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ABSTRACT 

 

There exists a need for research of optical methods capable of image cytometry suitable for point-

of-care technology. To propose am optical approach with no moving parts for simplification of 

mechanical components for the further development of the technology to the poin-of-care, a linear 

sensor with push broom translation method. Push broom translation is a method of moving objects 

by the sensor for an extended field of view. A polydimethylsiloxane (PDMS) microfluidic chamber 

with a syringe pump was used to deliver objects by the sensor. The volumetric rate of the pump 

was correlated to the integration time of the sensor to ensure images were realistically being 

formed, termed aspect ratio. An electro-chemical microfluidic system was then also investigated, 

redox-magnetohydrodynamics (R-MHD), to eliminate the mechanical syringe pump which 

showed deviations in linear speeds at the specimen plane. To image with adequate signal to 

background ratio within the deep chamber of the R-MHD device, an epitaxial light sheet confocal 

microscope (e-LSCM) was used to improve axial resolution. The linear sensor, having small 

pixels, blocked out-of-plane light while eliminating the need for a mechanical aperture which is 

used for traditional point-scanning confocal microscopy.  The particular linear sensor used has 

binning modes that were used to vary the axial resolution by increasing the sensor aperture. This 

approach was validated by using a mirror translated in the axial direction and measuring remitted 

light intensity. The resulting curve estimated the real axial resolution of the microscope, which 

compared favorably to theoretical values. The R-MHD and the e-LSCM were then synchronized 

to perform continuous imaging of fluorescent microspheres and cells in suspension. This study 

combines epitaxial light sheet confocal microscopy and electro-chemical microfluidics as a robust 

approach which could be used in future point-of-care image cytometry applications. 
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LIST OF FIGURES 

Intro Figure 1 (I1). A picture of a linear sensor and a drawn schematic of a linear emission aligned 

with the sensor contrasted with a point-wise emission aligned with the sensor. The linear emission 

utilizes a larger effective pixel area in on dimension which increases the overall field of view.  

 

Intro Figure 2 (I2). A schematic was drawn showing push broom translation. The sensor is static 

with a pre-defined field of view and the object to be imaged is translated by the sensor.  

 

Figure 1. Schematic of the widefield fluorescence microscope including the linear sensor focused 

on the microfluidic channel in epi-illumination and the role of the mechanical syringe pump; not 

all imaging with this device obviates a microfluidic channel, but for proof-of-concept the 

schematic is shown with it at the specimen plane (a). Image of widefield fluorescence microscope 

in an inverted set up with the syringe pump (b). Image of the entire linear imaging sensor (c). 

 

Figure 2. PDMS microfluidic chamber (a) sealed with a #2 coverslip (22 x 60 mm). The chamber 

(coverslip down) with the tubing for transport and clamped for focus by the inverted fluorescence 

microscope (b).   

 

Figure 3. Reference curve correlating linear translation speeds of beads to the volumetric rate of 

the mechanical syringe pump in a 500 x 50 µm (Width x Depth) microfluidic channel. 

 

Figure 4. Aspect ratio proof-of-concept for fluorescent beads with same per line exposure periods 

at different translation speed. Images were taken in IMAQ toolbox (MATLAB) with a custom 



 

source code with maximum exposure per line read and 1 x 4 binning. Scale bar represents 50 µm 

in the x-direction and 1500 µs in time (vertical) direction. 

 

Figure 5. Aspect ratio measurements of the beads in images acquired with a linear imaging camera. 

The AR tends toward one as the linear translation and line exposure period match. Standard 

deviations were calculated but were at most 3.69% of the total average value, leaving error bars 

too small to display. Calculations made in Image J and displayed with MATLAB. 

Figure 6. Image of translating fluorescent beads within a microfluidic chamber (500 x 50 µm, 

Width x Height) acquired at a volumetric pump rate of 16 µl min-1 with a line exposure period of 

150 µs. Images were taken in 1 x 4 pixel binning mode. Scale bar is 50 µm in x-direction and 1500 

µs in the time (vertical) direction.    

 

Figure 7. Image of leukocytes in whole blood taken with the widefield fluorescence microscope 

with translation speed of 0.22 mm sec-1 at a matched line exposure period 1500 µs on a slide. Color 

bar shows pixel intensity over entire image. Scale bar (a) is 100 µm in x-direction and 30 msec in 

the time direction. Scale bar (b) is 25 µm in the x-direction and 7.5 msec in the time (vertical) 

direction.    

 

Figure 8. Images of oral cells taken with the widefield fluorescence microscope with a linear sensor 

(c-f) compared to an oral cell image taken with a conventional phase contrast microscope (a) and 

a fluorescence image taken with an area scan sensor on a static platform (b). A nucleus mask and 

cytoplasm mask (d,e) have been hand-drawn to illustrate the nuclear to cytoplasmic ratio. An 



 

annotated image has been shown (f) (NU: nucleus, CY: cytoplasm, KH: keratohyalin granules) to 

highlight the subcellular features.  Scale bar is 25 µm. 

 

Figure 9. A schematic is shown demonstrating the two interfaced technologies. The e-LSCM light 

path is shown to be in the epitaxial configuration and the R-MHD is placed at the sample plane. 

An image is shown of the complete platform as well as an image of the linear sensor. 

 

Figure 10. (a) In applied current vs. bead velocity correlation graph bead velocity increases linearly 

with increasing the current applied between electrodes at two different position (480 µm &1440 

µm) of beads in Z direction over the chip. The highest speed for both position at 750 µA obtained 

are 1395 µm s-1 and 1818.33 µm s-1 respectively. The least square analysis yield |Vx|= (2.443 ± 

0.066 µm s-1 µA-1) |i| + (16.35 ± 32.58 µm s-1) with R2 = 0.9971 for 1440 µm above the chip surface 

and |Vx|= (1.842 ± 0.047 µm s-1 µA-1) |i| + (23.42 ± 23.14 µm s-1) with R2 = 0.9974 for 480 µm 

above the chip surface. (b) In applied current vs. total flow period correlation graph flow period 

decreases with increasing the current applied between electrodes. Because a high electronic current 

(i.e. high speed) uses up charges faster than a low current (i.e. low speed). 

 

Figure 11. The experimental measurements showing the FWHMs are given for 20x (top, left) and 

10x (bottom, left). The FWHM are representative of the increase in light throughput, therefore 

width is inversely related to axial resolution. The values are cited in Table 2.  

 

Figure 12. The qualitative images are shown to demonstrate optical sectioning in a three-

dimensional suspension of microspheres in an agarose phantom. The ascending 20x aperture 



 

widths (a-c) show a slight increase in background signal as well as the 10x aperture widths (d-f). 

A significant increase in background signal is seen between 20x, 0.5 NA and 10x, 0.3 NA 

demonstrating the significance of numerical aperture in axial resolution. Images were contrast 

stretched to demonstrate concept. Scale bar is 30 µm. 

 

Figure 13. A graph showing the relationship of applied current to aspect ratio when line period is 

kept static at 300 µsec. An image is shown for quality assurance of microspheres imaged by e-

LSCM in the R-MHD chamber based on the parameters decided in graph. Scale bar is 30 µm. 

Figure 14. Images of three types of leukocytes are shown. Cells are stained with acridine orange 

and suspended in PBS and glycerol. Images were taken in R-MHD chamber with e-LSCM to 

demonstrate high-resolution imaging of biological samples. Scale bar is 15 µm in the top row. 

Images of three types of leukocytes stained with the hematopathological standard, Giemsa stain. 

Scale bar is 10 µm. 

 

SI Figure 1. (a) Microfabricated chip (1 in. X 2 in) design contains four band electrodes where 

each electrode measured 1.5 cm in length, 650 μm wide and ~100 nm in thickness (b) Current 

responses during electropolymerization of PEDOT for 12 deposition cycles. It depicts an oxidation 

peak at 1.3 V of the monomer as well as the growth of the polymer film between the range of -0.5 

V and 1.0 V. After 12 successive deposition cycles a dark layer of film deposited on the electrode. 

 

SI Figure 2.  (a) Chip connected with edge connector and wires from edge connector goes to 

bipotentiostat. A PDMS gasket of 2.14 mm placed over the chip to define the cell height. A 0.37 T 

circular NdFeB magnet used under the chip to provide magnetic flux. (b) MHD setup under 



 

microscope camera. Inset picture shows right hand rule, where net fluid motion FB happens when 

ionic current density j and magnetic flux B works perpendicular to each other.  

 

SI Figure 3. Current and charge response of PEDOT deposited electrode in 60% Phosphate buffer 

saline + 40% glycerol solution. Chronoamperometry (CA) was done in order to get maximum 

current response and chronocoulometry (CC) was done to get charge after 20s.   

 

SI Figure 4. Overlay of the current responses for bare electrode and PEDOT modified electrode in 

0.1 M KCl solution for only one electrode. The charging current is 813 times higher for PEDOT 

coated electrode than the bare electrode in 0.1 M KCl solution. This increased charging response 

allows to sustain fluid flow for longer times with higher speed. 
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1. Introduction 

1.1.Image cytometry 

1.1.1. Review of flow cytometry 

Cytological characterization or “cytometry” is a broad term for classifying cells toward the purpose 

of pathological detection and diagnosis of abnormalities in cellular cultures. Cytometry can be 

separated into automated and manual classification. The manual methods for diagnosis require a 

trained pathologist to prepare samples, examine and diagnose disease with a classical microscope, 

but automated classification utilizes machines and algorithms to eliminate the need for manual 

detection and therefore increasing throughput.  

 

In general, flow cytometry has long been held as the gold standard for automated cytological 

classification. The throughput of these machines has always been the most attractive feature with 

capabilities reaching greater than 10,000 cells per second.[1] Flow cytometry uses a capillary tube 

to siphon cells through the system one at a time to allow the system single cell resolution and 

passes the cell through laser light causing the cell to emit forward scattering, side scattering or 

fluorescence. Cell scattering can be used in a limited sense to perform volume (forward scattering) 

and morphological complexity (side scattering) analysis without the need of contrast agents.[2, 3] 

The fluorescence emission of the cells are typically elicited by specific markers applied by the 

scientist or examiner to classify a population (i.e. a dye specific to a cancer cell or a labelling 

technique that attaches to a specific cell line).[4] Sensors detect these signals and transfer them to 

a computing unit which provides limited data points per cell, which, again, are constrained to the 

labelling of the examiner.  
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At this point in the sample analysis, many, but not all, commercial machines contain a sorting 

technique to purify sample classifications; one common iteration of this is fluorescence-activated 

cell sorting (FACS).  FACS flow cytometers induce a charge (e.g. positive or negative) on the cell 

of interest when the optical properties validate its classification. That charge is then attracted by 

opposing electromagnets to direct the cell into different physical bins based on the charge placed 

on the cell at optical classification.[5]   

 

The applications of this technology are broad and far reaching. Flow cytometry has been 

particularly indispensable for monitoring and diagnosing hematopoietic (blood) diseases, 

especially that of chemotherapy induced myelosuppression. [6, 7] This technique is efficient in 

this application due to the rapid sample preparation due to the liquid nature of the biological isolate. 

It has also been useful for head and neck cancers [8] as well as urinary tract metaplasia [9]. These 

applications are heavily concentrated in cancer monitoring and detection because of the single-cell 

resolution to detect circulating tumor cells and test adjuvant and neoadjuvant therapies by grading 

residual disease.[10-12]      

 

Continuous research studies are emerging utilizing flow cytometry techniques toward lab-on-chip 

technology. The miniaturization and dissemination of this technology to the point-of-care can 

decrease sample handling and time needed for diagnosis.[13, 14] The lab-on-chip technology can 

also branch into more personalized tests (e.g. single test or single use chips) while disseminating 

the technology to developing countries where access to medical personnel and facilities can be 

limited. Many of these lab-on-chip techniques mimic the single-cell resolution of commercial flow 

cytometers which can be attractive for rare cell detection applications (e.g. circulating tumor cells) 
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and cell sorting where purity is of importance (e.g. blood cell types to detect abnormal counts).[15-

17]  Although flow cytometry is and will continue to be ubiquitous, the limitation of flow 

cytometry is the lack of image analysis to broaden its classification capabilities. This lack is due 

to the fundamental design of flow cytometry being a detection based system classifying groups 

based on fluorescence intensity, electrical impedance, or internal scattering rather than an imaging 

method.    

 

1.1.2. Motivation and applications in image cytometry 

Image cytometry has recently been an interest in research for its combination of flow cytometry 

and image analysis. The premise of image cytometry is to broaden the impact of current flow 

cytometry methods by coupling image analysis to track and utilize cell morphological data. Cell 

morphology can refer to shape, size, subunit expression, distortion, subunit ratio metric analysis, 

etc. and can be used to not only classify cells but monitor progression of disease.[18, 19] 

Morphological image features can be used independently or in tandem to design algorithms for 

morphology tracking within cellular populations. Monitoring progression of disease (e.g. cellular 

dysplasia) can give researchers a unique look at early and transitional signs of disease and can also 

help guide decisions on appropriate therapy.  

 

1.1.3. Present and future research in image cytometry 

Recent work with image algorithms studying morphology transitions were used to diagnose oral 

legions as benign, pre-malignant, or malignant growths which decreases the number of 

biopsies.[20] Another group utilized image analysis by a combination of features in brightfield 

and darkfield microscopy to classify cells in their particular cell cycle phase based on their imaged 
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DNA content, this is useful for detecting abnormally proliferating cells which is a hallmark sign 

of malignancy.[21] Along with algorithms for classification, certain novel imaging techniques 

have been employed to innovate image cytometry.      

 

1.2.Instrumentation 

1.2.1. Modern digital microscopy 

Laser scanning microscopy employs ultrafast laser sources and scanning optics (acousto-optical 

beam deflectors, galvanometer, etc.) to scan over a specimen for image reconstruction in this point-

wise fashion. Research has utilized line-scanning beam shapers to excite more of the slide to 

effectively eliminate a scanning direction. By replacing these point-wise scanners with line-

scanning illumination, systems are able to effectively eliminate a dimension of scanning from a 

two-dimensional scan to a one-dimensional scan.[22-25] Light sheet microscopy (LSM), although 

not a type of laser scanning microscopy, offers a unique beam shaping technique. [26-28] LSM 

uses a cylindrical lens that converges a light beam into a two-dimensional sheet of light and 

demonstrates a linear pattern at the specimen plane. When utilizing a line-scanning illumination 

technique, work has also been shown coupling this scanning with a linear sensor, often a 

photomultiplier tube (PMT), so that the emission coupling efficiency is maximized for imaging by 

matching the sensor shape to the illumination shape. (Figure I1)   

 

1.2.2. Linear sensors in microscopy and commercial applications  

A linear CMOS sensor can also, in a similar fashion, maximize throughput efficiency, but it 

provides on board imaging rather than the signal conversion needed for photomultiplier tubes. 

Another attractive feature of a linear sensor is its ability to construct images for high-speed 
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imaging. Linear sensors have been widely applied to image objects in motion to increase imaging 

throughput. These sensors are attractive to eliminate motion blur of fast moving objects as they 

acquire lines of a scene at a time, transfer them intermittently to a central computing unit, and 

concatenate them in post-acquisition.[29] Intermittent data transfer allows these linear sensors to 

have more rapid acquisition and shorter exposure periods which combats motion blur when 

imaging rapidly moving objects, while these advantages have been achieved by two-dimensional 

arrays [30] linear sensors can bypass the extensively complex sensor architecture needed for 

standard area sensors. The commercial applications of these sensors are wide-stretching, including 

low-cost high speed imaging, non-contact string vibration detection, solar energy monitoring, and 

satellite image processing.[31-34]  

 

1.2.3. Confocal fluorescence microscopy 

A more specific form of modern digital microscopy that has been proposed coupled with linear 

sensors is confocal fluorescence microscopy. Confocal fluorescence microscopy, a type of laser 

scanning microscopy, uses epitaxial illumination so that the excitation light passes through the 

back aperture and the emission light passes back through the same objective towards the sensor. 

A slit is needed in line-scanning confocal systems to mask out of focus light and reduce signal 

from out-of-plane sources. To eliminate the need for a mechanical slit, the small pixel size of 

image-based sensors has been used as a means to reject out-of-plane light.[23, 25, 35, 36] These 

sensors essentially act as both the slit as well as the image sensor. 

 

1.2.4. Push broom translation  
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A need has been expressed to simplify optics for the use of point-of-care dissemination. A line 

excitation at the specimen plane can be matched with a linear sensor to eliminate a scanning 

direction while still maximizing light throughput efficiency. Another method that could be used to 

simplify this modern optical approach is push broom translation.  

 

Push broom imaging is the synchronization of the imaging source (i.e. line exposure of a linear 

sensor) to image a moving object across the face of the sensor (Figure I2).[37] This technique was 

made known and it currently widely used by imaging satellites in earth’s orbit.[38, 39] The idea 

of delivering objects (i.e. biological specimens) to the focal plane of a high speed microscopy 

platform has been explored extensively [40, 41] as well as integrating microfluidics with light 

sheet microscopy [42] for image cytometry, but the method of synchronizing these two for push 

broom imaging with a linear sensor at the microscopic level is not well understood.  

 

The proposed system is a combination of the motivated optical developments explained. These 

developments have the potential to provide innovative optical techniques while employing a 

simplified instrumentation approach. A cylindrical lens was used to shape a linear excitation to 

expand the field of view while eliminating a dimension of scanning. A linear sensor was used for 

fast, intermittent data transfer while also providing maximum signal throughput by matching the 

excitation pattern. The specific sensor used also allowed for optical sectioning without a pinhole 

due to precise alignment and small pixels. A push broom translation method was used to eliminate 

scanning optics and to develop a system that employs microfluidics as a delivery method to 

eliminate all moving parts. All of these developments combined provide an attractive platform for 
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further prototypical instrumentation developments for a robust image cytometer at the point-of-

care.    

 

1.3.Chapter summary 

In the subsequent chapters, an approach will be presented that utilizes push broom translation 

synchronized to a linear sensor to image objects on a slide or in a microfluidic chamber. Chapter 

one describes the use of a microscopy system coupled to a linear image sensor to perform high-

resolution imaging of cell populations. We describe how linear acquisition timing and sample 

translation are synchronized to control image distortion.  Human leukocytes and oral cells were 

imaged on a slide translated by the mechanical stage to demonstrate high-resolution imaging of 

biological specimens while conserving image distortion during push broom translation. Chapter 

two describes a light sheet microscope coupled with a linear image sensor which acts as a confocal 

aperture. The push broom translation method demonstrated in this system is a deep well electro-

chemical microfluidic chamber called redox-magentohydrodynamic (R-MHD) microfluidics. The 

two devices were characterized independently and then merged to introduce a proof of concept 

validation study to demonstrate a more reliable microfluidic platform coupled with a high-

resolution biological imaging microscope with no moving parts.   
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1. CHAPTER 1: A WIDEFIELD FLUORESCENCE MICROSCOPY PLATFORM WTH 

A LINEAR IMAGE SENSOR FOR IMAGE CYTOMETRY OF BIOSPECIMENS: 

CONSIDERATIONS FOR IMAGE QUALITY OPTIMIZATION    

1.1. Abstract 

Linear image sensors have been widely used in numerous research and industry applications to 

provide continuous imaging of moving objects. Here, we present a widefield fluorescence 

microscope with a linear image sensor used to image translating objects for image cytometry. First, 

a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric 

pump rates. Image data was also acquired using 15 µm fluorescent polystyrene spheres on a slide 

with a motorized translation stage in order to match linear translation speed with line exposure 

periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to 

ensure quality control of image data. Fluorescent beads were imaged in suspension flowing 

through the microfluidics chamber being pumped by a mechanical syringe pump at 16 µl min-1 

with a line exposure period of 150 µs. The line period was selected to acquire images of fluorescent 

beads with a 40dB signal-to-background ratio. A motorized translation stage was then used to 

transport conventional glass slides of stained cellular biospecimens. Whole blood collected from 

healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight 

leukocyte morphology with a 1.56 mm x 1.28 mm field of view (1540 msec total acquisition time). 

Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) 

proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to 

cytoplasmic ratio of 0.03 (n = 75),  with a resolution of 0.31 µm pixel-1.    
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1.2. Introduction 

Linear image sensors comprised of single or consecutive row(s) of active pixels- as opposed to a 

two-dimensional array as in area-scan cameras- are used in myriad industrial applications. These 

include quality control conveyor belts, fax machines, scanners, high-resolution document 

scanning, and raw material surface inspection.[43-46] The advantages of linear imaging systems 

include a reduced sensitivity to motion blur and short frame read times when compared to frame 

transfer times of conventional area-scan cameras, providing continuous coverage of the translating 

region of interest.[29] Two-dimensional images can be acquired using linear image sensors by 

translating the region of interest or the sensor itself. While extremely high-speed area-scan cameras 

have been demonstrated and are commercially available, linear imaging cameras offer similar line 

rates without the need for unique or extensive data transfer hardware.[47] Linear image sensors 

with sufficiently fast line transfer rates may be used to significantly reduce image blurring artifacts 

when directly imaging moving objects.[29, 48-51] Controlling line transfer rate and translation 

speed are critical to minimize distortion in image aspect ratio. In fluorescence applications, where 

relatively low intensity emission light is produced, direct imaging methods are challenging, as the 

requirements for adequate signal-to-noise (long sensor integration times) work against the 

requirements for limiting motion blur (fast frame rates). As in any high-speed imaging 

applications, short line transfer rates limit the allowable integration time which may be detrimental 

to low-light imaging applications. Despite this limitation, continuous image acquisition and the 

reduction in motion blur when imaging objects moving at high speed relative to the sensor makes 

linear imaging cameras attractive for designing high-throughput imaging-based applications.    

Linear image sensors have been previously used in a number of research areas. These applications 

may utilize the linear sensor to improve frame rates during laser scanning microscopy applications, 
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for acquiring spectrally-encoded data in the case of OCT or hyperspectral imaging, or to image 

moving objects with the aid of a translating stage. Some notable areas include confocal imaging, 

hyperspectral imaging, optical coherence tomography (OCT), and multi-photon microscopy.[52-

56] Along with these, transmission white light microscopy is a platform that has been interfaced 

with a linear sensor and translating stage; this method utilized a low-cost linear CMOS sensor and 

a conventional microscope to reduce imaging time.[57, 58] Another benchtop platform is a stage-

scanning line confocal microscope with the ability to image brain neuron connectivity; this 

microscope yielded images of a 10 x 10 mm2 coronal plane in 88 seconds with a resolution of 0.16 

µm pixel-1.[59] Another approach utilized a translating stage and a continuous-motion time-delay-

and-integrated scanning; this custom translation stage exhibited multiple focal depths which was 

used to show the automated focusing ability with continuous scanning acquisition.[60]  

Microfluidics is a broad, active area of research across numerous disciplines. Custom microfluidic 

chips are used in a variety of biomedical applications to contain, transport, and label biospecimens 

for imaging and analysis. Recent advances in microfluidic platforms based in labeling and 

measuring biospecimens include cell impedance measurement, on-chip mixing, 3D holography 

and lensless imaging.[61-65] This application is also a means of linear translation that can be used 

as an alternative to scanning technologies that move the imaging hardware. A microfluidic 

application more specifically focused in the transportation of specimens is 

magnetohydrodynamics. This application utilizes forces governed by the Lorentz equation and is 

seen by many to be a reliable method for precise fluid control.[66, 67] Transportation of large 

numbers of bacteria, cells, microparticles, and other micron-scale structures obviates the need for 

high speed sensing and reporting mechanisms.  
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In this manuscript, we present and characterize a fluorescence microscopy platform which uses a 

Camera Link-based high-speed linear CMOS camera for image cytometry. We demonstrate 

distortion-free imaging of cell-size fluorescent microspheres pumped in a microfluidic chip, and 

the ability to image leukocytes stained in whole blood and stained oral cells on a slide with a linear 

translation stage.  

 

1.3. Materials and Methods 

1.3.1. Imaging system 

The imaging system was based on an epi-illumination fluorescence microscope which may be used 

in an inverted or upright configuration. Imaging was performed with the linear imaging camera 

image sensor perpendicular to the direction of flow (Figure 1). Illumination was provided by an 

LED (LEDSupply, USA) with a center wavelength 455 nm; a filter cube utilizing a 455 / 25nm 

FWHM bandpass excitation filter, dichroic mirror with a cutoff wavelength of 475 nm and a 515 

/ 25 nm bandpass emission filter (Chroma Technologies, USA) was used to deliver excitation light 

to the back aperture of the objective. The 20x infinity-corrected objective lens (Nikon, Japan) 

featured a numerical aperture (NA) of 0.5 and a working distance (WD) of 2.1 mm. Fluorescence 

emission light was collected by the objective, passed through the dichroic and emission bandpass 

filter, and was focused onto the image sensor using a 150 mm achromatic doublet which served as 

the tube lens in this infinity-corrected configuration.   

The imaging camera was the ELiiXA+ 8k/4k monochrome linear imaging camera (e2v, France) 

which features a 4 line sensor array of 8192, 5 µm square pixels. The sensor has six, 2-dimensional 

pixel binning modes that offer a variety of different effective pixel sizes. Binning can be used to 

increase the effective pixel size by combining adjacent pixels. The binning mode used in this 
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manuscript was 1 x 4, yielding an effective pixel size of 5 µm x 20 µm. The ELiiXA+ used displays 

a maximum line rate of 40 kHz, and data transfer via Camera Link to a PCI Express frame grabber 

(Bitflow, Inc., USA). Camera acquisition was controlled by Image Acquisition Toolbox and a 

custom MATLAB code to concatenate the images into a one-dimensional time-based array 

(Mathworks, USA), and all images were acquired in 8-bit.   

 

1.3.2. Microfluidic fabrication and linear speed characterization 

To demonstrate microfluidics imaging with a linear sensor, a single channel was constructed via 

conventional soft lithography methods. The channel was designed to exhibit a tear drop shape at 

16º grade to the normal at the entry and exit ports surrounding the straight portion of the channel. 

This design was printed onto a stencil (CAD / Art Service Inc., USA). The print was then used to 

graft the chambers onto a silicon wafer (University Wafers, USA) by a modified protocol (Nippon 

Kayaku Co. MicroChem, USA). The chambers were grafted of poly(dimethylsiloxane) (PDMS) 

(Dow Corning, USA) from this silicon wafer with a modified protocol.[68] After curing the 

chamber and plasma activating its surface, it was sealed with a #2 coverslip (22 x 60 mm, VWR 

International, USA) for direct imaging into the microfluidics device (Figure 2). Holes (3.18 mm 

diameter) were punched in the under-side of the chamber for inlet and exit ports. Tubing was 

connected to the ports for fluid transport. The pump used laboratory clear, tygon PVC tubing (1.59 

mm ID, 3.18 mm OD, McMaster Carr, USA) to pump into the chamber as seen in Figure 2. The 

tubing and syringe were connected by barbed-socket coupling adapter (1.59 mm barb OD, 

McMaster-Carr, USA); this barb fit the inner diameter of the tubing. 

To characterize the microfluidics device, we collected images of fluorescent microspheres in a 

time-series using an epi-illumination fluorescent microscope with a 20x objective with 0.50 NA 
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and 2.1 WD with a Flea3 monochrome area-scan camera (Point Grey, Canada) focused on a 260 

x 190 µm field of view. This area-scan camera was capable of imaging and tracking extremely 

bright polystyrene fluorescent beads, but not fluorescently stained cells at high translation speeds 

(see section D). This camera was used to more conveniently track individual beads over time to 

calculate linear translation speed in the microfluidic channel. To prepare the bead suspension, 

beads were spun out of solution and supernatant removed. They were then re-suspended in 70% 

1x phosphate buffered saline (PBS) solution (Sigma-Aldrich, USA) and 30% 50/50 glycerol 

(Sigma-Aldrich, USA) in deionized water to keep the beads suspended in solution at neutral 

buoyancy.   

The bead suspension was introduced into the microfluidics chamber at a set volumetric rate with 

a programmable, mechanical syringe pump (BS-8000 120V, Braintree Scientific, USA). As beads 

moved through the field of view the acquisition software was set to acquire images every 50 msec 

with 5 msec integration time and 3 dB gain. Images were imported into Image J (Broad Institute, 

USA) to process the speed of the beads along the interval that the acquisition occurred. Bead 

movement was counted by interval spanned from frame to frame rendering a pixel per millisecond 

speed and converted to millimeters per second based on the magnification of the imaging system. 

The coinciding translation speeds were then plotted on a reference curve.  

 

1.3.3. Line rate calibration to minimize image distortion  

The linear flow speeds from the reference curve (Figure 3) were used as a guide to experimentally 

determine the ideal line read time to minimize image distortion. Data was acquired at 150 µs line 

exposure period while linear translation speeds ranged from 0.5 mm sec-1 to 3.4 mm sec-1. This 

line exposure period was chosen to yield a desirable signal to background ratio of 40 dB. To more 
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precisely control linear speed, 15 µl of beads were placed on a slide with a #2 coverslip and 

translated with a motorized linear stage (Thorlabs, USA). Image acquisition was set to maximum 

exposure per line and 1 x 4 pixel binning yielding an effective pixel size of 5 x 20 µm. Ten beads 

were randomly selected from data sets measured between 0.5 mm sec-1 and 3.4 mm sec-1 to 

measure the speed’s effect on aspect ratio. The aspect ratio was defined as the ratio of the objects 

height to its width (Figure 5). Images were taken in IMAQ toolbox with a custom MATLAB code 

and measurements were taken manually in Image J on the specific scale of magnification.   

 

1.3.4. Imaging fluorescent beads in a microfluidic chamber 

To perform microfluidics imaging, beads were suspended in a 100 µl solution of glycerol and PBS 

(70/30 PBS to 50% glycerol in DI water), then introduced to a 500 x 50 µm (Width x Height) 

channel. Images were acquired in 1x4 binning mode yielding 8192 x 5120 two-dimensional 

images. The beads were pumped at 16 µl min-1 and imaged with a 150 µs line exposure period.   

 

1.3.5. Whole blood preparation and imaging  

All blood samples were obtained following informed consent of a healthy volunteer in accordance 

with an IRB protocol (#13-06-759) at the University of Arkansas. The subject’s index finger was 

first wiped with an alcoholic swab for a sterile location. The finger was then pricked with a diabetic 

lancet (ReliOn, USA) and gently squeezed to maximize blood collection. The 20 µl sample was 

then taken directly off of the finger-tip via a sterile micro-pipette and added to a microcentrifuge 

tube containing 12 µl heparin (2 IU mL-1, Sigma-Aldrich, USA). A 20 µl solution of 0.02% (w/v) 

proflavine hemisulfate was added to the heparinized blood. Proflavine is an acridine-derived dye 

which is known to intercalate DNA, preferentially labeling only leukocytes.[69] A small volume 
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of this solution (10-20 µl) was then placed on a histology slide (VWR International, USA) and 

covered with a #1 coverslip (22 x 40 mm, VWR International, USA) to be imaged on a motorized 

linear translation stage.     

 

1.3.6. Oral cell preparation and imaging  

All oral squamous cell samples were obtained following informed consent of a healthy volunteer 

in accordance with an IRB protocol (#13-06-759) at the University of Arkansas. A solution at 5:1 

dilution of 0.01% (w/v) proflavine hemisulfate and 50% Glycerol (Sigma Aldrich, USA) in 

deionized water, respectively, was prepared for fluorescent staining. The subject’s mouth was then 

swabbed with a cotton swab (VWR International, USA) and added to the prepared solution. A 20 

µl drop of solution was added to a histology slide (VWR International, USA) and covered with a 

#1 coverslip (22 x 40 mm, VWR International, USA) to be imaged on a motorized linear translation 

stage. 

The images were imported into Image J post-acquisition to calculate nuclear to cytoplasmic ratio 

(N:C ratio). A trace was hand drawn around the border of the cell and then around the border of 

the nucleus. The nucleus size was then subtracted from the value of the entire cell to calculate the 

size of the cytoplasm. N:C ratio was then calculated for each cell.  

 

1.4. Results 

1.4.1. Microfluidic characterization 

The volumetric pump rate was varied to calculate the corresponding linear flow rate to develop a 

best fit line and reference curve (Figure 3).  Volumetric pump rates were chosen from 6.6 µl min-

1 to 36.6 µl min-1 yielding linear translation speeds from approximately 0.5 mm sec-1 to 5.5 mm 
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sec-1. An empirical equation was derived where x is the volumetric pump rate and f(x) is the linear 

translation speed. 

 

1.4.2. Line rate calibration 

Aspect ratio is defined as the actual shape of the object of interest and is measured as the bead 

height to width. As the translation speed and line exposure period is matched the aspect ratio tends 

toward 1. In Figure 4, proof-of-concept is demonstrated where beads were translated at 1.0, 2.3, 

and 3.4 mm sec-1 and the line read time was 150 µs in each image.  

Ten beads were randomly selected at each speed along 11 speeds between 0.5 mm sec-1 and 3.4 

mm sec-1 to measure aspect ratio. Line exposure period was 150 µs per line. These measurements 

and standard deviations were calculated and plotted (Figure 5); maximum values were 3.69% of 

the total average value leaving error bars too small to display at the scale shown. The aspect ratio 

tends toward 1 as the line rate and translation speed are matched because the height and width of 

the sphere match as a circle. The aspect ratios are greater than one when the camera acquires too 

quickly for the translating objects and appear stretched. The objects appear compressed and have 

an aspect ratio tending toward less than 1 as they move quicker than the camera is set to acquire. 

The ideal linear translation speed for 150 µs line exposure period was determined to be 2.2 mm 

sec-1, since the calculated aspect ratio tended toward a value of 1; this had a calculated 1.64% 

standard deviation from the average value. An empirical equation was derived where x is linear 

translation speed and f(x) is aspect ratio.  

 

1.4.3. Linear imaging in a microfluidic chamber 
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The reference values of linear translation speeds (Figure 3) and matching line exposure periods 

(Figure 4), were then applied to acquire image data of moving fluorescent beads in suspension in 

a microfluidic chamber. The sensor effectively gathered 153.6 msec of data per frame with a 2.05 

mm lateral field of view. A cropped view is presented in Figure 6 to quantify distortion. The image 

data from Figure 6 were then imported to Image J where aspect ratios were manually calculated, 

with the same protocol previously described; results are shown in Table 1.   

TABLE I. Aspect ratio of in-focus beads in microfluidic chamber 

Beads Height Width 

Aspect 

Ratio 

1 14.391 14.796 0.9726 

2 15.353 15.202 1.0099 

3 14.138 14.138 1.0000 

4 15.050 14.898 1.0102 

 

1.4.4. Whole blood imaging 

Images of leukocytes stained in whole blood were acquired to demonstrate high-resolution image 

cytometry capability. The original image rendering Figure 7 was 6248 x 5120 pixels showing a 

field of view that is 1.56 mm x 1.28 mm (1540 msec total acquisition time) corresponding to a line 

exposure period of 1500 µs. This line exposure period was decided based on an approximation 

that leukocytes provide a 10:1 decrease in fluorescence signal compared to polystyrene 

microspheres; so to obtain a similar signal to background ratio the line exposure period was 

increased by 10 times and linear translation was decreased to 0.22 mm sec-1. The first image 

(Figure 7 (a)) was then cropped to 1920 x 1920 pixels for reasonable display resolution; this is a 
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.588 x .588 mm (30 msec acquisition time) field of view. A 0.132 x 0.119 mm (7.5 msec acquisition 

time) field of view within the raw image was then cropped to display cell features (Figure 7 (b)).  

 

1.4.5. Oral cell imaging   

Images of oral cells were acquired to exhibit further quantifiable metrics toward a multi-functional 

image cytometry platform (Figure 8). A phase contrast image is shown for a proof of concept 

comparison to a common microscopy platform; along with an area scan image of an oral cell on a 

slide stained with 0.01% (w/v) proflavine to exhibit the robust signal of the stain (Figure 8 (b)), 

but also a comparison of area scan and line scan imaging. An example is also shown of the 

calculation of N:C ratio (Figure 8 (d,e)). The N:C ratio was calculated at an average of 0.03 au. (n 

= 75 cells). Images were cropped to display subcellular features (NU: nucleus, CY: cytoplasm, 

KH: keratohyalin granules) as highlighted in Figure 8. (f). Images were acquired at 1500 µs line 

exposure period and a 0.22 mm sec-1 linear translation; this was done to obtain a signal to 

background ratio similar to that of fluorescent beads.  

 

1.5. Discussion  and Conclusion 

The simple microfluidics chamber shown in Figure 2 features a set depth of 50 microns. In higher 

resolution objective lenses (40x, 0.8 NA and above, for example), the narrow depth of focus may 

yield some out-of-focus objects when these objects are sufficiently smaller than the chamber 

height. In Figure 3, there is a fitting trend line to the linear translation speeds measured at different 

volumetric pump rates. Future work and refinement of this technique will produce more consistent 

translation speeds to preserve aspect ratios. The preservation of this aspect ratio is critical to image 

as demonstrated in Figure 4. Figure 5 shows the expected trend of decreasing aspect ratio as 



19 

 

translation speed is increased. Further studies could be done on the allowable standard deviation 

of aspect ratio for effective post-acquisition analysis. The beads imaged in the microfluidic 

chamber (Figure 6) maintained aspect ratio as seen in the measurements of Table 1, but had 

inconsistent depths of focus due to the size of the beads being significantly less than that of the 

chamber height, which was previously mentioned. An additional constraint must be considered 

when imaging whole blood specimens as seen in Figure 7; the line exposure period was increased 

as the signal was lower due to a relatively low fluorescence yield, which significantly increased 

the imaging time. While higher numerical aperture objective lenses are capable of collecting more 

emission light, the trade off with a more narrow depth of focus may yield out-of-focus objects. 

Images shown in Figure 8 were a part of a larger data set to determine an average N:C ratio which 

is a common dysplastic marker. [70, 71] 

We have demonstrated a widefield fluorescent microscope with a linear image sensor as a means 

to image moving objects while minimizing motion blur. An ideal translation speed at a desired line 

exposure period was determined as a reference value to conserve image aspect ratio. Images were 

then acquired of leukocytes in whole blood and oral cells stained with proflavine hemisulfate to 

demonstrate high-resolution image cytometry capability.  

Future iterations of this method could be applied to investigate biospecimens such as whole blood 

and epithelial swabs for cytomorphology data based on image feature calculation.[72] The wide 

field of view demonstrated by the linear image sensor enables collection of large numbers of 

discrete cell images in relatively short periods of time. Data mining methods may be applied to 

these large data sets to extract useful information about cell behavior, differentiation, morphology, 

or other diagnostically useful parameters for a wide variety of applications in clinical medicine 

and biomedical and biological research.  
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2. CHAPTER 2: REDOX-MAGNETOHYDRODYNAMIC CONTROLLED FLUID 

FLOW WITH POLY (3, 4-ETHYLENEDIOXYTHIOPHENE (PEDOT) COUPLED TO 

AN EPITAXIAL LIGHT SHEET CONFOCAL MICROSCOPE TOWARD IMAGE 

CYTOMETRY APPLICATIONS 

2.1. Abstract  

A need exists for an image cytometer with continuous field of view and limited reagent 

preparation. We present two merged technologies to perform continuous push broom imaging in 

a deep microfluidic chamber. An epitaxial light sheet confocal microscope (e-LSCM) was used to 

image, with redox-magnetohydrodynamic (R-MHD) as pumping system for precise control of 

fluid flow. Poly (3, 4 ethylenedioxythiophene) (PEDOT) electrodeposited on MHD chip as 

immobilized redox species. The e-LSCM was validated to optically section with an electronically 

adjustable linear aperture by an optical phantom of agarose and suspended fluorescent polystyrene 

microspheres. The R-MHD pumping was characterized to specific linear speeds as a function of 

applied current.  The linear speed within the chamber and the camera linear exposure periods were 

synchronized to ensure quality image acquisition. Images of leukocytes stained with acridine 

orange, an amphipathic vital dye that intercalates DNA, were then taken in the R-MHD chamber 

with the e-LSCM to demonstrate high-resolution capabilities of biological samples. The 

combination of these technologies provides a platform for large sample volumes without clogging 

due to a deep chamber and high concentrations due to optical sectioning. We present these results 

as a proof-of-concept toward quantifying a broad range of cellular populations.   

 

2.2. Introduction 
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Flow cytometry provides population-based data for large quantities of single cells, providing 

information such as light scattering and fluorescence intensity on a cell-by-cell basis. However, 

flow cytometry suffers a limited classification method; this is due to the relative difficulty of 

acquiring high-resolution images of cells while simultaneously achieving comparable sampling 

rates. Image cytometry has long been an established method to confront this insufficiency by 

merging high resolution imaging with comparable high-throughput analysis. There have been 

commercial products that perform this merge but they require extensive sample preparation, do 

not have the capability of point of care diagnostics, and require single-cell analysis rather than 

bulk flow.[28] This method, although it can use similar techniques to flow cytometry (e.g. 

hyperspectral imaging, fluorescent probe detection via cellular biomarkers, etc.), also seeks to 

provide a more comprehensive data set to differentiate cells with morphological image features. 

Cellular morphology (shape, size, internal complexity, etc.) is a robust tool to provide additional 

quantitative data for differentiation of population heterogeneity (subunit expression, dysplastic 

markers, etc.) while preserving the opportunity for optical methods utilized in conventional flow 

cytometry.  

Recent work with population differentiation include cell-cycle classification, severity of dysplasia, 

drug risk efficacy, and live-cell shape dynamics.[20, 21, 73, 74]   Nuclear segmentation has in 

particular been popular in histopathology with whole slide scanners and digital histology 

analysis.[75] Other clinical image cytometry systems exist such as slide scanner used in 

hematopathology (mention product name here) to directly image prepared slides. Although the 

current technology is efficient with prepared slides (whole slide scanners) and single cell analysis 

(flow cytometry), a need exists for a technology toward limit of sample preparation and a broader 
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range of biological sample compatibility which also has the capability for miniaturization and 

dissemination to the point-of-care.   

Recent developments in MHD microfluidics position this as a viable approach. MHD generates a 

body force FB (N / m3) in a system where an external magnetic field B ( T) works perpendicularly 

with ionic current density j ( C/ s m2))  originated through applied potential difference by following 

right hand rule FB = j × B.[76, 77] Chemical species added with electrolyte solution supply redox 

centers into the system which turns MHD into Redox - MHD. It generates sufficient current with 

low voltage and avoid bubble formation from electrolysis of water.[78] Conducting polymer 

immobilized on electrode surface is replacing solution redox species to allow least chemical 

interference, higher initial current, and ease of preparation and use. This finding led to on chip 

image cytometry where cells in solution will be pumped by R-MHD in between working and 

combined counter/reference electrodes as a push broom translation mechanism for imaging with 

the e-LSCM. Push broom imaging with a linear sensor was previously validated as an attractive 

approach for image cytometry.[79] Recent developments in this approach include the alignment 

of a light sheet to a linear sensor in an epitaxial configuration. This allows for confocal microscopy 

and the elimination of a slit or pinhole by placing the linear sensor at the image plane to utilize the 

small pixels for dual-modal optical sectioning and high resolution imaging.   

We propose an epitaxial-light sheet confocal microscope synchronized with a redox-

magnetohydrodynamic fluid transport system as an image cytometer. A deep well microfluidic 

chamber was used to increase linear speeds, increase amount of sample to be held, and eliminate 

clogging of biological specimens. A linear sensor aligned as a confocal slit aperture utilized optical 

sectioning to image large fluid samples and dense populations of biological material. PEDOT has 
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been deposited through non-aqueous route onto the electrodes of R-MHD chip  asorganic solvent  

dissolves EDOT more efficiently without adding any solubilizer, minimizing the sample 

preparation, induce more effective PEDOT packing, and produce films with enhanced charge 

density. Fluid transport speeds were precisely control and synchronized with the acquisition speed 

of a linear sensor in order to maximize data quality. This system has promising applications in the 

area of image cytometry as the system could potentially be used to rapidly image large amounts of 

biological specimens.  

2.3. Materials and Methods 

2.3.1. Chemicals and Materials 

All chemicals were reagent grade and used as received. Propylene carbonate (anhydrous 99.7 %) 

was purchased from Sigma – Aldrich (St. Louis, MO). Lithium Perchlorate (ACS min 95 %) was 

purchased from Alfa Aeser (Ward Hill, MA). Deionized water from Ricca Chemical Company 

(Arlington, TX). 3, 4-Ethylenedioxythiophene (EDOT) was purchased from Sigma-Aldrich (St. 

Louis, MO). Potassium ferricyanide and potassium ferrocyanide were obtained from EM Science, 

Gibbstown, NJ and J.T. Baker, Phillipsburg, NJ, respectively. Fluorescent polystyrene 

microspheres were purchased (Life Technologies, Grand Island, New York). 0.37 T NdFeB 

permanent magnet was purchased from Amazing Magnets, Irvine, CA. Pre-cleaned micro cover 

glass (24 X 50 mm) purchased from VWR. 

 

2.3.2. Optical instrumentation assembly 

The light sheet confocal fluorescence microscope has a laser light source for excitation with a 445 

nm wavelength (FTEC2 440-20, Blue Sky Research, Milipitas, CA) coupled to a single mode fiber 
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to produce a Gaussian output beam. The beam is attached to a collimator (Blue Sky Research, 

USA) with an output diameter of 1.2-1.3 mm which is then expanded by a custom beam expander; 

collimation was validated by a shear plate (Thorlabs, Newton, NJ). This expander produces a 10 

mm beam which is converged into a sheet of light by a cylindrical lens (Thorlabs, Newton, NJ), 

reflected by a dichroic mirror with a cutoff of 475 nm, and transmitted through the back aperture 

of the objective lens. The focal length of the cylindrical lens is aligned to the back aperture of the 

objective lens in order that it receives emission light at the working distance in the epitaxial 

position. The fluorescent light then passes through the dichroic mirror and is focused onto a linear 

image (ELiiXA+ 8k/4k, e2v, Chelmsford, UK) in the conjugate image plane by an achromatic 

doublet lens (Thorlabs, Newton, NJ) with a focal length of 150 mm. The linear sensor is placed at 

the image plane and acts as a slit detector with electronically controlled binning modes to modulate 

the aperture width; this allows this device to optically section without the need of a mechanical 

slit. The imaging stage is electronically controlled by x, y and z actuators (Thorlabs, Newton, 

NJ).  The entire platform, including the stage, acquisition parameters, and image acquisition, are 

controlled by a custom graphical user interface in MATLAB. The complete system with a 

schematic is shown in Figure 9.  

 

2.3.3. Redox-magnetohydrodynamic (redox-MHD) microfluidic chip 

Microfabrication procedure and design of the similar types of chip has been reported 

previously.[80] Each 1 in. x 2 in. chip contains 4 band electrodes (Figure 1a in supplementary 

information) where each electrode measured 1.5 cm in length, 650 μm wide and ~100 nm in 

thickness, with 3 mm gaps between the two pairs of outermost electrodes and six sets of concentric 

ring and disk electrodes varying in size. Only the band electrodes were used for pumping. 
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2.3.4. Poly(3,4-ethylenedioxythiophene (PEDOT) deposition  

PEDOT deposited onto the gold band electrodes by electro polymerizing 3,4 ethylene 

dioxythiophene (EDOT). Before deposition chip was plasma cleaned for 15 minutes to remove 

any possible organics from the electrode surface. A propylene carbonate precursor solution 

containing 0.1 M LiClO4, 0.01 M EDOT was prepared. As EDOT fairly soluble in organic 

solvents, no sonication was required. Polymerization carried out potentiodynamically in a three 

electrode system by cycling the potential onto desired electrodes at 0.005 V·s-1 from -0.455 V to 

1.3 V vs. Ag/AgCl (saturated KCl) reference electrode and a platinum flag as the counter electrode. 

For this experiment PEDOT deposited simultaneously by shorting all four band electrodes 

together. After 12 successive cycles a dark film growth observed. Figure 1 b in supplementary 

information shows image of band electrodes before and after deposition of PEDOT and current 

response of 12 successive scans during deposition process. After deposition, the films were 

conditioned (redox cycled 3/4 times) in monomer free solution. This conditioning or stabilization 

increases the reproducibility of electrochemical responses.[81] After conditioning, the electrodes 

were ready for characterization. 

 

2.3.5. Poly(3,4-ethylenedioxythiophene (PEDOT) characterization 

Magnetohydrodynamic pumping is proportional to electronic current that generates from a fixed 

geometry of cell and electrode in a particular electrolyte solution. So, current responses in various 

electrolyte solutions will be a good predictor of possible fluid speed in MHD pumping. Cyclic 

voltammetry (CV) and Chronoamperommetry (CA) were used as characterization techniques for 

PEDOT film. CV was done in 0.1 M KCl with bare electrodes and for PEDOT coated electrodes 
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for comparison purpose. Figure 4 in supplementary information shows CV responses for only one 

electrode in 0.1 M KCl solution which has a shape of double layer charging current with 813 times 

more current with PEDOT coated electrode than the bare electrode. This increase in current with 

PEDOT confirms large improvement in MHD pumping. CA and integrated CA responses 

(Chronocoulometry or CP, Figure 3 in supplementary information) in 60 % Phosphate buffer saline 

+ 40% glycerol solution shows maximum current and charge at the time length of 20 sec. In MHD 

pumping how far and at what speed fluid will flow will depend on the supply of charge and ease 

of ion transportation the film which can be determined by charge and current density form CA and 

integrated CA data in a particular solution. 

 

2.3.6. Axial resolution of optical setup 

To measure the axial resolution of the system, the Barrier filter was removed and a mirror 

(Newport, Irvine, CA) was placed at the beam waist of the light sheet. The mirror was then 

translated 30 µm above and below the convergence of the beam waist in 0.5 µm increments while 

taking an image at each interval to measure the amount of light throughput outside of the focal 

plane. This was done with two different magnifications of 10x and 20x and three binning modes 

to yield detection apertures of 5, 10, and 20 µm. The theoretical axial resolution was determined 

to be 9.47 and 3.26 µm for the 10x (0.3 NA) and 20x (0.5 NA) objectives, respectively. These 

values were determined by applying Equation 1, which shows that the driving factors of axial 

resolution are excitation wavelength, numerical aperture of the objective, and refractive index. The 

method of utilizing a slit aperture has been previously described and is stated that the linear sensor 

does not need to be modelled to a theoretical equation considering a slit or pinhole aperture.[35] 



27 

 

Equation 1.     

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑥𝑖𝑎𝑙 =
0.89 ∗ 𝑛 ∗ 𝜆̅

(𝑛 − √𝑛2 − 𝑁𝐴2)
 

 

2.3.7. Agarose bead phantom for qualitative imaging study 

Agarose (Sigma Aldrich, St. Louis, MO) was mixed in distilled water at 5% (w/v) and heated in a 

microwave to create a dense ring to contain the core of the phantom for imaging. The core of the 

phantom was then mixed at 3% (w/v) agarose in distilled water and the total was mixed with 15 

µm fluorescent polystyrene microspheres. This three-dimensional solution of microspheres was 

placed under the e-LSCM and used to qualitatively demonstrate the optical sectioning.   

 

2.3.8. Solution preparation for imaging in redox-MHD 

Fluorescent polystyrene microspheres were used to ensure image quality and aspect ratio. 800 µl 

of beads were prepared by spinning out of solution and resuspension in a 60 to 40 solution of PBS 

and 50% glycerol in H2O, respectively. This solution had a 20% absolute glycerol concentration 

to enable neutral buoyancy of the beads in a deep gasket. A polydimethyl siloxane (PDMS) gasket 

of 2.14 mm height and with a cutout of 3 cm x 1.8 cm was placed on the chip, and the solution 

was then dispensed into the well. A 24 × 50 mm, #1.5 coverslip (VWR, Radnor, PA) was then 

placed on top of the PDMS gasket to seal the well for imaging. The entire system was placed on 

the platform along with the edge connector (Category S28626, Sullins Connector Solution, CA) 

which was connected to a galvanostat (760B CH instrument, Arlington , TX). 
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2.3.9. Correlations of linear speed as a result of applied current in a sealed chamber 

Linear speeds of fluorescent beads were determined by MHD study in a sealed chamber. Four band 

electrodes on the chip was modified with PEDOT and of them two electrodes (1 and 2) were 

selected for pumping. A 2.14 mm thick PDMS (Polydimethylsiloxane) gasket with a 3 cm × 1.8 

cm rectangular opening defined the cell dimensions by providing sidewalls (Figure 2a in 

supplementary information). A glass coverslip (VWR micro cover glass, 1 ounce, 24 × 50 mm) 

was placed directly over the gasket as a ceiling of the cell which also limit the vertical direction of 

fluid flow. 1100 µL solution of 60 % PBS + 40 % glycerol solution with 5x104 polystyrene 

fluorescent beads was added into the cell. Figure 2b in supplementary information shows that the 

chip connected with edge connector, gasket, and coverslip on it, was placed over a 0.37 T NdFeB 

cylindrical permanent magnet (diameter of 1.5 in. and height of 0.5 in.; Amazing Magnets LLC, 

Irvine, CA) so as magnet was centered over the active band electrodes (used for pumping). 

Chronopotentiometry (CP) experiment was performed for MHD flow where one band electrode 

(E 1) was used as working and adjacent band electrode (E 2) used as combined counter/quasi-

reference electrode. Current applied from 150 µA to 750 µA with 120 µA stepping in between the 

electrodes with a cutoff voltage of 1.1 V. To track the flow of the solution around the PEDOT 

modified electrodes fluorescent beads (FluoSpheres, Thermo Fisher scientific) were added into the 

solution and visualized and recorded with a Sony Handycam (HDR-XR 500 V) interfaced with a 

microscope (Leica DM 2500 M). The focusing height above the chip surface was adjusted by 

lowering and raising of the microscope objective. The quantification of fluid speed was 

acquired by processing the bead movement in the recorded videos by tracking individual bead with 

particle tracking software (WIM, WWW.PHYSICSTOOLKIT.COM). Bead speed was determined 

http://www.physicstoolkit.com/
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by tracking six individual beads over a given amount of time when current was applied in low to 

high, high to low and random fashion at 480 µm and 1440 µm above the chip surface. 

 

2.3.10. Synchronization of applied current and line period for image quality assurance  

As we determined the linear speeds as a function of applied current, we quantified image quality 

as a function of drive current. We have previously demonstrated the importance of synchronization 

with the linear sensor and a push broom scanning source.[79] The camera’s acquisition parameters 

were set to 300 µs line period and an internally controlled exposure time of 12.5 µs to eliminate 

image saturation. With this line period, we started at a low applied current of 350 µA and increased 

it in intervals of 50 µA to determine the influence on image quality. Image quality was quantified 

in post-processing with ImageJ (Broad Institute, USA); it was defined by aspect ratio of the bead. 

Aspect ratio, in this context, has been set as the height to the width of the bead. The ratio is equal 

to one if the bead is geometrically circular which ensures that the line period is matched to the 

linear speed. 

 

2.3.11. Sample preparation for imaging leukocytes   

Whole blood was drawn via venipuncture in accordance with IRB protocol at the University of 

Arkansas. Red blood cells were then lysed in accordance with a custom protocol using ammonium 

chloride lysing solution. The fragments were removed and leukocytes washed in PBS / 0.1% (w/v) 

BSA (Sigma-Aldrich, St. Louis, MO) and stained in a 1:1 dilution of acridine orange dye (20 µg 

mL-1). The staining dye was then removed from solution, and the product was re-suspended in 

600:400 µL PBS / glycerol (50/50 in distilled water).    
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2.4. Results and Discussion  

As was previously stated, axial resolution is variable upon refractive index, numerical aperture, 

and the average of the excitation and emission wavelengths. Since, for the purposes of the proposed 

system, the wavelengths are consistent and only objectives with air as a refractive medium are 

used, the influence of numerical aperture was experimentally demonstrated with a 10x (0.3 NA) 

and 20x (0.5 NA). Figure 11 shows the experimentally determined axial resolution of the two 

mentioned objectives and the quantification of these curves are defined as the full width half 

maximum (FWHM). The FWHM is the width of the curve at half of the normalized maximum. 

The experimental FWHM for all binning modes and magnifications are reported in Table 2 and 

correlated to the respective theoretical value for that objective. The justification for one theoretical 

calculation per objective has been previously demonstrated when using a linear aperture [35]; this 

method of using binning modes for an adjustable aperture is novel so there is limited theoretical 

precedence for this approach.  

TABLE 2. Full width half maximum measurements 

 10x, 0.3 NA 20x, 0.5 NA 

Aperture Theoretical Experimental Theoretical Experimental 

5 µm 9.5 µm 13.5 µm 3.3 µm 4.5 µm 

10 µm  14.0 µm  4.9 µm 

20 µm  14.75 µm  6.25 µm 
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For all images taken for a respective objective the laser power and acquisition parameters were 

held static to demonstrate the light throughput increase at different binning modes. The smaller 

the allowed aperture, the finer the axial resolution, and the axial resolution sees consistent 

divergence based upon the aperture width. A significant divergence in the quality of axial 

resolution is also seen, as expected, in the change of numerical aperture. Figure 12 (a-f) also shows 

a qualitative test of microspheres in agarose to demonstrate the quantitative experimental 

measurements shown in Table 2. The slight increase in background signal based upon increased 

aperture width is commensurate to the FWHM values observed, as well as with the more 

significant increase in background signal due to decrease in numerical aperture.   

For each set of applied current two beads were analyzed giving a total of six beads for speed 

analysis. Figure 10a shows linearity of bead speed with applied current with error bar in speed 

direction at two different height on the chip. The data was collected by current applied in high to 

low, low to high and random fashion for reproducibility assurance. Bead speed analysis at 480 µm 

and 1440 µm above the chip surface shows maximum speed of 1395 ± 32.4 µm/s and 1818.33 ± 

55 µm/s at applied current of 750 µA. Bead speed is linear to the current applied regardless the 

order of the application with R2 value of 0.9971 and 0.9974 at two different height on the chip. 

This linear dependency confirms the consistency of previous study which has done with solution 

redox species and bare electrodes.[80, 82] Different bead speeds were observed at different 

position over the chip at the same applied current. Increased applied current (i.e. higher speed) 

consumes total charge from PEDOT film faster, hence fluid flows shorter distance (short duration) 

but with high speed. Figure 10b shows the correlation between applied current and total time of 

MHD flow where the maximum flow time (61.6 ± 1.2 s) obtained by applying lowest current (150 
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µA) and least flow time (10.4 ± 0.3 s) obtained with maximum applied current (750 µA). So 

depending upon the application a particular speed and flow time can be obtained with a certain 

applied current which will allow better programmability of the MHD device. Figure 13 show the 

convergence of aspect ratio at one at 850 µA while the line exposure period was set to 300 µsec; 

this synchronization will ensure image quality when using these technologies for broader 

applications. Figure 13 also shows microspheres imaged with the e-LSCM within the R-MHD 

chamber using the specified parameters determined by the previous experiment to show qualitative 

assurance of realistic aspect ratio. Figure 14 demonstrates this platform’s ability for high-

resolution imaging of biological samples by showing three types of leukocytes; these cells were 

imaged with the e-LSCM in the R-MHD chamber.     

2.5. Conclusions 

In conclusion, we present a redox-magnetohydrodynamic microfluidic device with an epitaxial 

light sheet confocal microscope for high-resolution imaging of biological specimens toward an 

image cytometer with limited reagent preparation. The deep well of R-MHD allows no solution 

clogging from dense cellular population, high linear speeds, and large sample volumes; this 

interfaces well with the optical sectioning of the e-LSCM to image in the midst of bulk fluid flow. 

The e-LSCM has fast, intermediate data transfer rates which makes it ideal for imaging objects at 

high speeds with the ability to transfer and process images at a separate computing unit which 

could be of use for image algorithm process flow. The optical setup provides a novel design in 

confocal fluorescence microscopy by eliminating a mechanical slit and utilizing pixel binning 

modes for an adjustable aperture. The combination of the precise, flat flow profiles of R-MHD and 

confocal alignment of a linear sensor allows this system no moving parts. The complementary 
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nature of this system with the broad range of biomedical application makes it an attractive 

diagnostic platform for dissemination at the point-of-care.    

2.6. Supplementary Information  

Supporting information is placed in Appendix B includes the electrode chip design, 

electrochemical response during deposition of PEDOT film, device setup while doing the MHD 

study, Chronoamperometric and chronocoulometric response of electrode with PEDOT film, 

comparative CV response in an electrolyte solution before and after PEDOT deposition.  
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3. CONCLUSIONS 

3.1. Summary  

Image cytometry has been discussed as a robust tool to monitor cell populations by image analysis 

algorithms. Image cytometry builds on the premise of high throughput machinery introduced by 

flow cytometry, the industry standard. This method builds on this premise by complementing it 

with myriad imaging techniques for a more comprehensive classification capability. It is more 

comprehensive because it can add insight into the source of the signal from within the cell 

population which has the potential for extended intuition into the population beyond a limited data 

point, for example fluorescence intensity. This insight is in particular useful for tracking dysplasia, 

general cellular abnormality, since many times the phenotypic markers of disease progression are 

unknown. These markers could be present at many places within the population or intra-cellular 

itself, and image analysis can provide more data to these questions. There are many different 

imaging techniques which can be used to tailor toward different applications, the imaging 

technique here is an epitaxial light sheet confocal microscope (e-LSCM).  

A linear sensor is used in this study to image objects in motion. These sensors are attractive to 

eliminate motion blur of fast moving objects as they acquire lines (portions of a scene) at a time 

as the object moves across the sensor, transfer them intermittently to a central computing unit, and 

then concatenate them in post-acquisition. Intermittent data transfer allows these linear sensors to 

have rapid acquisition and shorter exposure periods which combats motion blur when imaging 

moving objects, while comparable speeds have been achieved by some two-dimensional arrays, 

linear sensors can bypass the extensively complex sensor architecture needed for these area 

sensors.  
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The linear sensor in this study was also used as a confocal aperture able to block out of focus light 

in the epitaxial configuration without the need of a pinhole or slit, used in conventional confocal 

microscopy; this ability allows the microscope to tailor to different applications. For example, in 

this study, optical sectioning was used to image within a 2 mm well microfluidic device, whereas 

before using optical sectioning the images would have had a signal to background ratio too low to 

yield useful data. This complemented the R-MHD device (electro-chemical microfluidic platform) 

well due to the fact that increasing the well height reduces drag force and overall pressure which 

yields higher linear speeds, this, in turn, can potentially increase throughput of this image 

cytometer. The R-MHD device can also hold more fluid with the deeper well which also potentially 

increases the throughput of this image cytometer.  

Along with the benefits that the e-LSCM, the use of a microfluidic device for push broom 

translation allows the elimination of scanning optics (i.e. acousto-optical beam deflectors and 

galvanometers). Push broom translation also complements the continuous field of view available 

to the linear sensor. The coupling of these technologies presents novel mechanical findings, but it 

also allows for myriad diagnostic applications as the platform is not tailored to any one test.       

Altogether, this study proposes the combination of two technologies which complement well for 

a multi-faceted approach. This study combines epitaxial light sheet confocal microscopy and 

electro-chemical microfluidics as a robust approach to image cytometry all while simplifying the 

mechanics by eliminating a slit, utilizing no moving parts and offering a continuous field of view. 

 

3.2. Future Directions  

3.2.1. Blood cell classification into a three-part differential  
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The future directions of this project are broad but work is being done to classify blood cells into a 

three-part differential (lymphocytes, granulocytes, and monocytes); this is a relatively basic but 

influential place to start as flow cytometers have made themselves indispensable to clinics and 

physicians in diagnosing blood disorders and monitoring chemotherapy induced 

myelosupression.[83-85] Work has begun studying a common dye, acridine orange, used for lab-

on-chip system tailored to diagnosing blood disorders.[86, 87] Acridine orange is an amphipathic 

vital which intercalates DNA and RNA content depending on the electrostatical intracellular 

interactions of the cell which can also be due to a change in pH levels.[88] The type of biological 

content that it intercalates then determines what wavelength it emits while still absorbing 

efficiently in the blue region of the spectrum; this diverse Stokes shift allows a cheap, simple 

diagnostic test for classifying different blood cells.[89] In this study, it has been detected that the 

cells exhibit a slight red shift over a short period of time after staining (5-6 minutes); this could be 

problematic since the three-part differential is calculated by the per-cell red to green ratio (R:G 

ratio). The above proposed platform has been investigated as an attractive approach to rapidly 

image these cells before this red shift. We are now optimizing an image algorithm based upon 

machine learning by imaging these blood cells with a whole slide scanning technique; this 

techniques mimics the recent shift to digital histopathology analysis.[90-92] Along with training 

the algorithm, it has also been demonstrated that we can yield high-resolution blood cell images 

with the e-LSCM and the R-MHD technique outlined in this paper (Figure 14).    

       

3.2.2. Different microfluidic patterns for sorting and filtering in biomedical applications 

The proposed R-MHD device has previously demonstrated the ability to drive fluid in an array of 

patterns, individually addressed electrodes to direct objects in opposite directions, a flat flow 
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profile which can aid many diagnostic tests, and recently, immobilized redox species patterned 

onto the electrodes which is attractive for biological cell analysis.[80, 82, 93-95] These 

microfluidic manipulations present an attractive platform for biomedical applications especially 

that of specialized tests at the point of care. By coupling these capabilities to the proposed optical 

methods, a procedural problem is being addressed by sorting and filtering clustered cell isolates. 

A consistently published area of recent is the issue of organoid growths in vitro for genomic 

testing, drug efficacy, and heterogeneous cell populations.[96-100] These organoids can be formed 

from whole tissue, malignant growths, treated tissues, biopsies, and myriad number of other 

forms.[97, 101-103] The successful growth of these three-dimensional in vitro growths typically 

depends on the efficiency of isolating pure populations containing clusters of cells which carry 

pluripotent stem cell able to self-replicate.[104] The microfluidic manipulation capabilities 

mentioned along with the above proposed  image cytometry approach could provide an attractive 

platform to sort and filter isolates of many cell populations derived from extracted tissues. This 

application has potential impact in a wide range of biomedical research by providing a practical 

solution to a procedural inefficiency.   

       

3.2.3. Utilizing the simplified mechanical components for potential dissemination at the 

point of care   

The coupling of these technologies presents novel mechanical findings, but it also allows for 

myriad diagnostic applications as the platform is not tailored to any one test. Altogether, this study 

proposes the combination of two technologies which complement well for a multi-faceted 

approach. This study combines epitaxial light sheet confocal microscopy and electro-chemical 

microfluidics as a robust approach to image cytometry all while simplifying the mechanics by 
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eliminating a slit, utilizing no moving parts and offering a continuous field of view. The 

simplification of these mechanical properties can yield an attractive point of care device for multi-

form diagnostic tests. The potential for compartmentalization toward mobile, remote diagnostic 

applications is in concurrence with recent research to take medical services to low resource 

areas.[86, 89, 105-107]    
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