therapy was ceased.  While this is not ideal for subjects 

and the ultimate goal of the combined kidney + FCRx transplant model is to induce 
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chimerism, a greater understanding of the aberration of the CD8+ naïve T cells and the 

CD4+ regulatory T cells of transiently chimeric subjects versus fully durable subjects may 

lead to the discovery of a predictive biomarker for chimerism. 

 There are other immune biomarkers that may possibly predict chimerism in 

subjects that received a combined transplantation.  Dysregulation of miRNA levels in 

urine analysis has been observed in diseased conditions of kidney transplants [17] [18].  

Elevated levels of the exosome neutrophil gelatinase-associated lipocalin (NGAL), have 

been shown to be early predictors of delayed transplant function [19].  Early detection of 

transplant rejection can be assessed by detecting low levels of PARP1 in the recipient’s 

serum [20].  These potential biomarkers are minimally invasive, may detect transplant 

rejection at an early onset, and should be explored further. 
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SUMMARY AND CONCLUSION 

 

 The characterization of select immune cells in subjects enrolled in the combined 

kidney + FCRx study has shown that naïve CD4+, naïve CD8+, and regulatory T cells 

repopulate at different rates between fully durable and transiently chimeric subjects post-

transplantation.  While the limited number of subjects in the transiently chimeric group 

presented a shortcoming in the form of a wide range within those cell types, this work 

warrants further investigation to determine if naïve CD4+, naïve CD8+ T cells, and or 

CD4+ regulatory T cells may potentially be a predictive biomarker for successful 

induction of chimerism. 
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