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ABSTRACT 

CO-OPTION AND ADAPTATION OF NOVEL GENE DUPLICATIONS FOR 
PHEROMONE ACTIVITY IN A DUSKY SALAMANDER. 

Kari A. Leichty 

April 18,2012 

For more than a hundred million years, male plethodontid salamanders have 

utilized non-volatile, proteinaceous courtship pheromones to regulate female mating 

receptivity and promote mating success. These pheromones - which are delivered after 

courtship has commenced and do not act as chemical attractants - are delivered from a 

male's submandibular (mental) gland to the female salamander either by an olfactory 

mode or transdermally. For approximately 20 years, research on plethodontid courtship 

pheromones has focused on those involved in olfaction, using the red-legged salamander 

(Plethodon shermani) as a model. However, the olfactory system is a relatively recent 

adaptation (~20 million years ago) employed only by a single clade of large eastern 

Plethodon species. In contrast, for the majority ofplethodontids (~350/380 species) the 

male scratches the back of the female with hypertrophied premaxillary teeth and rubs his 

gland over the abraded site to transdermally deliver pheromones. Desmognathus ocoee 

has served as the model for transdermal delivery, however less is known about this 

species. The purpose of this study was to evaluate the hypothesis that sexual selection 

has favored unique pheromone composition and structural motifs in different modes of 

pheromone delivery. 
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An RT-PCR library was constructed using total RNA extracted from two D. 

ocoee mental glands. A total of235 clones were sequenced, increasing the number of 

known D. ocoee cDNAs by approximately 70%. A large number of cDNA sequences 

were predicted to encode hormone-like proteins. In addition, seven clones were found to 

contain the complete coding region of a known pheromone, sodefrin precursor-like factor 

(SPF). This protein was previously demonstrated to increase female receptivity in D. 

ocoee. Five of the SPF sequences encoded unique translations, suggesting extensive 

isoform variability. To further analyze this pheromone component, SPF was selectively 

amplified from the mental glands of five individual D. ocoee males and 150 full length 

SPF cDNAs were sequenced. Analysis of the sequences revealed transcription of 

multiple SPF isoforms in all males, which could be divided into six classes based on 

sequence similarity. Sequences from all six classes were not found in every male, 

however one isoform (SPF IO 1) was common to all males sampled. In addition, some 

"hybrid" transcripts were identified with sections that matched two or more classes. To 

evaluate if SPF transcripts matching two or more classes were a result of alternative 

splicing, genome walking techniques were used to identify exon/intron splice sites of 

SPF. It was determined that SPF has a 5 exon-4 intron structure and that the majority of 

the "hybrid" transcripts cannot be explained by alternative splicing. 

Based on the presence of 16 cysteine residues in SPF as well as a conserved gene 

structure, it was hypothesized that SPF is related to the three fingered protein 

superfamily. Disulfide bonding studies were conducted by proteolytic digestion followed 

by mass spectrometry. Analysis showed that SPF has a different disulfide bonding 

pattern than established three fingered proteins. 
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Pheromones extracted from D. ocoee mental glands were purified by high 

performance liquid chromatography. Mass spectrometry revealed that the most highly 

expressed protein matches the SPF transcript common to all males (SPF 10 1). Analysis 

of mental gland extract from seven time points from May until October revealed that this 

isoform of SPF is highly expressed across the entire courtship season, composing 

approximately 30% of the pheromone mixture at all time points. These data suggest that 

sexual selection has favored stabilization of the D. ocoee SPF complex such that a single 

isoform is primarily expressed over a prolonged courtship season to influence 

reproductive behavior. 
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CHAPTER I 

INTRODUCTION 

Pheromones are chemical signals that mediate interactions between individuals of 

the same species by inducing behavioral changes or altering developmental processes 

upon reception (1). Pheromones have been most studied in insects where their role as 

sexual attractants has been well established (1-4). For example, bombykol, the first 

pheromone to be chemically characterized, (as (E,Z)-l 0, 12-hexadecadien-l-ol) is used by 

females to attract mates in the silkworm moth Bombyx mori (5). Later studies in the bark 

beetle Ips paraconfusus demonstrated that many insect pheromones consist of complex 

blends of volatile compounds which act synergistically to produce a behavioral effect (6). 

More recently, pheromones with a wide variety of behavioral effects have been 

identified in fish (7, 8), amphibians(9-11) and mammals (12-14). In particular, male 

mouse urine has been shown to be involved in mediating aggressive behaviors between 

males (15) as well as estrus synchronization and puberty acceleration in females (12, 13). 

In contrast, female urine has been shown to delay puberty in females that have been 

housed together at least 10 days (16). The components in the urine responsible for these 

behavioral and developmental changes include volatile compounds (such as 3,4-dehydro

exo-brevicomin, 2-heptanone and n-pentyl acetate) and the mouse major urinary proteins 

to which the volatile compounds bind. Other vertebrate pheromones include 

androstenone, which is produced by the domestic pig to induce a receptive mating 
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stance in females in estrus (17); 2-methylbut-2-enal, which guides newborn rabbits to 

their mother's nipples to obtain milk (14); and the proteinaceous pheromones of 

plethodontid salamanders which increase female receptivity to mate (10). 

Despite the extensive research to date establishing functional roles for chemically

characterized pheromones in many systems, few studies have been performed on the 

evolution of pheromone signaling. One of the critical limitations for this field is that the 

majority of pheromones are volatile products of complex enzymatic cascades, which can 

be difficult to purify and are only indirectly influenced by selection. In contrast, the non

volatile proteinaceous pheromones of plethodontid salamanders can be easily purified by 

chromatographic methods (18) and, as direct gene products, can be readily sequenced and 

studied using established models of molecular evolution. 

In Plethodontid salamanders courtship pheromones are delivered during a lengthy 

courtship ritual which ends with sperm transfer via a spermatophore (19). Male 

salamanders produce proteinaceous courtship pheromones in a specialized submandibular 

gland, known as the mental gland, which hypertrophies during the courtship season. 

Depending on the species, the pheromones are delivered to the female either by 

transdermal or olfactory mechanisms (10). Olfactory delivery, present in a monophyletic 

group of plethodontids termed the Plethodon glutinosus group, involves the male 

slapping the nares of the female with his hypertrophied mental gland to deliver 

pheromones (10) (Figure 1). This mechanism is considered to be the derived trait which 

evolved approximately 20 million years ago. After delivery to the female, pheromones 

diffuse via capillary action to the vomeronasal organ, bind to olfactory receptors, 

stimulate neurons, activate specific regions of the brain known to be involved in 
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pheromone response, and increase female receptivity to mate (20, 21). The majority of 

research involving this mechanism of pheromone delivery has been conducted in 

Plethodon shermani. 

In behavioral experiments, whole pheromone extract from Plethodon shermani 

mental glands was applied to the nares of females courting with de-glanded males. 

Courting pairs in which the female received pheromone showed a decrease in courtship 

time by 21 %, indicating an increase in female receptivity (10). Characterization of the 

whole pheromone extract revealed two major components: Plethodontid Receptivity 

Factor (PRF) and Plethodontid Modulating Factor (PM F) (l0, 22). PRF is a 22 kDa 

protein related to the IL-6 family of cytokines (l0). Purification of PRF from the P. 

shermani pheromone extract followed by mass spectrometry (MS) revealed three major 

isoforms of PRF termed B, C 1, and C2, based on their elution times using strong anion

exchange High Performance Liquid Chromatography (HPLC) (23). Together these three 

isoforms ofPRF compose approximately 113 of the pheromone mixture. When a mixture 

of purified PRF isoforms was applied to courting females, the response was similar to 

that of the whole pheromone extract (10). In addition, a single recombinant PRF isoform 

(PRF C2) was demonstrated to have activity comparable to both the mixture of PRF 

isoforms and the whole pheromone extract (24). In contrast, PMF is a 7 kDa protein 

related to the family of three fingered proteins (TFPs) that includes xenoxins of Xenopus 

skin and snake cytotoxins (22). A total of 28 different isoforms of PMF were purified 

from P. shermani whole extract and 26 of the 28 were matched to cDNAs by at least one 

mass spectral technique (25). Together these PMF isoforms compose approximately 50% 
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Figure 1: Illustration of a male P. shermani delivering pheromones to the nares of a 

female (26). 
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of the pheromone mixture. When a purified PMF fraction, consisting of approximately 

30 isoforms ofPMF, was applied to the nares of females during courtship trials, the net 

result was an increase (~16% ) in courtship time (27). Based on its homology to snake 

venom cytotoxins, it was originally hypothesized that PMF may provide a mild sedative 

effect to keep the female engaged in the lengthy courtship process. However, more 

recent studies have shown that a complete mixture of all PMF isoforms decreases 

courtship time whereas a single recombinant PMF isoform had no effect (Wilburn et ai., 

manuscript in preparation). Based on these findings, it is now hypothesized the PMF 

isoforms interact synergistically to reduce courtship time. 

In contrast to P. shermani and other members of the Plethodon glutinosus group, 

the majority of plethodontid species deliver pheromones transdermally (Figure 2). This a 

novel type of vertebrate pheromone delivery, which involves the male abrading the 

dorsum of the female with his hypertrophied premaxillary teeth and delivering 

pheromones to the female by rubbing his gland over the abraded site (28). The 

pheromones diffuse into the bloodstream and act to influence female receptivity by 

unknown means (29). This mode of delivery is the ancestral mechanism, evolving 

approximately 100 million years ago. To date, the principal model for this system is 

Desmognathus ocoee. 
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Figure 2: A male D. ocoee delivers transdermal courtship pheromones to a female 

(picture taken from (29)). 
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Preliminary analysis of pheromone extract from D. ocoee revealed a mixture 

much more complex than that of P. shermani (29). Compared to two major components 

of the P. shermani pheromone mixture (PRF and PMF), analysis of D. ocoee pheromone 

extract by reverse phase HPLC (RP-HPLC) and SDS-PAGE revealed a mixture with 

more than 30 components. cDNA sequencing revealed that a 20 kDa protein, Sodefrin 

Precursor-like Factor (SPF), is highly transcribed in the D. ocoee mental gland (30). 

SPF has homology to the precursor of the newt pheromone sodefrin (9), as well as to the 

phospholipase A2 inhibitors (PU), which contain two TFP domains (31). Like the PUs, 

SPF is a highly disulfide bonded protein containing 16 cysteine residues predicted to 

form 8 disulfide bonds. Multiple isoforms of SPF had been identified in D. ocoee mental 

gland cDNA, yet prior to the current study, no proteins from D. ocoee whole pheromone 

extract had been characterized by MS or shown to match cDNA sequences. 

In behavioral studies a high molecular weight fraction (20-25 kDa) of D. ocoee 

pheromone extract was applied to a treatment patch on the dorsum of females courting 

with de-glanded males, resulting in a decrease in courtship time by ~23% as compared to 

a saline control (29). Later SDS-PAGE analysis revealed that this fraction principally 

contained a 20 kDa protein which was assumed to be SPF. Thus, it was proposed that 

SPF in D.ocoee had a similar role to PRF in P. shermani. 

More than twenty proteins have been identified in the D. ocoee pheromone 

mixture by SDS-PAGE, however they have not been identified by mass spectrometry. 

Unfortunately, this technique is limited by the quality of the reference database that is 

used. When a D. ocoee mental gland cDNA library was constructed in 2003,57 unique 

protein translations were identified and added to an existing database of P. shermani 
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sequences. The quality of the database is one reason why the majority of the D. ocoee 

pheromone mixture is thought to remain un characterized. 

Further analysis of mental gland cDNA from both P. shermani and D. ocoee 

shows some commonalities between the pheromone components. For example, 

approximately 5% of the cDNA sequences from the mental gland of D. ocoee were 

identified as PMF sequences (32). However, unlike P. shermani, which has more than 50 

isofonns, only one single unique translation was identified. In addition, although SPF 

has not been identified in the pheromone extract of P. shermani, it has been detected in P. 

shermani mental gland cDNA, suggesting it may be produced at trace levels. Finally, 

although D. ocoee does not produce PRF, it is present in Plethodon cinereus (Feldhoff et 

aI., unpublished data) which is a salamander utilizing transdennal pheromone delivery 

but more closely related to P. shermani. Because of this overlap in pheromone 

composition, it is hypothesized that olfactory pheromone delivery may have originally 

evolved as a secondary pathway that over time replaced transdennal pheromone delivery 

within the Plethodon glutinosus group (33). 

An additional commonality between the major pheromones of D. ocoee and P. 

shermani is the shared relationship of SPF and PMF to the TFP superfamily. In 

particular, the phospholipase A2 inhibitors to which SPF is related have two conserved 

TFP domains, and the xenoxins and snake venom cytotoxins to which PMF is related 

have a single TFP domain. The TFP superfamily consists of proteins containing at least 

one of the namesake domains which have a three dimensional shape consisting of three 

adjacent finger-like loops extending from a hydrophobic core (Figure 3). The structure of 

the TFP domain includes five ~-strands that encompass the three loops (34). These 
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Figure 3: The tertiary structure of a representative TFP (Cardiotoxin IV) with three 

fingers stabilized by four disulfide bonds. 
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proteins have a wide variety of functions - from ligands, such as the snake cytotoxins, to 

receptors such as human CD59 (35) or the urokinase/plasminogen activator receptor 

(uPAR) (36). Within each TFP domain there is relatively little sequence conservation 

with the exception of 8 cysteine residues, which form disulfides at the base of each loop 

to stabilize the "fingers," and a C-terminal asparagine residue, which interacts through 

three hydrogen bonds with fingers 1 and 2 to lock the C-terminus in place (34). The 

common disulfide bonding pattern for these proteins includes bonds between the first and 

third, the second and fourth, the fifth and sixth and the seventh and eight highly 

conserved cysteines (i.e. 1-3,2-4,5-6, 7-8). Some members of the TFP superfamily have 

an additional disulfide bridge that occurs within one of the three fingers, but the overall 

structure remains the same. 

At the genomic level, all characterized TFPs share a common gene structure 

composed of3 exons and 2 introns (37-39). The location ofthe intron-exonjunctions is 

conserved with the first intron occurring within the signal peptide and the second intron 

positioned between the third and fourth strictly conserved cysteine residues. In addition, 

all exonlintron junctions in TFPs are type I, meaning that they occur between the first and 

second bases of the codon (39). 

PMF has the elements of the classic TFP primary structure, including the eight 

highly conserved cysteine residues and C-terminal asparagine. In addition, preliminary 

gene structure research has determined that PMF has an intronlexon structure similar to 

that of other TFPs including conserved type I exonlintron junctions (Wilburn et aI., 

unpublished data). However, recent studies have demonstrated that PMF has a different 

disulfide bonding pattern than the canonical TFPs. Subsequent molecular modeling 
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has demonstrated that the change in disulfide bonding pattern of PMF is reflected in a 

unique structure making PMF distinct from members of the TFP family (Wilburn et aI., 

unpublished data). 

The disulfide bonding pattern and structure of SPF have not yet been determined. 

With 16 cysteine residues, there are a possible 2,027,025 disulfide bond combinations 

(40) (see Appendix 1). It is possible that the disulfide bonding pattern of SPF will cause 

it to adopt a structure similar to a double TFP, a structure similar to a double PMF or 

form a novel structure. Because disulfide bonds play an important role in the 

stabilization of proteins and in protein structure (41,42) the determination of the SPF 

disulfide bonding pattern and structure is necessary to understand the SPF mechanism of 

action. 

Compared to P. shermani and pheromone delivery by olfaction, there is 

considerably less known about D. ocoee and the transdermal mode of delivery. This is in 

part due to the various difficulties of working with D. ocoee including smaller gland size, 

less total RNA yield per gland, lower pheromone concentration from the extract of each 

gland, more components in the pheromone mixture, protein pheromone instability, and 

lower chromatographic resolution. Despite these experimental limitations, the aim of the 

current study is to further characterize the D. ocoee pheromone mixture by molecular and 

biochemical approaches. More extensive studies of the D. ocoee pheromones will 

complement and extend the studies ofthe P. shermani pheromone model system and aid 

in the explanation of the evolutionary, molecular and behavioral relationships between 

the two methods of pheromone delivery. Since the pheromone mixture directly 

influences reproductive success, the following research will test the hypothesis that 
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evolutionary pressures have directed unique structural motifs in plethodontid pheromones 

to facilitate reproductive success in different modes of delivery. 
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CHAPTER II 

MATERIALS AND METHODS 

RT-PCR LIBRARY CONSTRUCTION 

Collection of tissues and glandular secretions 

Desmognathus ocoee males, identified by presence of premaxillary teeth, were 

collected from Deep Gap in Macon County, North Carolina (35°02'20"N OS3°33'OS"W) 

during the breeding season in August 2009, and at approximately 3 week intervals from 

late May until early October 2010 (Table 1). Animals were anesthetized and mental 

glands were surgically removed. Approximately 10 glands, to be used for analysis of 

RNA, were placed in RNAlater (Invitrogen, Carlsbad, CA) at 4°C overnight, and then at -

20°C for long term storage. Pheromones from the remaining excised glands (~1 00) were 

incubated in O.S mM acetylcholine in Amphibian Ringers Solution for one hour. The 

solution centrifuged at 10,000 x g for 10 minutes at 4°C. The supernatant was removed, 

re-centrifuged at 10,000 x g for 10 minutes at 4°C, and stored at -SO°c. Methods and 

animal care were approved by Oregon State University's Institutional Animal Care and 

Use Committee (ACUP 3007 to L.D. Houck). 

Synthesis of cDNA and cloning 

Two mental glands were weighed, homogenized, and RNA was extracted using 

the RNeasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer's protocols. 

Total RNA was used as a template for single-stranded cDNA synthesis by 
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Time Point Date Number of Males 
1 May 29-31 22 

2 June 17 20 

3 July 8 18 

4 August 6 20 

5 August 22 20 

6 September 9-10 18 

7 October 9 20 

Table 1: 2010 Collection Time Points. The dates and number of males collected for each 

of the seven collection time points. 
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Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) with 5' RACE using the 

Creator SMART cDNA Library Construction Kit (Clontech, Palo Alta, CA). Double

stranded cDNA was synthesized by PCR using reaction protocol 1 (Table 2). The 

primers used in this reaction were a 5' PCR primer and the 3' CDS III primer provided 

by Clontech (Palo Alta CA). A small aliquot of double-stranded cDNA was analyzed by 

a 1 % agarose gel containing ethidium bromide and subjected to electrophoresis at 100 

volts for 75 minutes. Double-stranded cDNA was cloned into the TOPO TA cloning 

vector (Invitrogen, Carlsbad, CA) according to the manufacturer's protocol and 

transformed into OneShot chemically competent E. coli cells (Invitrogen, Carlsbad, CA) 

by heat shock at 42°C for 30 seconds. This was followed by incubation at 36°C for 1 

hour while shaking in 250 ilL of Super Optimal broth with Catabolite repression (SOC) 

media (Invitrogen, Carlsbad, CA). Cells were plated on LB/Agar plates with kanamycin 

to select for resistant clones and incubated overnight at 37°C. A total of 864 clones were 

selected, each inoculated into 150 ilL of Circlegrow broth (MP Biomedicals, Irvine, CA), 

and shaken overnight at 37°C. Aliquots of 50 ilL of each culture were stored at -80°C in 

an equal volume of glycerol. 

Sequencing of eDNA 

Inserts from each clone were amplified by PCR using reaction protocol 1 (Table 

2) and M13 Forward and M13 Reverse primers which were provided by Integrated DNA 

Technologies (Coralville IA). Aliquots of each PCR reaction were analyzed using a 1 % 

agarose gel with ethidium bromide, subjected to electrophoresis at 100 volts for 75 

minutes. All PCR products that were larger than 600 base pairs were purified using the 
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Reaction peR Recipe Thermocycler Program 
Protocol 

1 2 ilL lOX PCR Buffer 1) 95°C for 2 minutes 
3.2 ilL dNTP mix (1.25 mM) 2) 95°C for 15 seconds 
0.2 ilL Taq Polymerase 3) 58 °c for I minute 
0.2 ilL 20 IlM forward primer 4) 68°C for 6 minutes 
0.2 ilL of 20 IlM reverse primer 5) Go to Step 2, 39 times 
1 ilL 0.1 U/IlL Vent Polymerase 6) 4 degrees 
1 ilL ss-cDNA 
12.2 ilL H2O 

2 2 ilL of Accuprime Buffer II, 1) 95°C for 2 minutes 
1 ilL of circularized DNA, 2) 95°C for 15 seconds 
0.4 ilL 10 mM Forward primer 3) 58 °C for 1 minute 
0.4 ilL 10 mM Reverse primer 4) 68°C for 6 minutes 
0.3 ilL of Accuprime Taq DNA polymerase 5) Go to Step 2, 35 times 
15.9 ilL of molecular biology water 6) 4 degrees 

Table 2: PCR reaction Protocols. Primers were supplied by either Clontech (CDS III and 

5' PCR primer; Palo Alta CA) or Integrated DNA technologies (all other primers; 

Coralville IA). Accuprime Buffer II and Accuprime Taq DNA polymerase were 

purchased from Invitrogen (Carlsbad CA). All other supplies were obtained from New 

England Biolabs (Ipswich MA). 
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QIAquick PCR Purification Kit (Qiagen, Valencia, CA). Two 5 ilL aliquots of each 

purified PCR product were diluted with 5.4 ilL water and 1.6 ilL of either M 13 Forward 

or M13 Reverse primer (Integrated DNA Technologies, Coralville IA). Sequencing was 

performed by the University of Louisville DNACore Lab. 

Analysis of sequences 

Sequences were assembled into contigs by SeqMan Pro (Lasergene Version 7.1; 

DNAST AR, Madison, WI) and low quality sequences were removed. The consensus 

sequence of each contig was compared to known sequences in GenBank using translated 

nucleotide BLAST searches (www.ncbi.nlm.nih.gov/BLAST). Editseq (Lasergene 

Version 7.1; DNASTAR, Madison, WI) was used to identify and translate putative open 

reading frames for each sequence. Translations were checked manually for repeats and 

analyzed for a signal peptide using SignalP 4.0 Server 

(http://www.cbs.dtu.dklservices/SignaIP/) (43). To prepare a database for proteomic 

analysis, the predicted signal peptide sequences were deleted and the data configured into 

FAST A format to compare to proteins analyzed by the University of Louisville 

Biomolecular Mass Spectrometry Core Laboratory. 

Amplification ofSPF cDNAfromfive individual males 

In order to examine transcription of SPF isoforms in individual male salamanders, 

five mental glands were separately homogenized and total RNA extracted using the 

RNeasy mini kit (Qiagen, Valencia, CA) according to manufacturer's protocol. Single

stranded cDNA was synthesized for each male using the Creator SMART cDNA Library 

Construction Kit (Clontech, Palo Alta, CA). Double-stranded cDNA was synthesized by 

PCR using reaction protocol I (Table 2) and the primers included in this reaction were 3' 
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CDS III (Clontech, Palo Alta, CA) and SPF 5' UTR primer (Integrated DNA 

Technologies, Coralville IA). Based on previous cDNA sequencing, SPF 5'UTR 

Forward Primer was designed to anneal to a conserved region ofthe SPF 5' UTR, 

permitting full-length amplification of the SPF coding region. Amplified cDNA from 

each reaction was ligated to the TOPO T A cloning vector, (Invitrogen, Carlsbad, CA), 

and the cloned DNA was used to transform OneShot chemically competent E. coli cells 

(Invitrogen, Carlsbad, CA) as previously described. 

Approximately 30 clones for each transformation (each corresponding to an 

individual male) were selected and transformed DNA was amplified in a 20 ilL PCR 

reaction using reaction protocol 2 (Table 2). A 5 ilL aliquot of each PCR reaction was 

.visualized using a 1 % agarose gel with ethidium bromide subjected to electrophoresis at 

100 volts for 75 minutes. For each positive reaction, 1 ilL ofPCR product was diluted in 

9.4 ilL of water and 1.6 ilL of20 mM SPF 5' UTR Forward Primer and sequenced by the 

University of Louisville DNACore Lab. 

Analysis a/Sequences 

Sequences were assembled into contigs by Seqman Pro (Lasergene Version 7.1; 

DNASTAR, Madison, WI) and low quality or incomplete sequences were removed. For 

each sequence, open reading frames were identified and translated using EditSeq 

(Lasergene Version 7.1; DNASTAR, Madison, WI). Sequences were checked manually 

for repeats and unique sequences were compared using MegAlign (Lasergene Version 

7.1; DNASTAR, Madison, WI). 
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PURIFICATION OF PHEROMONES AND MASS SPECTRAL ANALYSIS 

Pheromone purification 

Desmognathus ocoee proteinaceous pheromones were purified by three 

successive rounds of HPLC. All separations were performed on a Waters 2695 Alliance 

HPLC System (Waters Corporation, Milford, MA) equipped with a Waters 2487 dual 

wavelength absorbance detector and Waters Empower software. The eluate was 

monitored at 220 nm. Initially, the whole pheromone extract was separated by size 

exclusion chromatography using a G75 superfine column (Pharmacia, Piscataway, NJ), 

eluted at -20 mLihour with 0.5 X phosphate-buffered saline (PBS). The eluate was 

pooled into three fractions based on elution time (See Table 6). Pooled fractions were 

subjected to strong anion exchange chromatography using a Mono Q column (Pharmacia, 

Piscataway, NJ), eluted with a sodium chloride mixed gradient (5mM NaCl/min for 30 

min, lOmM NaCl/min for 15 min, 20mM NaClImin for 10min) in 50mM Tris-HCI, pH 8. 

Finally, strong anion exchange fractions were collected and further separated by reverse 

phase HPLC (RP-HPLC) using a C18 column (0.5 x 15 cm, Grace Davidson Discovery 

Sciences, Deerfield, IL) eluted with an acetonitrile (ACN) gradient (0-70% ACN at 1 % 

ACN/minute) in 0.1 % trifluoracetic acid (TF A). Single protein peaks were collected by 

hand and subjected to mass spectral analysis. 

Mass spectral analysis 

Purified D. ocoee mental gland proteins were analyzed by Electrospray Ionization 

Mass Spectroscopy (ESI-MS) and/or Matrix Assisted Laser Desorption Ionization-Time

Of-Flight (MALDI-TOF) or Liquid Chromatography Tandem Mass Spectrometry (LC 

MS/MS) depending on the amount of protein available. All mass spectroscopy was 
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performed by the Biomolecular Mass Spectrometry Core Laboratory at the University of 

Louisville. 

In preparation for ESI-MS, samples collected from the reverse-phase HPLC 

separations were lyophilized by SpeedVac (Thermo Scientific, Wilmington, DE). If 

sufficient protein was available, half of the sample was reduced with 3 ~L of 45 mM 

dithiothreitol (DTT) incubated at 60°C for 30 minutes followed by alkylation with 3 ~L 

of 120 mM iodoacetamide incubated at 45°C for 30 minutes. Both the intact and 

reduced/alkylated protein samples were then purified using C 18 resin ZipTip (Millipore, 

Billerica, MA) according to the protocols of the manufacturer. 

For MALDI-TOF or LC MS/MS, protein samples collected from RP-HPLC 

separations were lyophilized by SpeedVac. Proteins were solubilized in 1 0 ~L of 6M 

Urea/O.l M NH4HC03, reduced by the addition of 2 ~L 45 mM DTT with incubation at 

60°C for 30 minutes, and alkylated by addition of2 ~L of 120 mM iodoacetamide with 

incubation at 45°C for 30 minutes. The protein solution was diluted with 6 ~L ofO.lM 

NH4HC03 and subjected to protease digestion at 37°C overnight with 10 ~L of 0.025 

~g/~L trypsin. Peptide fragments were purified by Zip Tip (C 18; Millipore Millipore, 

Billerica, MA) according to the manufacturer's protocols prior to analysis by MALDI

TOF. Fragment masses obtained were compared to a database of translated cDNA with 

predicted trypsin cleavage sites for D. ocoee and P. shermani. 
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INVERSE peR AND GENOME WALKING 

Purification of genomic DNA 

A single D. ocoee tail tip was cut into small pieces and approximately 15 mg of 

tissue was added to 975 ilL proteinase K buffer (100 mM Tris-HCI pH 8, 100 mM 

EDTA, 250 mM NaCl, 0.5% SDS) with 25 ilL of20 Ilg/IlL of proteinase K. The tissue 

was digested overnight at 55°C. Following digestion, the tube was inverted 5 times to 

dissociate remaining tissue, and the sample was centrifuged at 10,000 x g for 15 minutes. 

The supernatant was removed, re-centrifuged at 10,000 x g for 15 minutes, supernatant 

collected, and filtered. To extract DNA, an equal volume ofphenollchloroforrnlisoamyl 

alcohol (PCI, ratio 125 :24: 1; Invitrogen, Carlsbad, CA) was added, the solution was 

mixed by inversion, and centrifuged for 30 minutes at 10,000 x g. The aqueous (top) 

layer was carefully transferred to a clean 1.7 mL tube. PCI extraction was repeated to 

further remove contaminants. 3M sodium acetate was added to a final concentration of 

0.3 M and the DNA was precipitated by addition of 3 volumes of 95% ethanol incubated 

overnight at -80°C. The solution was subsequently centrifuged at 10,000 x g for 30 

minutes at O°C, supernatant was discarded, and 1 mL of 70% ethanol was added. The 

sample re-centrifuged at 10,000 x g for 30 minutes, and then the supernatant was 

removed. The DNA pellet was allowed to air-dry prior to being resolublized in 20 ilL of 

molecular biology-grade water. DNA concentration was measured by NanoDrop 

(Thermo Scientific, Wilmington, DE) and standardized to 200 ng/llL. 

Amplification of genomic DNA 

To ensure that a sufficient amount of DNA from a single animal was available for 

all genome walking experiments, D. ocoee genomic DNA was amplified using the 
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Illustra GenomiPhi V2 DNA amplification Kit (GE Healthcare, Life Sciences, 

Piscataway, NJ) using the manufacturer's protocols. Amplified genomic DNA 

concentration was measured by NanoDrop and standardized to 200 ng/J.!L. 

Inverse PCR 

Inverse PCR (iPCR) was used to determine a single intronlexon boundary ofSPF. 

Specifically, circular DNA fragments were formed by digestion of D. ocoee genomic 

DNA with restriction enzymes (Tsp509I, NlaIII, or HpyCH4IV; New England BioLabs, 

Ipswich, MA) according to manufacturer's protocols at 37°C overnight. Following 

digestion, the products were purified using the QIAquick PCR Purification Kit (Qiagen, 

Valencia, CA). To promote self-ligation, the digested products were diluted with 420 J.!L 

H20, 50 J.!L lOX Ligase Buffer (New England Biolabs, Ipswich, MA), and 1.25 J.!L 400 

U/J.!L T4 DNA Ligase (New England Biolabs, Ipswich, MA) was added prior to 

overnight incubation at 16°C. Because the 3' UTR of genes generally lack introns, the 3' 

UTR of SPF was chosen as a target for inverse PCR. Four reverse primers and three 

forward primers (Integrated DNA technologies, Coralville, IA), were designed to anneal 

to a region from base pairs 599 to 748 of SPF (Table 3). 

The circularized DNA was amplified in a 20 J.!L PCR reaction using reaction 

protocol 2 (Table 2). PCR products were subjected to electrophoresis at 100 volts for 75 

minutes and visualized in a 1 % agarose gel with ethidium bromide. Amplified DNA 

from the first round of PCR was used as a template for a second round of PCR using 

nested primers to ensure specific amplification of SPF. The PCR reaction and 

thermocycler program was identical to the first reaction described above with 1 J.!L of the 
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Primer Sequence 
SPF 3' UTR 618-599 R' GCTGTCATGCGCAGATCTTT 
SPF 3' UTR 646-625 R' GATGTTAATTGGGTCATGTTGG 
SPF 3' UTR 673-651 R' AAGATTTCTTGAGTTCTGCTTGC 
SPF 3' UTR 695-673 R' TGCAATGATCATGTGAATAACAA 
SPF 3' UTR 700-719 F' CGCACCCAGATGAGTAGAAA 
SPF 3' UTR 724-743 F' ATGTTCCCAGATACGCTGCT 
SPF 3' UTR 729-748 F' CCCAGATACGCTGCTTGTTT 

Table 3: Primers used for inverse PCR. Primers were designed to anneal to the 3' UTR 

of the most highly transcribed SPF sequence. 
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original PCR being used as the template DNA and nested primers used in place of the 

original gene specific primer. 

Cloning and sequencing of inverse PCR products 

Inverse PCR products were subjected to electrophoresis at 100 volts for 75 

minutes and visualized in a 1 % agarose gel with ethidium bromide. Two PCR products, 

with well- defined bands, were selected for cloning. An aliquot of DNA from the 

selected PCR reactions was ligated to the TOPO T A cloning vector, (Invitrogen, 

Carlsbad, CA) according to manufacturer's protocols and used to transform OneShot 

chemically competent E. coli cells (Invitrogen, Carlsbad, CA) as previously described. 

Cloned DNA was amplified in 20 ~L PCR reactions using reaction protocol 2 

(Table 2). Small aliquots of each PCR reaction were analyzed using a 1 % agarose gel 

with ethidium bromide subjected to electrophoresis at 100 volts for 75 minutes. Two 1.0 

~L aliquots of each PCR product were diluted with 9.4 ~L of water and 1.6 ~L of either 

M13 forward or M13 reverse primer (Integrated DNA Technologies, Coralville IA). 

Sequencing was performed at the University of Louisville DNACore Lab. 

Analysis of sequences 

Sequences were assembled by SeqMan Pro (Lasergene Version 7.1; DNASTAR, 

Madison, WI) and aligned relative to the 3' end of SPF; an intron splice site was 

determined by ascertaining the nucleotide position where the inverse PCR sequence 

failed to match SPF cDNA sequence. 

Genome walking using semi-degenerate primers 

After the first intron-exon boundary was determined by inverse PCR, additional 

boundaries were determined by genome walking using semi-degenerate primers as 
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described by Guo and Xiong (44). Specifically, the four semi-degenerate primers 

described by Guo and Xiong and gene specific primers designed to anneal to SPF close to 

known intron-exon boundaries were synthesized (Integrated DNA Technologies, 

Coralville,IA). For each combination of gene-specific primers and semi-degenerate 

primers, 20 ilL PCR reactions were prepared containing 2 ilL of Accuprime Buffer II 

(Invitrogen, Carlsbad, CA), 1 ilL of amplified D. ocoee genomic DNA at 200 ng/IlL, 0.4 

ilL each of20 mM gene specific primer and 10 mM semi-degenerate primer (Integrated 

DNA Technologies, Coralville IA), 0.3 ilL of Accuprime Taq (Invitrogen, Carlsbad, CA) 

and 15.9 ilL of molecular biology grade water with a thermocycler program of 94°C for 

two minutes, 25 cycles of 94°C for 30 seconds, 60°C minus 0.5°C per cycle for 30 

seconds, 68°C for ten minutes, followed by 35 cycles of 94°C for 30 seconds, 50°C for 

30 seconds and 68°C for 10 minutes. PCR products were visualized using a 1 % agarose 

gel with ethidium bromide subjected to electrophoresis at 100 volts for 75 minutes. 

To ensure that products were gene specific, nested PCR was conducted using 

DNA from the first PCR as template DNA and nested gene specific primers. The PCR 

reaction conditions and thermocycler program were the same as the first round with 

genomic DNA being replaced with 1 ilL of PCR product from the first reaction and the 

gene specific primer being replaced with a nested primer. PCR products were visualized 

using a 1 % agarose gel with ethidium bromide subjected to electrophoresis at 100 volts 

for 75 minutes. 

Cloning and sequencing of degenerate primer genome walking PCR products 

PCR products with well-defined bands were selected for cloning. Specifically, an 

aliquot of DNA from the selected PCR reactions was ligated to the TOPO TA cloning 
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vector, (Invitrogen, Carlsbad, CA) according to manufacturer's protocols and 

subsequently used to transform OneShot chemically competent E. coli cells (Invitrogen, 

Carlsbad, CA) as previously described. 

Cloned DNA was amplified in 20 ilL PCR reactions using reaction protocol 1 

(Table 2) using M13 forward and M13 reverse primers (Integrated DNA technologies, 

Coralville IA). The products were visualized by agarose gel electrophoresis. For each 

positive reaction, 1 ilL aliquots ofPCR product were diluted in 9.4 ilL of water and 1.6 

ilL of either M13 forward or reverse primer (Integrated DNA Technologies, Coralville 

IA). Sequencing was performed by the University of Louisville DNACore Lab. 

Sequences were assembled by SeqMan Pro (Lasergene Version 7.1; DNASTAR, 

Madison, WI) and compared to SPF cDNA sequences to determine intron-exon splice 

sites. 

Confirmation of intron-exon boundaries 

After defining intron-exon boundaries by genome walking with semi-degenerate 

primers it was necessary to verify that no additional introns existed in what was thought 

to be a single exon. Primers were designed (Integrated DNA Technologies, Coralville, 

IA) to anneal to known intron sequences and were used to amplify across exons, PCR 

reactions (20 ilL) were prepared using reaction protocol 2 (Table2) and PCR products 

were visualized by agarose gel electrophoresis. For each PCR product with a single 

band, 1 ilL of PCR product was diluted in 9.4 ilL of molecular biology water with 1.6 ilL 

of gene specific primer, and sequenced by the DNACore Laboratory at the University of 

Louisville. 
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Alternatively, if none of the PCR reactions appeared to contain single product, the 

reaction with the most defined bands was selected for cloning as previously described. 

Clones were selected and DNA amplified by PCR using reaction protocol 1. A 5 ilL 

aliquot of each PCR reaction was sequenced by the University of Louisville DNACore 

Lab. 

SPF STRUCTURAL CHARACTERIZATION 

Purification of SP F 

D. ocoee whole extract was separated by strong anion exchange chromatography 

using a MonoQ column (Pharmacia, Piscataway, NJ) with a NaCl gradient (5mM 

NaClImin for 30 min, 10mM NaCl/min for 15 min, 20mM NaClImin for 10min) in 

50mM Tris. Fractions eluting between 50-52 minutes from the Mono Q column were 

loaded onto a Vydac 4.7 x 150 mm C18 reverse phase HPLC column (Grace Davidson 

Discovery Sciences, Deerfield, IL) and eluted with an acetonitrile gradient (0-70% ACN 

at 1 % ACN/minute) in 0.1 % TF A. A single peak that had been identified as SPF was 

collected from ~36.4 minutes to ~36.6 minutes, and stored at -20°C. 

Determination of SP F disulfide bonding pattern 

Aliquots of 3-5 Ilg of SPF protein were lyophilized, solubilized in 5 ilL of 4M 

UrealO.lM NH4HC03 and incubated at room temperature for 30 minutes. Following 

incubation, 0.5 Ilg aliquots of a single protease (trypsin, chymotrypsin, LysC, or AspN), 

or a combination of two proteases (trypsin, chymotrypsin, LysC, ArgC, or AspN) were 

added. The sample was diluted with the appropriate volume of O.IM NH4HC03 to 

achieve a final urea concentration of 2M. Following overnight incubation at 36°C, 
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peptide fragments were purified by Zip Tip (Millipore, Billerica, MA) according to the 

manufacturer's protocols and subjected to LC-MS/MS by the University of Louisville 

Biomolecular Mass Spectrometry Core Laboratory. 

Analysis of MSIMS Data 

Digestion of SPF with proteases without reduction and alkylation should result in 

the production of peptides held together by disulfide bonds. Unfortunately the available 

software assumes only linear fragments. Therefore, a program was written in Python 

(Wilburn unpublished) to create a list of all possible theoretical monoisotopic masses, 

both linear or as fragments held together by disulfide bonds, for each protease digest. 

Parent masses and fragmentation data for MS/MS analysis of SPF protease digests were 

extracted from Thermo Scientific raw data files, fragmentation data consolidated for 

datasets with similar parent masses (0.4 Da threshold), and automatically compared to the 

list of theoretical masses. Experimental masses were filtered to create a list of those 

which matched a theoretical mass within 1 Da. To confirm mass matches, further 

analysis of the MS/MS fragmentation data of each match was conducted using Protein 

Prospector- MS Product online software (http://prospector.ucsf.edulprospector/cgi

binimsform.cgi ?form=msproduct). 
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SEQUENCING OF eDNA 

CHAPTER III 

RESULTS 

Following screening by agarose gel electrophoresis, a total of244 clones from the 

D. ocoee cDNA library were sequenced. A total of235 high-quality sequences were 

assembled into contiguous sequences (contigs) by Seqman (Lasergene Version 7.1; 

DNASTAR, Madison, WI). A total of 153 sequences were combined into 25 multiple 

sequence contigs. The remaining 82 sequences all formed single sequence contigs, 

suggesting that a large number of D. ocoee mental gland proteins are transcribed, each at 

low rates. 

Based on translated BLAST searches, the total number of sequences could be 

grouped into five categories: those with similarity to peptide hormones, those responsible 

for normal cellular homeostasis, known pheromone components, those similar to known 

pheromones, and unidentified components with no known function. 
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Category Number of Number of Sequences Percentage of total 
Contigs sequences 

Unidentified 58 76 32.3% 
Hormone-like 14 74 31.5% 

Cell Maintenance 29 58 24.7% 
Known Pheromone 3 23 9.8% 

Pheromone-like 3 4 1.7% 

Table 4. Categorization of Do ocoee cDNA sequences based on function. 
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The unidentified sequences were the largest grouping, comprising 32% of all 

sequences. The sequences in this group matched either hypothetical proteins or had no 

definitive matches in BLAST. With only a few exceptions, these transcripts belonged to 

single sequence contigs, suggesting that they are transcribed at low rates. 

The second largest group, composed of approximately 31 % of the sequences, 

showed similarity to peptide hormones and are candidate pheromones in D. ocoee. In 

this category, it is notable that many sequences were similar to the precursor of 

vasoactive intestinal polypeptide (VIP). The precursor is cleaved at four different 

locations (typically dibasic sites) to generate three linking segments, a 28 amino acid 

native VIP, and a 27 amino acid fragment called peptide histidine isoleucine (PHI) (45-

47). 

In the D. ocoee mental gland sequences, there are four different contigs 

containing 34 sequences that show similarity to VIP. One contig exclusively contains 

sequence similar to the 3' untranslated region (UTR) of VIP precursor mRNA. The other 

three contigs contained VIP precursor-like open reading frames (ORFs), which were 

translated and compared to prepro-VIP from other species (Figure 4). One D. ocoee VIP 

precursor-like protein was 131 amino acids in length. It contained two native VIP-like 

regions that aligned to the PHI and VIP regions of the precursors from other species. In 

contrast, the VIP precursor-like proteins from the other two contigs were shorter and each 

contained only one native VIP-like region. This region could be aligned to either the PHI 

or VIP region of VIP precursors from other species depending on which aligning 

algorithm was used. 
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Figure 4. Amino acid sequence of Vasoactive Intestinal Peptide. A) Translations of the 

consensus sequence for each D. ocoee VIP-like contig with the signal peptide indicated 

by a light purple box and dibasic cleavage sites underlined in red. The expected sequence 

of native VIP is underlined in purple. Arrows indicate cleavage sites based on the 

expected length of VIP (28 amino acids) or PHI (27 amino acids). B) Comparison of D. 

ocoee VIP-like peptides and VIP and PHI from other species. Conserved residues of PHI 

and VIP are indicated by black shading and light blue shading respectively. 
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A second set of highly transcribed hormone-like components, composing 

approximately 10% of all transcripts, were the glucagon-like sequences. Glucagon is 

synthesized as a larger precursor with two flanking sets of dibasic residues as sites of 

cleavage for the biologically active peptide. Comparison of the predicted functional 

peptides in D. ocoee and other glucagon-like peptides showed complete conservation in 

eight residues (Figure 5). 

A final subset of highly transcribed hormone-like components included three 

contigs with homology to the insulin-like peptide superfamily. Members of this family 

are expressed as prepro-precursors and are processed to contain two chains-the B chain 

and the A chain-linked by intra- and intermolecular disulfide bonds. Within this 

superfamily there are three more specific subdivisions: insulin, insulin-like growth 

factors and relaxins (48, 49). In D. ocoee, one of the three contigs with sequence 

similarity to insulin-like-peptides had greatest similarity to insulin and two had greatest 

similarity to relaxin. All three contigs contained open reading frames, which were 

aligned with insulin or relaxin prepro-peptides from other species. 

The D. ocoee insulin-like peptide has large amounts of similarity to pre-pro insulin 

from other species (Figure 6). There is conservation between regions ofthe B chain and 

A chain, whereas the signal peptide and the linking C peptide have low levels of 

similarity. Interestingly, the D. ocoee insulin-like peptide has the first double basic 

cleavage site at the C-terminal end of the B chain, however the typical dibasic site at the 

N-terminal end of the A chain had an amino acid substitution. 
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Figure 5. Alignment of glucagon-like peptides. Black shading indicates residues that 

match the human consensus sequence. Arrows indicated amino acids determined to be 

important in glucagon binding to receptors (black arrows) or those important in activation 

of biological activity (red arrows) (50-53) . 
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Figure 6. Alignment of Pre pro insulin-like peptide from D. ocoee with preproinsulin sequences from Danio rerio (Genbank 

accession no. NM_131056) Xenopus laevis (NM_OOI085882), Gallus gallus (X58993), Mus musculus (NM_008386), Rattus 

norvegicus (NM_019130), and Homo sapiens (NM_000207). Consensus strength is indicated by bar height and color warmth. 

Shaded residues match the consensus. 



The alignment of preprorelaxin-like ORFs from D. ocoee with preprorelaxin 

proteins from other species shows that, like the insulin related protein, the greatest 

amount of conservation was found in the B and A chains. Specifically, in D. ocoee ORFs 

the B chain had two cysteine residues, a glycine residue and an arginine residue, with the 

A chain containing four cysteine residues, a leucine residue and a lysine residue that are 

highly conserved among relaxins from other species (54, 55). In contrast, the C peptide 

showed very low amounts of conservation both in length and amino acid sequence. The 

D. ocoee relaxin-like ORFs had predicted C peptides that were significantly shorter than 

those found in other species. Specifically, the predicted C peptide of one of the D. ocoee 

relaxin-like ORFs was only 7 amino acids while relaxins from other species tend to be 60 

amino acids or longer. 

The third grouping of sequences contains predicted proteins that have roles in 

normal cellular function. These sequences included ribosomal and mitochondrial 

proteins, myosin and actin. Nearly half of the sequences in this grouping (27/58) 

encoded protease inhibitors, which may function to protect pheromones from 

degradation. 

Finally, approximately 11 % ofORFs coded for known pheromone components or 

proteins similar to known pheromones. A total of four PMF sequences were found and 

all had the same translation. The amino acid translation matched a previously identified 

sequence (GenBank accession number DQ882565), supporting the suggestion that only 

one PMF sequence is transcribed in D. ocoee. In addition, a single sequence was found 

that coded for a protein similar to PMF. Like PMF it is a small protein composed of only 

71 amino acid residues that contains cysteine residues typical 
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Figure 7. Amino acid sequence of D. ocoee relaxin. Translations ofthe consensus 

sequence ORFs of each D. ocoee relaxin-like contig are shown with predicted signal 

peptide indicated by a blue box. Dibasic residues for the cleavage of the C peptide are 

indicated by red underlining and residues conserved with relaxin from other species are 

highlighted in black. 
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of a three-fingered protein. However, NCB! BLAST analysis suggests this protein is 

more similar to short chain snake toxins and cardiotoxins than it is to PMF. 

A total of 19 sequences in the cDNA library were SPF sequences yielding five 

unique translations, raising the total number of unique sequences to fourteen. This 

suggests hypervariability in SPF sequences similar to what is seen in PMF. All predicted 

SPF sequences suggested an overall structure consisting of two TFP-like domains of 8 

cysteine residues, connected by a linker region containing 3 conserved proline residues. 

In addition to the SPF sequences, there were an additional 3 SPF-like sequences, but 

these were more similar to sodefrin and PLI. These SPF-like sequences may represent 

part of the evolutionary transition from sodefrin and/or PLI to SPF. 

To assess the degree of SPF sequence variability and individual differences in 

SPF transcription, SPF cDNA was PCR amplified from five individual male mental 

glands. When the SPF sequences from the five males were combined with sequences 

from the current cDNA library, as well as SPF sequences from other cDNA libraries, 

there were a total of 231 sequences that had 75 unique translations. The SPF sequences 

aligned into six sequence clusters based on sequence homology (Figure 8). Interestingly, 

15 of the translations had sections matching two or more different classes; these unique 

sequences were termed hybrids (Figure 9). Hybrid sequences were found for every class 

of sequences with the exception of class VI. The regions where the hybrid would switch 

between classes was not always the same, however there were 5 sequences for which the 

switch occurred somewhere within a conserved region between amino acid 87 and amino 

acid 103. Four additional sequences switched classes between amino acid 116 and amino 

acid 132. The remaining six hybrid sequences all had unique switch locations. 
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Figure 8. Six classes of SPF. The consensus sequence from each class of SPF is aligned against the overall consensus for all 229 

SPF sequences. Residues that match the consensus are shaded. Bar height indicates the level of sequence conservation among 

all SPF sequences. 
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Figure 9. An example of an SPF hybrid sequence. This sequence is highly similar to SPF class I sequences in 

the N-terminal portion of the protein but the C-terminal half resembles class II sequences. The switch 

between Class I and Class II occurs between amino acids 87 and 101 . 
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Within each class of SPF there was very little sequence variation, but between classes, 

there was increased sequence distance (Table 5). It is unlikely that sequences within the 

same class are allelic variants of each other because individual males could express many 

unique sequences from each class. For example, five unique class I sequences and six 

unique class VI sequences were found to be expressed in the mental gland of a single 

male. 

Out of the 75 unique predicted translations ofSPF, there were multiple copies of 

only 17 sequences (Figure 10). One of these sequences, found 69 times, was identified in 

the cDNA library as well as in each of the five males. This sequence, from class I (SPF 

101), was also the most highly transcribed sequence in four of the five males sampled. 

There were no other SPF sequences found to be transcribed in all of the males sampled. 

All other sequences were found at significantly lower frequency, with the next most 

highly transcribed gene (SPF 1101) being identified 21 times and found in only three of 

the males sampled. None of the hybrid sequences were observed more than once. 

Individual animal analysis of SPF sequences demonstrated that each male 

expressed a relatively unique pattern (Figure 11). One male (Male D) had an additional 

class of SPF (Class V) that the other males were lacking. Only one sequence of this class 

was identified, but the relative difference to the other classes versus their within group 

similarity suggests it should be grouped into a class of its own. Multiple sequences of the 

other classes of SPF were found in multiple males, however only two classes (Class I and 

Class III) were identified in all males. Male B was not identified class II, and Male D was 

not identified in Class IV and Class VI, although this may be based on sample size. 
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Table 5. The average number of base substitutions per site between sequence groups is 

shown above the diagonal and the average number of amino acid substitutions per site 

between classes (calculated using a JTT matrix-based model) is shown below the 

diagonal. The diagonal, outlined in black, shows the average number of amino acid 

substitutions per site within each class. Class V had only one sequence so the within 

class average could not be calculated. Analyses were conducted using a Maximum 

Composite Likelihood Model (56) with 500 bootstrap replicates. Evolutionary analyses 

were conducted in MEGA5 (57). 
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Class I SPF sequences were the most highly transcribed class in all males sampled 

and with one exception, SPF 10 1 composed the majority of all Class I transcripts in each 

male. But despite this similarity, the percentage of Class I sequences within a single 

male varied widely from ~30% to ~68%. Class III SPF sequences showed less variability 

in abundance, ranging between 6% and 11 % of sequences. Hybrid sequences were not 

identified in every male sampled and generally composed a small percentage of 

sequences (0-6%); the one exception being male E (22% hybrid sequences). 
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SPF 101 (69) 60 
SPF 114 (2) 60 
SPF Il6 {3} 60 
SPF I19 (4) 60 
SPF 123 (9) 60 
SPF 1I01 (21) 60 
SPF 1I0S {S) 60 
SPF lIDS (6) 60 
SPF IIIOI (6) 60 
SPF IlI07 {3} 60 
SPF 1'101 {4} 60 
SPF IV04 (6) 60 
SPF 

IVOS 

(2) 60 
SPF VIOl (16) 60 
SPF VI04 (S) 60 
SPF VI09 (3} 60 
SPFVIl2 (9) 60 

SPF 101 120 
SPF I14 120 
SPF 116 120 
SPF I19 120 
SPF 123 120 
SPF 1I01 120 
SPF 1I0S 120 
SPF 1I0S 120 
SPF IlI01 120 
SPF IlI07 120 
SPF lVOl 120 
SPF 1'104 120 
SPF IVOS 120 
SPF VIOl 120 
SPF '1104 120 
SPF VI09 120 
SPF '1112 120 

SPF 101 179 
SPF 114 179 
SPF Il6 179 
SPF 119 179 
SPF 123 179 
SPF lIOl 

SPF lIDS lS0 
SPF 1I0S 180 
SPF IIIOI 
SPF III07 
SPF 1'101 
SPF 1'104 
SPF 
IVOS SPF VIOl 177 
SPF VI04 177 
SPF VI09 177 
SPF'1112 177 
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Figure 10. SPF sequences for which multiple copies were found. The name of each 

sequence is based on SPF class and sequence number within that class. The number of 

copies identified out of the 231 sequences is in parentheses following the name of the 

sequence. Residues shaded in black match a consensus based on all full-length SPF 

transcripts identified. 
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Figure 11 . Division of SPF sequences among the six different classes within each individual male or from 

two previous cDNA libraries. Hybrid refers to transcripts that had sections matching two or more different 

classes. One main isoform ofSPF (SPF 101) was found in all males sampled and comprised ~30% of all 

SPF transcripts that were sequenced. 



PHEROMONE PURIFICATION AND MASS SPECTRAL ANALYSIS 

The three independent chromatographic separations (Figure 12) yielded 

sufficiently pure proteins for analysis by ESI-MS and LCIMS/MS. The nine proteins that 

were purified from the whole pheromone mixture ranged in mass from 3,552 Da to 

20,247 Da and matched sequences from the D. ocoee cDNA database with the percent 

coverage ranging from 27% to 90% (Table 6). 

The protein with the highest mass was from size-exclusion fraction A (15-20 

minutes) with an elution time on the reverse phase HPLC of 36.44 minutes. This protein, 

which comprised approximately 25% the pheromone extract, was the most dominant 

component and matched the most highly transcribed SPF sequence (SPF 101), with 90% 

percent sequence coverage. 

To further characterize unknown proteins, cysteine content was ascertained by 

determination of protein mass (ESI-MS) with and without reduction and alkylation ofthe 

cysteine residues. The intact protein mass for the SPF protein was 20247 kDa, and after 

alkylation with carbamidomethyl groups, the mass increased to 21175 Da (928 Da shift) 

(Figure 13). Each carbamidomethyl group is equal to 58 Da, and therefore the mass 

difference indicates this protein has 16 cysteine residues. The SPF 10 1 sequence also has 

a predicted mass of 20247 Da and 16 cysteine residues, and coupled with the relative 

abundance and >90% peptide mass fingerprint sequence coverage, the data are 

complementary and confirm identification. 
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Figure 12. Sample purification of a single protein from the D. ocoee whole pheromone 

mixture: (A) Size Exclusion HPLC of500ul of whole extract on a 075 Superfine column 

in 112 X PBS. (B) Anion Exchange HPLC of Fraction C (69-83 min) from the 075 in 50 

mM Tris with a mixed gradient. (C) Reverse Phase HPLC of fraction II (42-46 min) from 

Mono Q on a C-18 column at 1.4% B/min. gradient. Peak elution was monitored at 220 

nm. 
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RP-HPLC ESJ-MS Reduced & Predicted Percent Sequence Match 
Retention MWin alkylated # ofCys Coverage 
Time (Min) Da MW 

Fraction A 
36.44 20247 21175 16 90% SPFIOI 
38.38 3552 3552 0 NA NA 

Fraction B 
31 .87 6499 NA NA 43% D536 
32.43 6480 3629 + 3198 6 27% Relaxin-likeO 1 
33.01 6508 6508 0 NA NA 
36.47 NA NA NA 68% Protease 

inhibitor-like 
(DI48) 

Fraction C 
31.04 6042 NA NA 64% D132 
31.45 NA NA NA 81 % Relaxin-likeO 1 
31.91 6088 6438 6 33% Protease 

inhibitor-like 
(D611D) 

Table 6: Summary ofESI and MALDI-TOFI LC MS/MS mass spectral data obtained for 

purified D. ocoee proteins. Proteins are identified by what fraction the eluted in from the 

G75 (A=42-56 minutes, B=57-68 minutes, C=69-84 minutes), and by RP-HPLC elution 

time. Data was obtained from ESI-MS and either MALDI-TOF or LC MSIMS. 
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Figure 13. ESI-MS Spectrum for SPF 101 protein without (A) and with (B) reduction and 

alkylation. 
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- -- ----------------

When mental gland extract was collected and analyzed at approximately 3 week 

intervals from May 2010 until October 2010 the pheromone profile remained consistent. 

The most dominant protein from each time point analyzed was collected and determined 

to be SPF 101 by ESI-MS, suggesting this isoform of SPF is expressed at high levels 

throughout the full duration of the 5-6 month courtship season. 

In addition to the major SPF, two purified proteins matched a relaxin-like 

sequence. The first of these two was from fraction B, had a RP-HPLC retention time of 

32.43 minutes, and matched a relaxin sequence with 27% coverage. The relatively low 

percent coverage of the protein can be explained if this protein is an isoform of the 

relaxin sequence it matched; one or two SNPs could reduce the percent coverage 

significantly. ESI-MS data determined the intact mass of this protein to be 6480 Da. 

After reduction and alkylation two fragments were found that were 3198 and 3629 Da 

respectively which suggests that the protein is composed of two subunits held together by 

disulfide bonds. Based on the mass shift from 6480 Da to 6827 Da (when the mass of the 

two fragments is combined) this protein contains 6 cysteine residues, which is consistent 

with it being a relaxin-like molecule. The second protein matching a relaxin-like 

sequence is a protein from fraction C that eluted at 31.4 minutes on the RP-HPLC. This 

protein matched a relaxin-like sequence with 81 % coverage. The portion of the protein 

that was not covered was the section between two dibasic sites (equivalent to the C

peptide of relaxin) which is expected to be cleaved out during processing. No ESI-MS 

data was collected for this protein. 

Two of the remaining proteins each matched to sequences with similarity to 

serine protease inhibitors. Specifically, the first protein from fraction B with an RP-
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HPLC elution time of36.47 minutes matched a protease inhibitor sequence with 68% 

coverage. The second protein from fraction C had an RP-HPLC elution time of 31.91 

minutes and matched a protease inhibitor sequence with 33% coverage. The protease 

inhibitor sequence was predicted to contain 6 cysteine residues, and this is supported by 

ESI-MS analysis after carbamidomethyl alkylation. 

DETERMINATION OF THE SPF GENE STRUCTURE 

Following three separate restriction enzyme digests of SPF and self circularization 

reactions, nested inverse PCR was performed using primers that annealed to the SPF 

3 'UTR. When PCR products were analyzed by agarose gel electrophoresis, one reaction 

that produced a single band on the gel was selected for cloning. Following cloning, 

colony PCR was conducted and 4 samples were selected for sequencing in both 

directions. Two of the samples were identified to have regions matching the SPF 3' UTR 

as well as 131 bases upstream that matched the C-terminal coding region ofSPF IOt. 

The region upstream of the 131 base pair region no longer matched the coding region of 

SPF and ended with a 3' AG, suggesting an intron sequence. After being trimmed to the 

restriction enzyme splice site, the length of the partial intron sequence obtained was 417 

base pairs. For the full length SPF IOI coding sequence of 597 base pairs, the splice site 

for this intron occurred between nucleotides 466 and 467, which splits amino acid 156 

between the first and second nucleotide of the codon. Following identification of this 

intron splice site, four primers were synthesized based on SPF IO 1 sequence between 

nucleotides 378 and 466. To identify the next upstream splice site, these primers were 

used in nested PCR reactions based on the genome walking method described by Guo 
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and Xiong (44). Following cloning and sequencing an additional splice site was 

identified between nucleotides 319 and 320, which splits amino acid 107 between the 

first and second nucleotide of the codon. 

More primers were designed based on SPF 10 1 coding sequence upstream ofthis 

splice site and the genome walking methods of Guo and Xiong were repeated to identify 

two more exon-intron boundary sites. Specifically, splice sites were identified between 

nuc1eotides 172 and 173 as well as between nucleotides 52 and 53. 

These data suggest an SPF gene structure consisting of 5 exons and 4 introns 

(Figure 14). These exons include one encoding the 5' UTR plus the majority of the signal 

peptide and a pair of exons for each of the two TFP-like domains. Specifically, the first 

ex on is a total of 106 base pairs in length including 54 base pairs of the SPF 5' UTR as 

well 52 nucleotides of the coding sequence. This splice site occurs within the signal 

peptide of SPF splitting amino acid 18 between the first and second nucleotides of the 

codon. The second exon extends from nucleotide 53 to nucleotide 172 for a total length 

of 120 base pairs. This exon codes for the remainder of the signal peptide as well as the 

first 37 amino acids of the native protein including the first five cysteine residues. The 

third exon is composed of nuc1eotides 173-319 for a total length of 147 base pairs. This 

exon is composed of the remainder of the first TFP-like domain ofSPF, including three 

cysteine residues, as well as the first five amino acids of the linker between the two TFP 

domains. Exon 4 contains nucleotides 320 through 466, a total of 147 base pairs, which 

correspond 
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Figure 14. The SPF 101 gene structure. Exons are drawn to scale. Black coloration 

represents 5' and 3' untranslated regions, the signal peptide is red and the mature protein 

is blue. 
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to the remaining portion of the linker and the beginning of the second TFP domain 

including six cysteine residues. The fifth and final ex on of SPF contains the C-terminal 

coding region, which includes the last 2 cysteine residues, as well as the 3' UTR. 

Based on the known SPF gene structure, it was determined that the hybrid 

sequences described previously are not likely to be the result of alternative splicing. Out 

of 17 locations where SPF sequences switched classes, only 6 of the sites (35%) could be 

explained by alternative splicing (Figure 15), which suggests that at least some of the 

hybrid sequences are generated by a different mechanism. 

SPF DISULFIDE BONDING PATTERN 

Initial protease digests with LysC and chymotrypsin + LysC suggested that 

cysteines 1, 2, 3,4, 5, and 6 were contained within a single disulfide bonded peptide. 

Further analysis of peptides generated by protease digests with trypsin and trypsin + 

chymotrypsin suggested that the first four cysteine residues were intramolecularly 

bonded. By deduction this suggested that cysteine 5 and cysteine 6 must be bonded to 

each other, and that finding was confirmed by fragments identified in two additional 

protease digests: 1) Arg C + chymotrypsin and 2) AspN + trypsin. 

Separate digestions of AspN and AspN + trypsin identified a peptide containing 

the first two cysteine residues which suggested a disulfide bond between these residues. 

Additionally, data obtained from a digest with Asp N + trypsin was consistent with 

cysteines 3 and 4 were bonded to each other. Importantly, five different fragment 

matches suggested that cysteines 7 and 8 were bonded, and one fragment match was 

consistent with cysteine 12 and 16 being bonded. 
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SPF 1-1101 

SPF 1-1102 - I 
SPF 11-101 

SPF 11-102 

SPF 11-103 

SPF 11-1-1101 

SPF 1-II1-IIO 1 • 
SPF II-IIIOI • 
SPF III-II-Ol • 
SPF II1-1I02 • 
SPF I-IV01 • 
SPF IV-101 

SPF IV-102 .. 
SPF IV-II01 

SPF V-101 

Figure 15. SPF hybrid switch locations. SPF hybrids are indicated by rectangles and 

were named based on the classes to which they belong. Vertical black bars indicate the 

location of splice sites and red boxes indicate the region where the SPF sequence 

switches from one class to another. 
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----- --------------

After analysis of a total of 10 SPF protease digests followed by LC MS/MS, 19 

fragment matches were confirmed (Table 7). In total, 5 disulfide bonds have been 

resolved: Cysl-Cys2, Cys3-Cys4, Cys5-Cys6, Cys7-Cys8, CysI2-CysI6. While 3 more 

disulfide bonds remain to be determined, the current data reduces the number of possible 

disulfide bonding patterns significantly from 2,027,025 to only 15 (Appendix 1) and 

suggests a general architecture for the protein. Specifically, the results suggest that SPF 

is composed of two separate disulfide-bonded domains separated by a hydrophilic linker 

region. Secondly, the results demonstrate that the disulfide-bonding patterns of the 

domains differ from each other and both are also different from a typical TFP pattern and 

from PMF. 
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V1 
00 

Cysteines Protease(s) Fragmeut(s) Theoretkal Experimental 
Mass l\bss 

1,2,3,4.5,6 LysC LECVHCSSNDGIDCSGFATTCTDDL TRCWTn IEL TQVSDTFHR'VFK. 5958.5868 5958.5745 
+FCGREK 

1,2,3,4,5,6 LysC+Chymo LECVHCSSNDGIDCSGFA TTCTDDLTRCW + FCGREK 3854.4818 3854.4848 
1,2,3.4 Trypsin LECVHCSSNDGIDCSGFATTCTDDLTR 2829.0695 2829.0699 
1,2,3,4 Trypsin+Chymo LECVHCSSNDGIDCSGFATTCTDDLTR 2829.0695 2829.3218 

1,2 AspN LECVHCSSN 989.3782 989.4312 
1,2 AspN+Trypsin LECVHCSSN 989.3782 989.0348 
1,2 AspN+Trypsin LECVHCSSNDGT 1262.4743 1262.0309 
3,4 AspN+Trypsin DCSGEAT'K:T 1037.3474 1037.5820 
3,4 AspN+TI)"Psin DCSGEAT'K:TD 1100.3474 1100.5151 
3,4 AspN+Trypsin DGTDCSGEATTCT 1258.4166 1257.6753 
5,6 ArgC+Chymo CW+CGREKEPTIIY 1601.7007 1601.5427 · 

5,6 AspN+TI)'Psin C~iTI1ELTQVS+FCGREK 2118.0011 2118.8475 
7,8 LysC EPTIIYREESSTTFFQVESHYCETDNCNQK 3584.5213 3584.5217 

· 

7,8 GluC SHYCETDNCNQKPGE 1722.6479 1722.6481 · 

7,8 LysC+Olymo CETDNCNQKPGEITPRDNTPNGV"K 2628.1698 2628.6649 
7,8 AspN+Trypsin EESSTTFFQVESHYCEIDNCNQKPGEITPR 3474.4817 3474.4055 
7,8 AspN+Trypsin EKEPTTIYREESSTTFFQVESHYCEIDNCNQKPGEITPR 4592.0586 4592.0650 

L__ 12-,-!<t . _ .J\.spN-+l'typsin ECTG + ICTNIASPEEHPFYN 2140.8966 2140.6870 
----

Table 7. SPF MSIMS peptide fragment matches. The sequence of peptide fragment is indicated in column 3 with the peptides 

held together by disulfide bonds separated by a (+). The cysteines contained in the fragments (column 1), the protease(s) used 

for the digest (column 2), and theoretical and experimental masses of each match are shown. 



CHAPTER IV 

DISCUSSION 

----------------------------

Approximately 20 million years ago a clade of plethodontid salamanders 

underwent a significant behavioral adjustment from transdermal to olfactory delivery. 

This change in pheromone delivery mechanism has been accompanied by a change in 

pheromone composition from SPF and hormone-like peptides in D. ocoee to a mixture 

largely composed ofPRF and PMF in P. shermani (30). 

Similar to other plethodontid pheromones, SPF shows a large degree of variability 

at the transcript level with 75 unique sequences being found in 231 cDNA clones. 

However, in contrast to this variability at the transcript level, only one SPF sequence 

(SPFIO 1) is expressed at high protein levels. The transcript for this protein was found in 

all males sampled, and the protein was expressed in pooled pheromone extract 

throughout the duration of the courtship season. It is possible that basal levels of other 

SPF proteins are being expressed in individual D. ocoee males. Because the pheromone 

extract is a pool of many males, an SPF protein expressed only in a single male would be 

in small amounts compared to the main SPF (SPFIO 1 ) transcribed in all males. This 

possibility is supported by the variation between males at the transcript level including 

many unique transcripts that are transcribed at low levels. Additionally, while MS 
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analyses confirmed that SPFIOI is not glycosylated, SDS-PAGE followed by 

carbohydrate staining suggested that some SPF-like proteins are glycosylated (Leichty et 

ai., unpublished data). Class VI SPF sequences would be likely candidates for 

glycosylation since they contain an N-linked glycosylation consensus sequence. 

However, whether or not individual males express additional SPF proteins at low levels, 

SPF is unique among plethodontid pheromones in that only one protein is highly 

expressed in the pheromone extract. This is in contrast to the high expression of three 

main PRF isoforms and greater than 30 PMF isoforms found in the pheromone extract of 

P. shermani. 

The current literature has defined two mating seasons for D. ocoee: the first in 

May and early June and the second during the month of August (58-60). However, when 

pheromone extract was analyzed from seven time points across a five month time period 

(from late May until early October), RP-HPLC chromatograms of pooled pheromone 

extract remained consistent. The concentration of pheromone extracted from 20 male 

pools also remained consistent throughout the courtship season, with the exception of 

October. In addition, when the major SPF peak from each time point was analyzed by 

ESI-MS, it was the same isoform, SPF I01. Based on these data, we conclude that male 

D. ocoee maintain both their mental gland and high levels of pheromone throughout the 

entire 5 month period. 

While pheromone and mental gland maintenance during a period of non-courtship 

(presumably late June and July) may seem unusual, it is likely that this occurs because 

the two courtship seasons are close together; preserving the gland during this period may 

be less costly than gland regression at the end of one courtship season and regeneration at 
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the beginning of the next - a process that might not be physiologically feasible. 

Additionally, the levels of pheromone detected during June and July may be a result of 

low pheromone protein turnover rates, rather than from active synthesis making gland 

maintenance more favorable. Alternatively, it is possible that D. ocoee has an extended 

mating season spanning the entire period sampled. If mating occurs, even at low levels 

during June and July, it may be advantageous for males to continue pheromone synthesis 

during this period. 

A large percentage of the cDNA sequences identified were hormone-like. In 

contrast hormone-like sequences have not been found in the P. shermani mental gland 

cDNA at any time between May and August (Wilburn et aI., unpublished data). This 

suggests that the presence of hormone-like sequences is unique to the D. ocoee 

pheromone mixture and may be representative of trans dermal pheromone delivery. Since 

the pheromones of D. ocoee are likely traveling through the bloodstream of the female, 

hormone-like peptides, with high solubility and the ability to be recognized by receptors 

of different target organs, may be evolutionarily advantageous for targeting multiple 

tissues. Additionally, even very low concentrations of these hormone-like peptides could 

have large physiological effects as signaling cascades amplify the signal within 

responsive cells. 

The hormone-like sequences that were identified were similar to VIP, glucagon, 

insulin and relaxin. VIP has been demonstrated to cause vasodilation and lower blood 

pressure, to activate secretion of both Na+ and cr into the small intestines, and to 

stimulate adenyl ate cyclase activity (61, 62). PHI is structurally similar to VIP and is 

demonstrated to have similar physiological effects, but with less potency (45). Typically 
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native VIP and PHI peptides are 28 and 27 amino acids respectively (46). Interestingly, in 

the D. ocoee VIP precursor-like protein, the normal dibasic cleavage site at the end of the 

expected VIP peptide is not present. It is possible that the protein is cleaved at a single 

basic residue similar to how the N-terminal end of human PHI is cleaved. Alternatively, 

the cleavage site could be at a dibasic site found later in the sequence, which would make 

the processed D. ocoee VIP longer in length than native VIP from other species. 

Similarities between D. ocoee VIP and other VIP sequences include a number of residues 

that are reported to be important in binding to VIP receptors including His-I, Asp-3, Phe-

6, Thr-7, and Tyr-1 0 (63). Based on conservation of key residues it is possible that aD. 

ocoee VIP-like peptide could have a similar function to VIP from other species. 

Specifically, VIP in D. ocoee could function to increase vasodilation in the female and 

allow for more effective transfer of pheromones into the bloodstream. However, 

differences in D. ocoee VIP such as a possible extended length could result in a novel 

pheromone activity for this peptide. 

Glucagon is a 29 amino acid hormone secreted from the pancreas during 

hypoglycemia that binds to receptors on liver cells and activates adenylate cyclase 

activity, which ultimately leads to an increase in blood glucose levels (64). Sites in 

glucagon that were demonstrated to be important for receptor binding in other species 

such as the N-terminal histidine and an aspartic acid residue are conserved in the all of 

the D. ocoee glucagon-like peptides (50, 51). In addition, one of the predicted D. ocoee 

peptides had additional sites of conservation in residues 10-12, which have also been 

demonstrated to be important in binding of the hormone to glucagon receptors (53). 

However, a distinction of D. ocoee glucagon-like peptides is that the normal dibasic 
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cleavage site is not present, likely producing an extended version. Another dibasic site 

was identified as the likely cleavage site in D. ocoee making the two peptides longer, at 

32 and 33 residues, respectively. While neither the D. ocoee VIP nor glucagon-like 

peptide were not found as proteins, the small size of the processed forms of these 

peptides makes it likely that they were lost during purification by size exclusion 

chromatography. 

Relaxins have been identified as molecules that have important roles in the 

reproductive tract (65). Specifically, relaxin has a role in the remodeling of collagen by 

inhibiting collagen synthesis and stimulating collagen breakdown leading to increased 

flexibility of the tissues and changes in the organ structure of target tissues during 

reproduction (66). Other roles of relaxin include relaxation of smooth muscle (67), 

vasodilation (68) and in males, increased sperm motility (69). In the D. ocoee relaxin

like sequence, there is a conservation of an arginine residue of the B chain that has been 

described as important for binding to receptors (70). However, the D. ocoee relaxin-like 

sequences have considerably shorter C-peptides than relaxin from other species. 

Although the C-peptide is removed from the protein by processing, it is important for the 

formation of the correct disulfide bonds between the A and B chains. A relaxin-like 

protein was identified by proteomic analysis of the D. ocoee pheromone extract 

suggesting that this protein is indeed delivered to the female during courtship. 

An interesting commonality between the hormone-like peptides in D. ocoee is that 

the normal cleavage sites of the D. ocoee VIP, glucagon and insulin-like peptides are 

absent. This may produce peptides of a different length than native hormones of other 

species and may alter the function of the peptides. In addition, the hormone-like-peptides 
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from D. ocoee were always the outgroup when compared in gene trees with hormones 

from other species. Another phenomenon seen in D. ocoee is large variability in the 

transcripts encoding these proteins, which is likely the result of rapid gene duplication 

and mutation observed in other plethodontid pheromones (25, 71). Through the process 

of gene duplication and neo-functionalization, it is possible that the D. ocoee mental 

gland hormone-like peptides have been co-opted for pheromone function. 

Because SPF is the most highly expressed protein of the D. ocoee mental gland, it 

was the subject of more extensive characterization to make comparisons with other 

abundant plethodontid pheromones. Similar to PMF, SPF is also related to the three

fingered protein superfamily. Closer analyses of the relationship of SPF in show that it is 

similar in structure to a "double TFP." Within each TFP-like domain, SPF contains three 

of the four disulfide bonds highly conserved among TFP family members as well as an 

additional disulfide bond found in a smaller percentage of TFPs (Figure 16). The 

disulfide bond missing in SPF is lacking is also lacking in the first TFP domain of 

urokinase plasminogen activator receptor (UPAR). Structural studies ofUPAR by X-ray 

crystallography suggest a typical TFP structure for all three of its TFP domains 

demonstrating that the disulfide bond, which is absent, is not critical for the formation of 

a TFP structure (36). 

In addition to similarities at the amino acid level, the genomic structure of SPF is 

also similar to that of the TFPs. Specifically, the first exon contains the 5' untranslated 

region and the signal sequence, and each TFP domain is coded by two additional exons a 

pattern reminiscent of the gene structure of other known TFPs (37-39, 72). In addition, 
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Figure 16. The TFP domains of different proteins were aligned including: SPF, UPAR, CD59, Domain 1 ofa Phospholipase A2 
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Figure 17. SPF vs. TFP disulfide bonding pattern. The expected TFP disulfide bonding 

pattern is shown on top in green, with the bonding pattern detennined for the first TFP-

like domain ofSPF shown in red below. 
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all intron-exonjunctions are type I and there is conservation of key cysteine residues. 

Taken together these data suggest that SPF is an ancient member of the TFP superfamily. 

However, while SPF has been demonstrated to be similar to TFP members, its 

disulfide bonding pattern is different than the canonical, highly conserved TFP pattern. If 

SPF followed the normal TFP disulfide bonding pattern it would be expected to have 

bonds between Cys 1-5,2-3,4-6, 7-8. Instead, SPF has a disulfide bonding pattern of 1-

2,3-4, 5-6, 7-8 in its first domain (Figure 17). Its second domain is also different than 

the typical TFP folding pattern in that Cys 12-16 are bonded when a 15-16 bond would 

be expected based on the TFP pattern. 

In summary, Plethodontid salamanders offer the unique opportunity to study the 

co-evolution of behavior and molecular pheromone signaling. The current results support 

the hypothesis that unique structural motifs have occurred in the different modes of 

delivery to facilitate reproductive success. Specifically, D. ocoee utilizes small hormone

like peptides along with SPF to facilitate mating success while P. shermani employs the 

use of PRF and PMF. While D. ocoee and P. shermani both produce proteins that are 

related to the TFP family members, both proteins have evolved different disulfide 

bonding patterns which may allow them to uniquely function under different modes of 

delivery. 
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APPENDICES 

The formula used for the determination of the number of possible disulfide bonding 

patterns when n is the number of disulfide bonds is given by the following equation (40): 

Pen) == TIn (2i -1) == (2n)! 
2n , 

i=l n. 

The number of possible disulfide bonding patterns in PMF (with four disulfide bonds) is 

thus (2: 4)! = 105 disulfide bonding patterns. The number of potential disulfide 
2 4! 

bonding patterns in SPF (with eight disulfide bonds) is 2,027,025. 
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