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ABSTRACT 

 

Stem cell and tissue engineering offer us with a unique opportunity to research and develop new 

therapies for treating various diseases that are otherwise incurable using traditional medicines.  

However, development of these new therapies replies upon the establishment of in vitro cell 

culture and differentiation systems that mimic in vivo microenvironments required for cell-cell 

and cell-ECM interaction.  The development of these cell culture systems depends upon the 

identification of appropriate biomaterials and cell sources. Biomaterials should be carefully 

selected and fabricated into scaffolds for supporting cell growth and differentiation. In this study, 

we explored the fabrication of 3D electrospun nanofiber scaffolds and demonstrated the 

feasibility of using these scaffolds for supporting cell growth. The material that we used for 

scaffold fabrication is a polymer, polycaprolactone (PCL). We discovered that the electrospun 

PCL nanofibers are highly hydrophobic, unsuitable for cell growth. The treatment of PCL 

electrospun nanofibers with oxygen plasma treatment endowed the fibers with hydrophilic 

property, making them suitable for cell growth. Our studies suggested that the length of oxygen 

plasma treatment considerably influences the water contact degree of the nanofibers and their 

hydrophilicity. The optimization of oxygen plasma treatment resulted in significant improvement 

of cell proliferation within the electrospun nanofiber scaffolds.  Our results provide insight into 

plasma treatment effects on electrospun PCL as they relate to material properties and cell 

growth. 
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1. INTRODUCTION 

 

Tissue engineering and stem cell research show great promise for treating many diseases.  It has 

the unique potential to bridge the gap between the numerous patients requiring donors and the 

relatively few donor tissues available. It can also potentially expand lifespan and improve life 

quality by replacing damaged or diseased organs and tissues using lab-produced alternatives. 

Although remarkable advancements in tissue engineering have been made in the last two 

decades, the creation of biologically functional tissues and organs has still been a big technical 

challenge. One of these challenges is the design and fabrication of an in vitro cell growth system 

that mimics an in vivo environment that allows cell-cell and cell-extracellular matrix (ECM) 

interaction.  The primary goal of this study is to develop an electrospun nanofiber scaffold and 

test it for its capability of supporting cell growth. The long-term goal is to employ this 

electrospun nanofiber scaffold for directing stem cell lineage-specific differentiation from which 

biologically functional tissues and organs can be generated and used for clinical applications.  

 

To fabricate these scaffolds, we chose a biodegradable polymer for its high biocompatibility. 

Synthetic biodegradable polymers are becoming increasingly important materials for tissue 

engineering.  Polymers like poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and 

poly(ethylene-oxide) (PEO) are emerging as leading biomaterials for construction of tissue 

engineered scaffolds for promoting cell growth in vivo and in vitro.   An ideal polymer scaffold 

facilitates cell growth by replicating the many functions of ECM[1] and giving the cells a growth 

structure and surface on which to interact with each other. 
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Following several attempts of electrospinning collagen, PCL, and PEO, we chose to use PCL to 

test this feasibility.  The surface of raw electrospun PCL nanofibers is considerably hydrophobic 

and unsuitable for cell attachment and culture, which requires hydrophilic surface properties in a 

substrate. To change the PCL nanofiber surface from hydrophobic to hydrophilic, we adopted an 

oxygen plasma treatment process following electrospinning.  We then determined the effect of 

plasma treatment on hydrophilicity and the mechanical properties of the scaffold.  Finally, we 

tested the feasibility of using these plasma treated electrospun scaffolds for three-dimensional 

(3D) cell cultures.   

 

Electrospinning is essentially a stable cone-jet manifestation of electrospraying (electrostatic 

spraying).  Electrospraying is a process that can be traced back to William Gilbert, a physician, 

physicist, and natural philosopher of the late 1500’s who is considered to be a pioneer researcher 

in magnetism.  In his publication, he described a phenomenon by which a droplet of water, in the 

presence of a charged piece of amber, would deform into a cone[2].  Though no further specific 

observations were made or reported by Gilbert, this is considered to be the first recorded instance 

of electrospraying.  The first quantified experimental work on electrospinning was done by John 

Zeleny in 1914 when he published his work on fluid droplet activity at the end of metal 

capillaries[3], presenting experimental evidence for a variety of electrospraying methods, 

including the cone-jet phenomenon (electrospinning).  In 1934 a new electrospinning technique 

was patented by Anton Formhals for the production of textile yarns[4], and in 1939 a factory was 

established in the USSR based on Rozenblum and Petryanov-Sokolov’s work for producing 

smoke filters for gas masks.  Significant works on the physics and mathematics of the cone-jet 

formation were later carried out by Sir Geoffrey Ingram Taylor from 1964 to 1969[5], and 
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subsequently the phenomenon is described today as a Taylor cone.  The application of 

electrospinning as a manufacturing tool in the medical industry and its use in tissue engineering 

was suggested in by Doshi and Reneker in 1995[6] and has led to massive growth of the field in 

subsequent years[7].   

 

Initial work surrounding the use of electrospun materials towards cell growth was published by 

Huang’s group in 2001 using a collagen-PEO (poly-ethylene oxide) composite solution[8], 

followed closely by Matthews’ group in 2002 working with collagen and exhibiting cell 

proliferation on the scaffold[9].  Since then numerous researchers have worked on expanding the 

application of electrospinning within tissue engineering, including the use of various other 

polymer blends, ECM components, crosslinking materials, and scaffold treatment methods[10–

16].   

 

In seeking out which material is most suitable for fabricating a 3D scaffold for cell growth we 

examined many recent works related to electrospinning. We found that PCL is an interesting 

biomaterial and has many desirable traits for supporting cell growth.  It has been widely used in 

tissue engineering and regenerative medicine[17–22].  Powell’s group has recently produced an 

engineered human skin material by utilizing an electrospun collagen-PCL blend scaffolding to 

serve as a host for keratinocytes and fibroblasts[17].  Lowery’s group at MIT recently conducted 

a series of experiments to further characterize the specific effects of electrospinning parameters 

on the fiber properties of PCL scaffolds.  In doing so they also employed a highly repeatable 

testing method for seeding consistent and uniform cell populations into their scaffolds using a 

perfusion seeding system[23].   
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A general characterization of plasma treated PCL has been previously indicated[24–27], but 

most experiments reference long treatment time ranges and varying types of plasma (oxygen and 

argon).  Our aim was to analyze favorable results from that data in order to further investigate 

and optimize operating time and conditions of plasma treatment in order to facilitate scaffolds 

that support cell growth and proliferation while minimizing degenerative effects on the 

mechanical properties of the scaffolds. 
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2. FUNDAMENTALS OF ELECTROSPINNING 

 

Electrospinning is fundamentally based on charge distribution and rearrangement within a 

polymer solution as it flows through a capillary and across a gap containing a strong electrical 

field.  As a droplet begins to form at the apex of the capillary, its shape and surface tension is 

initially governed by the viscosity of the polymer solution.  With the application of a high 

voltage near the apex, a flow of positive charge is induced onto the surface molecules of the 

droplet.  As the buildup of these positively charged molecules increases in the droplet the 

repulsive forces of these mutually charged ions overcome the surface tension, and the resulting 

conical deformation is known as a Taylor cone[6,28–30].  The Taylor cone ejects a thin strand of 

the solution from its tip towards the grounded collector plate, and as the strand travels through 

the air its cross sectional diameter decreases as the solvent is allowed to evaporate.  At a point 

approximately halfway between the charged capillary and the collector plate, the continually 

thinning strand begins to exhibit a whipping motion which is barely visible to the naked eye.  

This whipping motion is governed by the strength of the electric field, and travels in a 

completely random pattern onto the center of the collector plate.  As the strength of the electrical 

field increases, the diameter of this collection area is decreased as the whipping strand undergoes 

a stronger attraction to the collector.  The observable diameter of the resulting deposited scaffold 

does indeed remain consistent when identical electrospinning parameters are maintained, 

allowing for a repeatable process with which to generate multiple samples for testing.  It should 

be pointed out that the strand remains whole and does not break up or separate at any point in 

this process.  The resulting scaffold should not exhibit and evidence of incomplete strands or 

terminal end points.  Any indication of beginning and ending of the strand under scanning 
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electron microscopy (SEM) observation likely indicate errors in the electrospinning process and 

inability to maintain a constant stream from the needle and syringe.   
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3. CONFIGURATION OF AN ELECTROSPINNING DEVICE 

 

Fig. 3.1. Electrospinning apparatus setup. The setup consists of a Spellman CZE 1000R high-

voltage power supply located beneath the unit, a KD Scientific KDS-101 syringe pump with 

mounted syringe and needle, and a charge distribution plate, high voltage wire (red), and 

grounded collector plate (black).  The enclosure was custom made from polycarbonate sheeting 

and has a door fitted with a safety switch to disable the high voltage when the door is opened. 

We assembled our own electrospinning apparatus based on the established electrospinning 

principles and other published descriptions of electrospinning arrangement.  Our assembly 

included a custom-built polycarbonate enclosure fitted with a shelf for the syringe pump and a 

grounded target which can be adjusted to change the distance from the syringe pump.  We opted 

for a horizontal system based on observing a similar setup in other labs.   The collector distances 

can vary from 10 to 30 cm.  Based on the literatures published at the time of construction and 
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assembly this range was deemed sufficient for our purpose, as the majority of our 

electrospinning occurred at a distance of 15-20 cm.  The selected power supply is a Spellman 

CZE 1000R with a maximum voltage of 30 kV (reversible) and maximum power of 9 watts.  It 

was used with a 3 foot shielded wire connecting the power output to a collar-plate assembly.  We 

designed a unique aluminum collared plate in order to establish a consistent and uniform electric 

field for our experiments and prevent the electrospinning stream from deviating from the center 

of the collector, hampering our ability to reproduce consistent nanofiber meshes.  The plate was 

milled from a 3” diameter aluminum cylinder.  It is 1/8″ thick with one face completely flat and 

the other containing a cylindrical protrusion measuring 1/2″ in diameter and 1/2″ tall.  Through 

the center of this plate and collar is a 0.06″ hole through which an 18G needle can be placed.  

Attached to the collar are a set-screw for securing the plate to the needle itself, and a separate 

screw and washer for attaching and clamping the exposed end of the power supply wire to the 

assembly in order to establish and maintain consistent contact and current.  The plate allows for 

the positive current to be symmetrically applied to the needle and solution, and reduces any 

variance in sample thickness and arrangement of fibers during electrospinning.  Over the course 

of our experiments we experienced a frustrating obstacle in producing uniform samples.  At 

times we could not see the Taylor cone itself but only the thin strand which it produced, ejecting 

from along the circumference of the needle tip while slowly cycling in repeated circles.  Over 

time we were able to rectify this issue by shifting the charge plate closer to the tip of the needle.  

As shown in Fig. 3.2 the application point of the charge determines whether or not the solution is 

able to maintain its surface tension through to the tip of the needle and form a Taylor cone.   
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Fig. 3.2. Effect of distance between voltage application and needle tip. The distance between 

the voltage application point and the needle tip is important in obtaining a proper Taylor cone.  

As evidenced in this drawing, if the tip is too far away from the voltage application point, the 

repulsion of like-charge particles will cause the solution to form a thin stream within the needle 

and lead to issues with sample collection. 

We conducted all of our final experiments with a distance of 4 mm from needle tip to the leading 

wall of the charge distribution plate.  Further examining this setup we noted that the charge is 

first introduced approximately 2.94 cm from the needle tip for our successful experiments.   

The collector plate is a 6″ square aluminum plate, 1/8” thick with a threaded screw for attaching 

the ground wire to the rear of the plate.  The plate is mounted to a wood block for insulating 

purposes, which is subsequently mounted to a rail assembly fitted into a gear-and-rack system on 

rails for flexibility, precision, and repeatability when manipulating the distance from needle to 

collector. The syringe pump is a KD Scientific KDS-101, capable of holding syringes ranging in 

size from 10 µL to 60 ml, giving it flow rate options ranging from 0.1 µL/h to 506 mL/h.  Of 

note we also decided to make a custom polycarbonate divider and support for the syringe pump, 

allowing the entire assembly to be used as a vertical system by standing it on its right-hand wall, 

and also providing electrical shielding for the charged wire, plate, and needle.  We observed 
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several instances of the charge plate and wire shorting to the grounded body of the syringe pump, 

severely disrupting the electrospinning stream and leading to spraying of individual droplets and 

lack of uniformity in the electrospun sheets produced. 

 

Fig. 3.3. 3D Model of the electrospinning assembly. The assembly is a custom-built 

polycarbonate enclosure fitted with ports for wiring and a safety cut-off switch built into the 

door.  The divider portion gives us the option of running the entire system vertically, and also 

provides insulation between the charged plate and the grounded shell of the pump. 
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Fig. 3.3b. Diagram and dimensions of the aluminum charge distribution plate. The 

downward face is completely flat and smooth, producing a uniform positive electrical field.  The 

central hole for the needle is large enough to accommodate an 18G needle, and contains a set-

screw which can be tightened onto the needle to provide consistent contact and allow for higher 

gauge needles to be used with this assembly. 

 

 

The entire electrospinning assembly is setup within a chemical fume hood in order to avoid any 

harmful effects of the evaporating chloroform and methanol mixture.   
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4. FABRICATION OF ELECTROSPUN NANOFIBER SCAFFOLDS 

 

4.1. Selection of Materials 

 

Our initial choice of material for fabricating electrospun nanofiber scaffolds was an ECM 

component.   After examining a considerable amount of research on electrospinning ECM 

proteins[9,31–35] we decided to begin our work with rat tail collagen-I.   

 

Fig. 4.1. SEM image of electrospun collagen-I fibers. Here we see that the fiber and pore sizes 

are inconsistent in size, and the fiber shape is not maintained throughout the sample.  Many 

fibers are not purely cylindrical, and branching fibers indicate that the electrospinning process 

was not successful in producing a singular uniform strand throughout the sample 
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Fig. 4.2. SEM image of electrospun collagen-I fibers collected onto a charged polystyrene 

slide. This sample was produced under similar conditions to Figure 4.1, but the charged nature of 

the surface clearly affected the distribution and orientation of the fibers during deposition.  A 

clear “X” pattern can be seen in addition to a large number of fibers oriented horizontally.  Again 

we see the branching fibers and some variation in fiber size, though not as much as the non-slide 

sample.  

 

 

Our plan at that time was to examine different ratios of collagen-I blended with fibronectin and 

laminin, either in our electrospinning solution or as a secondary treatment coating.  Through 

multiple different collagen concentrations and solvent mixtures we were unable to produce a 

homogenous and consistent scaffold.  Fiber shape and structure was anomalous as seen in Fig. 

4.1 and indicated that there were inconsistencies between samples produced with the same 

parameters.  In our search for a collector covering to allow for simple retrieval of our samples we 

also experimented with polystyrene slides mounted with double-sided tape.  The result, as seen 
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in Fig. 4.2, was a particularly linear arrangement of the deposited fibers, displaying the effect of 

the charged nature of the slides themselves, and even contributing to an increased observable 

consistency of the collagen fibers.  Unfortunately we still observed the branching of fibers at 

various points indicating a lack of continuity in the strand during the deposition process.  Also – 

a rigorous collection of fibers at right angles to each other would not seem to provide the same 

environment we can achieve with a random arrangement. 

 

In addition to these observations, we had problems identifying a suitable crosslinker for our 

collagen scaffolds.  Crosslinking is required for bounding the collagen fibers together in order to 

prevent the scaffold from degrading when submerged in a cell culture medium.  Glutaraldehyde 

(vapor) is often used for collagen crosslinking [12,13,36] and has been adapted in similar 

experiments for that purpose, but we were wary of its cytotoxicity[37–40] and decided to test 

other crosslinkers.  Our search led us to try proanthocyanidin, a naturally occurring grape seed 

extract which has been previously shown successful for crosslinking[38,40].  We attempted to 

use proanthocyanidin for both collagen and chitosan samples, but were unsuccessful in obtaining 

suitable samples for SEM analysis and cell growth following attempts at lyophilization and other 

dehydration methodologies.   

 

We briefly experimented with the use of PEG (polyethylene glycol) but also struggled to 

establish a suitable electrospinning procedure to produce results with the desired material 

properties.  We were, however, able to leverage much of the information learned during the PEG 

electrospinning attempts when shifting towards our third material selection.  Much of the work 

done in attempts to optimize the electrospinning setup itself and to create a uniform electrical 
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field was accomplished during the PEG electrospinning experiments.  The droplets shown in Fig. 

4.3 indicate an inconsistent flow of material during electrospinning and an inability to overcome 

the surface tension of the solution with the parameters applied.  Flow rates which are too high for 

the applied voltage lead to droplet formation at the tip of the needle, which is eventually 

deposited onto the sample as the charge grows large enough to propel the entire droplet into the 

collector.  An increase in voltage does not always provide a balance to the flow vs charge 

equilibrium, though a proper balance is indeed necessary for a homogenous electrospun material. 

 

Fig. 4.3. Electrospinning of PEG.  From these images we can see the non-uniform nature of the 

scaffold and the presence of randomly sized globules disrupting the mesh structure 

 

 

We chose to shift our focus to electrospinning PCL, and based on previous work[23] we made 

some decisions concerning the characteristics that we were looking for in our final material (pore 
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size, fiber size, arrangement).  We conducted several experiments with varying PCL 

concentrations, solvents, and electrospinning parameters to determine the ideal parameters for 

our specific electrospinning setup and confirm our ability to produce uniform and reproducible 

scaffolds with our desired characteristics (Figs .4.4 and 4.5).   

 

Fig. 4.4. Untreated Electrospun 15% PCL @1000x. The 15% PCL exhibited a thicker average 

fiber diameter, but showed positive signs in terms of pore consistency, fiber consistency, and 

uniform arrangement and distribution. 
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Fig. 4.5. Untreated Electrospun 11% PCL @1000x. The 11% PCL samples produced 

consistent size and fiber morphology with a smaller observable fiber diameter than the 15% 

attempts.  Based on these characteristics we chose to use this as our experimental template. 

 

The 15% PCL exhibited a relatively thick average fiber diameter, but showed positive signs in 

terms of pore consistency, fiber consistency, and uniform arrangement and distribution.  The 

11% PCL samples produced consistent size and fiber morphology with a smaller observable 

fiber diameter than the 15% attempts.  Based on these experiments we decided on 11% PCL 

(~80,000 mw) in a solution of chloroform and methanol with a 3:1 ratio (respectively). 

 

4.2.  Electrospinning Process 

 

Initial preparation for electrospinning included dissolving the solute in the selected solvent, 

allowing time for the solution to mix and became homogenous.  For our experiments we used 
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11% PCL in chloroform:methanol (3:1).  Under a chemical fume hood we mixed 22.5 ml of 

chloroform with 7.5 ml of methanol and quickly added 3.3 g PCL (~80,000 MW – Sigma).  The 

mixture was placed in a shaker overnight at 250 rpm at 30°C.   

 

The syringes we used were standard BD polypropylene Luer-Lok 3-ml syringes, with an inner 

diameter of 8.59 mm.  We used 14G needles to slowly draw 1.2 ml of a polymer solution into the 

syringe, as the solution’s high viscosity made it particularly difficult to draw with any smaller 

needles without introducing many bubbles into the syringe.  The syringe was set on its end (tip 

up) for 5-10 min to allow bubbles to work their way out of the syringe.  The needles used for 

electrospinning are Howard Electronics JG18-1.5P 18G, 1.5″ long, ID=0.038″ and OD=0.049″, 

and were swapped onto the syringe once the bubbles had been removed.  Plain wax paper was 

mounted on the face of the collector plate with double sided tape, making sure not to bend or 

crinkle the paper in the mounting process as this would lead to noticeable abnormalities in the 

final scaffold.  Wax paper allows for an ideal sample removal process as it does not require any 

amount of force to separate the scaffold sample from the paper.  The power supply was set to its 

max at 30 kV and the distance from the mounted syringe/needle tip to the collector plate was set 

to 20 cm.  The syringe and needle were mounted into a horizontal syringe pump and the charge 

distribution plate was secured onto the needle with its face 4 mm away from the tip of the needle.  

The needle was initially primed with a controlled amount of solution using a syringe pump.  The 

power supply was fitted with a kill-switch incorporated into the door mechanism of the 

electrospinning assembly, allowing to have the power supply switched on and use the door to act 

as an on/off mechanism.  The syringe pump was set to a rate of 95 µL / min, having been 

calibrated to match the inner diameter of the syringe (8.59 mm).  With the door open and power 
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on, the syringe pump was turned on and as soon as any solution was visible at the tip of the 

needle the door was closed, immediately activating the full 30 kV of the power supply.  

Electrospinning was monitored from outside of the fume hood to confirm a consistent stream and 

no instances of electrospraying, which would have rendered that particular sample useless for our 

experiment. 

 

Fig. 4.6. View of the Taylor cone formed at the tip of the charged needle.  Here we see the 

charge distribution plate and electrospinning process, with the Taylor cone clearly visible at the 

tip of the needle.  Also note the slightly visible set screw securing the plate to the needle (from 

above), and the secondary screw and washer ensuring a tight and consistent electrical contact 

area for the high voltage wire from the power supply. 

 

Fig.4.6 captures the Taylor cone and its ejected stream, displaying the shape and stability 

obtained with proper electrospinning parameters.  A straight, consistent stream was observed 

travelling approximately 50% of the distance towards the collector (~10 cm) at which point it 

became invisible to eyes.  The use of a laser pointer allowed the observation of the very 
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beginning (5 mm) of the destabilization region and whipping motion, while a camera was able to 

capture varying amounts of the whipping strand due to the reflections of light on the strands.   In 

Fig.4.7 we captured the destabilization area as it began to disrupt the strand.  

 

Fig. 4.7. View of needle with fiber destabilization and start of whipping motion 

 

It is noted that the relative locations of destabilization regions to the charge plate and collector 

plate remain constant during the electrospinning process, as long as the solution flow rate is 

sufficient and both rate and voltage remain constant.  Fig. 4.8 contains a closer view of the rapid 

increase in circumference following the initial whipping motion from the point of instability of 

the strand.  Observing this image, there does not seem to be a consistent pattern or path followed 

by the whipping strand.  This is likely due to the continued repulsion of the strand from itself, as 

it is highly charged with positive ions.  The continued repulsion of the unstable region would 

indeed continually disrupt the whipping pattern and manner of deposition. 
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Fig. 4.8. Close-up view of strand with whipping motion.   

 

Analysis of this image indicates that the strand is one continuous strand which is subject to a 

whipping motion in a steadily increasing radius.  Voltage and collector plate distance play a role 

in the diameter of the resulting sample, as it governs the distance between destabilization and the 

collector plate and thus the distance over which expansion of the whipping thread can take place. 

Once the solution reached 1.2 ml the syringe pump stopped and voltage was immediately turned 

off by opening the door slightly.  The vent hood was turned on to remove and cycle the air from 

within the chamber.  It was always off during the experiment to prevent air flow from disrupting 

the strand and deposition.  The wax paper holding the sample was removed and immediately 

placed in a sterile environment.  Once sufficient samples were generated – the ~4 inch diameter 

samples were plasma treated before being cut into small pieces for experiments.  The tensile 
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samples were cut using a template (Fig. 5.1b) and the meshes used for cell growth were prepared 

using a 13 mm circular punch to facilitate placement in a cell culture plate.   

 

4.3.  Optimizing the Plasma Treatment 

 

Fig. 4.9. Plasma treatment was conducted in the Plasma Therm SLR 720 RIE. Reactive Ion 

Etching with oxygen was performed at the University of Arkansas HIDEC center to introduce 

hydrophilic properties to the PCL scaffolds. 

One of the major issues that must be addressed before electrospun PCL nanofiber scaffolds can 

be employed for growing cells is its highly hydrophobic surface. Without any treatment, 

electrospun PCL nanofibers exhibit a water contact angles of ~130°[26] as seen in Fig. 4.10.     
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Fig. 4.10. Water contact angles for untreated electrospun 11% PCL 

 

Studies suggested that treating the scaffolds with oxygen plasma for either 5 or 10 min would 

greatly reduce this angle to below 20°. The water contact angle for this newly hydrophilic 

surface is difficult to capture with a high speed camera due to the instantaneous absorption of the 

droplet into the surface of the scaffold.  To obtain quantifiable contact angles we used glycerol to 

test relative hydrophilicity.  We adapted this technique from Martins’ group, who conducted a 

specific study which looked to quantify several plasma treatment gases and broad parameters in 

order to determine which yielded the most favorable biological compatibility[26].  The data set 

they generated clearly suggests that the use of oxygen plasma at 30 W can achieve the best 

contact angle, with periods of 5 and 10 min showing similarly significant improvements over the 
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other treatment parameters.  Fig. 4.11 exhibits the glycerol contact angle results from their 

experiments.  

 

Fig. 4.11. Contact angle of Glycerol with plasma treated electrospun PCL[26].  Contact 

angles for various plasma treatment methods of PCL over time.  This material served as the 

inspiration to conduct a more granular assay for our experiment. Adapted from Martins, “Surface 

modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance 

biological performance.” 2009, Small. 

 

 

For our experiments we chose to use these effective treatment parameters, but to alter the time of 

treatment in order to achieve a more specific optimization of the surface modification.  This ideal 

treatment for PCL is oxygen plasma at 30 watts and 13.56 mHz, which we replicated at a 

pressure of 100 mTorr and flow rate of 20 sccm following the treatment protocols for our 

specific equipment.   
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5. CHARACTERIZATION OF ELECTROSPUN SCAFFOLDS 

5.1. Mechanical Testing 

 

Fig. 5.1a. Instron 3365 system for determination of elasticity of electrospun scaffolds. 
Instron setup with clamps in order to test tensile strength and obtain a load curve for the test 

sample. 

 

To test the mechanical strength of the PCL electrospun scaffolds we used an Instron 3365 Dual 

Column Tabletop Testing System with a 500 N load cell. The thickness of the scaffolds was 

determined using a Marathon Electronic Digital Micrometer with an accuracy of 0.002 mm.  

Samples were treated, with varying exposure times, to oxygen plasma in a Plasma Therm SLR 

720 RIE at 30 watts, 13.56 mHz at a pressure of 100 mTorr and flow rate of 20 sccm.  Our 

selected plasma treatment times were 30 s, 90 s, 3 min, and 5 min.  Treated samples were cut 
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into 50 mm x 10 mm strips and paper tabs (10 mm x 10mm) were attached to each end with 

double-sided tape, leaving a gauge length of 30 mm (Fig. 5.1b).   

 

Fig. 5.1b. Tensile sample template instructions.  This entire template was cut from paper, and 

the middle 30x30mm section was cut out completely.  The 10x10mm sections were left intact 

and fitted with double sided tape, and then attached to an entire sample (typical sample diameter 

was ~100mm) in its complete “hollow square” form with the tape facing down onto the sample.  

A scalpel was used to carefully cut the samples into 50x10mm strips, leaving a 30mm gauge 

length and 10mm mounting tabs at each end. 

  

 

The tabs were mounted into the testing clamps, and samples were put under tensile load with a 

crosshead speed of 15 mm/min.  Readings were taken every 50 ms and two identical samples 

were tested for each treatment length, including an untreated sample for comparison.  The results 

indicate the average values from these two readings.  Our initial thoughts concerning the tensile 

strength of the scaffolds led us to hypothesize that the plasma treated samples would have a 

higher tensile strength due to the increased number of bonds created at the intersection points of 

the fibers.  We thus posited that this effect would create an increased friction at each and every 

intersection of the fibers –increasing both the tensile and shear strength of the material.  Our tests 

suggested a mixed set of results in reference to this hypothesis. Through our testing we found 

that certain plasma treatment lengths do indeed increase the mechanical strength of the scaffolds.  
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Curiously, we also noticed that the correlation between treatment time and strength was not 

linear, with the 90 second treatment producing the weakest samples.  

 

Fig. 5.2a. Tensile strength of electrospun 11% PCL scaffolds with varying oxygen plasma 

treatment times. 

 

Fig. 5.2b: Stress-strain curve of electrospun 11% PCL scaffolds with varying oxygen 

plasma treatment times.  
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Fig. 5.3. Young’s Modulus comparison of electrospun 11% PCL scaffolds with varying 

oxygen plasma treatment times. 

Based on these observations we stipulated that the plasma treatment, which changes the structure 

of the molecules and their interactions with each other, has the potential to reduce the inherent 

tensile strength of the individual fibers while simultaneously forming cross-links with other 

fibers.  This leads to an initial observable increase in the overall structure’s tensile strength (30s 

sample) at the cost of incrementally decreasing the individual fiber strength, as evidenced in the 

remainder of the samples.  Accordingly, it endows a membrane with both an induced 

hydrophilicity and an increased tensile strength when treatment time is limited to 30 seconds. 

 

5.2. SEM 

 

To examine the microstructure of the electrospun PCL scaffolds, the samples were carefully cut 

and placed on SEM testing bullets with double-sided carbon tape before being gold-coated with 
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an Anatech Hummer VI-A sputter coater for 150 s at a current of 15 mA and pressure of 18 

mTorr.  Samples were then observed by SEM in a JEOL JSM-6335F at 5kV.  As shown in the 

following SEM micrographs, the scaffolds display consistent pore sizes, fiber diameter, and fiber 

distribution, and are indicative of all the samples that were observed and used in our 

experiments. 

 

Fig. 5.3. 1000X SEM image of 11% PCL in chloroform:methanol (3:1). Here we can see the 

fiber distribution and random arrangement throughout the scaffold.  No visible evidence of 

splitting fibers and no gross variation of fiber diameter from the 3µm observable average.   
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Fig. 5.4. 1500X SEM image of 11% PCL in chloroform:methanol (3:1). A separate sample 

showing once again the fiber morphology and consistency throughout the sample.  

 

Fig. 5.5. 1200X SEM image of 11% PCL in chloroform:methanol (3:1).  
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5.3.  Water contact angle testing 

 

Initial attempts to determine water contact angle of the plasma-treated scaffolds by utilizing a 

high speed camera did not capture sufficient data due to a rapid absorption of the water droplets.  

To overcome this difficulty, we changed our syringe and needle to accommodate glycerol’s 

increased viscosity, which allowed us to capture consistent data and to compare and quantify the 

hydrophilic effects of different plasma treatment times.  Through a high speed camera setup we 

captured data over a period of time and plotted the contact angles and rate of uptake by the 

scaffold material (Fig.5.6). 

 

Fig. 5.6. Glycerol Contact Testing results for 11% PCL scaffolds treated with oxygen 

plasma for varying lengths of time 
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This data (Fig. 5.6) presents an interesting observation; the 3 and 5 min treatment of PCL 

scaffolds produced notably improved water contact angle results relative to the untreated sample, 

though the 30 and 90 s treated samples displayed the best results.  It seems that the length of 

plasma treatment does not linearly correlate to induced hydrophilicity of the scaffolds.  This 

sheds light on an important aspect of the production and analysis of polymer scaffolds and the 

optimal treatment and production parameters for maximal biocompatibility. 
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6. CELL GROWTH ON ELECTROSPUN SCAFFOLDS 

 

In this experiment, we intended to determine whether the electrospun PCL nanofiber scaffolds 

could provide adequate niches for cells to grow.  For this purpose we used NIH 3T3, a well 

characterized murine fibroblast cell line, as a model cell line. The electrospun PCL nanofiber 

scaffolds were treated with oxygen plasma for various lengths of time to improve their 

hydrophilicity before seeding the cells. To determine the proliferation of cells on the scaffolds, 

we employed the alamarBlue assay.  AlamarBlue (AbD Serotec) is an assay based on a blue dye, 

resazurin, that is not inherently fluorescent, but the reduction of resazurin in mitochondria 

produces resorufin which fluoresces and can then be analyzed and quantified with a microplate 

reader. The amount and rate of reduction is attributed to, and directly correlated to, the rate of 

metabolic activity in the medium.  Thus, by including a standard testing percentage (10%) of 

resazurin with medium added to cell culture dishes we can monitor and record the relative 

number of cells and their proliferation rates.  In order to establish cell seeding levels that would 

provide adequate growth potential and give us baseline results we conducted a cell concentration 

proliferation assay.  Growth rates for 4 different seeding densities were analyzed and results are 

shown in Fig. 6.1.  These results indicate that a seeding density of 5x10
5
 cells/ml is too high, 

leading to crowding and growth reduction over time.  Based on these results we chose to seed 

10000 cells into our scaffolds, exhibiting an effective 1.8x10
5
 cells/ml.  This would allow for 

growth on the scaffold’s increased surface area while allowing significant room for growth and 

readings in our AlamarBlue assay over several days. 
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Fig. 6.1. AlamarBlue Cell Density Proliferation Assay.  Four different cell densities were 

seeded and analyzed over a period of time to determine appropriate seeding density.  The results 

indicate that a density of 5x10^5 is too high, leading to crowding and exhibiting a reduction of 

growth over time. 

 

Taking as much care and precision as possible in distributing cell numbers uniformly amongst 

the different wells and amongst the different treated scaffolds we can propose that changes in 

metabolic activity and their activity relative to other wells signify the cells’ ability to grow and 

proliferate on the scaffolds.  Studies have shown alamarBlue to be nontoxic to cells[41] and so 

the addition of the dye should not exhibit any substantial effect on cell growth.  We did, 

however, design our experiment to minimize the amount of incubation time with the dye in the 

medium, and performed daily medium exchanges to keep the cells growing in a stable and 

consistent condition.   
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The cells were seeded by carefully depositing droplets of cell solution (25 µL) onto the center of 

the scaffolds, which were placed into 24 well ultra-low attachment plates.  The use of ultra-low 

attachment plates (Costar ULA 3473) ensured that the cells’ only attachment point was the 

scaffold, preventing additional variability in our results. 

 

Our experimental timeline involved the addition of 10% alamarBlue after 20 h incubation in the 

fresh medium, followed by 4 h incubation to allow for metabolism of the dye and conversion of 

resazurin to the fluorescent resorufin.  A sample of the medium from each well was then placed 

in a 96 well plate for fluorescence analysis in a microplate reader, and the remainder of the cell 

culture medium was carefully withdrawn and replaced with fresh cell culture medium (without 

alamarBlue).  This 24 h cycle allowed for minimum exposure of the cells to the dye while 

keeping a consistent exposure time.   
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Fig. 6.2. Cell proliferation and growth rate assay.  Daily growth rate as measured by 

fluorescence after 4 h incubation with alamarBlue.  Following 20 h of incubation with cell 

culture medium, 10% alamarBlue was added to the medium and allowed to incubate for 4 h.  

This chart shows the results of fluorescent microplate readings following that incubation time on 

5 consecutive days.  Medium was exchanged immediately following the reading and the process 

was repeated 20 hours later.  Error bars indicate maximum and minimum values. 

  

 

Based on the data collected from this assay (Fig. 6.2), we can postulate that the 30 s plasma 

treatment time exhibits the most favorable growth environment for these cells in an 11% PCL 

electrospun scaffold, though the error bars indicate a lack of statistical significance.  Proliferation 

rates for the remainder of the treatment samples showed similar growth patterns to each other, 
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but lower than that of the 30 second sample.  As shown in Fig. 5.6 all of the plasma treatment 

times showed a marked improvement in hydrophilicity, and during our experiments we had no 

problems with hydrophobicity in any of the treated samples.  The untreated sample was 

incapable of accepting any medium or cells whatsoever due to its hydrophobicity (observed in 

the water contact angle testing) and thus was not included in the experiment.  Further analysis of 

the growth data shows what would appear to be a reduction of growth on Day 5, with the chart 

beginning to level off.  This can be due to several factors including a saturation of the growth 

surface area of the scaffolds, or a complete metabolism of 100% of the alamarBlue dye placed in 

the solution (which would explain a plateau effect, as the fluorescent material which can be 

produced is limited by the initial amount of dye added to the medium). 
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7. FUTURE WORKS 

 

This study lays the groundwork for a variety of future projects.  The electrospinning system 

developed and parameters optimized through this work allow for fabricating various electrospun 

nanofiber scaffolds with desired physiochemical properties. The finely tuned scaffolds can be 

used to direct stem cell differentiation in 3 D environments that mimic in vivo 

microenvironments required for cell-cell and cell-ECM interaction. In this work, we 

demonstrated the feasibility of growing cells within electrospun nanofiber scaffolds modified 

through oxygen plasma treatment. Although this work is very preliminary, it does lay out 

foundation for further exploring the proliferation and directed differentiation of stem cells within 

these nanofiber scaffolds. A future project could be designed to compare a variety of 

biocompatible polymer scaffolds with similar fiber size and morphology against each other.  This 

could provide a direct material comparison so long as the other scaffolds have undergone a 

similar amount of specific investigation.  Further experimentation could also be done on the 

effects of differing polymer concentrations on cell growth. 

 

The data accumulated from plasma treatment allows for further investigation into individual 

treatment parameters for biocompatible polymer scaffolds while having set a baseline for 

expectations of results achieved over specific lengths of time.  In this experiment we utilized the 

most favorable power, pressure, and flow parameters from previous works but did not take time 

to break down the effects of each of these individual settings on our induced hydrophilicity and 

tensile strength.   
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Finally, and perhaps most notably, future work could include the study of a variety of different 

cell types on this specifically designed scaffold.  The purpose and goal of this scaffold was to 

provide a suitable and facilitative scaffold for cell growth, and it would be insightful to see the 

growth potential and activity of several cell types and cell lines.  Stem cell in particular would be 

good candidates for further studies in these scaffolds as the added structure might promote 

improved cell-cell interaction and signaling, potentially leading to increased colony growth and 

health.  The scaffold itself also provides a robust framework for transporting and implanting cells 

without disrupting their in-vitro growth progression, reducing the additional stresses related to 

their re-attachment at the implant site. 
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APPENDIX 

Methods and Materials: 

 

1. Preparation of polymer solution:  

a. In a chemical fume hood mix 22.5 ml chloroform and 7.5 ml methanol into a sealable 

glass flask, forming a 3:1 mixture.  

b. Measure 3.3 g PCL (Sigma, ~70,000-90,000 mw, cat. no. 440744) and add to the 

solution. 

c. Seal the flask and place mixture in an orbital shaker for 2-5 h at 37
0
C to form a 

homogenous solution. 

d. Allow solution to cool to room temperature for 60 min. 

e. Fit a 14G needle onto a syringe (BD 309585, Polypropylene, Luer-Lok) and (in a 

chemical fume hood) slowly draw the desired amount (1.5 ml) into the syringe, being 

careful to avoid adding bubbles to the solution within the syringe. 

f. Set the needle on its end (tip facing up) and allow it to sit for 10-15 min to allow 

bubbles to seep out. 

g. Remove the 14G needle and replace it with an 18G needle (Howard Electronics 

JG18-1.5, ID=0.038″, OD=0.049″) 

h. Remove the remainder of air in the syringe without any solution reaching the needle 

tip. 

 

2. Electrospinning: 

a. Place the polycarbonate enclosure into a chemical fume hood. 
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b. Attach the charge distribution plate to the positive lead from the power supply 

(Spellman CZE 1000R) via the screw and washer in the plate collar. 

c. Mount the syringe into the horizontal syringe pump (KD Scientific KDS-101) and fit 

the charge distribution plate onto the needle - leaving 4 mm between the face of the 

plate and the tip of the needle. Secure the plate to the needle via the set-screw on the 

plate collar. 

d. Mount the grounded collector plate (6” square, 1/8” aluminum) 20 cm from the tip of 

the needle when the syringe is mounted to the syringe pump.  Center the plate based 

on the needle location. 

e. With double sided tape, mount a 7” x 7” piece of wax paper onto the face of the 

collector plate.  This will facilitate sample removal from the collector without 

disturbing the scaffold. 

f. Set the power supply to 30 kV (positive) and leave off. 

g. Prime the needle (80 L solution) without ejecting the solution, and set the syringe 

pump to 1.2 ml with a rate of 95 L / min. 

h. Turn the power supply on (door switch will keep it inactive) and start the syringe 

pump.  Hold the door from closing while carefully observing the tip of the needle.  As 

soon as any solution is visible immediately close the door – inactivating the kill-

switch and turning on the voltage.  

i. Monitor the stream throughout the electrospinning process to ensure consistent fiber 

formation and absence of visible droplet formation on the needle tip. 

j. When the syringe pump stops (1.2 ml) immediately open the door, inactivating the 

power supply. 
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k. Leave the door slightly open and turn on the fume hood for 1-2 min to remove the 

fumes within the enclosure. 

l. Carefully remove the wax paper containing the scaffold from the collector plate, 

taking care not to fold or wrinkle the sample. 

m. Place the paper with sample immediately into a sterile enclosure. 

n. Repeat as necessary. 

 

3. Plasma Treatment: 

a. Remove the scaffold from the wax paper by gently separating it at its edge. 

b. Carefully place the scaffold on an RIE wafer (metal) and tape the edges as necessary 

using RIE-safe tape.  Be sure to contact as little of the scaffold as possible with the 

tape, as those areas will be discarded following the plasma treatment process. 

c. Follow the general protocols to insert the wafer and sample into the RIE (Plasma 

Therm SLR 720).  Set the treatment parameters as follows: 20 sccm oxygen, 100 

mTorr, 30W, 13.56 mHz. 

d. Run the treatment for the desired length of time (30 s, 90 s, 3 min, and 5 min). 

e. Repeat as required for each sample for the desired length of time (2 of each). 

f. Cut the sample from the wafer by tracing the inner edges of the tape, leaving the 

taped portions of the scaffold on the wafer.  Place the sample in a sterile container, 

and remove the tape from the wafer. 

 

4. Scaffold preparation: 
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a. Cut samples on a sterile polypropylene cutting board with a rubber mallet and 12 mm 

sterile round punch. 

b. Sterilize under UV for 30 min on each side, making sure to keep track of which side 

is up.  Handle carefully when flipping the scaffold with tweezers, gripping only the 

very edge to minimize disruption of the fibers. 

c. Place samples in a 24 well ULA dish (Costar ULA 24 well, cat. no.3473) and rinse 3 

times with 500 µl DMEM. 

d. Rinse samples 1x with 500 µl cell growth medium, aspirate. 

e. Add 750 l of growth medium and incubate overnight at 37°C, 5% CO2. 

 

5. Cell preparation from T25 flask: 

a. Rinse 2-3x with PBS 

b. Add 1 ml trypsin and incubate for 3-5 min 

c. Add medium, rinse surface, and collect in a 15 ml corning tube 

d. Agitate medium to evenly distribute cells and break down clumps 

e. Immediately remove 25 µl for cell count 

f. Centrifuge @ 300 x g for 5 min @ room temperature 

g. Conduct cell count during this time 

h. Calculate number of cells present in the 15 ml corning tube and desired dilution for 

10
4
 cells / 25 µl of medium (400,000 cells / ml) 

i. Aspirate medium until 2-4 ml are left 

j. Aspirate remaining medium with a 5 ml pipet and pipettman to ensure no loss of cells 

(invalidating cell count) 
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k. Add calculated amount of medium to achieve proper cell count  

 

6. Cell seeding: 

a. Rinse scaffolds 1x with 500 µl medium  

b. Completely aspirate medium, and add 25 µl of cell suspension drop-wise to the center 

of each scaffold. 

c. Incubate for 1 h to allow cells to attach. 

d. Carefully add 425 µl medium and incubate overnight 

 

7. AlamarBlue Assay: 

a. Following 20 h incubation, carefully add 50 µl alamarBlue to the samples, producing 

a 10% alamarBlue solution. 

b. Incubate for 4 h (37°C, 5% CO2). 

c. Gently pipet 50 µl in and out 2 x to carefully stir the cell solution. 

d. Remove 50 µl of the cell solution and place in a 96 well plate for analysis. 

e. Slowly and carefully aspirate the remainder of the cell solution and add 450 µl of 

fresh cell medium.  Incubate 20 h and repeat process for each day. 

f. Immediate take the 50 l samples to a microplate reader (BioTek Synergy Ht) and 

run a fluorescence assay to determine amount of reduced resorufin present.  This will 

indicate the metabolic rates of the cells in the medium over 4 hours, providing an 

indication of cell growth and proliferation. 
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8. SEM protocol: 

a. Obtain SEM bullets and place a small section of double sided carbon tape on top of 

the bullet. 

b. Mount a small sample of the scaffold to the double sided tape without damaging of 

compressing the sample. 

c. Use a sputter coating machine to coat the surface with gold nanoparticles. (Anatech 

Hummer VI-A sputter coater, 150 s, 15 mA, 18 mTorr) 

d. Mount the bullets in a suitable carrier and follow local protocol to place them into the 

SEM. (JEOL JSM-6335F) 

e. Observe at 5 kV 

 

9. Contact Angle Testing: 

a. Mount sample carefully by placing it on a microscope slide using double-sided tape 

on only the edges.  Using this tape beneath the sample may interfere with absorption. 

b. Place the slide on the platform of the contact angle testing instrument (Digital Physics 

- OCA 15) and center the sample beneath the needle tip. 

c. Select an appropriate droplet size (0.5 µl) and eject it while capturing the high speed 

video. 

d. Use the software to analyze the droplet contact angles recorded over a period of time. 

 

10. Tensile testing: 

a. Select a sample large enough to accommodate an evenly thick 50 x 50 mm square 

section. 
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b. Print the template provided in Fig. 5.1b to the correct noted scale. 

c. Cut out the central 30 x 30 mm square section 

d. Place double-sided tape along the left and right 10 x 10 mm sections of the remaining 

square. 

e. Carefully place the remaining hollow square onto the center of the previously 

prepared sample.  Note that the double-sided tape should be facing down onto the 

sample.  Once this has been placed on the sample its location cannot be adjusted 

without destroying the sample. 

f. Using a straight edge as a guide – cut with a scalpel from one end of the square to the 

other – creating three 10 x 50 mm strips.  Each end of the strip should be covered by a 

10 x 10 mm piece of paper attached with the double-sided tape, with a 30 x 10 mm 

section between them. 

g. Place the mounting tabs (10 x 10 mm) into the mounting clamps for tensile testing 

(Instron 3365, 500N load cell).  Leave only the 10 x 30 mm gauge length exposed 

between the clamps. 

h. Run the Instron at 15 mm/min while collecting data every 50 ms until the material 

fails. 
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