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Abstract 

Amylin (hIAPP) aggregates have been found in 90% of patients with type II diabetes at 

autopsy, and are suspected to play a role in the death of islet β-cells1. However, this aggregation 

process is not well understood.  Here, we explore methods that utilize capillary electrophoresis 

(CE) as a means to better understand amylin’s aggregation process.   

We examined the effects of solutions conditions: agitation, pH, salt, and temperature on 

amylin aggregation using Thioflavin T, dot blots, and capillary electrophoresis.  Thiofalvin T 

was used to predict the lag time to β-sheet formation.   Our results indicated all variables with the 

exception of agitation were feasible for study with CE. Capillary electrophoresis was then 

employed to observe the formation of oligomers with dot blots used as a confirmation technique.  

Overall, results showed all solutions conditions examined promote aggregation, however there 

was variance between time courses.  Conflicting results suggest further study is needed to fully 

understand the observed amylin aggregation phenomena. 
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Chapter 1 

Introduction and Background 

Amylin and Diabetes 

 Diabetes mellitus is the seventh leading cause of death in the United States resulting in 

the death of over 73,000 people every year 2.  It is estimated that over 25 million residents, 8% of 

the population, have diabetes and an additional 7 million more are undiagnosed.  The number of 

people that are predisposed to diabetes is almost 80 million and this number is growing at a rate 

of almost 2 million a year.  The total healthcare costs for diagnosed diabetic patients is $174 

billion dollars 2. 

Almost 90% of all cases of diabetes mellitus are considered to be type 2 3.  Patients with 

type 2 diabetes mellitus are completely insulin dependent.  Their bodies do not produce enough 

insulin to regulate blood glucose levels.  This lack of blood glucose regulation leads to 

hyperglycemia resulting in multiple complications including heart disease, blindness, kidney 

failure, neuropathy, and amputation.  The primary cause of diabetes can result from various 

medical conditions including obesity or from a genetic predisposition.  However, obesity garners 

the most attention, accounting for 55% of type 2 cases 22,1.  Between 1995 and 2005 the rate of 

diabetes diagnoses doubled prompting the CDC to characterize it as an epidemic 3. 

Type 2 diabetes is typically due to an insulin deficiency.  Insulin is a regulatory protein 

that is produced in the β – cells of the pancreas.  It controls glucose uptake into tissue.  Over 

time, in patients with type 2 diabetes, less and less insulin is produced eventually resulting in no 

insulin production.  This is due to decreased β - cell function and ultimately β - cell death4.  One 

possible reason for decreased function and ultimately the death of these β – cells is thought to be 

the aggregation process of human islet amyloid polypeptide (hIAPP) as it moves toward the 
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formation of an amyloid plaque.  At some point during the development of this plaque the 

amyloid proteins become toxic to the β – cells 1. 

Human Islet Amyloid Polypeptide (hIAPP aka amylin) is a 37 residue protein with a 

disulfide bridge between amino acids 2 and 7 as seen in Figure 1 5.  It is secreted in the pancreas 

by islet β – cells,  at the same time as insulin in a ratio of 100 insulin proteins to each amylin 

protein 6.  Amylin works to reduce the body’s demand on insulin.  It slows gastric emptying, 

reduces the intake of food, and inhibits gastric secretion7. These actions lead to reduced glucagon 

production which in turn slows the rate of glucose appearance8.  Physiological concentrations of 

amylin are very small (4 – 25 pmol/L) 1.  

KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY (Disulfide bridge: 2-7) 

Figure 1:  Amylin amino acid sequence 

In patients with type 2 diabetes, amylin has a propensity to aggregate forming amyloid 

plaques.  These amyloid plaques are found in more than 90% of patients with type 2 diabetes at 

autopsy 1.  There is a growing trend of thought that believes this aggregation process is harmful 

to pancreatic β – cells, but the knowledge of this potentially toxic mechanism is not well 

understood9.  Recent in vitro studies have shown that amylin aggregates are toxic to both human 

and modified rodent β – cells 10.  

Unfortunately, these interactions between amylin and β – cells are not easily identifiable.  

The general trend of thought is that the aggregates somehow damage the membrane of the β – 

cells11.  Further confusion is added when the aggregation mechanism is broken down into 

subsequent parts.  Initially amylin begins as a monomer and then progresses to an oligomeric 

state, next is a transition state known as a proto-fibril state, followed by a fibril state resulting in 

the formation of an amyloid plaque.  Initially it was thought that the amyloid plaques formed 
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from fibrils were the cause of β – cell death.  However, recent research has indicated this is not 

the case, instead suggesting that smaller amylin aggregates are more important than large 

aggregates 12.  The current prevailing view now points toward oligomers and/ or the proto – fibril 

state as the leading factors for β – cell membrane damage.  This coincides with the structural 

transition of the protein from an α – helix to a β – sheet13.   

The specific mechanism(s) by which amylin destroys β – cells remains unclear.  

However, there have been several proposed.  One possible mechanism is that amyloid plaques 

impair the flow of glucose to β – cells and the flow of insulin from β – cells 10.  Another possible 

mechanism is that oligomers or proto-fibrils form small pores in the β – cell membrane.  These 

pores allow various ions into the cell which results in cellular apoptosis 14.  A third mechanism is 

aggregation due to poor dietary choices.  Western diets have been characterized by an increased 

intake of dietary fat resulting in an increase of free fatty acids in the body.  Studies have shown 

that excess fat impairs β-cell function, decreases insulin production, and can stimulate IAPP 

aggregation.  None of the studies were able to determine the mechanism of amylin aggregation 4, 

15. 

 

Thioflavin T 

ThioflavinT (ThT) is a florescent dye commonly used to observe the formation of proto-

fibrils and fibrils in amyloid proteins.  The formation of fibrils involves a structural change 

moving from α-helix to β-sheet 16.  When ThT is added to a sample of an amyloid protein 

containing cross β-sheet structures it forms a complex with the fibrils and fluoresces.  While by 

itself ThT exhibits weak excitation and emission wavelengths at 350 and 440 nm 17, when bound 
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to β-sheet structures the dye has excitation and emission wavelengths at 440 and 490 nm 17, 18.    

The method of ThT interaction with amloid proteins is not well understood, however the 

prominent theory indicates ThT intercalates between grooves of the side chains of the amyloid 

fibrils.  ThT binding within these grooves stiffens the fibril and prevents it from twisting into a 

less radiative state 17.  ThT binding has been previously used to identify effects of solution 

conditions on β-sheet formation in amyloid proteins 19, 20.  While studying the effects of 

rifampicin on β-sheet formation researchers were able to monitor β-sheet formation using ThT 

19.  In a separate study, researchers were able to successfully utilize ThT to monitor β-sheet 

formation while researching the toxicity of β-sheets in amylin.  They found that the cytotoxicity 

of amylin is dependent upon its preparation and the amount of fibrils within the sample 20.   

This is a common technique used to monitor β-sheet formation in amyloid proteins.  For 

the current studies, we have used ThT binding to evaluate the effect of solution conditions on the 

lag time to formation of beta sheets during amylin aggregation and to establish a time-line for 

fibril formation.  

 

Capillary Electrophoresis 

   Capillary electrophoresis (CE) is a separation and analysis technique used to differentiate 

ionic species based upon their charge and size.  CE utilizes a voltage to induce a current to pull a 

species through the capillary.  Species with a larger charge will travel more quickly than those 

with a smaller charge, and species with a larger mass will travel more slowly than those with a 

smaller mass 
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 Previous work by Pryor et. al. has indicated the potential for CE to detect and monitor 

amyloid aggregation in amyloid β and insulin proteins 21, 22.  Amylin aggregation has been 

studies via thioflavin T, dot blots, electron microscopy, light scattering, and several other 

techniques, but has yet to be examined using CE 23-25. Capillary electrophoresis could provide a 

better, more affordable alternative for the detection and monitoring of amylin oligomer 

development and aggregation. 

 

Dot Blots 

Dot blots refer to a common technique used for the detection and identification of 

proteins 10, 19.  Dot blots utilize antibodies to detect the presence of and/or confirm the specific 

state of a protein.  The dot blot assay involves the attachment, or spotting, of a protein onto a 

membrane followed by the binding of a primary antibody specific for that protein.  A secondary 

antibody then binds to the primary for detection 10.  Dot blots give no specific information about 

species size.  They can only confirm the presence of a specific species22.  Previous research 

indicates that dot blots can be used to study amylin oligomer formation and aggregation.  In a 

study by Zhao et. al .researchers were successfully able to utilize dot blots to detect the presence 

of amylin oligomers within the pancreatic islet cells of diabetic patients 25.  In a separate study 

conducted by Meier et. al. to monitor the toxicity of fibrils towards β-cells, dot blots were 

successfully used to detect the presence of amylin oligomers 19.    In this work, dot bots were 

used to confirm the presence of oligomers and fibrils in conjunction with capillary 

electrophoresis.   
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Purpose of This Work 

Previous research in our lab has indicated that amyloid protein aggregation can be 

affected by various solutions conditions.  Here, we have examined the effects of these solutions 

conditions on amylin aggregation using Th-T, CE, and Dot Blots.  Chapter 2 summarizes a study 

that used ThT to identify the time at which β-sheet formation occurred for each solution 

condition.  In Chapter 3, we described the use of CE as to examine oligomer formation and 

confirmation of the analysis through dot blots.  
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Chapter 2 

Beta Sheet detection using ThT 

Introduction 

Benzothiazole dye thioflavin T (ThT) fluorescence is a well-known, commonly used 

technique for the identification of β-sheets in amyloid proteins 17, 23, 26.  When amyloid proteins 

transition from an oligomer state to a fibril state there is a shift to a β-sheet formation 16. When 

ThT is added to solutions containing β-sheet rich structures it experiences a shift in fluorescence 

excitation (350 to 440 nm) and emission (438 to 490 nm) maxima 17.  It is thought that ThT 

intercalates within the grooves formed by amino acid side chains of the amyloid fibril17l.   ThT 

does not bind to monomers or oligomers, it only binds to β-sheet rich structures 26.  ThT has been 

previously used to identify the effects of solution conditions on β-sheet formation in amyloid 

proteins 19, 20.   

A ThT assay involves the dilution of fibril forming amyloid samples into buffered ThT 

followed by taking a fluorescence reading 20.  Fluorescence time courses generally have the 

shape of a sigmoidal curve.  In the beginning there is a lag phase followed by an increase after 

which there is a leveling off.  The beginning of the sharp increase is indicative of β-sheet 

formation and the leveling or tapering off indicates fibril/ β-sheet saturation.  In this chapter we 

used ThT to both monitor and to determine the threshold of β-sheet formation for amylin within 

our sample solutions conditions.  We examined the effects of both increased and decreased 
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agitation, increased pH, salt, and temperature, as well as a combination of these variables. These 

are controllable conditions that are known to affect amylin aggregation speed.   

 

Materials and Methods 

Amylin Preparation 

Amylin (Anaspec, Freemont CA, Lot #88089), was stored at -80
o
C.  To ensure samples 

were monomeric a 3.91 mg/ml stock of amylin was prepared in Hexofluoro-2-propanol (HFIP) 

27.  Amylin was aliquotted into vials containing 0.0625 mg of amylin and the HFIP was allowed 

to evaporate overnight.  For ThT studies, amylin was prepared to a concentration of 50 µM under 

the various conditions specified in Table 1.  All samples were examined in triplicate.  Tris buffer 

was chosen based upon previous work in our lab with amyloid – β.  Other buffers, such as 

phosphate buffer, could provide more physiological conditions, however tris provides a more 

stable environment for separation within CE. 

Table 1:  Solutions conditions.  Changes from the Control are highlighted in red. 

Sample pH T (C) Agitation (rpm) NaCl (mM) 

Control 8 25 400 5 

pH 7 25 400 5 

Salt 8 25 400 140 

Agitation1 8 25 0 5 

Agitation2 8 25 800 5 

Temperature 8 37 400 5 

Multiple Variables 8 37 0 140 
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Fluorescence Measurement 

To measure fluorescence we used a Shimadzu RF-Mini-150 Fluoremeter (Columbia, 

MD) (excitation filter = 460 nm, emission filter = 490 nm).  ThT solution was initially prepared 

to a 1 M concentration with Milli Q water and then diluted to a 5:1 concentration ratio of 35.73 

µM ThT and 50 µM amylin using tris – HCl.  Volume ratio was 7:1 (175 µL ThT to 25 µL_ 

Amylin. Time points’ fluorescence readings were taken a minimum of 2 hours and a maximum 

of 6 hours apart.  As part of the purpose of this study was to establish conditions that would be 

suitable for future CE analysis, only aggregation occurring at times greater than 2 hours or less 

than 24 hours were evaluated.  Based on previous work with amyloid β and capillary 

electrophoresis, β-sheet formation occurring in less than 2 hours does not allow enough time for 

a time course study.  β-sheet formation after 24 hours was considered undesirable for being able 

to effectively capture all in between time points. 

 

Statistical Analysis 

Results were analyzed with an unpaired t test using GraphPad QuickCalcs 

(http://www.graphpad.com/quickcalcs/ttest1.cfm).  We inputted the mean, standard deviation, 

and sample size to calculate each time point’s p value in relation to the zero hour time point.  The 

first time point statistically significant in comparison to the zero hour time point was deemed to 

represent β-sheet formation. Time points were considered to be statistically significant when 

their p value became less than 0.05. 
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Results and Discussion 

The effect of solution conditions on lag time to β-sheet formation was investigated.  β-

sheet formation was determined to have taken place when a time point was deemed to be 

statistically different from the zero hour time point.  A confidence interval of 95% was used to 

determine when a time point was significant in comparison to the zero time point. 

 

Control Conditions 

The control conditions were selected based upon previous work performed with another 

amyloid forming protein, amyloid-β 28.  While there are other more physiological conditions 

available; these conditions have been found to work best with our chosen buffer, tris.  As shown 

in Figure 2, time points were taken at 0, 6, and 10 hours followed by a time point every 2 hours 

up to 20 hours.  In comparison to the zero hour time point at 6 hours fluorescence readings had 

hardly increased, but at 12 hours fluorescence had increased by 67%.  This was followed by a 

general leveling off with fluorescence where readings remaining generally around 500 for the 

next 10 hours.  Based on a t test with a 95% confidence interval it was found that the control 

conditions exhibited a significant difference in fluorescence at 12 hours which indicated this to 

be the lag time to β – sheet formation.   
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Figure 2:  Change in fluorescence indicating β – sheet formation in amylin samples under 

Control conditions.  The red square indicates the first statistically significant point. 

 

Study of Agitation  

In this study we chose to examine the effects of agitation by evaluating no agitation (0 

rpm), medium agitation (400 rpm), and high agitation (800 rpm).  Time points for 0 rpm were 

taken at 0, 6, 12, 16, 18, 20, 22, and 24 hours.  Time points for 800 rpm were taken every 2 hours 

for 12 hours.  Time points for each agitation sample set were different because we expected 

higher agitation would increase the rate of aggregation and decrease the sample lag time 

requiring us to measure fluorescence sooner.   

Figure 3 shows the results of the ThT study for the varying aggregation conditions.  The 

0 rpm agitation study did not show statistically significant β-sheet production until the final 24 

hour time point.  The 800 rpm agitation study produced its first statistically significant time point 

at 2 hours.  An interesting occurrence to note is the amount of fluorescence detected in the 800 

rpm agitation study.  The first significant time point had a fluorescence reading of 218.  This was 

followed 2 hours later by a fluorescence reading of 2000, an increase of 89%.  The fluorescence 
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stayed around 2000 for the next 6 hours.  In comparison to our other ThT studies, this is a much 

greater amount of fluorescence.  The maximum fluorescence detected in the control study was 

500, and the maximum fluorescence detected in our other studies never exceeded 1500.  ThT 

binds to β – sheets so therefore the 800 rpm agitation assay resulted in  a much higher 

concentration of β – sheets.  In comparison to the control conditions, which exhibited significant 

β-sheet formation at 12 hours, it is reasonable to say that a lack of agitation can slow the in-vitro 

aggregation time of amylin.  In respect to the 800 rpm study it can be said that an increase in 

agitation can increase the in-vitro aggregation time of amylin.  This is consistent with the results 

of a recent study by Tiiman et al. who observed that an increase in agitation of another amyloid 

forming protein, amyloid β, resulted in a dramatic increase in fluorescence in comparison to 

those without agitation 29.   Therefore agitation sample concentrations one could draw the 

conclusion that increased agitation or lack thereof can have a profound impact on the aggregation 

of amyloid proteins in vitro. 
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Figure 3:  Change in fluorescence indicating β – sheet formation in amylin samples with 0 rpm 

agitation and 800 rpm agitation in comparison to Control conditions 400 rpm.  The red square 

indicates the first statistically different point. 

 

Study of pH 

The pH study was selected to investigate the effects of a more acidic pH in comparison to 

the control pH of 8.  We initially planned to observe the effects of a more basic and a more 

acidic pH on amylin aggregation.  However, we were limited due to the range of our chosen 

buffer, pH 7.1 – pH 9, and by the isoelectric point of amylin which is at a pH of 8.9.  When a 

protein is at or near its isoelectric point it will most likely aggregate 30.  Performing our study at a 

pH higher than the control’s pH of 8 would have been too close to amylin’s isoelectric point.  It 

was therefore decided to investigate the effects of more acidic conditions on amylin aggregation.  

Our pH study was conducted at a pH of 7.1.  Time points were taken every 2 hours for 8 hours, 

and then every 4 hours until 24 hours was reached.  Fluorescence results can be seen in Figure 4.  

The pH condition had a lag time to significant β-sheet formation of 4 hours. In comparison to the 

control conditions our pH study did form β-sheets more quickly as evidenced by the faster 
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increase in fluorescence.  This time point compares similarly to the increased agitation assay 

though it is different.  The largest fluorescence reading is just over 500.  However when graphed, 

the time points, instead of forming a typical sigmoidal curve, formed more of a parabolic shape.  

It would be expected for the fluorescence to increase and then level off, however, after 12 hours 

there was a decrease in fluorescence.  This could be due to a rapid increase in β – sheet 

formation followed by the fibrils falling out of solution.   

Our study suggests that a decrease in pH will result in a decrease in aggregation time.  

This is contrary to a previous amylin study which found that amyloidosis achieved a maxima at 

pH 9.5 and the rate of fibrillation was similar for the range of pH 6.5 to pH 8.5 24  Their study 

varied in that it used a different aggregation procedure, disoving their sample in DMSO, utilizing 

higher concentrations of amylin up to 150 µM.  They also had increased salt, up to 200 µM, as 

well as lower temperature, 4 and 22
o
C, and a different buffer.  The differences in our studies 

could be related to these variations. 
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Figure 4:  Change in fluorescence indicating β – sheet formation in amylin samples under pH 

conditions.  The red square indicates the first statistically significant point of β-sheet formation. 

 

Study of Salt 

The salt conditions were selected to investigate the effects of the addition of a high 

concentration of salt in comparison to the control conditions.  A concentration of 140 mM was 

chosen to satisfy the requirement of a high salt concentration, which was partially selected since 

it is comparable to the concentration of salt within the human body 31.  Time points were 

recorded every 2 hours for 12 hours with a final time point occurring at 24 hours.  Time course 

results can be seen in Figure 5.  The first significant fluorescence occurred at 4 hours.  It 

achieved a fluorescence of 1000 at 8 hours which it maintained for 12 more hours.  Though 

taking longer to develop a significant amount of β-sheets than the increased agitation condition, 

the increased salt condition developed β-sheets much faster than the control condition.   From 

this we determined that an increase in salt concentration will result in a decrease in aggregation 

time.  This is in agreement with a previous study by Jain et al. which monitored the effects of 
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increased salt on amyloid fibril formation.  They monitored fluorescence in the presence of 120, 

130, and 150 mM NaCl and found that an increase in salt concentration resulted in an increase in 

the rate of β-sheet formation. A similar study by Pryor et al. showed a decrease in lag time with 

increased salt formation  for insulin 21. 

 

Figure 5:  Change in fluorescence indicating β – sheet formation in amylin samples under Salt 

conditions. 

 

Study of Temperature 

Temperature conditions were selected to investigate the effects of increased temperature 

in comparison to the control conditions.  For the study of increased temperature it was 

determined to raise the temperature to 37
o
C in comparison to the control’s 25

o
C.  This satisfied 

the requirement of an increase in temperature and also replicated the average temperature of the 

human body 32.  Time points were taken every 2 hours for 12 hours and a final time point was 

taken at 24 hours.  Figure 6 depicts the fluorescence assay results.  The lag time to significant β-

sheet formation was detected at 6 hours.  After 4 hours, fluorescence had increased above 1000 

and stayed there for the next 20 hours.  This is indicative of β – sheet formation occurring very 
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quickly by the 4 hour time point. This is in agreement with previous work by Kudva et al. which 

proposes amyloid aggregation is “directly related to temperature” 24.  They examined amylin 

aggregation under temperatures of 4, 22, and 37
o
C respectively and found with each increase in 

temperature there was an increase in β-sheet formation.  In comparison with the control 

condition, our results along with previous research indicate an increase in temperature will result 

in an increase in β-sheet formation.   

 

Figure 6:  Change in fluorescence indicating β – sheet formation in amylin samples under 

Temperature conditions. 

 

Study of Multiple Variables 

Since the human body is a complex system, we chose to investigate a condition were 
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at 8.0.  Time points were measured every 2 hours for 12 hours and a final time point was taken at 

24 hours.  Results for this study can be seen in Figure 7. 

The first statistically significant point of fluorescence occurred at 4 hours.  Fluorescence 

increased to above 1000 after 12 hours and maintained fluorescence above 1000 for the final 12 

hours.  Our previous studies on the effects of varying salt and temperature indicated increases in 

both will decrease the aggregation time for β-sheet formation.  This study is consistent with 

those previous, although they did not appear to act synergistically.  Our results indicate 

statistically significant β-sheet formation at 4 hours which is similar to the salt study, but less 

than the temperature study.   

 

 

Figure 7:  Change in fluorescence indicating β – sheet formation in amylin samples under 

multiple variables. 
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Discussion 

In this study we monitored the effect of solution conditions on β-sheet formation in 

amylin.  After reviewing data collected the following general statements can be made concerning 

the effect of agitation, temperature, salt, and pH on amylin fibril formation time.  An increase in 

agitation will result in a decrease in fibril formation time.  An increase in temperature will result 

in a decrease in fibril formation time.  An increase in salt (NaCl) concentration will result in an 

increase in fibril formation time.  A decrease in pH will result in a decrease in fibril formation 

time.  Conditions mimicking the body will result in a decrease in fibril formation time.  Using 

statistical analysis, for each individual study we found the first time point that statistically 

significant from the zero hour time point.  We used this statistically significant time point to 

indicate the lag time before beat sheet (fibril) formation for each study.  All expected initial fibril 

formation lag times are summarized in Table 2.  

 

Table 2:  Expected lag time of beta sheet/ fibril formation based upon a 95% confidence interval. 

Study Expected Lag Time (hr), p value < .05 

Control 12 

Agitation 1 24 

Agitation 2 2 

pH  4 

Salt  4 

Temperature  6 

Multiple Variables 4 
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Chapter 3:  Capillary Electrophoresis  

Introduction 

Capillary Electrophoresis (CE)  

Capillary electrophoresis (CE) is a separation technique used to separate species based on 

their charge and size.  It employs the use of an applied voltage to generate a current resulting in 

species migration.  The speed of migration is based upon the electrophoretic mobility of the 

species, which is determined by its mass and charge.  Analytes that have a larger charge will 

move faster than those with a smaller charge. Analytes with a greater mass will move slower 

than those with a lesser mass.  In capillary electrophoresis the capillary is filled with a buffer 

solution.   When an electrical field is applied to the buffer filled capillary it induces a flow of 

electrolytes toward the cathode.  Depending on the analyte’s charge, this flow acts to either 

enhance or impede its mobility within the capillary.  This flow is further enhanced with a process 

known as electro osmotic flow (EOF).  EOF occurs when the charge on the inside of the 

capillary creates a more concentrated layer of ions which acts to creaste a bulk flow.   To utilize 

EOF we left the capillary uncoated.  The inside of the siliconized capillary is negatively charged.  

As the positive ions in the buffer solution migrate towards the cathode they stick to the 

negatively charged capillary walls.   Other positively charged ions are pulled towards  the 

capillary wall but are unable stick, creating a mobile concentrated layer.  Because there are now 

less negative ions to impede it, this concentrated layer moves more easily toward the cathode and 

acts to create a bulk flow of ions enhancing the speed of of species migration 33.   

For this study, CE was used to detect and monitor hIAPP (amylin) aggregation under 

different solutions conditions, similar to those monitored by ThT in Ch.2.  At a pH of 8 amylin 
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has a charge of +1 and therefore migrates toward the cathode.  Therefore, its mobility is 

enhanced by the presence of EOF.   

 

Dot Blots 

Dot blots are a traditional method used to detect the formation of oligomers and fibrils in 

amyloid forming proteins.  Dot blots work by employing antibodies to detect the presence of a 

protein or specific conformations of a protein.  Both A11 and OC antibodies are commonly used 

for the detection of amyloid aggregation conformations 25.  The A11 antibody has been correlated 

with toxic oligomers in amyloid proteins.   The OC antibody recognizes amyloid fibrils.  

AB18018 was used as a control to recognize human amylin 1-37.  AB18018 is specific for the 

full length 37 aa human amylin sequence.  We chose to use dolt blots with primary antibodies 

AB18018, A11, and OC for the detection of amylin oligomers and fibrils in our CE study.   

 

Materials and Methods 

Table 1 depicts the solution conditions we analyzed using CE and dot blots.  We varied 

pH, salt, and temperature, and then combined high salt, increased temperature, and no agitation 

for a multiple variable condition.  Our control solution condition was based on previous work 

with other amyloid forming proteins, insulin and amyloid β 28.   

Table 1 was developed using the solutions conditions used for the ThT study in Chapter 

2.   Sample conditions, Agitation 1 and Agitation 2 were removed due to their aggregation lag 

times (Chapter 2, Table 2).  Agitation 1 and Agitation 2 had lag times of 2 hours and 24 hours, 

respectively.  A lag time of 2 hours does not allow enough time for a study with capillary 

electrophoresis and 24 hours is to long for a feasible study. 
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Table 1:  Solution conditions to be used in Capillary Electrophoresis. 

Sample pH T (C) Agitation (rpm) NaCl (mM) 

Control 8 25 400 5 

pH 7 25 400 5 

Salt 8 25 400 140 

Temperature 8 37 400 5 

Multiple Variables 8 37 0 140 

 

Amylin Preparation 

Human amylin 1-37 (Anaspec, Freemont CA, Lot #88089), was stored at -80
o
C.  In order 

to ensure samples were monomeric a 3.91 mg/mL stock of amylin was prepared in hexofluoro-2-

proponol (HFIP).  Amylin was aliquotted into vials containing 0.0625 mg of amylin and the 

HFIP was allowed to evaporate overnight.  For CE studies, amylin was prepared to a 

concentration of 50 µM.  All samples were examined in triplicate.  Samples were initially 

dissolved in 5 mM NaOH for 10 minutes.  Following that tris buffer and salt were added 

accordingly to make conditions described in Table 1.  Samples were then subjected to 

temperature and agitation specified by their solution condition in Table 1. 

 

Dot Blots 

Dot blots were performed by spotting 2 µl of 50 µM amylin at each time point onto a 

nitrocellulose membrane (Pall, Port Washington NY).  Primary antibodies used were AB18018 

1:10000 dilution (Abcam, Cambridge MA), A11 1:2000 dilution (Invitrogen, Camarillo CA), 

and OC 1:4000 dilution (Millipore, Hayward CA).  Secondary antibody used was goat anti rabbit 
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alkaline phosphatase (Pierce, Rockford IL).  Dot blots were developed using NBT/BCIP 

developing solution (Thermo Scientific, Waltham MA). 

 

Capillary Electrophoresis 

Capillary Electrophoresis was performed using a Beckman Coulter P/ACE MDQ 

Glycoprotein System (Fullerton, CA) (214nm filter).  The machine was interfaced with an IBM 

computer and Beckman Coulter 32.0 Karat software (V 5.0).  Samples were pressure injected at 

0.5 psi for 8 seconds and separated at 7 kV for 60 minutes in a glass capillary of length, 31 cm.  

The capillary was rinsed with deionized water for 10 minutes at 50 psi and then 100 mM Tris-

HCl for 2 minutes at 20 psi between each time point.  The capillary was changed between each 

time course to prevent contamination from protein adherence to the capillary wall. 

Data Analyzation 

Capillary electrophoresis data was analyzed using Origin 8.6 (Origin Lab, Northampton 

Ma) and Microsoft Excel 2010 (Microsoft, Redmond Washington).  CE data was imported into 

Origin 8.6 and analyzed for peak area and elution time.  The data obtained was then exported to 

excel where it was graphed vs. time.   

 

Results 

Control Conditions 

Results from CE were plotted vs. time to develop electropherograms.  Electropherograms 

allow for determination of when an analyte passes the window of a capillary.  They are 

characterized by a flat baseline interrupted by a positive peak and then a continuation of the 

baseline.  The peak is generated as the species migrates past the UV window.  The peak’s area 
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and elution time can be used in comparison to other CE runs to evaluate aggregation changes to 

the species.  If the species is larger it will take longer to migrate through the capillary and will 

therefore result in an increase in elution time.  An increase in the amount of species is typically 

related to  an increase in peak area.  Electropherograms can then be plotted against each other to 

show changes in between each CE run to develop a time course. 

In capillary electrophoresis a negative peak appears in the presence of a UV transparent 

sample or zone 34.  Interestingly all five conditions (control, pH, salt, temperature, and multiple 

variables) exhibited at least one negative peak in each run.  If the peak consistently had the same 

elution time and area during every run we could simply call it a system peak 34.  However, as the 

sample aggregation time increased so did the elution time of the negative peak.  Figure 1 depicts 

a set of electropherograms forming a time course for the control condition as analyzed by CE.  

This negative peak occurred in all five solutions conditions, which indicates an increase in size 

of the migrating species affecting this negative peak.  Previous research has shown negative 

peaks to be associated with zones of varying ionic strength 34.  With this in mind, we calculated 

the ionic strength for both our separation buffer and our sample solution, Table 2. We found that 

there were differences in ionic strength for both buffers.  This could have contributed to the 

appearance of negative peaks.  
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Table 2:  Sample Ionic Strengths 

Sample Buffer (M) Sample (M) 

Control 0.058 0.052 

pH 0.092 0.066 

Salt 0.058 0.212 

Temperature 0.058 0.045 

Multiple Variables 0.058 0.18 

 

The control condition, Figure 1, exhibited this negative peak in all three time course 

repeats.  The elution time for the peak did increase as aggregation time increased (Figure 2A).   

Time course 3 exhibited 2 negative peaks, 3A and 3B.  Both of these peaks consistently eluted 

within a short amount of time of each other for the entire time course. 

The control condition exhibited an increase in the negative peak’s area for all 3 time 

courses (Figure 2B).  The peak area increases for time courses 1 and 3A and 3B were similar 

until the final time point.  The increase in peak area for time course 2 was greater than that of 

time courses 1 and 3.  The control condition did not develop a positive peak.   

While there was variance between individual time courses for a given sample condition, 

all sample conditions showed a general increase in negative peak area with an increase in 

aggregation time.  The variance between each time course could be due to protein sticking within 

the capillary.  Capillaries were changed between each time course to avoid contamination.  With 

a new capillary being used for each time course there could have been variation in the amount of 

protein sticking in each time course. 
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Figure 1:  Electropherogram of a Control CE run.  Peak of interest is the negative peak occurring 

between 0 and 10 minutes. 

 

  

Figure 2: A. Negative peak normalized control elution times vs. aggregation time.  B.  Negative 

peak normalized control peak area vs. aggregation time.   
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Figure 3:  Dot blot of Control condition.  The presence of a dot confirms the presence of amylin 

(ab18018), an oligomer (A11), or fibril (OC).  Positive dot blots have been circled because of 

difficulty in obtaining the proper contrast in photographs.   

 

Dot blots confirmed the presence of oligomers at the 2 hour time point.  The presence of 

oligomers was confirmed for the rest of the time course.  The presence of fibrils was detected at 

all time points.   Dot blot results can be seen in Figure 3.  While the dots are visible to the eye, 

they can be difficult to visualize in an image and therefore circles have been added to indicate 

the presence of a dot.  The presence of both fibrils and oligomers at time 0 indicates aggregation 

was occurring very quickly within our control sample which could explain why no new peaks 

were detected. 

Study of pH 
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Amylin’s isoelectric point is at pH 8.9.  When a protein approaches its isoelectric point it 

has a propensity to aggregate 30.  With this knowledge we assumed a lower pH than our control 

would result in an increase in aggregation time.  However, results indicated a lower pH resulted 

in lower elution times than the control.  At a pH of 7 the charge on amylin should be close to +2.  

In the control conditions with a pH of 8 the charge of amylin is +1.  At pH 7 the charge on 

amylin is twice that of the control condition.  With a larger charge we expected it to migrate 

more quickly than the control.   

The lower pH resulted in an increase in elution time for negative peaks but was variable 

between each time course.  Figure 5A depicts the negative peak elution times.  Time course 1 

initially had a decrease in elution time, but finished with a final elution time of 1.3 minutes.  

Time course 2 at first had a slow increase in elution time but after a 4 hour elution time of 1.15 

minutes it increased sharply to 2.5 minutes for the 6 hour time point. 

The pH condition showed an increase in negative peak area, but was inconsistent between 

each time course as seen in Figure 5B.  Time courses 1 and 2 were consistent until the last time 

point of which time course 1 had a peak area of 1.2 and time course 2 a peak area of 2.5.  Time 

course 3 had a greater initial increase than 1 and 2, and finished with a peak area of 2 for the 6 

hour time point. Time courses 2 and 3 both finished the 6 hour time point with greater peak areas 

than the control. 

As seen in Figure 5C, pH elution times for the positive peak were not consistent.  The 

elution times at the 2, 4, and 6 hour time points for time course 1 were all less than the initial 

elution time.  Time course 2 showed an initial decrease for time points 2 and 4 followed by an 

increase for the 6 hour time point.  The CE was unable to detect a peak after 2 hours for the third 

time course. 
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The pH conditions exhibited an overall decrease in peak area for all three time courses.  

Peak area for time course 1 decreased to 0.8 at 6 hours.  Peak area for time course 2 decreased to 

0.2 by 6 hours Peak area for time course 3 decreased to 0.8 at 2 hours and then was no longer 

detectable.  Figure 5D depicts positive peak area for all three time courses.   

 

 

Figure 4:  Electropherogram of a pH run.  Peaks of interest are the initial positive peak which is 

followed by the negative drop peak. 

 

  

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30

A
b

so
rb

a
n

ce
 

Time (min) 

0 Hour

2 Hour

4 Hour

6 Hour



  

30 
 

 

 

 

 

Figure 5:  A. Negative peak normalized pH elution times vs. aggregation time.  B.  Negative 

peak normalized pH peak area vs. aggregation time.  C.  Positive peak normalized pH elution 

time vs. aggregation time.  D.  Positive peak normalized pH peak area vs. aggregation time. 
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Figure 6:  Dot blot of pH condition.  Antibody ab18018 confirmed the presence of amylin.  A11 

confirmed the presence of oligomers.  OC confirmed the presence of fibrils. 

 

For the dot blot assays, ab18018 confirmed the presence of amylin at all the time points 

(Figure 6).  Oligomers were detected at the 0, 2, and 6 hour time points.  Although a positive 

oligomeric dot is not present as 4 hours, oligomers should be present and therefore it is most 

likely an experimental error.  Fibrils were detected at all time points.  Our dot blot assay 

confirmed the presence of fibrils and oligomers at time zero which indicates the positive peak 

represents amyloid oligomers/ fibrils.   

Our depicts increases in positive peak elution time and decreases in positive peak area.  

However these contradict each other.  At a pH of 7 amylin has a predicted charge of +2.  The 

more charge a protein, the less likely it will aggregate 30.  Previous work has shown as pH 

decreases so too does amylin’s aggregation rate.  Researchers found that the rate of amylin 

aggregation had maxima at pH 9.5 and that from 8.5 to 5.5 it decreased. 24.   Our research along 
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with Kudva et al. indicates a lower pH has more complex effects on aggregation making it less 

desirable to use as a study condition due to its inconsistency. 

 

Study of Salt 

Salt condition, Table 1, caused an increase in elution times and peak area for all time 

courses.  The three time courses were fairly consistent until the final 6 hour time point.  Figure 7 

depicts an electropherogram of the Salt condition.  Time courses 1 and 3 displayed negative peak 

elution times close to 1.6 minutes.  Time course 2 however, resulted in a decrease from the four 

hour time point, dropping from 1.3 minutes to 1.1 minutes.  A comparison of negative peak 

elution times can be seen in Figure 8A. 

The salt condition resulted in an initial increase of negative peak area for the three time 

courses, but following the 4 hour time point, time courses 2 and 3 decreased as shown in Figure 

8B.  Time course 1 had a slight increase between the 4 and 6 hour time points.  While 2 and 3 

followed the same trend, there were no similarities in increases of peak area between the time 

courses.  At the 6 hour time point time course 2 decreased in peak area to less than 1.  This 

decrease could be due to the transition from an oliogmeric state to a fibril state.  The increase in 

peak area indicates the presence of more species which could be amylin aggregating from a 

monomer to an oligomeric state.   

Positive peak elution times can be seen in Figure 8C.  The salt condition resulted in 

consistent increases in positive peak elution times for all 3 time courses until the final 6 hour 

time point.  At 6 hours, time course 2 showed a decrease in elution time.  The 6 hour elution 

times for time courses 1, 2, and 3 were 1.7, 1.1, and 1.6 minutes.  The consistent increases in 

elution time are indicative of the development of larger species. 
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Figure 8D depicts positive peak areas.  Salt conditions showed an increase in positive 

peak area for all three time courses.  Time course 1 finished with a peak area of 6.3.  Time 

course 2 finished with a peak area of 3.3.  Time course 3 finished with a peak area of 3.  While 

there is variance in peak area, the overall trend of increasing peak area is similar to that of the 

positive peak elution time indicating the development of larger species. 

Previous work has shown that increased salt concentration can enhance amyloid 

aggregation.  A study by Kudva showed an increase from 0 to 100 mM NaCl increased the rate 

of amylin aggregation by close to 100% 24.  A separate study found that aggregation of amyloid 

proteins rises with increased salt concentrations up to 500 mM 35.  Both our positive peak elution 

time and peak area grew with each time point which indicates the presence of an aggregating 

species.  Salt induced protein aggregation is believed to be caused by what is known as the 

hydrophobic effect 36.  This occurs when the addition of salt induces the folding of the nonpolar 

regions of a protein, promoting enhanced oliogomer and fibril formation 37.  
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Figure 7:  Electropherogram of Salt condition.  There is a system peak at 2 minutes and then a 

negative peak.  The negative peak is immediately followed by a positive peak. 
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Figures 8:  A. Negative peak normalized salt elution times vs. aggregation time.  B.  Negative 

peak normalized salt peak area vs. aggregation time.  C.  Positive peak normalized salt elution 

time vs. aggregation time.  D.  Positive peak normalized salt peak area vs. aggregation time. 
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Figure 9:  Dot blot of Salt condition.  Antibody ab18018 confirmed the presence of Amylin.  

A11 confirmed the presence of oligomers.  OC confirmed the presence of fibrils. 

 

 Dot blots for salt condition can be seen in Figure 9.  Antibody ab18018 confirmed the 

presence of amylin for all time points.  Oligomers were detected at 0, 2, and 6 hours.  The 

presence of fibrils was detected at all time points.   The 4 and 6 hour time points were noticeably 

darker for the fibril nitrocellulose membrane.  While A11 and OC both confirmed the presence 

of oligomers and fibrils the final 6 hour time point for both is more noticeable than the previous 

points.  Combining this with our positive peak area and elution times increases it is reasonable to 

suggest that we are monitoring amylin aggregation.  However, while dot blots did confirm the 

presence of oligomers and fibrils they did not provide any information about the details of the 

aggregating species.   
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Study of Temperature 

Temperature conditions showed an increase in negative peak elution time for all time 

courses which can be seen in the electropherogram in Figure 10.  Time courses 1 and 2 results 

were similar until the final time point.  For the 8 hour time point time course 1 had an elution 

time of 1.6 minutes.  Time course 2 had an elution time of 1.3 minutes.  Both time courses 

showed a decrease in elution time from the 6 hour to the 8 hour time point.  Time course 3 

showed an increase in elution time, however it was not similar to time courses 1 and 2.  Time 

course 3 had an outlier point at 2 hours and did not show a decrease in elution time from the 6 

hour to the 8 hour time points.  Its 8 hour time point finished with an elution time similar to time 

course 2, 1.4 minutes.  The overall increase in elution time indicates the development of an 

increasingly larger species migrating through the capillary.  The third time course was performed 

several weeks after the first two, which might explain some of the variation between them.  

Negative peak elution times can be seen in Figure 11A. 

Temperature conditions resulted in an increase in negative peak area for all time courses.  

Figure 11B depicts negative peak areas.  Time courses 1 and 2 showed a decrease in peak area 

between the 6 and 8 hour time points.  There was variance between all three time courses.  Time 

course 3 only showed slight increases in peak area for the whole time course.  The peak areas at 

6 hours for time courses 1, 2, and 3 were 2.2, 1.5, and 1.2.  With the drop of the final peak area, 

temperature displayed a comparable characteristic with the salt condition.  Similarly this could 

be to the transition from oligomers to fibrils.   

The temperature condition exhibited a positive peak in time courses 1 and 3.  Time 

course 1 showed an increase in peak elution time until decreasing at the 8 hour time point.   Time 
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course 3 developed a positive peak at the 6 hour time point; however it showed a decrease in 

elution time at the 8 hour time point.  Figure 11C depicts positive peak elution times. 

Temperature conditions resulted in peak area for time courses 1 and 3 and can be seen in 

Figure 11D.  Time course 1 increased to a peak area of 3.1 at 6 hours and then decreased to a 

peak area 2.8 at 8 hours.  Time course 3 developed a peak at 6 hours which increased to a peak 

area of 2.4 at 8 hours.  Time course 2 did not develop a positive peak.  The plot of temperature’s 

peak area was similar to its plot of elution time.  This decrease could be due to progression from 

oligomers to fibrils.  Previous work by Kudev et al. found that there was a direct relationship 

between temperature and amylin aggregation.  They studied amylin aggregation at 4
o
C, 22

o
C, 

and 37 
o
C 24.  They found that increased temperature resulted in higher rates of amylin 

aggregation.  The increases of elution time and peak area for time course 1 indicate the 

development of larger aggregated species, however it is difficult to draw conclusions based on 

one time course.  Time course 2 did not develop a positive peak, and the positive peak for time 

course 3 developed 6 hours after time course 1.   
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Figure 10:  Electropherogram of Temperature condition.  The area of interest is between 0 and 

10 minutes.  Initially there is a positive peak which is closely followed by a negative peak. 
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Figures 11:  A. Negative peak normalized temperature elution times vs. aggregation time.  B.  

Negative peak normalized temperature peak area vs. aggregation time.  C.  Positive peak 

normalized temperature elution time vs. aggregation time.  D.  Positive peak normalized 

temperature peak area vs. aggregation time. 
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Figure 12:  Dot blot of Temperature condition.  Antibody ab18018 confirmed the presence of 

amylin.  A11 confirmed the presence of oligomers.  OC confirmed the presence of fibrils.   

 

Dot blots can be seen in Figure 12.  Antibody ab18018 detected the presence of amylin 

for all time points.  Oligomers were detected at the 2 hour time point and confirmed for the rest 

of the time course.  Fibrils were detected at all time points.  The 6 and 8 hour time points were 

noticeably darker for both oligomers and fibrils.  The detection of both oligomers and fibrils at 

the same time indicates amyloid aggregation has occurred we cannot say capillary 

electrophoresis was able to monitor oligomer formation.  While based on previous studies as 

well as our work with ThT, it is reasonable to suggest that increased in temperature will result in 

increased amylin aggregation, we were not able to conclusively monitor amylin oligomer 

formation 24. 
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Study of Multiple Variables 

A combination of multiple variables (MV) showed an increase in negative peak elution 

time for each time course as shown in Figure 13.  Figure 14A depicts negative peak elution 

times. Time course 1 showed the greatest increase in elution time with a final elution time of 1.9 

minutes at 6 hours.  Time courses 2 and 3 finished with elution times close to 1.5 minutes.  In 

comparison to the control conditions, MV conditions behaved fairly similarly, but eluted slightly 

faster.  By 6 hours the elution time was roughly 1.6 minutes while for the control it eluted around 

1.3 minutes.  The increase could indicate larger aggregated species which could have resulted 

from the increased salt concentration as well as the increased temperature which.   

Negative peak area can be seen in Figure 14B. The MV condition showed an increase in 

negative peak area for each time course, however there was variance between the time courses 

for all time points.  In comparison with the control at the 6 hour time point the MV condition 

finished the time course with slightly greater negative peak areas.  With its increase in salt and 

temperature it was expected that the body conditions would have greater peak area than the 

control yet the control had larger peak areas at the end of its time course.   

Figure 14C depicts positive peak elution times.  The MV condition showed an increase in 

positive peak elution time for all time courses.  Time course 1 showed much higher increases in 

elution time than time courses 2 and 3.  Time courses 2 and 3 showed similar increases until the 

6 hour time point with 2 showing an elution time of 1.2 minutes and 3 an elution time of 1.6 

minutes.  The 6 hour elution times for time course 1 was 2 minutes.  While there was variance 

between the 3 time courses all showed a general trend of increasing elution time which suggested 

the development of larger aggregated species. 
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The development of larger aggregates was further confirmed after observing the results of 

positive peak area.  Positive peak areas can be seen in Figure 14D.  MV conditions showed an 

increase in positive peak area for all three time courses.  The increase for time course 2 was 

much less than time courses 1 and 3 with a final peak area of 1.3 at 6 hours.  The peak areas for 2 

and 3 were about 3 at 6 hours.   

 

Figure 13:  Electropherogram of MV condition.  There is a system peak at 2 minutes followed by 

a negative peak at 7 minutes which is immediately followed by a positive peak.  
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Figures 14:  A. Negative peak normalized MV elution times vs. aggregation time.  B.  Negative 

peak normalized MV peak area vs. aggregation time.  C.  Positive peak normalized MV elution 

time vs. aggregation time.  D.  Positive peak normalized MV peak area vs. aggregation time. 
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Figure 15:  Dot blot of Body condition.  Antibody ab18018 confirmed the presence of amylin.  

A11 confirmed the presence of oligomers.  OC confirmed the presence of fibrils. 

 

Dot blots can be seen in Figure 15.  Antibody ab18018 confirmed the presence of amylin 

for all time points.  Oligomers were detected at the 4 and 6 hour time points.  Fibrils were 

detected at all time points.  The 4 and 6 hour time points were noticeably darker for both 

oligomers and fibrils.    The presence of positive peaks that showed consistent increases in both 

peak size and peak area indicated the presence of aggregating species.  While dot blots did detect 

oligomers and fibrils, due to the detection of fibrils at all time points we were unable to use them 

to conclusively monitor the formation of oligomers and determine the identity of the aggregated 

amylin species within the capillary.   
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 In comparison with the pH, salt, and temperature studies the MV results were more 

consistent.  With the exception of positive peak area for the Salt study, the values obtained for 

normalized elution time and peak area, both positive and negative, were similar to the other 

studies.  Though there was variance between individual runs, the MV results did result in 

consistent increases for elution time and peak area.  The electropherograms revealed an 

interesting similarity between the salt and MV studies in comparison to the other three.  The 

negative peak for the salt and MV studies elutes after the positive peak while in the other three 

studies it elutes before the positive peak.  Both salt and MV studies also exhibited a system peak 

between 1 and 2 minutes.  The only similarity between the two studies was the high salt 

concentration of 140 mM NaCl. 

 

Improvements/ Causes for variance 

Our results showed an overall consistent trend that these conditions do promote 

aggregation, however some of the time courses were inconsistent with each other.  It is our belief 

that a variety of reasons led to this inconsistency.  First is the preparation of amylin.  Amylin was 

purchased from Anaspec, and had a peptide content percentage of 83%.  Therefore 17% of the 

sample was not amylin.   We do not know the identity of this 17%.  It is possible that it may have 

contained some sort of contaminant.  In addition, our preparation method involved the use of 

HFIP to dissolve the sample and aliquot it out.  There are other preparation methods available 

that might remove this 17% as well as reduce amylin to its monomeric form such as size 

exclusion chromatography.  Size exclusion chromatography separates molecules based on their 

size and molecular weight 38.  This would allow us to better purify the amylin sample so that only 

the monomeric form of amylin remains. 
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Our method of detection/ separation using capillary electrophoresis involved the use of a 

bare siliconized capillary.  The inside of this capillary is negatively charged 39.  Amylin is 

positively charged which results in “sticking” of the protein on the interior wall of the capillary 

40.  Sticking could be the cause of variance between our individual CE runs.  To alleviate this 

sticking a coating polymer can be used to neutralize the interior capillary surface.  Unfortunately, 

preliminary results with a coating polymer, PEO, had inconsistent current.  Perhaps this could be 

improved in the future by examining other coatings.  

CE can also be performed with a polymer matrix to enhance the resolution of different 

species.  We performed preliminary tests to determine if amylin could be studied using a 

polymer matrix.  Both the absorbance and currents were inconsistent.  We therefore chose to 

forgo using a polymer matrix.  It might be possible to get more consistent absorbance and current 

if we were to utilize a different polymer for both coating and separation such as PHEA or PVA 

41. 

Also of concern is the specificity of our primary ab18018 antibody.   A control study was 

conducted to confirm its specificity.  We blotted 50 µM amylin along with 50 µM BSA and our 

sample Tris buffer. We expected to only observe the amylin dot; however the ab18018 detected 

both the amylin and the BSA which can be seen in Figure 16.  The BSA blot was not as strong as 

the amylin’s, but its presence indicates the potential for a false positive.  This makes it difficult 

to use to confirm the presence of amylin within our samples.  For future work there will need to 

be a new, more specific antibody selected. 



  

48 
 

 

Figure 16:  Control dot blot study for the specificity of AB18018 antibody.  50 µM Amylin, 50 

µM BSA, and 43 mM Tris sample buffer were blotted onto a nitrocellulose membrane.  Positive 

blots have been circled. 

 

 Previous work has revealed amylin aggregation can be concentration dependent.  While 

our 50 µM amylin concentration was acceptable, higher concentrations have been shown to 

result in a faster aggregation rate 24.   It would be prudent to observe variations in concentrations 

under our solutions conditions for future work.  
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Appendix 

Mixing Table for Amylin at 50 µM 

Samples 5mM NaOH (ul) 40mM Tris –HCl (ul) 5mM NaCL (ul) 140mM NaCl (ul) 

Control 13.66 259.32 .295 0 

pH 1 13.66 259.32 .295 0 

Salt 1 13.66 250.93 0 8.68 

Agitation 1 13.66 259.32 .295 0 

Agitation 2 13.66 259.32 .295 0 

Temp1 13.66 259.32 .295 0 

Body 1 13.66 250.93 0 8.68 

 

Tris Buffer Preparation 

      Grams/liter Grams/liter 

pH 

at 

pH 

at 

pH 

at 
for 0.05 M for 0.05 M 

5°C 25°C 37°C Tris HCl Tris Base 

7.55 7 6.7 7.28 0.47 

7.66 7.1 6.8 7.13 0.57 

7.76 7.2 6.91 7.02 0.67 

7.89 7.3 7.02 6.85 0.8 

7.97 7.4 7.12 6.61 0.97 

8.07 7.5 7.22 6.35 1.18 

8.18 7.6 7.3 6.06 1.39 

8.26 7.7 7.4 5.72 1.66 

8.37 7.8 7.52 5.32 1.97 

8.48 7.9 7.62 4.88 2.3 

8.58 8 7.71 4.44 2.65 

8.68 8.1 7.8 4.02 2.97 

8.78 8.2 7.91 3.54 3.34 

8.88 8.3 8.01 3.07 3.7 

8.98 8.4 8.1 2.64 4.03 

9.09 8.5 8.22 2.21 4.36 

9.18 8.6 8.31 1.83 4.65 

9.28 8.7 8.42 1.5 4.9 

9.36 8.8 8.51 1.23 5.13 

9.47 8.9 8.62 0.96 5.32 

9.56 9 8.7 0.76 5.47 

9.67 9.1 8.79 0.69 5.53 
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Buffer was made to 43.56 mM concentration so that upon dilution with amylin, NaOH, and NaCl 

buffer concentration would be 40 mM. 

Procedures: 

40 mM pH 8 

Made at 25
o
C for use at 25

o
C 

At 25
o
C pH should be 8.0 

1. Weigh out 0.7736 mg Tris – HCl crystals (0.0049 moles) 

2. Weigh out 0.4617 mg Tris Base crystals (.0038 moles) 

3. Add to .2 L deionized H2O 

4. Titrate with Tris Base or Acid to reach appropriate pH 

5. Filter into container 

 

100 mM pH 8 

Made at 25
o
C for use at 25

o
C 

At 25
o
C pH should be 8.0 

1. Weigh out 1.776 g Tris – HCl crystals (0.0113 moles) 

2. Weigh out 1.06 g Tris Base crystals (0.00875 moles) 

3. Add to 0.2 L deionized H2O 

4. Titrate with Tris Base or Acid to reach appropriate pH 

5. Filter into container  

 

40 mM pH 8  

Made at 25
o
C for use at 37

o
C 

At 25
o
C pH should be 8.3 

1. Weigh out 0.535 g of Tris – HCl crystals (0.00339 moles) 

2. Weigh out 0.645 g of Tris Base crystals (0.00532 moles) 

3. Add to 0.2 L of deionized H2O 

4. Titrate with Tris Base or Acid to reach appropriate pH 

5. Filter into container 
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40 mM pH 7  

Made at 25
o
C for use at 25

o
C 

At 25
o
C pH should be 7.0 

1. Weigh out 0.3171 g Tris – HCl (0.0021 moles) 

2. Weigh out 0.0020 g Tris Base (1.69 E -5 moles) 

3. Add to 0.05 L deionized H2O 

4. Titrate with Tris acid to reach appropriate pH 

5. Filter into container  

 

100 mM pH 7  

Made at 25
o
C for use at 25

o
C 

At 25
o
C pH should be 7.0 

1. Weigh out 0.728 g Tris – HCl (0.00462 moles) 

2. Weigh out 0.0047 g Tris Base (3.879E -5 moles) 

3. Add to 0.05 L deionized H2O 

4. Titrate with tris acid to reach appropriate pH  

5. Filter into container  
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HFIP Preparation 

Monomerization by HFIP and storage of Amylin  

 

Stock Solutions: 

A. Assay Buffer:   
        HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) 

B. Amylin:  1mg/vial    Anaspec 
 

Procedure: 

1. Amylin is stored as a solid at -80C. Remove and place on ice when ready to prepare stock 

peptide films. 

2. Place 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on ice in the hood and allow to cool. HFIP is 

highly corrosive and very volatile. Add enough HFIP to Amylin such that the final peptide 

concentration is 1mM (e.g. 256 ul cold HFIP to 1 mg Amylin). Rinse vial thoroughly. 

3. Incubate at room temperature for 60 min, keeping vial closed. Solution should be clear and 

colorless. Any traces of yellow color or cloudy suspension indicate poor peptide quality and 

should not be used. 

4. Place peptide—HFIP solution back on ice for 5–10 min. 

5. Separate the HFIP into vials with 0.0625 mg/vial. That means each vial has 16 µL stock. 

6. Aliquot solution into non-siliconized microcentrifuge tubes. Do not close tubes. 

7. Allow HFIP to evaporate overnight in the hood at room temperature. 

8. All traces of HFIP must be removed. The resulting peptide should be a thin clear film at the 

bottom of the tubes. The peptide should not be white or chunky. 

9. Store dried peptide films over desiccant at -80C. These stocks should be stable for several 

months.  
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Sample Preparation 

Agitation 1 

1. Remove vial with .0625 mg amylin from -80oC freezer 

2. Prepare 50µM concentration using a proportion of 5 mM NaOH (add 13.66 µL of 5 mM 

NaOH to vial) 

3. Let dissolve for 10 minutes 

4. Dilute into appropriate tris buffer by adding 259.3 µL of 43.56 mM Tris – HCl pH 8 

(This will depend on which condition you are using.) 

5. Add enough NaCl to solution such that the final NaCl concentration is 5 mM (add 0.295 

µL, total volume should now be 273.27 µL) 

6. Place on shaker at 0 rpm and 25
o
C. 

7. Take time points according for the condition you are using. 

 

Agitation 2 

1. Remove vial with .0625 mg amylin from -80oC freezer 

2. Prepare 50µM concentration using a proportion of 5 mM NaOH (add 13.66 µL of 5 mM 

NaOH to vial) 

3. Let dissolve for 10 minutes 

4. Dilute into appropriate tris buffer by adding 259.3 µL of 43.56 mM Tris – HCl pH 8 

(This will depend on which condition you are using.) 

5. Add enough NaCl to solution such that the final NaCl concentration is 5 mM (add 0.295 

µL, total volume should now be 273.27 µL) 

6. Place on shaker at 800 rpm and 25
o
C. 

7. Take time points according for the condition you are using. 

 

Body 1 

1. Remove vial with .0625 mg amylin from -80oC freezer 

2. Prepare 50µM concentration using a proportion of 5 mM NaOH (add 13.66 µL of 5 mM 

NaOH to vial) 

3. Let dissolve for 10 minutes 

4. Dilute into appropriate tris buffer by adding 250.9 µL of 43.56 mM Tris – HCl pH 8 for 

use at 37
o
C (This will depend on which condition you are using.) 

5. Add enough NaCl to solution such that the final NaCl concentration is 5 mM (add 8.679 

µL, total volume should now be 273.27 µL) 

6. Place on shaker at 0 rpm and 37
o
C. 
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7. Take time points according for the condition you are using. 

Control 1 

1. Remove vial with .0625 mg amylin from -80oC freezer 

2. Prepare 50µM concentration using a proportion of 5 mM NaOH (add 13.66 µL of 5 mM 

NaOH to vial) 

3. Let dissolve for 10 minutes 

4. Dilute into appropriate tris buffer by adding 259.3 µL of 43.56 mM Tris – HCl pH 8 

(This will depend on which condition you are using.) 

5. Add enough NaCl to solution such that the final NaCl concentration is 5 mM (add 0.295 

µL, total volume should now be 273.27 µL) 

6. Place on shaker at 400 rpm and 25
o
C. 

7. Take time points according for the condition you are using. 

pH 1 

1. Remove vial with .0625 mg amylin from -80oC freezer 

2. Prepare 50µM concentration using a proportion of 5 mM NaOH (add 13.66 µL of 5 mM 

NaOH to vial) 

3. Let dissolve for 10 minutes 

4. Dilute into appropriate tris buffer by adding 259.3 µL of 43.56 mM Tris – HCl, pH 7.0  

5. Add enough NaCl to solution such that the final NaCl concentration is 5 mM (add 0.295 

µL, total volume should now be 273.27 µL) 

6. Place on shaker at 400 rpm and 25
o
C. 

7. Take time points according for the condition you are using. 

Salt 1 

1. Remove vial with .0625 mg amylin from -80oC freezer 

2. Prepare 50µM concentration using a proportion of 5 mM NaOH (add 13.66 µL of 5 mM 

NaOH to vial) 

3. Let dissolve for 10 minutes 

4. Dilute into appropriate tris buffer by adding 250.3 µL of 43.56 mM Tris – HCl pH 8 

(This will depend on which condition you are using.) 

5. Add enough NaCl to solution such that the final NaCl concentration is 5 mM (add 8.679 

µL, total volume should now be 273.27 µL) 

6. Place on shaker at 400 rpm and 25
o
C. 

7. Take time points according for the condition you are using. 

Temp 1 

1. Remove vial with .0625 mg amylin from -80oC freezer 
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2. Prepare 50µM concentration using a proportion of 5 mM NaOH (add 13.66 µL of 5 mM 

NaOH to vial) 

3. Let dissolve for 10 minutes 

4. Dilute into appropriate tris buffer by adding 259.3 µL of 43.56 mM Tris – HCl pH 8 for 

use at 37
o
C (This will depend on which condition you are using.) 

5. Add enough NaCl to solution such that the final NaCl concentration is 5 mM (add 0.295 

µL, total volume should now be 273.27 µL) 

6. Place on shaker at 400 rpm and 37
o
C. 

7. Take time points according for the condition you are using. 

 

 

Dot Blot Protocol 

Procedure 

AB 18018 primary antibody 

1. Use only tweezers when handling nitrocellulose membranes 

2. Cut nitrocellulose membranes into half inch wide strips 

3. Spot 2 µL of sample onto each membrane for each time point 

4. After all spots have been applied to membrane, allow last applied spot to dry, approx 10 

min to 1 hour 

5. Block membranes in 5% nonfat milk/TBS-T solution (15 ml) at RT for 1 hour with gentle 

shaking 

6. Wash membranes 3 times in 1X TBS – T  

7. Cover each membrane with the following amounts of primary antibody AB18018 5 mL 

0.1% BSA/TBS-T + 1.0  µL 6E10 primary antibody (1:5000 dilution) 

8. Incubate overnight at 4 degrees C 

9. Decant antibody solution and rinse 3 times in 1X TBS – T  

10. Cover membrane with 5 ml 0.1% BSA/TBST + 10.0 ul secondary antibody (goat-anti-

mouse conj. Alkaline phosphatase) at RT for 1 hour with gentle shaking 

11. Decant antibody solution and rinse 3 times with 1X TBS – T  

12. Apply 5 mL of visualization solution and shake gently 

13. Decant solution and use water to stop reaction when dots develop 

14. Dry in a kim wipe 

A11 primary antibody 

1. Use only tweezers when handling nitrocellulose membranes 

2. Cut nitrocellulose membranes into half inch wide strips 
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3. Spot 2 µL of sample onto each membrane for each time point 

4. After all spots have been applied to membrane, allow last applied spot to dry, approx 10 

min to 1 hour 

5. Block membranes in 5% nonfat milk/TBS-T solution (15 ml) at RT for 1 hour with gentle 

shaking 

6. Wash membranes 3 times in 1X TBS – T  

7. Cover each membrane with the following amounts of primary antibody AB18018 5 mL 

0.1% BSA/TBS-T + 1.0  µL 6E10 primary antibody (1:5000 dilution) 

8. Incubate overnight at 4 degrees C 

9. Decant antibody solution and rinse 3 times in 1X TBS – T  

10. Cover membrane with 5 ml 0.1% BSA/TBST + 10.0 ul secondary antibody (goat-anti-

mouse conj. Alkaline phosphatase) at RT for 1 hour with gentle shaking 

11. Decant antibody solution and rinse 3 times with 1X TBS – T  

12. Apply 5 mL of visualization solution and shake gently 

13. Decant solution and use water to stop reaction when dots develop 

14. Dry in a kim wipe 

OC primary antibody 

1. Use only tweezers when handling nitrocellulose membranes 

2. Cut nitrocellulose membranes into half inch wide strips 

3. Spot 2 µL of sample onto each membrane for each time point 

4. After all spots have been applied to membrane, allow last applied spot to dry, approx 10 

min to 1 hour 

5. Block membranes in 5% nonfat milk/TBS-T solution (15 ml) at RT for 1 hour with gentle 

shaking 

6. Wash membranes 3 times in 1X TBS – T  

7. Cover each membrane with the following amounts of primary antibody AB18018 5 mL 

0.1% BSA/TBS-T + 1.0  µL 6E10 primary antibody (1:5000 dilution) 

8. Incubate overnight at 4 degrees C 

9. Decant antibody solution and rinse 3 times in 1X TBS – T  

10. Cover membrane with 5 ml 0.1% BSA/TBST + 10.0 ul secondary antibody (goat-anti-

mouse conj. Alkaline phosphatase) at RT for 1 hour with gentle shaking 

11. Decant antibody solution and rinse 3 times with 1X TBS – T  

12. Apply 5 mL of visualization solution and shake gently 

13. Decant solution and use water to stop reaction when dots develop 

14. Dry in a kim wipe 
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Th-T Protocol 

Procedure:  1 mM Th-T Stock Solution 

1. Weigh out 9.566 mg of Th-T powder 

2. Mix with 30 mL deionized water 

Procedure:  Th-T solution 5mM NaCl and pH 8 for use at 25
o
C 

Th-T should be in a concentration of 35.7 µM  

1. Take a 15 mL tube and fill with 2407.87 µL Tris H-Cl pH 8 for use at 25
o
C 

2. Add 2.27 µL 4400 mM NaCl 

3. Add 89.29 µL 1 mM Th-T stock solution 

Total volume should be 2500 µL 

Procedure:  Th-T solution 5mM NaCl and pH 8 for use at 37
o
C 

Th-T should be in a concentration of 35.7 µM  

1. Take a 15 mL tube and fill with 2407.87 µL Tris H-Cl pH 8 for use at 37
o
C 

2. Add 2.27 µL 4400 mM NaCl 

3. Add 89.29 µL 1 mM Th-T stock solution 

Total volume should be 2500 µL 

Procedure:  Th-T solution 140mM NaCl and pH 8 for use at 37
o
C 

Th-T should be in a concentration of 35.7 µM  

1. Take a 15 mL tube and fill with 2331.16 µL Tris H-Cl pH 8 for use at 37
o
C 

2. Add 79.55 µL 4400 mM NaCl 

3. Add 89.29 µL 1 mM Th-T stock solution 

Total volume should be 2500 µL 

Procedure:  Th-T solution 5mM NaCl and pH 7 for use at 25
o
C 

Th-T should be in a concentration of 35.7 µM  

1. Take a 15 mL tube and fill with 2407.87 µL Tris H-Cl pH 7 for use at 25
o
C 

2. Add 2.27 µL 4400 mM NaCl 

3. Add 89.29 µL 1 mM Th-T stock solution 

Total volume should be 2500 µL 
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CE Protocol 

Capillary length 

Cut capillary to appropriate length (31 cm) using jig 

Separation Sequence 

1. Rinse capillary with DI water for 10 minutes at 50 psi 

2. Rinse capillary with 100 mM Tris for 2 minutes at 20 psi 

3. Inject sample into capillary at 0.7 psi for 8 seconds 

4. Separate at 7 kV for 60 minutes 

*When programming the CE all steps should be done reverse so that separation occurs in the 

short length of the capillary. 

A new capillary should be used before each time course.  
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