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ABSTRACT 

BLOCKADE OF CXCR4 INHIBITS P. GINGIVALIS PERSISTENCE IN VIVO 
AND INDUCTION OF PERIODONTAL BONE LOSS 

By 

Megan L. Me Intosh 

18 May 2012 

Chronic periodontitis is strongly associated with composition of the oral biofilm 

occupying the gingival crevicular aspect of the tooth and its associated root. Some gram-

negative, "red complex" bacteria instigate periodontal bone loss in patients, principal 

among these Porphyromonas gingivalis. P. gingivaZis is a "late colonizer", indicating not 

only its physical location within the oral biofilm, but also the pathogenic dynamic of the 

interaction between P. gingivalis and the host innate immunity. Among several other 

subversive tactics, P. gingivaZis has been shown to compel receptors vital to the 

orchestration of an appropriate immune response to co-associate and consequently signal 

in a way that directly benefits the pathogen. Upon interaction with human monocytes and 

murine macrophages, P. gingivalis has been shown to induce TLR2 and CXCR4 to co-
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associate in lipid rafts via its surface fimbriae. The ensuing crosstalk results in a cAMP 

dependent, PKA mediated inhibition of NF-KB which in turn leads to a state of mixed 

signals. TLR2 attempts to upregulate NF-KB as CXCR4 simultaneously signals to inhibit 

TLR2 antimicrobial signaling. Functionally, this was shown in human monocytes and 

mouse macrophages to cause downregulation of TNF-a and upregulation oflL-10. Here 

we show the interaction between P. gingivalis fimbriae and CXCR4 to have 

physiological relevance to the initiation and maintenance of periodontal bone resorption 

in a mouse model of infection. Pharmacologic inhibition of the P. gingivalis fimbriae­

CXCR4 interaction prevented bone loss as well as halted progression of periodontal 

disease instigated prior to treatment in the Baker Model of oral infection. We also found 

that systemic administration of the bicyclam CXCR4 inhibitor AMD3100 leads to 

enhanced killing of P. gingivalis in a subcutaneous chamber model of infection. The 

subcutaneous chamber is an in vivo model system of the microaerophilic environment of 

the gingival pocket as well as the influx of dominantly comprised of neutrophils into the 

gingival crevice characteristic of chronic periodontitis. It is interesting that we noted that 

CXCR4 deficient mice display a similar host inflammatory profile to wild-type mice 

treated with AMD3100. However, while most of these mice were protected from P. 

gingivalis-mediated bone loss, one of the CXCR4 deficient mice did not demonstrate 

protection from alveolar bone loss when chronically infected with P. gingivalis. These 

mice also showed a healthier inflammatory profile compared to their infected, untreated 

counterparts. Thus, the results below indicate that AMD3100 effectively inhibits 

periodontal bone loss due to the ability of the compound to counter P. gingivalis' 

VI 



recognition of CXCR4. This provides evidence supporting the importance of this co­

receptor in developing therapeutic strategies for treating periodontal disease. 
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CHAPTER ONE: INTRODUCTION 

Periodontitis is a chronic inflammatory disease with pathophysiological ties to 

systemic conditions such as rheumatoid arthritis, heart disease, and diabetes (18, 145) 

(273) (143). Periodontal disease is a widespread condition, with over 75% of adults in the 

United States demonstrating some stage of periodontal disease (18) and oral care is an 

expensive public health endeavor. According to the CDC, in 2010 $108 billion dollars 

was spent on dental care in the United States (209). 

P. gingivalis has evolved several elegant mechanisms for survival in the oral 

biofilm and subversion of the host immunity, among these the release of gingipains 

which cleave complement components C3 and C5, degrading the C3 completely. 

Gingipain cleavage, however, leaves the C5a anaphylatoxic "a" fragment functionally 

intact. P. gingivalis affects the oral biofilm as extensively as the host immune system, 

altering both the total bacterial load and composition, even though the pathogen exists as 

an extremely small percentage of the total biofilm (97). Due to these behaviours, P. 

gingivalis has been termed a "keystone pathogen" meaning that, although it is typically a 

minute component of the oral biofilm, P. gingivalis is critical to the shift and consequent 

support of the more pathogenic biofilm now thought to be a majour etiological factor of 

chronic periodontal disease. The removal of P. gingivalis should cause the pathologic 
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oral biofilm to return, albeit gradually, to a commensal state. P. gingivalis infection has 

been shown to be indicative of poor prognosis in chronic periodontitis, thus control or 

eradication of P. gingivalis is a target therapeutic strategy in periodontal disease (211) 

(197). For this reason, we focus on P. gingivalis as our primary target for periodontal 

therapy. 

Periodontal Disease 

Most adult humans demonstrate some degree of gingival or periodontal disease, 

with gingivitis being greatly increased in prevalence compared to its more severe cousin, 

periodontitis. According to the World Health Organization, periodontal disease is the 

major cause of tooth loss in adults over 40 years of age and affects human populations 

globally. Although it is less common, severe periodontal disease, defined clinically as 6 

millimeters or greater of periodontal pocket attachment loss, affects about 14 percent of 

adults aged 45 to 54 (1). The most severe forms of periodontitis can reach rates of 10% to 

20% prevalence in disadvantaged populations or those with high instances of 

predisposing behaviour (204). Periodontal disease is furthermore associated with an 

increase in premature death among adults (245) (244). 

The gingivae, periodontal ligament and cementum to which the ligament attaches 

hold the tooth in place and this anatomical arrangement is collectively referred to as the 

periodontium. (See Figure 1) The pathologic mechanism of periodontal disease is 

comprised of chronic inflammation which leads to damage and eventually irreversible 

destruction of the supporting tissues of the tooth, including the underlying alveolar bone. 

Periodontal disease is instigated by the accumulation of subgingival plaque in the absence 
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of appropriate oral hygiene (36, 156, 250), particularly the presence of described "late 

colonizers" such as P. gingivalis, P. intermedia, Tannerella forsythia and the spirochete 

Treponema denticola (89, 241, 246, 253). While periodontal disease is instigated by 

infection, periodontal tissue destruction is actually caused by the host inflammatory 

response, principally via the constant influx of inflammatory cells and molecules such as 

TNF-a, IL-l~ and 11-17 (136, 232) (78,83, 165,255). 

Periodontal disease is a progressive condition demarcated by two primary stages: 

gingivitis and periodontitis. Gingivitis is the earlier and milder stage of periodontal 

disease. Gingivitis is characterized by bleeding of the gums, even upon gentle brushing, 

accompanied by tenderness, swelling and bright red or purple discoloration of the gums. 

Subgingival plaque accumulates at the junction between the gingival margin and the 

tooth. In response, inflammatory cells are mobilized to the area as the host attempts to 

reduce the bacterial burden. As the infection proceeds, the gums become more inflamed, 

damage accumulates and this results in gum tissue recession from the root surface of the 

tooth, exposing more sensitive areas and leading to painful temperature sensitivity. The 

inflammatory damage of gingivitis is generally reversible with restoration of adequate 

oral hygiene. However, if left uncorrected this chronic inflammation eventually leads to 

periodontitis. The hallmarks of advanced periodontal disease, periodontitis, include 

destruction further into the periodontium, alveolar bone resorption as well as eventual 

tooth loss (18) (225), and these pathological signs are not reversible (Figure. 1). 

Part of the physiological mechanism leading to the irreversible damage of 

advanced periodontal disease has to do with a physiological turnover process referred to 

by Parfitt and coworkers as "coupling", in which a temporary bone resorption event 
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Figure 1. Anatomy of the periodontium (as reviewed by Baker, P.J. (12, 37, 

42). A) In health, gingival fibers connect the gingival soft tissue to the root of the 

tooth, and the alveolar bone and cementum are connected by periodontal ligament 

fibers. B) In periodontal disease, subgingival infection by Gram-negative bacteria 

results in soft tissue damage, producing attachment loss and deepening the sulcus 

into the periodontal pocket. Alveolar bone resorption moves the bone surface away 

from the tooth root (vertical bone loss) and reduces the height of the alveolar bone 

crest (horizontal bone loss). Copyright permission to reproduce figure granted by 

Elsevier and (12). 

followed by bone formation (86, 200). "Coupling" relies upon osteoblast precursor cells 

being available and able to differentiate as well as respond to appropriate signals for bone 

matrix re-formation. Normally all these components are adequately present and bone 

reformation can occur, however in chronic periodontal disease bone destructive processes 
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outrun the bone formation processes, effectively "uncoupling" the two and making re­

formation increasingly difficult to instigate (86, 200). The result is, obviously, net 

alveolar bone loss. 

Currently, clinical approaches to periodontal disease focus on prevention, largely 

consisting of public health education and prophylactic cleaning via mechanical 

debridement of the oral biofilm with tools including ultrasonic devices. Treatment for 

patients demonstrating periodontal disease include scaling and root planing, which is 

essentially a more extensive physical abrasion of plaque build-up than prophylactic 

cleaning (7). Patients for which scaling and root planing is not an adequate therapy may 

undergo various more extreme treatments including, but not limited to: pocket reduction, 

in which a periodontal surgeon "peels" back the soft gingival tissue in order to remove 

subgingival bacteria before replacing the tissue to reattach to the bone; attempts to 

regenerate underlying bone via graft or tissue-growth cocktails (10, 267) and, depending 

upon the quality of the underlying bone, dental implants to replace lost teeth (143). 

Notably, antibiotic treatment beyond a basic chlorhexidine rinse (which does not 

adequately penetrate the oral biofilm) remains a complicated option due to the 

inaccessibility of the target pathogens as well as the tendency of biofilm species to 

development of antibiotic resistance, though studies focusing on combination therapy 

have made some progress (182) (7). 

As we explore treatments for periodontal disease which have been developed in 

the "systemic" context, familiarity with the connections, both clinical and mechanistic, 

between periodontal disease and diseases of the whole body becomes essential. For 

example, systemic AMD3100 treatment has been shown to be beneficial in a mouse 
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model for autoimmune collagen induced arthritis, which is used as a model for 

pathogenesis of rheumatoid arthritis in humans (168). As shown below, this systemic 

treatment also provides protection against periodontal disease. However, the possibility 

of discovering effects which would prove deleterious to patients in whom periodontitis is 

a secondary or perhaps tertiary disease cannot be under emphasized. 

Periodontitis is not an isolated disease, affecting only a small portion of the 

mouth. It is logical to consider transmigration of both host inflammatory and bacterial 

products through the damaged epithelium lining the periodontium into the host 

circulation (127). While this has important negative inflammatory connotations to the 

pathological state of the entire bodily system, it also means periodontal disease can be 

likewise affected by systemic approaches to treatment. 

Periodontal Disease and Systemic Diseases 

Periodontal disease has been shown to be bidirectionally tied to the risk and 

extent of systemic diseases such as rheumatoid arthritis (18), aspiration pneumonia (100) 

(258), atherosclerosis (264), heart disease (183, 273) as well as adverse pregnancy 

outcomes (34). 

Prevalence and severity of periodontal disease are on average two-fold greater in 

patients with rheumatoid arthritis as compared to the healthy population and patients with 

rheumatoid arthritis are also twice as like to suffer edentulism (18). It is worthy to note 

that a common set of inflammatory players including TNF-a and IL-l suggest a bi­

directional relationship between the two diseases; the inflammatory dysregulation of one 

serving to worsen or, in some cases, induce the other (18, 174) (16). Porphyromonas 
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gingivalis DNA has been detected via PCR in the synovial membrane from patients with 

RA and may promote citrullination of various self-antigens (164) (177) (220). 

Recently, evidence has compounded which suggests P. gingivalis infection is a 

serious risk factor for development of RA. Like the periodontium, the synovial membrane 

of patients afflicted with RA becomes heavily infiltrated with leukocytes, primarily 

neutrophils, and subsequently contains numerous factors derived from those cells such as 

IL-l, IL-8 and TNF-a (26) (233). Activated neutrophils within the cartilage can release 

reactive oxygen species and degradative enzymes. The end result is a microenvironment 

skewed towards damage of cartilage and surrounding bone (43) (87) (2) (179, 180). 

Periodontitis has also been shown as a risk factor for coronary heart disease 

(CHD) (128) (20, 234), the leading cause of death among humans (216). P. gingivalis has 

been specifically investigated as a possible contributor to coronary heart disease due to 

the chronic, inflammatory nature of periodontitis (189). Studies have shown elevated 

levels of C-reactive protein (CRP), an inflammatory biomarker of cardiovascular risk 

(214), in patients with periodontitis compared to patients with healthy oral cavities. The 

connection between periodontitis and CRP levels could be due to induction of IL-6, a 

major inducer ofCRP, by P. gingivalis (142). Increases in concentrations ofhs-CRP and, 

particularly relevant to our host inflammatory data regarding AMD31 00 treatment, IL-6 

have been reported in periodontitis patients and these increases are generally reversed 

upon induction of periodontal treatment. Contrastingly, and perhaps also relevant to our 

studies in mice, a decrease in TNF -a has been noted in the sera of periodontitis patients 

which was unaffected by periodontal therapy (189). 

7 



P. gingivalis was detected in atherosclerotic plaque deposits as early as 1999 (40) 

and has continued to be regularly detected in peripheral atherosclerotic lesions, the 

descending aorta, as well as aortic aneurysm specimens (262) via PCR, DNA 

hybridization and conventional culture (104,141,167,248) (135). 

More recently, investigators have asked whether chronic periodontitis, an 

inflammatory condition with systemic ties, could furthermore contribute to deleterious 

effects behind the blood brain barrier (BBB). Generally, the BBB prevents entry of 

substances into the brain, however some inflammatory cytokines such as IL-6 have the 

ability to cross the barrier during acute phase inflammatory response via specific 

transport processes (199) (14) or more circuitous routes through fenestrated capillaries in 

circumventricular organs (example: the pineal gland) which technically lie outside the 

BBB (14) (203) (277). Sustained levels of inflammatory cytokines during chronic 

periodontitis (ex: IL-6, TNF and CRP) have been associated with development of 

cognitive decline and dementia (278) (286), (251) (58) (66). Periodontopathic bacteremia 

post tooth brushing has been documented by different research groups (215) (61) as well 

as the observation that P. gingival is aggregates with and survives in platelets (152). Once 

the periodontopathogen enters the bloodstream, while the BBB blocks entry of the 

bacteria itself, bacterial or inflammatory products resulting from the pathogens presence 

may still cross. Chronic inflammation may cause heightened formation of amyloid ~ 

fibrils (21) and eventual contribution to neurodegeneration (203, 217) as well as 

thrombus formation and damage to vascular integrity (277). 

Periodontal disease has been associated with adverse pregnancy outcomes 

involving preterm birth or low- weight birth, miscarriage and spontaneous abortion (34, 
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62, 120), though, there are conflicting reports regarding actual benefit of periodontal 

therapy during pregnancy (35). 

The relationship between diabetes mellitus and periodontitis is perhaps the best 

example of the bidirectional association of periodontitis and systemic diseases. While 

diabetes mellitus is known to increase risk, prevalence, as well as severity and 

progression of periodontitis (171, 172,256), some recent studies have provided evidence 

that risk of diabetic complications is increased in patients with periodontitis as compared 

with patients with healthy oral status or mild disease. Among these complications are 

higher incidence of proteinuria and cardiovascular complications, including angina, 

intermittent claudication, transient ischemic attack, myocardial infarction and stroke 

(260) (143). These observations are important to keep in mind as we pursue potential 

therapeutic strategies in the pre-clinical context. AMD3100, the bicyclam CXCR4 

antagonist used in our studies, has been shown to rapidly and strongly mobilize 

angiogenic cells, giving AMD3100 a potential role stimulating angiogenesis at sites of 

ischemia throughout the body (48, 121). 

Innate Immunity at the Periodontium 

Our innate immune system contributes significantly to defense against invading 

pathogens and the oral cavity is one of the most exquisite examples of this interface 

between the internal body and the surrounding external environment. At the oral 

epithelium-environmental interface there are several important physiological factors 

contributing to a healthy immune balance, the end result being a dynamic balance of 

environmental signals or stimuli eliciting just enough pro inflammatory and antimicrobial 
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actions while the innate immunity also employs regulatory, anti-inflammatory 

mechanisms to curb destructive inflammation (59), (136). When this homeostatic balance 

is disrupted, whether via genetic defects in host immunity or by the introduction of 

pathogens into the oral micro biota, periodontal disease will eventually manifest (131), 

(139). 

The periodontium is a diverse immune environment containing multiple cell types 

to enable the host to deal with an abundant variety of environmental signals. In addition 

to the keratinized, stratified squamous epithelial barrier, the periodontium is home to 

tissue macrophages, neutrophils, dendritic cells within the gingival/periodontal lamina 

propria, or the tissue lining the gingival crevice, Langerhans cells within the oral mucosa, 

periodontal ligament fibroblasts and mesenchymal cells. All these cells types have a role 

to play in mediating the oral immune response through antigen presentation, regulating 

inflammation, directing pathogen clearance, as well as tissue remodeling and repair 

(257). 

While the induction of periodontal disease relies upon the presence of microbes, 

the pathology of periodontal disease is manifested by collateral damage caused by a host 

immunity attempting so arduously, yet ineffectively, to clear a pathogen that it literally 

destroys everything in its path. 

The innate immune cells present at the periodontal environment-host junction 

wield a number of tools to aid them in orchestrating appropriate responses to various 

environmental signals, among them microbial pathogens, as well as controlling internal 

processes such as inflammation and self-reactivity. Among these tools are germ-line 

encoded receptors which detect and discern pathogen-associated molecular patterns 
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(P AMP) among the abundant and diverse microbial signals received at any given time at 

the host-environmental interface. Cells such as neutrophils, macrophages, dendritic cells 

and natural killer cells must orchestrate a response to invading pathogens that is both 

fine-tuned enough to ignore the constantly present "commensal" microbiota, but will 

rapidly act to eliminate insulting pathogens before they or the overall inflammation 

causes damage to the host (124) (See Figure 2). 

Toll-like receptors (TLR) are transmembrane glycoproteins made of an N­

terminal leucine-rich repeat domain, a transmembrane region, and a C-terminal 

cytoplasmic signaling domain (129), (136). There are currently thirteen reported toll-like 

receptors and the extent of characterization regarding these receptors ranging from 

thorough to putative. These receptors are typically found at junctions between the host 

and environment where they can easily sense and respond to various microbial structures 

(136), (236, 237) (See Figure 3). 

Ideally, in response to an invading pathogen, circulating leukocytes will respond 

to inflammatory signals (ex. TNF-a) released by sentinel cells such as degranulated mast 

cells or local macrophages. Polymorphonuclear granulocytes (PMN) which migrate to the 

infection site can respond to the invader in a variety of ways. PMNs release inflammatory 

cytokines to amplify the antimicrobial reaction by recruiting various immune cells, 

phagocytose microbes upon opsonization, degranulate to douse the pathogen in soluble 

antimicrobial molecules such as myeloperoxidase or, as more recently discovered, 

generate structures called neutrophil extracellular traps (NETs) to catch and kill microbes 

(28). Currently, it is thought that NETs "catch" microbes in order to target high 
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concentrations of antimicrobial components directly at them, prevent further spread of 

pathogens or both (28), (268). 

Critical to this process are pattern recognition receptors (PRRs) such as toll-like 

receptors, NOD, and complement receptors, which are a component of the separately 

functional complement system. Part of the power of these PRRs is their propensity to 

form functional multi-receptor complexes in lipid rafts (19). These receptor clusters allow 

for generation of large combinatorial signaling repertoires and extremely enhance the 

scope of identifiable infections for mounting a context-relevant immune response (96). 

(See Figure 4). TLRs which recognize extracellular microbial structures, such as 

lipoteichoic acid and LPS, are located on the cell surface while TLRs which recognize 

intracellular signals, such as viral or bacterial nucleic acid, are positioned on endocytic 

vesicles or organelles where the odds of their interacting with their target ligands are 

maximized. (See Figure 3). For extracellular TLRs, cytoplasmic signaling is initiated 

upon binding of the ligand via recruitment of adaptor proteins to the TLR. The end result 

is expression of specific genes to tailor the immune response and modulate inflammation 

(136). In addition to physical compartmentalization, adaptor recruitment provides the 

TLR response a means to activate diverse intracellular pathways to further diversify the 

combinatorial immune response to microbial signals (193), (194). 

While triggering of specific TLR signaling pathways by bacteria should initiate 

the innate immune response as well as coordinate the induction of adaptive immunity, the 

toll-like receptor interface is also a subversion opportunity for pathogens to specify 

certain immune pathways to be suppressed or enhanced for their own survival benefit 

(91, 136, 257). 
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The complement system is a critical branch of the innate immunity, especially so 

in the oral cavity where it serves in the activation and recruitment of inflammatory cells, 

microbial opsonization, phagocytosis, cell lysis, as well as orchestration of the adaptive 

response (90, 95, 161). The complement system cross-talks extensively with other 

systems for the purpose of enhancing coordination of the host response to infection or 

injury, notably, complement receptors crosstalk with Toll-like receptors (95). A mutually 

beneficial cooperation has been characterized between TLRs and complement in which 

complement regulates TLR activation and can regulate the activity of complement 

receptors and TLRs can regulate the activity of complement receptors (91) (102, 105, 

108, 290). When this exquisitely intertwined state is balanced, when the host is healthy, 

TLRs and complement receptors signal cooperatively to induce a targeted response to 

pathogens without producing an over-robust response. For example, complement 

signaling via C3aR and C5aR in response to DAF amplifies Toll-like receptor 4-mediated 

production of on IL-6, TNF-a, and IL-I while suppressing LPS-induced IL-12 production 

(290). 

When the state is imbalanced, as occurs when pathogens hijack signaling 

pathways to interfere with elements of the immune response deleterious to its survival, 

inflammation can become excessive, and tissue damage occurs. 

TLR2 willingly dimerizes with TLR1 and 6 in order to expand the structural 

repertoire of recognizable lipoprotein structures. TLR2 is also one example of 

communication between the TLR and complement systems to potentially result III 

synergistic or regulatory interactions via C5aR (19), (27), (69). 
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Figure 2. Chemotactic recruitment of inflammatory cells in the gingival 

crevice from the review Complement and Periodontitis (90). Inflammatory 

cells, the majority of which are neutrophils, are recruited to the gingival 

crevice in response to chemotactic signals such as the complement 

anaphylatoxin C5a (136), which can be generated either immunologically or 

through microbial action (275, 279). Although gingival crevicular neutrophils 

form what looks like a "defense wall" against the tooth-associated bacteria, 

they largely fail to control the infection and may cause collateral 

inflammatory tissue damage (55, 136) (191) (230) The cartoon (on the left) 

represents magnification of the demarcated tooth area on the right. Reprinted 

with permission. 
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Dysregulated complement activation via other networks can also cause pathologic 

clotting. Crosstalk between the complement and coagulation systems can directly 

enhance blood clotting properties at several levels of the coagulation cascade. C3a 

anaphylatoxin activates platelets to enhance their aggregation and adhesion. The other 

anaphylatoxin which results from complement activation, C5a, can upregulate tissue 

fibrinogen and P A inhibitor (PAl -1) expression to enhance thrombogenicity while the 

complement membrane attack complex (MAC) increases potential clotting surface area. 

On the other side, coagulation players can amplify activation of complement. Thrombin 

cleaves C3 to C3a and C3b, and C5 to C5a and C5b. Additionally, platelets can both 

initiate the classical pathway of c~mplement activation as well as elongate the lifespan of 

C3b via phosphorylation of the molecule (67, 280, 281). One of the results of this close­

knit relationship between the two systems is complement activated clotting which, while 

it can be deleterious, when done judiciously inhibits the spread of bacteria, and so 

benefits the host (162). 

The immune system is also replenished via the cooperative action of complement 

with other receptors, for example CXCR4, to induce mobilization of hematopoietic 

stem/progenitor cells from the bone marrow (119, 149). The duties of the innate 

immunity do not end, however, with the influx of PMNs, macrophages and the activation 

of complement for the purpose of coating bacteria in the MAC and promoting 
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Figure 3. Toll-like receptors act as multifaceted guards stationed at the border 

between host and environment. A. Toll-like receptors stationed at the cell 

membrane recognize microbial cell wall components such as lipoprotein, lipoteichoic 

acid and bacterial fimbriae (TLR2/TLRI or TLR2/TLR6 heterodimer) (5), 

lipopolysaccharide (TLR4) or bacterial flagellin (TLR5).The ligands of some TLRs, 

like TLRI0, have not been discovered. Other TLRs reside within the cell embedded 

in endosomal membranes. These TLRs recognize signs of intracellular infections 

such as double-stranded viral RNA (TLR3), single-stranded viral RNA (TLR7 and 

TLR8) and microbial CpG DNA (TLR9). 

inflammation. Relatively recently it has been discovered that the innate immunity must 

also instruct the adaptive immune response in its initiation and progress (118) (65) (136). 

Adaptive immune components such as T and B cell receptors as well as antibodies 

possess an incredible antigenic vocabulary both in scope and specificity, however, that 
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vocabulary is comprised of only random words the immune cells happen to know. 

Adaptive immune specificity, the result of random gene recombination during 

development, ostensibly has the ability to recognize any peptide structure. Toll-like 

receptors and complement work to provide context to the adaptive response, ensuring that 

its specificity and memory are applied to appropriate pathogenic signals. When this 

direction goes awry, autoimmune and inflammatory disorders develop. 

Microbial Induction of Periodontal Disease 

The oral cavity is home to an abundant variety of microbes both bacterial and 

viral. The number of bacterial species has been estimated at approximately 700, the 

variety encompassing Gram positive and negative, strict aerobic and facultative 

anaerobes of various morphologies (133) (202). Approximately 8 x 10 10 bacteria have 

been calculated just to shed from the surfaces of the mouth in a 24 hour period, and this 

quantification does not even include bacteria remaining adhered within the oral biofilm 

(44). 

Colonization of the oral cavity is a multistep process the individual phases of 

which are demarcated by the presences of species defined as early, intermediate and late 

colonizers (133). Early colonizers tend to inhabit supragingivally and dominantly 

comprise the plaque there. Streptococcus species are a predominant component of the 

supragingival plaque, adhering to the thin layer of saliva and gingival crevicular fluid 

which coats the dentin called the pellicle (See Figure 1). Naturally, intermediate and late 
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Figure 4. The formation of TLR-based receptor clusters generates a 

combinatorial repertoire to discriminate among the abundant and 

diverse microbial molecules and thereby to tailor the host response. 

However, pathogens may exploit the propensity of TLRs for cooperation with 

heterotypic receptors by instigating the recruitment of receptors which could 

deregulate effective innate immunity. The interaction between P. gingivalis, 

TLR2 and CXCR4 serves as a perfect example of pathogenic subversion 

targeting toll-like receptor cooperation. 

colonizers use both the tooth surface and interactions with earlier colonizers to gain a 

stronger foothold into the oral cavity (243) (284) (44). The later colonizers are generally 

Gram negative, more anaerobic bacteria associated with disease, such as P. gingivalis, 

Treponema denticola, and Tanerellaforsythia, and prefer to colonize subgingivally (243) 
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(88) (157). These pathogenic colonizers induce a local inflammatory response consisting 

predominantly of influx by PMNs which, if left untreated, can give rise to periodontal 

disease (114) (243). Members of the "orange complex", while being generally thought of 

as less pathogenic than the red complex, are also associated with forms of periodontal 

disease (243) (45, 285) (See Figure 5). 

P. gingivalis itself expresses an array of virulence factors to establish itself within 

the biofilm, albeit as a low-abundance member, and subsequently uncouple the 

inflammatory response within the gingival crevice (144). Included within this arsenal are 

various structures and enzymes. P. gingivalis uses its fimbriae to interact with and 

subvert Toll-like signaling on both receptor-ligand and downstream signaling levels. P. 

gingivalis also possesses a set of Arg- and Lys- specific cysteine proteinases, termed 

"gingipains" which it uses to target specific levels of the complement cascade, namely 

the conversion of C3 and C5 for opsonization and formation of the MAC (207) (240). P. 

gingivalis also uses at least one specific gingipain, HRgpA, to capture and coat its own 

cell surface with C4b-binding protein, effectively masking itself from the complement 

cascade (208). 

P. gingivalis does not only target the complement system, as mentioned above, P. 

gingivalis also possesses the ability to target the toll-like receptors. As gram-negative 

bacteria, the LPS of P. gingival is should be recognized by TLR4. However, P. gingivalis 

modifies its LPS to become a tetra-acylated, dephosphorylated lipid A structure (41). 

This means that the LPS of P. gingivalis is biologically inert, or invisible to TLR4. 

Furthermore, once periodontal inflammation is induces, correlating with increased levels 

of hemin in the periodontium, P. gingivalis LPS undergoes a further modification to its 
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lipid A, monophosphorylation, which converts the pathogens LPS to a TLR4 antagonist 

(41,42). 

The Hajishengallis group also previously found that P. gingivalis fimbriae 

interact with TLR2 and CR3 to induce an intracellular signaling crosstalk between the 

receptors, the ultimate result being inhibition of IL-12p70 production via ERK1I2 

signaling in macrophages and in vivo (98, 266, 276). Furthermore, the use of a CR3 

antagonist reversed the ability of P. gingivalis to suppress induction of IL-12p70 which 

leads to enhanced clearance of the pathogen from systemically infected mice and 

protection against P .gingivalis-induced periodontitis in orally infected mIce, as 

evidenced by reduced induction of periodontal bone loss (98). 

P. gingivalis also induces a subversive crosstalk between the complement CSa 

receptor (CSaR) and TLR2 that impairs NO-dependent intracellular killing in 

macrophages (27S). P. gingivalis does this by first producing CSa (via gingipains) to bind 

CSaR. CSaR then engages in crosstalk with TLR2 via ERK1I2 to inhibit that receptors 

induction of IL-12p70. While this crosstalk downregulates IL-12p70, induction of 

pro inflammatory and bone-resorptive cytokines (lL-IB, IL-6, and TNF-a) is actually 

enhanced, further proof that P. gingivalis does not globally down or upregulate the 

inflammatory response, but rather fine tunes the immune response to its own liking. 

Moreover, CSaR signaling is required for P. gingiva/is to induce periodontal bone loss in 

a mouse model of experimental periodontitis, showing that despite P. gingivalis ability to 

hijack and subvert a variety of receptors, it is left vulnerable when these subversive 

mechanisms are prevented (1S4). 
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Figure 5. Development of the oral biofIlom. The oral biofilm is colonized in a 

particular order. Typically, more commensal species such as S. oralis colonize 

early, and thus are more closely associated with the tooth surface. Therefore 

placement within the biofilm can be used as an indicator of a microbe' s 

pathogenicity. For example, "orange complex" bacteria precede "red complex" 

pathogens. Species in the orange complex show significant association with 

increasing pocket depth as exemplified by P. intermedia and F. nucleatum. Species 

in the red complex show a very strong relationship with pocket depth, adding 

another parameter to determining the pathogenic qualities of microbes within the 

oral biofilm: distance from tooth surface and pocket depth. 

Other factors important to successful invasion of the gingival crevice by P. gingiva lis and 

subsequent induction of alveolar bone loss include IFN-y and IL-6. Mice deficient in 
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these cytokines suffer less periodontal bone loss due to P. gingivalis infection than their 

wildtype counterparts. IFN-y is an interesting cytokine often assayed for in the 

examination of the host response to P .gingivalis and AMD31 00 because of its potential 

role in osteoclastogenesis. IFN-y may contribute indirectly to P. gingivalis-induced 

osteoclastogenesis by stimulating monocytes and lymphocytes, although in contrast to the 

IFN-y's established role inhibiting osteoclastogenesis (287) (75). IFN-y is known to also 

be important to increased levels of inflammatory cytokines and leukocyte recruitment 

into the periodontium, elements critical to the periodontal bone loss process (77, 86). 

CXCR4 in Periodontal Disease. 

It is critical that innate Immune cells successfully discriminate pathogen­

associated molecular patterns from the abundant and diverse microbial signals present at 

such host-environmental interfaces as the oral cavity. Toll-like receptors(TLRs) and the 

complement system are instrumental in the process of coordinating the immune response 

to microbial infection via rapid activation, extensive functional cooperation and 

formation of multi-receptor complexes which can include other TLRs, complement 

receptors and co-receptors such as CD14 (99, 173). However, the tendency of TLRs to 

cooperate with heterotypic receptors poses an opportunity for exploitation by pathogens 

capable of inducing inappropriate recruitment of receptors to deregulate host immunity. 

This can be especially true of pathogens which have evolved closely with the host 

organism (70). P. gingivalis, a keystone pathogen in human periodontal disease, has been 

shown extensively to interact in various and elegant ways with several host immune 
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receptors, among them C5aR, CR3, and CXCR4, to enhance its own adaptive fitness (94, 

98, 102, 103, 154). 

Since TLR2 is critical in identifying the mixture of atypical LPS molecules which 

decorate P. gingivalis (99) (30), it stands to reason that this receptor be strongly targeted 

by the pathogen for subversion. We have previously established that P. gingivalis signals 

via CXCR4 to divert antimicrobial signaling pathways initiated by TLR2 (100). TLR2 

recognizes lipid A species associated with P. gingivalis LPS, however P. gingivalis also 

interacts with TLR2 via its fimbriae (105). P. gingivalis induces co-association of TLR2 

with other co-receptors such as CD14 and CXCR4 into lipid rafts (99) to manipulate 

TLR2 signaling (See Figure 6). 

It has been documented that TLR2 specifically is a target for P. gingivalis 

pathogenesis. As opposed to TLR4- deficient or wild type control mice, TLR2 deficient 

mice demonstrate protection against P. gingivalis-induced bone loss (30, 81). Whereas 

CD 14 is summoned to facilitate activation of TLR2 by the pathogen (99), P. gingivalis 

itself physically interacts with CXCR4 via its fimbriae to abrogate TLR2 activation in 

human monocytes/mouse macrophages over a wide concentration range (0.2-10 Ilg/ml, 

corresponding to 2 x 107 to 109 bacteria) (103, 291). The CXCR4 receptor is a 

transmembrane G-protein-coupled receptor that, once activated by P. gingivalis fimbriae, 

induces cAMP dependent protein kinase A (PKA) signaling which inhibits NF-KB 

activation. At first glance this appears to be a stopgap against excessive inflammatory 

upregulation, which should be beneficial to the host as chronic periodontitis is a disease 

of inflammation. However, it has been shown that this interaction actually serves to 
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benefit the survival of the pathogen both in vitro and in vivo (103) (See Figure 3). In 

terms of the inflammatory response, this subversive signaling 
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Figure 6. CXCR4 associates with TLR2 in P. gingivalis-activated 

monocytes/macrophages. (A) Human monocytes were pretreated or not with 

MCD (10 mM) and stimulated with Pg-fimbriae (1 ~g/ml , 10 min). FRET between 

TLR2 (Cy3-labeled) and CXCR4, CD14, or MHC class I (Cy5-labeled) was 

measured from the increase in donor (Cy3) fluorescence after acceptor (Cy5) 

photobleaching. B. Confocal colocalization of FITC-P' gingivalis with both 

CXCR4 and TLR2 in human monocytes (Upper) or mouse macrophages (Lower) 

(103). 
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ultimately results in inhibition of TNF-a as well as NO, the synthesis of which is also 

NF-KB dependent (283) and up-regulation of IL-IO, consistent with the observation that 

its transcription is positively regulated by cAMP (25). CXCR4 has also been identified as 

a member of TLR4-based receptors complexes, showing that CXCR4 is bound directly 

by P. gingivalis LPS (132, 263) leading to upregulation of IL-6, possibly via a cAMP­

responsive element in the transcription regulation ofIL-6 (265) (56) (See Figure 7). 

AMD3100: Bycyclam CXCR4 antagonist 

Once the role of CXCR4 in TLR2 subversion mediated by P. gingivalis was 

determined, the next logical step was to define methods by which to interrupt P. 

gingivalis 

influence upon the chemokine receptor. AMD3100, a bicyclam drug that inhibits SDF-l 

binding to CXCR4 was found to interrupt the P. gingivalis fimbriae-CXCR4 interaction 

without causing collateral signaling or receptor internalization (60, 103). Ultimately, in 

mouse macrophages and human monocytes, this led to enhanced killing of the pathogen 

(103). 

AMD3100 was discovered accidentally as an impurity contained within one of 

several commercial cyclam inhibitors while investigators were searching for potential 

anti-HIV compounds (50). Upon characterization, the bicyclam impurity was synthesized 

itself, modified and subsequent studies determined this bicyclam class of molecular target 

as CXCR4 (48) (51) (54) (228). The compound designation, JM3100, was changed to 

AMD3100 in order to indicate the developer. AMD3100 was subsequently found to 

inhibit T-tropic HIV strains via selectively inhibiting the interaction between HIV gp120 
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to CXCR4 after it has bound to the CD4 receptor, but prior to initiation of cell membrane 

fusion by HIV gp41 (68) (48). The antiviral activity of AMD3100 was further 

characterized in a study which demonstrated the compound reduced viral load in SCID­

hu Thy/Liv mice infected with a CXCR4- using clinical HIV isolate (47). AMD3100 can 

only suppress CXCR4 using viruses, such as the X4 and R5 tropic HIV variants, as 

opposed to variants which use CCR5 to facilitate entry (72). AMD31 00 is now known to 

be both a CXCR4 antagonist as well as a CXCR7 agonist, though the effects of the later 

interaction are still being discovered (123) (190) (64). AMD3100 allosterically inhibits 

SDF-l binding to CXCR4 and thus the subsequent Ca2+ influx resultant of SDF-l­

CXCR4 interaction (125) (48, 71, 106). Specifically, AMD3100 binds to three acidic 

residues in the main SDF -1 binding pocket of CXCR4 (Asp 171 in transmembrane 

domain [TM]-IV, Asp262 in TM-VI and Glu288 in TM-VII) (74) (106) (219) (282). 

It has also been discovered that AMD3100 is a rapid and efficient stem-cell 

mobiliser (33), and this discovery has implications for stem cell transplantation and 

treatments for cancers such as multiple myeloma and non-Hodgkins lymphoma (57). 

Bone marrow stromal cells constitutively display SDF-l which keeps CXCR4 expressing 

CD34+ stem cells anchored into the marrow. AMD3100 interferes with this anchoring, 

loosing the cells from SDF-l (32) (71) and allowing them to mobilise into the peripheral 

circulation (272) (32). Under healthy conditions, very few haematopoietic 

stem/progenitor cells can be found circulating in the peripheral blood, peripheral levels 

typically increasing only in response to such emergency situations as infection or trauma 

(149) (166) (147). Under the name Plerixafor, the CXCR4 antagonist has been approved 

as a subcutaneous treatment, in combination with G-CSF, in the U.S. to mobilize 

26 



haematopoietic stem cells for collection and treatment III adults with non-Hodgkins 

lymphoma or multiple myeloma (12S). 

Upon a single subcutaneous dose of 0.4-0.24 mg/kg (116, ISS) AMD3100, 

healthy volunteers demonstrated a dose dependent, transient increase in circulating 

CD34+ cells as well as other leukocytes, with mobilization into the periphery peaking 

about nine hours post administration in the highest concentration. The pharmacokinetics 

for subcutaneously administered AMD3100 are mostly linear over tested dose ranges 

(S7). It is necessary to note that certain elements of the innate immunity which are also 

targets of P. gingivalis-mediated subversion regulate HSPC mobilization. Examples of 

these include the complement cascade, neutrophils and Toll-like receptors (181) (149, 

210, 212, 213) (186). CS, specifically the CSa cleavage fragments spared by P. gingivalis 

gingipain degradation, was shown to be a critical component to HSPC mobilization via 

G-CSF and or zyomasan (149) (148) by showing that CS deficient mice are uniformly 

poor mobilizers. It is important to note that, in relation to HSPC mobilization, there 

seems to be a passing back and forth of activation between granulocytes, particularly 

neutrophils, and the complement cascade, with granulocytes being activated the BM by 

complement cleavage fragments, aiding in HSPC retention signal perturbation, and 

further CS activation. Once the granulocytes have paved the way for HSPC escape into 

the peripheral circulation, they are stimulated again by C5a to release cationic peptides 

like cathelicidin and ~2-defensin as well as other metalloproteinases (148, 149). 

Like the other methods of mobilization, AMD3100-directed HSPC mobilization 

likewise relies upon complement activation for success, however at different levels of the 
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complement cascade. AMD3100 directly activates the complement cascade at the C5 

level by inducing granulocytes to release proteases (149). 

As mentioned above, AMD3100 has been shown to aid in controlling 

inflammation in a mouse model of collagen-induced arthritis (168). AMD31 00 treatment 

reduced the severity of autoimmune collagen-induced arthritis (CIA) in IFN-yR-deficient 

DBAIl mice. The delayed-type hypersensitivity response to the auto antigen, in this 

model collage type II, was reduced upon systemic AMD3100 treatment. The authors of 

the study concluded that AMD3100 must act upon chemokine-mediated attraction of 

leukocytes into joint tissues, a pathogenic process comparable to the chemoattraction of 

leukocytes into the periodontium during periodontal disease. The authors hypothesized 

involvement ofSDF-l and injected SDF-l into periarthritic tissue and noted a subsequent 

inflammatory response. This reaction was inhibited by AMD3100. In these studies, 

treatment was initiated between the time of immunization, or, the experimental induction 

of the inflammatory disease, and the appearance of symptoms. While not exactly a model 

for "therapeutic" treatment, these studies indicated that CXCR4 antagonism post 

induction of disease could provide a clinical benefit. 

CXCR4 expression can be observed in the sites of several flavors of pathology, 

and, depending upon the mechanistic role of CXCR4 in pathogenesis, CXCR4 blockade 

could be an effective "theme" for therapy across many diseases of separate etiologies. 

CXCR4 has been associated with a variety of infectious diseases. Not only is CXCR4 a 

critical point of entry for HIV tropic virus cells (17) and as shown here a critical target of 

signal transduction in P. gingiva/is mediated periodontitis. CXCR4 blockade has been 

reported to reduce viral load within the CNS of West Nile Virus infected mice and 
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significantly improved infection (170). Due to the broad connections of CXCR4 to 

disease processes, molecules targeting the co-receptors have understandably 

demonstrated side effects involving heart function and thrombocytopenia ostensibly due 

to inhibition of other essential functions of CXCR4 (109). 

CXCR4 expression has been noted in some breast cancer cell lines (185) and 

CXCR4 has also been connected to progression of diverse malignancies of the brain, 

including intracranial glioblastoma and medulloblastoma (222). Waldenstrom 

macroglobinemia (WM) is a lymphoma of B cells and the trans-endothelial migration of 

these cells relies upon CXCR4 signaling, ostensibly through SDF-l (192) and CXCR4 

blockade may be a beneficial adjunct to existing therapy. In a mouse model of anaplastic 

thyroid carcinoma, AMD3100 was shown to reduce tumour growth (52). CXCR4 

activation may enhance pituitary adenoma development, as CXCR4 and SDF-l are both 

overexpressed in human pituitary adenomas (15). AMD3100 treatment decreases human 

colorectal cell migration in Boyden chamber experiments as well as in vitro assays 

designed to measure invasion across an 8-/.lm pore size polycarbonate membrane pre­

coated with a layer of basement membrane matrix (151). Very recently, one group 

published a study indicating the SDF-I-CXCR4 signaling axis in pancreatic cell invasion, 

at least in vitro, showing that SDF-l activation of CXCR4-positive pancreatic cells 

induces invasion, demonstrating yet another pathogenic process to which abnormal 

chemotaxis signals, specifically through CXCR4, may playa critical role (153). 

Considering CXCR7 and AMD3100. 
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It was originally thought that AMD31 00 was a specific allosteric antagonist of the 

monogamous CXCR4-SDF-l binding pair (106), however, in 2005 CXCR7 was 

described as a second receptor for the SDF -1 molecule which, in humans, finds 

expression in embryonic neuronal and heart tissue, hematopoietic cells and activated 

endothelium (31, 117) (13). CXCR 7 is a heptahelical G-protein coupled receptor (13) 

(73) which recognizes CXCL12 but upon activation does not induce typical GPCR 

mobilization of Ca++ (288), G-protein-mediated signal transduction and cell migration 

(31). Instead, activation of the B-arrestin pathway and subsequent scavenging of the 

ligand has been shown (190, 259). CXCR7 can also heterodimerize with CXCR4 to 

abrogate the G protein complex signaling (150). 

Like CXCR4, pathogenic roles, especially in malignancy and metastasis, are 

being elucidated for CXCR7, an example being the ability of CXCR7 to signal through 

PLC/MAPK pathway increasing cell survival within gliomas (64, 107). In metastatic cell 

lines CXCR7 overexpression correlated with enhanced proliferation and in clinical 

correlative studies upregulated CXCR7 expression was connected to increased 

aggressiveness of prostate cancer (274) as well as in vivo growth of breast and lung 

tumours (176). Also like CXCR4, CXCR7 expression is necessary for successful 

development, as CXCR 7 deficient mice die perinatally due to heart valve malformations 

(238). While different theories as to the specific mechanism have been proposed, the 

cause for this perinatal fatality has been linked to the role of CXCR7 in embryogenesis. 

Specifically, the chemokine receptor has a role in directing the migration of primordial 

germ cells (269) (23). 
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The discovery that CXCR7 binds SDF-l logically led to the hypothesis that 

AMD3100 must also interact with the chemokine receptor. Ligand recognition by GPCRs 

is followed by a conformational change in the receptor to activate the associated 

heterotrimeric G-protein. When a receptor, such as CXCR4, is bound by a molecule other 

than its intended ligand, at a separate site on the receptor, allosteric modulation can occur 

(123). This is the case with AMD3100 and CXCR4, because AMD3100 allosterically 

inhibits SDF-IICXCR4 interaction. In the case of CXCR7, however, binding of 

AMD3100 to the receptor actually increases the receptors affinity for SDF -1, making 

AMD3100 a positive allosteric ligand for this receptor, including at in vitro study 

concentrations (123, 169) (190). AMD3100 administered alone selectively recruits ~­

arrestin to CXCR7 in mammalian cells instead of CXCR4. These recent developments 

make CXCR7 a worthwhile receptor to study in periodontal disease, especially as studies 

involving the action of AMD3100 proceed. 

Treatment of Periodontal Disease 

P. gingiva/is is a low-abundance anaerobic bacterium which plays a critical role 

in the pathogenesis of periodontal disease, a polymicrobial as well as inflammatory 

condition. P. gingivalis manipulates its environment, the deep gingival crevice, in a 

variety of ways to enhance its own survival, not least among them triggering quantitative 

as well as qualitative changes in the composition of the oral micro biota which in tum 

promotes dysbiosis and consequent periodontal inflammation (97). At this time, it seems 

as though periodontal bone loss requires a triumvirate of players, including the host 

complement, P. gingivalis itself and the commensal microbiota, because germ-free mice 
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or conventionally raised C3a and C5aR-deficient mice did not develop bone loss post P. 

gingivalis inoculation (97, 154). While P. gingivalis is thus identified as a "keystone" 

pathogen and does employ various tactics to out-maneuver the host response, as well as 

all but the most invasive clinical interventions, targeting this low-abundance pathogen 

may reverse its community-wide impact and thus prove important to treatment to 

periodontal treatment and prevention. 

This study focused on the crosstalk events induced by P. gingivalis fimbriae 

between TLR2 and an associated co-receptor chemokine receptor 4 (CXCR4). P. 

gingivalis exploits CXCR4 to undermine host signaling and promote its own adaptive 

fitness. In this way P. gingivalis acts like a conductor which has hijacked the orchestra of 

host immune receptors, directing them not to maintain a homeostatic balance, but rather 

to drive a chronic inflammatory state. This selectively nonproductive response benefits P. 

gingivalis while causing extensive collateral damage in the periodontal tissues as well as 

potentially increasing the risk and extent of systemic diseases such as rheumatoid arthritis 

(18), aspiration pneumonia (100), atherosclerosis (264) and heart disease (183, 273). 
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Figure 7. P. gingiva/is antagonizes TLR4 but not TLR2 at the receptor level. P. 

gingivalis targets TLR2 at the downstream signaling level via CXCR4 exploitation. 

P. gingiva/is uses an elaborate system of lipid A phosphatase and deacylase 

activities that modify the lipid A structure of its lipopolysaccharide (41). These 

modifications result in lipopolysaccharide molecules that can either evade or 

actively antagonize TLR4 activation (depicted as a homodimer; TLR4/4) (41). 

Although the activation of the TLR2/TLRI heterodimer (TLR2I1) is not 

antagonized at the TLR receptor level, P. gingivalis instigates a molecular cross-

talk between the CXC-chemokine receptor 4 and TLR2/ l. Unlike CD14 which 

facilitates TLR211 activation by the pathogen (55, 99), CXCR4 suppresses TLR2 

signaling (103). Mechanistically, P. gingiva/is uses its fimbriae to bind CXCR4 and 

induce cAMP-dependent PKA signaling, which in turn inhibits the activation of 

nuclear factor-lcB rNF-lcB) activation(103). Reorinted with oermission. 
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CHAPTER TWO: MATERIALS AND METHODS 

Bacterial strains and culture conditions. P.gingivalis ATCC 33277 was grown 

anaerobically from frozen stocks on modified Gifu anaerobic medium-based blood agar 

plates (Nissui Seiyaku Co., Tokyo, Japan) for 5-6 days at 37°C under microaerophilic 

conditions. P. gingivalis was also grown in reduced Trypticase Soy Broth (TSB; BD) 

supplemented with yeast extract (1 gram per liter; BD), menadione (1 ~g per ml; Sigma­

Aldrich), and hemin (5 ~g per ml; Sigma-Aldrich). The medium was reduced for 24 

hours under anaerobic conditions by equilibration in an atmosphere consisting of 10% 

CO2, 10% H2, and 80% N2. 

Animals. Female BALB/c mIce were obtained from The Jackson Laboratory. 

C57BLl6 conditional CXCR4-deficient mice (with their respective wildtype control 

mice) were provided by Dr. Gregg Rokosh (University of Louisville) and were housed in 

conventional vivarium conditions. Inducible conditional knockout mice were generated 

using acre recombinase modified with an estrogen receptor ligand-binding domain. This 

modified cre recombinase was non-functional until induction with tamoxifen at four 

weeks of age (6). 
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Subcutaneous osmotic pump implantation in mice. ALZET osmotic pumps 

were loaded prior to insertion following manufacturer instructions. Mice were weighed 

prior to implantation to assure adherence to the pump implantation weight guidelines. 

Anaesthesia was induced over 2 minutes by isoflurane (Butler Schein Animal Health) 

inhalation through a vaporizer (3% isoflurane and 100% O2). Surgical anaesthesia was 

confirmed by pinching the foot pad and observing reaction. Artificial tears (Butler Schein 

Animal Health) were applied to avoid eye injury during surgical implantation! discomfort 

upon waking. The target area for subcutaneous implantation was sanitized using 70% 

ethanol and then Nolvasan 4% antibicrobial solution (Butler Schein). The area was 

shaved using surgical preparatory blades and the area was sanitized again with Nolvasan 

rinse. A subcutaneous incision was made dorsolaterally, posterior to the scapulae. The 

incision was made anteriorly so that the pump, once inserted, would slide posteriorly. 

This was done so the mouse could not access and chew the sutures or staples before the 

wound was adequately healed. Alzet osmotic minipumps (model #2004; Alza, Palo Alto, 

CA) were subcutaneously implanted "delivery portal first" within a pocket large enough 

to allow a relatively free movement of the pump without allowing the pump to tum or 

slip down the flank of the animal. The incisions were closed with a wound closing stapler 

system (BD). Mice were monitored and on Day 10 staples were removed. 

In vivo mouse periodontitis model. The P. gingivalis-induced periodontal bone 

loss model used was essentially as originally developed by Baker and colleagues (12) as 

follows. 10-12 week old wild-type or CXCR4 conditional deficient mice were fed water 
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with antibiotics (SOOllg sulfamethoxazole/ml and 400 Ilg trimethoprim Iml) ad libitum for 

ten days to suppress the normal flora and create a more favourable niche for P. gingivalis 

colonization as the mouse is not a natural host to P. gingivalis. This was followed by 3 

days of regular water ad libitum to allow the antibiotics to clear the system. P. gingivalis 

33277 was grown on TSB or GAM blood agar plates for 3-6 days in anaerobic buckets 

and suspended into 5 ml PBS. An OD 600 reading was taken to measure CFU and the 

bacteria were spun down at 4000 RPM for 10 minutes. Bacteria were resuspended at 2 x 

lOlO/ml. The bacteria were added to 2% CMC (the oral gavage vehicle) at a 1:1 ratio so 

that the final concentration of bacteria should be 1 x 1010/ml. 

Mice were orally infected five times at 2-day intervals with 109 CFU P. gingivalis 

suspended in 100111 2% carboxymethylcelluloselPBS. Sham-infected control animals 

received 2% carboxymethylcellulose in PBS alone. Mice were fed using a 1 ml syringe 

and a 22 xl" W 11-114 animal feeding needle. A separate needle for the P. gingivalis and 

sham infected mice was used and the needles were kept separate at all at times including 

when they were cleaned. Needles were treated with a D/Rnase solution to eliminate P. 

gingivalis DNA cross contamination. See Figure S. 

Analysis of alveolar bone resportion. Six weeks after the final infection, mice 

were euthanized via C02 inhalation. After euthanization, the mice were decapitated. The 

mouse heads were boiled for 15 minutes under 15 Iblin2 of pressure and subsequently 

defleshed. The skulls were then immersed in 3% hydrogen peroxide overnight at room 

temperature to remove any remaining musculature and washed with deioinized water. To 

ensure that any residual bacteria and/or tissues were removed from the teeth, skulls were 
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sonicated at 4 volts in 1 % bleach for 30 seconds, rinsed with water, and then gently 

brushed with toothpaste for 30 seconds. They were rinsed clean, swirled in distilled water 

for 30 seconds, and then once again sonicated at 4 volts in 1 % bleach and rinsed clean 

A. 

B. 

10 Days 
Antibiotics, 
4 days water 
ad libitum 

Mouse upper jaw 

Day 4 water ad 
libitum, insert 
pumps 

9 
5 infections 10 
every other day 

Day 60 mice are 
sacrificed and tissues 
are collected 

su bcuta neOl 
Figure 8. Baker model of oral infection. A. Mice 

are given broad spectrum antibiotics to clear 

normal flora and create a niche for P. gingivalis. 

After a rest period to clear antibiotics from the 

mouse system, mice are infected every other day. 
eft mohl r"i 

On day 60 mice are euthanized. B. Schematic of 

gingivae dissection following euthanasia of mice. 

with deionized water. The cleaned teeth were stained for 5 minutes with 0.5% Eosin Y 

TS, 30 seconds with 1 % Methylene Blue (Ricca Chemical Company, Arlington, TX) and 

rinsed with deionized water to remove excess dye. Skulls were allowed to air-dry prior to 

measurement of the alveolar bone. 

Assessment of periodontal bone loss in defleshed maxillae was performed under a 

dissecting microscope (x40) fitted with a video image marker measurement system 

(model VIA-170K; Fryer, Huntley, IL) standardized for measurements in millimeters 
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(mm). Specifically, the distance from the cementoenamel junction (CEl) to the alveolar 

bone crest (ABC) was measured on 14 predetermined points on the buccal surfaces of the 

maxillary molars (12). The 14-site total CEl-ABC distance for each mouse was 

subtracted from the mean CEl-ABC distance from the group of sham-infected mice; 

results were expressed as millimeter change in bone, and negative values indicated bone 

loss compared with sham-infected controls (12). All animal procedures received 

Institutional Animal Care and Use Committee approval and were in accordance with 

federal guidelines for the care and use of laboratory animals. 

RNA Isolation, eDNA synthesis and RT -peR of host genes. Palatal and buccal 

gingival tissue immediately adjacent to maxillary molars was dissected and stored at -

70°C in RNALA TER. RNA was extracted using the Qiagen RNeasy Mini Kit and 

quantified at 260 and 280 nm using a NanoDrop spectrophotometer. The RNA was 

reverse transcribed using the qScript™ cDNA SuperMix (Quanta Biosciences) and 

quantitative real-time PCR was performed using the ABI 7500 Fast System, according to 

the manufacturer's protocol (Applied Biosystems) in 20 Ill. All TaqMan probes, sense 

primers and antisense primers for expression of genes were purchased from Applied 

Biosystems (154). The amplification conditions for all qPCR reactions were as follows: 

20 seconds at 95°C, then 40 cycles of two steps, 3 seconds at 95°C to denature, and 30 

seconds at 60°C for annealing and elongation. All changes in gene expression were 

expressed as the difference in threshold value between GAPDH and the gene of interest 

in experimental groups versus the negative control group. See Table 2. 
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DNA isolation. 24 hours after the last infection mice were euthanized, maxillary 

palatal, and buccal gingival tissues as well as the tooth and immediate bone were 

harvested (sham mice first to avoid contamination), placed in the lysis buffer (ATL) 

provided with the Qiagen Dneasy kit and lysed overnight at 56°C with occasional 

agitation. DNA was then harvested using the Qiagen DNeasy and stored at 4°C short 

term or -20°C long term. The concentration and purity of each DNA sample were 

measured via spectrophotometry at 260nm (ND-IOOO Spectrophotometer, NanoDrop 

Technologies, Inc, Wilmington, DE). Using the concentration estimate gained from the 

spectrophotometric readings the DNA preparations were diluted to give roughly 

equivalent amounts of DNA per PCR reaction. Quantitative real-time PCR for total 

bacteria was done using Taqman primers to 16S (137) and for P. gingivalis using 

Taqman primers designed for ISPG 1 in a final reaction volume of 20111 (Applied 

Biosystems). See Table 2. Total bacteria and P. gingivalis genomic copy number were 

quantified using a standard serial dilution of DNA extracted from P. gingivalis broth 

culture. The broth culture was quantified by CFU in order to construct a standard curve. 

Titanium Coil Chamber Implantation. Isofluorane anesthetized Balb/c mice were 

dorsolaterally implanted with a surgical-grade titanium coil chamber. Following a 7 day 

healing period, P. gingivalis (10· CFU in 100 III of PBS) was injected into the chambers of 

each mouse. Various doses of AMD3100 were co-injected in the same 100j.l1 volume. 

Chamber exudates were harvested from mice at indicated time points and centrifuged at 1000 

rpm for 5 minutes. Subsequently, recruited cells were phenotypically characterized by flow 

cytometry, supernatants were used to determine viable counts of P. gingivalis, and cytokines 

were analyzed using EIA (EB Biosciences) or Luminex-IOO/multiplex cytokine analysis 

system (Upstate). See Figure 9. 
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Fig. 9. Implantation of titanium steel coil for subcutaneous chamber model. 

Mice were typically anesthetized using Isofiurane/Oxygen mix and measures for 

pain alleviation were followed as per the veterinarian recommendations, allowing 

for non-interference with host response analysis. 

Statistical analysis. Data were evaluated by analysis of variance and the Tukey­

Kramer multiple comparisons test using the InStat program (GRAPHP AD Software, San 

Diego, CA, USA). Where appropriate (comparison of two groups only), Student's two­

tailed unpaired t-tests were performed. The level of significance was taken as p < 0.05. 

All experiments were performed at least twice for verification. 
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Table 1. Bacterial Strains used in this Study. 

Bacterial Strain Description Source 

+::. - P. gingivalis A TCC 
Gram-negative, rod-shaped, anaerobic 33277 

pathogenic bacterium. 
ATCC 

F. nucleatum A TCC 
25586 

Anaerobic rod; oral bacteria, orange complex ATCC 



+:>. 
N 

Primers 

Bacterial Squences 

5' Universal 16s 

3' Universal 16s 

Universal 16s Reporter 

5' P. gingivalis ISPG 1 

3' P. gingivalisISPG 1 

P. gingivalis ISPG 1 Reporter 

Table 2. Primers used in this study. 

Primer Sequence (5' - 3') Source 

(163) 

5'TCCTACGGGA GGCAGCAGT-3' (163) 

5'-GGACTACCAGGGTATCTAATCCTGTT-3' (163) 

5'-FAM-CGTATTACCGCGGCTGCTGGCAC-TAMRA-3' 

5' -CGCAGACGACAGAGAAGACA-3' This Study 

5'-ACGGACAACCTGTTTTTGATAATCCT-3' This Study 

5' -FAM-TCCGCCTCGCTCCGAT-TAMRA-3' This Study 



CHAPTER THREE: SYSTEMIC AMD3100 ADMINISTRATION PREVENTS 

ALVEOLAR BONE RESORPTION IN P. GINGIVALIS INFECTED MICE 

Introduction 

The inflammatory immune response is critical to protection against oral pathogens 

but is ultimately also the driving factor in chronic periodontitis. Some investigators have 

attributed this pathogenesis at least partly to a spatial shift in the constant inflammatory 

infiltrate closer to the bone surface (86). Graves and coworkers reported in a non-human 

primate model of experimental periodontitis that the inflammatory front shifts closer to 

the crest of the alveolar bone in association with increased osteoclast formation. This 

process was significantly alleviated by blockade of IL-1 and TNF -u (84, 86). Other 

investigators have noted that the closer the inflammation comes to the bone, the more 

aggravated the bone loss becomes (229) (221) (198). These observations were taken to 

mean that, by inhibiting inflammatory migration from the sub-epithelial connect tissue 

closer to the one, that progression from gingivitis to periodontitis could be prevented. 

Toll-like receptors (TLRs) detect and respond to microbial infection via rapid 

activation of inflammatory and antimicrobial responses in cooperation with other innate 
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immune receptors with which they form multi-receptor complexes in membrane lipid 

rafts of front-line defense cells (e.g., neutrophils and macrophages) (263). 

However, the tendency of TLRs to functionally associate with heterotypic 

receptors poses an opportunity for exploitation by microbial pathogens capable of 

inducing inappropriate lipid raft recruitment of receptors that could subvert host 

immunity (96). 

We have previously shown that Porphyromonas gingivalis, a keystone pathogen 

in periodontal disease (97), interacts with several innate immune receptors, including 

complement receptors and the CXC chemokine receptor 4 (CXCR4), in ways that 

enhance its own adaptive fitness (101) (103) (154) (275, 276). With regard to CXCR4, 

we have shown that P. gingivalis uses its surface fimbriae to directly bind and activate 

CXCR4 to subvert antimicrobial signaling initiated by TLR2 (103) (205). 

Specifically, P. gingivalis induces co-association between CXCR4 and TLR2 in 

lipid rafts, leading to a subversive crosstalk pathway in which cAMP-dependent protein 

kinase A signaling inhibits intracellular nitric oxide production. This activity, in tum, 

impairs the killing function of leukocytes (103) suggesting that P. gingivalis exploits 

CXCR4 to evade host immunity and, perhaps, to persist in the periodontal tissue and 

cause disease (231). 

However, in our previous studies we did not examine whether the exploitation of 

CXCR4 by P. gingivalis enhances its ability to cause periodontitis. To address this 

hypothesis, we now determined whether a specific and potent antagonist of CXCR4, the 

bicyc1am drug AMD3100 (60), can inhibit P. gingivalis-induced periodontitis in the 

mouse model. Our current results show that AMD31 00 impairs the ability of P. gingivalis 
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to cause bone loss by interfering with its colonization in the murine periodontal tissue. 

These findings provide proof of concept that CXCR4 antagonists may be promising 

therapeutics for the treatment of human periodontitis. 

Prior to these studies, AMD3100 was used m combination with preexisting 

therapeutic molecules (G-CSF and GM-CSF) in a clinical setting to increase circulating 

peripheral blood stem cells and it has been proposed that CXCR4 blockade may have a 

role to play in treating leukemia due to shared surface expression of adhesion molecules 

and CXCR4 on leukemic precursor cells and HSPCs (231) (24) (218, 247) 

Generally no single animal model completely recapitulates the pathophysiology 

of human disease. However, animal models possess utility in testing specific mechanistic 

hypotheses involving the pathology periodontal disease (85). In the Baker model of 

periodontitis, induction of several inflammatory cytokines can be reliably observed in 

conjunction with alveolar bone loss. Therefore, modulation of cytokine expression in the 

gingival tissues is analyzed along with the more clinical parameter of bone loss. 

It is critical to demonstrate cause-and-effect relationships when studying potential 

therapeutic compounds and these studies cannot be addressed in humans (85) as clinical 

trials can be initiated only after safety and efficacy have been demonstrated in animal 

models. In this study we show that treatment both prior to and post P. gingivalis mediated 

induction of disease arrests the progress of inflammatory bone loss. 

Results 

AMD3100 prevents development of periodontal bone loss in mice infected with P. 

gingivalis 
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CXCR4 antagonism leads to enhanced clearance of P. gingivalis in mouse 

macrophages/human monocytes (103), therefore we hypothesized that treatment with 

AMD3100 would protect mice from periodontal bone loss in the Baker model of chronic 

periodontitis. Physiological protection could be due to either: I) enhanced clearance of 

the bacteria, or 2) inhibition of P. gingivalis-mediated inflammatory tissue destruction by 

the immune system. To account for both possibilities, systemic treatment with AMD31 00 

was initiated 24 hours prior to initial P. gingivalis inoculation. In order to ensure the 

antagonist was delivered for an adequate amount of time to produce a measurably 

protective effect, Alzet mini-osmotic pumps administering 0.25 )ll/hr at a steady rate for 

four weeks were subcutaneously implanted dorsolaterally in BALB/c mice. 600 )lg 

AMD3100 was delivered a day, corresponding to a steady serum level of about I )lg/ml 

(168). This concentration has previously been found to effectively block CXCR4 in cell 

culture experiments (103, 205). Systemic treatment is advantageous because of 

AMD31 00' s low oral bioavailability (110, 271) as well as the extensively documented 

successful administration of AMD3100 (in terms of its efficacy in CXCR4-mediated 

diseases), ranging from I to 5 mg/kg mouse body-weight (113, 121, 224, 242). 

Systemically administered AMD3100 has been shown to be safe both in mice and in 

human phase I clinical trials (110). Moreover, our laboratory has shown that a single 

intraperitoneal injection of AMD31 00 results in enhanced clearance of P. gingivalis from 

the peritoneal cavity. 

Continual systemic administration of AMD3100 completely abrogated 

periodontal bone loss caused by P. gingivalis in Balb/c mice (p < 0.01; See Figure 10), in 

stark contrast to mice receiving only PBS which developed significant bone loss relative 
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to sham-infected controls. AMD3100 treatment in the absence of bacterial infection did 

not affect bone loss in the mice. 

Since P. gingivalis interacts with several immune receptors involved in 

inflammation (TLR2, TLR4, CXCR4) and since one of the downstream targets of these 

interactions was NF-KB, we elected to survey two mice from each experimental group 

using a 96 well gene array designed to identify trends in the NF-KB-mediated 

inflammatory profile. While differences in gene expression assayed in this experiment 

were not significant, there was an observable trend in differences between infected 

treated and untreated mice. Later, we used this information to do RT-PCR in CXCR4 KO 

mice, experiments in which starting amounts of gingival tissue were limited, and assay a 

targeted group of inflammatory/osteoclastogenic genes. In the CXCR4 KO experiments, 

the trends we observed using the arrays in AMD3100 treatment experiments were 

confirmed. One of the most striking correlations was the observation of high amounts of 

mRNA for several inflammatory genes without the presence of bone loss in sham 

infected, CXCR4 KO mice, just as in the AMD3100 treated, sham infected mice (See 

Chapter Four). 

We noted a difference in relative expreSSIOn of pro inflammatory mediators 

important to the progression of periodontal disease. By day 60, AMD31 00 treatment had 

caused down-regulation ofIL-6 and upregulation of TGF-~ in P. gingivalis-infected mice 

relative to untreated mice. We noted upregulation of RANK -L in one AMD31 00 treated 

mouse, but osteoprotegerin was also upregulated in the same mouse so it's reasonable to 

attribute the lack of bone loss to the decoy receptor competing with RANK-L resulting in 

inhibition of osteoclastogenesis. Long term AMD3100 treatment alone caused 

47 



downregulation of IL-6, and RANK-L and upregulation in IL-l~, TNF-a, TGF-~ and 

OPG relative to no treatment. These mice did not display alveolar bone loss, despite an 

apparent upregulation of inflammatory cytokine production. 

These data indicated that AMD31 00 treatment protects mice from P. gingivalis­

mediated bone loss when the drug is administered prior to exposure to the pathogen and 

for an extended duration. This protection appeared to be due at least in part to a shift in 

the inflammatory response to P. gingivalis as a result of CXCR4 blockade. We 

concluded, upon surveying the inflammatory response at day 60, that the downregulation 

of IL-6 in P. gingivalis-infected AMD3100 must be due to a combination of CXCR4 

blockade and resolution of P. gingivalis-mediated inflammation prior to day 60. 

However, the elevated IL-l~ and RANK-L levels in infected, treated mice conflict with 

the later conclusion, so we decided to ask whether the infection was actually being 

resolved early during the oral chronic periodontitis model. 
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Figure 10. Preventive treatment with AMD3100 abrogates P. gingiva/is-induced 

periodontal bone loss. BALB/c mice (10-12 weeks of age) were administered 

AMD31 00 (or PBS control) through osmotic minipumps which were implanted 

subcutaneously 24 hours prior to oral infection with P. gingivalis (or vehicle only; 

sham) as described in the Methods. The mice were euthanized six weeks after the 

last inoculation with P. gingivalis, gingivae were dissected for RT-PCR and bone 

loss measurements were performed in detleshed maxillae. Data are means ± SD (n = 

5 mice per group); negative values indicate bone loss in P. gingivalis-infected mice 

relative to sham-infected controls. **p < 0.01 compared to control and all other 

experimental groups. AMD, AMD3100; Pg, P. gingiva/is. 
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Systemic AMD3100 treatment effectively eliminates P. gingivalis from the oral 

cavity early in the oral infection model. 

We next investigated whether AMD3100 treatment actually enables the host to 

clear the pathogen from the oral cavity, or if P. gingivaZis persists in the oral cavity 

during AMD3100 treatment but is not able to incite pathologic bone loss. This is 

important because, if the P. gingivalis manages to persist despite the AMD3100 

treatment, once treatment is removed P. gingivalis would be free to instigate disease. 

CXCR4 blockade inhibits survival of P. gingivalis in mouse macrophages, therefore we 

hypothesized that the protective effect of AMD31 00 treatment in the context of chronic 

periodontitis is due to enhanced clearance of the bacteria. 

To this purpose, an abbreviated version of the Baker oral model of disease was 

used. Mice were given ten days of broad spectrum antibiotics and three days regular 

water ad libitum as in the regular model. 24 hours prior to the initial P. gingivalis 

inoculation, 14 day osmotic pumps were implanted subcutaneously in mice. Seven days 

after the final (fifth) infection, mice were euthanized and periodontal tissues were 

collected. qRT-PCR targeting ISPG 1, a high-copy number gene, was used to detect P. 

gingivalis in the soft and hard tissues of the periodontium. There was a statistically 

significant increase in copy number of P. gingivalis in untreated mice (p< 0.01, See 

Figure 11). 

However, ISPG 1 copy number in P. gingivalis-infected, AMD3100 treated mice 

was indistinguishable from sham infected mice. There was also a statistically significant 

trend in the total bacterial load (both aerobic and anaerobic) as measured by 
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Figure 11. Effect of AMD3100 on the numbers of P. gingiva lis or total bacteria 

in the murine periodontal tissue. BALB/c mice (10-12 weeks of age) were 

treated with AMD31 00 (or PBS control) and infected with P. gingivalis (or vehicle 

only; sham) as described in the legend to Figure 1. The mice were sacrificed 7 

days after the last inoculation with P. gingivalis. The numbers of P. gingiva lis and 

of total periodontal bacteria in the periodontal tissue were determined using 

quantitative real-time PCR of the ISPgi gene (P. gingiva lis) or the 16S rRNA gene 

(total bacteria). Host gene expression was determined via qRT-PCR. Data are 

means ± SD (n = 5 mice per group). * P < 0.05; ** P < 0.01 between the indicated 

groups. AMD, AMD31 00; Pg, P. ~in~ivalis. 
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16S copy number. There was a significant increase in total bacterial load in untreated 

mice infected with P. gingivalis, while the total bacterial load remained at sham infected 

levels in mice also treated with AMD3100, (p< 0.01, See Figure 11). We previously 

showed that P. gingivalis colonizes the oral cavity in specific-pathogen free mice at low 

levels and causes an elevation of the total cultivatable commensal bacterial load, and this 

shift in the commensal bacteria is essential to induction of bone loss (97). The finding 

that P. gingivalis causes a pathologic, quantitative increase in commensal bacteria and 

that AMD3100 treatment reverses that shift supports our previous conclusion that P. 

gingivalis plays the role of a keystone pathogen within the oral biofilm. Taken together, 

these data indicate that systemic AMD3100 treatment leads to elimination of P. 

gingivalis from the oral cavity and prevents the quantitative increase in the oral 

commensal microbiota attributable to the successful colonization of P. gingivalis (97). 

Again, we used 96 well assays to look for changes in inflammatory genes 

downstream ofNF-KB. While we only used two mice per group, as above, we noted IL-

17 expression was nearly undetectable in PBS Sham (negative control) mice versus 

infected mice and lower RANK-L expression in AMD3100-treated, infected mice versus 

the other groups. Relatively lower gingival expression of inflammatory mediators, 

including molecules implicated in bone resorption (IL-6, IL-17 and RANK-L), was 

demonstrated in AMD3100 treated, P. gingivalis- infected mice in contrast to infected 

mice who received no treatment. AMD3100 treatment provided a protective effect 

against development of destructive periodontal inflammation by preventing establishment 

of P. gingivalis infection and the resultant increase in commensal flora. 
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AMD3100 infusion effectively halts progression of periodontal bone loss two weeks 

after induction of disease. 

AMD3100 treatment resulted in eradication of P. gingivalis from the oral tissues and 

protection from P. gingivalis-mediated bone loss in the context of prophylaxis (See 

Figure 10), suggesting the drug could be an excellent candidate as a therapeutic agent in 

periodontal disease. To test this hypothesis, mice were inoculated with 109 P. gingivalis 

or sterile PBS as in previous oral infection model experiments. Two weeks after the final 

inoculation mice were implanted with mini osmotic pumps designed to release drug for 

two weeks containing 10 mg AMD3100 in 0.1 ml PBS or PBS only. On Day 60 mice 

were euthanized to evaluate periodontal disease and host inflammatory status in the 

gingival tissues. We elected to begin therapy two weeks after the final inoculation 

because our group previously demonstrated that bone loss in P. gingivalis- infected mice 

is statistically significant versus sham infected mice at that time. Two weeks into the oral 

infection model corresponds theoretically to early stages of periodontal disease when 

bone loss is not yet extensive. This stage of the oral infection model is a window in which 

it would be maximally efficacious for patients already demonstrating disease to initiate 

treatment. Indeed, systemic AMD3100 therapy post induction of periodontal disease 

halted progression of bone loss (See Figure 12). Some isolated pockets of bone loss were 

noted in AMD3100 treated, P. gingivalis infected, mice, particularly around the third 

molar (Figure 12) as bone resorption experienced in periodontitis is non-reversible (8) 

(143). Overall, however, treated mice demonstrated significantly less alveolar bone loss 

than untreated ice when challenged with P. gingivaiis, indicating an effective halt in 

disease progression upon initiation of AMD3100 therapy (p< 0.01). Taken together the 
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above studies indicate the P. gingivalis- CXCR4 interaction as a promising therapeutic 

target and treatment with antagonists such as AMD31 00 as a possible strategy for halting 

progression of periodontal disease. 
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Figure 12. Therapeutic treatment with AMD3100 halts P. gingivalis-

mediated periodontal bone loss. BALB/c mice (l0-12 weeks of age) were 

orally infected with P. gingiva/is as described in Methods. Two weeks after the 

last inoculation with P. gingivalis, the mice were administered AMD3100 (or 

PBS control) via osmotic minipumps. Data are means ± SD (n = 5 mice per 

group); negative values indicate bone loss in P. gingivalis-infected mice relative 

to sham-infected controls. ** P < 0.01 compared to control and all other 

experimental or groups. AMD, AMD3100; Pg, P. gingivalis. 

Discussion 

It has recently been proposed that periodontitis fundamentally represents a 

disruption of host microbe homeostasis in the periodontal tissue (46). This notion is 
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supported by mechanistic studies in the mouse model of periodontitis: Alterations either 

in the composition of the periodontal microbiota or in local regulatory mechanisms that 

control leukocyte recruitment can cause disruption of periodontal homeostasis which, in 

tum, may lead to uncontrolled inflammation and periodontal bone loss (97). 

P. gingivalis benefits from modulating the inflammatory response. Through 

interactions with several receptors and elements of the innate immunity P. gingivalis 

selectively allows inflammation beneficial to its survival to carryon while other key 

aspects of immunity are shut down. Induction of subversive crosstalk between innate 

immune receptors seems to be a favorite mechanism of P. gingivalis. We have previously 

shown that P. gingivalis induces inflammation via C5aR-TLR2 crosstalk which is likely 

to cause collateral tissue damage (inflammatory periodontal bone destruction) (154). We 

now demonstrate in a preclinical model that P. gingivalis participates in CXCR4 

modulation of TLR2 antimicrobial signaling. P. gingivalis manipulates both sets of 

receptors by inducing their collection into close physical proximity (103, 276), and as a 

result TLR2-mediated antimicrobial signaling is inhibited. Perhaps P. gingivalis' 

multifactorial attack upon TLR2 antimicrobial signaling betrays the important role of this 

Toll-Like receptor to success of the pathogen. 

Currently, there is an urgent need to develop innovative adjunctive therapeutic 

strategies in chronic periodontitis (92). Indeed, conventional periodontal treatment is 

often not sufficient by itself to treat destructive inflammation and, moreover, this oral 

disease appears to increase the patients risk for atherosclerosis, diabetes, chronic 

obstructive pulmonary disease, adverse pregnancy outcomes, and possibly rheumatoid 

arthritis (80) (143) (159) (206) (261). 
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One approach to treating periodontitis is to counteract immune evaSIOn or 

subversion by major periodontal pathogens. Periodontal and other microbial pathogens 

preferentially target and corrupt innate immunity (70) (96). Subversion of innate 

immunity may additionally undermine the overall host defense, given the instructive role 

of the innate response in the development of adaptive immunity (201). Therefore, 

understanding the molecular mechanisms whereby microbial pathogens interact with and 

exploit innate immune receptors may facilitate the development of intervention 

approaches to inhibit immune evasion and disease pathogenesis. 

In this study, I took advantage of our group's earlier findings that implicated 

CXCR4 in P. gingivalis immune subversion (103) and showed that a CXCR4 antagonist 

can protect against P. gingivalis-induced periodontal bone loss in both preventive and 

therapeutic models. The expression of CXCR4 has been shown to be elevated in chronic 

periodontitis compared to healthy gingiva (122) (126). However, it is uncertain whether 

CXCR4 plays a role in periodontal pathogenesis. In this regard, the above study is the 

first to causally link CXCR4 to periodontitis in a preclinical model. The protective effect 

of AMD31 00 against P. gingivalis-induced periodontitis may be attributed, at least in 

part, to the blockade of the host receptor, CXCR4, which is apparently important to 

survival of P. gingivalis in the periodontium. This conclusion is based on the ability of 

AMD3100 to enhance the killing of P. gingivalis by leukocytes (103) and, moreover, to 

mediate its elimination from the periodontal tissue in vivo (this study). 

The natural ligand for CXCR4 is the chemokine stromal cell-derived factor-l 

(SDF-l), although CXCR4 also functions as a co-receptor with CD4 for the HIV-l 

envelope gp120/gp41 complex (195). In this context, AMD3100, which can also potently 
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antagonize human CXCR4 (106), was shown to block CXCR4-dependent HIV-l entry 

and replication (49) (60). Moreover, AMD3100 can protect against several CXCR4-

mediated pathophysiological conditions, such as rheumatoid, infectious, allergic, and 

malignant diseases, both in humans and in experimental mouse models (49) (113) (158, 

168). This study adds periodontitis to the list of potential therapeutic applications of 

AMD3100. 

The ability of AMD3100 to inhibit periodontitis by apparently targeting P. 

gingivalis (as this antagonist did not directly influence the periodontal microbiota) has a 

theoretical basis on the keystone pathogen concept. According to this concept, P. 

gingivalis- at low colonization levels- impairs innate immunity in ways that alter the 

growth and development of the entire biofilm resulting in dysbiosis that triggers 

periodontal disease, at least in the mouse model (97). On the other hand, neither the 

indigenous murine microbiota alone, nor P. gingivalis by itself (i.e., in germ-free mice) 

can initiate pathologic bone loss in young healthy mice (97). In the presence of 

AMD3100, P. gingivalis failed in this study to support the overgrowth of the total 

periodontal micro biota which is required for induction of periodontitis. AMD3100 was 

effective against periodontitis even when the disease was already in progress, suggesting 

that the continuous presence of P. gingivalis, albeit at very low levels compared to the 

total bacterial counts, is strictly required to sustain dysbiosis and disease progression. 

In humans, P. gingivalis is also a quantitatively minor component of 

subgingival pathogenic biofilms, despite its high prevalence, and is associated with 

progressive bone loss in periodontitis patients (38) (63) (138) (184) (184). It should be 

noted that adult chronic periodontitis is associated with multiple etiologies and disease 
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modifiers (93) (134) (143) (206) and, therefore, the presence of P. gingiva lis may be just 

one of several etiologic factors. Nevertheless, under favorable environmental conditions, 

this bacterium has the potential to act as a keystone pathogen to transform an otherwise 

symbiotic micro biota into a dysbiotic microbial community that can cause periodontitis 

(97). 

In summary, my results establish a role for CXCR4 in P. gingivalis-induced 

periodontitis and show that CXCR4 antagonism by AMD31 00 confers protection against 

the disease through an antimicrobial effect. Given that AMD31 00 has been shown to be 

safe in humans (227), this and other CXCR4 antagonists could find application as 

adjunctive therapeutics for the treatment of human periodontitis. 
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CHAPTER FOUR: CXCR4BLOCKADEENHANCESCLEARANCEOFR 

GINGIVALIS 

Introduction 

The oral cavity is an impressive and elegant example of the ability of innate 

immune cells to interact with a staggering number of constant commensal microbial 

signals and still parse out the pathogenic signals among them. However, it is also a 

critical example of the clinical repercussions of innate immunity gone wrong. In 

periodontal disease, host immune signaling is hijacked by pathogens such as P. 

gingivalis, causing specific repression of host immunity that would clear the bacteria, 

while unproductive aspects of the response are allowed to proceed, such as the induction 

of inflammatory and bone resorptive cytokines. 

Gram-negative, anaerobic bacteria are typically the instigators of periodontal 

disease, given opportunity to step beyond the boundaries of the commensal lifestyle by 

poor oral hygiene, and the resulting tissue destruction can further provide a route of 

invasion for oral pathogens beyond the gingival epithelium into the systemic circulation 

and beyond. In this situation, bacterial products such as endotoxin can induce 

inflammatory cytokine production in distal areas of the body to incite pathogenic 

59 



processes, for example, atherosclerotic plaque formation and thrombogenesis (270) (249) 

(277). Upon repeated challenge, local cytokine receptors within the periodontium can 

become saturated, allowing cytokines to evade clearance and spill into the systemic 

circulation (196, 277). 

CXCR4 IS a G-protein-coupled chemokine receptor possessmg seven 

transmembrane regions which specifically recognizes CXCL12 (SDF-l), although it is 

recently shown that SDF -1 does not specifically interact with CXCR4 but also 

demonstrates interaction with CXCR7. CXCR4 is found predominantly on leukocytes 

and in response to SDF-l activates MAPKI/MAPK3 signaling by increasing intracellular 

calcium ion levels. It has been recently shown that CXCR4 recognizes extracellular 

ubiquitin as a natural agonist and in response to extracellular ubiquitin CXCR4 promotes 

intracellular Ca(2+) flux and reduces cAMP levels in THPI cells (223). 

CXCR4 is a co-receptor for CD4 to facilitate HIV entry into host cells and is 

highly expressed on breast cancer cells. Mutations in CXCR4 have been associated with 

WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome. 

In addition to mediating chemotaxis of immune cells such as monocytes and T 

cells , SDF -1 can be found on stromal cells of the bone marrow, which constitutively 

express the CXC chemokine(187) (22, 29). Here SDF -1 plays a critical role in cell 

survival, proliferation, directed migration, and engraftment (3, 4, 146, 155, 178). CXCR4, 

consequently, is expressed upon hematopoietic progenitor cells and these cells are 

anchored into the stroma via the CXCR4-SDF-l interaction (3, 178). Since this anchoring 

is reliant upon the SDF -CXCR4 interaction, AMD3100 was discovered to interrupt and 

mobilize these progenitors, notably CD34+ hematopoietic progenitor cells (116). 
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Gene deletion of CXCR4 or SDF-1 leads to perinatal death in mice, the animals 

succumbing to hematopoietic, cardiac, gastrointestinal and cerebellar abnormalities (188) 

(160). However, mice in which the genes are conditionally knocked out after the critical 

development window survive and can be used for studies involving the role of CXCR4-

SDF-l. We hypothesized that, although AMD3100 acts as an agonist upon CXCR7, 

CXCR4 was more likely to be the functional target causing protection from periodontitis 

as P. gingivalis is known to interact with CXCR4. The CXCR4 conditional knock out 

mice used in our study were developed on a B6 background using beta-actin-cre to select 

and knockout all or most ofCXCR4. 

Previously it was shown in come cancer lines, among them squamous cell 

carcinoma, that osteoblasts can produce SDF-1 and that this expression can induce IL-6 

production. AMD3100 inhibited this SDF -1 induced IL-6 expression (252). While these 

results were found in an abnormal cell line we wondered whether SDF-1 signaling could 

play any, albeit a secondary, role in P. gingivalis infection. It could be that P. gingivalis 

acts as a surrogate SDF-1-like signal, inducing IL-6 expression through activation ofNF­

KB. We therefore assayed several inflammatory cytokines such as IL-6 and TNF -u to 

track the effect of CXCR4 deficiency in mice which were sham and P. gingivalis 

infected. 

While RT-PCR has increasingly become a reliable and, in P .gingivalis' case in 

the Baker oral model, necessary method of detecting and quantifying bacteria, we wanted 

to know more about the kinetics of the AMD3100 effect on P. gingivalis, as well as to 

show definitively that AMD31 00 is quickly lethal to the pathogen. Therefore we decided 

to use the subcutaneous chamber model to determine in vivo bacterial viability in the 
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presence of the compound and to look at how AMD3100 treatment changes to host 

dynamic in a microaerophilic space representative of the deep gingival pocket (79). The 

chamber itself is a titanium coil which is implanted subcutaneously dorsolateral of the 

mid-spine. The coil becomes encapsulated by connective tissue, creating a hypoxic 

interior lumen (85). This experimental scenario allows for studying the interactions 

between bacteria, compounds, and the host response in a close, temporal way. Since 

cytokines, host cell influx and viable bacterial counts can all be taken from the chamber, 

one can tell exactly what the host immune response less than an hour after introduction of 

the bacteria (30, 85, 175). Therefore this model was ideal to confirm our hypothesis that 

CXCR4 blockade with AMD3100 leads to a quick elimination of P. gingivalis by the 

host. 

Deficiency in other receptors involved in P. gingival is-mediated subversive 

crosstalk (C5aR, TLR2, CR3), protects against periodontal bone loss. Use of C5aR­

deficient mice elucidated the role of C5aR signaling in P .gingivalis immune evasion, 

including the induction of hallmark inflammatory cytokines in periodontal destruction 

(82) (154). CR3 was likewise shown to be an exploited receptor by P. gingivalis using 

CR3-deficient mice (94). CR3 was necessary for survival of P. gingivalis in a peritoneal 

lavage model, along with reduction in Il-12p70 and IFN-y levels. 

With these studies we sought to confirm the specific role of CXCR4 in 

periodontal disease induction by P. gingivalis. We show that CXCR4 deficiency indeed 

changes the dynamic of the host response to P. gingivalis, though attempts to discern 

whether this effect is necessarily protective were initially mixed. We show that the 

overall cytokine profile of CXCR4 deficient mice infected with P. gingivalis is largely 
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comparable to that of P. gingivalis-infected mice treated with AMD3100. We also show 

using the subcutaneous chamber model that AMD3100 treatment induces a stronger, 

targeted immune response to P. gingival is, necessitating accelerated clearance of the 

pathogen by two hours post inoculation. No effect was observed when AMD31 00 was 

co-injected with a fellow gram negative oral anaerobe of P. gingivalis, F nucleatum. 

Viable bacterial counts of F nucleatum were unaffected, showing that the effect of 

AMD3100 on viability is at least to some extent specific to P. gingivalis, for F 

nucleatum is a bacterium which, given its location and relationship to P. gingivalis, IS 

highly likely to be affected by non-specific treatments targeting P. gingivalis. 

Results 

AMD3100 inhibits P. gingivalis-induced PMN recruitment but promotes 

killing of P. gingivalis. Systemic treatment with AMD31 00 prevents periodontal disease 

in a prophylactic context and halts disease progression in mice when administered 

therapeutically and according to the PCR data likely leads to eradication of the pathogen. 

However, direct culture of P. gingivalis is generally impractical from the Baker Model so 

we decided to use the subcutaneous chamber model to gain a more mechanistic insight as 

to the effect of AMD3100 administration specifically on P. gingivalis survival and 

leukocyte migration to the site of infection. To this end we employed the subcutaneous 

chamber model to test P. gingivalis viability with AMD3100 treatment. As a baseline 

control for cytokine analysis and to assure sterility of the chambers prior to P. gingivalis 

inoculation we drew chamber exudates immediately prior to infection. We diluted and 

plated these exudates for CFU and analyzed them for key cytokines using EIA and 
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Luminex. The actual destruction associated with periodontal disease is caused by 

uncoupled osteoclastogenesis in response to constantly infiltrating leukocytes (86), 

therefore we additionally quantified leukocyte infiltration into the chamber to determine 

if AMD31 00' s efficacy could be attributable to its effect on leukocyte trafficking. 

We found that concurrent AMD31 00 treatment with inoculation of P. gingivalis 

leads to a ten-fold enhancement of P. gingivalis killing at 2 hours post injection and over 

a hundred fold increase in killing by 24 hours (See figure 13). We also found that, 

although AMD31 00 promotes P. gingivalis killing, it inhibits leukocyte recruitment into 

the subcutaneous chamber. However, when AMD31 00 is injected alone into chambers it 

induces a moderate amount of leukocyte recruitment, ostensibly due to its effects on 

granulocyte precursor and CD34+ HSPC emigration from the bone marrow. 

Inhibition of intracellular crosstalk pathways instigated by P. gingivalis enhances 

the ability of the host immune system to eradicate the pathogen. We, therefore, reasoned 

that CXCR4 blockade must reduce P. gingivalis' ability to subvert TLR2 mediated 

inflammation, leading to increased efficiency of neutrophil uptake/killing of the bacteria 

in the chamber at the earlier time-point and therefore less recruitment signal at the later 

time-point corresponding with the significantly lower number of viable bacteria. 

Taken together, these data suggest that AMD3100 treatment leads to enhanced 

killing of P. gingivalis early in infection by enhancing the ability of recruited leukocytes 

to rapidly clear the infection through TLR2 mediated antimicrobial inflammation. A 

product of this efficiency is lowered PMN recruitment probably due to chemotactic 

signals indicating successful reduction of infection. 
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Figure 13. AMD3100 inhibits P. gingivalis-induced PMN recruitment but 

promotes killing of P. gingivalis. BALB/c mice (10-12 weeks of age) were 

implanted with titanium coil chambers subcutaneously. After a ten day healing 

period, exudates were drawn from the titanium chambers to verify sterility prior to 

experimental infection as well as analyze baseline amounts of leukocytes and 

inflammatory markers. Mice were infected or treated as described in Methods. The 

mice were euthanised 24 hours after injection. Exudates were plated for P. 

gingivalis CFUs and leukocytes were counted using a hemocytometer. Data are 

means ± SD (n = 5 mice per group). **p < 0.01 compared to control and all other 

experimental groups. AMD, AMD3100; Pg, P. gingivalis. 
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AMD3100 does not affect F. nucleatum-induced PMN recruitment or F. nucleatum 

killing. Systemic administration of AMD31 00 causes a transient leukocytosis. General as 

it is, the leukocytosis is comprised predominantly of circulating neutrophils (155). This, 

coupled with our data indicating the enhanced killing resultant of co-AMD3100 

administration in the chamber model, made us wonder if we were observing a trend 

generally true for all bacteria. Specifically, greater numbers of roaming granulocytes 

throughout the body may pose a greater threat to any bacteria placed within the chamber. 

To test this hypothesis we inoculated subcutaneous chambers with F nucleatum either 

co-injected with sterile PBS or AMD31 00. 

We found that, while F nucleatum generally does not survive the subcutaneous 

chamber as well as P. gingivalis, AMD3100 co-treatment had no significant effect on 

viable F nucleatum recovery from chambers (See Figure 14). We also noted that 

leukocyte recruitment in F nucleatum AMD3100 treated chambers was similar to 

recruitment in AMD31 00 treatment alone or P. gingivalis and AMD31 00 injected mice 

compared to their corresponding baseline leukocyte counts. 

Taken together, these data indicate that AMD3100 does not affect other gram 

negative oral anaerobes and that the observed clearance of P. gingivalis is probably due 

to uncoupling of the subversive CXCR4-TLR2 crosstalk. With TLR2 more able to 

initiate the appropriate downstream inflammatory pathways, infiltrating neutrophils can 

clear the pathogen more efficiently, leading to a decreased recruitment of neutrophils into 

the infected area. 
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Figure 14. AMD3100 does not significantly affect F. nucleatum-induced 

PMN recruitment or F. nucleatum killing. BALB/c mice (10-12 weeks of age) 

were implanted with titanium coil chambers subcutaneously. Exudates were 

drawn from the titanium chambers to verify sterility prior to experimental 

infection as well as analyze baseline amounts of leukocytes and inflammatory 

markers. Mice were infected or treated as described in Methods. The mice were 

euthanised 24 hours after the inoculation/treatment. Exudates were plated for F 

nucleatum CFUs and leukocytes were counted using a hemocytometer. Data are 

means ± SD (n = 5 mice per group). * * p < 0.01 compared to control and all other 

experimental groups. AMD, AMD31 00; Fn, F nucleatum. 

Host Response to treatment with AMD3100 in the subcutaneous chamber model 

We decided to look more closely at the cytokine response within the subcutaneous 

chamber model in response to P. gingivalis infection and AMD3100 treatment. We 

observed a slight increase in TNF -u production in response to P. gingivalis infection as 

compared to baseline controls. AMD3100 treatment alone did not elicit a TNF-u 

response, however, after repeated analysis of chamber exudates using the Luminex Bead 
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Assay, we observed a reliably significant synergistic increase in TNF-a at two hours post 

injection in mice infected with P. gingivalis and injected with AMD31 00, corresponding 

to an allowance of the TLR2 NF-KB antimicrobial pathway activation. While AMD3100 

treatment alone induced production of IL-6 in the chamber nearly ten fold beyond the 

amount of IL-6 found in the baseline samples, P. gingivalis infection caused an over ten 

fold decrease of IL-6 in the chamber and co-injection of AMD31 00 with P. gingivalis 

into chambers did not cause a significant change in IL-6, an interesting reversal of our 

RT-PCR findings in the gingivae of orally infected mice. As opposed to our RT-PCR 

findings in the chronic oral infection model, these findings at two hours post infection in 

the subcutaneous chamber model indicate AMD31 00 treatment doesn't change the effect 

of P. gingivalis on IL-6 levels, but does cause a productive increase in TNF-a. 

Additionally we noted an approximately two fold increase of IL-l 0 in mice injected with 

both the pathogen and compound as compared to P. gingivalis infected mice (See Figure 

15). 

MIP-la and M-CSF were also increased in AMD3100 treated, P. gingivalis 

infected mice at two hours compared to mice infected alone. The increase in Mip-l a 

indicates an increase in immediate inflammation in response to the pathogen and possibly 

an induction of superoxide production by neutrophils, one of the leukocyte'S best 

weapons against P. gingivalis infection (235). Increases in M-CSF, though transient, 

could be an indicator of AMD3100's effect on CXCR4 signaling, as increased 

intracellular levels of cAMP inhibit the synthesis of M-CSF and CXCR4 blockade should 

inhibit cAMP-dependent PKA signaling (l03) (292). M-CSF production indicates 

progression of the inflammatory process and the host direction of monocyte 
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differentiation into macrophages and macrophage chemotaxis to the infected area. Our 

data show, compared to mice with subcutaneous chamber implants inoculated with P. 

gingivalis alone, that 

TNF-a 

IL-6 

* 

IL-1 P 

IL-10 

IIIIIiIIII baseline 

[]II] AMD3100 

00 pg alone 

§ + 2.5 119 AMD3100 

Figure 15. AMD3100 treatment increases TNF-a and IL-I0, indicating a more 

appropriate antimicrobial response to the presence of P. gingivalis. BALB/c 

mice (l0-12 weeks of age) were implanted with titanium coil chambers 

subcutaneously. After a ten day healing period, exudates were withdrawn and were 

analyzed for cytokines. Supernatants were analyzed with the Luminex-

100/multiplex cytokine analysis system (Upstate). Data are means ± SD (n = 5 

mice per group). * P < 0.05 compared to control or indicated experimental groups. 

AMD, AMD3100; Pg, P. gingivalis. 
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Figure 16. AMD3100 treatment leads to an ultimate suppression of MIP-1a, 

indicating a resolution of inflammation, decreased superoxide release by 

neutrophils. BALB/c mice (10-12 weeks of age) were implanted with titanium 

coil chambers subcutaneously. After a ten day healing period, exudates were 

withdrawn and were analyzed for cytokines. Supernatants were analyzed with the 

Luminex-100/multiplex cytokine analysis system (Upstate). Data are means ± SD 

(n = 5 mice per group). *p < 0.01 compared to indicated experimental groups. 

AMD, AMD3100; Pg, P. gingivalis. 

co-injection of AMD31 00, along with enhanced eradication of the bacteria, causes a 

decrease in Mip-1 a correspondent with clearance of the bacteria by 24 hours (See Figure 

16). Thus the increases in these inflammatory markers are only transient in AMD3100 

injected mice and demonstrate an initiation of productive inflammation resolution, as the 

viable bacteria numbers are being eradicated. Taken together, our observations gleaned 

from the subcutaneous chamber model indicate that the host response is enabled by the 

blockade of CXCR4 very early in P. gingivalis infection, allowing the host to proceed 

with a productive inflammatory response that works effectively to clear the pathogen. 
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Deficiency of CXCR4 or TLR2 differentially affects the inflammatory response to P. 

gingivalis infection in mice. 

P. gingivalis-fimbriae interact directly with CXCR4 to interfere with TLR2-

mediated NF-KB signaling. This in tum causes a down-regulation of inflammatory 

mediators such as TNF-a, IL-6 and up-regulation of anti-inflammatory IL-I0 (103) in 

mouse macrophages/human monocytes. AMD3100 treatment prevents this interaction 

and subsequently protects the host against P. gingivalis-mediated periodontal disease 

(Figures 10-13). 

Deficiency of TLR2 was previously shown in both C57 B6 mice(30) and 

Balb/c mice (154) to be protective against P. gingivaZis mediated bone loss. This, coupled 

with the knowledge that AMD3100 treatment halts bone loss, led us to question if 

deficiency of CXCR4 would likewise demonstrate protection against P. gingivalis. 

We tested the ability of P. gingivalis to initiate bone destruction in CXCR4 

conditional knockout mice compared to their wild-type counterparts. CXCR4-deficient 

mice die perinatally and so their use in in vivo periodontitis models is precluded. We 

verified successful deletion of CXCR4 in periodontal tissues via RT-PCR (See Figure 

18). We infected each group with P. gingivalis or vehicle 5 times and euthanized mice 

on day 60. 

The effect of P. gingivalis infection upon alveolar bone in CXCR4 knockout mice 

compared to corresponding wild-types was inconclusive (See Figure 17 A) perhaps due to 

the small size of each group. Both infected and sham-infected CXCR4 deficient mice did, 

however, demonstrated elevated transcriptional levels of several inflammatory molecules, 

albeit to various degrees. 
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As in mice administered AMD3100 for several days, mRNA levels for 

inflammatory cytokines in the gingivae were elevated in CXCR4 deficient, sham-infected 

mice. This indicates the importance of CXCR4 signaling in regulation of 

proinflammatory cytokine expression, however given these mice did not suffer bone loss, 

high mRNA levels of inflammatory cytokines alone is not indicative of disease. TNF-u 

and RANK-L were most notably down regulated in CXCR4 deficient, P. gingivalis­

infected mice as compared to their wildtype counterparts. These data agree fundamentally 

with our previous data showing P. gingivalis induces crosstalk between TLR2 and 

CXCR4 to inhibit TLR2-mediated inflammation (103). 

CXCR4 deficient mice, while not suffering the extent of periodontal bone loss 

seen in their wild-type counterparts, did demonstrate a trend of inflammatory 

upregulation as compared to the downregulatory trend noted in TLR2 deficient mice. 

The enhanced ability of the host to quickly eliminate P. gingivalis when it cannot 

recognize CXCR4 is more important than the ability to modulate inflammation over a 

longer period of time. 
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Figure 17. Deficiency of TLR2, but not necessarily CXCR4, protects orally 

infected mice against alveolar bone loss. A. C57/B6 CXCR4 conditional 

knockout mice were treated according to the Baker Model of Oral infection. Data 

are means ± SD (n=3 mice), *p< 0.05 compared to all other groups. B. Balb/c 

TLR2 deficient mice were treated according to the Baker model. Data are means 

± SD (n = 5 mice), *p< 0.05 compared to all other groups. C. Confirmation of 

CXCR4 knockout in mice prior to use. 
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inflammation in orally infected mice. A. Gingivae were excised at Day 60, RNA 

isolated and RT-PCR done on CXCR4 deficient mice. These mice, while not 

suffering the extent of periodontal bone loss seen in their wild-type counterparts, 

did demonstrate a trend of inflammatory upregulation as compared to the 

downregulatory trend noted in TLR2 deficient mice. The enhanced ability of the 

host to quickly eliminate P. gingivalis when it cannot recognize CXCR4 is more 

important than the ability to modulate inflammation over a longer period of time. 

Data are means ± SO (n = 3 mice) in A, (n=5 mice) in B. *p< 0.05 compared to all 

other groups. 
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Discussion 

In this study we addressed whether CXCR4 blockade has a direct benefit in 

controlling P. gingivalis infection in the chamber model. We found that recognition of 

CXCR4 by P. gingivalis indeed plays an integral part in ability of the pathogen to survive 

in the oral cavity. Blockade of this recognition led to clearance of the pathogen and 

consequent halt to bone resorption in both preventative and therapeutic context. 

This effect was shown to be specific at least to a certain degree as AMD3100 

treatment had no survival effect upon F nucleatum, a gram negative member of the 

"orange complex" oral bacteria. Like our data at earlier time-points in the oral model of 

infection, in the subcutaneous chamber we saw higher protein levels of TNF -u in 

response to AMD3100 injection with P. gingivalis. These findings indicate strongly that 

TLR2 antimicrobial signaling is restored upon blockade of CXCR4. 

In the absence of CXCR4 signaling in the chamber model we noted that, as 

opposed to the oral infection model, at two hours post injection AMD31 00 treatment did 

not effect P. gingivalis repression of 11-6 levels below the baseline level. This suggests 

that effects of IL-6 in the oral infection model are either temporal in nature, perhaps 

driving later inflammatory damage, or is an outcome of chronically dysregulated P. 

gingivalis-induced inflammation, perhaps via dysregulation of SOCS3 feedback 

inhibition. It is worthy to note that 11-6 protein levels are elevated in chamber baseline 

exudates as compared to the gingivae tissues, such that the dynamics of IL-6 feedback 

regulation are different in the chamber versus the oral cavity. 
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Regarding our host response data from the chamber model, Nakajima and 

coworkers in their report "Periodontitis-associated up-regulation of systemic 

inflammatory mediator level may increase the risk of coronary heart disease" showed that 

patients with periodontal disease have increased levels of IL-6 but decreased levels of 

TNF -a and our chamber model results reflect these established observations in humans. 

TNF-a has been described as a more "protective" cytokine regarding early periodontal 

inflammation as opposed to IL-6, which, when upregulated, generally corresponds to 

uncoupled inflammatory periodontal destruction. It is important to remember, however, 

that without some appropriate inflammation, the host will fail to clear the bacteria and 

disease will manifest due simply to chronic infection. Therefore inflammation has to 

happen in order to clear the pathogen, but it must be appropriate and carefully regulated. 

Specific subversion by P. gingivalis of TLR2 via crosstalk with other receptors plays a 

critical role in throwing the inflammatory response out of balance (86) (9) (11, 39) (115) 

(53, 76). 

Since Mip-la is a strong chemoattractant of both monocytes and T cells, we 

interpreted the decrease of this cytokine by 24 hours in P. gingival is infected, AMD31 00 

treated mice as an indicator of enhanced resolution of the infection. P. gingivalis-infected 

mice showed no reduction in Mip-la levels relative to infected mice co-injected with 

AMD3100 by 24 hours (254) (140). It is worthy to note that Mip-l a is also a pro­

osteoclastogenesis cytokine the induction of which helps in the maturity of osteoclast­

precursors into functional osteoclasts (239). Along with the other key pro inflammatory 

cytokines involved with the periodontal disease process, macrophage colony stimulating 

factor and MCP-l are both involved with regulation of bone metabolism. M-CSF 
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contributes to activation and differentiation of quiescent osteoclasts. The functions of 

these cytokines make them useful in determining how theoretically prone to bone 

destruction the subcutaneous chamber environment becomes in response to infection or 

treatment. Both these molecules are decreased significantly in response to AMD3100 

treatment in infected mice from oral infection or chamber model experiments, suggesting 

that AMD31 00 treatment, through enhancing host clearance of the bacteria, ameliorates 

conditions leading to uncoupling the resorption/regeneration balance within the alveolar 

bone (226). 

To address the sometimes increased levels of TNF-a in both our gingivae RT­

PCR as well as the chamber exudates, it is useful to consider the philosophy reviewed by 

Graves and coworkers that induced TNF-a in gingivitis is actually protective as blocking 

the cytokine leads to increased bone loss (39) (76, 86). The overall message to take from 

these results which seemingly contradict common reason is that oral health is a sort of 

homeostasis in which the amount of microbe-induced inflammation is not too extensive, 

but also not too gentle. If the microflora is not kept in check, a pathogenic shift in the oral 

biofilm becomes increasingly likely, but if the inflammatory response is overly abundant, 

the host homeostasis is disrupted, notably the coupling of bone resorption and 

restructuring. In the situation of a chronic, non-productive, highly chemotactic 

inflammation, resorptive signals and processes outrun the restorative processes and 

periodontitis is the result (86). 

The distinct and arguably proinflammatory profile caused by long term systemic 

AMD3100 administration was paralleled in conditional CXCR4 KO mice. We observed 

upregulation of several proinflammatory genes with no corresponding bone loss in sham 
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infected mice. CXCR4 deficient mice have elevated amounts of inflammatory molecules 

in their gingivae as compared to TLR2 deficient mice. While the difference in 

background of these two knockout mice precludes a direct comparison of their respective 

immune responses, in the context of comparing differences in gene expression between 

uninfected mice and P. gingivalis infected mice, CXCR4 deficient mice seem more prone 

to inflammation, based on the RT-PCR data of inflammatory cytokines. While these mice 

do not demonstrate an accelerated loss of alveolar bone, inflammation in CXCR4 KO 

mice appears to be more easily triggered due to the receptors functional loss, showing 

that perhaps there are two opposing mechanisms at work. Primarily, the beneficial effect 

of blocking P. gingivalis- CXCR4 interaction through removal of the receptor should 

enhance killing of the pathogen as in AMD31 00 treated mice. However, in mice which 

do not possess a functional CXCR4 at all, the pro-inflammatory NF-K~ mediated 

pathway is apparently non-specifically activated (See Figure 18A).These findings are 

also compatible with other findings regarding AMD3100, CXCR4 and inflammatory 

modulation, among them murine osteolytic tumor models wherein short term 

administration of AMD31 00 causes increased neutrophil mobilization without effecting 

bone resorption (112). 

CXCR4 deficient mice showed mixed results regarding protection from P. 

gingivalis induced bone loss, however, the inflammatory profile of CXCR4 deficient 

mice reflected nicely the differential expression observed in mice systemically 

administered AMD31 00 for extended periods of time. As in the AMD31 00 treated mice, 

transcript levels of several pro-inflammatory cytokines as well as bone resorptive 

molecule transcripts are upregulated. However, sham-infected CXCR4 deficient mice 
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demonstrate absolutely no bone loss despite an apparent inflammatory state. RANK-L 

and TNF-a were downregulated in CXCR4 deficient mice infected with P. gingivalis as 

compared to infected wild-type mice. Even though the bone loss data were largely 

inconclusive, the differential expression of inflammatory markers indicate the importance 

of CXCR4 signaling in P. gingivalis- mediated periodontal disease. 

Lee and coworkers showed direct activation of granulocytes by AMD3100 and 

consequent activation of C5 by these granulocytes in the peripheral blood (149). These 

observations has led us very recently to wonder whether the in vivo protective effects we 

observed in AMD31 00 treated mice were in fact due to CXCR4 blockade or perhaps to 

enhanced peripheral C5 cleavage by granulocytes to counter other subversive strategies 

widely documented to be used by P. gingivalis. One question that remains is whether a 

local administration of AMD31 00 into the oral cavity would have comparable therapeutic 

advantages while bypassing the transient HPSC mobilization seen with systemic 

treatment. 

P. gingivalis selectively suppresses and induces periodontal inflammation to its 

own benefit. P .gingiva/is recognizes TLR2, CXCR4, TLR4 as well as C5aR and CR3. 

TIR2 subversion, however, has been revealed as a recurrent theme amoung the tactics 

employed by P. gingivalis to avoid elimination by the host immune response. P. 

gingiva/is induces co-association and crosstalk between receptors of its choosing to 

suppress anti-microbial signaling and also to upregulate destructive, untargeted collateral 

periodontal tissue damage. In these studies we demonstrated that P. gingivalis-induced 

CXCR4 modulation of TLR2 antimicrobial signaling is a crucial method to the pathogen. 

P. gingivalis induces co-association of CXCR4, TLR2 as well as CD14 into close 
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physical proximity (103, 276) and as a result TLR2-mediated antimicrobial signaling is 

inhibited CXCR4 instigated cAMP mediated PKA signaling (See Figure 19). 

In conclusion, we showed that when P. gingivalis is unable to incite subversive 

crosstalk between CXCR4 and TLR2 mice are protected from periodontal bone loss and 

furthermore that P. gingivalis is not detectable at day 7 of infection after AMD3100 

treatment. The host response in these mice reflects a differential expression of 

inflammatory cytokines and markers. Mice solely infected with P. gingivalis demonstrate 

a broad uncontrolled inflammation that is a hallmark of chronic progressive periodontal 

destruction. In contrast, mice that are treated with the CXCR4 antagonist in addition to P. 

gingivalis infection display at earlier time-points a different inflammatory response, and 

at later time-points indicate resolution of inflammation. 

However, P. gingivalis also relies upon its ability to subvert complement­

mediated killing as well as resistance of oxidative killing by neutrophils. AMD3100 has 

been shown to enhance both egress of neutrophils into the circulation as well as their 

noncanonical cleavage of C5 (149). This cleavage of C5 could in turn, prime neutrophils 

in the circulation prior to their influx into the periodontium. This priming, if it occurs, 

would give incoming neutrophils an advantage in taking up and clearing P. gingivalis. 

Both these outcomes could supplement the protective effect of CXCR4 blockade targeted 

with long term systemic AMD31 00 treatment. Also, it has been recently discovered that 

AMD3100 is a partial agonist of CXCR7 (123). 
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Figure 19. AMD3100 in the chronic P. gingiva/is periodontitis model. In 

macrophages, P. gingivalis interacts with the CD 14/TLR2/TLR 1 receptor 

complex (99). Upon C5aR binding, C5a stimulates Gai-dependent intracellular 

Ca2+ signaling which synergistically enhances the otherwise weak cAMP 

responses induced by TLR2/TLRl activation alone. Maximal cAMP induction is 

achieved by the participation of another G protein coupled receptor, the CXCR4, 

which interacts directly with P. gingiva lis and co-associates with both TLR2 and 

C5aR in lipid rafts (103) (275). The ensuing activation of the cAMP-dependent 

protein kinase A (PKA) pathway inactivates glycogen synthase kinase-3p 

(GSK3P) and impairs the inducible nitrogen synthase (iNOS)-dependent killing of 

the pathogen in macrophages in vitro and in vivo (275). AMD3100 prevents P. 

gingivalis from interacting with CXCR4 and ever initiating this cascade of events. 
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While it is still uncertain whether there are other, collateral mechanisms by which 

AMD3100 protects against periodontal bone loss mediated by P. gingivalis, we have 

shown that CXCR4 blockade, and the subsequent abrogation of pathogen instigated 

CXCR4-TLR2 crosstalk, renders mice protected from periodontal bone destruction in 

both a prophylactic and therapeutic context. 
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CHAPTER FIVE: FUTURE DIRECTIONS 

There is persisting necessity for innovative therapeutic strategies regarding 

chronic periodontal disease, and an integral step to developing those strategies IS 

identification of specific mechanisms used by periodontal pathogens to subvert the host 

immunity. Our studies have demonstrated a key role for CXCR4 in disease pathogenesis 

involving P. gingivalis in the oral cavity. P. gingivalis interacts directly with CXCR4 via 

its fimbriae to induce functional TLR2/CXCR4 co-association in lipid rafts. A cross-talk 

then ensues between the receptor pathways which results in a cAMP dependent PKA 

signaling that inhibits TLR2 induced NF -Jd3 activation (See Figure 19). It was initially 

hypothesized that these events were solely responsible for CXCR4's benefit to P. 

gingivalis. During the ensuing in vivo experiments, however, other possibilities have 

come to light in addition to this evidence that P .gingivalis depends upon its fimbriae to 

mediate immune evasion. 

Therapeutic benefit of Local AMD3100 administration? 

We have demonstrated a therapeutic advantage to AMD31 00 administration on a 

systemic scale, showing that when AMD3100 is administered via osmotic pump to the 
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entire body for several days, P. gingivalis mediated bone loss is haIted. We also showed 

that local injection of AMD3100 into the gingivae just prior to infection with P. 

gingivalis prevents inflammation of the periodontium. Taken with the other data 

presented above, the prevention of this inflammation and neutrophil chemotaxis is 

indicative of P. gingivalis being cleared from the infected site and bone loss should not 

happen. However, this remains to be proven in a therapeutic setting. It would be valuable 

to observe the effect of local administration of AMD31 00 after induction of alveolar bone 

loss in mice. Since CXCR4 blockade has unrelated, unnecessary effects to the body 

systemically it would be vastly preferable to minimalize the physiological area of contact 

to the drug. 

Should microinjection of AMD31 00 haIt development of alveolar bone loss in 

response to chronic P. gingivalis infection then other, less invasive methods of local 

administration could be considered. Perhaps AMD31 00 application could accompany the 

scaling and root planing that is the current standard of care for patients with periodontitis. 

CXCR7 and AMD3100, relevance to our model? 

The recent discovery that AMD3100 acts as a partial agonist to CXCR7, and the 

relative uncertainty of the CXCR7 receptors activity or relevance to periodontal disease 

processes, has led us to wonder whether agonism ofCXCR7 by AMD3100 has any effect 

on disease' progress, especially considering the finding that CXCR4 and 7 form 

heterodimers and thus effect CXCL12 signaling (190). Considering the 

heterodimerization of the two chemokine receptors and the known agonism ofCXCR7 by 

AMD3100, any effect of the chemokine receptor on periodontal infection would likely be 
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in response to the compound. Whether such a theoretical effect runs counter to clearance 

of the pathogen or actually works to enhance the action of AMD31 00 remains to be 

investigated. 

Role of granulocyte mobilizations, priming and CS in response to AMD3100 

treatment? 

We showed using CXCR4 conditional knockout mice that CXCR4 signaling is 

important to modulation of inflammation in these mice independent of periodontal 

disease. As stated above, subcutaneous injection of AMD3100 in normal human 

volunteers at a dose of 80 ~g/kg causes granulocytosis immediately followed by 

mobilization of CD34+ HPSCs into the circulation. This is in tum followed by direct 

activation of complement (147) (116, ISS) and the complement cascade contributes to 

regulation of HSPC egress from the bone marrow (212). CS has been identified as 

arguably the most important component of the complement cascade to this process (149). 

The previously observed activation of CS by these granulocytes in the peripheral blood 

(148) raises the possibility that the in vivo protective effects we observed in AMD31 00 

treated mice were in fact due to CXCR4 blockade or enhanced peripheral CS activation 

by granulocytes before P. gingivalis has a chance to degrade the complement component. 

In response to AMD31 00 treatment circulating neutrophils were reported to enhance CS 

activation. It isn't unreasonable to think neutrophils could be primed in this way before 

they reach the periodontium, directly resulting in enhanced clearance of the bacteria. In 

principle, however, this could also lead to more inflammation and more bone loss if the 

neutrophils do not evacuate the periodontium once the bacteria are neutralized. The 
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"coupling" theory of bone remodeling addresses this concern to an extent. Even if the 

host does suffer inflammation and tissue damage during the transient infection, there is 

also a greater possibility that the host will recover as the periodontal infection has now 

been changed from a chronic to acute process. 

AMD3100 treatment and osteoclastogenesis 

CXCR4 is an osteoclastogenic factor in addition to regulating chemotaxis, so it is 

possible that blocking CXCR4 with AMD3100 could reduce bone resorption 

independently of the inhibited Pg-CXCR4 interaction. Multiple myeloma plasma cells 

produce significantly increased amounts of SDF-l a correlating with the presence of 

radiological bone lesions in patients. When SDF-l a is added to an in vitro osteoclast­

potentiating culture system the number and size of bone resorption lacunae are increased 

and there is an increase in osteoclast activation related genes like RANK-L, and these 

findings were reversed upon addition of a small-molecule CXCR4 inhibitor (289). A 

separate study of oral squamous cell carcinoma cells showed that SDF-l a increased the 

secretion of IL-6 in an ERK-dependent way, enhancing the downstream binding of p65 

and p50 to the NF-KB element on the IL-6 promoter. This indicates a potential second 

role of SDF-l in alveolar bone loss. Inhibition of CXCR4 prevented this reaction as well 

(252). 

However, our RT-PCR of gingivae infected with P. gingivalis does not confirm 

this hypothesis as IL-6 and its feedback regulators are not down or up regulated as 

consistently as we would expect were this true. Therefore, more studies would be needed 

to confirm or disprove this hypothesis. 
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Conversely, CXCR4 has been sho\\TI in vivo to participate in osteoclast formation. 

CXCR4 -I-mice generated by lethal irradiation and fetal liver transplant displayed 

enhanced osteoclastogenesis and increased precursor proliferation and differentiation. 

Enhanced tumor growth in bone but not in lung or small cell cancers was noted in the 

CXCR4 -1- mice compared to equivalent wildtypes and the authors used the OC inhibitor, 

zoledronic acid to reverse these effects. They proposed that these observation indicate 

that inhibition of CXCR4 can actually enhance osteoclastogenesis at least in the in vivo 

context of tumor metastasis to bone (111). The ligature model could be used to discern 

which of the above statements is true regarding CXCR4 and periodontal bone resorption. 

In the ligature model, sterile silk ligatures are pretreated either with vehicle or the 

experimental compound, in this case AMD31 00, and tied around the right maxillary first 

molar. The left maxillary first molar is left alone to serve as a control for each mouse. 

Placement of the ligature alone causes some inflammation and bone loss due to 

accumulation of bacteria, however if AMD31 00 treatment protects against inflammation 

in and of itself, mice bearing the ligature and AMD31 00 should show less bone loss than 

their untreated counterparts (130). 

CXCR4 blockade, SDF-l and inflammation? 

We have sho\\TI that CXCR4 blockade with an antagonist prevents periodontal 

disease. The antagonist used for these studies, AMD3100, is an allosteric antagonist 

blocking SDF-1 also from binding CXCR4, therefore, not only is P. gingivalis unable to 

interact with CXCR4, neither is SDF-l. This means that, while we are inhibiting the 

TLR2 crosstalk pathway, we are also inhibiting any homing or chemoattraction signals P. 
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gingivalis might attempt to induce host cells to produce via the CXCR4-SDF-I signaling 

aXIS. 

Since CXCR4 plays a role in P. gingivalis-mediated periodontal disease 

pathogenesis, and AMD3l 00 treatment ameliorates this effect, it is reasonable to wonder 

about any role the natural ligand of CXCR4, SDF -1, might play in disease pathogenesis, 

especially in light of the fact that CXCR 7 is allosterically agonized by AMD3l00 and 

does have a binding capacity for SDF-l (13). 

While it is possible that SDF-l signaling has its own importance to periodontal 

bone loss, we think, rather, that the effect of blocking P. gingivalis-fimbriae signaling 

through CXCR4 is specifically the cause of AMD3l00's amelioration of periodontal 

bone loss and that SDF-l deficiency would not prove protective. P. gingivalis expressing 

fimbriae lacking the "minor" fimbrial components FimCDE fails to interact with CXCR4, 

precluding the ability of the bacteria to exploit the receptor. While strains such as JI-l 

(nonfimbriated), OZ SOOlC (DAP) or K04 (DAP) which lack part or all of their fimbriae 

cannot manipulate CXCR4 to promote their survival, it's very likely that all subtypes of 

P. gingivalis possessing fimbriae that are the same or structurally similar have some 

ability to use CXCR4 to promote their survival (205). 

Inhibition of the interaction between CXCR4 and P. gingivalis fimbriae allows 

the host immune response to eliminate the pathogen by appropriate regulation of 

inflammatory cytokines such as IL-6 and TNF -u. Without downstream inhibitory 

crosstalk between CXCR4 and TLR2, the balance is tipped in favor of the host and P. 

gingivalis cannot create the permissive niche it requires to survive in the oral cavity, 

making CXCR4 a critical co-receptor for P. gingivalis mediated pathogenesis. These 
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assertions don't invalidate the pursuit of the question whether SDF-l is involved, 

however, due to the ligands close association with CXCR4. There is a possibility that 

SDF-l deficiency would reveal unforeseen effects upon periodontal bone loss. 

It is possible that P. gingivalis uses CXCR4 as a homing device without which 

leukocytes are not chemoattracted to the site of infection. It would be of interest to 

determine the role of SDF-I-CXCR4 signaling in AMD3100 treatment of periodontal 

disease. Perhaps constant stimulation of CXCR4 by P. gingivalis fimbriae contributes to 

the constant and non-productive influx of neutrophils which is a hallmark of chronic 

periodontal disease. Further experiments focusing on SDF -1 signaling could elucidate 

any anti-microbial effect seen as a result ofCXCR4-SDF-l signaling blockade as well as 

potentially contribute to our understand as to why, in the chamber model of infection, 

AMD3100 injection alone and P. gingivalis inoculation both induce leukocyte 

recruitment into the chamber but when the two are co-injected, leukocyte recruitment 

appears to be attenuated. 

The polymicrobial nature of periodontal disease 

We have shown that AMD3100 treatment has a relatively specific effect on 

disease progression when pathology is instigated solely by P. gingivalis, however, 

chronic periodontal disease is more and more being characterized as a polymicrobial 

disease of the host immunity. In other words, many oral pathogens or microbial 

opportunists are present in the patients oral cavity and contribute to disease progression. 

Knowing the inhibitory effect of AMD3100 on P. gingivalis survival, and that F. 

nucleatum is not atTected by AMD3100 in the chamber model is a starting point for 
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pressing on to ask what the effects of AMD31 00 treatment are on the total oral microbe 

community. Are there lasting ecological effects of CXCR4 blockade? Is the population 

balance shifted, and if so, in what way? These questions lead to even more fundamental 

questions concerning the nature of our interaction with environmental microflora. Such 

as, does CXCR4 deficiency cause a shift in the population dynamics of the oral 

microbiota in mice, and with what consequence? We observed mice for sixty days, to an 

approximate age of 3 months, but what about longer term effects of CXCR4 blockade? It 

is difficult to believe that absence/blockade of the receptor would have no effect, 

especially concerning the knowledge that certain viruses and P. gingivalis use it for 

pathogenic gain. 

AMD3100 periodontal treatment and its (fortuitous?) effect on other systemic 

diseases? 

We have demonstrated a therapeutic advantage to AMD31 00 administration on a 

systemic scale, an exciting finding considering the current philosophy that periodontal 

and certain systemic diseases of inflammatory or autoimmune etiology share a 

relationship of bidirectional effects. As stated above, it has been shown that diabetic 

patients suffer an increased prevalence and severity of periodontal disease, and that 

chronic periodontitis can worsen or accelerate metabolic disease which leads to diabetes. 

Periodontitis also has been shown as both a risk factor for and disease of consequence for 

patients suffering rheumatoid arthritis. This, coupled with a finding regarding the benefit 

of systemic AMD31 00 treatment via the same osmotic pumps used in this study on mice 

with CIA (168), raises the possibility that therapy for disorders such as rheumatoid 
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arthritis, diabetes and atherosclerosis could overlap. Periodontal treatment might benefit 

patients by reducing risk of associated diseases not only through improved oral health but 

also through pharmacological targeting so that individual patients can enjoy a maximized 

benefit with minimized pharmaceutical burden. 

In conclusion, systemic pharmacological blockade of CXCR4 signaling provides 

protection and therapy in a P. gingivalis mediated model of chronic periodontitis by 

enhancing specific clearance of the pathogen. These findings will hopefully aid in 

directing development of therapeutic strategies that will not only possess relevance in a 

preventative context but also provide strategies for halting periodontal disease such that a 

focus can be placed eventually upon healing damage already done in afflicted patients. 
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