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ABSTRACT 

Influenza is a common infectious disease resulting from a frequently mutated RNA virus. 

Vaccination is currently the most effective method to prevent people from seasonal or pandemic 

influenza. The production of traditional egg-based influenza vaccine is time-consuming and 

provides limited effect against new strains. Therefore, it is necessary to develop a rapid method 

to produce influenza vaccines. We proposed a novel influenza vaccine based on the E.coli 

expression system. Hemagglutinin (HA) is the major target surface protein of influenza virus for 

vaccine development. In this study, we sub-cloned the HAs encoding gene into an E. coli 

expression vector; the signal peptide sequence, the transmembrane and cytoplasmic domains of 

the whole HA of H5N1 (A/Vietnam/1203/2004) were removed. Expression of recombinant HAs 

fused with a C-terminal His-tag was investigated and confirmed through SDS-PAGE and 

Western blot assay. After being purified under denaturing conditions using NTA-Ni affinity 

chromatography, HAs were dialyzed for refolding. We obtained concentrated recombinant HAs 

from bacterial cultures at a yield of 250 µg/ 500 ml.  Finally, animal studies revealed the 

production of anti-HA antibodies in mice immunized with different doses of the recombinant 

HAs. We also compared the adjuvant effects of iron oxide nanoparticle (IONs) and selected 

commercial adjuvants. These results suggest that this system has the potential to be a new 

method for the mass production of influenza vaccines at low cost. More efforts are going to be 

focused on the adjuvant effect of IONs in future work. 
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I.  INTRODUCTION 

1.1 Influenza 

1.1.1 Influenza virus 

Influenza, usually known as ‘the flu’, is an infectious disease resulting from a RNA virus of the 

family of Orthomyxoviridae. The influenza viruses can cause influenza in many species of 

vertebrates including birds, humans and other mammals. In humans, it is typically transmitted 

through the air by coughs or sneezes, by direct contact with bird droppings or nasal secretions, or 

by contact with contaminated surfaces. The classic symptoms of influenza include fever, myalgia, 

sore throat, nonproductive coughing and headache. Additional symptoms may appear such as 

runny nose, eye pain and substernal chest burning (1). 

There are three immunologic types of the influenza virus: Type A, Type B and Type C. Although 

wild aquatic birds are the natural carriers of various Type A influenza viruses (2), this kind of 

influenza virus occasionally transmits to other species and causes pandemics. Both Type B and 

Type C viruses are less common then Type A influenza viruses. Type B only infects humans, 

seals and ferrets, while Type C only infects humans, dogs and pigs. Among these three genera of 

influenza viruses, Type A virus is considered as the most virulent human pathogens (3).   

Based on the antibody response to these viruses, the influenza viruses could be further 

subdivided into different serotypes. Influenza A viruses are classified by their two surface 

antigens: Hemagglutinin (HA) and Neuraminidase (NA) (4). Up to now, 16 HA subtypes (H1-

H16) and 9 NA subtypes (N1-N9) have been identified. The virion, the entire virus particle, is 

commonly roughly spherical and about 80-120nm in diameter. Their ultrastructural details can 

be depicted by the negative-stained transmission electron microscopy (TEM), as shown in Fig. 

1.1(A). The nomenclature of the influenza viruses is expressed in this order: 1) virus type, 2) the 
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first geographic site where it was isolated, 3) strain number, 4) year of isolation, and 5) subtype 

of virus (Fig. 1.1[B]). For example, the antigen produced in this study is from genomes of 

A/Vietnam/1203/2004(H5N1), and it is an H5N1 influenza A virus which was first isolated from 

Vietnam in 2004. 

The molecular structures of the three different types of influenza viruses are similar. As shown in 

Fig. 1.1(C), the Influenza A viral envelope is wrapped with spikes of two main glycoproteins: 

HA and NA. In the central core are the viral RNA genome and other viral proteins. The RNA 

genome consists of eight pieces of segmented negative-sense RNA, each containing one or two 

Fig. 1.1 A. Electron microscopy images of influenza viruses (67). B. 

Nomenclature of influenza viruses (1).  C. The molecular structure of influenza 

A virus. Figure is adapted by permission from Macmillan Publishers Ltd: [Nature 

Reviews Genetics] (65), copyright (2007).  

 

A.  C. 

B. 
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genes. These RNA segments encode eleven proteins: HA, NA, nucleoprotein (NP), matrix 

protein M1 and M2, nonstructural protein NS1 and NS2, and polymerase subunit PA, PB1 and 

PB2. Previous research revealed that four of these proteins: HA, NA, NP and M1 are the 

important targets of host immune response. Because NP and M1 proteins are located inside the 

virus, the humoral and cellular responses they elicit cannot neutralize the virus. Therefore, HA 

and NA are the prime candidate antigens for developing influenza vaccine (5).  

1.1.2 Characteristics of Hemagglutinin 

HA is a trimeric protein composed of three monomers; HA1, HA2, and HA3 domains. The 

trimeric protein is divided along the longitudinal axis of the protein to a globular domain and a 

stem domain. As shown in Fig. 1.2, the beta-sheets are primarily present in the globular domain 

where the binding region to sialic acid locates, while the stem region of the HA is made of the 

alpha helices. 

The full length HA gene sequence consists of signal peptide, two subunits: HA1 and HA2, 

transmembrane polypeptide and cytoplasmic domain. In this study, we removed the amino-

terminal 16 bp signal peptide, the transmembrane polypeptide and cytoplasmic domain at its C 

terminus to avoid targeting after protein translation. Thus, the calculated molecular weight of the 

truncated HAs monomer in influenza A virus A/Vietnam/1203/04 (H5N1) is 58.7 kDa with an 

isoelectric point of 6.59 based on the protein sequence using online calculator (6). 

As the most abundant surface glycoproteins of influenza virus, HA has been recognized as a key 

antigen in the host response to the influenza virus in both natural infection and vaccination. The 

main function of HA is to mediate the binding of virus to target cells and the entry of the viral 

genome into the target cells (2). Upon HA’s binding to the sialic acid sugars on the surfaces of 
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epithelial cells in the nose, throat, lungs of mammals and intestines of birds, the virus enters the 

target cell by endocytosis. HA is one of the main determinants of the host range of influenza A 

viruses due to its specificity for receptor recognition and binding. Moreover, conserved 

insertions of peptides adjacent to the cleavage site between HA1 and HA2 were found in several 

highly pathogenic avian A viruses H5N1. HA is also important to determine the virulence of 

avian influenza A viruses in poultry (7). Among different subtypes, H5 and H7 have a highly 

cleavable HA so that they may infect humans and result in pandemics (5). 

Fig. 1.2. The three-dimensional structure of the influenza HA monomer and 

trimer. Figure was made by André van Eerde (University of Groningen), using 

MOLSCRIPT, according to file from Protein Data Bank, code 3HMG (68).  
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1.1.3 Influenza pandemic 

In the 20th century, four influenza pandemics occurred and each resulted from new strain of the 

virus in humans. The 1918 ‘Spanish influenza’ H1N1 virus which originated from an avian virus 

adapted to transmit efficiently in humans. It resulted in such a severe pandemic that the total 

deaths were estimated at approximately 50 million in a worldwide range (8). Besides, all the 

other pandemics were related to this H1N1 virus. The mechanisms of the origination of the first 

three pandemics are presented in Fig. 1.3. The reassortment of 1918 H1N1 and other avian 

viruses led to the 1957 ‘Asian influenza’ H2N2 virus and 1958 ‘Hong Kong influenza’ H3N2 

virus, separately. The latest pandemic influenza happened in 2009 (subtype A/H1N1).  

In order to circumvent the immune responses of the host animals, the viral genomes mutate 

frequently. Usually, the sites on HA and NA proteins that are recognized by the host immune 

system are under constant selective pressure. The variation of influenza viruses, which are due to 

antigenic drift (mutations on HA and NA) and/or antigenic shift (re-assortment of the subtypes of 

viral gene segments), could cause an influenza epidemic or pandemic if the population has no 

inherent immunity against the new strain. New influenza strains appear 1) when existing viruses 

in other species adapt to human hosts; 2) existing human viruses genetically re-assort genes from 

viruses which usually infects birds or pigs. For example, the 2009 H1N1 is a novel influenza 

virus that combines genes from human, swine and bird flu viruses. A pandemic of influenza may 

begin with isolated cases, exploding when the virus evolves the ability to transmit efficiently in 

humans. 

H5N1, the focus of this study, is a highly pathogenic avian influenza virus which resulted in 

severe disease with high morbidity and mortality, devastating poultry industries worldwide. 

Generally, people are not susceptible to be infected by H5N1, but mutated viruses started to 
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infect humans and cause severe diseases and death. As early as 1997, an avian H5N1virus 

(A/Hong Kong/156/97) was isolated from a three-year-old boy with a fatal illness consistent with 

influenza in Hong Kong. Molecular analysis of the gene segments showed that the H5 in this 

strain was from a turkey influenza virus in 1991 (7). Six of eighteen individuals died since the 

first report of the human H5N1 infection. The virus temporarily disappeared in human 

population but remained in birds in South East Asia until it recurred in humans in 2003 and 2004. 

Cases that infect humans were thought to be brought from close contact with poultry, while the 

first account of probable human-to-human transmission was published Jan 2005 documenting a 

mother in Thailand who probably contracted virus from her daughter in Sep 2004 (9) . From 

2003 to the writing of this thesis (Oct 2013), H5N1 has resulted in 641 WHO-confirmed 

infections and 380 deaths with a mortality rate of 59.3% (10). 

Concerns were raised whether large amounts of funds should be provided to research developing 

vaccines against H5N1 since it has limited transmission among humans (11). For short-term 

interests, it is true that research funds need to be invested on researches on other more 

devastating diseases. However, in a long-term view, this highly pathogenic virus is one of the 

candidate viruses for pandemic preparedness (12). WHO data mentioned above already showed 

the high morbidity and mortality rates brought from the H5N1 infection in humans. Though most 

of them bring seasonal infections with light symptoms in humans, it is never wise to 

underestimate the potential impact of new strains. During its geographic spread, the H5N1 virus 

underwent antigenic drift and/or shift as all other influenza viruses (13). Since the H5N1, H1N1 

and other subtype of influenza virus coexist in the same environment, we must give more 

attention to the risk of potential pandemic spread. Considering that the viruses mutate rapidly, 

researchers should maintain their interest in improving pandemic influenza vaccines despite the 
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fact that public concern has subsided. We have reason to believe that if the H5N1 virus picks up 

the capability to transmit among humans, it may cause a worse pandemic than 1918 Spanish flu.  

1.2 Development of Influenza vaccination  

1.2.1 Traditional egg-based vaccines 

Vaccine, antiviral drugs and personal preventive care are the common methods for influenza 

prevention. Among them, vaccination of public is the most effective way to combat influenza. 

Embryonated eggs have been employed in the production of influenza virus since 1937, because 

they can produce large amounts of virus to be processed to inactivated vaccines in a safe and 

relatively low cost method (14). The inactivated vaccines consist of whole inactivated virus, 

detergent-split virus or purified HA and NA subunits. Currently, the most common vaccine used 

against the seasonal influenza is the trivalent influenza vaccine (TIV) that contains inactivated 

antigens from two influenza A virus strains and one influenza B virus strain. The three influenza 

strains selected by WHO are propagated in chicken eggs, chemically inactivated and semi-

purified (15). An alternative approach is the live-attenuated influenza vaccines (LAIV) based on 

a cold-adapted and temperature sensitive virus (16). They are also cultured in eggs but 

administrated by nasal spray. 

The major limitations of these egg-based vaccines are the long production time and requirements 

for large amounts of eggs (Table 1.1). Because natural viruses are usually not able to grow well 

in eggs, re-assortment of genes between the new virus strain and an egg-adapted strain such as 

A/Puerto Rico/8/34(PR8) (H1N1) is required through traditional or reverse genetics technology. 

It may take up to ten months to screen a suitable candidate virus for vaccine due to the variety of 

production yield of different strains. Even though these egg-based vaccines are effective to the 

annual seasonal influenza with the predicted strain, the speed to produce them is far from rapid 
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enough to fight any sudden breakout of pandemic strain. On the other hand, this method does not 

work for viruses that are lethal to chicken embryos such as H5N1 strain (17). Also, individuals 

who are allergic to egg cannot accept vaccine produced by this method.  

The incapability of worldwide-scale production is another challenge for influenza vaccine 

development. The gap between the expected demands for future pandemic influenza vaccines 

and global production capacity need to be bridged (14). Obstacles such as high cost, troublesome 

distribution and administration logistics of current flu vaccines are the main reasons that prevent 

people in developing countries from receiving vaccination. Thus, it is essential to develop new 

technologies to realize rapid, massive and low cost production of influenza vaccines. 

1.2.2 Development of novel vaccines using new technologies  

Due to the limitations of egg-based vaccines, other approaches have been studied to replace them. 

One approach is to develop culture-based vaccines. The influenza viruses are cultured in cell-

filled bioreactors that do not rely on the maintenance of huge flocks of chickens; this may result 

in a shortened production period. Up to now, efforts have been made to produce influenza 

vaccine using Vero, Madin-Darby canine kidney (MDCK) or PERC.6 cell-cultures (14). Among 

them, MDCK cells are most suitable for production of influenza viruses in serum-free media. 

Drug safety studies showed that the MDCK cell line is safe for biological production (18) and 

Phase I clinical trials showed that split vaccines derived from cell culture is highly immunogenic 

in adults (19). Another group compared formalin-inactivated influenza B virus vaccines 

propagated in different host system and showed that the cell-culture based vaccines were as 

effective as egg-based vaccines (20). Currently, Sanofi Pasteur, Novartis and Solvay produce 

mammalian cell culture influenza vaccines licensed in Europe or in the US (16). However, cell 

culture systems have drawbacks such as the difficulty in scale-up production and occasional 
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contamination. Also, the application of mammalian cell lines may introduce specific mutations 

which result in structural changes of the antigen, which in turn diminishes the efficacy of the 

vaccines (21; 22).  

DNA vaccination is a promising vaccine technology. It is easy to manipulate: simply inject small 

genetically engineered DNA encoding the antigen instead of using the antigen itself. One of its 

advantages is the fast production and ease of storage. DNA vaccines against new influenza 

strains can be produced in weeks, rather than months, and the vaccine stock can last years 

without refrigeration. In addition, studies showed that DNA vaccines induce both major 

histocompatibility complex (MHC) class I and II responses (23) and long- term humoral and 

cellular immune responses (24). As for DNA influenza vaccines, one encoding HA protein was 

exhibited to be safe and immunogenic by intramuscular and intradermal routes in humans in 

phase I clinical studies (25). The possibility of foreign gene integration to the host genome is a 

major concern about this type of vaccine. Also more clinical studies are needed to investigate the 

efficacy of DNA vaccines in humans. 

Another approach of egg-free influenza vaccine production is the development of recombinant 

protein (antigen)-based vaccines. The development of recombinant DNA technology realized the 

expression of viral proteins as antigens in the vaccine formulations, which are safer than the 

vaccines that use live, attenuated or killed pathogens. Moreover, it is easy to achieve rapid and 

massive production of proteins followed by purification and distribution. Several kinds of 

expression systems have been applied to express HA molecule from the influenza virus such as 

adenoviral virus (26) and baculovirus system (15). A recombinant multimeric H5 hemagglutinin 

protein (rH5) was successfully produced using a baculovirus expression vector system in SF+ 
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Table 1.1. Comparation of different methods to produce influenza vaccine 

insect cells (27). A virus-like particle (VLP) vaccine manufactured in Sf9 insect cells was 

evaluated by their humoral immune response in humans in an FDA-approved phase I/II clinical 

study (28). E.coli expression system is a mature system applied in the production of recombinant 

proteins. This is also an attractive system in influenza vaccine production because it provides fast, 

low cost and massive production of antigens. The doubling time of E.coli cells is as short as 20 

min, and up to 50% of the recombinant proteins locate in inclusion bodies which are easy to 

collect for purification. For decades, the correct folding, glycosylation and secretion of HA has 

Egg-based  vaccine 

Advantages • Safe, effective and relatively low cost 

Limitations • Screening of desirable virus strains is needed in advance 

• Lengthy manufacturing process: up to ten months 

• Rely on the maintenance of huge flocks of chickens 

• Not available for viruses which are lethal to chicken embryo 

• Not available for individuals with egg allergy 

Cell culture-based vaccine 

Advantages • Cultured in bioreactor , easier to handle 

• safe and as effective as egg-based vaccines 

Limitations • High-yielding re-assorted virus is needed 

• Difficulty in scale-up production 

• Cell line specific mutations which results in antigenic and structural 

changes of the HA protein may be introduced  

• Cross-contamination may occur during manufacturing process 

Recombinant protein (antigen)-based vaccine 

Advantages • Recombinant DNA technology is applied to produce the viral proteins 

• The antigens are purified and utilized as the active ingredients in vaccine 

Limitations • Weak immunogenicity 
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always been considered necessary for HA production in vaccine development. However, studies 

showed that the bacteria system without posttranslational modification could be used to produce 

effective influenza vaccines. Hana Golding and her team developed a bacterial system to express 

and purify properly folded globular domain HA1 of H5N1 which is immunogenic in mice and 

ferrets. Moreover, they first identified a functional N-terminal oligomerization sequence in HA1 

(29). The important obstacle to the development of antigen-based vaccine is the weak 

immunogenicity of the recombinant antigen protein. Although recombinant DNA technology 

allows fast and massive production of a single antigen, the immunogenicity of the antigen is 

usually limited. Accordingly, large antigen doses or repeat administration are required to produce 

an adequate immune response. To solve this problem, some vaccine additives have been 

investigated to combine with these antigens to maximize immunogenicity and manufacturing 

capacity.  

Considering that the current influenza vaccine needs to be updated every year to adapt to the 

antigenicity of the virus strains that are predicted to circulate in the next flu season, they will not 

be able to provide effective protection during the emergence of a novel strain of pandemic 

influenza virus. Therefore, efforts have been focused to develop a broadly cross-protective 

vaccine, known as ‘universal’ vaccines. Approaches are targeted at the conserved proteins such 

as the external domain of the influenza M2 ion channel protein and HA fusion peptides and stalk 

domains, but most studies are at the level of animal models (30). 

1.2.3 Adjuvants in influenza vaccines 

During the development of an influenza vaccine, it is essential to evaluate its safety and 

immunogenicity in special groups such as infants, pregnant women, immuno-compromised 

individuals or people over 65 years old. For example, the standard TIV offers relatively poor 
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efficacy for people over 65, the fastest-growing group in our population who suffer greater 

morbidity and mortality than the young when infected by influenza. Aging is related to decline in 

immune system functions, which results in less robust innate and adaptive immunity. Instead of 

increasing the dosage or number of immunizations, the addition of other components might 

induce a protective and long-lasting immune response.  

Adjuvants are such vaccine additives that act to accelerate, prolong or enhance antigen-specific 

immune responses when combined with the antigens (31). Products with effective adjuvant may 

benefit newborns, the elderly or immuno-compromised people (32). The word “adjuvant” comes 

from the Latin word“Adjuvare”which means “to help” (33). The adjuvant itself should cause 

no or minimal toxicity or immune effects. There are two classes of adjuvants applied in modern 

vaccine development (Table 1.2.). Immunostimulants mimick structures of evolutionarily 

conserved molecules, such as components of bacterial cell walls, endocytosed nucleic acids such 

as dsRNA, ssDNA, and unmethylated CpG DNA etc (34). These substances are also named 

pathogen-associated molecular patterns (PAMPs). Once antigens are combined with these 

adjuvants, cells in innate immune response systems, including dendritic cells (DCs), 

lymphocytes and macrophages will be activated as if attacked by a natural infection. Another 

type of adjuvant is a vehicle that presents the antigens to the immune system via controlled 

antigen release and depot delivery systems. 

Alum, referred to as aluminum salt based adjuvants, is one of the adjuvants in approved human 

vaccines. The antigens are adsorbed onto highly charged aluminum particles to formulate the 

vaccines. Alum adjuvants have been developed to elicit protective antibody responses. Their 

advantages include safety, simple formulation for large production, together with their capacity 

to augment the humoral responses by providing Th2 cells help to follicular B cells (35). 
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Meanwhile, alum adjuvants are limited in that they are not able to elicit cell-mediated Th1 or 

CTL responses against intracellular pathogens (36). Its inability to be frozen is another 

disadvantage.  

Oil-in-water (o/w) emulsions are other adjuvants applied in human vaccines. They are advanced 

to increase the breadth of cross-reactive antibodies and possess significant dose-sparing activity. 

Addition of oil-water based emulsion adjuvants offer a 4-fold dose sparing effect on standard 

egg-based vaccine (16). MF59TM, consisting of an o/w emulsion is used in Europe as an adjuvant 

in influenza vaccines. It improves the immune response to a H5N1 vaccine by inducing 

qualitative and quantitative expansion of the antibody repertoires with protective potential (37). 

Although it does not induce increased CD4+ Th1 immune responses like alum, it has the 

potential to be applied in influenza vaccines due to its capacity to increase the hemagglutination 

inhibiting antibodies and CD8+T-cell responses (38). Novartis developed Aflunov, an egg-

derived, subunit vaccine which received the approval from the Committee for Medicinal 

Products for Human use (CHMP) in adults aged above 18 years in September 2010. This pre-

pandemic vaccine consists of 7.5 µg HA from the avian A/H5N1 virus and adjuvant MF59. 

Studies have revealed that it meets the requirements for pre-pandemic vaccine: safety, ability to 

induce broad cross-neutralizing antibody response and ability to induce strong and long-lasting 

immunological memory (13).  

It is paramount to the effectiveness of adjuvants to activate DCs which results in enhanced 

presentation of the antigenic peptides on MHC class I and II to the TCR. A leading adjuvant 

targeting DC is the family of innate Toll-like receptors, particularly the LPS receptor, Toll-like 

receptor 4 (TLR4). TRIA Bioscience Corp. and protein Sciences Corp. are working on GLA-SE, 

a two-part adjuvant system comprised of glucopyranosyl lipid adjuvant (GLA), a formulated 
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synthetic TLR4 agonist, and a stable emulsion (SE) of o/w. This adjuvant together with 

recombinant HA was demonstrated to protect mice and ferrets against a high titer challenge with 

H5N1 virus. They successfully augment neutralizing antibody titers via Th1-mediated antibody 

responses (39).  

Current researchers usually focus on studies of antigens at the same time testing the antigens 

Table 1.2. Immune responses triggered by immunostimulants and vehicles or delivery 

systems. Adapted from (36). 
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with several adjuvants. It seems that no single adjuvant can produce broad and long-lasting 

immune responses that are required for all new vaccines. Challenges remain regarding how to 

develop novel adjuvants as well as how to standardize the adjuvants formulated in different 

laboratories or companies. 

1.3 Nanoparticles and their application in biomedical engineering 

1.3.1 Nanoparticles  

Without an international definition, nano-particles (NPs) usually refer to the particles with size 

smaller than 100 nm. Engineered NPs have been used to provide diagnostic, therapeutic and 

prognostic information about the status of disease. They are ideal for antigen delivery for several 

reasons. 1) Based on their high surface ratio, function groups can be added on their surface to 

attach target reagents. 2) Their hydrodynamic size from 10-100nm could prevent their 

elimination from blood by kidney or liver. 3) Their near-neutral zeta-potential could minimize 

the nonspecific interaction with blood components. 4) They are highly stable in physiologically 

relevant media (40). Therefore, NPs are potential vaccine delivery platforms or adjuvants for 

vaccine development.  

Because their size is comparable to pathogens, NPs can be efficiently recognized by immune 

cells and facilitate the delivery of antigens to antigen presenting cells (APCs). Different 

strategies to design NPs targeting DCs are described in Fig. 1.4, as DCs, the major APCs, play 

important role in both innate and adaptive immune responses. The antigen can be attached to the 

surface of NPs via chemical or physical interaction; the antigen can also be encapsulated inside 

the nanoparticles so that it is protected from degradation. Additionally, NPs can combine with 

biological molecules as address labels to guide vaccines to specific sites in vivo (41; 42; 43). 
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1.3.2 Current application of NPs in vaccination 

NPs have been widely applied in vaccine development due to the advantage of their small size, 

high drug-loading capacity, controllable drug release, etc (44). NPs can be broadly classified into 

three categories: liposomes, polymers, and inorganic nanomaterials (45). Those applied in 

vaccine approaches include liposomes, nano-emulsions, polymeric NPs, dendrimers and 

immunostimulatory complexes (ISCOM) (46). Lipid polymers PLGA have been applied to 

delivery Hepatitis B virus (HBV) surface antigen (47) and fusion peptide and GM-CSF DNA 

(48). Self-assembling protein nanoparticle (SPAN) was used for peptide sporozoite malaria 

vaccine (49).  

Approaches to the application of NPs as biomedical vehicles face many challenges. NPs can be 

removed by phagocyte cells. The NPs carrying antigens can be degraded if they cannot move out 

of endosome. For those antigens which are encapsulated inside NPs, their antigenicity might be 

destroyed during the encapsulation process. To delay the macrophage-mediated clearance of NPs, 

a group of researchers fused ‘self-peptides’ CD47 to the NPs to pretend that these NPs are self-

molecules. Thus, persistent circulation of these NPs can be promoted (50).   

Up to now, few attempts have been made to apply solid inorganic nanoparticles as a vaccine 

delivery platform. Iron oxide nanoparticles (IONs) are one kind of solid inorganic nanoparticles. 

They are suitable for many biomedical applications due to their good biocompatibility, magnetic 

characteristics, the availability for multiple surface functionalization, and low cost (51; 52). They 

have been applied in optical imaging and magnetic targeting in tumors (53), targeting primary 

breast cancers and metastases (54), and delivery of antibodies against breast cancer (55).  

IONs have safety profiles, prior uses in drug delivery, and low cost of production. Surface 

modification makes it available to conjugate with proteins, peptides and DNA (56). Therefore, it 
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is a potential delivery platform for vaccines. Considering peptides are generally not very 

immunogenic on their own and require additional components to stimulate an adequate response 

(57), IONs may function as adjuvants to stabilize antigens and increase cellular uptake, 

trafficking and presentation of the antigens. George Hui, et.al first demonstrated that iron oxide 

nanoparticles could be applied as a clinically acceptable vaccine delivery platform without 

additional adjuvants (58).  

Fig. 1.4. Different strategies of nanoparticle (NPs) targeting. Figure is 

adapted from (41). 
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1.3.3 ION as delivery platform of influenza vaccine 

We hypothesized that the ION could display as a delivery platform for influenza vaccine and 

present the peptides to DCs and elicit subsequent adaptive immune response without additional 

adjuvants. In order to testify this hypothesis, we developed a HA subunit influenza vaccine 

delivered by ION in this study. The recombinant HAs (HA without the transmembrane 

polypeptide and cytoplasmic domain) from influenza A virus A/Vietnam/1203/04 (H5N1) was 

sub-cloned into an E.coli expression system. After confirming the correct expression of HAs in 

bacterial cultures, we purified and refolded the recombinant HA proteins. Furthermore, the 

immunogenicity of the noval nano-vaccine was characterized in Balb/c mice. The mice were 

immunized with different doses of HAs with the addition of IONs or commercial adjuvants to 

investigate the anti-HA antibody responses elicited in the immunized mice. Therefore, we 

explored the immunogenicity of the recombinant HAs and compared the adjuvant effects of 

IONs and the commercial adjuvants. 
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II. MATERIALS AND METHODS 

2.1. Plasmid constructs 

2.1.1. Expression system 

 

Fig. 2.1. A plasmid map of the pTAGBP vector. 

pTAGBP, an established expression vector from Dr.Ye’s lab (shown in Fig. 2.1.), was 

constructed from pTrcHis2-TOPO (Invitrogen Corporation,Carlsbad, CA). The DNA sequence 

of HA protein was amplified from pCDNA3.01/HA/optimized provided by Dr.Gao (26).  

The pTAGBP vector has important elements as listed below:  

 The trc promoter is a hybrid promoter containing the –35 region from the trpB 

promoter and the –10 region from the lacUV5 promoter. This hybrid promoter works 

sucessfully for high-level expression in E. coli. 
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 The lacO sequence is an important operator in this expression system. It is the 

binding site of the Lac repressor encoded by lacIq gene. In the absence of IPTG, Lac 

repressor binds to the lacO sequence and represses transcription. The binding between 

IPTG and Lac repressor results in the deattachment of Lac repressor from the LacO 

sequence so that the expression is induced. 

 rrnB antitermination sequence functions to reduce premature transcription termination. 

 T7 gene 10 translational enhancer sequence strenghtens the translational initiation.  

 The minicistron containing nucleotides that are efficiently translated in prokaryotic 

cells is included in this vector to enhance translational efficiency. 

 The C-terminal 6xHis tag serves for purification of the recombinant proteins. 

2.1.2. Plasmid extraction 

E.coli was grown in Luria-Bertani media (LB broth, 1.0% Tryptone, 0.5% yeast extract, 1.0% 

NaCl, pH 7.0, Thermo Fisher Scientific Inc., Rockford, IL) supplemented with 0.4% Glucose 

and 100 μg/ml Ampicillin when necessary. To extract the plasmids, a portion of 10 µl E.coli 

glycerol stock (kept at -80ºC) of pCDNA3.01/HA/optimized was added into 5 ml LB media and 

incubated at 37 ºC with a speed of 250 rpm overnight. The plamids were extracted using 

PureYield™ plasmid miniprep kit (Promega Corporation, Madison, WI): a portion of 3 ml 

overnight bacteria culture was collected by centrifuging in a microcentrifuge for 30 s at 13,000 

rpm, and the supernatant was discarded. The pellets were resuspended in 600 µl deionized water 

(dH2O). To prepare the lysate, 100 µl of Cell Lysis Buffer (Blue) was added into the mixture and 

the tubes were inverted 6 times. After that, 350 µl of cold (4–8°C) Neutralization Solution was 

added into the mixture and mixed thoroughly by gently inverting. The debris after lysis was 

removed by centrifuging at 13,000 rpm in a microcentrifuge for 3 min. Without disturbing the 
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cell debris pellet, the supernatant containing the DNA (~900 µl) was transferred to a 

PureYield™ Minicolumn and centrifuged at 13,000 rpm for 15 s. The flowthrough was removed, 

and the minicolumn, with the DNA bound to its matrix, was put back into the same collection 

tube. To wash the minicolumn, 200 µl of Endotoxin Removal Wash (ERB) was added to the 

minicolumn and centrifuged at 13,000 rpm for 15 s. A volume of 400 µl Column Wash Solution 

(CWC) was added to the minicolumn followed by centrifuging at 13,000 rpm for 30 s. Before 

eluting the plasmid DNA, the minicolumn was transferred to a clean 1.5 ml microcentrifuge tube, 

then 30 µl of nuclease-free water was added directly to the minicolumn matrix. After standing 

for 1 minute at room temperature (RT), the plasmid DNA was eluted by centrifuging for 15 s. A 

volume of 2 µl eluted plasmid DNA was dropped onto Take3 plate to measure its concentration. 

The rest was stored at –20°C for further use.  

2.1.3. Polymerase Chain Reaction (PCR)  

The cytoplasmic and transmembrane domain sequences of the HA were removed from the HA 

gene during PCR amplification and the truncated HA gene was referred as HAs. The 

pCDNA3.01/HA/optimized plasmid extracted from E.coli was used as a template for PCR. The 

Spe I and Sal I restricted sites in the pTAGBP vector were selected for subcloning of HAs. For 

construction of the HA expression vector, the following set of PCR primers was used: HAs 

(forward) (5’-ATAGACTAGTGATCAGATCTGCATCGGT-3’) and HAs (reverse) (5’- 

ACGCGTCGACATAGATGCCGATACTC-3’). The truncated HA gene was amplified by PCR 

with PhusionTM polymerase (New England Biolabs Inc., Ipswich, MA) in the presence of 

PhusionTM HF buffer (1.5 mM MgCl2). The reaction system (50 µl) comprised of the following 

components: 5×PhusionTM HF buffer (10 µl), 10 mM dNTPs (1 µl), forward primer (1 µl), 

reverse primer (1 µl), template plasmid (1 µl, ~6ng), PhusionTM DNA polymerase (0.5 µl) and 
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deionized H2O (dH2O, 35.5 µl). Applied Biosystem 2720 Thermal Cycler was used to run the 

reaction. The PCR was carried out under the following conditions: initial denaturation at 98C 

for 30 s, denaturation at 98C for 10 s, annealing at 51C for 30 s and extension at 72 C for 48 s, 

repeated for 25 cycles and final extension of 72C for 10 min.  

After the PCR finished, a portion of 5 μl PCR product was mixed thoroughly with 1μl 6×DNA 

loading buffer (2.5% Ficolli-400, 11 mM EDTA, 3.3 mM Tris-HCl [pH 8.0], 0.017% SDS and 

0.015% bromophenol blue, New England Biolabs Inc.) and analyzed by DNA electrophoresis in 

0.8% agarose gel which contains 0.5 μg/ml ethidium bromide (EB). Quick-Load 1kb DNA 

ladder (New England Biolabs Inc.) was used as the marker. The gel was running in TAE (Tris-

acetate-EDTA) buffer at 100 V for 40 min. The size of the PCR product was checked by a 

ultraviolet transilluminator. The positive products were purified using MinElute PCR 

Purification Kit (Qiagen Inc., Valencia, CA) by following a protocol provided by manufacturer. 

2.1.4. Enzyme digestion 

A portion of 1 µg of the HAs amplified sequence and the pTAGBP vector was double-digested 

in separate reactions using SalI-HF and SpeI (New England BioLabs Inc.). The other 

components of the digestion system include 10×buffer 4 (2 µl), SalI-HF (20,000U, 0.5 µl), SpeI 

(10,000U, 0.5 µl), 100× bovine serum albumin (BSA, 0.2 µl) and dH2O to make the total volume 

of the reaction system 20 µl. The mixture was incubated at 37℃ for 1 h. 

To check whether the HAs sequence and vector were correctly digested by the restriction 

enzymes, the products were mixed thoroughly with 4 μl 6×DNA Loading buffer and loaded onto 

0.8% agarose gel which contains EB. The gel was running in TAE buffer at 100V for 40 min. 

After checking their sizes, the DNA bands were excised from the agarose gel and then purified 
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using gel extraction kit (Qiagen Inc.): three columes of Buffer QG was added to 1 volume of gel 

(100 mg~100 ul). The gel was dissolved by incubating at 50℃ for 10 min. Then one gel volume 

of isopropanol was added to the sample to increases the yield of DNA fragments <500 bp and >4 

kb. To load DNA, the sample was applied to the QIAquick colume and centrifuged for 1 min at 

13,000 rpm. The flowthrough was discarded and 0.75 ml of Buffer PE was added to wash the 

column and centrifuged for 1 min. After centruging for an additional 1 min, the QIAquick 

column was put into a clean 1.5 ml microcentrifuge tube. A volume of 50 ul dH2O was added to 

the center of the QIAquick membrane to elute the DNA. After standing for 1 min, the column 

was centrifuged for 1 min. The purified DNA was stored at -20 ℃. 

2.1.5. Ligation 

T4 DNA Ligase Kit (Thermo Fisher Scientific Inc.) was applied to join the restriction enzyme 

generated DNA fragments. This enzyme catalyzes the formation of a phosphodiester bond 

between juxtaposed 5’-phosphate and 3’-hydroxyl termini in duplex DNA. The insert DNA was 

5:1 molar ratio over vector. The components of the reaction included 10×T4 DNA Ligase Buffer 

(2 µl), vector (2 µl), HAs insertion (1.5 µl) and dH2O (13.5 µl). The reaction occurred by 

incubating at 22℃ for 10 min. Thus, the HAs inserts were sub-cloned into pTA vector and the 

resultant expression plasmids were referred to as pTAHAs, as shown in Fig.2.2.  

2.2. E.coli Transformation  

2.2.1. E.coli strain 

After the recombinant E.coli strain pTAHAs was completed, the vector was transferred into NEB 

5- α competent E. coli [fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 

relA1 endA1 thi-1 hsdR17 ] (New England Biolabs Inc.). This DH5αTM have several features to 

make it suitable for recombinant DNA sub-cloning:  
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 Δ(lacZ)M15 allows for blue/white screening for recombinant cells through α-

complementation of the β-galactosidase gene. 

 The recA1 mutation reduces homologous recombination and prevents the cloned 

plasmids from being alternated. 

 The endA1 mutation incapacitates the activity of nonspecific endonuclease I to enhance 

the high quality plamid preparations. 

 The hsdR17 mutation deactivates the restriction endonulease of EcoKI enzyme complex 

so that the unmethylated DNA from foreign plasmid can be efficiently transformed. 

 

 

 

Fig. 2.2. Plasmid maps of pTAHAs expression vector. 
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2.2.2. Heat shock method 

The competent cells are bacteria which can accept extra-chromosomal DNA or plasmid. The 

commercial competent cells can uptake the ligated recombinant plasmids by heat shock method. 

The competent cells were thawed on ice for 10 min in advance. When the ligation finished, 7 μl 

ligation product was added into 25 μl DH5α competent cells and the mixture were put on ice for 

30 min, followed by heating at 42 C for 30 s. After incubating for another 5 min on ice, the 

mixture was added into 475 μl SOC media (0.5% Yeast extract, 2% Tryptone , 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 10 mM MgSO4 , 4% glucose) provided along with the competent cells 

by New England Biolabs Inc. and shaked at 37C for 1 h with a vigorous shaking at 150 rpm in 

an incubator shaker. A volume of  50 μl or 100 μl of cells were spread onto LB selection plates 

(1.0% Tryptone, 0.5% yeast extract, 1.0% NaCl, 1.5 % agar) containing 100 μg/ml Ampicillin 

and incubated overnight at 37℃. 

2.2.3. Verification of transformed plasmids 

To confirm the correct insertion,  five colonies were picked up from each plate and inoculated in 

5 ml LB media containing 100 μg/ml Ampicillin overnight at 37C with shaking at 250 rpm 

overnight. The plasmids of the recombinant E.coli were extracted using the same methods 

described in 2.1.3. After that, the plasmid were digested by the same restriction enzymes as 

described in 2.1.5. The size of the digested fragments were checked by DNA electrophesis (0.8 % 

agarose gel containing EB). 

Because mutations might happen during the cloning process, we need to further confirm the 

correction of the insertion via DNA sequencing. Samples which included 3.4 pmol primers, 300-

500 ng plasmid and dH2O with the total volume of 13 μl, were submitted to the UA DNA 

Resource Center for capillary sequencing. After confirming that the sequence of the colonies 
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were correct, 400 μl culure of each confirmed E.coli strains were mixed thoroughly with 100 μl 

100% glycerol and stored at -80℃. 

2.3. Expression of HAs proteins in E.coli 

2.3.1. Induction of the recombinant proteins 

To induce the expression of recombinant proteins in E.coli, a volume of 10 μl cell culture from 

storage tube was inoculated in 5 ml LB media (supplemented with 0.4% glucose and 100 μg/ml 

Ampicillin) and grown overnight at 37°C with shaking at 250 rpm overnight. The next day, a 

portion of 0.5 ml overnight culture was inoculated in 50 ml LB media with vigorous shaking. A 

volume of 1 ml sample was taken 16 h post cultivation to determine the cell density by 

measuring OD600 using a spectrophotometer. When the OD600 reached 0.6 which indicated that 

the cells were in mid-log phase, volume of cells equivalent to 1 OD600 was removed and 

centrifuged at 5,000 rpm for 10 min. The supernatant was aspirated and the cell pellet was frozen 

at -20°C as sample of 0 h. 

The inducer IPTG was added to the culture to a final concentration of 1mM. The culture was 

kept incubation at 37°C with shaking at 250 rpm. To determine the optimal induction time point, 

volume of cells equivalent to 1 OD600 was removed every hour for 8 h and treated as described 

above.  

2.3.2. Separation of soluble and insoluble expressed proteins 

The recombinant proteins expressed in bacteria usually form inclusion bodies when they are 

expressed at high levels. These inclusion bodies can be separated from bacterial cytoplasmic 

proteins easily by centrifugation. B-PER II bacterial protein extraction reagent (Pierce 

Biotechnology, Rockford, IL) was applied to effectively extract soluble proteins.  
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Frozen pellet bacterial cells were washed once with 1× PBS buffer (137 mM NaCl, 2.7 mM KCl, 

10 mM Na2HPO4, and 1.8 mM KH2PO4, pH 7.4) by centrifugation at 13,000 rpm for 5 min at 

4ºC. For Mini-Scale Bacterial Protein Extraction (1.5 ml bacterial culture, OD600 = 1.5-3.0), 

washed cells were re-suspended in 150 μl B-PER II reagent by vigorously vortexing until the 

cell suspension was homogeneous. After vortexing for additional 1 min, soluble proteins were 

separated from insoluble proteins by centrifugation at 13,000 rpm for 5 min at 4ºC. For Midi-

Scale Bacterial Protein Extraction (40 ml bacterial culture, OD600 = 1.5-3.0), washed cells were 

re-suspended in 2.5 ml B-PER II reagent by vigorously vortexing until the cell suspension was 

homogeneous. After the mixture was shaken gently at RT for 30 min, soluble proteins were 

separated from the insoluble proteins by centrifugation at 13,000 rpm for 15 min at 4ºC. 

The supernatant (soluble fraction) was collected and the pellet (insoluble fraction) was re-

suspended in same volume of B-PER II that used to extract the proteins. A volume of 20 μl 

fraction was mixed with 4 μl 6×loading buffer (375 mM Tris-HCl pH 6.8, 12% SDS, 30% 

glycerol, 600 mM DTT, and 0.12% bromophenol blue) for SDS-PAGE (Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) or Western blotting assay to determine the solubility of the 

recombinant protein. 

2.3.3. SDS-PAGE and western blotting 

The soluble and insoluble fractions from samples equivalent to 1 OD600, which were collected at 

different time points, were heated at 95 C for 5 min. The sample was mixed before and after 

the heating step by vortexing. After the samples cooled to RT, debris were removed by 

centrifuging at 15,000 rpm for 10 min. Polyacrylamide Tris-glycine gels (10%) were prepared 

using the components in Table 2.1. A portion of 15 μl supernatant was loaded per well onto the 
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gel with special gel loading tips, and 7 μl of Precision Plus Protein WesternC Standards (Bio-

Rad Laboratories, Inc., Hercules, CA) was loaded in separated well alongside the samples.  

10% Separating Gel  1 gel 2 gel 5% Stacking Gel  1 gel 2 gel 

dH2O 1.9 ml 4.0 ml dH2O 1.4 ml 2.7 ml 

1.5 M Tris (pH 8.8) 1.3 ml 2.5 ml 1.0 M Tris (pH 6.8) 250 μl 500 μl 

30% Acrylamide 1.7 ml 3.3 ml 30% Acrylamide 330 μl 670 μl 

10% SDS 50 μl 100 μl 10% SDS 20 μl 40 μl 

10% APS 50 μl 100 μl 10% APS 20 μl 40 μl 

TEMED 2 μl 4 μl TEMED 2 μl 4 μl 

Table 2.1.Components of SDS-PAGE gel (0.75 mm) 

Electrophoresis was performed in the TGS running buffer (25 mM Tris, 192 mM glycine, 0.1% 

SDS, pH 8.3) at 100 V for 30 min (stacking gel) and then at 200 V for 1 h (separation gel). 

After electrophoresis, the gel was carefully removed from the cassette.  

For protein staining, the gel was immerged into staining buffer (0.25% Coomassie Brilliant 

Blue R-250 Staining solutions (Bio-Rad), 40% methanol, 10% acetic acid) for 1 h at RT with 

gentle mixing on a rotary shaker. To visualize the protein, the gel was then destained by 

destaining buffer (30% methanol, 10% acetic acid) at RT until the gel became transparent.  

For Western blotting, the proteins on the gel were transferred to nitrocellulose membrane. 

Fresh transfer buffer (25 mM Tris, 192 mM Glycine, 0.1% SDS, 20% methanol, pH 8.3) was 

prepared and cooled at -20°C. A sheet of nitrocellulose membrane with the pore size of 0.45 µm 

(Bio-Rad Laboratories, Inc.) was cut to appropriate size. The membrane, the gel, filter papers 

(Bio-Rad Laboratories, Inc.) and sponges were pre-wet in transfer buffer and kept in 4°C for 10 

min. A “sandwich” blot assembly was packed as: sponge-filter paper-gel-nitrocellulose 
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membrane-filter paper-sponge. All the bubbles in between were carefully removed by pipette 

during packing. The “sandwich” assembly was located in an ice tray which was placed in a box 

filled with cooled transfer buffer. Thus, the proteins on SDS-PAGE gel were transferred to 0.45 

µm nitrocellulose membrane in a constant voltage of 150 V for 50 min. After transferring, the 

membrane was carefully removed from the cassette using tweezers and incubated in a blocking 

buffer (1×PBS, 0.05% Tween-20, 5% non-fat dry milk) for 2 h with shaking at RT. After 

blocking, the membrane was incubated in mouse anti-HA antibody (BEI resource, Manassas, 

VA) diluted in non-fat dry milk/PBST (1×PBS, 0.05% Tween-20, 1% non-fat dry milk) at a 

ratio of 1: 500 (v/v) at 4ºC with shaking overnight. The membrane was then washed with PBST 

(1×PBS, 0.05% Tween-20) three times, 5 min each time, and incubated with anti-mouse IgG 

horse peroxidase (HRP) conjugated antibody (Sigma-Aldrich, St. Louis, MO) diluted at a ratio 

of 1: 2,000 (v/v) in non-fat dry milk/PBST. After shaking at RT for 1 h, the membrane was 

washed three times with PBST, 5 min each, followed by PBS, one time. Subsequently, the 

enhancer and stable peroxidase solutions (Thermo Fisher Scientific Inc.) were 1:1 (v/v) mixed 

and carefully loaded onto the membrane and incubated in dark for 5 min. The membrane was 

imaged using Molecular Imager ChemiDoc XRS System (Bio-Rad Laboratories, Inc.) and 

analyzed using PDQuest Analysis software (Bio-Rad Laboratories, Inc.).   

2.4. Purification of HAs proteins  

2.4.1. Solubilization of the denatured proteins 

A large volume of 400-500 ml culture was incubated and induced as described in 2.3.1. A 

portion of 0.75 ml buffer B (100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 8.0) was added 

to the pellets collected from every 50 ml culture (3.5 h post induction). In order to solubilize the 

proteins inside the inclusion bodies, the pellets were re-suspended and shaken at RT for 2 h. The 
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Fig. 2.3. Usage of the Amicon Ultra 

concentration tube. Figure is adapted 

from product manual. 

supernatant was collected by centrifugation at 14,000 rpm for 20 min at 4 °C. Syringe filters 

with the pore size of 0.45 µm (EMD Millipore, Billerica, MA) were applied to filter the 

solubilized protein sample and all the buffers before use in the purification. 

2.4.2. Purification of HAs using NTA-Ni resin under denaturing conditions 

The Ni-NTA superflow slurry (Qiagen Inc.) was resuspended and poured into the column until 

1ml resin was settled. After that, the column was equilibrated with 5ml volumes of buffer B. 

Wash buffer C and elute buffer D were prepared with the same components but with pH 6.3 and 

pH 5.0, separately. A280 was measured by spectrophotometer to indicate the existence of proteins 

in solution. The sample was applied to column at a speed of 0.2 ml/min and washed with buffer 

B at a speed of 1 ml/min until the A280 is below 0.01. The column was then washed with buffer C 

until the A280 is below 0.01. Protein was finally eluted with buffer D with the speed of 0.2 

ml/min, collected by 1 ml/tube.  A volume of 20 μl of flow-through, wash fraction and each elute 

fraction were collected for SDS-PAGE assay.  

2.4.3. Dialysis and concentration of proteins 

The eluted proteins were refolded by removing the urea through dialysis. Float-A-Lyzer G2-20K 

( Spectrum Laboratories, Inc., Rancho Dominguez, CA) dialysis tubes were soaked in 10% 

ethanol followed by thoroughly flushing and soaking 

in dH2O before use. The sample was then loaded to 

the tube and refolded by stepwise dialysis against 

buffer 1 (6 M urea, 0.5 M NaCl, 1 mM DTT) at 4°C 

for 6 h. Buffer 1 was diluted against buffer 2 (25 mM 

Tris-HCl, pH 7.5, and 150 mM NaCl, 1 mM DTT, 
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0.1 mM EDTA). Sample was then dialyzed against 4M urea buffer for 6 h and against 2 M urea 

buffer for 8 h. Finally, proteins were dialyzed against buffer 3 (25 mM Tris-HCl, pH 7.5, 0.9% 

NaCl) for another 4 h.  

Amicon Ultra-0.5 (EMD Millipore) was applied to concentrate the dialyzed HAs proteins. The 

centrifugal filters with a pore size of 10kDa allow protein no larger than 30 kDa go through the 

membrane, so that the HAs protein (58.7 kDa) will remain in the inner collection tubes. As 

shown in Fig. 2.3., up to 0.5 ml sample was added to the Amicon Ultra filter device, followed by 

spinning at 14,000 g for 15 min. The concentrated solute was then recovered by placing the filter 

device upside down in a clean micro centrifuge tube and spun at 1,000 g for another 2 min. 

2.4.4. BCA Assay 

For quantification of the recovered proteins after dialysis, the concentration of proteins was 

detected by BCA Protein Assay kit (Pierce Biotechnology) using microplate procedure. Stock of 

BSA was 2-folded diluted from 2,000 μg/ml to125 μg/ml. A portion of 25 μl diluted BSA 

standard and dialyzed protein sample was added into wells of 96 well plate. The working reagent 

(WR) was prepared by mixing 50 parts of BCA Reagent A with 1 part of BCA Reagent B (50:1, 

Reagent A: B). A portion of 200 μl WR were added to each well. After mixing the samples and 

WR, the plate was covered and incubated at 37°C for 30 min. The absorbance was measured at 

562 nm using a microplate reader (BIO-TEK, Winooski, VT) when the plate cooled to RT. 

2.5. Animal studies 

2.5.1. Mice 

Female Balb/c mice at seven weeks of age, purchased from the Jackson Laboratory (Bar Harbor, 

ME), were used in all animal experiments described in this study. Mice were kept in a pathogen-

free Biosafety level-2 animal facility in the Central Laboratory Animal Facility (CLAF) at 
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University of Arkansas (Fayetteville, AR). All procedures were conducted according to 

Institutional Animal Care and Usage Committee (IACUC) approved protocol #13056. Five mice 

were raised in each cage and they were labeled by 0-2 cuts on their left or right ear as: blank (B), 

left-1 (L-1), left-2 (L-2), right-1 (R-1) and right-2 (R-2). 

2.5.2. Vaccine preparation 

The iron oxide nanoparticles (IONs) coating with NTA-Ni (SHT) or with COOH (SHP) were 

prepared by the Ocean Nanotech LLC and kept at 4°C during delivery. For conjugation, SHT 

particle was mixed with HAs protein (~200 µg/ml) on a rotary shaker at 4 °C for 2 h (n ION: n 

Protein=1:5 as suggested by the company); SHP was mixed with HAs protein as negative control. 

A portion of 20 μl of the ION-HAs mixture was loaded to each well of 1% agarose gel to 

confirm that proteins are bound to the particle. For preparation of the nano-vaccines, larger 

amount of HAs were bound to SHT using method as described above. Unbounded HAs proteins 

were removed by centrifugal filter (100 kDa, EMD Millipore), centrifuging at 14,000 rpm for 20 

min at 4 C. Their concentration (in the filtration liquid) was measured by BCA assay (described 

in 2.4.4) so that the loading efficiency of HAs could be calculated. The other kind of nano-

vaccines were prepared by mixing HAs with SHP without specific binding. For all the groups 

(n=3), mice were injected with the same volume (50 µl). Nano-vaccines for injection of mice in 

the same group were prepared in one 1.5 ml tube and buffer 3 in the dialysis step was used to 

adjust the total volume. Because there was space in the needle hub, nano-vaccine with a total 

volume of 300 µl (doses for 6 mice) was prepared for each group.  

2.5.3. Immunization 

In the preliminary experiment, SHT-HAs nano-vaccines carrying 2 μg or 4 μg recombinant HAs 

proteins were investigated. Groups of seven-week-old female Balb/c mice (n=3) were used in 
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order to provide statistically meaningful data. The nano-vaccines were injected into mice via 

intramuscular route (i.m.). Complete Freund’s adjuvant (CFA) is a water-in-oil emulsion 

containing killed cells of Mycobacterium butyricum and used in initial injections, while 

incomplete Freund’s adjuvant (IFA), which lacks this bacterium, is used for subsequent 

injections.  Control mice were immunized with 2 μg HAs emulsified 1:1 (v/v) with CFA/IFA 

(Thermo Scientific, Rockford, IL), saline only or SHT only, respectively. Syringes (1 ml) with 

Luer-Loc tip and 26 G×1/2 in. needles from Becton Dickinson (Franklin Lakes, NJ) were applied 

for injection of the HAs emulsified with CFA/IFA, whereas syringes (1ml) with tuberculin slip 

tip and 30 G×1/2 in. needles were used for the rest groups (shown in Fig. 2.4[A]). The area to be 

injected was first swabbed by 70% ethanol to let the skin expose, the tip of the needle was then 

inserted through the skin and into the caudal thigh muscles (Fig. 2.4[B]).  In all cases, the mice 

were injected three times (two weeks between each injection). The weight of each mice was 

recorded and the activity of mice was observed every another day since the prime immunization.  

With experienced manipulation, nano-vaccines carrying 6 μg or 8 μg recombinant HAs proteins 

were investigated. In this experiment, we tested two kinds of IONs: SHT (binding with HAs via 

the chelation of NTA-Ni) and SHP (mixing with HAs without specific binding). Control mice 

were immunized with 6 μg HAs emulsified with CFA/ IFA, 6μg HAs only, saline only or SHT 

only, respectively. Still, the mice were injected three times (two weeks between each injection) 

and the weight and activity of each mouse was recorded every another day since the prime 

immunization. Details of mice immunization are listed in Table 2.2. 
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2.5.4. Bleeding 

To determine the humoral immune responses in the immunized mice by serological evaluation of 

the production of anti-HA immunoglobulin, approximately 100 µl of blood samples were taken 

on day 10, 24 and 38 post-immunization from submandibular vein. As shown in Fig. 2.4 (C),  

Group Vaccine Dose (μg/50μl ) #Mice 

     1 SHT-HAs* 2 3 

2 SHT-HAs* 4 3 

3 HAs+CFA/IFA 2 3 

4 SHT* 0 3 

5 Saline 0 3 

Group Vaccine Dose (μg/50μl) #Mice 

1 SHT-HAs* 6 3 

2 SHT-HAs* 8 3 

3 SHP+HAs* 6 3 

4 SHP+HAs* 8 3 

5 HAs+CFA/IFA 6 3 

6 HAs 6 3 

7 SHT* 0 3 

8 Saline 0 3 

Table 2.2. Experimental mice grouping (vaccination through i.m. route) 

* It has been demonstrated that up to 4.4 mg/injection of IONs does not cause any abnormalities 

or changes in the blood chemistry of mice tested after each of the three immunizations (58) and 

that the total dose of the ION-HAs vaccines, of which the IONs are only a fraction, will be well 

below this amount. 
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goldenrod animal lancets with 4 mm of point length (MEDpoint, Inc., Mineola, NY) were 

applied to collect the blood sample. Detailed procedures for this blood sampling are described 

elsewhere (http://www.medipoint.com/html/directions_for_use1.html). This bleeding procedure 

causes only momentary pain and distress. The 1.5 ml tubes those contained the collected blood 

samples stood at RT for 3 h and was then centrifuged at 2,500 rpm for 10 min. The supernatant 

(serum containing anti-HA antibody) was transferred to PCR tubes and kept at -20C. 

Fig. 2.4. A. Syringes and needles used in mice immunization. Upper: SHT 

conjugated with HAs; Below: HAs emulsified with CFA (Photo taken by the author 

of the thesis); B. The site of intramuscular injection of mice (adapted from 

http://www.theodora.com/rodent_laboratory/injections.html); C. Bleeding from 

submandibular vein (adapted from www.medipoint.com). 

B. 

 

A.  

 

C. 

 

http://www.theodora.com/rodent_laboratory/injections.html
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2.5.5. Enzyme-linked Immunosorbent Assays (ELISA) 

Costar Flat Bottom High-binding 96-well EIA/RIA plates (Fisher Scientific) were coated with 

HA proteins (2 μg/ml) of influenza virus A/Vietnam/1203/2004 (H5N1) from BEI resources. The 

HA proteins were dissolved in coating buffer (0.16% Na2CO3, 0.292% NaHCO3, 0.016% NaN3, 

pH 9.6, filtered with 0.2μl filter). A portion of 100 μl of HA proteins per well was added to the 

96 well plates and incubated overnight at 4C. The next day, the coating buffer was removed and 

plates were washed twice by TBST (20 mM Tris-base, 150 nM NaCl, 0.05% Tween-20, pH 7.3). 

A portion of 200 μl blocking buffer (20 mM Tris-base, 150 nM NaCl, pH 7.3, 0.05% Tween-20, 

1% BSA) was then added to each well. After 2 h blocking at RT, plates were washed with TBST 

four times. After that, thawed mouse sera were 2-fold sequentially diluted in the blocking buffer. 

A volume of 100 μl of these 2-fold sequentially diluted sera was added to each well and 

incubated for 2 h at 37C. Plates were then washed with TBST four times. Afterwards a portion 

of 100 μl of 5,000 diluted Goat anti-mouse IgG Biotinylated Affinity (R&D, Fisher Scientific) in 

blocking buffer was added to each well and incubated for 1h at 37C. Plates were then washed 

by TBST four times. A portion of 100 μl of 1,000 diluted Streptavidin-Alkaline Phosphatase 

(R&D, Fisher Scientific) in blocking buffer was added to each well and incubated for 1 h at 37C. 

Plates were then washed by TBST five times. A volume of 100 μl p-Nitrophenyl Phosphate 

Liquid Substrate (MP Biomedicals, Fisher Scientific) was added to each well and incubated in 

dark for 25 min. The reaction was stopped by addition of 50 μl of 2 M NaOH to each well and 

the color intensity was measured immediately at 405 nm and 630 nm with a microplate reader 

(BIO-TEK). Sera collected from mice injected with saline served as negative control. 

Serum samples were 2-fold diluted from 2-3-2-8 dilution. Further dilutions were performed if 

necessary. The endpoint titer was defined as the reciprocal of the serial serum dilution at which 
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the (OD405nm-OD630nm) was above 0.2, which was also larger than the mean plus three standard 

deviations (CN+ 3SD) of the value of the negative control samples. Values of p for differences 

between mean titer of the diversely immunized animal groups were determined by paired 

Student t-test using Excel. A 95% confidence interval will be applied to determine the statistical 

significance of differences between groups.  
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III. RESULTS AND DISCUSSION 

3.1. Construction of pTAHAs plasmid 

To construct the pTAHAs plasmid, we inserted the HAs gene fragment into a pTAGBP vector 

and replaced the GBP gene with HAs. The HAs fragment (HA without cytoplasmic and 

transmembrane domain sequences) was amplified by PCR, as described in 2.1.3. After the 

reaction, a portion of 5 μl PCR product was removed for electrophoresis. A bright band was 

detected, as shown in Fig. 3.1., which indicated the HAs sequence of correct size (1562 bp) was 

amplified.  

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

The PCR products as well as the pTA vector was followed being digested by SalI-HF and SpeI 

double enzyme, both of the products were taken to run the agarose gel electrophoresis.  The sizes 

of the bands were check under UV light. Showing correct sizes, these bands were cut off from 

the gel shortly after they were exposed to UV light. After purification, the digeste vector and 

insertion were ligated by T4 DNA Ligase and followed by heat shock transformation into 

competent E. coli cells. 

10.0- 
8.0- 
6.0- 
5.0- 

4.0- 

3.0- 

2.0- 

1.5- 

1.0- 

0.5- 

Fig. 3.1. PCR products of amplified HAs fragments using designed primers. Lane M, 

1Kb DNA ladder; Lane 1, the PCR product. The samples were analyzed using 0.8% 

agarose gel.  
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The second day after the overnight incubation, two colonies were picked up from the LB plate 

with selective antibodies by loop. The plasmids of the selected colonies were extracted and 

screened for positive clones using restriction enzyme digeation assay as mentioned above. As 

shown in Fig. 3.2., two bands indicated the HAs was corrected inserted into the vecter. The 

larger band was between 4,000 bp and 5,000 bp, which was close to the size of the original 

backbone (4308 bp) and the small band was of a size similar to that of HAs (1562 bp). 

                                                              

 

 

 

 

 

 

 

 

 

 

 

 

Afterwards, DNA sequencing confirmed that there was there was no point mutation in the 

positive colony identified through the enzyme digestion assay. The resultant plasmid was 

referred as pTAHAs (Fig.2.2.). 

3.2. Detection of the expression of HAs in E.coli 

The expression of HAs is induced by the addition of IPTG. The latter binds with lac repressor 

and releases them from the lac operator so that the transcription of HAs initiated. As the bacteria 

growth entered an exponential growth phase (OD600nm reached 0.6), we added IPTG into the 

Fig. 3.2. Validation of recombinant DNA isolation through enzyme digestion. Lane 

M, 1 kb DNA marker; Lane 1, plasmid extracted from selected colony pTAHAs#1. The 

plasmid was digested with Spe I-HF and Sal I restriction enzymes and analyzed through 

electrophoresis using 0.8% agarose gel.  
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culture to a final concentration of 1mM in order to induce the expression of HAs. 1 ml culture 

was collected over a 10-h time period, with 1-h interval as mentioned in 2.3.1. The concentration 

of cells were measured as the absorbance at 600nm. The growths of induced and non-induced 

bacterial were compared (Fig. 3.3.). The bacterial without induction kept growing to an OD 

above 4 at 10 h, while the one with induction stopped growing since 4 h and their OD was 

maintained below 1. The obvious difference of growth speed also indicated that the expression of 

HAs protein brought growth pressure to the bacterial cells. 

Next, we determined the solubility of the expressed HAs proteins and the optical induction time 

to gain highest expression level through SDS-PAGE assay. The samples collected as described 

above were treated by B-PER II bacterial protein extraction reagent as mentioned in 2.3.2., and 

the soluble proteins expressed by E.coli cells located in the supernatant after this step. Same 

0.00
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3.00

4.00
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O
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Fig. 3.3.The growth curve of E.coli DH5α harboring pTAHAs plasmid. Cells 

were grown in LB medium containing 0.4% glucose and 100µg/ml Ampicillin. 

IPTG was added to a final concentration of 1 mM at 2.5 h when OD600nm approach 

0.6. The E.coli growth was observed over 10 h culture period. 
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amount of extraction reagent was added to the pellet, and the latter as well as the supernatant 

were mixed with loading buffer and heated. In this way, the insoluble proteins were released 

from the inclusion bodies.  
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The strong bands at position of 58.7 kDa in Fig. 3.4 (A) indicated that the HAs was expressed in 

E.coli cells. For there was no apparent bands in Fig. 3.4 (B), the expressed HAs were insoluble 

and located in inclusion bodies. It is noted that in Fig. 3.4 (A) the density of two bands between 

35 kDa and 55 kDa was also increased. The larger band (L) showed in the sample before 

Fig. 3.4. Determination of optimal induction period of HAs expression in 

recombinant DH5α/pTAHAs by SDS-PAGE assay. A) Pellet (insoluble fraction); 

B) supernatant (soluble fraction); Lane: M, Protein ladder; 1, recombinant 

DH5α/pTAHAs before induction; 2-8, 0.5-6.5 h post induction; 9, recombinant 

DH5α/pTAHAs without induction 3.5 h after IPTG was added to the other culture. 

The proteins were separated by 10% SDS-PAGE gel. 
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induction (Lane 1), the non-induced sample (Lane 9), so it is the bacteria’ own protein. On the 

other hand, the smaller band (S) did not show at either Lane 1 or Lane 9. It is possible that 

degradation happened during this process. Because the expressed HAs carried a His-tag at its C-

terminal, the extra bands could be further removed during His-tag specific purification method. 

From Fig. 3.4 (A), it seems that the HAs started to express as early as 0.5 h post induction, and 

the expression level reached the highest between 3.5-4.5 h post induction. Because the 

concentration of samples collected 3.5 h post induction had higher cell concentration (Fig. 3.3.), 

we chose 3.5 h as optical induction time in order to cover the largest yield of bacterial cells in the 

following experiments. 
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Fig. 3.5. Comfirmation of HAs expression in recombinant DH5α/pTAHAs. A) 

Western blotting assay; B) SDS-PAGE assay; Lane: M, Protein ladder; 1, 

recombinant DH5α/pTAHAs 3.5 h after induction (pellet, insoluble fraction, 10 fold 

dilution); 2, recombinant DH5α/pTAHAs without induction 3.5 h after IPTG was 

added to another sample; 3, recombinant DH5α/pTAHAs after induction (pellet, 

insoluble fraction); 4, recombinant DH5α/pTAHAs without induction 3.5 h after 

IPTG was added to another sample. The proteins were separated by 10% SDS-

PAGE gel. 
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To further confirm that the HAs was expressed as insoluble protein, we conducted Western Blot 

assay. The mouse anti-HA antibody was applied as primary antibody and anti-mouse IgG HRP 

conjugated antibody was applied as secondary antibody to detect HAs as described in 2.3.3. 

There was only one band in Fig. 3.5 (A), which revealed that the proteins expressed in the 

inclusion bodies were HAs. Also, same as the results we observed in SDS-PAGE assay, there 

was no HAs protein in the soluble fraction of the collected sample. HAs specific antibody only 

recognized certain epitopes of HA protein, therefore the fact that the band S observed in Fig. 

3.4.did not appear in Fig. 3.5 (A) did not exclude its possibility to be degraded parts of HAs. 

3.3. Purification of HAs proteins 

 

 

 

 

 

 

 

 

 

After confirmation of the expression of HAs in E.coli cells, we worked on the purification of this 

recombinant protein. Culture of large volume (400-500ml) was incubated and IPTG was added 

to a final concentration of 0.1mM when the cell density reached OD600=0.6. All the culture 3.5 h 

post induction was collected and the soluble fraction was removed by B-PER II bacterial protein 

Fig. 3.6. Elution pattern of HAs from Ni-NTA column. The recombinant proteins 

with His-tag were eluted from the NTA-Ni column under pH 5.0.  Lane 0. Wash 

fraction; Lane 1-8, elute fraction (1ml/tube). The peak of absorbance appeared 

between fraction 2 and 3 which indicates that large amount of HAs were eluted from 

the column. 
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extraction reagent as mentioned in 2.3.2. The inclusion bodies left in the insoluble fraction were 

broken by 8 M urea (buffer B, pH 8.0) to release the insoluble proteins which contains HAs.  

Tubes (1.5 ml) were prepared to collect each fraction during the purification (1 ml/tube). Before 

applying to the affinity column, the sample was filtered to remove any insoluble part that might 

block the column and affect the yield and purity of the final product. The filtered sample was 

then loaded to a pre-equilibrated column filled with 1ml Ni-NTA resin at a low speed (0.2 

ml/min) to make sure that HAs with His-tag have enough time to bind Ni chelated on the NTA. 

Afterwards, around 10ml buffer B was applied to wash away the unbound proteins. 30-40 ml 

washing buffer (pH 6.3) was applied to the column until the A280 was below 0.01. The elution 

step also needed to be conducted very slowly. Eight fractions with 1ml each were collected after 

applying buffer D (pH 5.0). The appearance of proteins with His-tag was detected by measuring 

absorbance at 280 nm. In Fig. 3.6., the absorbance patter of eluted fraction had a peak with a 

value over 0.5 between fraction 2 and 3. This result indicated that large quantity of HAs were 

eluted in these two fractions.  

To further check the purity of the eluted HAs, a partial of 20 μl of the flow-through (FT), the 

wash fraction (W) and each elute fraction (E1-E6) were applied for SDS-PAGE assay. As shown 

in Fig. 3.7., bright bands with the size of HAs appeared in fraction 2 and 3. The proteins in FT 

were proteins which do not have His-tag so that they could not bind with the Ni-NTA resin.  

With the decrease of pH value of the buffers, the binding capability of proteins without His-tag 

decreases as well. Thus, the washing step removed the proteins weakly bound to the resin 

because of continuous appearance of His in its protein sequences which exposed to the outside. 

As shown in W, most of the unspecific binding proteins were eliminated, even few HAs proteins 
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were washed away from the column. In general, we obtained HAs with high purity after 

purification under denaturing conditions.  

Immediately after the completion of purification, we mixed the elution fraction besides the first 

one which contain few wash fraction. To avoid the occurrence of protein precipitation during 

dialysis, the average A280 of the mixture was adjusted to 0.1 by adding extra buffer D. Buffers 

with different concentration of urea were prepared in advance as described in 2.4.3. The 

denatured HAs proteins were refolded during the process to remove the urea in the buffer. In the 

final step of dialysis, the solution of refolded HAs was replaced by 0.9% NaCl containing 25 

mM Tris-HCl (pH 7.5) for future use in animal immunization. Because the volume of vaccine 

mixture could be injected into mice intramuscularly was limited, we concentrated the dialyzed 

proteins by Amicon size-cut filter tubes. During this process, proteins of size smaller than up to 

30kDa would be removed. As a result, the purity of the HAs was improved again. Finally, we 

could collect ~250µg recombinant HAs from 500ml initial bacterial culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. SDS-PAGE assay of eluted HAs from Ni-NTA column. Lane: M, protein 

ladder; SL, 5× diluted loading sample; FT, 2× flow through; W, wash fraction; E1-

6, elution fractions. The HAs were eluted mainly at fraction 2 and 3 which accords 

with the absorbance pattern. 
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3.4. Conjugation of HAs with ION 

To confirm that the recombinant HAs were bound to the nanoparticles prepared by Ocean 

Nanotech LLC, the mixture of 4.4 ng SHT (IO-NTA-Ni) and 1.25 μg HAs protein at 4C for 2 h 

(nIO:nProtein=1:5 as suggested by company) was loaded to 1% agarose gel for electrophoresis; 

4.4 ng SHP (IO-COOH) was also mixed with 1.25 μg HAs protein as negative control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 3.8, Lane 2 showed that SHT conjugated with HAs proteins were evenly distributed on 

the gel above the position of SHT only. The binding of HAs increased the size of the 

nanoparticles and decreased the positive charge of the nanoparticles. It is noted that in lane 4, 

SHP had a few unspecific binding with HA proteins as well. Therefore, HAs were successfully 

bound to IO-NTA-Ni in a solution containing 10 mM Tris-HCl, 0.1 M NaCl, pH 7.5.  

During the preparation of vaccination, we also quantified the HAs loaded onto SHT. The HAs 

loading efficiency of SHP was determined indirectly by comparison of protein concentration 

before and after conjugation reaction detected by BCA assay. The quantification of the loaded 

HAs was calculated using the following equation: 

                    Protein loading efficiency (mg/mg) = (Cp1 × V1-Cp2 ×V2) / (Cp1 ×V1)              

1       2       3       4 
 

 Fig. 3.8. Agarose gel electrophoresis analysis of HAs protein conjugated to 

IO-NTA-Ni nanoparticle (Ocean Nanotech). Lane 1-4, 1% Agarose gel, 

(Lane 1) SHT, (Lane 2) SHT mixed with HAs proteins, (Lane 3) SHP and (Lane 

4) SHP mixed with HAs proteins. 
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Cp1 is the concentration of initial concentrated HAs proteins with an initial volume (V1) added to 

the mixture. Cp2 is the concentration of the free HAs proteins in the filtration liquid of a filtration 

volume (V2).  After filtration, few free HAs left in the filtration liquid, and the loading efficiency 

is ~90% after calculation.   

3.5. Detection of humoral immunity in immunized mice 

3.5.1. The symptoms of experimental mice 

The injections were performed at around 5-6 pm of a day (routes shown in Fig. 3.9 (A)). The 

seven-week-old mice were always very active at this time. A mouse was restrained by single 

hand and the other hand performed the injection. After being restrained, most of the mice had 

accelerated breathing accompany with slight trembling. It was very frequent that they excreted 

during the injection. Few mice kicked or struggled, which may because the tip of the needle 

touched their femur or sciatic nerves, which should be avoided. The activity of the mice was 

relatively decreased and they were easy to be scared after the injection, but no intumescence or 

allergy was observed at the injection site. Ten days after each injection, blood samples were 

collected from submandibular vein.  

During bleeding, the strength used to hold the skin on the back of the mouse’s neck may 

influence the localization of the correct bleeding site. Under very few circumstances, the blood 

came out from the mouse’s ear because the puncture was a little bit high towards the ear. The 

excessive loss of blood caused severe convulsions and distinct decline of activity in one mouse. 

After received a subcutaneous injection of saline solution at the base of a fold of loose skin (area 

at the neck), the mouse behaved normally next day.   

Serum is the blood plasma with the fibrinogens removed and contains neither any blood cells nor 

clotting factor. As for the separation of serum from the coagulated blood sample, sometimes its 
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color was orange red instead of light yellow due to the occurrence of hemolysis (break of red 

cells). From the results of ELISA which will be presented later, the leak of red blood cells did 

not influence the detection of HA-specific antibodies.  

The weight of mice was monitored every another day at around 5-6 pm. Depends on various 

conditions of diet and excretion of each mouse at that moment, its weight was not stable. Still, 

the tendency of weight indicates the basic health status of the mice after immunization. As 

shown in Fig. 3.9 (B), their weights maintained within 98.3%-112.4% of original weights, 

without apparently changes.    
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Fig. 3.9. A. The route of administration of nano-vaccines in mice. Groups of 

Balb/c mice were immunized every two weeks and the blood samples were collected 

ten days post each immunization. B. Mice weight tendency. The body weight of 

every another day was compared with original weight of each individual mouse.  
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3.5.2. Immunogenicity of nano-vaccine tested in mice 

The HA-specific antibodies titers generated in different groups of immunized mice were detected 

using ELISA. The results of preliminary experiments showed that mice immunized with SHT 

binding with 2 µg or 4 µg HAs did not elicit the production of anti-HA IgG until the second 

boost immunization and average log2 titers of the generated IgG were very low (< 4), which 

indicated that the doses of 2 µg or 4 µg were not sufficient to elicit effective humoral immune 

response in immunized mice. Thus, here we analyzed the results of the latter experiments (data 

listed in table 3.1). Two weeks after the second boost immunization, HA-specific antibodies 

were detected in all the immunized groups except for those injected with saline and SHT (Fig. 

3.10). The generation of HA-specific antibodies also indicated that an increasing humoral 

immune response was stimulated in experimental mice after vaccination.  

Table 3.1. Mean log2 titers of HA-specific antibodies generated in mice of each group. 

 

Groups 

HA-specific log2 titer 

 Prime  Boost Second boost 

Saline 0.00±0.00 0.00±0.00 0.00±0.00 

SHT 0.00±0.00 0.67±0.58 1.00±1.00 

HAs-6 0.67±1.15 3.00±1.00 6.00±2.64 

SHT-6 0.00±0.00 2.33±1.53 6.67±3.51 

SHT-8 0.00±0.00 1.67±1.15 5.67±2.08 

SHP-6 0.00±0.00 1.67±1.15 3.67±2.52 

SHP-8 0.00±0.00 1.67±0.58 6.33±1.53 

HAs6-adj 1.67±0.58 8.67±0.58 12.00±0.00 
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Because the number of repeat in each group was relatively small, the individual differences were 

relatively large in the results. As a result, although SHT-6 showed a higher mean titer than HAs6, 

its titer was not significantly higher than that of HAs6 at a 95% confidence interval, which 

indicates that the conjugation of 6 µg HAs to SHT did not enhance the HA-specific antibody 

responses in immunized mice. Similarly, although SHP-6 showed a lower mean titer than SHT-6, 

its titer was not significantly lower than that of SHT-6 at a 95% confidence interval. This result 

suggests that the binding of ION with HAs or not did not influence the production of anti-HA 
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Fig. 3.10. ELISA for HA-specific IgG elicited in immunized mice. Sera from three 

mouse per group were collected ten days post each immunization and analyzed for the 

production of anti-HA IgG via ELISA. Antibody titers are expressed as the log2 values of 

the endpoint titers. Mice were immunized intramuscularly with 50µl mixture containing 6 

µg/8 µg recombinant HAs conjugated with SHT (SHT-6/SHT-8), those mixed with SHP 

(SHP-6/SHP-8) or those emulsified with CFA/IFA (HAs6-adj). Mice were also immunized 

intramuscularly with 50µl solution containing 6µg recombinant HAs only (HAs-6), SHT or 

saline. Error bars, SD, n=3. 
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antibodies in immunized mice. The increase of doses did not significantly improve the antibody 

titer in SHT-6 and SHT-8, but in SHP-6 and SHP-8. On the other hand, 6 µg HAs emulsified 

with CFA/IFA stimulated significant higher titer of anti-HA antibodies in immunized mice after 

the second boost immunization. The statistical significant difference analysis was presented in 

Table 3.2. 

Table 3.2. Significant comparison between HA-specific IgG elicited in different groups of 

immunized mice after second boost immunization. P value of paired student t-test: a=0.211, 

b=0.059, c=0.030, d=0.333, e=0.094, f=0.029.* Significantly higher (P< 0.05) than antibody titer 

of HAs-6. ** Significantly higher (P< 0.05) than antibody titer of SHP-8. 

 

We expected that the average log2 titers of anti-HA IgG could reach 12~15 in mice immunized 

with nano-vaccines or HAs emulsified with CFA/IFA after second boost immunization as shown 

in Pusic K’s work (58), but the nano-vaccines did not improve the HA-specific antibody 

production to this level in immunized mice. Many factors may cause the experimental results not 

consistent with our assumptions. First, the amount of HAs in nano-vaccines may be 

overestimated. The BCA assay reflected the total amount of purified proteins, which included 

few impurity. Besides, degradation of HAs may happen during different steps of vaccine 

Groups 

HA-specific log2 titer 

 Mouse 1  Mouse 2 Mouse 3 Mean ± SDp 

HAs-6 7 3 8 6.00±2.64a,b,c 

SHT-6 7 3 10 6.67±3.51a,d,e 

SHT-8 8 4 5 5.67±2.08d 

SHP-6 6 1 4 3.67±2.52b,e,f 

SHP-8 8 5 6 6.33±1.53f** 

HAs6-adj 12 12 12 12.00±0.00c* 



53 
 

preparation, such as the conjugation with IONs, and the removal of unbounded HAs by 

centrifugal filter. Degradation can also occur during the delivery of vaccines before immunizing 

the mice.  Each possibility may lead to a reducing amount of active antigens in the nano-vaccines, 

so there is not sufficient dose of HAs together with IONs to produce comparable level of HA-

specific antibodies as those emulsified with CFA/IFA. To solve these problems, we can handle 

higher dose of HAs; we can also modify the condition of purification and dialysis to protect the 

proteins from degradation. Second, the IONs may not be efficiently captured by APCs to make 

HAs “visualized” by the immune system of mice. Particle size is very important for antigen 

uptake by APCs and routes of the CD4+ T cell response (59; 60). The particles investigated in 

this study are of a size of 10 nm, entering APCs by receptor-mediated endocytosis together with 

HAs. The enzymes in endosome will detach the conjugation between IONs and HAs, and 

process the proteins into peptides. We can replace the IONs with those of larger diameters or 

additional surface modification to enhance their targeting to APCs. Third, imperfect operation in 

animal immunization may affect the accuracy of the results. Antibody plays significant function 

in adaptive immunity as blocking virus binding and entry into host cells, therefore, we evaluate 

the immunogenicity of each vaccine by measuring the level of generated HA-specific antibody in 

immunized mice. However, intramuscular injection demands experienced handling, and slight 

variation of the injected volume is easy to take place. Also, the vaccine preparation may not be 

mixed thoroughly before injection, so the HAs together with IONs are not distributed evenly in 

the mixture. All of these factors may lead to poor repeatability of the HA-specific antibody titers 

of mice in the same group, which impacts the significant analysis of these data. To compensate 

errors resulted from these reasons, we should increase the number of animals in each group. 
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IV. CONCLUSIONS AND FUTURE WORKS 

The HA glycoprotein is considered as a key target for both cellular and humoral immune 

response against influenza virus. In this study we reported the sub-cloning and expression of 

HAs from a H5N1 influenza virus in E.coli. Our experimental results suggested that the 

glycosylation is not necessary for recombinant HAs to elicit humoral immune response in 

immunized mice, and the E.coli expression system is able to produce subunit HAs vaccine 

against influenza virus. We also showed that the HAs is expressed as early as at 0.5 h post 

induction, and reaches highest expression level between 3.5-4.5 h after the addition of inducer 

IPTG. The expression of HAs brings growth pressures to the bacterial cells. Using the 

purification and refolding methods developed in this study, we collected recombinant HAs 

protein from the bacterial culture at a yield of 250 µg/500 ml. Later, we demonstrated that the 

concentrated HAs proteins are able to bind with SHT (ION-NTA-Ni) nanoparticles at a high 

loading ratio ~90%. In the animal studies, we found that 6 µg recombinant HAs was sufficient to 

stimulate increasing production of HA-specific IgG in mice post three-time immunization. 

Meanwhile, we noticed that HAs conjugated with SHT did not perform significant improvement 

of HA-specific antibody production in immunized mice, compared with HAs. 

Future works need to be focused on the modification of nano-vaccines in order to continue the 

investigation of IONs as potential delivery platform of influenza vaccine. On one hand, we could 

improve the activity of recombinant HAs by optimizing conditions of dialysis, conjugation with 

IONs and vaccine preservation to reduce the protein degradation. We could also modify the 

IONs by increasing their diameter or attaching molecules that facilitate APC targeting to their 

surface. On the other hand, we could keep exploring the immunogenicity of current vaccine 

preparation carrying higher dose of HAs. ELISA in this study only detected the generation level 
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of total IgG, which peaks 4-6 weeks after natural infection. Subtypes of IgG could be further 

detected in order to determine what type of them dominates in the humoral immune responses of 

immunized mice. Long-term immune protection provided by the nano-vaccine can be detected 

on the sera collected half a month or longer post the second boost injection. Although we 

anticipated that conjugation of HAs with IONs could enhance the humoral immune responses in 

mice, IONs may augment the cellular immune responses instead. Enzyme-linked immunosorbent 

spot assay (ELISPOT) will be performed to measure the increase number of IFN-γ-secreting T 

cells from freshly collected splenocytes of immunized mice. The same assay could be applied to 

detect HA-specific interleukin-12 (IL-12) or interleukin-4 (IL-4) production in immunized mice, 

which indicate whether the IONs activate the CD4+ T cells via Th1 or Th2 route. The HA-

specific antiviral CD8+/cytotoxic T cell (CTL) responses can be characterized by chromium 

[51Cr]-release assay.  

After modification of the nano-vaccines from different aspects as mentioned above, we expect 

that mean log2 titers of anti-HA IgG could be higher than 13 in mice immunized with nano-

vaccines. Because high total IgG level does not guarantee that sufficient protective antibodies 

against virus strain are elicited in immunized mice, we will perform the hemagglutination 

inhibition (HI) assay to determine functional anti-HA antibody titer. Also, we could perform in 

vitro microneutralization (MN) assay, a highly sensitive and specific assay, to measure the serum 

neutralizing capacity against the homologous H5N1 influenza virus in immunized mice before 

moving forward to the assessment of their functional protective efficacy by host challenge 

against H5N1 strain.  

 

  

http://en.wikipedia.org/wiki/Interferon#Type_II_IFN
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APPENDIX 
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6.2    Approval letter of IACUC modification request 
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