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ABSTRACT 

MOLECULAR INTERACTIONS BETWEEN THE WilLMS' TUMOR 

TRANSCRIPTION FACTOR AND THE ARYL HYDROCARBON RECEPTOR 

DURING NEPHROGENESIS AND ITS IMPACT ON FETAL PROGRAMMING 

OF RENAL DISEASE 

Adrian Nanez 

December 3, 2007 

Embryonic development requires the orchestration of temporally precise 

genetic events that culminate in the formation of a complete organism. The 

molecular mechanisms responsible for ontogenesis are regulated by 

environmental and somatic factors in utero that activate or repress the 

expression of numerous genetic elements resulting in fetal programming of adult 

diseases. The aryl hydrocarbon receptor (AHR) is an important nuclear 

transcription factor both during embryogenesis and throughout maturity in 

multiple organisms. Building upon interesting studies establishing a direct, novel 

link between AHR anel post-transcriptional regulation of the \Nilms' tumor 

suppressor (WT1) gene, the overall goal of the project was to elucidate the role 

of AHR in the regulation of WT1 during nephrogenesis. The evidence shows that 
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in utero exposure to environmentally relevant exposures of benzo(a)pyrene 

(BaP), a polycyclic aromatic hydrocarbon (PAH) and AHR Iligand, results in AHR 

allele-specific deficits in renal development manifested as decreased numbers of 

glomeruli, induction in urinary albumin, and podlocytopenia. These findings were 

consistent with metanephric and organ culture data where PAHs caused AHR 

allele-specific reduction in renal cell differentiation markers, dysregulation of WT1 

mRNA splice variants, and decreases 111 direct 'NT1 transcriptional targets. 

Observed deficits were linked to disruption of constitutive AHR signaling, as 

siRNA-mediated AHR degradation reproduced similar effects. Collectively, this 

evidence defined a novel role for the AHR in renal development and in fetal 

programming of PAH-induced environmental disease. 
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CHAPTER 1 

INTRODUCTION 

Embryonic development requires the orchestration of temporally precise 

genetic and genetic events that culminate in the formation of a complete 

organism. The molecular mechanisms responsible for ontogenesis are regulated 

by environmental and somatic factors in utero that activate or repress the 

expression of numerous genetic elements. The aryl hydrocarbon receptor (AHR) 

is an important nuclear transcription factor both during embryogenesis and 

throughout maturity in multiple organisms. The discovery of potent, 

environmental chemicals that act as AHR ligands has revealed that dysregulation 

of AHR function during embryonic development can have deleterious effects. Of 

relevance to this project, from a medical perspective, are epidemiological reports 

that maternal exposure to environmental tobacco smoke, a complex mixture of 

chemicals containing high concentrations of ligands of the AHR such as 

polycyclic aromatic hydrocarbons (PAH), mediates developmental abnormalities 

(Sasaki et al., 2006). Also of note is that children of parents who work in 

occupations associated with increased exposure to AHR ligands have a higher 

incidence of Wilms' tumors (Olshan et al., 1990). The discovery of novel 

functions of AHR during development, coupled to molecular interactions of AHR 



with developmental transcription factors highlight a potential mechanism for 

compromised development following disruption of AHR signaling. This 

dissertation focuses on the interactions between AHR and WT1 in the regulation 

of nephrogenesis. 

Renal development proceeds in three morphologically distinguishable 

stages: the pronephros, mesonephros., and metanephros. During 

embryogenesis, the kidney derives from Hle nephric ridge in the intermediate 

mesoderm. At gestational day 8 in mice and day 22 in humans, the pronephric 

duct gives rise to the pronephros which elongates to form the Wolffian duct. A 

morphologically distinct mesonephros appears in mice at gestational day 9.5 and 

day 24 in humans. During mesonephric development, glomeruli are linked to the 

Wolffian duct forming immature nephrons. Shortly thereafter, the mesonephric 

ducts and remnants of the tubular structure are incorporated into development of 

the male genital system and disappear altogether in females (Sakurai and 

Nigam, 2000). 

The metanephros (also referred to as the permanent kidney) develops at 

gestational day 11 in mice and day 28 in humans. During metanephric 

development, the Wolffian duct develops into the ureteric bud which then enters 

the nephrogenic mesenchyme and stimulates condensation of mesenchymal 

cells around the invading ureteric bud. The reciprocal interactions between the 

invading ureteric bud and the metanephric mesenchyme initiate mesenchymal-



epithelial cell transformation (MET) wherein epithelial cells are stimuilated to 

differentiate into the precluding structures for glomerular development (Kuure et 

al.,2000). Both proximal and distal tubules are derived from mesenchymal cells 

receiving differentiation signalls from the invading ureteric bud. Reciprocal 

signals stemming from the induced mesenchyme stimulate branchin~J 

tubulogenesis of the ureteric bud culminating in development of the collecting 

duct system. 

Of importance to our work are the mechanisms that ~Jovern the 

mesenchymal-to-epithelial transformation and the resulting influence on 

metanephric development and renal function. Growth of the ureteric bud from 

the Wolffian duct is regulated by the Wilms' tumor (WT1), Pax2, Lim1, Sall1, and 

Eya1 transcription factors in cooperation with the ancillary proteins formin, Gdnf, 

Ret, and Gfra1 (for review see (Kuure et aI., 20(0). Homozygous deletion of only 

one regulator is sufficient to inhibit ureteric bud outgrowth causing bilateral renal 

agenesis or severe forms of renal dysgenesis (Kreidberg et al., 1993a; Maas et 

al., 1994; Pichel et aI., 1996; Sanchez et al., 1996; Schuchardt et aI., 1994; 

Shawlot and Behringer, 1995a; Torres et al., 1995; Treanor et aI., 1996; Xu et aI, 

1999). Pax2-null mice do not develop the caudal portion of the Wolffian duct and 

do not develop the ureteric bud (Torres et aI, 1995). In WT1-null mice, ureteric 

bud growth is stunted resultin~l in renal aplasia (Kreidberg et al., 1993a). Sall1 

deficiency does not alter ureteric bud growth, but inhibits invasion of the 

metanephric mesenchyme resulting in bilateral renal aplasia (Nishinakamura et 

.., 
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aI., 2001). Gdnf produced in the metanephric mesenchyme functions with Ret to 

promote ureteric bud outgrowth. Disruption of either Gdnf or Ret alters renal 

branching morphogenesis dUE~ to improper uretleric bud outlJrowth (Cacalano et 

aI., 1998; Schuchardt et aI., 1!994). 

A cascade of genetic events initiated by transcriptional control from master 

switches including WT1, Lim1, and Pax2 transcription factors regulate MET 

(Figure 1) (Kuure et al., 2000) . WT1 is a known regulator of Pax2 which in turn 

binds to the 5' promoter of Gdnf to induce transcription (Brophy et aI., 2001). 

Lim1-null mice develop a mesonephros, but are devoid of adult kidneys due to 

deficits in Pax2 transcriptional control (Tsang et al., 2000). 'While the importance 

of master switch transcriptional regulators is well-established, the mechanisms 

controlling their function and the downstream consequences are poorly 

understood. 

Other influences in ureteric bud morphogenesis are cellular interactions 

involving extracellular matrices (ECM) from both the ureteric bud and the 

metanephric mesenchyme. ECM protein expression is tightly regulated via 

growth factor signaling pathways which, in turn, are regulated by master switch 

transcription factors. Laminins compose the majority or the mature basement 

membrane (Engel, 1993), and have been shown to participate in branching 

morphogenesis and tubulogenesis. Exposure to anti-laminin5 blocking antibody 

inhibits renal development of cultured metanephroi by preventing association 
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Figure 1. Representation ()f ureteriic bud and metanephric mesenchyme 

interactions in nephron development. Renal cell differentiation requires the 

sequential activation of gene expresslion from several key regulators and 

downstream effectors. These include secreted factors (\/\lnt, FGF, BMP, and 

GDNF), receptors (c-ret), oncogenes, transcription factors (WT1, Pax2, Lim1), 

enzymes (HS2-sulfotransferase), signal transducers (RARa), proteolytic 

enzymes, extracellular matrix (integrin a8), endothelium attractant (VEGF), and 

glomerular regulators (PDGF, and nephrin) (Kuure et aI., :WOO). 
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with a3~1 and a6~4-integrin receptors (Zent et al., 2001). Laminin 1, consisting of 

a-, ~-, and v-subunits, is a critical component of epithelial cell polarization chiefly 

expressed in comma and S-shaped bodies (Durbeej et aI., '1996; Ekblom, 1993). 

In cultured metanephroi, mesenchymal cell excreted nidogen interacts with the 

laminin1 Y1-subunit to facilitate epithelial cell polarization through a mechanism 

dependent upon dystoglycan and a6~1""integrin (Ekblom et 081., 1994). Exposure 

to antibodies generated against a1, or ()1~1Y1-subunits inhibits development of 

cultured metanephroi either through binding of the dystro~Jlycan membrane 

complex or the ()6~1-integrin receptor (Sonnenberg et 081., 1990). 

Cells stemming from the ureteric bud must digest ECM proteins to 

facilitate invasion. Both matrix metalloproteases (MMPs) and serine proteases 

are known to facilitate renal development. Membrane-type matrix 1 (MT-1-MMP) 

and MMP-2 oligonucleotide antisense inhibits metanephric development 

dependent on the TIMP-2 inhibitor activity (Kanwar et 081., 1999; Ota et 081 .. 1998). 

While t-PA and u-PA serine proteases are expressed in developing metanephroi, 

and have been shown to participate in tubulogenesis in organ culture, mouse 

models deficient in expression of either protein have a normal renal phenotype 

(Carmeliet et al., 1994). Thus, renal morphogenesis requires the function of 

master switch transcription factors which directly or indirectly regulate 

intra/extracellular signaling that facilitate renal cell differentiation, branching 

morphogenesis, and ultimately nephro~Jenesis. 
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The Wilms' tumor suppressor transcription factor (VVT1), in concert with a 

variety of transcriptional co-regulators, guides renal development through both 

direct and indirect modulation of target genes necessary for renal cell 

differentiation including syndecan1 (Synd1), Pax2, E-cadherin (E-cad), insulin-like 

growth factor /I (lgf2r), epidermal growth factor receptor (E!~fr) and retinoic acid 

receptor-a (Rara) (Hosono et aI., 2000; Hosono et aI., 19199; Ryan et aI., 1995). 

The WT1 gene encodes a Cisr His2 zinc fingered protein that can regulate 

biological events via transcriptional activation of target genes or by association 

with factors participating in RNA processing. The WT1 gene was first 

characterized as one of the gE~netic causes of the pediatric nephroblastoma, 

Wilms' tumor, which is histolo!Jically characterized by cellular populations of 

epithelial, stromal, and undifferentiated phenotype (Bennin!Jton and Beckwith, 

1975). Whille WT1 is only inactivated in 15% of Wilms' tumors, dysregulation of 

WT1 function results in clinical manifestation of developmental deficiencies 

affecting genitourinary development such as WAGR (Wilms' tumor, aniridia, 

genitourinary defects and mental retardation), Beckwith-\/viedemann, Denys

Drash, and Frasier syndrome (for review see(Lee and HabE~r. 2001 )). 

Of importance to our work is the ability of WT1 to function as a "master 

switch" regulating mesenchymal-epithelial differentiation in renal development 

(Avner, 1993). In both humans and mice, WT1 protein is expressed in the 

condensing mesenchyme, renal vesicle, and glomerular epithelium of developing 

kidney (Buckler et al., 1991; Pritchard-Jones et al., 1990). In adulthood, visceral 
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epithelial cells (podocytes) of the kidnE!y and Sertoli cells of the seminiferous 

tubules in the testis are the only populations that express \/\/T1. Homozygous 

WT1-/- mice do not develop normally, die in utero, and do not differentiate into 

metanephric kidney from the existing pronephros (Kreidber~l et al. ,1993b). 

WT1 activity is regulated in cis by different ratios of its own splice variants 

or in trans by proteins such as bone marrow zinc finger 2 (BMZF2), Pax2, and 

Par4 (Hohenstein and Hastie, 2006; Lee et aI., 2002). Wr'l protein expression 

varies from 36 possible isoforrns resulting from alternative splicing, start codons, 

and RNA editing (Filgure 2) (Hohenstein and Hastie, 2006). Perhaps the most 

studied regulatory mechanism involves the formation of \/\/T'l ±KTS splice 

variants. KTS splice variants are formed at a site in exon 9 via the insertion of a 

Iysine-threonine-serine (KTS) between the third and fourt~l zinc finger. The 

resulting change tarlgets -KTS WT1 protein expression for the nucleus and 

modifies DNA binding specificity leading to activation and/or repression of 

different genetic elements (Menke et aI., 1998b; Niksic et al., 2004). WT1 protein 

from the +KTS mRNA transcript localizes to the nucleus and is thou!~ht to 

participate in RNA processing via interactions with known splicing factors such as 

U2AF65 (Davies et aI., 1998; Ladomery et aI., 2003; Larsson et aI., 1995). In 

mouse models, deletion of either the -KTS or the +KTS is lethal soon after birth 

due to distinct renal deficits (Hammes et aI., 2001). In humans, reduced 

WT1 +KTS mRNA isoform results in severE~ kidney and gonad developmental 

deficits, collE~ctively known as Frasier syndrome (Barbaux et al., 1997). Similarly, 
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Figure 2. Schematic representation of the WT1 gene. Accounting for 

alternative transcriptional start sites and rnRNA splicing, the WT1 locus encodes 

for at least a theoretical maximum of 36 isoforms. Alternative start codons, 

exons, splice sites, and RNA editing are depicted in red. Functional domains of 

known biological importance are depicted in green (Hohenstein and Hastie, 

2006). 
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mouse models with homozygous deletion of the -KTS WT1 variant results in 

small kidneys, reduced glomeruli number, a decrease in nephrogenic area, as 

well as streak gonads (Hammes et al., 2001). +KTS-null mice achieve a higher 

degree of renal maturation, compared to --KTS -/- mice, characterized by 

immature glomeruli and undifferentiated podocyte cell populations resulting in 

renal nephropathy E~videnced by hematuria (Hammes et al., 2001). This 

demonstrates that the integrity of WT1 function as regulated by mRNA splice 

variant ratio is critical to renal development. 

Addition of 1"7 amino acids comprising the entirety of exon 5 (±17aa) 

occurs in a region chiefly thought to re!~ulate transactivation with regulatory 

partners and nuclear translocation (Robelis, 2005; Wang et a/., 1995). Insertion 

or deletion of 17aa does not alter renal development morphologically, and to date 

the impact of these isoforms on WT1 function remains uncertain. 

Overexpression of +17aa has been reported in human Wilms' tumor (Simms et 

al., 1995). In cell culture models, +17aa overexpression alters cellular 

morphology and induces proliferation (Hewitt and Saunders, 1996). In lymphoma 

cell lines +17aa oVE~rexpression inhibits apoptosis by repressing expression the 

pro-apoptotic protein Bak (Ito et a/., 2006). Our work shows that induction of 

+17aa WT1 protein correlates with loss of renal cell differentiation markers Igf1 r, 

Wnt4 and E-cad (Falahatpisheh and Ramos, 2007). 

12 



Yet another regulatory domain occurs at the N-terminal residues 1-182 

which encode a dimerization region implicated in the regulatory mechanism 

exerted by dominant negative mutants (Englert et a/., 1995; Reddy et aI., 1995). 

To date, the mechanisms regulating WT1 function are poorly understood. The 

majority of evidence supports the theory that WT1 is regulated by relative 

abundance of mRNA isoforms resulting in proteins that function to either repress 

or promote transcription of genetic targets necessary for renal cell differentiation. 

The relative contribution that +KTS plays in RNA processing has yet to be 

determined .. The molecular mechanisms re!~ulating WT1 transcription, splicing, 

and overall function remain uncertain. Work in our laboratory suggests that 

integrity of AHR signaling functions directly and/or indirectly in regulation of WT1 

mRNA ratios. 

The aryl hydrocarbon receptor was the first characterized member of the basic 

helix loop helix- Per Arnt Sim (bHLH-PAS) family of transcription factors (Figure 

3). The PAS domain is characterized by a region of homology between the 

founding members Per (the protein product of the Orosophila Period gene) 

(Reddy et al., 1986), ARNT (the AHR nuclear translocator) (Hoffman et aI., 

1991), and Sim (the product of the Orosophila-Single minded locus) (Nambu et 

al., 1991). Eukaryotic PAS domains serve as recognition sites for interactions 

with other PAS proteins, cellular chaperones, or in the case of the AHR, a 

regulatory ligand binding site. The bHLH domain also participates in recognition 

of other bHLH and facilitates recognition of the major groove of tar~let genetic 

13 



Figure 3. Members of the PAS family. Domain structures for the founding 

members PER, ARNT, and SIM are shown as well as others including AHR, HIF-

1, TRH, and SIMILAR The basic region is depicted in blue, basic helix-Ioop

helix in grey, PAS domain in red, and transactivation domain in yellow. 
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elements (Murre et a/., 1994). While bHLH-PAS proteins share similar structure 

and function, the AHR is the only member known to be re!~ulated by ligand 

activation (Figure 4). 

The AHR was initially characterized due to its participation in the induction 

of xenobiotic metabolizing enzymes (XMEs) necessary for removal of exo!~enous 

compounds. Early work showed that response to xenobiotics such as polycyclic 

aromatic hydrocarbons (PAHs), known inducers of XMEs, varied between strains 

of mice that were highly responsive (C57BLl6,J) and nonresponsive (DBA/2) with 

respect to induction of XME machinery. Genetic manipulation creating congenic 

strains expressing different AHR alleles identified a single autosomal locus 

coined AH locus (Goujon et a/., 1972; Nebert et a/., 1972). However, it was not 

until the development of high-affinity radioligands, AHR-specific anti:bodies, and 

purified receptor fractions that AHR-ligand interactions were deduced. 

A. combination of various techniques has led to our current understanding 

of AHR biology in which ligand binding results in AHR disassociation from two 

molecules of the chaperone heat shock protein 90 (HSP90), binds the X

associated protein 2 (XAP2) and p32 (Figure 5). The resulting complex exposes 

a nuclear localization sequence that facilitates nuclear translocation. This 

complex, in turn, binds to the aryl hydrocarbon receptor nuclear translocator 

(ARNT) resulting in DNA binding to sequences containing 5'-GCGGGGGCG-3' 

and (TCC)n repeats (Denison and Nagy, 2003). Translocation of thE~ AHR·ligand 

16 



Figure 4. Molecular structure of the AHR. The nuclear localization (NLS), 

bHLH, PAS, and transactivation (TAD) domains are labeled. Areas 

characterized for dimerization, ligand binding, and repressor bindinn are labeled 

and depicted with lines. Cys 216 has been highlighted as a key residue for DNA 

binding and Ala 374 for high affinity ligand binding. 

17 



Figure 4 

NLS bHLH TAD Variable 

43-78 

Dimerization Repressor 

18 



Figure S. The molecular mechanism of AHR-regulated gene expression as 

mediatE~d by ligand activation. Ligand binding results in AHR disassociation 

from two molecules of the chaperone heat shock protein 90 (HSP90), binds the 

X-associated protein 2 (XAP2) and p32. The resulting complex exposes a 

nuclear localization sequence that facilitates nuclear translocation. This complex 

in turn binds to the aryl hydrocarbon receptor nuclear translocator (ARNT) 

resultin~1 in DNA binding to AHR response element (AHRRE) sequences 

containing 5'-GCGGGGGCG-3' and (TCC)n repeats. Translocation of the Ahr

ligand complex triggers proteolytic degradation. 
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complex to the nucleus can also trigger proteolytic degradation regardless of 

ARNT binding (Roberts and Whitelaw, 1999). AHR is also regulated by negative 

feedback inhibition in which the nuclear AHR complex activates transcription of 

the AHR repressor protein (AHRR) responsible for binding the xenobiotic 

response element (XRE) (Mimura et aI., 1999). 

The induction of XMEs resulting from AHR-ligand binding is the most 

widely studied function of AHR. AHR interacts with xenobiotic response 

elements (XREs) in the regulatory regions of genes such as cytochrome P450 1A 

(CYP1A 1), CYP1A2, CYP1 B1, glutathione-S-transferase Ya (GSTYa) and 

UGT1A6 NAD(P)H-quinone oxidoreductase which, in turn, function to metabolize 

PAHs into compounds modified for excretion via glutathione conjugation. An 

example relevant to our work involves the biotransformation of benzo(a)pyrene 

(BaP), a common environmental pollutant that among other effects acts as an 

AHR ligand (Figure 6). Upon exposure to BaP, P450 exprE~ssion is induced to 

catalyze the epoxidation of the parent hydrocarbon into BaP 7,8 epoxide and 

then into BaP 7,8 diol-9, 1 0 epoxide (Parkinson, 2001). While these metabolic 

steps are necessary for clearance of the hydrocarbon, they also activate BaP into 

compounds that exert deleterious effects ranging from DNA mutagenesis, 

oxidative stress, protein modifications, and disruption of molecular signaling 

pathways (for review see (Miller and Ramos, 2001 a). 

21 



Figure 6. Metabolic activation of BaP. BaP is metabolized into BaP 7,8 

epoxide by cytochrome P450's. Hydrolysis mediated by epoxide hydrolase (EH) 

creates BaP 7,8 diol which is further metabolized by cytochrome P450's into the 

BaP 7,8 diol-9, 1 0 epoxide. 
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AHR ligands are categorized as either synthetic in nature (resulting from a 

nonbiological process such as combustion or de novo synthesis) (Figure 7) or as 

naturally occurring (synthesized as part of a biological process) (Figure 8). 

Further classification into exogenous and or endogenous is difficult due to dietary 

ligands that are technically exogenous in nature, but that are transformed into 

ligands by natural biological processes. The high affinity ligands such as 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCOO), BaP and 3-methylcolanthrene (3MC) are 

synthetic in nature. Synthetic ligands bind AHR with high affinities in the pM to 

nM range whereas naturally occurring ligands such as the tryptophan metabolites 

bind with lower affinities in the nM to iJM range. 

Historically, studies have focused on the ubiquitous high affinity ligands 

and the resulting regulation of AHR biology, however evolutionary comparison 

has shown that the AHR gene is conserved across both vertebrate and 

invertebrate species of which many are not exposed to classical aromatic ligands 

(Hahn, 2002; Hahn et al., 2006). This poses the question: Are there true 

endogenous ligands that regulate AHR activity? 

The first report of a candidate endogenous AHR ligand came from studies 

in which Hepa1c1c7 cells were exposed to hemin, bilirubin and biliverdin. 

Bilirubin induced CYP1A 1 mRNA and 7-ethoxyresorufin-O-deethylase (EROO) 

activity in a dose-dependent manner (Sinal and Bend, 1997). In agreement with 
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Figure 7. Structures of selected classical AHR ligands that are considered 

synthetic in nature. All are known inducers of AHR-dependent gene expression 

(Denison and Nagy, 2003). 
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Figure 8. Structures of AHR ligands categorized as naturally occurring. All 

are derivatives arising from metabolism of tryptophan by mammalian enzymes 

(Denison and Nagy, 2003). 

27 



Figure 8 

Tryptamine L-Kynurenine 
c 

01' 

Indole Pyruvic Acid 

28 



studies identifying tryptophan metabolites as AHR ligand, aspartate 

aminotransferase expressed in mouse heart tissue activated AHR signaling by 

converting L-tryptophan into indole-3-pyruvate (Bittinger et aI., 2003). The 

compound 2-(1'H-indole-3'-carbonyl)-thiaxole-4-carboxylic acid methyl ester (ITE) 

was isolated from mouse tissue and found to act as a potent AHR agonist in cell 

extracts, cultured cells, and in vivo animal models as evidenced by AHR binding, 

CYP1A 1 protein induction and xenobiotic response element (XRE) reporter 

activity (Henry et al., 2006). While investigating the role of AHR in shear stress 

and vascular physiology, low density lipoprotein (LDL) was found to increase 

AHR signaling due largely to lipoprotein modification (McMillan and Bradfield, 

2007a). The relative contribution of either of these ligands to AHR function in 

vivo remains to be elucidated. However, it is likely that AHR signaling in vivo is 

regulated by endogenous ligands. 

Genetic polymorph isms in murine strains aided the discovery and 

characterization of the AHR gene. In mice, four distinct AHR alleles, AHb
-
1

, AHb
-

2, AHb
-
3

, and Af-f have been characterized (Poland etal., 1994). C57BLl6J mice 

express AHb
-
1 which encodes for the amino acid alanine at codon 375 resulting in 

a 10-fold higher ligand binding affinity (Kd=6-1 OpM) compared to DBA/2 mice 

(Kd=37pM) that express the Af-f allele containing valine at codon 375 (Okey et 

aI., 1989). Accordingly, the congenic strain D2NAhrd was developed and 

contains the exact genetic background as the C57BLl6J strain except for 

expression of the AHRd allele. While polymorphisms in mouse AHR typically 
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occur in the ligand binding domain, human polymorph isms manifest in the 

transactivation domain at codons 517,554, and 570 (Harper et al., 2002). As in 

mice, human populations express AHR variants that can vary 10-fold in TCDD 

binding affinity. However, the mechanisms for this occurrence do not involve the 

517, 554, and 570 codon polymorphic variants (Harper et aI., 2002; Nebert et aI., 

2004). The combination of 517 and 554 polymorphisms results in AHR protein 

that binds TCDD and DNA, but does not sustain CYP1A1 induction (Wong et al., 

2001a; Wong et al., 2001b). It is thought that expression of the lower affinity 

AHR, similar to the protein product from the murine AHRd allele, protects the 

majority of the human population from the toxic effects of PAHs (Harper et aJ., 

2002). With the abundance of environmental agents able to activate AHR, it is 

crucial to determine the exact nature of human AHR allelic variation and the 

resulting consequences on AHR function. 

The bulk of AHR studies have focused on modulation and/or participation 

in the response to and clearance of xenobiotic compounds. Evidence continues 

to mount implicating AHR in proliferation, development, adhesion and migration, 

and proteasomal degradation of steroid hormone receptors (for reviews see 

(8arouki et al., 2007; Ohtake et al., 2007)). Studies using AHR -/- mice support a 

scenario in which the AHR acts as an important nuclear transcription factor 

during embryogenesis and throughout maturity in multiple organisms. AHR-/

mice exhibit deficits in vascular structures stemming from a failure of the ductus 

venosus to close and result in reduced liver weight, microvesicular fatty 
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metamorphosis, prolonged extramedullary hematopoeisis, and portal 

hypercellularity (Fernandez-Salguero et aI., 1995; Lahvis et aI., 2000; Lahvis et 

al., 2005; Schmidt et aI., 1996). Our lab has shown that AHR-null mice exhibit 

delayed nephrogenesis resulting in compromised renal development as 

evidenced by nephropenia and decreases in renal vasculature (Falahatpisheh 

and Ramos, 2003; McMillan and Bradfield, 2007b). We have also shown that 

these changes can be reproduced by downregulation of AHR protein upon ligand 

binding. 

Of direct relevance to studies of renal function are experiments in which 

AHR -/- mice were found to have cardiac hypertrophy and elevated mean arterial 

pressure (Lund et aI., 2003; Lund et al., 2006). Hypertension correlated to 

increased in endothelin-1 and angiotensin II, k.nown regulators of cardiomyocyte 

hypertrophy (Gavras and Gavras, 2002; Yamazaki et aI., 1996). Angiotensin \I is 

a potent renal vasoconstrictor that constricts efferent arterioles and increases 

blood pressure. Thus, it is possible that hypertension in AHR -/- mice is caused 

by compromised renal development; although this hypothesis remains to be 

tested. More studies are required to determine how environmental PAH 

exposure affects AHR protein expression and function in the context of 

organogenesis. 

As noted previously, PAHs are compounds formed during the incomplete 

burning of organic substances such as gas, oil, wood, tobacco, and charbroiled 
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meat. The primary source of exposure occurs through inhalation of compounds 

via tobacco smoke, wood smoke, ambient air, and dietary intake. PAHs like BaP 

are hlighly lipophilic chemicals that move across cell membranes with relative 

ease. Upon entry into the cells they associate with hydrophobic molecules and 

are dispersed throughout the cell accumulating in the mitochondria and nucleus 

(Barhoumi et al., 2000; Zhu et al., 1995). Once in the bloodstream they bind 

albumin and lipoproteins and are rapidly distributed throughout the body (for 

review see (Miller and Ramos, 2001 b)). Average PAH exposure can range from 

3 to 15 jJg/day depending on dietary intake. Humans exposed to active or 

passive smoke can receive as much as 30 jJg/day (Menzie et al., 1992a; Menzie 

etal., 1992b; Santodonato etal., 1981). 

In mouse models of inhalation exposure, BaP bioaccumulates primarily in 

the kidney and to a lesser extent in the liver (Mitchell, 1982). Consistent with the 

known expression of XMEs, elimination in the liver occurs at 12 hours post

exposure while Significant amounts of BaP are still present in the kidneys for up 

to 48 hours (Mitchell, 1982). In utero exposure with radiolabeled BaP show that 

BaP enters the fetus and activates classical responses triggered by PAH 

metabolism including increases in CYP450 and BaP hydroxylase expression 

(Neubert and Tapken, 1988a; Neubert and Tapken, 1988b). 

PAH exposure is known to be a causative factor in carcinogenesis, 

atherogenesis, and embryotoxicity (for review see (Miller and Ramos, 2001 b)). 
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In mice, metabolism of BaP into compounds that give rise to DNA adduct 

formation results in tumor formation in both skin and systemic models. 

Intraperitoneal injections of the 7,8-diol-9, 10-epoxide (BPDE) metabolite induces 

systemic malignant lymphoma as a result of DNA mutagenesis (Kapitulnik et aI., 

1977). PAHs affect growth and differentiation of aortic smooth muscle cells and 

may participate in atherogenesis (Holderman et al., 2000; Kerzee and Ramos, 

2000; Ramos and Parrish, 1995). The mechanistic causalities of PAH-induced 

diseases are complicated by the variety of effects they exert such as DNA 

mutagenesis, oxidative stress, protein oxidation, and modifications of signal 

transduction pathways. 

PAH exposure during critical windows of fetal development exhibit 

teratogenic and embryotoxic effects (Lummus and Henningsen, 1995; 

MacKenzie and Angevine, 1981a; Rodriquez et al., 1999; Wells et al., 1997; 

Winn and Wells, 1997). Murine in utero exposure of 150 mg/kg BaP causes T 

cell deficiencies in offspring (Lummus and Henningsen, 1995). In utero exposure 

to as little as 10 IJg/kg results in reproductive deficits in both male and female 

offspring manifest by a reduction in the size of seminiferous tubules and corpus 

lutea deficiencies, respectively (Mackenzie and Angevine, 1981 b). 

Of relevance to our work is the extensive evidence linking maternal PAH 

exposure to fetal deficits. Fetal tobacco syndrome is characterized by maternal 

exposure to PAHs in the form of tobacco smoke and results in reductions in birth 
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weight, height, thoracic circumference (for review see (Nieburg et al., 1985)). 

Evidence supports the theory that active smoking morphologically alters the 

placenta compromising fetal capillary function resulting in a reduction of oxygen 

flow to the developing fetus (Bush et al., 2000a; Bush et al., 2000b). Sasaki et 

al. has provided the first in vivo human evidence that AHR, CYP1A 1, and GST1 

genetic polymorph isms influence fe~tal health upon maternal tobacco smoke 

exposure. Expression of AHR protein with arg/arg at codon 211 significantly 

lowered birth weight and length. Interestingly, variants of enzymes regulated by 

AHR activity (CYP1A1 m1/m2 + m2/m2) or involved in PAH elimination (GSTM1-

/-) sensitized fetuses to the effects of maternal smoking (Sasaki et a/., 2006). 

This study directly links PAH exposure to deficits in AHR signaling in the context 

of fetal programming. 

Fetal programming is a process whereby a stimulus at a sensitive critical 

period of development induces lasting effects on the structure or function of the 

organism (Barker, 2004). Some of the strongest evidence of fetal programming 

involves the correlation betwe~~n low birth weight (LBW) and compromised renal 

development. Chronic kidney disease (CKO) affects greater than 20 million 

people in the U.S .. It is thought that the two major causes are hypertension 

(HTN) and diabetes mellitus. The kidney is a key regulator of HTN. Most genetic 

mutations associated with HTI'J involve proteins expressed in the kidney and 

regulated renal function such as epithelial Na+ channel (Lifton et al., 2001). This 
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led Brenner et al. to postulate tlhat HTN may be associated with congenital 

deficits in nephron number resultin~l in impaired renal function. 

In humans, a direct com31ation exists between birth weight and nephron 

number. LBW humans have been shown to have reduced nephron numbers and 

glomerular hypertrophy. An increase in 1 kg of birth weight results in the addition 

of 250,000 nephrons (Hoy et al., 2003; Hughson et al., 2003). LBW adults with 

low nephron number are prone to nnicroalbuminuria, proteinuria, and decreased 

glomerular filtration (Celsi et al., 1998; Nwagwu et al., 2000; Sanders et al., 

2005). Thus, it is likely that intrauterine factors, including PAHs, compromise 

renal development resulting in low nephron number. The reduced renal capacity 

may result in glomerular hypertension and subsequent compensatory 

hypertrophy that in turn leads to disruption of the glomerular basement 

membrane manifest as glomerulosclerosis. Continued glomerular injury may 

lead to increases in nephron loss further reducing renal capacity as evidenced by 

decreases in Na+ excretion and glomerular filtration rates. As depicted in Figure 

9, this culminates in HTN exacerbating glomerulosclerosis, nephron loss, and 

proceeds until progressive renal failure. 

The work completed as part of this dissertation builds upon interesting 

studies completed in the Ramos laboratory for the past 10 years establishing a 

direct link between AHR and cieficits in renal cell differentiation (Alejandro et al., 

2000) and post-transcriptional regulation of WT1 isoform expression 
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Figure 9. Proposed mechanism IOf fetall programming in hypertension, 

renal disease, and glomerulalr filtration. Intrauterine factors, including PAHs, 

compromise renal development resulting in low nephron number (Celsi et a/., 

1998; Nwagwu et al., 2000; Sanders et al., 2005). Reduced renal capacity 

results in glomerular hypertension and subsequent compensatory hypertrophy 

that in turn leads to disruption of thl3 glomerular basement membrane manifested 

as glomerulosclerosis. Continued !~Iomerular injury leads to increases in 

nephron loss further reducing renal capacity as evidenced by decreases in Na+ 

excretion and glomerular filtration rates. This culminates in HTN exacerbating 

glomerulosclerosis, nephron loss, and proceeds until progressive renal failure 

(Zandi-Nejad et a/., 2006). 
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(Falahatpisheh and Ramos, 2003). Using a metanephric kidney organ culture 

system, we have shown that exposure to BaP, a hydrocarbon ligand for the AHR, 

inhibits nephrogenesis and increases -KTS/+KTS WT1 mRNA ratios. 

Hydrocarbon challenge of metanephroi extracted from AHR knockout mice are 

protected from BaP-induced deficits in nephrogenesis and express higher 

amounts of +KTS mRNA, indicating that AHR is required in nephrogenesis. 

The overall goal of the research summarized in this dissertation was to 

elucidate the role of AHR in the regulation of WT1 function during nephrogenesis. 

Specifically, studies were conducted to test the hypothesis that ligand-activated 

AHR regulates murine nephrogenesis in vivo by altering expression of renal cell 

differentiation genes through modulation of WT1 mRNA splicing. This hypothesis 

was tested by three specific aims deSigned to: 

1) Determine whether in utero BaP exposure causes AHR dependent 

inhibition of nephrogenesis and alterations in WT1 mRNA splicing; 

2) Elucidate the time-related effects of AHR ligands on nephrogenesis 

and WT1 splicing, and; 

3) Evaluate the influence of alterations in WT1 splicing on downstream 

WT1 targets and cell differentiation. 

In chapter 2, we evaluate the impact of in utero BaP exposure on 

nephrogenesis and WT1 mRNA splicing. Previous work has established that 
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exposure of metanephric kidney cultures (isolated from C57BLl6J wild type mice) 

for 4 days to BaP results in inhibition of nephrogenesis and modulation of WT1 

mRNA variants. AHR-null metanephroi exhibit similar deficits in nephrogenesis 

in the absence of BaP exposure (Falahatpisheh and Ramos, 2003). While this 

regimen was adequate for initial studies, httle was known about the effects of in 

utero BaP exposure on nephrogenesis and WT1 mRNA splicing in vivo. Thus, 

studies were designed to evaluate the impact of BaP treatment on pregnant 

C57BLl6J and D2NAHRd mice expressin~1 the responsive and nonresponsive 

AHR alleles, respectively. Of particular relevance was the fact that our studies 

examined concentrations of BaP known to be relevant to human exposures to 

the hydrocarbon. We hypothesized that iln utero BaP exposure results in AHR 

mediated inhibition of renal development and alterations in WT1 mRNA splicing. 

Chapter 3 summarizes the results of studies completed to define the 

kinetic profiles of BaP-induced inhibition of nephrogenesis and alteration of WT1 

splicing. Experiments focused on definin!J the mechanism for AHR participation 

in renal developmental control. Previous work established that exposure of 

metanephric kidney cultures to BaP for 4 days results in inhibition of nephrogenic 

differentiation and modulation of WT1 isoforms regulated by AHR. While this 

work implicated a relationship between AHR and WT1, the kinetic profiles of AHR 

activation, changes in WT1 mRNA splicing, and inhibition of nephrogenic 

inhibition had not been defined. Thus, experiments were conducted to determine 

the extent to which sub-chronic BaP exposure induces nephrogenic inhibition 
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and alterations in AHR-WT1 signaling. Through the use of pharmacological AHR 

antagonists and D2NAHRd metanephroi we examined the molecular mechanism 

by which PAHs affect nephrogenesis. We hypothesized that BaP-induced 

disruption of AHR signaling downregulates renal cell differentiation through a 

pathway that involves altered conservation of WT1 mRNA splice variant ratios. 

Chapter 4 focuses on the influence of alterations in WT1 splicing on 

downstream WT1 targets and cell differentiation. The key event in 

nephrogenesis is the transdifferentiation of mesenchymal cells to epithelial cells. 

Recent work has shown that degradation of AHR via ligand-activated 

ubiquitination or siRNA interference induces the +17aa and -KTS splice variants 

of the Wt1 gene (Falahatpisheh and Ramos, 2003; Falahatpisheh and Ramos, 

2005). Different WT1 isoforms are believed to promote and/or repress different 

genetic targets (Hosono et al., 1999; Reddy and Licht, 1996), suggesting that 

epithelial conversion is differentially influenced by different WT1 spllice variants. 

The concept that different WT1 splice varilants regulate different functions is 

consistent with the notion that translation of -KTS mRNA produces a protein 

product that localizes to the nucleus, whereas the +KTS protein displays 

preferential cytoplasmic localization. Murine kidney cell lines at two different 

stages of cellular differentiation were used to determine the role of alterations in 

WT1 splicing in the regulation of renal cell differentiation. Subsequent 

experiments were conducted to determine if alterations in various VVT1 isoforms 

lead to induction/repression of proteins directly regulated by WT1 and involved in 
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metanephric development. We hypothesized that overexpression of -KTS or the 

+17aa WT1 isoforms compromises differentiation of mK4, but not mK3 cell lines 

and selectively modulate downstream tar£lets of WT1. 
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CHAPTER 2 

DEREGULATION OF FETAL PROGRAMMING IN THE DEVELOPING KIDNEY 

BY I3ENZO(A)PYRENE 

Summary 

Polycyclic aromatic hydrocarbons (PAHs) are environmentally ubiquitous 

chemicals identified as potential disruptors of developmental programming and 

inducers of transformed phenotypes in several organ systems. Recent studies in 

this laboratory have established that exposure of developing kidneys in vitro to 

SaP, a prototypical PAH, causes deficits in renal cell differentiation and ablates 

nephrogenesis. The present studies were conducted to determine if similar 

changes are seen in vivo following in utero exposure to BaP at concentrations 

relevant to those likely to be encountered by humans during environmental 

exposures. Pregnant C57BLl6J (C57) and B6.02N-Ah,o/J (02N) mice 

expressing the wild type AHR allele or an AHR allele with reduced ligand binding 

affinity, respectively, were treated by gavage with 0.1 or 0.5 mg/kg BaP daily 

beginning 10 days post coitum (dpc) through 13. This exposure regimen was 
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designed to mimic human exposure levels during periods of nephrogenesis. 

Pregnant mice were allowed to come to term and offspring were examined at 7 

days and at 12 months post partum for indicators of renal morphology and 

measurements of renal function. Exposure to 0.1 mg/kg and 0.5 mg/kg BaP 

caused AHR allele-specific decrE~ases in ~llomerular number and altered renal 

morphology compared to vehicle-treated controls. Developmental deficits were 

primarily of glomerular origin, as evidenced by decreased podocyte numbers and 

increased levels of urinary albumin, a marker of glomerular function. Markers for 

collecting duct and distal tubule injury, namely, rat papillary antigen 1 (RPA 1) and 

glutathione S-transferase Yb1 (GSTYb1), were unchanged. Both morphological 

and molecular endpoints correlated with the loss of the AHR protein in kidneys 

from BaP-exposed mice. These results implicate BaP as an influential factor in 

fetal programming during the course of murine renal development. 

Introduction 

Fetal programming is a process whereby a stimulus at a sensitive critical 

window of development induces lasting effects on the structure or function of the 

organism (Barker, 2004). Correlations between low birth weight (LBW) and renal 

development have provided some of the strongest evidence for environmental 

disruption of fetal programming. LBW humans have reduced nephron numbers 

and glomerular hypertrophy. In humans, an increase of 1 kg in birth weight 

results in the addition of 250,0010 nephrons (Hoy et aI., 2003; Hughson et al., 
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2003). LBW adults with low nephron number are prone to microalbuminuria, 

proteinuria, and decreased glomerular filtration (Celsi et al., 1998; Nwagwu et aJ., 

2000; Sanders et aI.., 2005). Reduced renal capacity results in glomerular 

hypertension and subsequent compensatory hypertrophy that in turn leads to 

disruption of the glomerular basement membrane manifested as 

glomerulosclerosis. Sustained glomerular injury exacerbates nephron loss 

further reducing renal glomerular filtration rate. A reduction in renal capacity 

further increases blood pressure and completes a futile cycle of 

glomerulosclerosis and nephron loss that may ultimately result in progressive 

renal failure (Zandi-Nejad et al., 2006). Thus, it is important to examine the 

mechanisms by which intrauterine factors disrupt ontogenesis. 

PAHs are compounds formed during the incomplete burning of organic 

substances such as gas, oil, wood, tobacco, and charbroiled meat. Routes of 

exposure include inhalation via tobacco smoke, wood smoke, ambient air, as well 

as dietary intake (USDHHS, 1995). PAH exposure is a known causative factor in 

carcinogenesis, atherogenesis, and embryotoxicity and these effects are 

believed to be mediated by mechanisms involving DNA mutagenesis, oxidative 

stress, protein oxidation, and deficits in signal transduction (for review see (Miller 

and Ramos, 2001 b)). PAHs acting as ligands of nuclear transcription factors 

such as aryl hydrocarbon receptor (AHR) can induce deficits in embryogenesis 

via disruption of constitutive AHR signaling (Falahatpisheh and Ramos, 2003; 

Nanez and Ramos, 2007; Peters et al., 11999a). 
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AHR is a basic helix-loop-helix transcription factor activated by 

endogenous and exogenous ligands including PAHs. Upon ligand binding, AHR 

disassociates from two molecules of the chaperone heat shock protein 90 

(HSP90), binds the X-associated protein 2. (XAP2) and p32. The resulting 

complex exposes a nuclear localization sequence that facilitates nuclear 

translocation. This complex in turn binds 1[0 the aryl hydrocarbon receptor 

nuclear translocator (ARNT or HIF1~) in the nucleus resulting in DNA binding to 

sequences containing 5'-GCGGGGGCG-3' and (TCC)n repeats (Denison and 

Nagy, 2003). Translocation of the AHR-linand complex to the nucleus triggers its 

proteolytic degradation regardless of ARNIT binding (Roberts and Whitelaw, 

1999). Depending upon cell tYPE~, AHR can be regulated through negative 

feedback inhibition of AHR transcriptional activation by the AH repressor protein 

(AHRR) (Mimura et al., 1999). 

In mice, four distinct AHR alleles, AHb
-
1

, AHb
-
2

, AHb
-
3

, and A~f have been 

characterized (Poland et aI., 1994). C57BLl6J mice express A~-1 which 

encodes for the amino acid alanilne at codon 375 and results in a 5-fold higher 

ligand binding affinity (Kd=6-10pM) compared to DBAl2 mice (Kd=3?pM) which 

express the AH~ allele containing valine at codon 375 (Okey et al., 1989). The 

ala-val substitution results in a conformational change that substantially 

decreases ligand binding affinity without affecting association with HSP90. This 

renders the AHRd allele functionally null as exposure to ligand does not promote 

nuclear translocation, association with ARNT, AHRRE transcriptional activation, 
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or proteasomal degradation when compared to AHRb (Poland and Glover, 1990; 

Poland et aI., 1994). Accordingly, the con!~enic strain D2NA.hrd was developed to 

contain the exact genetic background as the C57BLl6J strain except for 

expression of the Af-fRd allele (Nebert et ai., 1972). Humans express AHR 

genetic polymorphic variants that alter AHIR function. Relevant to our studies is 

that expression of AHR protein with af!~/arg at codon 211 sinnificantly lowered 

birth weight and length in offspring exposed to in utero tobacco smoke (Sasaki et 

a/., 2006). Interestingly, variants of enzymes regulated by AHR activity (CYP1Al 

m1/m2 + m2/m2) or involved in PAH elimination (GSTM1 -/-) sensitized fetuses 

to the effects of maternal smokin!~ (Sasaki et al., 2006). This study directly links 

PAH exposure to deficits in AHR signaling in the context of fetal pronramming. 

Evidence continues to mount implicating AHR in the regulation of 

proliferation, development, adhesion and migration, and proteasomal 

degradation (for reviews see (Barouki et 61/.,2007; Ohtake et a/., 20(7)). Based 

on previous findings in our laboratory, as well as others, we hypothesized that 

AHR acts as an important nuclear transcription factor durin~~ embryogenesis and 

throughout maturity (Ramos et. aI., 2007). AHR-/- mice exhibit deficits in 

vascular structures stemming from a failure of the ductus venosus to close and 

result in reduced liver weight, microvesicular fatty metamorphosis, prolonged 

extramedullary hematopoeisis, and portal hypercellularity (Fernandez-Salguero 

et al., 1995; Lahvis et aI., 2000; Lahvis et al., 2005; Schmidt et al., 1996). Our 

laboratory has shown that AHR-l1ull mice exhibit delayed nl=phrogenesis resulting 
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in compromised renal development as evidenced by nephropenia and 

decreases in renal vasculature (Falahatpisheh and Ramos, 2003; McMillan and 

Bradfield, 2007b). These changes can be reproduced by decreased AHR protein 

levels upon ligand binding (Nanez and Ramos, 2007). In addition, AHR -/- mice 

were found to have endothelin1 and angiotensin II mediated cardiac hypertrophy 

and elevated mean arterial pressure, conditions directly linked to impaired renal 

functions (Gavras and Gavras, 2002; Lund et a/., 2003; Lund et al., 2006; 

Yamazaki et al., 1996). 

Using a metanephric kidney or9an culture system, our laboratory has 

shown that BaP exposure inhibits nephro!Jenesis as evidenced by decreases in 

branching morphogenesis, glomerular number, and decreases in undifferentiated 

cells. BaP-induced developmental deficits correlate with downregulation of renal 

cell differentiation markers and expression of the AHR. Here., we test the 

hypothesis that in utero exposure to BaP inhibits nephrogenesis through a 

mechanism involving ligand-mediated disruption of AHR signaling .. As an 

evolving role for AHR in developmental biology continues to unfold, this work will 

help to determine the mechanisms by which disruption of AHR signaling alters 

fetal programming within the context of exposure to environmental chemicals. 

Methods 
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In utero SaP exposure 

Time-pregnant C57BLl6J and B.6 D2N-AHRd/j females were exposed to 

BaP (Sigma-Aldrich, St. Louis, MO) or medium chain triglyceride oil (MCT) (Mead 

Johnson Nutritionals, Evansville, IN) at doses of 0.1 mg/kg and 0.5 mg/kg, 10 

through 13 d.p.c. by oral gavage. Murine in utero exposure of 150 mg/kg BaP is 

known to cause offspring T cell deficiencies (Lummus and Henningsen, 1995). 

Thus, the concentrations chosen for study were considerably lower than those 

established for in utero toxicity and terat0genecity (Lummus and Henningsen, 

1995; MacKenzie and Angevine, 1981 a; Hodriquez et al., 1999; Wells et aI., 

1997; Winn and Wells, 1997) and whE~n normalized for species-dependent 

temporal differences in development, are representative of human exposure of at 

risk populations (Menzie et aI., 1992a; Menzie et aI., 1992b; Rebagliato et aI., 

1995). 

Sources of human and animal PAH exposure include air, water, food, and 

soil and average 6·-15 I-lg/day (MenziE~ et al., 1992a; Menzie et al., '1992b). 

Depending on environment, food is thou~Jht to be the largest contributor. Active 

or passive smoking doubles PAH exposure to 30 I-lg/day (Santodonato et a/., 

1981). Assuming an average bodyweight of 60 kg, the average human intake is 

estimated to be 0.25 I-lg/kg/day to O.E) I-lg/kg/day for passive or active tobacco 

exposure. Allowing for differences in the length of mouse and human gestation, 

0.012 I-lg/kg/day is estimated as the predicted relevant murine exposure. While 

the 0.1 and 0.5 I-lgJkg exposure levels examined in our study are higher than 
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those encountered by the general U.S. human population, they are functionally 

relevant to human polymorphisms affectin!J PAH metabolism and AHR signaling 

(Sasaki et aI., 2006; Wong et al., 2001a; Vvong et al., 2001b), and'considerably 

lower than PAH levels examined in risk assessment studies of carcinogenicity 

and teratogenicity (Lummus and Henningsen, 1995; MacKenzie and Angevine, 

1981a; Rodriquez et aI., 1999; Wells et al., 1997; Winn and Wells, 1997). 

Seven days after birth, pups were Huthanized and renal tissue was fixed in 

situ. The heart, liver, testis, and aorta were extracted to assess system-specific 

effects of in utero BaP exposure. Pups from the same litter were monitored for 

12 months and examined for markers of nephropathy. 

Glomerular morphometric analysis and Immunohistochemistry 

Resected kidneys were fixed in fresh 4% paraformaldehyde at 4°C for 12 

hr and embedded in paraffin. 5~m sections were cut and processed, then 

stained with hematoxylin and eosin. For 'Immunohistochemical analysis, slides 

were treated under pressure with Vector Antigen Unmasking Solution® (Vector 

Laboratories, Burlingame, CA). WT1 (180) (Santa Cruz Biotechnology, Santa 

Cruz, CA) or AHR rabbit polyclonal (Biomollnternational, Plymouth Meeting, PA) 

antibodies were applied overnight at 4°C in a solution of 0.3% Triton X-1 00 and 

5% goat serum (Vector Laboratories, Burlingame, CA). Primary antibodies were 

bound to a goat anti-rabbit biotinylated secondary antibody (Invitrooen-Molecular 

Probes, Carlsbad, CA), amplified with ABCelite®, developed with 
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diaminobenzidine (DAB), and counterstained with Mayer's Hematoxylin (Vector 

Laboratories, Burlingame, CA). 

Glomerular numbers were quantified manually and verified by image 

analysis. For all analyses, images of entire kidney cross sections from 5 renal 

planes were captured at 20X. Using the Zeiss Axiovision Rei 4.3 .image analysis 

software, images of entire renal cross sections were filtered for intensity, color 

thresholding, and size of glomerular v\fT1 IHC signal allowing for distinction 

between glomeruli and other structures. Values were normalized to renal area 

in all instances. 

WT1 and AHR protein was measured by optimizing thresholding relative 

to negative control serial sections. Indices of protein expression were expressed 

as sum density normalized to total renal area. Podocyte number was quantified 

using WT1 signal filtered for intensity, color thresholding, and size. All values 

were normalized to glomerular number as measured by image analysis. 

Statistical significance was evaluated using SPSS statistical software 

(SPSS, SPSS Inc., Chicago, IL) and testing for significance between groups by 

analysis of variance (ANOVA) and least sum of square difference (LSD). 

Urinary albumin 
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Individual urine samples were collected and stored at -BODC in urine 

stabilizing buffer (Biotrin International, Dublin, Ireland). Under reducing 

conditions, 11..11 of urine sample was loaded on a 4-12% Bis-Tris NuPage gel 

(Invitrogen, Carlsbad, CA) and processed for silver staining as per 

manufacturer's instructions (Invitrogen, Carlsbad, CA). Sum density values were 

calibrated to a mouse serum albumin standard curve ranging from 10 to 0.001 

1..1 gl 1..1 I. 

Urinary Renal Papillary Antigen 1 (RPAl1) and Glutathione S-transferase 

Yb1 (GSTYb1) Measurements 

Enzyme immunoassays for the quantitative measurement of RPA 1 and 

GSTYb1 were performed as per manufacture's instructions (Biotrin International, 

Dublin, Ireland). Briefly, 96 well microtiter plates were supplied conjugated with 

anti-RPA1 or GSTYb1 IgG. Urine was diluted 1/25 and equilibrated for 1 hr at 

room temperature before addition of antibody-enzyme conjugate. After substrate 

development, absorbance was read at 4!;Onm with 630nm as a refE~rence. 

Absorbance was normalized to internal controls and expressed as relative units. 

Analysis of WT1 Splice Variants 

Total RNA was extracted usin!~ TRlzol® and cDNA was synthesized using 

SuperScript II (Invitrogen, Carlsbad CA) as per manufacturer's instructions. 

Quantitative PCR using primers specific for WT1 isoforms was performed to 

detect differences in the ratio of WT1 splice variants (±KTS) and (±17aa) 
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(Falahatpisheh and Ramos, 2003; Falahatpisheh and Ramos, 2007). Primers 

were designed using Beacon Designer 5.1 to create amplicons from 150-300 

base pairs with an average melting temperature of 58°C. 

Western Blot Analysis of WT1 Prote,in Isoforms 

Protein was extracted using T PER reagent (Pierce, Rockford, IL) as per 

manufacturer's directions. Samples were run on 4-12% Bis-Tris NuPage gels 

(Invitrogen, Carlsbad, CA) under reducing conditions and transferred to a PVDF 

membrane where bound protein was detected using WT1 (180) rabbit polyclonal 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA) and a horseradish 

peroxidase-conjugated secondary antibody. Previous work in the laboratory has 

shown that differences in ±17aa mRNA splice variants can be resolved at the 

protein level via gel electrophoresis. 

Results 

Fetal SaP exposure alters renal development and function in offspring 

C57 and D2N mice had similar numbers of glomeruli at 7 day old (Figure 

1A). In utero exposure to both 0.1 and 0.5 mg/kg BaP caused a significant 

decrease in glomerular numbers in C:57 but not D2N (Figure 1A and B). 

Offspring kidneys of BaP-exposed dams exhibited a reduction in glomerular size 

and increases in undifferentiated cells compared to controls (Figure 1 B). D2N 

mice expressing the low affinity AHRC
! allele were protected from BaP-induced 

glomerular deficits (Figure 1A and B). 
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Figure 1. SaP inhibits nephrogenesis via an AHR allele specific 

mechanism. Kidneys were resected from 7-day old C57 and D2N-AHRd mice 

exposed to either 0.1, 0.5 mg/kg BaP or MCT oil vehicle in utero. Tissue was 

fixed in 4% paraformaldehyde and processed for modified hematoxylin and eosin 

staining, to visualize differentiated StruictUI'eS. Serial sections were processed for 

immunohistochemical analysis of WT1: protein and counterstained with 

hematoxylin. Glomerular number was quantified manually and verified by image 

analysis. Images of entire kidney cross sl8ctions from varying renal planes were 

captured at 20X. Intensity and color thresholding for glomerular WT1 signal was 

modified to exclude both small and large artifacts approximating glomerular 

number then normalized to renal area. Accuracy was controlled for by manual 

analysis of random images. Statistical si!~nificance was calculated by ANOVA 

and LSD post hoc tests p < 0.05. Panels A and B, show that exposure to BaP 

decreases glomerular number in C57 mice via an AHR allele-specific 

mechanism. Scale represents 200 I..lm. 
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Albuminuria is a hallmark of renal nephropathy and a common clinical 

marker for the diagnosis of renal disease (Cameron and Blandford, 1966). In 

agreement with previous work, albumin was the most abundant protein present in 

mouse urine (Figure 2B) (Marshall and W'illiams, 1987). C57 and D2N mice 

excreted similar amounts of urinary albumin demonstrating that expression of the 

AHRd allele does not affect renal development in unstressed animals (Figure 2A). 

In utero BaP exposure resulted in dose-dependent increases in albuminuria, at 

12 months old, which were dependent upon expression of the responsive AHRb 

allele. Under these conditions, D2N mice were unaffected (Figure 2A and 2B). 

Fetal SaP exposure is associated with specific glomerular deficits 

The podocyte is a key re~Julator in glomerular basement membrane (GBM) 

homeostasis by lending support to the glomerular tuft and functioning as the chief 

filtration barrier (Abrahamson, 1987; Sariola et al., 1984). Podocytes produce 

the majority of the molecular structures necessary for GBM maintenance 

(Abrahamson, 1987). Murine podocyte division halts 7 days post birth. Thus, 

impaired renal development, injury, or de-generation of the podocyte population 

results in deficits affecting adult renal function specifically impairing glomerular 

filtration (Mundel and Kriz, 1995). Immunohistochemical quantification of 

podocyte number revealed no differences between C57 and D2N mice (Figure 

2C). Both 0.1 and 0.5 mg/kg in utero BaP exposure elicited decreases in 

podocyte numbers (Figure 2C). D2N mice did not display BaP-induced deficits in 

podocyte number, further suggE~sting the importance of ligand binding in BaP-
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Figure 2. BaP exposure induc.~s glomE~rular specific injury. Urine was 

collected from 12 month old offspring C57 and D2N-AHRd mice exposed to either 

0.1, 0.5 mg/kg BaP or MCT oil in utero. Proteins were separated on a 4-12% 

Bis-Tris gel and developed by silver stain. Albumin values were normalized to 

mouse serum albumin standard curve (10, 1, 0.1, 0.01, and 0.001 fJg/fJl) and 

statistical significance was calculated by ANOVA and LSD post hoc tests p < 

0.05. Panel A, BaP alters albumin urinary levels in C57 mice via a dose

dependent, AHR allele-specific mechanism. Panel B, silver stain visualization of 

mouse urinary albumin in C57 miice exposed in utero to 0.5 mg/kg MCT oil or 

BaP. Panel C, Immunohistochemical analysis of podocyte number was 

quantified using WT1 signal filtered for intensity, color thresholding and size 

normalized to glomeruli number. BaP exposure results in AHR allele-specific 

decreases in podocyte numbers. Panel D, Immunohistochemical analysis of total 

WT1 signal quantified using WT11 normalized to podocyte number. BaP 

exposure results in AHR allele-specific decreases in podocyte numbers. 
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induced deficits in nephrogenesis (Figure 2C). As expected, both 0 1 and 0.5 

mg/kg in utero BaP exposure decreased \NT1 protein expression in an AHR 

allele specific manner (Figure 20). WT1 is a known regulator of nephrogenic 

outcomes in humans and mice (Niaudet and Gubler, 2006). WT1 activity is 

chiefly regulated in cis by expression of specific mRNA ratios resulting from 

posttranscriptional modification (HohenstE~in and Hastie, 21006; Lee et al., 2002). 

Ongoing work will examine the effects of in utero BaP exposure on WT1 mRNA 

splice variant expression in C57 and 02N mice. 

Classical markers of nephropathy such as blood urea nitrogen, urinary 

creatinine, and albuminuria generally manifest in severely compromised kidneys 

(Mathieson, 2004). A new class of urinary markers has been developed to detect 

subtle renal injury that precludes gross nephropathy. Rat papillary antigen 1 

(RPA 1) and glutathione S-transferase Yb1 (GSTYb1) are markers of collecting 

duct and distal tubule injury, respectively (Falkenberg et al., 1996; Hildebrand et 

al., 1999; Kilty et al., 1998). RPA1 is specifically produced in the papillary 

collecting duct and is released into the urine upon exposure to classical renal 

toxins (Hildebrand et al., 1999). GSTYb1 is highly expressed in the distal and 

convoluted tubules of the murine renal tubules and is released into the urine 

upon injury (Eger et al., 1997; Sundberg et al., 1994a; Sundberg et al., 1994b). 

The low level in utero SaP exposure did not alter urinary HPA 1 or (JSTYb1 levels 

in either C57 or 02N mice (Figure 3). Taken together these findings indicated 
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Figure 3. BaP exposure does not induce collecting duct or distal tubular 

injury. Urine was collected from 12-month old offspring C57 and D:2N-AHRd 

mice exposed to either 0.1, 0.5 mg/kg BaP or MCT oil in utero. Absorbances 

from enzyme immunoassay detection of RPA1 and GSTYb1 were normalized to 

internal controls expressed as relative units. Statistical significance was 

calculated by ANOVA and LSD post hoc tests p < 0.05. Panels A an B, BaP 

exposure does not alter relative amounts of RPA 1 or GSTYb1 presE~nce in urine. 
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that in utero BaP-exposure results in renatl deficits consist!:mt with glomerular 

neph ropathy. 

In utero BaP exposure decreases AHR protein expression 

Consistent with known AHR biology, in utero exposure to BaP resulted in 

dose-dependent decreases in AHR protein in C57 (Figures 4A and B). Loss of 

receptor protein correlated with AHR variant-specific reductions in glomerular 

and podocyte number, as well as increased urinary albumin. These results 

suggest that environmentally relevant in utero BaP exposures are sufficient to 

activate AHR and in doing so, promote degradation, likely altering constitutive 

signaling. 

Discussion 

Extensive in utero exposure studies have identified PAHs as potent 

modulators of fetal development that exert teratogenic and embryotoxic effects, 

(Lummus and Henningsen, 1995; MacKenzie and Angevine, 1981 a; Rodriquez et 

al., 1999; Wells et aI., 1997; Winn and Wells, 1997). However, the subtle effects 

stemming from environmentally relevant Goncentrations of PAHs have yet not 

being characterized. The known differences in murine and human renal 

development make accurate comparisons of BaP exposure challenging. Our 

exposure regimen accounts for the normalization of species differences in renall 

developmental duration and approximates likely maternal exposures that are 
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Figure 4. AHR expression correlates with deficits in m~phrogenesis. 

Kidneys were resected from 7-day old C57 mice exposed to either 0.1, 0.5 mg/kg 

BaP or MCT oil in utero. Tissue was fixed in 4% paraformaldehyde and 

processed for modified Hematoxylin and Eosin staining, to visualize differentiated 

structures. Serial sections were processed for immunohistochemical analysis of 

AHR protein and counter stained with hematoxylin. AHR signal was calculated 

by creating a thresholded value for AHR signal accounting for nonspecific signal 

from negative control serial sections processed without primary antibody and 

primary antibody neutralized with blocking peptide. Sum density was normalized 

to area and statistical significance was calculated by ANOVA and LSD post hoc 

tests p < 0.05. Panels A and B show that exposure to BaP decreases AHR 

protein levels in a dose-dependent manner. Scale represents 200 IJm. 
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functionally relevant to human polymorphisms affecting PAH metabolism and 

AHR signaling (Sasaki et a/., 2006; Wong et a/., 2001 a; Wong et at., 2001 b). 

Evidence is presented here that maternal exposure to BaP inhibits renal 

development in offspring via an AHR allele-specific mechanism characterized by 

decreases in glomerular and podocyte numbers that compromise ~llomerular 

filtration. Thus, the bioavailabity of PAHs presents a ready source for agents that 

can modify important early determinants of renal development. Specifically, the 

data shown here indicate that BaP exposures of 0.1 and 0.5 mg/kg inhibit murine 

nephrogenesis specifically in C57 but not D2N mice. These findings are in 

agreement with previous work demonstrating that repeated exposure to 

environmentally-relevant concentrations of BaP inhibit nephrogenesis of murine 

metanephric cultures as evidenced by decreases in the number of renal 

differentiated structures and molecular markers of cell differentiation 

(Falahatpisheh and Ramos, 2003; Nanez and Ramos, 2007). Classical studies 

used gross endpoints such as fertility, fetal resorptions, death and severe 

developmental gonadal and immune deficits (Harrison et a/., 1994; Lummus and 

Henningsen, 1995; MacKenzie and Angevine, 1981a; Nicol et a/., 1995; 

Rodriquez et a/., 11999; Wells et a/., 199"7; Winn and Wells, 1997). While our 

exposure regimen did not result in gross embryonic deficiencies, as measured by 

resorption, death, or morphological organ abnormalities, subtle BaP-induced 

differences become manifest as decreased glomerular numbers and 
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compromised renal function. These deficits are relevant to the development of 

adult onset renal dlisease (Sasaki et al., 2006; Zandi-Nejad et al., 2006). 

Our model in which maternal BaP insult results in decreases in podocyte 

number that impair glomerular filtration is strikingly similar to clinical 

manifestations seen in conditions such as focal segmental glomerulosclerosis 

(FSGS) or diabetic nephropathy (Hara et al., 2001; Hayden et a/., 2005; Kim et 

al., 2001; Wolf et al., 2005). Podocytes are terminally differentiated cells that line 

the glomerular basement membrane (GBM) acting as a filter-mediated size

selectivity and must structurally encompass the entire glomerular surface with 

foot processes to maintain proper filtration (Wiggins, 2007). Podocytopenia 

results in denudation of the GBM that compromise glomerular function initiating a 

cycle of injury and continued podocyt1e loss leading to progressive renal failure. 

In fact, glomerulopathies are the most common causes of end-stage renal 

disease worldwide (Hricik et a/., 1998). The impact of in utero BaP exposure on 

other glomerular cell populations such as mesangial and endothelial cells 

remains to be determined. Of interest, are findings from in vivo studies in female 

Sprague-Dawley rats exposed by gavage to weekly 10 mg/kg BaP resulted in 

progressive elevations in total urinary protein, protein/creatinine ratios and 

microalbuminuria (Nanez et a/., 2005). The nephropathic response involved 

early reductions in mesangial cell nurnbers coupled to podocyte injury as 

evidenced by effacement of foot prooess1es. 
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Of importance to our work is the evidence linking PAH exposures to renal 

injury. In humans, strong associations have been reported between occupational 

aromatic hydrocarbon exposures and glomerular diseases (Hotz, 1994; 

Robertson, 1998), smoking and albuminuria in nondiabetic patients (Pinto

Sietsma et al., 2000), and a higher risk of renal dysfunction and renal cancer 

(Sertazzi et al., 1989). Taken together with our findings, PAHs may affect renal 

development and may predispose offspring to further injury resulting from 

repeated exposure in adulthood. 

AHR signaling is implicated in SaP-induced toxicity as D2N mice 

expressing the nonresponsive AHRd alle'le are protected from nephrogenic 

deficits. Since the AHRd allele is functionally null and SaP-induced deficits 

correlate to AHR protein expression, it is likely that loss of the AHR protein and 

constitutive signaling regulates nephrogenesis irrespective of nuclear 

translocation, association with ARNT, or AHRRE transcriptional activation. AHR 

transcriptional activity is regulated by association of complexes including AHR

ARNT, NF-kappa S, AP-1, and glucocorticoid, all of which participate in 

numerous signaling pathways potentially relevant to nephrogenesis. Our work 

has identified AHR as a regulator of the 'Nilms' tumor transcription factor, a 

master regulator that initiates genetic events regulating early nephrogenesis. 

Loss of the AHR through ligand activation, genetic mutation, or siRNA-mediated 

degradation results in dysregulation of \NT1 mRNA isoforms and loss of renal cell 

differentiation markers (Falahatpisheh and Ramos, 2003; Falahatpisheh and 
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Ramos, 2007; Nanez and Ramos, 2007). Recent studies have proposed that 

AHR acts as an E3 ligase associatingl with proteasomal complexes consisting of 

DDB1, ARNT, TBL3 and CUL4B promoting degradation of sex steroid hormone 

receptors (Ohtake et al., 2007). These findings suggest a scenario in which AHR 

regulates proteasomal degradation of factors necessary for renal development, a 

hypothesis that remains to be tested. 

Expression of AHR is conserved across vertebrate and invertebrate 

species, many of which are not normally exposed to classical aromatic ligands 

(Hahn, 2002; Hahn et al., 2006). Our findings showing a correlation between the 

loss of AHR expression and compromised development (Nanez and Ramos, 

20(7), are in agreement with deficits seen in AHR-/- mice. However, these 

findings are not consistent with decreased levels of AHR protein seen in D2N 

mice-treated with BaP in utero. Thus, the nature of molecular signaling events 

regulated by AHR remain to be established. Irrespective of this observation, the 

collective evidence supports the hypothesis that AHR acts as an important 

nuclear transcription factor during embryogenesis and throughout maturity in 

multiple organisms. AHR-/- mice exhibit deficits in vascular structures stemming 

from a failure of the ductus venosus to close and result in reduced liver weight, 

microvesicular fatty metamorphosis, prolonged extramedullary hematopoeisis, 

and portal hypercellularity (Fernandez-Salguero et al., 1995; Lahvis et al., 2000; 

Lahvis et aI., 2005; Schmidt et al., 1996). Of direct relevance to our studies are 

experiments in which AHR-/- mice were found to have cardiac hypertrophy and 
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elevated mean arterial pressure, conditions known to arise from compromised 

renal function (Lund et aI., 2003; Lund et aI., 2006). We have previously shown 

that AHR-/- mice exhibit delayed nephro~lenesis resulting in compromised renal 

development, as evidenced by nephropenia and decreasE~s in renal vasculature 

(Falahatpisheh and Ramos, 2003; McMillan and Bradfield, 2007b). Small 

interfering RNA (siRNA.) mediated degradation of AHR results in decreases in 

renal cell differentiation markers (Falahatpisheh and Ramos, 2007). The 

mechanisms by which AHR signaling regulates renal cell differentiation and 

nephrogenesis remains poorly understood and, therefore, additional studies are 

warranted. 
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CHAPTER 3 

AHR SIGNALING AND NEPHROGENESIS: A MUTANT AHR ALLELE 

PROTECTS THE DEVELOPING KIDNEY FROM HYDROCARBON-INDUCED 

DEFICITS IN RENAL CELLULAR DIFFERENTIATION 

Summary 

The molecular mechanisms governing ontogenesis are regulated by 

somatic and environmental factors in utero that activate or repress the 

expression of numerous genetic elements. The aryl hydrocarbon receptor (AHH) 

is an important ligand-activated nuclear transcription factor involved in the 

regulation of cellular differentiation. Environmental hydrocarbons acting as AHH 

ligands deregulate receptor signaling to induce deleterious developmental 

deficits in several organ systems, including the kidney. Using a metanephric 

kidney organ culture system we have shown that benzo(a)pyrene (BaP), an AHR 

ligand, inhibits nephrogenesis in embryonic day 11.5 (EII.!)) C57BLl6J (C57) 

mouse embryos and alters -KTS/+KTS VVT1 mRNA ratios after a consecutive 

four-day exposure. Because WT1 (Wilms' tumor suppressor-1) functions as a 

master switch in the re~Julation of renal cE~1I differentiation, here we tested the 
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hypothesis that modulation of AHR signaling by SaP medilates changes in WT1 

splice variant ratios and expression of downstream effectors of WT1 leading to 

deficits in nephrogenesis. The data show that altered WT1 mRNA ratios in 

C57SLl6J mice expressing the AHRb allele correlated with a reduction in the 

mRNAs of multiple WT1 transcriptional targets (Synd1, Pax2, Egfr and Rara), as 

well as downstream markers of renal cell differentiation (Sfrp1, Igf1 r, Igf2r, Wnt4, 

Lhx1, and E-·cad). Metanephroi from S6.D2N-AHRd/J mice expressing an AHFt 

variant allele of reduced ligand-binding affinity were spared deficits in renal cell 

differentiation following SaP treatment. \Ne conclude that SaP disrupts 

nephrogenesis in vivo by altering the expression of downstream Wf1 targets 

secondary to changes in the abundance of WT1 mRNA slPlice variants. These 

findings establish a link between WT1 and AHR signaling in the regulation of 

renal cell differentiation during the course of metanephric development. 

Introduction 

Embryonic development requires orchestration of temporally precise 

genetic events that culminate in the formation of a complete organism. The 

molecular mechanisms responsible for ontogenesis are regulated by 

environmental and somatic factors in utero that activate or repress the 

expression of numerous genetic elements. Recent studies have identified the 
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aryll hydrocarbon receptor (AHR) as an important nuclear transcription 'factor 

during embryogenesis and throughout maturity in multiple organisms. AHR is 

involved in the regulation of development of vascular structures and liver 

(Fernandez-Salguero et a/., 1995; Lahvis et a/., 2005; Schmidt et a/., 1996), with 

AHR-/- exhibiting cardiomegaly and hypertension, as well as renal and ocular 

deficits (Falahatpisheh and Ramos, 2003; Fernandez-Sallguero et a/., 1997; Lund 

et a/., 2003; Lund et a/., 2006; McMillan and Bradfield, 2007b). The discovery of 

endogenous substrates of AHR has further strengthened the hypothesis that 

AHR functions as a critical developmental regulator (McMillan and Bradfield, 

2007a). Potent environmental chemicals. acting as AHR ligands disrupt normal 

signaling to exert deleterious effects during embryonic development (Mackenzie 

and Angevine, 1981b; Ng et a/., 2006b; Ng et a/., 2006c; Shum et al., 1979; Yu et 

a/.,2(06). While the mechanism of AHR-mediated regulation of xenobiotic 

metabolism is well understood, the details of AHR function during development 

remain unclear. 

AHR is a transcription factor activated by hydrophobic aromatic 

hydrocarbons. Upon ligand binding, AHR dissociates from two molecules of the 

chaperone heat shock protein 90 (HSP90), and binds the X-associated protein 2 

(XAP2) and p32. The resulting complex exposes a nuclear localization sequence 

that facilitates nuclear translocation. This complex in turn binds to the aryl 

hydrocarbon receptor nuclear translocator (ARNT or HIF'l~) resulting in DNA 

binding to sequences containing 5'-GCGGGGGCG-3' and (TCC)n repeats 
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(Denison and Nagy, 2003). Translocation of the AHR-ligand complex to the 

nucleus triggers its proteolytic degradation regardless of ARNT binding (Roberts 

and VVhitelaw, 1999). AHR is also regulated by negative feedback inhibition in 

which the nuclear AHR complex activates transcription of the AHR repressor 

protein (AHRR) responsible for binding the xenobiotic response element (XRE) 

and preventing transcriptional activation by AHR (Mimura et al., 1999). 

A role for AHR in renal development was established in experiments 

showing that AHR-null mice exhibit deficits in renal condensation, appearance of 

differentiated structures and cellular proliferation (Falahatpisheh and Ramos, 

2007). Renal development proceeds in three morphologically distinguishable 

stages pronephros, mesonephros, and metanephros (Pohl et al., 2000). The 

kidney derives from the nephric ridge in the intermediate mE~soderm. The 

pronephric duct gives rise to the pronephros which elongates to form the Wolffian 

duct. The Wolffian duct develops into the ureteric bud setting thE! stage for the 

key event in nephrogenesis where mesonephric mesenchyme is stimulated to 

undergo condensation and mesenchymad-to-epithelial cell transition. A host of 

genes including, WT1, glial cell derived neuronal factor (GDNF) and bone 

morphogenic protein-7, are responsible for regulating this process (Kuure et aI., 

2000). While removing anyone of a host of proteins can result in impaired 

nephrogenesis, the molecular mechanisms involved haVE! yet to be fully 

characterized. 
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Of interest is the central role of Wilms' tumor suppressor gene (WT1) in 

nephrogenesis. WT1 encodes a Cisr His2 zinc fingered protein that functions via 

transcriptional regulation of target genes, including insulin-like growth factor II, 

syndecan-1, epidermal growth factor receptor and retinoic acid receptor-a 

(Hosono et aI., 1999). In addition to its role in tumorigenesis, WT1 is considered 

a "master switch" that regulates mesenchymal-to-epithelial differentiation during 

renal development (Avner, 1993). Visceral epithelial cells (podocytes) are the 

only cell type in adult kidney that retains 'WT1 expression. Homozygous WT1 -/

mice do not develop normally, die in utero, and do not show differentiation of 

metanephric kidney from the existing pronephros (Kreidber~l et aI'., 1993b). WT1 

activity can be regulated in cis by different ratios of its own splice variants, or in 

trans by proteins such as bone marrow zinc finger 2 (BMZF:2) (Lee et al., 2002). 

Perhaps the most studied regulatory mechanism involves the formation of WT1 

±KTS splice variants. KTS splice variants originate from the insertion of a Iysine

threonine-serine between the third and fourth zinc finger. The resulting change 

modifies the WT1 DNA binding specificity leading to activation and/or repression 

of target genes (Menke et al., 1998b). In humans, reduced WT1 +KTS mRNA 

isoforms result in severe kidney and gonad developmental deficits, collectively 

known as Frasier syndrome (Barbaux et al., 1997). Changes in exon 5 splice 

variants have also been associated with deficits in renal differentiation (Iben and 

Royer-Pokora, 1999). Addition of 17 amino acids in exon 5 creates an mRNA 

isoform that regulates transactivation (Wang et al., 1995). N-terminal residues 1-
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182 encode a dimerization region implicated in the regulatory mechanism 

exerted by dominant negative mutants (Englert et aI., 19915; Reddy et al., 1995). 

The regulation of renal cell differentiation is controlled by synchronized 

expression of multiple genes involved in control of the devellopmental 

programming. Sfrp1 is a mesenchymal marker expressed in the metanephric 

medullary and cortical stroma that acts as an inhibitor of the mesenchymal-to

epithelial cell transition (Yoshino et al., 2001a). Igf2r is chiefly expressed during 

the early stages of nephrogenesis whereas Igf1 r is expressed ubiquitously 

throughout renal maturation (Dong Van Huyen et aI., 2003). Loss of function of 

either receptor compromises renal differentiation (Feld and Hirschberg, 1996). 

Wnt4 is expressed in the condensed mesenchyme specifically around the ureter 

tip and in pretubular aggregates (for review see (Vainio et al., 1999). Wnt4 

deficiency inhibits epithelial tubule development resulting in dysfunctional 

nephrons (Stark et a/., 1994). Lim-1 is a homeobox transcription factor essential 

for early kidney morphogenesis. Lim-1 is chiefly expressed in the ureteric bud, 

induced mesenchymal aggregates, and differentiated structures (comma and S

shaped bodies) (Barnes et al., 1994; Karavanov et al., 1 SI98). Murine models 

with Lim-1 deficiency are born headless and without kidneys despite the 

presence of other organs (Shawlot and Behringer, 1995b). E-cad is a general 

marker of the mesenchymal-to-epithelial cellular transition and is expressed in 

the ureteric bud epithelium, distal tubule progenitor cells and the majority of 

differentiated tubular epithelium (Cho et al., 1998). 
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The present study was conducted to evaluate the role of AHR signaling in 

murine nephrogenesis. This work builds upon previous studies establishing a 

novel link between AHR and post-transcl'iptional regulation of WT1 

(Falahatpisheh and Ramos, 2003). Evidence is presented that the low affinity 

AHRd allele abrogates BaP-induced molecular changes in the developing kidney, 

including changes in WT1 splicing and expression of WT1 downstream effectors 

involved in regulation of renal cell differentiation. 

Methods 

Metanephric Culture 

Day 11.5 mouse embryos were surgically dissected from C57BLl6J AHRb 

wild type and B6.D2N-AHRd/J mice. Embryonic kidneys were dissected and 

cultured on 0.45 mm polyethylene trephalate cyclopore cell culture inserts 

(Fisher) for 1-4 days. The use of transparent membranes allowed for direct 

visualization of tissue by phase contrast microscopy. Kidney explants were 

maintained at the liquid-gas interface in a solution consisting of a 1: 1 mixture of 

Dulbecco's modified Eagle's medium (DIMEM) and F12 supplemented with 10% 

fetal bovine serum (FBS) and a 5X concentration of MITO serum extender 

(Becton Dickinson, Bedford MA). Explants were allowed to equilibrate for 1 day 

before initiation of experiments. Seven or more embryonic kidney explants from 
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4 dams were placed on individual inserts and exposed daily to 3 iJM BaP or an 

equivalent volume of DMSO with or without 20 nM a-napthoflavone for 1, 3, and 

4 days. The 3 iJM BaP dose is an environmentally relevant exposure that 

provides optimum activation of the AHR receptor (Bowes and Ramos, 1994). At 

the end of each time point, the explants were fixed in situ for evaluation. 

Cell culture 

mK4 cells were cultured in DMEIVI (Cellgro) supplE!mented with 10% fetal 

bovine serum (Atlanta Biologicals) and 1 % antibiotic-antimycotic (Gibco). Cells 

were seeded at staggered time intervals at an initial density of 40 cells/mm2 to 

adjust final densities in culture. After equilibration for 24 hours, cells were 

exposed 3 iJM BaP or DMSO for 9, 15, or 51 hours. 

Histology and Morphometric Analysisi 

Metanephroi were fixed in 4% paraformaldehyde at 4°C for 16 hours, 

immobilized in Histogel (Richard Allen Scientific) and embedded in paraffin. 4 

iJm serial sections were cut and processed for modified hematoxylin and eosin 

staining allowing for visualization of differentiated structures. Images of at least 5 

metanephroi per treatment group were eaptured at 5X with an Axiovert 200 

inverted microscope (Zeiss) and stored as .zvi files. Glomeruli, S-shaped, and 

comma-shaped bodies were quantified using manual functions on Axiovision Rei 

4.1 (Zeiss). 
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ImmunohistochE~mistry 

AHR was detected using a rabbit polyclonal antibody (B-1) (Biomol) 

applied overnight at 4°C in a solution containing 0.3% Triton X and 10% goat 

serum (Vector Laboratories). Primary antibody was detected using a goat anti

rabbit biotinylated secondary antibody (Molecular Probes), amplified with 

ABCelite®, developed with DAB, and counterstained with Mayer's Hematoxylin 

(Vector Laboratories). 

Quantitative peR 

Total RNA was extracted using TRlzol® and cDNA was synthesized using 

SuperScript II (Invitrogen, Carlsbad, CA) as per manufacturer's instructions. 

Quantitative PCR using primers specific for WT1 isoforms was performed to 

detect differences in the ratio of WT1 splice variants (±KTS) in response to AHR 

ligand treatment (Falahatpisheh and Ramos, 2003; Falahatpisheh and f~amos, 

2007). A" other primers were designed using Beacon DE~signer 5.1 to create 

amplicons from 150-300 base pairs with an average meltling temperature of 

55°C. 

si RNA 

Ambion Silencer Pre-designed siF~NA for AHR (162529 and 88685), WT1 

(18990 and 100360), and a scrambled negative control (#4635) were transfected 

using Fugene 6 (Roche, Indianapolis, IN). Briefly, 150 nM of each specific siRNA 

was incubated with transfection reagent daily and applied to cells seeded at a 
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density of 60 cells/mm2 for three days. Seventy-two hours after treatment, cells 

were harvested in situ for further analysis. 

Statistical Analysis 

Statistical significance was determined using Students t-test, ANOVA, 

Wilcoxon Rank Sums, LSD, and Tukey post hoc tests at the p<O.05 level. 

Results 

Deficits in metanephric differentiation by BaP are linked to AHR si~lnaling 

The activation of AHR signaling by BaP culminates in transcriptional 

activation/repression of target genes, and proteasomal dE~gradation of AHR 

protein (for reviews see (Denison and Nagy, 2003; Fujii-Kuriyama and Mimura, 

2005; Pocar et aI., 2005). To examine the role of AHR si~Jnaling in Bap··induced 

deficits in nephrogenesis, metanephric explants from C57'-AHRb (C57) and D2N

AHRd (D2N) mice were challenged with 3 ~M BaP for 1, 3, or 4 days. C57 and 

D2N mice are isogenic strains that differ in AHR ligand binding affinity due to a 

single nucleotide substitution that replaces valine for alanine at codon 3'75 in the 

ligand binding domain resulting in a 5-fold reduction in ligand binding affinity 

(Poland et a/., 1994). Quantitative reverse transcriptase polymerase chain 

reaction (QRT-PCR) analysis of C57 metanephroi revealed time-dependent 
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induction of Cyp1a1 mRNA, while D2N metanephroi expressing the variant AHR 

allele showed a markedly abrogated response (Table 1). A 4-day BaP exposure 

resulted in compromised metanephric development (Figure 1A), as evidenced by 

decreased number of glomeruli (Figure 1 B), and predominance of lesser 

differentiated, comma and S-shaped bodies (Figure 1 C). To determine if ligand

binding mediated deficits in renal cell differentiation, D2N mice expressing the 

AHRd allele, or a-napthoflavone (a-NF), a competitive inhibitor of the AHR ligand 

binding site, were tested. Interference with AHR-ligand interactions prevented 

BaP-induced deficits in renal differentiation. a-NF alone modulated renal 

development outcomes (Figlure 1 B). Immunohistochemical analysis showed a 

decrease in AHR protein after 4 days of BaP exposure in AHRb mice (Figures 2A 

& B). In sharp contrast, the abundance of AHRd was not influenced by 

hydrocarbon treatment (Figure 2A). The AHRd phenotype, or co-treatment with 

a-NF, prevented the loss of AHR protein, suggesting that modulation of 

nephrogenesis by BaP directly correlates with depletion of AHR protein. This 

finding is consistent with the hypothesis that AHR is required for renal 

developmental signaling, and that disruption of nephrogenesis requires AHR 

ligand binding, activation of AHR signaling, and protein degradation. 

Next, the expression of mesenchymal (Sfrp1) and epithelial (lgf1 r, Wnt4, 

Lhx1, and E-cad) markers of differentiation was monitored by QRT-PCR~ to 

determine if morphological deficits correlated with modulation of these genes. 

Markers of renal epithelial cell differentiation (lgf1 r, Wnt4, Lhx1, and E-cad) were 
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Table 1. E 11.5 metanephroi were resected from C57 and D2N-AHRd mllce and 

cultured on 0.45 ~rn inserts for 4 days in the presence of 3 ~M BaP or DMSO. At 

1, 3, and 4 days individual metanephroi were homogenized and processed for 

RNA isolation and cDNA synthesis. Quantitative peR was performed with 

values representing i1i1CT normalized fold change relative to DMSO control 

(dashed line). Variance represents standard deviation between no less than 6 

metanephroi per group. Statistical significance was calculated using a VVilcoxon 

rank sum. Cyp1 a1 mRNA was inudced.in a dose and time-dependent manner in 

both C57 and D2N mice but to a greater extent in C57. 
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Table 1. Cyp1a1 mRNA Expression 

C57 

DBA 

Normalized fold change 

Exposure (days) Irelative to DMSO Control 

1 154.34 ± 20.8 

3 455.09 ± 30.62 

4 730.00 ± 24.00 

1 1.82 ± 0.27 

3 12.44 ± 2.03 

4 39.49 ± 1.20 
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Figure 1. SaP inhibits nephrogenesis via an AHR alleh~-specific 

mechanism. E 11.5 (days post conception) metanephroi were resected from 

C57 and 02N-AHRd mice and cultured on 0.45 IJm inserts for 4 days in the 

presence of 3 IJM SaP or OI\llSO ± a-NF. At 4 days, metanephroi were fixed in 

4% paraformaldehyde and processed for modified hematoxylin and eosin 

staining to visualize differentiated structures. Panel A, BaP-exposed 

metanephroi show less morphologically distinct differentiated structures 

compared to C57 control. E)(pression of the AHRd allele in D2N mice abrogates 

BaP-induced deficits. Co-treatment with the competitive inhibitor a-NF also 

inhibited BaP effects. B, quantitation of number of glomeruli normalized to area 

from serial sections of no less than 6 metanephroi per group. C, quantitiation of 

comma and S-shaped bodies normalized to area. Statistical significance was 

calculated by ANOVA and LSD post hoc tests at a p < 0.05 level. 
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Figure 2. AHR expression correlates with nephrogenesis. E 11.5 

metanephroi were resected from C57 and D2N-AHRd mice and cultured on 0.45 

IJm inserts for 4 days in the presence of 3 IJM BaP or DMSO ± a-NF. At 4 days, 

metanephroi were fixed in 4% parafomaldeyde and processed for modified 

hematoxylin and eosin staining, to visualize differentiated structures. Serial 

sections were processed for immunohistochemical analysis of AHR protein and 

counterstained with hematoxylin. AHR si~lnal was calculated by creating a 

thresholded value for AHR signal accounting for nonspecific signal from negative 

control serial sections processed without primary antibody and primary antibody 

neutralized with blocking peptide. Sum density was normalized to area and 

statistical significance was calculated by ANOVA and LSD post hoc tests p < 

0.05. Panels A and B show that exposure tD BaP decreases AHR protein levels. 

Protein expression was similar in C57' and D2N metanephroi, however D2N or 0-

NF co-treated metanephroi were not sensitive to BaP-induced deficits in AHR 

protein expression. 
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induced to varying degrees relative to vehicle control after 1 day of BaP exposure 

(Figure 3A). In C57' metanephroi, Igf1 r, l~lf2r, Wnt4, Lhx1, and E-cad mRNA 

levels were decreased after 3 and 4 days of BaP treatment (Figure 3A) .. No time

dependent changes in the expression of the mesenchymal marker Sfrp1 were 

seen in C57 mice where downregulation was seen at all time-points compared to 

vehicle (Figure 3A). Metanephroi expressin!~ the AHRd allele showed variable 

degrees of induction in Sfrp1, Igf1 r, Wnt4. and E-cad throughout the exposure 

and were spared reductions of all markers examined, except Lhx1 (Figure 3B). 

These results suggest that nephrogenic deficits induced by BaP require 

activation, and integrity, of AHR signaling. 

The AHR allele mediates disruption of WT1 mRNA splice variants by BaP 

Previous work established that exposure of C57 mouse metanephric 

kidney cultures to BaP for 4 days modulaltes the expression of -KTS/+KTS WT1 

mRNA variants (Falahatpisheh and Ramos, 2003). A 4-day BaP exposure of 

C5t' metanephroi rE~sulted in 3- and 7 -fold induction of +KTS and -KTS variants, 

respectively (Figures 4A and B). Expression of the +17aa or -17aa was not 

altered by BaP treatment (Figures 4C and D). Consistent with the known WT1 

transcriptional repressive activity, significant reductions in the relative expression 

of several WT1 targets including: Synd1, Pax2, Egfr, and Rara, were observed 

(Figure 4E). D2N-AHRd metanephroi exposed to 3 IJM BaP did not exhibit 

changes in any of the VVT1 mRNA splice variants (Figures 5A-D) or WT1 targets 

(Figure 5E), except for Rara where the pattern of gene re~lulation was reversed 
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Figure 3. BaP exposure downregulatel; markers of renal cell differentiation. 

E 1 '1.5 metanephroi were resected from C57" and D2N-AHRd mice and cultured 

on 0.45 IJm inserts for 4 days in the presence of 3 IJM BaP or DMSO. At 1, 3, 

and 4 days individual metanephroi were homogenized and processed for RNA 

isolation and cDNA synthesis. Quantitative PCR was performed with values 

representing .~~CT normalized fold change relative to DMSO control (dashed 

line). Variance represents standard deviation between no less than 6 

metanephroi per group. Statistical significance was calculated usinn a Wilcoxon 

rank sum. Panels A and B show, that at 4 days BaP exposure, significant 

decreases in differentiation markers were seen in C57, but not in DL~N 

metanephroi. 
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Figure 4. BaP-induced WT1 dysregulation correlates with loss of known 

WT1 targets. E 11 .. 5 metanephroi were resected from C57 mice and cultured on 

0.45 I-lm inserts for 4 days in the presence of 3 I-lM BaP or DMSO. On days 1, 3, 

and 4, individual metanephroi were homolgenized and processed for RNA 

isolation and cDNA synthesis. Quantitative peR was performed with values 

representing ~~CT -normalized fold changle relative to DMSO control (dashed 

line). Variance represents standard deviation between no less than 6 

metanephroi per group. Statistical significance was calculated using a Wilcoxon 

rank sum. Panels A-D, primers specific for each splice were used to compare the 

abundance of splice variants from BaP treated and DMSO control samples. No 

changes were seen in total WT1 mRNA expression. Panels A and B, Significant 

increases were seen in -KTS compared to +KTS after 4 days BaP exposure. 

Panels C and 0, no significant changes were seen in +17aa or -17aa isoforms. 

Panel E shows that downregulation of known \NT1 targets correlated with 

changes in WT1 isoform abundance. 
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Figure 5. SaP-induced WT1 dysregulation is AHR allele-specific. E 11.5 

metanephroi were resected from D2N-AHRd mice and cultured on 0.45 I-lm 

inserts for 4 days in the presence of 3 I-lM BaP or DMSO. On days 1, 3, and 4, 

individual metanephroi were homogenized and processed for RNA isolation and 

cDNA synthesis. Quantitative PCR was performed with values representing 

L1L1CT-normalized fold change relative to DMSO control (dashed line). Variance 

represents standard deviation between no less than 6 metanephroi per group. 

Statistical significance was calculated using a Wilcoxon rank sum. Panels A-D, 

primers specific for each splice were used to compare the abundance of splice 

variants from BaP treated and DMSO control samples. No changes were seen in 

total WT1 mRNA expression. Panels A - D, expression of the AHRd allele 

abrogates BaP-induced modulation of WT1 mRNA isoforrns in D2N mice. Panel 

E, downregulation of known WT1 targets correlates with changes in WT1 isoform 

abundance. 
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compared to the C57 strain. C57 metanephroi exhibited decreases in taurine 

transporter mRNA and these: changes were absent in D2N metanephroi exposed 

to BaP (compare Figures 4E and 5E). 

mK4 metanephric cells arE! sensitive tOI modulation of WT1 mRNA isoforms 

by SaP and other AHR ligcmds 

To develop a model amenable to molecular manipulation, mouse mK4 

cells derived from metanephric tissue WE~re exposed to 3 I-lM BaP as a function 

of time (Valerius et al., 2002). mK4 cells exhibited time-dependent induction of 

Cyp1 a1, with maximal effeclts seen 51 hr after hydrocarbon exposure (Figure 

6A). Sfrp1, Igf1 r, Igf2r, Wnt4, and E-cad were downregulated by BaP as a 

function of time (Figure 6B), with the most prominent effects seen for Sfrp1, Igf1 r, 

Wnt4 and E-cad. Interestinlgly, Sfrp1 and Lhx1, markers of the mesenchymal 

phenotype contain AHR response elements in their promoter regions (data not 

shown), and showed a biphasic response. Changes in markers of renal cell 

differentiation correlated with changes in +KTS and -KTS where 2- and 5-fold 

inductions in mRNA expression, respecbvely, were observed (Figures 7 A and B). 

The expression of the +17aa isoform exhibited a biphasic response, with 

induction seen at 9 and 15 hours and a return to baseline at 51 hours (Figures 

7C and D). As in the metanephric model, AHR protein loss (Figure 7E) and 

dysregulation of WT1 splice variants correlated with reductions in WT1 target 

mRNAs, as evidenced by reductions in Pax2, Egfr, and Rara at 51 hours of BaP 

exposure (Figures 7F). 
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Figure 6. mK4 cells are sensitive to BaP induced changes in differentiation 

markers. mK4 cells were seeded and exposed at various times to 3 ~M BaP or DMSO 

to allow for harvest at equal density. At 9,15, and 51 hours cells were processed for 

RNA isolation and cDNA synthesis. Quantitative PCR was performed with values 

respresenting ~~CT-normalized fold change relative to DMSO control (dashed line). 

Variance represents standard deviation amongst at least three biological replicates. 

Statistical significance was calculated using a Wilcoxon rank sum. Panel A shows that 

mK4 cells display classical CYPIAI profile induction with a maximal response at 51 

hours. Panel B shows that after 51 hours of BaP exposure mK4 cells downregulated 

markers of differentiation. 
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Figure 7. mK4 cells are sensitive to BaP induced modulation of WT1 

status. mK4 cells were seeded and exposed at various times to 3 IJM BaP or 

DMSO to allow for harvest at equal density. At 9, 15, and 51 hours cells were 

processed for RNA isolation and cDNA synthesis. Quantitative PCR was 

performed with values representing ~~CT -normalized fold change relative to 

DMSO control (dashed line). Variance represents standard deviation amongst at 

least three biological replicates. Statistical significance was calculated using a 

Wilcoxon rank sum. Panels A and B, 51 hours of BaP exposure induces -KTS. 

Panels C and D, +17aa is increased at 9 and 15 hours. Panel E, Western blot 

analysis of WT1 targets shows loss of protein for known \/\'T1 markers. Panel F, 

Inductions in -KTS WT1 mRNA isoform correlate with decreases in WT1 targets. 
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To determine if nephrogenic deficits were seen with other AHR ligands, 

mK4 cells were challenged with varying concentrations of TeOO ranging from 0.1 

pM to 1 nM for 4S hours. Integrity of AHR signaling was confirmed by induction 

of eyp1a1 mRNA (Figure SA). Both 100 pM and 1 nM TeDO decreased AHR 

protein (Figures SB and e). Exposure to 100 pM TeOO reduced expression of 

differentiation markers Sfrp1, Igf1 r, Igf2r, and Wnt4 (Figure SO). The loss of 

differentiation markers correlated with altered expression of WT1 splice variants 

(Figure SE). WT1 target genes, Synd1, Pax2, Egfr, and Rara were also 

downregulated by TeOO exposure (Figure SF). 

Discussion 

Evidence continues to mount implicating AHR in proliferation, 

development, adhesion and migration, and proteasomal degradation (for reviews 

see (Barouki et al., 2007; Ohtake et aI., 2007)). In this regard, previous studies 

in this laboratory have shown that repeated exposure of cultured metanephros to 

3 IJM BaP results in significant impairment of metanephric development 

(Falahatpisheh and Ramos, 2003). Such deficits required AHR activation and 

appears to be linked to the protein degradation machinery of target cells in the 

developing kidney. While the E3 ligase activity of AHR has yet to be fully 
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Figure 8. Alternative AHR ligands moderate differentiation markers and 

WT1 status. mK4 cells were seeded and exposed to TCDD or vehicle for 51 

hours to allow for harvest at equal density. Cells were processed for RNA 

isolation, cDNA synthesis and protein analysis. Quantitative PCR was performed 

with values representing 1'11'1CT normalized fold change relative to OM SO control 

(dashed line). Variance represents standard deviation amongst at least three 

biological replicates. Statistical significance was calculated using a Wilcoxon 

rank sum. Panel A, dose-dependent Cyp1a1 mRNA inductlion. Panels Band C, 

western blot analysis reveals a dose-dependent loss of AHR protein. Panel 0, 

TCDD exposure results in loss of renal cell differentiation markers. Panel E, 

+17aa WT1 mRNA is induced. Panel F, WT1 dysregulation correlates to loss of 

WT1 targets. 
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characterized (Ohtake et al., 2007), AHR ubiquitination and degradation can 

occur both in the cytoplasm (Song and Pollenz, 2002), or upon nuclear 

translocation (Roberts and Whitelaw, 1999), and ARNT/ONA binding (Song and 

Pollenz, 2003). Mutation of the ligand binding domain in the AHRd allele 

decreases ligand binding affinity by 5-fold compared to AHRb and decreases 

nuclear translocation (Poland et a/., 1994), transcriptional activation and 

degradation upon ligand binding. Similarly, AHR antagonists, such as a-NF, do 

not induce the conformational changes necessary for translocation and/or 

degradation of AHRb (Henry and Gasiewicz, 2003). These relationships define a 

scenario in which constitutive AHR plays a regulatory role in renal development 

that is compromised upon ligand-mediated degradation of receptor protein. In 

fact, AHR-null mice exhibit delayed nephrogenesis and compromised renal 

development (Falahatpisheh and Ramos, 2003), and these changes can be 

reproduced by downregulation of AHR protein upon ligand binding. Of 

importance to the work presented here are studies in which AHR-null mice were 

found to be hypertensive, a condition that is directly related to deficits in renal 

function (Lund et al., 2003; Lund et aI., 2006). 

Our model detailing a constitutive function for AHR in regulation of 

nephrogenesis via WT1 is supported by the finding that prevention of AHR loss 

pharmacologically, or by the use of the genetically-resistant 02N strain, 

prevented renal developmental deficits in BaP-treated metanephros, and 

restored normal ratios of WT1 mRNA isoforms.. Mice overexpressing the -KTS 
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isoform have severely compromised renal development, evidenced by increased 

stromal tissue, decreases in tubular epithelium and glomerular tuft, and altered 

podocyte structure (Hammes et a/., 2001). While the exact molecular 

consequences resulting from alterations of the four abundant and biologically 

relevant isoforms of WT1 remain to be fully defined, it is well-established that the 

-KTS mRNA encodes a protein that participates in transcriptional activity, and 

that protein encoding +KTS mRNA associates with splicing factors (Davies et al., 

1998; Hastie, 2001). In both metanephros and mK4 cell cultures, BaP-induced 

increases in -KTS resulted in downregulation of differentiation markers, a finding 

consistent with the morphological deficits seen in -KTS transgenic mice. 

Restoring WT1 mRNA splice variant ratios via AHRd expression did not alter 

renal differentiation markers. Transgenic mice expressing solely +17aa WT1 do 

not exhibit gross renal nephropathy (Natoli et al., 2002), but have deficits in other 

organ systems such as the olfactory system (V'Jagner et al., 2005). 

The complexity of AHR functions in different transcriptional complexes 

such as the classical AHR- ARNT, NF-kappa B, AP-1, and !~Iucocorticoid 

receptor provides possible mechanisms for regulation of Wr1 splicing. Of these, 

the glucocorticoid receptor has been shown to associate with PGC-1, a known 

regulator of co-transcriptional splicing (Knutti et al., 2001). Another possibility 

involves direct binding of AHR to the WT1 promoter which contains two 

consensus AHR responsive elements within a regulatory region known to 

regulate transcription-coupled splicing events (Cohen et al., 1997). Ongoing 
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experiments are examining whether AHR binds to the WT1 promoter to alter the 

splicing machinery directly (Bentley, 2002), or indirectly by altering elongation 

efficiency (Eperon et al., 1988; Roberts et al., 1998). Because AHR itself 

associates with proteasomal complexes consisting of DDB1, ARNT, TBL3 and 

CUL4B, and has E3 ligase activity (Ohtake et al., 2007), AHR may also regulate 

proteasomal degradation of factors required for WT1 splicing. 

The reduction of selected renal differentiation markers seen in organ and 

cell culture is consistent with the loss of AHR protein mediated by BaP, TCDD, or 

small interfering RNA (data not shown). All markers examined play central roles 

in nephrogenesis. Lhx1-null mice do not progress past mesonephric 

development (Shawlot and Behringer, 1995a). Wnt4 is implicated in early 

nephron development and differentiation (Stark et aI., 1994). Inhibition of the 

Igf1 r impairs kidney growth, as evidenced by a reduction in nephrons and altered 

ureteric bud branching (Murphy and Barron, 1993; Wada et al., 1993). E-cad-null 

mice have decreased nephron number due to a failure of proper fusion of the 

metanephric mesenchyme to the ureteric bud (Mah et al., 2(00). Sfrp1, most 

likely through Wnt interactions, plays an important role in the mesenchymal to 

epithelial cell transition manifested during tubule formation and bud branching 

(Yoshino et a/., 2001 b). While these markers have yet to be examined in AHR

null mice, the preservation of AHR expression and constitutive signaling via 

expression of AHRd or treatment with antagonist, restores their expression. 

These findings associate functional molecular consequences resulting from 
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disruption of constitutive AHR functions with the regulation of renal cell 

differentiation. 

The discovery of novel functions of AHR during nephrogenesis, coupled to 

molecular interactions of AHR with WT1, highlight a potential mechanism for 

compromised renal development following AHR signaling interference. The 

bioavailability of PAHs presents a ready source for agents that can modify 

important early determinants of renal cell differentiation. Of importance to our 

work are studies linking AHR genetic polymorph isms to tobacco smoke induced

decreases in birth weight (Sasaki et a/. , 2006). Low birth weight compromises 

renal development resulting in increases in microalbuminuria, proteinuria, 

decreased glomerular filtration rate, and the occurrence of end stage renal 

disease (for review see (Zandi-Nejad et al., 2006)). Other stressors, such as diet 

and environmental exposures, are associated with lower birlth weights and 

deficits in renal development (Everson et al., 1988; Nelson ot al., 1999; Roquer 

et al., 1995; Zandi-Nejad et al., 2006). Preliminary findings indicate that 

exposure of pregnant C57 dams to BaP to environmentally-relevant 

concentrations, inhibits renal development (Nanez, et ai, unpublished). 

The present studies identify a novel role for AHR in the regulation of 

murine nephrogenesis. Expression of the AHRd allele preserves the integrity of 

AHR signaling and abrogates hydrocarbon-induced dysregulation of WT1 mRNA 

isoforms thus preserving renal cell differentiation signals. Thus, endogenous and 
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exogenous modulators of AHR signaling during critical periods of nephrogenesis 

may alter the genetic programming of renal development. 
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CHAPTER 4 

LOSS OF THE ARYL HYDROCARBON RECEPTOR PROTEIN ALTERS WT1 

mRNA ISOFORM EXPRESSION AND DOWNSTREAM EFFECTORS OF 

RENAL CELL DIFFERENTIATION 

Summary 

A key event in nephrogenesis is the transdifferentiation of mesenchymal 

cells to epithelial cells, a tightly regulated process controlled by the Wilms' tumor 

transcription factor (WT1). WT1 activity can be regulated in cis by different ratios 

of its mRNA splice variants, or in trans by accessory proteins recruited to 

regulatory regions of the gene. Recently, a novel link between AHR and post

transcriptional regulation of WT1 isoform expression was characterized in this 

laboratory. The aryl hydrocarbon receptor (AHR) is an important ligand-activated 

nuclear transcription factor involved in the regulation of cellular differentiation. 

AHR-null mice exhibit systemic developmental deficits including nephropenia. 

Previous work has shown that exposure to environmental hydrocarbons that 
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function as AHR ligands deregulate receptor signaling via proteasomal 

degradation and induce receptor-specific deregulation of WT1 mRNA splice 

variant ratios in murine metanephric organ and cell. This work led us to 

hypothesize that disruption of receptor signaling following loss of AHR protein 

results in WT1 dysregulation thereby altering expression of WT1 targets and 

renal cell differentiation genes. Evidence is presented here showing that AHR 

degradation mediated by small interfering RNA results in downregulation of +KTS 

and induction of the -KTS mRNA splice variants. WT1 dysregulation correlates 

with reductions in WT1 transcriptional targets (Synd1 Pax2, Egfr and Rara), as 

well as downstream markers of r€!nal cell differentiation (Sfrp1, Igf1 r, Igf2r, Wnt4, 

Lhx1, and E-cad). We conclude that AHR regulation of nephrogenesis occurs 

through preservation of WT1 mRNA isoform ratios within the kidney. 

Introduction 

The aryl hydrocarbon receptor (AHR) is a member of the basic helix loop 

helix Per ARNT Sim (bHLH-PAS) family of transcription factors and initially 

characterized for its role in the re!~ulation of xenobiotic metabolizing enzymes 

(XMEs) necessary for removal of exogenous chemicals. VVhile bHLH-PAS 

proteins share similar structure and function, the AHR is the only member of the 

family known to be regulated by ligand activation. Environmental chemicals such 

as polycyclic aromatic hydrocarbons act as AHR ligands leading to the 
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dissociation of two molecules of the chaperone heat shock protein 90 (HSP90), 

X-associated protein 2 (XAP2) and p32. The resulting conformational change in 

AHR exposes a nuclear localization sequence that facilitates nuclear 

translocation. In the nucleus, AHR dissociates from the chaperone complex and 

binds the aryl hydrocarbon receptor nuclear translocator (ARNT) resulting in 

association of the major groove DNA sequence cantaining 5'-GCGGGGGCG-3' 

and (TCC)n repeats (Denison and Nagy, 2003). Translocation of the AHR-ligand 

complex to the nucleus can also trigger its proteolytic degradation regardless af 

ARNT binding (Roberts and WhitE~law, 1999). Depending upon cell type, AHR 

can be regulated by negative feedback inhibitian in which the nuclear AHR 

complex activates transcription of the AHR repressor protein (AHRR) respansible 

for binding the xenobiotic response element (XRE) (Mimura et a/., 1999). AHR 

transcriptional activity is regulated by association of complexes including AHR

ARNT, NF-kappa B, AP-1, and glucocorticoid receptor all of which, in turn, 

participate in numerous signaling pathways potentially relevant ta nephrogenesis 

(Abbatt et al., 1994; Hankinson, 2005; Hoffer et al., 1996; Miller et al., 2000; Tian 

et al., 2002). 

Of relevance to this study are novel links identifying AHR as a regulator af 

the Wilms' tumor transcription factor (WT1), a master switch transcriptianal 

regulatar which initiates genetic E~vents necessary for early nephrogenesis 

(Scharnhorst et al., 2001). Loss Df the AHR through ligand activation, genetic 

mutation, or siRNA-mediated degradation results in dysregulation of WT1 mRNA 
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isoforms and loss of renal cell differentiation markers (Falahatpisheh and Ramos, 

2003; Falahatpisheh and Ramos, 2007; Nanez and Ramos, 2007). Studies using 

AHR -/- mice have led to findings that support the scenario in which AHR acts as 

an important nuclear transcription factor during embryogenesis and throughout 

maturity in multiple organisms. AHR -/- mice exhibit cardiac hypertrophy and 

elevated mean arterial pressure (Lund et aI., 2003; Lund et aI., 2006) that 

correlate to inductions in endothelin-1 and angiotensin II, known regulators of 

cardiomyocyte hypertrophy and hypertension (Gavras and C3avras, 2002; 

Yamazaki et al., 1996). Of relevance to renal biology is that angiotensin II is a 

potent renal vasoconstrictor that constricts efferent arterioles and increases 

blood pressure. Our laboratory has shown that AHR-null mice exhibit delayed 

nephrogenesis resulting in compromised renal development as evidenced by 

nephropenia and decreases in renal vasculature (Falahatpisheh and Ramos, 

2003; McMillan and Bradfield, 2007b). Thus, it is possible that developmental 

renal deficits in AHR -/- mice stem from disruption of AHR signaling implicit in 

nephrogenesis. 

Nephrogenesis proceeds in three morphologically distinguishable stages 

pronephros, mesonephros, and metanephros (Pohl et al., 2000). The precursor 

structure for renal development derives from the nephric ridge in the intermediate 

mesoderm. The pronephric duct gives rise to the pronephros which elongates to 

form the Wolffian duct. The Wolffian duct develops into the ureteric bud 

stimulating the mesonephric mesenchyme to undergo condensation and 
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transdifferentiate from mesynchemal-to-epithelial cells. A cascade of genetic 

events regulated by proteins including WT1, glial cell derived neuronal factor 

(GONF) and bone morphogenic protein-7, are responsible for regulating this 

process (Kuure et aI., 2000). While homozygous deletion or mutation of either of 

these genes impairs nephrogenesis, the molecular mechanisms involved have 

yet to be fully characterized. 

WT1 encodes a Cis2-His2 zinc fingered protein that functions via 

transcriptional regulation of target genes, including insulin-like growth factor II 

(lgf2r), syndecan-1 (Synd1), epidE~rmal growth factor receptor (Egfr) and retinoic 

acid receptor-a (Rara) in the early stages of renal development (Hosono et al., 

1999). Homozygous WT1-/- mice do not develop normally, die in utero, and fail 

to differentiate into metanephric kildney from the existing pronephros (Kreidberg 

et al., 1993b) due to a failure of cE~lIs to undergo mesenchymal-to-epithelial 

differentiation (Avner, 1993). WT1 protein expression is strongest in the 

differentiating structures of the developing kidney; however, visceral epithelial 

celis (podocytes) are the only cell type that retains WT1 expression in mature 

kidneys. 

Of importance to the present work is that WT1 activity is regulated in cis 

by different ratios of its own splice variants, or in trans by proteins such as bone 

marrow zinc finger 2 (BMZF2) or Pax2 (Lee et a/. , 2002). Perhaps the most 

studied regulatory mechanism involves the formation of WT1 +KTS/-KTS splice 
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variants. KTS splice variants originate from the insertion of a Iysine-threonine

serine between the third and fourth zinc finger. The resulting change modifies 

the WT1 DNA binding specificity leading to activation and/or repression of target 

genes (Menke et a/., 1998b). In humans, reduced WT1 +KTS mRNA isoforms 

result in severe kidney and gonad developmental deficits, collectively known as 

Frasier syndrome (Barbaux et aI., 1997). Changes in exon 5 splice variants have 

also been associated with deficits in renal differentiation (Iben and Royer-Pokora, 

1999). Addition of 17 amino acids in exon 5 creates an mRNA isoform that 

regulates transactivation (Wang et aI., 1995). N-terminal residues 1-182 encode 

a dimerization region implicated in the regulatory mechanism exerted by 

dominant negative mutants (Englert et aI., 1995; Reddy et aI., 1995). We 

propose that disruption of AHR si~Jnaling resulting from receptor degradation 

deregulates WT1 resulting in an induction in the -KTS mRNA splice variant, thus 

altering the sequence of genetic events necessary for nephrogenesis. 

Evolutionary comparison has shown that the Ahr is conserved across 

vertebrate and invertebrate species, many of which are not exposed to classical 

aromatic ligands (Hahn, 2002; Hahn et a/., 2006). Evidence is mounting to 

support the idea that AHR functions as a key regulator of ontogenesis. In this 

study we demonstrate that degradation of the AHR results in dysregulation of WT 

mRNA splice variant ratios resulting in downregulation of direct genetic VI/T1 

targets and renal cell differentiation markers. 
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Methods 

Animals/Kidney Harvest 

C57BLl6J wild type mice were purchased from Jackson Laboratory (Bar 

Harbor, Maine) and placed under standard housing conditions. The care, 

breeding, and handling of animals were conducted in accord with NIH guidelines. 

Kidneys were resected, fixed in 4(1'0 paraformaldehyde, and embedded in 

paraffin. 

Immunohistochemistry 

WT1 (180) (Santa Cruz Biotechnology, Santa Cruz, CA) and AHR rabbit 

polyclonal antibodies (Biomol Research Laboratories Inc., Plymouth Meeting, 

PA) were applied overnight at 4°C in a solution containing 0.3% Triton X and 

10% goat serum (Vector Laboratories, Burlingame, CA). Primary antibody was 

detected using a goat anti-rabbit biotinylated secondary antibody (Molecular 

Probes), amplified with ABCelite@, developed with diaminobenzidine (DAB) and 

3, 3', 5, 5'-tetramethylbenzidine (TMB), respectively (Vector Laboratories, 

Burlingame, CA). Images were captured on a Zeiss Axiovert 300 microscope 

using Axiovision Rei 4.3 software interface (Carl Zeiss Inc .. Maple Grove, MN). 

Cell Cultures/ siRNA Transfectiion 
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mK4 cells were kindly provided by Dr. Stephen Potter (Children's Hospital 

Medical Center, Cincinnati, OH). Cells were cultured in Oulbecco's modified 

Eagle's medium supplemented with 10% fetal bovine serum. Two different 

techniques were used for siRNA knockdown of AHR and v\fT1 targets. 1) mK4 

cells were cultured and seeded at 30 cells/mm2 in 6 well plates. Using 

OharmaFECT 2, mK4 cells were transfected with 150nM pooled siRNA AHR (10# 

L-044066-00-0005), WT1 (10# L040686-01-0005) or nonspecific sequence. After 

4 days, cells were harvested for RNA isolation, cONA synthesis, and protein 

extraction. 2) Hairpin siRNA was designed using verified Silencer Pre-designed 

siRNA directed towards AHR (10#188990) and WT1 (10# 100360). The resulting 

structures were cloned into a pSilencer 4.1 CMV hygro vector (Ambion, Austin, 

TX) and transfected into mK4 cells using Fugene 6. pSilencer 4.1 CMV hygro 

Negative Control (Ambion) was used to measure nonspecific effects. Stalbly 

transfected cells were selected for using 800 I-lg/1-l1 hygromycin over a 3 week 

period. Cells were harvested for I~NA isolation, cONA synthesis, and protein 

extraction. 

Protein Extraction and Western Analysis 

Total protein extraction was performed with M-PER reagent (Piercl~ 

Biotechnology, Rockford, IL) as described by the manufacturer. Protein 

concentration was normalized to bovine serum albumin and measured by 

Bradford analysis. Protein samples were heated at 70°C for 10 minutes and run 

on 4-12 % NuPage ® Bis-Tris gels for one hour at 200 volts (Invitrogen, 
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Carlsbad, CA). Proteins were transferred to PDVF membranes and probed with 

WT1 (180) (Santa Cruz Biotechnology, Santa Cruz, CA) and AHR rabbit 

polyclonal antibodies (Biomol Research Laboratories Inc., Plymouth Meeting, 

PA). Signal was visualized with secondary antibodies conjugated to horseradish 

peroxidase developed by SuperSignal® West Dura (Pierce Biotechnology, 

Rockford, IL). Values represent averages of at least three independent 

experiments. 

RNA Isolation and Real time peR Amplification 

Total RNA was extracted from the cells using Trizol® according to 

manufacturer's specifications. Reverse transcription of RNA was carried out 

using iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Real time PCR 

amplification was performed using the iCycler Detection System (Bio-Rad, 

Hercules, CA). For each run, 25 1-11 of 2X SYBR Supermix (Bio-Rad, Hercules, 

CA) and 300 nM for both forward and reverse primers in a total volume of 50 1-11 

were mixed. Quantitative PCR using primers specific for WT1 isoforms was 

performed to detect differences in the ratio of WT1splice variants (±KTS) as 

follows. -KTS forward 5'-AGCTCAAAAGACACCAAAGGAG-3', reverse 5'

GGGCTTTTCACCTGTATGAG-3'; +KTS reverse 5'

GAAGGGCTTTTCACTTGTTTTAC-3'; -17 aa 5' -CCTGAGGACGCCCT ACAG C-3' 

reverse 5'-TGTGCCGTGGCCCTTT AAGG-3'; + 17 aa 5'

CTGTGCCGTGGTTGCTCTGC-3'. All other primers were designed using 
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Beacon Designer 5.1 to create amplicons from 150-300 base pairs with an 

average melting temperature of 55°C depicted in Table 1. 

Quantification was performed using comparative (LlCT) method as 

described by Peinnequin et al. (2004). Briefly, the Cr indicates the fractional 

cycle number for which the amount of amplified target reaches a fixed threshold. 

This amount is a constant depending on the primer set. The difference (ACT) 

between the CT of the target gene (CTt) and the reference gene (CTr) depends on 

the RNA relative copy number between the target and the reference gene. When 

the PCR have been properly optimized, the PCR efficiencies are close to one 

and the amount of target (XN), normalized to an endogenous reference is given 

by the equation: XN = K x T ilcT WE~re K is a constant according to the target and 

reference primer sets (Lestaevel E~t aI., 2003). The normalization to a calibrator 

(188 RNA) allows reduction of the previous equation by removing the constant K. 

Under these conditions, the amount of target normalized to an endogenous 

reference and relative to a calibrator (XN,c) is given by the equation: XN,c:= ZMCT 

where LlLlCT is the difference between the LlCT of the sample and the LlCT of the 

calibrator. The LlCT method is based on i) similar amplification efficiency rates 

between target and reference genes and ii) PCR efficiency close to 1. 

Matrigel Cell culture 

mK4 cells were cultured in Dulbecco's modified Eagle's medium 

supplemented with 10% fetal bovine serum and 5X mito serum extender (Becton 
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Table 1: peR Primers 

Gene Forward Primer 5'-3' 

Gene Forward Primer 5'-3' Reverse Primer 5'-3' 

18S CGTCTGCCCTATCAACTTTCG GCCTGCTGCCTTCCTTGG 

Cyp1a1 ~CGTGTCAGTAGCCAATGTC GCATCCAGGGAAGAGTTAGG 

Taurine Transporter CATCCATCGTCATTGTGTC ~GTTGGCAGTGCTAAGG 

Syndecan 1 GAGAAC~AGACTTCACCTTTG ~GCACTTCCTTCCTGTCC 

Paired box gene 2 (pax2) IAGGTTT ACATCTGGTCTGG TAGGAAGGACGCTCAAAG 

Epidermal growth factor 
GAGGAGGAGAGGAGAACTG GGTGGGCAGGTGTCTTTG 

receptor (Egfr) 

Retinoic acid receptor a 
CCCAGAAGACTAAAGTTGAC ~GGCAGGTAGTTGTGATG 

(Rara) 

Secreted frizzled-related 

sequence protein 1 GCAGTTCTTCGGCTTCTA ATGGAGGACACACGGTTG 

(Sfrp1 ) 

Insulin-like growth factor I 
GTCCCTCAGGCTTCATCC GAGCAGAAGTCACCGAATC 

receptor (Igf 1 r) 

Insulin-like growth factor 2 
~GTATGTGAACGGCTCTG ~CTGTGATTGTCTGGATAGG 

receptor (lgr2r) 

Wingless-related MMTV-
GTAGCCTTCTCACAGTCCTTTG GGTACAGCACGCCAGCAC 

integration site 4 (Wnt4) 

Lim homeobox protein 1 
~CCTAAGCAACAACTACAATC ~CACGGGAGTAGAAAGC 

(Lhx1) 

E-Cadherin CGACCCTGCCTCTGAATCC CTTTGTTTCTTTGTCCCTGTTGG 
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Dickinson, San Jose, CA). Cells were seeded at 200 cells/mm2 in 6 well cell 

culture dishes coated with 500 1-11 of Matrigel® (Becton Dickinson, San Jose, CA) 

Fresh media was added every three days. Renal bodies were harvested after 

two weeks for further analysis in situ. 

Analysis of glomerular bodies was performed by seeding mK4 cells in 6 

well cell culture dishes coated with 100 1-11 of Matrigel® in Dulbecco's modified 

Eagle's medium supplemented with 10% fetal bovine serum lacking 5X mito 

serum extender. After 4 days cultures were fixed in 50:50 Acetone methanol and 

processed for immunocytochemistry using WT1 rabbit polyclonal (180) and 

Thy1.1 mouse monoclonal antibodies visualized by goat anti rabbit 488 and goat 

anti-mouse 568 AlexaFluor (Molecular Probes-Invitrogen, Carlsbad, CA). 

WT1 expression vectors and selection 

pSRV plasm ids containing all four WT1 splice variants from the 17aa/KTS 

sites including WT1A(-I-), WT1 B(+/-), WT1 C(-I+), and WT1 D(+/+) were created 

as described by Haber et al. (Haber et al., 1992). WT1 sequences were excised 

with Bglli and inserted into p3XFLAG-CMV-14 expression vector (Sigma-Aldrich, 

St. Louis, MO). mK4 cells were transfected with 1 I-Ig of each splice variant and 

control vector. mK4 cells expressing vector derived gene products were selected 

for with Geneticin® treatment (Inviitrogen, Carlsbad, CA). WT1 splice variant 

overexpression was verified by QRT-PCR. 
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Results 

AHR and WT1 colocalize in developing and adult glomeruli 

AHR protein is a ubiquitous protein expressed primarily in lung, thymus, 

liver, gut mucosa, kidney, and urogenital tissue (Jain et al., 1998). 

Immunohistochemical (lHe) analysis revealed ubiquitous expression of the AHR 

throughout all parts of renal tissw:; with strongest signals occurring in glomeruli 

and endothelial cells of major renal vascular structures (Figures 1 A, B, and e). 

DuallHe analysis for AHR and \/\IT1 was employed to determine cellular 

specificity and colocalization. In adult glomeruli, the strongest AHR signal 

colocalized with WT1 staining in the podocyte population (Figures 2A and B). In 

glomeruli of developing metanephros, AHR and WT1 colocalization occurs in the 

majority of the cell populations (Figures 1 e and D). This pattern is consistent 

with the known role for WT1 in mesenchymal-to-epithelial cell transition and the 

emerging role for AHR in renal dE!velopment (Falahatpisheh and Ramos, 2003; 

Falahatpisheh and Ramos, 2007; Nanez and Ramos, 2007; Scharnhorst et aJ., 

2001 ). 

siRNA-mediated Degradation of AHR Downregulates Renal Cell 

Differentiation Markers 

We have previously shown that exposure of metanephric organ cultures to 

BaP, an environmental hydrocarbon that acts as an AHR ligand, inhibits 

nephrogenesis in a manner dependent upon AHR protein expression 
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Figure 1. AHR expression in adult mouse kidney. AHR expression is highest 

in epithelial celis of renal vasculature and in glomerular podocytes. 

Immunohistochemical analysis of AHR protein as visualized by 3, 3'

diaminobenzidine (DAB) staining of formalin-fixed paraffin-embedded adult 

mouse kidney sections. In Panel A, AHR signal (brown color) localizes to the 

celis lining the renal vasculature. Panels Band C compare AHR and WT11 

signal, respectively in adult glomeruli. Intense AHR signal (denoted by arrows) 

shows patterns indicative of podocyte expression when compared to WT1 signal. 
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Figure 2. AHR colocalizes with WT1 expression. AHR and WT1 colocalize in 

the developing and adult kidney. Dual immunohistochemical analyses of AHR 

and WT1 proteins visualized using 3, 3', 5, 5'-tetramethylbenzidine (TMB) and 

NovaRED, respectively. Panels A and C are representative images taken of 

glomeruli from adult C5"7BLl6J mouse kidneys or E11 cultured metanephros 

cross-sections. In panel B, maximal AHR signal (blue color denoted by arrow) 

was measured using Zeiss Axiovision Rei 4.3 image analysis software. Positive 

AHR signal is outlined in red. AHR-WT1 colocalization was defined by a positive 

nuclear WT1 signal in proximity to the outlined AHR signal, as denoted by 

arrows. Because of the diffuse nature of the AHR signal throughout metanephroi 

in panel D, AHR-WT1 colocalization was determined by overlay of AHR and 

WT1signals. Normalized signal was always <10% in sections stained separately 

with individual antibodies. Panels E and F are serial cross sections of C57BLl6J 

E11 cultured metanephroi analyzed for AHR alone or AHR-WT1 colocalization as 

described. The scale in panels A-D was 25 I-lm, and in panels E and F 100 I-lm. 
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(Falahatpisheh and Ramos, 2003; Falahatpisheh and Ramos, 2007; Nanez and 

Ramos, 2007). In this model, BaP binds AHR resulting in nuclear translocation 

thus promoting transcription of AHRE containing xenobiotic metabolizing 

enzymes, and culminates in proteasomal degradation of AHR protein. To 

determine the effects of AHR degradation irrespective of ligand activation, mK4 

cells of metanephric cell lineage were exposed to pooled siRNA directed against 

AHR. Seventy two hour siRNA exposure resulted in loss of AHR protein and 

mRNA (Figures 3A, B, and C). Exposure to AHR siRNA and subsequent loss of 

AHR protein resulted in downregulation of Igf1 r, Wnt4, Igf2r, and E-cad as 

determined by quantitative RT-PCR (QRT-PCR) (Figure 3D). The mesenchymal 

marker Sfrp1 and Lhx1 did not change (Figure 3D). To determine if constitutive 

AHR degradation altered markers of renal cell differentiation, we examined mK4 

cells expressing the pSilencer 4.1 CMV hygro vector containing a sequence that 

when transcribed produces a 19-mer hairpin with a loop and 3' terminal overhang 

that is processed by cellular machinery to produce siRNA (vsiRNA) (Paddison et 

al.,2002). After selection with hygromycin, cell populations expressing AHR 

vsiRNA exhibited reductions in AHR protein and mRNA (Figures 4A, B, and C). 

Constitutive AHR degradation resulted in decreased expression of Sfrp1, Igf1 r, 

Igf2r, Lhx1 and E- cad mRNA (Figure 4D). However, unlike conventional siRNA, 

AHR vsiRNA resulted in an induction of \Nnt4 and reductions in Sfrp1 and Lhx1. 

These differences may be due to separate functionally redundant transcriptional 

pathways activated after prolonged AHR degradation. 
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Figure 3. siRNA-mediated degradation of AHR downreglulates renal cell 

differentiation markers. mK4 cells were cultured and seeded at 30 cells/mm2 in 

the presence of 150 nM pooled siRNA targeted for AHR or a nonspecific 

sequence for 3 days. Cells were processed for RNA isolation, cDNA synthesis, 

and protein extraction. Quantitative PCR was performed with values 

representing ~~CT-normalized fold change relative to DMSO control (dashed 

line). Variance represents standard deviation between at least three biological 

replicates. Statistical significance was calculated using a Wilcoxon rank sum. In 

panels A-C, siRNA directed towards AHR results in loss of I\HR protein and 

mRNA. In panel 0, loss of AHR results in downregulation of Igf1 r, Wnt4, Igf2r, 

and E-cad. 
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Figure 4. Vector-mediated siRNA degradation of AHR downregulates renal 

cell differentiation markers. mK4 cells were seeded at 50 cells/mm2 and 

transfected with vectors containing siRNA sequences targeted for WT1 or a 

nonspecific. After two weeks selection with hygromycin, mK4 populations 

containing stable siRNA expression were processed for RNA isolation, cDNA 

synthesis, and protein extraction. Panel A and 8, Western blot analysis of AHR 

protein normalized to a-tubulin loading control. siRNA directed towards AHR 

results in loss of AHR protein. Panel C and D, Quantitative PCR was performed 

with values representing LlLlCT-normalized fold change relative to DMSO control 

(dashed line). Variance represents standard deviation between at least three 

biological replicates. Statistical significance was calculated using a Wilcoxon 

rank sum. vsiRNA reduces Sfrp1, Igf1 r, Igf2r, Lhx1, and E-cad. 
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siRNA-mediated Degradation Induces -KTS WT1 mRNA and Downregulates 

Direct WT1 Transcriptional Targets 

Our next set of experiments examined whether AHR degradation was 

solely responsible for WT1 dysregulation. Using QRT-PCR, we measured 

relative amounts of -KTS and +KTS WT1 mRNA, as well as, known WT1 

transcriptional targets directly regulated by WT1 (Synd1 Pax2, Egfr, Rara, TauT) 

(Han and Chesney, 2003; Ryan et al., 1995; Saxen, 1987; Vainio et aI., 1999). 

Both siRNA and vsiRNA-mediated AHR degradation resulted in an induction in -

KTS and reduction in +KTS (Figures 5A, B, C, and D). In agreement with the 

known role of -KTS WT1 as a transcriptional suppressor (Menke et al., 1998a), 

AHR siRNA resulted in decreased expression of known targets Synd1, Pax2, 

Egfr, Rara , and TauT (Figure 5E). Constitutive vsiRNA-mediated AHR 

degradation resulted in selective downregulation of Synd1, Egfr, and TauT 

(Figure 5F). In contrast to siRNA, AHR vsiRNA did not alter Pax2 and induced 

Rara (Figure 5F). These results implicate a pathway whereby disruption of AHR 

signaling via protein degradation shifts WT1 mRNA isoform ratios towards -KTS 

resulting in functional changes in known WT1 transcriptional targets. 

siRNA-mediated Degradation of WT1 Downregulates Direct Transcriptional 

Targets and Renal Cell Differentiation Markers 

To compare the molecular consequences of elevated -KTS mRNA to loss 

of WT1 protein, mK4 cells exposed to WT1 siRNA were examined for mRNA 

expression of renal cell differentiation markers and known WT1 targets. WT1 
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Figure 5. Loss of WT1 protein correlates with -KTS induction and target 

gene downregulation. In panels A, 8, and E, mK4 cells were cultured and 

seeded at 30 cells/mm2 in the presence of 150 nM pooled siRNA targeted for 

WT1 or a nonspecific sequence for 3 days. Cells were processed for RNA 

isolation and cDNA synthesis. Quantitative PCR was performed with values 

representing ,1.,1.CT-normalized fold change relative to DMSO control. Variance 

represents standard deviation between at least three biological replicates. 

Statistical significance was calculated using a Wilcoxon rank sum. siRNA 

directed towards AHR resulted in --KTS induction and +KTS reductions that 

correlated to loss of WT1 target Synd1, Pax2, Egfr, Rara and TauT mRNA 

expression. In panels C, 0, and F, mK4 cells were transfected with vsiRNA 

directed towards AHR. vsiRNA selection resulted in cell populations with 

induced expression of -KTS and decreased expression of +KTS. WT1 targets 

Synd1, Egfr and TauT were downregulated while Pax2 remained unchanged and 

Rara was induced. 
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siRNA resulted in downregulation of WT1 protein and mRNA (Figures 6A and B). 

Similar to results seen with AHR siRNA-mediated -KTS induction, loss of WT1 

protein resulted in downregulation of renal cell differentiation markers Sfrp1, 

Igf1 r, Igf2r, Wnt4, and E-cad (Figure 6C). Lhx1 remained unchanged (Figure 

6C). WT1 siRNA reduced mRNA expression of the WT1 transcriptional targets 

Synd1, Pax2, Egfr, and Rara (Figlure 60). 

Overexpression of WT1 mRNA Isoforms Downregulates WT1 Ttarge!t Genes 

To determine the effects of specific WT1 isoforms on WT1 target genes, 

cONA sequences containing the four variants -17aa/-KTS (WT1A), -17aa/+KTS 

(WT1 C), and +17aa/+KTS (WT1 D) were cloned into a p3XFLAG-CMV-14 

expression vector. mK4 cells stably expressing the vector were selected with 

G418 and assayed for molecular endpoints of WT1 and target gene expression. 

Figures 7 A-O shows confirmatory evidence that selected populations specifically 

expressed WT1A, WT1 B, and Wf1 0 mRNA isoforms in amounts significantly 

higher than empty vector. Compared to empty vector, expression of WT1 A, C 

and 0 resulted in downregulation of Synd1, Pax2, Egfr, and Rara mRNA as 

evidences by QRT-PCR (Figures 7E and F). Although splice variant-specific 

expression of WT1 protein was not measured, the data indicate that the amounts 

of WT1 proteins produced by CMV promoter-driven overexpression are sufficient 

to downregulate WT1 targets, re~lardless of mRNA isoform. 
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Figure 6. siRNA-mediated degradation of AHR down regulates renal cell 

differentiation markers. mK4 ceilis were cultured and seeded at 30 cells/mm2 in 

the presence of 150 nM pooled siHNA targeted for WT1 or a nonspecific 

sequence for 3 days. Cells were processed for RNA isolation, cDNA synthesis, 

and protein extraction. Quantitative PCR was performed with values 

representing i1i1CT normalized fold change relative to DMSO control (dashed 

line). Variance represents standard deviation between at least three biological 

replicates. Statistical significance was calculated using a Wilcoxon rank sum. In 

panels A and 8, siRNA directed towards AHR results in loss of AHR proteiin and 

mRNA. In panel C, WT1 siRNA results in downregulation of the differentiation 

markers Sfrp1, Igf1 r, Igf2r, Wnt4, and E-cad. In panel D, WT1 siRNA results in 

downregulation of the WT1 targets Synd1, Pax2, Egfr, and Rara. 
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Figure 7. Overexpression of WT1 mRNA isoforms downregulates Wlr1 

targets. P3XFLAG-CMV-14 exprE~ssion vectors containing all four WT1 splice 

variants from the 17aa/KTS sites including WT1A(-/-), WT1 8(+/-), WT1 C(-/+), 

and WT1 0(+/+) were transfected into mK4 cells. mK4 cells expressing vector 

derived gene products were selected by antibiotic resistance and examined for 

expression of WT1 splice variants by QRT-PCR, panels A, 8, C, and D. Panels 

E and F, overexpression of WT1 constructs downregulates 'NT1 targets Synd1, 

Pax2, Egfr, and Rara. 
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Figure 7 
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Matrigel Induces Formation of Metanephric Structures in mK4 Cells 

To develop an in vitro model better-suited to examine the effects of WT1 

splice variants on nephrogenesis, mK4 cells were seeded on Matrigel, a matrix 

known to induce differentiation and aggregation of various cell types into 

structures reminiscent of in vivo tissue ( for review see (Schmeichel and Bissell, 

2003)). Culture of mouse mammary epithelial cells in matrigel promotes the 

formation of morphologically distinctive mammary alveoli which, in response to 

lactogenic hormones, produce milk (Li et al., 1999; Lin and Bissell, 1993; 

Sympson et al., 1994). The data shown in Figures SA-C show that after 4 days 

in culture, mK4 cell cultures developed aggregates resembling metanephric 

bodies that closely resembled developing kidneys resected from E15 embryos 

(Figure SO). Removal of mito serum extender from the media resulted in a 

typical cell culture monolayer with a ring of cellular growth that contained bodies 

morphologically resembling glomeruli (Figure 9A). Immuncytochemistry for 

markers specific for glomerular podocytes (WT1) and mesangial cells (Thy 1.1) 

revealed positive staining in glomerular structures (Figure 9B, C, and 0). 

Collectively these data indicate that upon stimulation by matrix-related factors, 

nascent cell lines derived from metanephric cell cultures can provide a useful 

model for studying the molecular genetics of nephrogenesis. 
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Figure 8. mK4 cells cultured on Matrigel form metanephric aggregates. 

mK4 cells were cultured in full media plus mito serum extender in 6 well cell 

culture dishes coated with 500 IJI of Matrigel®. Panels A -C, metanephric renal 

bodies developed after 4 days of culture and showed morphological similarities to 

E15 metanephroi, panel D. 
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Figure 9. mK4 cells cultured on Matrigel form glomerular specific 

structures. mK4 cells were cultured in full media in 6 well cell culture dishes 

coated with 100 IJI of Matrigel®. After 4 days, cultures were processed for 

immunocytochemical identification of glomerular markers. WT1 rabbit polyclonal 

(180) and Thy1.1 mouse monoclonal antibodies were visualized by goat anti

rabbit 488 and goat anti-mouse 568 AlexaFluor. Panel A, DAPI stained nuclei 

form a monolayer ring of cells around the outer portion of the cell culture we" with 

morphologically visible glomeruli. Panel B, C, and 0, WT1 signal (green) and 

Thy1.1 (red) colocalize in suspected glomerular structures. Arrows denote 

glomerular structures. 
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Discussion 

The emergin!g role for AHR in nephrogenesis is intriguing and emphasizes 

the need to understand the complexity of AHR signaling beyond xenobiotic 

metabolism (Falahatpisheh and Ramos, 2003; Fernandez··Salguero et a/., 1995; 

Lahvis et a/., 2000; Lahvis et al., 2005; McMillan and Bradfield, 2007b; Schmidt 

et a/., 1996). Previous work in this laboratory has shown that exogenous ligands 

of the AHR inhibit m~phrogenesis via a mechanism requiring conservation of 

AHR signaling and preservation of WT1 mRNA splice variant ratios and 

expression of renal cell differentiation markers (Falahatpisheh and Ramos, 2003; 

Falahatpisheh and Ramos, 2007; Nanez and Ramos, 2007'). 

In the present study we show that disruption of AHR signaling is linked to 

the protein degradation machinery of tanJet cells in the developing kidney and 

results in disruption of genetic signaling implicit in nephrogenesis. AHR 

ubiquitination and degradation occurs both in the cytoplasm (Song and Pollenz, 

2002), or upon nuclear translocation (Roberts and Whitelaw, 1999), and 

ARNT/DNA binding (Song and Pollenz, 2003). However, members of the 

proteasomal compl18!x and the series of events leading to degradation have yet to 

be fully characterized. Recent work has shown that AHR functions as an E3 

ligase and associates with proteasomal complexes consisting of DDB1, ARNT, 

TBL3 and CUL4B in the degradation of steroid sex receptors (Ohtake et a/., 

2007). Thus, it is likely that AHR participates in an auto-regulatory loop that 
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promotes proteasornal degradation. In fact, the ubiquitin E3 ligase Itch, a family 

member of the Nedd4/Rsp5p HECT domain-containing family has been shown to 

participate in auto-ubiquitination facilitating its own proteasomal degradation 

(Mouchantaf et al., 2006). 

siRNA-mediated reduction in AHR protein results in a decrease of renal 

markers of differentiation in agreement with pharmacological models of AHR 

degradation (Nanez and Ramos, 2007). This is the first known report indicating 

that a reduction in AHR protein is sufficient to disrupt expression of molecular 

markers necessary in nephrogenesis. \tVnt4 is implicated in early nephron 

development and di1ferentiation (Stark: et al., 1994). Sfrp1, most likely through 

Wnt interactions, plays an important role in the mesenchymal to epithelial cell 

transition manifested during tubule formation and bud branching (Yoshino et al., 

2001 b). Lhx1-null mice do not progress past mesonephric development (Shawlot 

and Behringer, 1995a). Inhibition of the Igf1 r impairs kidney growth, as 

evidenced by a reduction in nephrons and altered ureteric bud branching 

(Murphy and Barron., 1993; Wada et at., '1993). E-cad-null mice have decreased 

nephron number due to a failure of prope!r fusion of the metanephric 

mesenchyme to the ureteric bud (Mah et aI., 2000). Conservation of AHR 

expression and constitutive signaling via expression of the nonresponsive AHRd 

allele, which does not degrade upon ligand binding, or treatment with antagonist, 

maintains expression of renal cell differentiation markers (Nanez and Ramos, 

2007). These findin9s associate functional molecular consequences resulting 
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from disruption of constitutive AHR functions with the regulation of renal cell 

differentiation. 

We have shown that siRNA-mediated degradation of AHR results in 

induction of the -KTS WT1 mRNA splice variant. Depending upon cell type and 

stimulus, AHR functions in a diverse array of transcriptional complexes including 

the classical AHR-ARNT, NF-kappa B, AP-1, and glucocorticoid receptor which 

provide possible mechanisms for regulation of WT1 splicing. Of these, the 

glucocorticoid receptor has been shown to associate with PGC-1, a known 

regulator of co-transcriptional splicing (Knutti et al., 2001). Another possibility 

involves direct binding of AHR to the major groove of the WT1 promoter which 

contains two consensus AHR responsive elements within a regulatory region 

known to rE~gulate transcription-coupled splicing events (Cohen et aI., 1997). 

Determining the exact nature of AHR-WT1 promoter interactions and possible 

effects on splicing machinery directly (Bentley, 2002) or indirectly by altering 

elongation efficiency (Eperon et al., 1988; Roberts et al., 1998) remains an 

ongoing focus of the laboratory. 

Our findings demonstrating inductlion in -KTS secondary to the loss of 

AHR are consistent with in vivo studies in which mice overexpressing the -KTS 

isoform have severely compromised renal development, evidenced by increased 

stromal tissue, decrE~ases in tubular epithelium and glomerular tuft, and altered 

podocyte structure (Hammes et al., 2001). This is in agreement with previous 
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work from the laboratory showing that in utero BaP exposure results in offspring 

with reduced glomerular number and glomerular filtration due to podocytopenia 

While the exact molecular consequences resulting from alterations of the four 

abundant and biolo~~ically relevant isoforms of WT1 remains to be fully defined, it 

is well-established that the -KTS mRNA encodes a protein that participates in 

transcriptional activity, and that the protein encoded by +KTS mRNA associates 

with splicing factors (Davies et a/., 1998; Hastie, 2001). In both metanephros 

and mK4 cell cultures, BaP-induced shifts in -KTS WT1 mRNA resulted in 

downregulation of differentiation markers, a finding consistent with the 

morphological deficits seen in -KTS transgenic mice and in our in utero exposure 

study. On!Joing studies will focus on the molecular consequences resulting from 

overexpression of each 17aa/KTS WT1 splice variant in the context of renal cell 

differentiation gene regulation. 

Downregulation of WT1 protein did not induce WT1 targets for negative 

regulation. It is possible that -50% WT1 knockdown was not sufficient to ablate 

WT1 negative regulatory activity. Since \NT1 siRNA is not isoform specific, we 

assume that mRNA splice variant ratios were unchanged and that the negative 

regulatory role for -KTS is mediated more by the relative abundance of mRNA 

isoforms than by the total amount of protein expressed. Ongoing studies will use 

vector mediated WT1 siRNA to achieve more efficient degradation of specific 

variants. 
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The development of an organ culture model system has been an 

important tool for discovery the molecular mechanism of ontogenesis. However 

incompatibility with assays necessary for further mechanistic discovery led us to 

examine alternative approaches. Extensive work carried out to recreate 

vasculature, kidney, lung, skin, and mammary tissue using 3D matrices has 

shown the promise and utility of 3D cultures in molecular biology (Sakurai et aI, 

1997; Schmeichel and Bissell, 2003; Schuger et al., 1990). Our model of 

Matrigel induced metanephric body formation agrees with the known role of 

extracellular matrices (ECM) from both the ureteric bud and the metanephric 

mesenchyme in ureteric branching morphogenesis. ECM protein expression is 

tightly regulated via growth factor signaling pathways which in turn are regulated 

by master switch transcription factors. Laminins compose the majority of the 

mature basement membrane,and have been shown to participate in branching 

morphogenesis and tubulogenesis (Engel, 1993). Exposure to anti-laminin5 

blocking antibody inhibits renal development of cultured metanephroi by 

preventing association with Q3f31 and Q6f34-integrin receptors (Zent et aI., 2001). 

In addition, cells stemming from the ureteric bud must digest ECM proteins to 

facilitate invasion. Both matrix metalloproteases (MMPs) and serine proteases 

are known to facilitate renal development. Membrane-type matrix 1 (MT-1-MMP) 

and MMP-2 oligonucleotide antisense inhibits metanephric development 

dependent on the TIMP-2 inhibitor activity (Kanwar et al., 1999; Ota et al., 1998). 

Thus, it is likely that renal morphogenesis requires elements secreted in the ECM 

to initiate biological events necessary for the initial and continued progression of 
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nephrogenesis. The extent to which AHR participates in the regulation of cell

matrix interactions in the developing kidney remains to be established. Work by 

others has shown that expression regulates members of the MMP and laminin 

families (Hillegass et al., 2006) and we recently established a gene network 

where AHf~ interacts closely with osteopontin and other matrix-associated 

proteins (Johnson et aI., 2004). 

The present studies further define a novel role for AHR in the regulation of 

murine nephrogenesis. AHR expression is a key regulator of WT1 mRNA splice 

variant homeostasis. Loss of AHR results in dysregulation of WT1 manifest in 

inductions of -KTS and downregulation of WT1 targets and markers of renal cell 

differentiatilon. The matrix-dependent stimulation of mK4 cells into metanephric 

tissue may provide a useful model for examination of the molecular events 

responsiblH for nephrogenesis. 
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CHAPTER 5 

DISCUSSION 

Although WT1 has been widely studied with respect to renal development 

and oncogenesis, many questions remain unanswered. The majority of work to 

date has focused on putative WT1 targets and correlations between splice 

variant expression and clinical outcomes in vivo (for review see (Niaudet and 

Gubler, 2006)). A major gap in our knowledge is the limited amount of 

information available about the putative factors that regulate splicing. Our work 

demonstrating that loss of AHR expression results in -KTS mRNA induction 

suggests AHR as putative regulator of WT1 mRNA splicing. This is in agreement 

with our in utero studies where BaP exposure results in offspring with reduced 

glomerular number and glomerular filtration due to podocytopenia. While the 

exact molecular consequences resulting from alterations of the four abundant 

and biologically relevant isoforms of WT1 remains to be fully defined, it is well

established that the -KTS mRNA encodes a protein that paliicipates in 

transcriptional activity, and that protein encoding +KTS mRNA associates with 

splicing factors (Davies et al., 1998; Hastie, 2001). In both metanephros and 

mK4 cell cultures, Bap··induced shifts in -KTS resulted in downregulation of 

differentiation markers, a finding consistent with the morphological deficits seen 
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in -KTS transgenic mice and in our in utero exposure study. Ongoing work will 

utilize constructs of all four KTS/17aa WT1 mRNA splice variants expressed in 

cells of varying differentiation status to begin defining the mechanism by which 

WT1 regulates the genetic cascade necessary for renal development. Our data 

implicate the participation of AHR signaling in WT1-mediated regulation of 

nephrogenE~sis. 

Of direct importance to our work is the emerging role of AHR in renal 

development. Studies have shown roles for AHR in cell proliferation, adhesion 

and migration, all processes necessary for embryogenesis (for reviews see 

(8arouki et 08/., 2007; Ohtake et al., 2007)). The Ramos laboratory has shown 

that AHR-/- mice exhibit delayed nephrogenesis resulting in compromised renal 

development as evidenced by nephropenia and decreases in renal vasculature 

(Figure 1) (Falahatpisheh and Ramos, 2003; McMillan and Bradfield, 2007b). 

We have also shown that these changes can be reproduced by proteasomal 

decradation of AHR protein upon ligand binding .. While our work has chiefly 

focused on \NT1 dysregulation at the posttranscriptionallevel as a key 

mechanism by which AHR exerts regulatory influences, little is known about 

other possible mechanisms that may contribute to deficits in nephrogenesis, such 

as direct transcriptional regulation of renal cell differentiation markers or 

participation in proteasomal degradation of renal regulatory proteins (Figure 2). 

A major theme of this dissertation revolves around the developmental 

deficits associated with disruption of WT1 signaling and differentiation resulting 
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Figure 1. AHR-/- mice exhibit deficits in renal development with 

consequE!nCeS in adult kidney morphology. Hematoxylin and Eosin stain of 

developing mouse metanephros shows that AHR-/- have less developed 

embryonic kidneys. Latex cast of AHR-/- adult kidneys have less vascularization 

compared to wild type mice. 
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Figure 2. Schematic detailing the complexity of possible mechanisms by 

which Ahr may regulate WT1. Transcriptional activity may directly regulate 

splicing factors. AHR may participate in proteolytic degradation of factors implicit 

in WT1 splicing. 
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from the loss of AHR protein. In our earlier work, exposure of wild type 

metanephros to BaP leading to nephrogenic deficits similar to those seen in 

untreated AHR-/- metanephros implicated AHR as a regulator of renal 

development (Falahatpisheh et al., 2005). In agreement with known renal 

deficits in AHR-/- mice, Chapters 1 and 2 used in vivo and in vitro models to 

show that loss of AHR protein expression correlated with the downregulation of 

renal cell differentiation markers, and WT1 dysregulation. This is the first report 

showing that loss of AHR protein, regardless of biological context following ligand 

binding, is sufficient to disrupt expression of molecular markers implicit in 

nephrogenesis. To date, most studies implicating AHR in the development of 

liver, cardiovascular, and reproductive organs have shown strong correlations for 

AHR involvement, but lack any direct evidence of interactions with downstream 

effectors responsible for disruption of organ development (Fernandez-Salguero 

et al., 1995; Lahvis et al., 2000; Lahvis et al., 2005; Lund et aI., 2003; Lund et a/., 

2006; Schmidt et aI., 1996). Our discovery of AHR-dependent regulation of WT1, 

a known renal master switch transcription factor, is the first study to propose a 

direct mechanism for the role of AHR in ontogenesis (Figure 3). 

A theme consistent in all of our studies is that loss of the AHR induced by 

BaP, TCDD, siRNA AHR exposure, or genetic manipulation in AHR-/- mice 

(Falahatpisheh and Ramos, 2007) results in the downregulation of known 

markers of renal cell differentiation Sfrp1, Lhx1, Igf1 r, Igf2r, Wnt4, and E-cad 

(Barnes et aI., 1994; Cho et aI., 1998; Dong Van Huyen et al., 2003; Stark et al., 
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Figure 3. Conceptual framework for AHR regulation of nephrogenesis. 

Constitutive AHR signaling regulates WT1 function allowing for normal 

nephrogenesis. Exogenous AHR ligands in the form of PAHs initiates a 

response that results in WT1 dysregulation as evidenced by changes in the 

amounts of mRNA splice variants that ultimately disrupt the cascade of genetic 

events responsible for nephrogenesis 
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Figure 3 
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1994; Vainio et al., 11989; Yoshino et al., 2001b). While the involvement of WT1 

in the regulation of targets such as Wnt4 (Sim et aJ., 2002) have been previously 

made, the mechanisms by which loss of AHR protein downregulates target gene 

expression remain unknown. 'Wnt4 is limplicated in early nephron development 

and differentiation, and has been identified as a possible re~~ulator of AHR 

transcription in prostate cancer cells (Chesire et aJ., 2004; Stark et aI., 1994). 

This suggests a possible scenario in which loss of AHR results in WT1 

dysregulation and subsequent downregulation of Wnt expression leading to 

generalized disruption of protranscriptional signals derived from Wnt/beta-catenin 

signaling and further loss of AHR protein. Sfrp1, through Wnt antagonistic 

interactions, plays an important role in the mesenchymal-to-·epithelial cell 

transition during tubule formation and bud branching. Sfrp1 contains AHRRE 

elements in the regulatory region, suggesting the AHR may also regulate Wnt 

signaling via Sfrp1 transcriptional control (Yoshino et al., 2001 b). In a similar 

manner, the inhibition of the 1~lf1 r impairs kidney growth, as evidenced by a 

reduction in nephrons and altered ureteric bud branching (Murphy and Barron, 

1993; Wada et aJ., 11993). Activation of the Igf1 r necessitates binding of 

extracellular insulin growth factors (IGF), a process that is tightly regulated by a 

family of proteins named insulin growth factor binding protein (IGFBP). AHR is a 

known regulator of IGFBP expression and may alter Igf1 r activity through 

induction of IGFBP proteins (Johnson et aI, 2004; Marchand et al., 2005). 

Perhaps the best marker of renal epithelial cell differentiation is E-cad as 

transition from mesenchymal to epithelium results in increased expression of this 
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critical epithelial gene (Cho et a/., 1998). E-cad-null mice have decreased 

nephron number due to a failure of proper fusion of the metanephric 

mesenchyme to the ureteric bud (Mah et al., 2000). Snail binds to the E-cad 

promoter repressing mRNA and protein expression (Nieto, 2002). Depending on 

cell type, snail expression can be repressed by modulators including fibroblast 

growth factor (FGF) releasing inhibitory control of E-cad and inducing 

mesenchymal-to-epiithelial cell transition (Nieto, 2002). Of relevance to our work 

are studies identifying AHR as a transcriptional inducer of snail/slug family 

members (Ikuta and Kawajiri, :2006). In addition to direct regulation via WT1 

(Hosono et al., 2000), it is possible that AHR signaling may regulate E-cad 

expression through snail/slug dependent pathways. While these markers have 

yet to be fully examined in AHR-null mice, the preservation of AHR expression 

and constitutive signaling via expression of AHRd or treatment with antagonist, 

restores their expression. In conclusion, the diverse mechanistic possibilities for 

AHR regulation of renal cell differentiation markers further highlights the 

importance of conservation of AHR signalin~1 in renal cell differentiation and 

development. 

The work presented in this study identified several novel roles for the 

AHR, in addition to its well-established functions as a regulator of XME. 

Evidence compiled from studies using AHR-/- mice, hydrocarbon exposure, and 

nonmammalian AHR homologlues has implicated AHR as an early regulator of 

mammalian development (Falahatpisheh and Ramos, 2003; Falahatpisheh and 
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Ramos, 2007; McMillan and Bradfield, 2007b; Nanez and Ramos, 2007; Puga et 

al., 2005). ExpressiDn of AHR is conserved across vertebrate and invertebrate 

species (Hahn, 2002; Hahn et aI., 2006) with developmental functions ranging 

from limb growth to neuronal development (fDr review (Barouki et al., 2007)). The 

AHR homologue in Drosophila melanogaster Spineless (ss) regulates leg 

structures through both transformation and deletion mechanisms and regulates 

bristle size (Duncan et al., 19918). Loss of AHR 1 in the Calenorhabditis elegans 

ortholog of AHR, results in cell axonal migration deficits resulting in impaired 

neuronal differentiation and function (Duncan et al., 1998; Gin et al., 2006). 

AHR-/- mice exhibit deficits in vascular structures stemming from a failure of the 

ductus venosus to close and result in reduoed liver weight, microvesicular fatty 

metamorphosis, prolonged extramedullary hernatopoeisis, and portal 

hypercellularity (Fernandez-Salguero et al. ,1995; Lahvis et al., 2000; Lahvis et 

al., 2005; Schmidt et aI., 1996). Of direct relevance to renal function are 

experiments in which AHR -/- mice were found to have cardiac hypertrophy and 

elevated mean arterial pressure (Lund et aI., 2003; Lund E:~t aI., 2006). 

Hypertension correlated to inductions in endothelin-1 and angiotensin II, known 

regulators of cardiomyocyte hypertrophy (Gavras and Gavras, 2002; Yamazaki et 

al., 1996). 

In studies of fetal TeDD exposure, a PAH that exerts its biological effects 

solely through AHR disruption, wild type mice exhibited cleft palate, 

hydronephrosis, small kidneys, and tortuous ureters (Peters et al., 1999b). 
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TeOO-induced fetal deficits were shown to be regulated by transcriptional 

activation as mice expressing AHR with a mutated bHLH re9ion (AHRbHLH-/-) 

were protected (Peters et a/., '1999b). This study failed to characterize AHR 

expression which is likely regulating TeDO-induced developmental deficits. 

Thus, it is likely that in wild type mice TeOO activates AHH resulting in 

proteasomal degradation, disruption of AHR si!Jnaling and fE~tal programming. 

However in AHRbHLH-/- mice, TeOO exposure does not result in transcriptional 

activation, a key step in ligand mediated AHR degradation. thus conservinfJ AHR 

protein expression and constitutive signaling. These results support our own 

studies in which siRNA-mediated AHR degradation alters expression of 

differentiation markers and deregulates WT1 activity as WE:!! I as data from AHR-/

mice (Falahatpisheh et a/., 2007). Further evaluations using alternative mouse 

models of varying AHR genotype such as 02N mice with nonresponsive lifland 

binding AHRd
, or AHR-/- null mice lacking AHR protein, will lend further insight to 

this hypothesis. 

The work presented in this study is the first report of a role for AHR in 

alternative splicing. Our model detailing a constitutive function for AHR in VVT1 

regulation is supported by the finding that prevention of AHH loss 

pharmacologically, or by the use of the genetically-resistant 02N strain, 

prevented renal developmental deficits in SaP-treated metanephros, and 

restored normal ratios of WT1 mRNA isoforms. The complexity of AHR functions 

in different transcriptional complexes such as the classicall J\HH-ARNT, NF-
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kappa B, AP-1, and glucocorticoid receptor provides possible mechanisms for 

regulation of WT1 splicing (Figure 4). As mentioned in Chapter 3, the 

glucocorticoid receptor associates with PGC-1, a known rE~'gulator of co

transcriptional splicing (Knutti et al., 2001). An ongoing focus of the laboratory is 

the possibility of direct binding of AHR to the WT1 promoter. The WT1 promoter 

contains two consensus AHR responsive elements within a re~lulatory region 

known to regulate transcription-coupled splicing events (Cohen et aI., 199/'). 

Wild type mK4 cells and clones expressing stable constructs for siAHR are being 

analyzed by chromatin immunoprecipitation for AHR-WT1 promoter associations. 

AHR may function to alter the splicing machinery directly (Bentley, 2002), or 

indirectly by altering elongation efficiency (Eperon et al., 19B8; Roberts et aI., 

1998). Ohtake et aI., presented a novel role for AHR as an E3 ligase in the 

proteasomal degradation of estrogen (ER) and androgen receptors (AR) through 

associations with proteasomal complexes consisting of DDB 1, ARNT, TBL3 and 

CUL4B, and has E3 ligase activity. We postulate that AHF~ may indirectly 

participate in proteasomal degradation of splicing factors. In fact, ER has been 

shown to associate with spliceosome complexes in the nucleus (Kato et aI., 

2005). This creates a scenario in which AHR through E3 ligase control of ER 

activity inherently regulates assembly and/or processivity of splicing complexes 

necessary for regulation of genes such as WT1 (Figure 5). 

Little is known as to the exact molecular consequences resulting from 

alterations of the four abundant and biologically relevant isoforms of WT1. It is 

167 



Figure 4. Schematic detailing the complexity of AHR transcriptional 

interactions. Depending upon cell type and stimulus AHR can interact with 

different transcriptional complexes such as the classical AHR-Arnt. NF-k8lppa B, 

AP-1, and glucocorticoid receptor. 
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Figure 5. AHR may act as an E3 ligase in the proteasomal degradation of 

estrogen and androgen receptor. AHR associates with proteasomal 

complexes consisting of DDB1, Arnt, TBL3 and CUL4B. 
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well-established that the -KTS mRNA encodes a protein that participates in 

transcriptional activity, and that protein encoding +KTS ml~NA associates with 

splicing factors (Davies et al., 1998; Hastie. 2(01). Mice overexpressing the -

KTS isoform have severely compromised renal development, evidenced by 

increased stromal tissue, decreases in tubular epithelium and glomerular tuft, 

and altered podocyte structure (Hammes et aI., 2001). In both metanephros and 

mK4 cell cultures, BaP-induced shifts in -KTS resulted in downregulation of 

differentiation markers, a finding consistent with the morpbological deficits seen 

in -KTS transgenic mice. However, a potential role of AHR in the regulation of 

WT1 splicing is of importance as human clinical conditions such as Denys--Drash 

syndrome, WAGR, and Frasier syndrome are associated with deregulation of 

normal splice variant ratios (Niaudet and Gubler, 2006). R:estoring WT1 mRNA 

splice variant ratios via AHRd expression di(j not alter renal differentiation 

markers. Transgenic mice expressing solely +17aa WT1 do not exhibit gross 

renal nephropathy (Natoli et aI., 2002), but have deficits in other organ systems 

such as the olfactory system (Wagner et al., 2(05). 

The coordination of cell proliferation, apoptosis, adhesion, migration, 

differentiation, and vasculogenesis is necessary for successful ontogenesis 

(Larsen et aI., 2001). Our data suggests a plausible role for AHR regulation of 

extracellular matrices (ECM) involving cellular interactions between the ureteric 

bud and the metanephric mesenchyme in branching morphogenesis. ECM 

protein expression is tightly regulated via growth factor signaling pathways which 
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in turn are regulated by master switch transcription factors. Cells stemming from 

the ureteric bud must digest ECM proteins to facilitate invasion. Both matrix 

metalloproteases (MMPs) and serine proteases are known to facilitate 

degradation of ECM proteins necessary in renal development. Membrane-type 

matrix 1 (MT-1-MMP), MMP-2, and MMP-9 have been characterized as 

regulators of ECM interaction in the developing kidney (Kanwar et aI., 1999; Ota 

et aI., 1998). Rat models examining the effects of maternal diabetes implicate 

TGF-beta as a possible MMP (Duong Van Huyen et al., 2007). In fact, cDNA 

array studies have revealed that many genes involved in ECM regulation and 

maintenance are targets for the AHR (Andreasen et al., 2006; Hillegass et al., 

2006). In metanephric culture, inhibition of Smad4, a key mediator of TGF-beta, 

in the nephrogenic mesenchyme impairs mesenchymal induction (Oxburgh et al., 

2004). Using mouse fibroblasts of varying AHR genotype, loss of AHR 

expression correlated to increased TGF-beta production and excretion 

suggesting a possible ligand-independent role in TGF-beta regulation (Chang et 

al.,2007). Taken together, these results implicate AHR signaling in the 

regulation of ECM regulatory proteins and pose an alternative mechanism for its 

role in renal development. 

Our model of Matrigel-induced metanephric body formation agrees with 

the known role of (ECM) from both the ureteric bud and the metanephric 

mesenchyme in ureteric branching morpho£lenesis. Matrigel is composed of a 

mixture of mouse tumor derived extracellular matrix proteins including laminin, 
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collagen IV, heparin sulfate proteoglycan and enactin (manufacturer's product 

insert). While the exact makeup of Matrigel remains unknown for proprietary 

reasons, studies have characterized laminin as the most abundant and reactive 

ingredient (Schmeichel and Bissell, 2003). This is of direct interest to our work in 

that lam in ins are key structural proteins in the renal basement membranes 

(Engel, 1993), and known to participate in branching morphogenesis and 

tubulogenesis. Laminin 1, consisting of a-, ~-, and v-subunits, is a critical 

component of epithelial cell polarization chiefly expressed in comma and S

shaped bodies (Ourbeej et al., 1996; Ekblom, 1993). Of importance to future 

studies, is that exposure to anti-laminin5 blocking antibody inhibits renal 

development of cultured metanephroi by preventing association with a3~1 and 

a6~4-integrin receptors (Zent et al., 2001). Recent studies have implicated 

integrin signaling as effectors for ECM-mediated signaling (Sonnenberg et al., 

1990). In fact exposure to antibodies generated against a1, or a1 ~1Y1-subunits 

inhibits development of cultured metanephroi either through binding of the 

dystroglycan membrane complex or the a6~1-integrin receptor (Sonnenberg et 

al., 1990). Ongoing work is focusing on the identification of the exact 

components necessary for stimulation of metanephric bodies from embryonic 

renal cell lines and the extent of integrin signaling. 

Typically, markers of renal nephropathy such as urinary 

albumin/microprotein, blood urea nitrogen, and creatinine measures generally 

manifest in already severely compromised clinical conditions (Halperin and 
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Kamel, 2000). Similarly, studies examining the embryotoxicity and teratogenicity 

of PAH compounds focused on overt developmental differences (Lummus and 

Henningsen, 1995; MacKenzie and Angevine, 1981 a; Peters et al., 1999a; 

Rodriquez et al., 1999; Wells et al., 1997; Winn and Wells, '1997) Our findings of 

modest changes in glomerular number, urinary albumin, and podocyte number in 

response to PAH exposure highlight the need to reevaluate endpoints for 

developmental deficits and measure subtle effects which are a better estimate of 

human environmental exposure and risk of renal disease. Novel renal 

biomarkers such as RPA 1, GSTYb1, and GSTMu are designed to detect 

nephropathy with more sensitivity than conventional methods (Falkenberg et al., 

1996; Hildebrand et al., 1999; Kilty et aI., 1998). Our laboratory has developed 

expertise in the characterization of modest, significant changes in glomerular cell 

populations that accompanied with traditional pathology can provide a more 

effective, quantitative evaluation of glomerular injury (Nanez et aI., 2005; Nanez 

and Ramos, 2007). 

ThH bioavailability of PAHs from exposures due to incompletH burning of 

organic substances such as gas, oil, wood, tobacco, and charbroiled meat 

present a ready source for potential regulators of development. Average PAH 

exposure can range from 3 to 15 ~g/day depending on dietary intake and are 

doubled with exposure to active or passive tobacco smoke (Menzie et al., 1992a; 

Menzie et al., 1992b; Rebagliato et aI., 1995; Santodonato et al., 1981). 

Classical studies establishing PAHs as known embryotoxic and teratogenic 
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agents used dosages of BaP ranging from 1 0 mg/kg to 250 mg/kg, thus far 

exceedin~1 even that of the highest possible human exposure (Lummus and 

Henningsen, 1995; MacKenzie and Angevine, 1981 a; Rodriquez et al., 1999; 

Wells et a/., 1997; Winn and Wells, 1997). 

To ascertain whether our in vitro model of AHR dependent BaP-induced 

deficits in nephrogenesis correlated to effects obtained from environmentally 

relevant PAH exposure we chose concentrations considerably lower than those 

established for in utero toxicity and teratogenicity (Lummus and Henningsen, 

1995; MacKenzie and Angevine, 1981 a; Rodriquez et al., 1999; Wells et aI., 

1997; Winn and Wells, 1997). When normalized for species-dependent temporal 

difference~s in development, this exposure is representative of human exposures 

of at risk populations (Menzie et aI., 1992a: Menzie et aI., 1992b; Rebagliato et 

aI., 1995). While the classical studies were of great mechanistic importance, 

recent efforts have highlighted the importance of using exposure regimens better 

approximating human models of environmental disease (for reviews see (BeruBe 

et al., 2007; Ng et al., 2006a; Pope, 2007)). Our findings detailing renal deficits 

resulting from in utero BaP exposure are unique in that they chronicle 

nephropathy from early post-birth through adulthood. The use of the D2N mouse 

model allowed us to determine that ligand binding in utero mediates PAH 

induced developmental renal deficits. Our in utero studies not only implicate 

PAH exposure in fetal programming of adult renal diseases and ensuing 

complications, but provide evidence for a direct mechanism, Ongoing work will 
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use genetic mouse models with mutations affecting AHR and WT1 biology to 

further deilineate the mechanisms of PAH-induced renal deficits. 

Our model, in which maternal BaP insul,t results in decreases in podocyte 

number that impair glomerular filtration, is strikingly similar to clinical 

manifestations seen in conditions such as focal segmental glomerulosclerosis 

(FSGS) or diabetic nephropathy (Hara et a/." 2001; Hayden et aI., 2005; Kim et 

a/., 2001 ; Wolf et aI., 2005). Podocytes are terminally differentiated cells that line 

the glomerular basement membrane (GBM) acting as a filter mediated size

selectivity and must structurally encompass the entire glomerular surface with 

foot processes to maintain proper filtration (Wiggins, 2007). Podocytopenia 

caused by a number of mechanism including toxic, genetic, immune, infectious 

and hemodynamic results in denudation of the GBM that compromise glomerular 

function initiating a cycle of injury and continued podocyte loss leading to 

progressive renal failure (Wiggins, 2007). Glomerulopathies are the most 

common causes of end-stage renal disease worldwide (Hricik et a/., 1998). Of 

interest, are findings from in vivo studies in rats where weekly 10 mg/kg BaP 

exposure of female Sprague-Dawley rats resulted in progressive elevations in 

total urinary protein, protein/creatinine ratios and microalbuminuria (Nanez et a/., 

2005). The nephropathic response involved early reductions in mesangial cell 

numbers coupled to podocyte injury as evidenced by effacement of foot 

processes. Of note was that podocytes, the only renal cell type expressing WT1 

and high AHR protein amounts, in comparison to their glomerular cell types, were 

177 



affected by BaP exposure. This suggests a scenario, currently being tested, in 

which PAH-induced fetal programming of renal disease may be exacerbated by 

repeated PAH exposures throughout adulthood. Support of this view derives 

from studies showing that BaP exacerbates nephropathy in diabetic rats 

(Valentovic et al., 2006). The impact of in utero BaP exposure on other 

glomerular cell populations such as mesan~Jial and endothelial cells remains to 

be determined. However, we have obtained evidence that BaP compromises 

mesangial and podocyte cell dilfferentiation in adult rats (Nanez et aI., 2005). 

Of relevance to our work is the extensive evidence linking maternal PAH 

exposure to fetal deficits. Some of the strongest evidence of fetal programming 

involves the correlation betweE~n low birth weight (LBW) and compromised renal 

development and initiation of the cycle involving HTN, glomerulosclerosis, 

nephron loss, and progressive renal failure (Celsi et al., 1998; Nwagwu et al., 

2000; Sanders et aI., 2005; Zandi-Nejad et al., 2006). Fetal tobacco syndrome 

characterized by maternal exposure to PAHs in the form of tobacco smoke 

results in reductions in birth weight, height, thoracic circumference (for review 

see (Nieburg et al., 1985). The hypothesis that active smoking morphologically 

alters the placenta compromising fetal capillary function resulting in a reduction 

of oxygen flow to the developing fetus is supported by data in both human and 

rodent models (Bush et al., 2000a; Bush et al., 2000b). Sasaki et al. has 

provided the first in vivo human evidence that AHR, CYP1A1, and GST1 genetic 

polymorph isms influence fetallhealth upon maternal tobacco smoke exposure. 
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Expression of AHR protein with arg/arg at codon 211 significantly lowered birth 

weight and length. Interestingly, variants of enzymes regulated by AHR activity 

(CYP1A1 m1/m2 + m2/m2) or linvolved in PAH elimination (GSTM1 -1-) sensitized 

fetuses to the effects of maternal smoking (Sasaki et al., 2006). This study 

directly links PAH exposure to deficits in AHR signaling in the context of fetal 

programming. 

The increasing bioavailability of exogenous disruptors of AHR signaling 

and the identification of novel endogenous AHR regulators highlights the need for 

a broader understanding of mechanisms by which AHR participates in renal 

development and cellular differentiation. Our results identify AHR-dependent 

glomerular deficiencies as the causative factor of in utero BaP-induced 

deficiencies in renal development. At the mechanistic level, these deficits are 

elicited via disruption of constitutive AHR signaling results in downregulation of 

renal cell differentiation markers, dysregulation of WT1 mRNA splice variants, 

and decreases in direct WT1 transcriptional targets (Figure 6). 

In summary, the work presented in this dissertation defines a novel role for 

the AHR in renal development and in fetal programming of PAH-induced 

environmental disease. Ongoing studies will require further definition of 

molecular interactions between AHR and WT1 and the novel specific roles of 

AHR in the regulation of nephrogenesis. The nature and extent of AHR

regulated interactions in mediating renal developmental control that set the stage 

179 



Figure 6. Schematic detailing renal cell differentiation.. Renal cells of 

mesenchymal phenotype undergo a series of temporally precise genetic events 

that activate or repress the expression of numerous genetic elements. WT1 is a 

master switch that regulates the key transition from mesenchymal cells to 

epithelial cells. The aryl hydrocarbon receptor (AHR) is an important nuclear 

transcription factor both during embryogenesis and throughout maturity in 

multiple organisms. Evidence is presented that AHR regulates WT1 splice 

variant expression altering renal cell differentiation. 
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for adult renal disease following exposure to environmental ligands of the 

receptor is an important hypothesis that warrants further investigation. 
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