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Abstract  

Along with chemotherapy, immunotherapy, and surgery, radiotherapy is one of the most common 

treatments used against cancer. Around 50% of all cancer patients undergo radiation therapy. While for 

some patients radiotherapy works efficiently and lead to a complete cancer disappearance, for others 

treatment outcome may be less favorable due to radioresistance processes happening within a tumor on 

the molecular level. Radioresistance remains a big challenge for modern oncology. The ability to identify 

radioresistance at the early stage of radiotherapy would help physicians to improve therapy efficiency. At 

the current moment, despite the rapid progress in cancer understanding and diagnostic modalities, there 

is no established technique that would enable early identification of tumor radioresistance.  

Tumor oxygenation plays a crucial role for radiotherapy efficiency. We hypothesize that diffuse 

reflectance spectroscopy (DRS) enabling repeated non-invasive measurements of tumor vascular oxygen 

saturation can provide surrogate measures of tumor oxygenation to predict tumor response to therapy. 

The goal of this study is to determine the sensitivity of diffuse reflectance spectroscopy to changes in 

tumor oxygenation after single-dose radiation therapy in a preclinical tumor xenograft model. We 

established three specific aims addressing the ability of DRS to provide accurate measures of tumor 

properties. The first aim is to determine the effect skin thickness on the extraction of optical parameters 

using one-layer Lookup Table (LUT) model. The second aim is to determine depth- and dose-dependent 

changes in DRS-measured vascular oxygenation during radiotherapy. The third aim is to determine the 

association between DRS-measured vascular oxygenation and immunohistochemically assessed 

intracellular hypoxia.  

Our results demonstrate a significant impact of skin thickness on the extraction of optical 

parameters for short source-detector separations caused by the one-layer assumption of the LUT model. 

We also detected LUT model failure to identify the absence of melanin when skin is mechanically 

removed. These findings suggest that existing LUT model needs to be modified to account for the effect 

of the skin layer. Measurements with different source-detector separations revealed higher concentration 

of hemoglobin in superficial layer of tumors and blood supply disruption after exposure to 8 Gy of 

radiation.   
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I. Introduction 

Annually, the American Cancer Society reports more than 500,000 new cases of head and neck 

cancers (HSNCC) 
1
. Early-stage head and neck squamous carcinomas are usually treated by either 

surgery or x-ray radiotherapy depending on localization and stage of the tumor 
2
. Locally advanced head 

and neck cancers are generally treated with a combination of surgery, chemotherapy, and radiotherapy 
3
. 

Fractioned radiation therapy is a widely-used method of treating head and neck cancers.  

In modern oncology, radioresistance remains a big challenge for treating HSNCC. At the current 

moment, there is no accepted technique that would enable early identification of head and neck tumor 

radioresistance. A desirable technique should be non-invasive and cost-effective enabling fast repeated 

examinations.  Existing advanced imaging methods to evaluate response to therapy, such as positron 

emission tomography (PET) imaging of fluorodeoxyglucose (FDG) uptake and magneto-resonance 

imaging (MRI) are expensive and cannot be used for frequent measurements. Currently, the commonly 

used method of assessing response to treatment is the anatomical measurement of tumor volume.  

However, this approach does not shed light on any functional information about processes happening 

within the tumor during radiotherapy. It is known, that tumor hypoxia significantly affects radiotherapy 

efficiency and is commonly associated with poor survival of head and neck cancer patients 
4–6

.Hypoxic 

tumors are more refractory to radiotherapy than tumors highly saturated with oxygen. Therefore, tumor 

hypoxia is a potential marker of developing tumor radioresistance. Existing techniques of measuring 

oxygen level within the tissue are oxygen pO2 microelectrodes, dynamic contrast-enhanced (DCE)-

magnetic resonance imaging (MRI) and blood-oxygen-level dependent (BOLD)-MRI. pO2 microelectrodes 

are invasive and cannot be used for repeated examinations.  Dynamic contrast-enhanced (DCE)-

magnetic resonance imaging (MRI) and blood-oxygen-level dependent (BOLD)-MRI provide indirect 

measures of deoxygenated hemoglobin. PET imaging [18F]-labeled fluoromisonidazole (FMISO) cannot 

be repeated frequently and suffers from a low signal to noise ratio 
7
. In contrast to listed techniques, 

diffuse reflectance spectroscopy (DRS) has shown itself capable of repeated non-invasive measurements 

of tissue vascular oxygenation based on hemoglobin absorption 
8,9

. Therefore, DRS is a technique that 
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potentially can be used for identifying radioresistance of head and neck tumors at the early stage of 

radiotherapy.  

Radiotherapy Principles 

Radiotherapy uses different forms of ionizing radiation to kill cancerous cells. Absorption of high-

energy particles or waves leads to deposition of energy within the tissue, causing molecular damage. 

Radiotherapy is usually used in two forms: external beam radiotherapy and internal radiotherapy 

(brachytherapy). External beam radiation uses high-energy rays of photons (X-ray and gamma) or 

particles (protons, neutrons, and alpha) that are delivered to the tumor from an outside source such as 

cathode ray tubes, linear accelerators or cobalt machines. Internal radiotherapy or brachytherapy is 

delivered from inside the body to the tumor localization by radioactive sources using catheters or seeds. 

External beam radiotherapy using X-ray is a standard treatment option for the majority of head and neck 

cancer 
12,11

. 

Radiotherapy kills cancerous cells by two mechanisms called direct and indirect actions. A direct 

action occurs when macromolecules in a cell such as DNA (deoxyribonucleic acid), RNA (ribonucleic 

acid), enzymes, or proteins absorb ionizing radiation. As a result of this interaction, macromolecule 

structures change causing functional abnormalities within a cell. In the presence of oxygen, free radicals 

in DNA react with the available oxygen to generate a peroxy-radical (DNA–OO•), thus chemically 

modifying the DNA (oxygen fixation) and causing cell death. In the absence of oxygen, the DNA radical 

will be reduced, restoring the DNA to its original composition (DNA–H) and leading to cell survival 
12

. 

Thus, the presence of oxygen within cancerous cells is crucial for killing the tumor by direct mechanism. 

An indirect action happens when high-energy ionizing radiation is absorbed by molecules within a cell. 

Usually, the molecule initiating indirect action is water molecule (HO2) that undergoes radiolysis under 

exposure to radiation. Radiolysis or dissociation of water by radiation forms free radicals, including 

hydroxyl radicals, which causes DNA damage and damage of other macromolecules important for cell 

survival. 
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Radiation damages both normal cells and cancer cells. The goal of radiotherapy is to 

maximize the effect of radiation on cancer cells and minimize the effect of radiation on normal cells. 

In normal cells, DNA reparation processes are usually more efficient than in abnormal cells. 

Therefore, radiation is more deleterious for tumor cells rather than healthy tissue. 

Fractioned Radiation Therapy Principles  

Radiotherapy is usually performed in a fractioned regime where radiation dose is split into several 

smaller doses. Typically, radiation therapy fractioned regime incorporates daily fractions of 1.5 to 3 Gy 

given for the period of 4-5 weeks. The idea behind fractioned regime is to improve treatment outcome by 

reoxygenating and hence radiosensitizing previously hypoxic cancer cells. The mechanism of 

reoxygenation has been attributed to various reasons, such as destruction of oxygenated tumor cells, 

decreased overall oxygen consumption, and increased tumor perfusion. As a result of reoxygenation, 

more oxygen in blood vessels is available for survived cancer cells making them more sensitive to 

radiation with the next exposure. In several studies, it has been shown that tumor oxygenation has a 

substantial impact on the survival rate of cancer patients treated with radiotherapy  
4,13,14

. Therefore, 

tumor reoxygenation between radiation fractions is critically associated with treatment response 
4,6,15–18

. 

Developing technologies to quantify tumor reoxygenation could significantly improve clinician's ability to 

identify patients having poor response to radiation therapy on the early stage of the treatment. 

Existing Techniques for Measuring Tissue Oxygenation  

Hypoxia is an important cause of radiation treatment failure in head and neck cancer 
4,13,14

. 

Information about the level of hypoxia in tumor would give an important insight for oncologist regarding 

tumor sensitivity to radiation. However, existing technologies for measuring tissue oxygenation have 

certain limitations that make them impossible to use in patient care. 

The oxygen-sensing pO2 microelectrodes are invasively implanted into the tissue to measure 

oxygen concentration based on polarography. It is an accepted and reliable tool for understanding oxygen 

metabolism in different tissues and organs. pO2 microelectrodes have helped to establish a wealth of 
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knowledge of hypoxia and its role in poor disease-free survival in HSNCC 
4,19–21

. Although pO2 

microelectrodes enable absolute measures of oxygenation, they are invasive and provide assessment of 

hypoxia for a limited area of the tissue. Therefore, pO2 electrodes are not suitable for repeated clinical 

measurements. 

Two advanced imaging techniques enabling non-invasive measures of oxygenation such as 

dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) and blood-oxygen-level 

dependent (BOLD)-MRI have also been shown to be able to provide information about tumor hypoxia 
22–

24
. DCE-MRI is based on registering the intensity of contrast agent accumulated in tissue 

microvasculature, thereby providing indirect measures of tissue oxygenation 
22

. It was previously 

demonstrated that DCE-MRI could be used for prediction of response to radiotherapy in head and neck 

cancer 
25

. In (BOLD)-MRI, the source of contrast is deoxyhemoglobin 
23

. Deoxygenated hemoglobin 

increases the MRI transverse relaxation rate of water in blood and surrounding tissues. (BOLD)-MRI 

provides the assessment of hypoxia based on the assumption that deoxygenated hemoglobin 

concentration is proportional to pO2. The main drawback of both MRI modalities, DCE- and (BOLD)-MRI, 

is that they provide indirect measures of tissue oxygen status.  

Tumor hypoxia imaging can be also accomplished by positron emission tomography (PET) using 

[18F]-labeled fluoromisonidazole (FMISO). FMISO binds to macromolecules within cells where pO2 is less 

than 10 mm Hg. However, the technique cannot be repeated frequently because of the accumulation of 

contrast agent in normal tissue. This method also lacks sufficient signal to noise ratio 
7
.  

In comparison to DCE-MRI, (BOLD)-MRI, and PET imaging, diffuse reflectance spectroscopy has 

several substantial advantages. DRS is a cost-effective, compact system enabling non-invasive fast 

repeated measurements of both oxygenated and deoxygenated hemoglobin concentrations in tumor 

vasculature, thereby providing measures of tissue vascular oxygenation.  

Diffuse Reflectance Spectroscopy (DRS) Principles 

Diffuse reflectance spectroscopy (DRS) is widely used for noninvasive characterization of tissue 

optical properties. DRS is an optical fiber-based technique that enables repeated measurements of tissue 



5 
 

oxygenation based on optical absorption and scattering properties. DRS reflectance spectrum is used to 

determine tissue reduced scattering coefficient, tissue concentrations of hemoglobin (total hemoglobin, 

cHb, deoxygenated hemoglobin, dHb, and oxygenation hemoglobin, HbO2), and tissue oxygen saturation 

(sO2). 

In DRS, light of the visible range is generated by light source (e.g. halogen lamp) and sent to the 

tissue through the optical fiber probe. Typical fiber probe for DRS contains source fibers conducting light 

from the light source to the tissue and fibers collecting light reflected back from the tissue. Within tissue, 

light undergoes multiple light-tissue interactions including scattering and absorption. Within the visible 

range, there are two main contributors to the absorption of light by tissue: hemoglobin and melanin. 

Melanin is the main absorber of light in epidermis of the tissue whereas hemoglobin is exclusively located 

in blood vessels and contributes to the absorption of light by dermis. Blood in vessels comprises two 

types of hemoglobin: hemoglobin bound to oxygen or oxygenated hemoglobin HbO2 and unbound 

hemoglobin called deoxygenated hemoglobin dHb. These types of hemoglobin have different absorption 

spectra that can be easily distinguished in the wavelength range of 500-600 nm (Fig. 1). In this 

wavelength range, deoxygenated hemoglobin has only single peak at 580 nm when oxygenated 

hemoglobin has two peaks at wavelengths 550 and 600 nm. Differences in the spectral shape of dHb and 

HbO2 enables optical measurements of blood vessel oxygen saturation SO2 calculated as a ratio between 

concentration of oxygenated hemoglobin and concentration of total hemoglobin: 

         
    

        

                 

As well as absorption, scattering greatly contributes to the reflectance. The main sources of 

scattering within the tissue are filamentous proteins: keratin in epidermis and collagen in dermis. Among 

other tissue components that cause scattering of light are melanosomes in epidermis, cell nuclei, cell 

walls, mitochondria, etc. 
26

.  

In optics, scattering in tissues is usually described by reduced scattering coefficient: 
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where   
  is the reduced scattering coefficient at wavelength   and B is scattering power related to 

scattering particle size. 

Absorption in tissues is usually described by absorption coefficient and calculated using the 

following equation: 

                  
                                             

Where       is absorption coefficient at wavelength  , cHb is the total hemoglobin concentration, 

     
 and     are the extinction coefficients of oxy-hemoglobin HbO2 and deoxy-hemoglobin dHb, 

respectively, and sO2 is oxygen saturation. 

DRS enables measurements of reflectance which characterizes light which underwent multiple 

light-tissue interactions. Reflectance is calculated as a ratio between the intensity of the reflected light 

and intensity of light sent to the tissue. 

The sampling depth of diffuse reflectance spectroscopy depends on source-detector separation 

of the optical fiber probe and the optical properties (absorption and scattering) of the interrogated tissue. 

Typically tissue optical absorption and scattering decrease with higher wavelength of light. Therefore, 

light travelers deeper into the tissue in the near-infrared diapason (NIR). DRS for cancer applications 

uses light of the visible spectral range what enables measures of tissue parameters on the depths of 

millimeters 
27

.  

Existing DRS Studies of Tumor Oxygenation during Radiotherapy 

In the past, several studies have demonstrated that DRS has a potential to register changes in 

tumor oxygenation during radiotherapy and, therefore, can be used for predicting radiotherapy outcome 

8,9,27
.   Vishwanath et al have shown that DRS is able to register differences in oxygenation between 

tumors completely responding to radiation and tumors having a partial response 
9
. In particular, complete 
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responders have been demonstrated to have a higher increase in oxygenation in comparison to controls 

and partial responders during 7 days posttreatment. Hu’s used DRS to test whether oxygen kinetics can 

be correlated with radiotherapy outcome and found that locally controlled tumors have significantly faster 

oxygenation after the treatment 
27

. However, in this study, the total dose for fractioned therapy was 

chosen based on the tumor control dose 50% (TCD50) and then split into 5 doses from 7.5 to 13.5 Gy per 

fraction. The chosen doses do not reflect the real clinical situation where patients having head and neck 

cancers typically receive dose per fraction from 1.5 to 3 Gy (for 4-5 weeks). Therefore, there is a need to 

determine DRS sensitivity to changes in tumor oxygen saturation using clinical doses to replicate clinical 

conditions.   In our study, we conducted single-dose radiotherapy of two different doses D = 2 Gy and D = 

8 Gy to determine the sensitivity of DRS to conventional doses of radiation used in clinic. 

Lookup Table LUT–based Inverse Model for Extracting Optical Parameters 

Spectral analysis of DRS measurements requires an inverse model to extract tissue optical 

properties from the obtained reflectance. One of the most commonly used methods is Monte Carlo 

simulation of photon transport within the tissue 
28

. However, in our studies we use lookup table LUT–

based inverse model which has shown to have excellent agreement between the expected and extracted 

values of the optical parameters for a variety of different source-detector separations 
29

. The detailed 

description of LUT generation is described elsewhere 
29

. Briefly, LUT is created by measuring reflectance 

values of tissue phantoms with known optical characteristics: reduced scattering coefficient   
  and 

absorption coefficient   . As a result, generated lookup table contains values of reflectance and its 

corresponding scattering and absorbing coefficients. When reflectance of real tissue is measured, this 

table is used to find tissue   
  and   . 

Impact of One-layer Assumption on Diffuse Reflectance Spectroscopy  

LUT model is a one-layer model and it is based on the assumption that tissue is homogeneous 

medium containing absorbing and scattering components. However, in real situation tumors are two-layer 

objects consisting of epidermal layer and dermis. In real tissues, melanin is located in the top layer of the 

tissue whereas hemoglobin is only located in blood vessels. When one-layer LUT is applied to two-layer 
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objects, it is important to study errors caused be one-layer assumption.  In our study, we are addressing 

the applicability of one-layer model for measuring optical parameters of two-layer objects.  

Thesis Statement 

It was previously shown that DRS has a potential to register changes in tumor oxygenation during 

radiotherapy and able to differentiate between tumors responding and not responding to radiation based 

on vascular oxygenation measurements 
9,27

. Therefore, we hypothesize that optical measurements of 

vascular oxygenation measured by DRS can provide crucial information regarding tumor response to 

treatment at the early stage of radiotherapy. The overall goal of our laboratory is to develop a multi-depth 

diffuse optical spectroscopy (MDDRS) to determine biomarkers of radiation resistance in head and neck 

tumors. However, on the way to achieving this long-term goal, it is important to determine the sensitivity of 

DRS to changes in tumor oxygenation during radiotherapy.  

Sensitivity and accuracy of DRS mostly depends on the chosen source-detector separation of the 

optical fiber probe and the selected model for extracting optical parameters from obtained reflectance 

spectra. LUT model used for extracting optical parameters from DRS-measured reflectance spectra is 

based on one-layer assumption and, therefore, requires close consideration of possible errors associated 

with the simplification of tissue structure. Along with tissue properties, source-detector separation greatly 

affects the sampling depth of DRS spectroscopy.  

  Therefore, the goal of this project is to study the sensitivity of DRS spectroscopy to changes of 

vascular oxygenation after radiotherapy. To achieve these goal, we established three specific aims 

addressing important aspects of DRS sensitivity:  

1. To determine the effect skin on extraction of optical parameters using one-layer LUT model; 

2. To determine depth- and dose-dependent changes in vascular oxygenation during radiotherapy using 

DRS; 

3. To determine the association between DRS-measured vascular oxygenation and 

immunohistochemically assessed intracellular hypoxia.   
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II. Materials and Methods 

Animal Study Protocols and Optical Measurement Schedule 

To determine the effect of skin on DRS-measured optical properties, 5 Balb/c mice were injected 

in the flank with a subcutaneous bolus of 4T1 murine breast cancer cells (1x10
6
 cells suspended in 100 μl 

of serum- and media-free saline) and another 5 Balb/c mice were injected in the flank with a 

subcutaneous bolus of 67NR murine breast cancer cells (2x10
6
 cells suspended in 100 μl of serum- and 

media-free saline). DRS spectroscopy using 350 µm SD probe was conducted during tumor growth every 

day until tumors reached 200 mm
3
 in volume. Once tumor volumes reached 200 mm

3
, skin layer of 6 mm 

in diameter was removed from the same spot where DRS spectroscopy was previously measured. After 

skin excision, DRS was performed on the same area to obtain measurements of optical parameters 

without skin.  After that, mice were euthanized using carbon dioxide (CO2) gas.  

Additional study was conducted to determine the effect of source-detector separation on DRS 

measurements with and without the skin. In this study, 10 Balb/c mice were injected in the flank with a 

subcutaneous bolus of 67NR murine breast cancer cells (750,000 cells suspended in 100 μl of serum- 

and media-free saline). Once 5 mice reached tumor volume of 200 mm
3
, DRS measurements using 2.25 

mm SD probe were conducted to measure tumor optical characteristic with and without skin layer. Once 

another 5 mice reached the volume of 600 mm
3
, they underwent the same procedure where they 

underwent DRS spectroscopy with and without epidermis on the top of tumors.  

To determine depth- and dose-dependent changes in tumor oxygenation 30 Balb/c mice were injected 

with a subcutaneous bolus of 4T1 murine breast cancer cells (750,000 cells suspended in 100 μl of 

serum- and media-free saline). Once tumor volume reached 100 mm
3
, five mice were selected for tumor 

excision and following hypoxia immunostaining. When the rest of mice reached 200 mm
3
 tumor volume, 

five mice were selected as a control group for tumor excision and hypoxia immunostaining, and the 

remaining 20 mice were equally separated into groups that underwent 2 and 8 Gy single-dose radiation 

therapy with the following tumor excision and immunostaining. DRS optical measurements using 1.5 mm 
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and 2.25 mm source-detector separations were conducted for each group at tumor volumes of V = 100 

mm
3 
and V = 200 mm

3
 as well as right before tumor excision.   

All experiments were conducted in accordance with protocols (#15035) approved by the 

Institutional Animal Care and Use Committee. 

Diffuse Reflectance Spectroscopy System 

The system used for measuring the diffuse reflectance (Fig. 2C) consisted of flame VIS-NIR fiber 

optic spectrometer (Ocean Optics), tungsten halogen light source for the VIS-NIR (Ocean Optics), and 

fiber-optic probe with source-detector separations of 350 µm (Fig. 2A), 1.5 mm, and 2.25 mm (Fig. 2B). 

20%, 80%, and 80% reflectance standards were used to correct the wavelength-dependent daily changes 

in lamp throughput and calculate diffuse reflectance for SD = 350 µm, SD = 1.5 mm, and SD = 2.25 mm, 

respectively  

Tissue Phantom Model 

Optical properties extraction was performed using a lookup table (LUT)–based inverse model 
29

. 

To generate LUT models for SD separations of 350 µm, 1.5 mm, and 2.25 mm liquid homogeneous 

calibration and validation phantoms were created and measured using DRS. Calibration phantoms 

consisted of 5 solutions with varying concentrations of the absorber (mix of blue, red and yellow food 

dyes) and scatterer (1 µm diameter polystyrene spheres, 07310-15, Polysciences, Inc., Warrington, 

Pennsylvania). Validation phantoms consisted of 5 solutions with varying concentrations of hemoglobin 

as an absorber and polystyrene spheres as a scatterer. Hemoglobin used for creating validation 

phantoms is water soluble ferrous hemoglobin powder (H0267, Sigma, MO). As a result, generated LUT 

tables contain all measured reflectance values and its corresponding combination of scattering and 

absorbing coefficients. Obtained tables were used for fitting optical spectra obtained from animals.  
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Radiotherapy System 

Radiotherapy was performed using a biological X-ray radiator (X-RAD 320, Precision X-ray). Mice 

were anesthetized using a mixture of isoflurane and room air (1.5% v/v) introduced into the radiation an 

access port. All parts of the animal except the tumor were shielded using lead blocks (Fig. 3). Up to 4 

mice can be irradiated at a time. The radiation beam has minimal variations within the 20x20 cm 

illumination field. Exposure time for a 2 Gy dose is approximately 2 minutes. 

Immunohistochemical Measurement of Intracellular Hypoxia 

For hypoxia staining, mice were injected intraperitoneally with pimonidazole (at a dose of 60 

mg/kg, solution of 12 mg/ml), a hypoxia marker binding thiol-containing proteins in hypoxic cells with pO2 

< 10 mm Hg (Hypoxyprobe-Red549 Kit (Dylight™549-Mab), NPI, Inc, Burlington, MA). About 1 hour after 

injection, mice were euthanized and the tumors were resected, embedded in OCT compound, and snap-

frozen by placing into a container with isopentane immersed in liquid nitrogen and cooled down to the 

temperature of -80 C°. Then, tumors were stored for future histology and immunohistochemistry at -80 C°. 

Based on the sampling depth of SD separations of 1.5 mm and 2.25 mm, tumor slices were obtained from 

depths of d=0.8 mm and d=1.8 mm, respectively. From each depth, first slice was extracted for H&E 

staining (hematoxylin & eosin) (Fig. 4A) to determine necrotic fraction and second slice was extracted for 

antibody staining of pimonidazole (Figure 4, B) to determine hypoxic fraction. This is done to ensure that 

we are comparing optical measurements to the hypoxic fraction at the corresponding sampling depth of 

the probe. Hypoxic fraction within a slice is quantified as the ratio of pimo-bound area to total area: 

   
                  

                                    
                           

Where hypoxia area was quantified based on number of fluorescent pixels in pimonidazole 

images (Fig. 4D), total area was calculated as total number of pixels from images of H&E staining (Fig. 

4C), and necrotic area was calculated as total number of pixels within necrotic areas of H&E staining.  
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Snap-frozen tumors were sliced into sections of 10 µm using a cryotome (CM1850; Leica, Inc., 

Nussloch, Germany). Tumor was oriented in such a way that slicing starts from the skin side to ensure 

slice extraction from the depths of d=0.8 mm and d=1.8 mm corresponding to sampling depths of SD = 

1.5 mm and SD = 2.25 mm.  

Statistical Methods 

Multi-factor ANOVAs was used to compare the vascular oxygenation and total hemoglobin 

concentration across cell lines, SD configurations, and different doses of radiation. Post-hoc Tukey HSD 

tests was used to evaluate significant differences in optical properties between the tumor groups. The 

associations between optically measured hemoglobin concentration, scattering power, melanin 

concentration and immunohistochemically quantified hypoxic fraction were determined using Pearson 

correlation coefficient (R). Statistical significance was tested based on a null hypothesis that R = 0 for 

uncorrelated data.  

Nonparametric Mann–Whitney–Wilcoxon test was used to compare quantified hypoxic 

fractions at different tumor volumes and after exposure to radiation.  

For all types of statistical analysis, the level of significance is p < 0.05.  
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III. Results 

The Effect of Mouse Skin on Extraction of Optical Parameters Using DRS with SD = 350 µm 

The first aim was to determine the effect of skin on extraction of optical parameters using one-

layer LUT model. One-layer LUT model was applied to fit two-layer (tumors with skin) and one-layer 

(tumors with skin removed) spectra obtained from animals.  

Fig. 5 demonstrates representative diffuse reflectance spectra measured from an individual tumor 

before and after skin was removed using source-detector separation SD = 350 µm. We observed 

decrease in the magnitude of reflectance caused by skin resection. Mouse skin contains multiple sources 

of light scattering in visible range:  filamentous proteins such as keratin and collagen, melanosomes, cell 

nuclei, cell walls, mitochondria, and other scattering structures. The observed drop in reflectance 

magnitude can be associated with decreased scattering due to the removal of these scattering 

components. 

We applied one-layer LUT model to fit one- and two-layer tumor spectra measured by DRS using 

SD = 350 µm and extracted tumor characteristics such as scattering, scattering power, melanin 

concentration, hemoglobin concentration cHb, and oxygen saturation sO2. Fig. 6 shows mean values of 

the extracted parameters before and after the skin was removed from tumors. From the obtained data, we 

observed nonsignificant changes in scattering power, melanin concentration, and oxygen saturation and 

significant changes in scattering and hemoglobin concentration after skin removal. First, we observed a 

significant decrease (p-value < 0.05) in scattering that is consistent with the change in spectral shape for 

individual tumors (Fig. 6A). Second, we observed an unexpected nonsignificant increase in measured 

melanin after the skin was resected (Fig. 6C). Melanin is mainly located in the epidermis and it was not 

expected to detect melanin contribution to the DRS-measured parameters of one-layer tumors. The 

observed increase in melanin concentration indicates LUT-model failure to sense the absence of melanin. 

Third, we also observed a significant increase in measured hemoglobin concentration (p-value < 0.01). 

This indicates a higher sensitivity of DRS to cHb if there is no skin on the top of a tumor (Fig. 6D). 
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To determine whether one-layer assumption would cause errors in the extraction of optical 

parameters we studied the correlations between extracted hemoglobin concentration, scattering power, 

and melanin when one-layer LUT is applied to fit two-layer animal spectra. We hypothesized that cHb, 

scattering power, and melanin concentration are not physiologically related parameters and the cross-

talks between them may indicate model errors caused by one-layer assumption. The correlation between 

B as a scattering characteristic and melanin concentration as an absorption characteristics is especially 

important for the consideration due to the similarity in the spectral shapes of these two parameters. Due 

to similar power law spectra of scattering coefficient and melanin absorption, LUT model is often 

incapable of distinguishing between scattering and absorbing contributions to the reflectance leading to 

underestimation of some parameters and overestimation of others.  To study correlations between cHb, 

scattering power, and melanin concentration we plotted measured pairs of cHb, B, and melanin 

concentration and calculated corresponding Pearson correlation coefficients (Fig. 7A, 7B). In Fig. 7A cHb 

and melanin have Pearson coefficient R = 0.7269 (p-value = 0.0265). In Fig 7B, scattering power B and 

melanin concentration have Pearson correlation R = 0.844 (p-value = 0.0042). We noticed that the 

correlation between cHb and melanin is caused by an outlier point when values of cHb and melanin 

concentrations are high. The contribution from the outlier data point makes it difficult to unequivocally 

conclude the relationship between extracted hemoglobin and melanin concentrations. In Fig. 7B we see 

the clear correlation between scattering power and melanin concentration. As was stated before, the 

correlation between B and melanin is unexpected and unwanted result indicating an error caused by one-

layer assumption.  

To make sure that correlation between B and melanin is caused by the one-layer assumption we 

applied one-layer LUT model to extract one-layer properties when skin was removed from tumors (Fig. 

7C, 7D). As the result, we did not observe any significant correlation between cHb and melanin (Fig. 7C), 

nor did we observed the correlation between B and melanin (Fig. 7D). We concluded that for SD = 350 

µm applying a one-layer model to fit one-layer spectra does not produce errors associated with the one-

layer assumption. 
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The Effect of Source-detector Separation on Extracted Optical Parameters  

To test the effect of source-detector separation on the extracted optical parameters another 

experiment was conducted where we used the probe with longer source-detector separation SD = 2.25 

mm (approximate sampling depth is d = 1.8 mm). Data obtained for SD = 2.25 mm was compared with 

results obtained for SD = 350 µm that were described above.  

In Fig. 8, representative spectra from two individual animals are shown. Fig. 8A demonstrates 

DRS spectra from an animal having tumor volume V = 200 mm
3
 before and after the skin was removed 

from the top of the tumor.  Fig. 8B demonstrates DRS spectra for an animal having tumor volume V = 600 

mm
3
 before and after the skin was resected from the top of the tumor. For both individual measurements 

from groups of mice having different tumor volumes, we observed a decrease in reflectance magnitude 

caused by epidermis elimination. This observation is consistent with the result obtained for SD = 350 µm. 

The overall drop of the reflectance magnitude indicates decreased scattering in tumors that were devoid 

of the epidermal layer. We also found that compared to diffuse reflectance measured by the probe with 

SD = 2.25 mm, the drop in the reflectance magnitude caused by skin removal for SD = 350 µm is greater 

(Fig. 9). This observation may be indicative of the higher sensitivity of SD = 350 µm to the skin layer 

caused by superficial sampling depth of this probe that is approximately d = 116-175 µm. It was shown 

that Balb/c female mouse skin thickness is equal to 520±30 µm 
30

. In our experiments, mouse skin 

stretched on the top of a tumor varies from 100–300 µm. Therefore, it was expected that skin layer could 

greatly contribute to the DRS measurements obtained by short source-detector separations SD = 350 µm. 

Fig. 10 shows extracted optical parameters from DRS-measured reflectance using probe with SD 

= 2.25 mm. We observed nonsignificant changes in scattering, scattering power, melanin concentration, 

and oxygen saturation and significant change in extracted hemoglobin concentration after the skin was 

removed. First, we observed a slightly greater decrease in scattering in the group measured at the 

volume V = 200 mm
3
 compared to the group measured at the volume V = 600 mm

3
 (Fig. 10A). We 

suggest it may be associated with the skin thickness variations. During tumor growth skin on the top of a 

tumor becomes stretched and the skin thickness becomes thinner. Therefore, for tumors at the volume V 
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= 600 mm
3
 thinner skin contributes to the DRS-measured reflectance with the less extent compared to 

the group with V = 200 mm
3
. Second, in Fig. 10C, we also observed lower melanin concentration for the 

group measured at the V = 600 mm
3
 which indicates thinner skin layer at higher tumor volume. Third, it is 

important to note that similarly to the SD = 350 µm, for SD = 2.25 mm we observed deceptive melanin 

contribution to one-layer tumor spectra even when the skin was removed (Fig. 10C). This observation 

confirms LUT-model failure to identify the absence of melanin.  Similarly to SD = 350 µm, skin removal 

caused higher sensitivity to cHb for SD = 2.25 mm (p-value < 0.05 for V = 200 mm
3
, p-value < 0.01 for V 

= 600 mm
3
) (Fig. 10D). In Fig. 10E, we found nonsignificantly lower measures of sO2 for tumor volume V 

= 600 mm
3 
which is indicative of increased consumption of oxygen caused by tumor growth. 

In Fig. 11, we compared data obtained for 67NR mice at the volume V = 200 mm
3
 using 350 µm 

and 2.25 mm source-detector separations before and after the skin was removed. We observed higher 

measures of scattering for SD = 350 µm compared to SD = 2.25 mm (p-value < 0.001 for measures with 

skin, p-value < 0.01 for measures without skin) and a greater decrease in scattering for SD = 350 µm 

after the skin was eliminated (p-value < 0.01) (Fig. 11A). These two observations indicate higher 

sensitivity of SD = 350 µm to the presence of the skin layer which we associate with its superficial 

sampling depth. We observed similar measures of hemoglobin concentrations for SD = 350 µm and 

SD=2.25 mm (Fig. 11D). Data obtained for SD = 2.25 mm shows higher sO2 compared to SD = 350 µm 

which may be caused by physiological differences on different depths of tumors (p-value < 0.05 for 

measures with skin, p-value < 0.05 for measures without skin) (Fig. 11E). 

To test errors caused by one-layer assumption for SD = 2.25 mm, we plotted measured pairs of 

cHb, scattering power, and melanin concentration when one-layer LUT was applied to fit two-layer tumor 

spectra (Fig. 12).  As a result, we did not observe any significant correlations between these properties 

when one-layer model is applied to fit two-layer spectra (Fig. 12A, 12B). We also did not observe any 

correlation between cHb, B, and melanin when the one-layer model was used to fit one-layer spectra of 

tumors lacking skin (Fig. 12B). These results obtained for SD = 2.25 mm in conjunction with the findings 

for SD = 350 µm indicate that the effect of one-layer assumption is greater for smaller source-detector 

separations having superficial sampling depths. In other words, for small source-detector separations, the 
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one-layer assumption is a source of errors leading to underestimation or overestimation of extracted two-

layer properties.  

Depth- and Dose-dependent Changes in Vascular Oxygenation during Radiotherapy Using DRS 

The second aim of this study was to analyze depth- and dose-dependent changes in vascular 

oxygenation after exposure to radiation. To determine depth-associated effects of radiation we conducted 

measurements using two different source-detectors separations SD = 1.5 mm and SD = 2.25 mm having 

different sampling depths of d = 0.8 mm and d = 1.8 mm, respectively. To determine dose-associated 

changes in oxygenation we performed single-dose radiotherapy with two different doses D = 2 Gy and D 

= 8 Gy. 

Fig. 13 shows extracted total hemoglobin concentration and oxygen saturation for two different 

tumor volumes V = 100 mm
3
 and V = 200 mm

3
 and after exposure to radiation of D = 2 Gy and D = 8 Gy. 

We did not observe any volume-related changes in cHb or sO2 (Fig. 13A-B, 13D-E). We also did not find 

any differences in sO2 after exposure to radiation (Fig. 13E, 13F). However, we observed a significant 

change in cHb after exposure to 8 Gy of radiation for SD = 1.5 mm (p-value < 0.05) (Fig. 13C). Because 

radiation did not cause the change in sO2, the decreased in cHb may be caused by disruptions in blood 

supply. We also observed significant differences in cHb measures between probes with SD = 1.5 mm and 

SD= 2.25 mm (p-value < 0.01 for V = 100 mm
3
, p-value < 0.05 for V = 200 mm

3
, p-value < 0.05 for before 

and after D = 2 Gy, p-value < 0.01 for before D = 8 Gy) (Fig. 13A, 13B, 13C). We associate these 

differences with physiologically different hemoglobin concentration at different tumor depths. We suggest 

this finding indicates a higher concentration of total hemoglobin and therefore higher blood supply in 

superficial layers of tumors. 

Association between DRS-measured Vascular Oxygenation and Immunohistochemically Assessed 

Intracellular Hypoxia 

The third aim of this study was to associate DRS-measured vascular oxygenation with an 

immunohistochemical assessment of intracellular hypoxia. Proposing the DRS method for radioresistance 
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identification, we hypothesized that DRS measures of vascular oxygenation can provide surrogate 

measures of cellular hypoxia. To test our hypothesis, we aimed to find the relationship between DRS-

measured oxygenation in blood vessels and hypoxia within tumor cells. DRS optical measurements of 

cHb and sO2 were described above. Fig. 14 shows mean values of immunohistochemically quantified 

hypoxic fraction for the same groups that were studied using DRS (at tumor volumes of V = 100 mm
3
 and 

V = 200 mm
3
, after radiotherapy of D = 2 Gy and D = 8 Gy) for two tumor depths 0.8 mm and 1.8 mm 

corresponding to the sampling depths of used source-detector separations SD  = 1.5 mm and SD = 2.25 

mm, respectively. From the obtained data, we did not observe any significant differences between groups 

which underwent single dose radiotherapy (Fig. 14). Interestingly, we observed a lower hypoxic fraction 

for the control group at the volume 200 mm
3
 compared to radiation groups (Fig. 14A). However, it is 

important to note that it was impossible to conduct a reliable statistical analysis to compare between 

radiated and control groups due to small sample size of groups at V = 100 mm
3 
and at V = 200 mm

3
 

(N<5).  We suggest unexpected low values of hypoxic fraction for 200 mm
3
o group may be a result of 

either poor perfusion of hypoxic drug. 

In Fig. 15, we plotted measured pairs of hypoxic fraction and deoxygenated hemoglobin in order 

to determine the relationship between intracellular hypoxia and oxygenation within blood vessels. 

Although we did not observe significant correlation between deoxyhemoglobin and estimated hypoxia for 

groups irradiated with D = 2 Gy and D = 8 Gy we noticed that hypoxic fraction decreases with increased 

deoxyhemoglobin. We suggest that in the future experiments increasing sample sizes and adding extra 

data points may reveal correlation between hypoxia and concentration of deoxygenated hemoglobin.  
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IV. Discussion 

Diffuse reflectance spectroscopy is widely used for non-invasive measurements of tumor biology. 

While diffuse reflectance spectroscopy has been developing and finding more and more applications in 

biomedical research, multiple methods for extracting optical parameters from diffuse reflectance have 

been created. Some methods are based on photon transport simulations (e.g., Monte Carlo simulations, 

modified diffusion equation, P3 approximation of transport equation, spatially resolved diffusion equation, 

spatially resolved Monte Carlo approximation, spatially resolved empirical method) whereas other models 

are solely based on experimental measurements of calibration phantoms (e.g., lookup table LUT inverse 

model) 
28,31–35

. However, most of existing models rely on the assumption that tissue is a single layer of 

homogeneous turbid medium. It was stated before by multiples authors that this simplification of the 

tissue structure raises questions regarding the accuracy of extracted parameters 
36,37

. Hennessy et. al. 

stated the importance of studying errors caused by one-layer assumptions. He has shown that for the 

Monte Carlo model oversimplification of tissue structure causes underestimation of hemoglobin and 

melanin concentrations as well as the correlation of these two parameters when SD = 250 µm is used. 

However, for the LUT-inverse model having wide applicability for various source-detector separations the 

effect of one-layer assumption has not been explored. In this study, fist time to our knowledge, we 

explored the impact of epidermal thickness on extracted optical properties using one-layer LUT model for 

fitting one- and two-layer spectra of real tissue (tumors with and without epidermis). Our major finding is 

that one-layer model applied to fit two-layer tissues may cause errors in the extraction of parameters for 

probes having source-detector separations close to the epidermal thickness. For SD = 350 µm we 

observed a significant positive correlation between scattering power and melanin concentration. Another 

important finding is that the one-layer LUT model fails to detect the absence of melanin when the 

epidermal layer is removed. We suggest that these findings indicate an LUT error in distinguishing 

scattering and absorbing contributions to the reflectance due to their similarity in the power-law spectral 

shape. In the future study, the model needs to be improved in order to eliminate the dependence between 

scattering power and melanin concentration and ensure correct estimation of scattering and absorption 

contributions.  We also suggest that creating an LUT model that accounts for multilayered tissue would be 
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a significant advantage for applications using short source-detector separations. In the future work, to 

attest the obtained results, we are planning to analyze the effect of one-layer assumption on extracted 

parameters for two more source-detector separations: SD = 700 µm and SD = 1.5 mm. 

Importantly, we did not observe the significant impact of the skin layer on DRS measurements of 

optical parameters using the probe with longer source-detector separation SD = 2.25 mm. In the next 

study, we chose the probe with SD = 2.25 mm along with SD = 1.5 mm to study dose- and depth-

dependent changes in total hemoglobin concentration and oxygen saturation after exposure to ionizing 

radiation. As a result, we did not observe significant changes in cHb and sO2 across groups having 

different tumors volumes. We also did not observe changes in the values of these parameters after 

exposure to 2 Gy or 8 Gy of radiation. However, multiple studies have demonstrated a radiation-induced 

increase in oxygenation in nude mice bearing head and neck xenografts using pO2 microelectrodes and 

immunohistochemistry 
38–40

. We suggest that the reason why we did not observe any changes in 

oxygenation is caused by the choice of the time point when we conducted DRS measurements.  In our 

experiments, DRS was performed approximately one hour after the exposure to radiation. In the study 

done by Hu et. al., an increase in DRS-measured oxygenation was registered one day after exposure to 

radiation in head and neck xenografts 
27

. Relying on the previously published information, we suggest that 

in future it will be important to study reoxygenation time points for tumor models used in our experiments. 

In vitro studies of cell oxygen consumption during radiation therapy could also provide us with important 

insights regarding changes happening within tumors during radiotherapy. 

While we did not observe any dose-related effects on cHb and sO2 after exposure to 2 Gy of 

radiation we found a significant change in cHb after exposure to D = 8 Gy. We suggest that this decrease 

may be caused by a disruption in blood supply caused by vasculature collapse. Our assumption is 

concordant with Park’s work where he reported that exposure to a single-dose of radiation from 5 to 10 

Gy causes mild vasculature damage in human tumor xenografts 
41

. From the analysis of depth-dependent 

changes in cHb and sO2, we found that measurements obtained with SD = 1.5 mm are significantly higher 

than cHb values measured by SD = 2 .25 mm. We associated these differences with physiological 

differences at different tumor depths (d = 0.8 mm and d = 1.8 mm, respectively) and concluded that this 
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finding may indicate a variability in blood supply within the tumor. Combing together significant change in 

cHb after exposure to 8 Gy of radiation at the depth of d = 0.8 mm and higher measures of cHb obtained 

by SD = 1.5 mm, we concluded that well developed vasculature on the surface of tumors gets damaged 

by high doses of radiation. We suggest that tumor is an inhomogeneous medium where blood vessels 

may not be evenly distributed resulting in hypoxia occurring in particular regions of a tumor. We believe 

that studying depth-dependent changes in tumor oxygenation is important for evaluating tumor response 

to radiation. Therefore, in the future, the goal of our laboratory will be to design multi-depth diffuse 

reflectance spectrometer (MDDRS) that would provide us with an important functional information about 

changes in tumor biology during radiotherapy.   

In the second part of our study, we aimed to supplement DRS-obtained data with 

immunohistochemistry of hypoxia by pimonidazole. Our goal was to test the hypothesis that vascular sO2 

can be used as a marker of tumor intracellular hypoxia and to understand the relationship between DRS-

measured vascular oxygenation and IHC-quantified hypoxia.  As a result, we did not observe significant 

differences in IHC-quantified hypoxic fraction between control groups and groups irradiated with 2 Gy and 

8 Gy of radiation. Maftei et al have found that the IHC-assessed hypoxia is decreased in FaDu xenografts 

one day after exposure to 10 Gy of radiation 
39

. As was stated before for DRS measurements, we suggest 

that the reason why we did not observe radiation-induced effects in hypoxic fraction is caused by our 

choice of the measurement time point.  In future, we are planning to investigate longitudinal changes in 

DRS-measured sO2 and hypoxic fraction and the correlation between these two parameters at different 

time points after radiotherapy.   

Interestingly, we observed lower values of the hypoxic fraction in the control group having tumor 

volume V = 200 mm 
3 
compared to other groups. However, due to the limited number of animals in control 

groups, we cannot conclude with confidence that this finding is physiologically relevant. In future, we are 

planning to increase the sample size to confirm the obtained result. Our assumption is that the 

unexpected decrease in the hypoxic fraction for this particular group may be caused by poor perfusion of 

the hypoxic drug. In the study done by Vishwanath et al, immunohistochemistry of pimonidazole was 

complemented with staining by perfusion marker Hoechst 
8
. In future, we are planning to improve our 
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immunostaining protocol by staining of tumors for perfusion to ensure accurate quantification of 

intracellular hypoxia.   

Due to the limited sample sizes, we also did not observe a significant correlation between 

quantified hypoxic fraction and concentration of deoxyhemoglobin within the blood. However, we noticed 

a nonsignificant negative correlation between hypoxic fraction and deoxyhemoglobin concentration for 

groups with N=7. Physiologically, it may be indicative of the correlation between cell oxygen demand and 

concentration of deoxyhemoglobin. Our assumption is that if tumor cells consume more oxygen more 

hemoglobin become deoxygenated. In future, more studies will be conducted to increase the sample size 

and to determine the relationship between intracellular hypoxia and vascular oxygenation during 

radiotherapy.  
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VI. Tables and Figures  

 

Figure 1. Absorption spectra of tissue components mainly contributing to the absorption of light in the 
range of 300-100 nm: oxygenated hemoglobin HbO2, deoxygenated hemoglobin dHb, fat, water, and 
melanin.  
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Figure 2. Diffuse Reflectance Spectroscopy (DRS) system. (A) Optical fiber probe with source-detector 
separations SD = 350 µm and SD = 700 µm. (B) Optical fiber probe with source-detector separations SD 
= 1.5 mm and SD = 2.25 mm. (C) Diffuse Reflectance Spectroscopy (DRS) system containing light 
source, spectrometer, and optical fiber prove.  
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Figure 3. Radiotherapy performed in biological X-ray radiator (X-RAD 320, Precision X-ray).  
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Figure 4. Representative images of H&E staining and pimonidazole immunostaining of a tumor. (A) 
Representative image of H&E staining. (B) Representative image of immunostaining by pimonidazole. (C) 
Black and white mask of H&E staining for quantification of total tumor area and tumor necrotic area. (D) 
Black and white mask of pimo-stained section for quantification of tumor hypoxic fraction. 
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Figure 5. Representative diffuse reflectance spectra obtained for 4T1 tumor using SD = 350 µm before 
and after skin was removed. 
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Figure 6. Extracted parameters before and after skin was removed (SD = 350 µm). Error bars represent 
standard errors. (A) Scattering, A. (B) Scattering power, B. (C) Melanin concentration. (D) Total 
hemoglobin concentration, cHb. (E) Oxygen saturation, sO2. 
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Figure 7. Scatter plots of measured pairs of total hemoglobin concentration cHb, melanin concentration, 
and scattering power B for SD = 350 µm. (A) Correlation between cHb and melanin when one-layer 
model is applied to two-layer spectra. (B) Correlation between B and melanin when one-layer model is 
applied to two-layer spectra. (C) Correlation between cHb and melanin when one-layer model is applied 
to one-layer spectra. (D) Correlation between B and melanin when one-layer model is applied to one-
layer spectra.  
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Figure 8. Representative diffuse reflectance spectra obtained for 67NR tumor at the volume V = 200 mm
3
 

(A) and for 67NR tumor at the volume V = 600 mm
3
 (B) before and after skin was removed (SD = 2.25 

mm). 
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Figure 9. Representative diffuse reflectance spectra obtained for two 67NR tumors at the equal volume V 
= 200 mm

3
 when SD = 2.25 mm is used (A) and when SD = 350 µm is used (B). 
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Figure 10. Extracted parameters before and after skin was removed for experimental groups excised at 
tumor volumes V = 200 mm

3
 and V = 600 mm

3
 (SD = 2.25 mm). Error bars represent standard errors. (A) 

Scattering, A. (B) Scattering power, B. (C) Melanin concentration. (D) Total hemoglobin concentration, 
cHb. (E) Oxygen saturation, sO2. 
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Figure 11. Parameters extracted from DRS-measured spectra of 67NR tumors at the volume V=200 mm
3
 

using SD = 350 µm and SD = 2.25 mm. Error bars represent standard errors. (A) Scattering, A. (B) 
Scattering power, B. (C) Melanin concentration. (D) Total hemoglobin concentration, cHb. (E) Oxygen 
saturation, sO2. 
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Figure 12. Scatter plots of measured pairs of total hemoglobin concentration cHb, melanin concentration, 
and scattering power B for SD = 2.25 mm. (A) Correlation between cHb and melanin when one-layer 
model is applied to two-layer spectra. (B) Correlation between B and melanin when one-layer model is 
applied to two-layer spectra. (C) Correlation between cHb and melanin when one-layer model is applied 
to one-layer spectra. (D) Correlation between B and melanin when one-layer model is applied to one-
layer spectra. 
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Figure 13. Extracted concentration of total hemoglobin cHb and oxygen saturation sO2 from tumors at 
volumes V = 100 mm

3
 and V = 200 mm

3
 and after exposure to 2 and 8 Gy of radiation using two source-

detector separations SD = 1.5 mm and SD = 2.25 mm. Error bars represent standard errors. (A) 
Hemoglobin concentration of tumors at V = 100 mm

3
 and V = 200 mm

3
. (B) Hemoglobin concentration 

before and after exposure to 2 Gy of radiation. (C) Hemoglobin concentration before and after exposure 
to 8 Gy of radiation. (D) Tumor oxygen saturation at V = 100 mm

3
 and V = 200 mm

3
. (E) Tumor oxygen 

saturation before and after exposure to 2 Gy of radiation. (F) Tumor oxygen saturation before and after 
exposure to 8 Gy of radiation. 
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Figure 14. Hypoxic fraction quantified from immunohistochemistry of intracellular hypoxia for two tumor 
depths d = 0.8 mm and d = 1.8 mm at volumes V = 100 mm

3
 and V = 200 mm

3
 and after exposure to 2 

and 8 Gy of radiation. Error bars represent standard errors. (A) Hypoxic fraction quantified at tumor 
volumes V = 100 mm

3
 and V = 200 mm

3
. (B) Hypoxic fraction quantified after exposure to 2 and 8 Gy of 

radiation.  
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Figure 15. Scatter plots of measured pairs of hypoxic fraction H and deoxygenated hemoglobin dHb for 
all experimental groups. (A) Correlation between HF and dHb for tumors at the volume V = 100 mm

3
. (B) 

Correlation between HF and dHb for tumors at the volume V = 200 mm
3
. (C) Correlation between HF and 

dHb for tumors which underwent exposure to 2 Gy radiation. (D) Correlation between HF and dHb for 
tumors which underwent exposure to 8 Gy radiation.    
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VII.    Appendix A: IACUC Protocol Approval #15035    
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VIII. Appendix B: IACUC Protocol Approval #15035    
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