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ABSTRACT 

MITOCHONDRIAL TARGETING OF THE PRO-APOPTOTIC PROTEIN BAX 

Stephanie Erin Brock 

July 08, 2009 

Here, I address the function of the carboxy-terminal hydrophobic helix of 

the pro-apoptotic protein Bax. There has been considerable controversy as to 

whether this sequence is required for the targeting and insertion of Bax into the 

mitochondrial outer membrane. The Bax carboxy-terminal tail is tucked into a 

hydrophobic pocket within the closed/inactive conformation of Bax. Apoptotic 

stimulation results in an opening of the Bax conformation, exposing a 

mitochondrial-targeting signal and subsequent insertion of Bax into the 

mitochondrial outer membrane. Here, I confirm that the Bax tail alone can 

specifically target and anchor a cytosolic passenger protein to the mitochondria. 

Surprisingly, however, I find that the carboxy-terminal tail is not responsible for 

the specific targeting of Bax to the mitochondria rather than other cellular 

membranes. Specifically, replacing the Bax tail with an ER-targeting tail-anchor 

had no effect on Bax mitochondrial targeting, in the context of full-length Bax. 

This contrasts to the targeting function of tail-anchor signals in other tail­

anchored proteins. In addition, I demonstrated that the Bax tail has a negative 
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regulatory effect on Sax activation. Mutations that disrupt the interaction of the 

Sax tail with the hydrophobic pocket resulted in an open/active conformation of 

Sax and constitutive mitochondrial targeting. Deletion of the Sax tail also 

resulted in an open/active conformation of Sax, however the anchor-deleted form 

of Sax was not associated with mitochondria. This indicates a requirement of the 

Sax tail for mitochondrial translocation. Sy introducing charged residues into the 

tail sequence to block insertion of the sequence into the hydrophobic bilayer, I 

show that insertion of the Sax tail is required for Sax mitochondrial targeting. My 

data support a model whereby the Sax tail must be released from its hydrophobic 

pocket to initiate the change into an open/active conformation. The tail then 

functions as an anchor to stabilize Sax at the mitochondrion after the initial 

addressing step. 
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Apoptosis 

CHAPTER I 

INTRODUCTION 

Apoptosis is an important process whereby cells can induce their own 

demise. It is carried out by specific pathways in the cell that are tightly-regulated. 

This process of cell suicide was first described in 1842 by Carl Vogt, but wasn't 

cOined "apoptosis" until 1972 by John Kerr Kerr JF, 1972. Programmed cell death is 

essential for the specific cell turnover in developmental processes as well as in 

tissue homeostasis. It is also important in the elimination of damaged or infected 

cells Strasser A, 2000. Cells undergoing apoptosis display very distinct 

characteristics. These include cell shrinkage, chromatin condensation, DNA 

fragmentation, membrane blebbing, and exposure of phosphatidyl serine on the 

outer leaflet of the plasma membrane. Apoptotic cell death is stimulated by two 

distinct pathways (Figure 1). One pathway is triggered by death receptors at the 

cell surface. The other pathway is initiated by cellular stress signals. Both 

pathways ultimately result in activation of proteases known as caspases. The 

death receptor pathway involves activation of death receptors including TNF, Fas 

and TRAIL receptors Ashkenazi A, 1998. Stimulation by the respective death ligands 

triggers a signaling cascade within the cell. This leads to activation of caspases 

by triggering a specific proteolytic cleavage of the inactive procaspases to 
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Figure 1. Two main pathways to apoptosis. Intracellular stress signals are 

mediated through the Bcl2 family, whereas the death-receptor pathway is 

activated by signals from other cells. Activity of caspase-9 and caspase-3 is 

restrained by inhibitor of apoptosis proteins (lAPs), but the lAPs can be 

countermanded by Diablo/Smac and OmilHtrA2, which are released from 

damaged mitochondria. Apaf1, apoptotic protease-activating factor 1; cyt c, 

cytochrome c; FADD, Fas associated death-domain; FasL, Fas ligand; TNF-a, 

tumournecrosis factor-a; TRAIL, tumour-necrosis-factor-related apoptosis-

inducing ligand. 
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produce active enzymes. These caspases then act as the executors of cell 

death. Caspase substrates include apoptotic proteins, inhibitors of apoptotic 

proteins, DNA repair enzymes, structural proteins, and negative regulators of 

endonucleases Strasser A, 2000. The stress pathway is initiated by intrinsic stress 

signals (eg. DNA damage, oxidative stress, ER stress) or by outside signals (eg. 

growth factor withdrawal, irradiation, cytotoxins). Apoptosis is dependent on the 

mitochondria in this pathway Jin Z, 2005. The BcI-2 family of proteins deciphers and 

transfers these death signals to the mitochondria, inducing the release of 

apoptogenic factors (eg. Cytochrome c) from the mitochondria into the cytosol 

Green DR, 1998. Cytochrome c then interacts with Apaf-1 to form the apoptosome 

complex. The apoptosome cleaves pro-caspase-9 to activate caspase-9, 

initiating the caspase activation cascade. 

The apoptotic machinery must be kept in check, so that aberrant cell 

death does not occur Strasser A, 2000. Inhibitors of apoptosis are found throughout 

both the death receptor and stress-signal pathways. Examples include the lAPs 

(inhibitors of apoptosis) that bind and inhibit caspases, and the anti-apoptotic 

members of the bcl-2 family (bcl-2, bcl-xL) that inhibit the pro-apoptotic bcl-2 

members (bax, bak). The Bcl-2 family will be described in greater detail in the 

next section. De-regulation of the apoptotic process is involved in a variety of 

disease states. When apoptosis is running un-checked, abnormal amounts of 

cell death occur. This can lead to neurodegeneration or cardiac disease. On the 

other hand, when apoptosis is not activated when cued, infected or damaged 
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cells can accumulate. This can lead to states of tumorigenesis or autoimmune 

disease. 

The Bcl-2 family of proteins 

The BcI-2 protein was identified in 1984 where it was found to be 

aberrantly overexpressed in human B-cell lymphoma due to a chromosome 

translocation Tsujimoto Y, 1984. Further studies showed that it was functioning in the 

inhibition of apoptosis in these cells. Following the identification of BcI-2, various 

proteins containing homologous domains were discovered Adams JM, 1998. These 

are shown in Figure 2. These proteins contain conserved domains referred to as 

bcl-2 homology domains (BH1, BH2, BH3 or BH4). Most members of this family 

contain multiple homology domains, whereas some of these proteins contain only 

the BH3 domain. The BcI-2 protein family plays a central role in the stress-signal 

pathway of apoptosis Cory s, 2002. Some of the BcI-2 proteins induce apoptosis, 

while others inhibit apoptosis. The anti-apoptotic members all contain at least 3 

of the BH domains, and include proteins such as BcI-2, Bcl-xL, and Mcl-1. The 

pro-apoptotic members include multi-domain proteins (ie. Bax and Bak), as well 

as BH3-only proteins (ie. Bid and Bim). Various members of the BcI-2 family can 

interact with themselves, as well as with other BcI-2 family members. These 

interactions are mediated via the BH3 domain Adams JM, 1998. These intricate 

interactions determine whether or not the cell will undergo apoptosis (Figure 3). 

The anti-apoptotic Bcl-2 proteins can heterodimerize with the pro-apoptotic BcI-2 

proteins, thereby inhibiting apoptotic activation. The BH3-only proteins serve as 
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Figure 2. The Bcl-2 family. Three subfamilies are indicated: The BcI-2 cohort 

promotes cell survival, whereas the Bax and BH3 cohorts facilitate apoptosis. 

BH1 to BH4 are conserved sequence motifs. The Bax subfamily resembles the 

Bcl-2 subfamily but lacks a functional BH4 domain. Except for the BH3 domain, 

the BH3 subfamily is unrelated to BcI-2. All proteins compared are mammalian 

(usually human), except for NR-13 (chicken), CED-9, and EGL-1 (C. elegans) , 

and the viral proteins BHRF1, LMW5-HL, ORF16, KS BcI-2, and E1B- 19K. 
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activators of the pro-apoptotic Bcl-2 proteins by direct interaction or indirectly by 

interacting with and inhibiting the anti-apoptotic Bcl-2 proteins. 

Proteins within this family are localized primarily at the mitochondria, but 

also to some extent at the endoplasmic reticulum (Figure 4). While some Bcl-2-

family proteins are constitutively localized to their respective membranes, some 

require conformational changes or posttranslational modifications to translocate 

to membranes Schinzel A, 2004. Posttranslational modifications include 

phosphorylation/dephosphorylation, proteolytic cleavage, release from inhibiting 

proteins, or dissociation from intracellular structures. 

Role of Sax in apoptosis 

Bax was discovered by Dr. Stanley Korsmeyer's group in the early 1990's 

Oltvai ZN, 1993. In Korsmeyer's study, Bax was identified due to its interaction with 

Bcl-2. Although Bax is similar in structure to BcI-2, Bax was found to work in 

opposition to BcI-2 and promote apoptosis. Bax and its closely-related Bcl-2 

family member, Bak, playa redundant role in triggering apoptosis. The presence 

of one or the other is essential for the intrinsic apoptotic pathway Cheng EH, 2001; Wei 

MC, 2001; Zong WX, 2001. Mutation or deletion of Bax results in a small impairment of 

the apoptotic-inducing ability of cells, whereas disruption of Bak function does not 

exhibit any effects on apoptosis. However, inactivation of both Bax and Sak 

conveys resistance to various apoptotic stress stimuli in a variety of cell lines. 

Exogenous expression of Sax can rescue this effect. 
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FIGURE 4. 
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Figure 4. Localization and posttranslational modifications of Bcl-2 

proteins. Posttranslational modification is required for the translocation of certain 

multidomain and BH3-only Bcl-2 family members, whilst some proteins are 

directly targeted to and inserted into the mitochondrial outer membrane (MOM) 

and/or the ER membrane (Bak, BcI-xL and BcI-2). In response to an apoptotic 

stimulus, BH3-only proteins (yellow) translocate to interact with multidomain Bcl-

2 family members on the MOM. Bim and Bmf dissociate from cytoskeletal 

structures, Bad from 14-3-3 and Bid is proteolytically cleaved. Bax and BcI-w 

undergo a conformational change, which allows them to translocate and/or insert 

into the MOM. 
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In the normal state of cells, Sax is found as a soluble monomer within the 

cytosol. This conformation of Sax consists of a bundle of 9 a-helices (Figure 5) 

Suzuki M, 2000. The C-terminal tail (a-helix9) of Sax is tucked within a hydrophobic 

pocket. Within this pocket, the Sax tail functions to hide two important domains, 

the SH3 domain and a-helices 5 and 6. The SH3 domain is essential for Sax 

activity due to its requirement for oligomerization. Helices 5 and 6 are 

considered to be the "pore-forming domain" of Sax Annis MG, 2005. Upon apoptotic 

induction, Sax trans locates to a mitochondrial-bound form Hsu YT, 1997; Wolter KG, 1997; 

Goping IS, 1998; Hsu YT, 1998; Nechushtan A, 1999; Hou Q, 2005 Translocation is due to a 

conformational change of Sax, resulting in a more open structure and exposure 

of a mitochondrial-targeting signal. This open conformation of Sax can be 

detected using a conformation-specific antibody (termed 6a7) that binds to an N­

terminal epitope. This epitope is normally hidden in the closed conformation of 

Sax Hsu YT, 1998; Hsu YT, 1997; Yethon JA, 2003. The mitochondrial-bound form of Sax 

consists of insertion of the putative "pore-forming domain" a-helices 5 and 6, and 

the C-terminal tail a-helix9 Annis MG, 2005. This was determined by chemically 

labeling residues within the potential transmembrane sequences of a-helices 5, 

6, and 9. A membrane-impermeant modifying agent was then used to probe for 

the chemical labels. Insertion within the bilayer protected against modification of 

the chemical labels. At the mitochondrial outer membrane (MOM), Sax homo­

oligomerizes and stimulates the release of apoptotic factors such as cytochrome 

c from the mitochondria Antonsson S, 2000; Antonsson S, 2001; Annis MG, 2005; Sharpe JC, 2004; 

JurgensmeierJM, 1998. Cytochrome c then interacts with Apaf-1 in the cytosol, initiating 

12 
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Figure 5. Structure of Bax. A ribbon representation of an averaged minimized 

NMR structure for the closed conformation of Bax. Helices are distinguished by 

different colors. Residues 816- A35, A54-D71, M74-A81, R89-M99, G108-C126, 

P130 E146, L149-D154, W158-Y164, W170-W188 make up helices a1, a2, a3, 

a4, a5, a6, a7, a8, a9, respectively. a-helix9 is designated by lime green. 
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the formation of the oligomeric apoptosome complex. The apoptosome complex 

promotes activation of caspases in the cell, resulting in cell death. 

Bax has been widely studied, yet the details of its activation remain 

unclear. Addition of an apoptotic cytosolic extract can induce Bax translocation 

to mitochondria in vitro. This supports the notion that soluble cytosolic factors 

can activate Bax Goping IS, 1998; Nomura M, 1999. Many apoptotic stimuli that induce Bax 

activation have been identified, yet the mechanisms that lead to this activation 

remain to be elucidated. One generally accepted model is that the BH3-only BcI-

2 family members, such as Bid and Bim, interact directly with Bax, leading to Bax 

activation Kuwana T, 2005; Eskes R, 2000; Desagher S, 1999; Marani M, 2002; Roucou x, 2002. However, 

other activation mechanisms, and control of Bax activation, appear to operate as 

well Ruffolo SC, 2000; Wu Y, 2007. Proteins including Ku70, humanin, and 14-3-3 have 

been identified to interact with Bax and inhibit Bax translocation and activation 

Sawada M, 2003; Guo S, 2003; Nomura M, 2003. Anti-apoptotic Bcl-2 family proteins such as 

Bcl-2 and Bcl-xL also act to prevent Bax conformational change, translocation, 

oligomerization and activity Jurgensmeier JM, 1998; Finucane OM, 1999; Murphy KM, 2000; Yi X, 2003; 

Antonsson S, 2001; Dlugosz PJ, 2006; Billen LP, 2008. Therefore, activation of Bax could be partly 

due to disruption of these inhibitory interactions. Known activators and inhibitors 

of Bax are displayed in Figure 6. Bax inserted at the membrane can also act to 

recruit cytosolic Bax to the mitochondria. This autoactivation leads to a positive 

feedback loop after initial Bax targeting Billen LP, 2008. 

Bax action at the MOM is also incompletely understood. One model 

describes a Bax interaction with pre-existing MOM channels that is responsible 

15 
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for the release of apoptotic factors. Specifically, Sax has been shown to interact 

with the voltage-dependent anion channel (VDAC or porin) and the adenine 

nucleotide translocator (ANT). These two channels comprise the permeability 

transition pore (PTP) of the mitochondria Marzo I, 1998; Narita M, 1998; Brenner C, 2000; Capano M, 

2002; Belzacq AS, 2003. According to this model, Sax cooperates with these channels 

to allow for passage of apoptotic components through the pores. However, the 

detection of these Sax interactions with the PTP have been challenged Eskes R, 

1998; Finucane DM, 1999; Antonsson B, 2001; Mikhailov V, 2001. Specific blocking of the PTP does 

not inhibit Sax-induced release of cytochrome c in vitro Eskes R, 1998. These results 

support a second model in which Sax oligomerization alone leads to direct pore 

formation allowing for release of these factors. During apoptosis, Sax is found in 

an oligomeric state at the MOM. This oligomerization is mediated by the SH3 

domain of Sax Antonsson B, 2001; Zha H, 1996; Wang K, 1998. In vitro studies have shown that 

Sax oligomers can form pores in artificial membranes Adams JM, 1998; Antonsson B, 1997; 

Schlesinger PH, 1997; Antonsson B, 2000; Saito M, 2000. Sax oligomers can also mediate the 

release of cytochrome c from isolated mitochondria, whereas monomeric Sax 

cannot. In addition, a glycoprotein, clusterin, specifically blocks Sax 

oligomerization, subsequently inhibiting Sax-induced apoptosis Zhang H, 2005 

These data indicate that Sax oligomerization is essential for the release of 

apoptotic factors from the mitochondria. 

For the most part, Sax specifically translocates to the mitochondria. 

However, a small portion of Sax can also localize to the endoplasmic reticulum 

(ER) to mediate apoptosis (Figure 7). ER stress agents can induce translocation 
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Figure 7. Sax and Sak localized to the ER can initiate apoptosis. In addition 

to their mitochondrial localization and activity, Sax and Sak also reside at the ER. 

Upon ER stress treatment, Sax and Sak can initiate apoptosis from the ER. 
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and oligomerization of Bax at the ER. This subsequently induces caspase 12 

cleavage and apoptosis Zong WX, 2003; Adams JM, 1998. Studies have shown that Bax 

can regulate Ca2
+ storage of the ER. This can then increase the Ca2

+ uptake into 

the mitochondria, thereby triggering apoptosis Nutt LK, 2002; Nutt LK, 2002; Scorrano L, 2003; 

Oakes SA, 2005. A direct interaction of Bax with the ER transmembrane protein, 

IRE1a, has also been detected. IRE1a mediates the unfolded protein response 

(UPR) of the ER Hetz C, 2006. Therefore, it seems that depending on the upstream 

apoptotic stimulus, Bax can translocate to the mitochondria or the ER to induce 

apoptosis (Figure 8) Scorrano L, 2003. 

Bax in disease states 

Because Bax is a key determinant in cell death, Bax inactivation or over­

activation has been implicated in a variety of disease states (Figure 9). 

Impairment of Bax-induced apoptosis can lead to autoimmune disease or 

oncogenesis. Bax conditional deletion results in an increased number of B cells 

and results in severe autoimmune disease in adult mice Takeuchi 0,2005. The role of 

Bax in tumorigenesis has been studied to a much greater extent. Analysis of Bax 

expression and Bax function in a variety of different cancer cells indicates that 

Bax possesses tumor-suppressor function. Bax expression was shown to be 

downregulated in hepatocellular carcinomas as well as in breast cancer Beerheide W, 

2000; Bargou RC, 1995 Frameshift mutations, missense mutations, and/or single 

amino-acid substitutions have been detected in colorectal cancers, 

gastrointestinal cancers, hematopoietic malignancies, stomach cancers, and 
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FIGURE 8. 

Scorrano L. 2003 

Figure 8. Schematic representation of BAXIBAK control points of 

apoptosis at level of ER Ca2
+ or mitochondria and categories of stimuli that 

demonstrate a requirement for each or display dual use of the pathways. 
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endometrial cancers Rampino N, 1997; Gil J, 1999; Yamamoto H, 1997; Meijerink JP, 1998; Ouyang H, 1998. 

Cells deficient in Sax expression, including epithelial cancer cells and colon 

carcinoma cells, displayed resistance to multiple apoptotic-inducing stimuli and 

anti-cancer agents Zhang L, 2000; LeBlanc H, 2002; Theodorakis P, 2002. Additionally, Sax 

deficiency in mice displayed increased tumor growth and decreased apoptotic 

ability Yin C, 1997. These results designate Sax as a possible therapeutic target in 

oncogenesis. Initial studies have produced promising results of the therapeutic 

potential of Sax. Exogenous overexpression of Sax increased apoptotic 

induction sensitivity in breast and pancreatic cancer Sakakura C, 1996; Wagener C, 1996; Xu 

ZW, 2002 Furthermore, overexpression of Sax using adenoviral delivery or 

tetracycline-dependent expression resulted in increased apoptosis and tumor 

regression in prostate cancer, lung cancer, and breast cancer mouse models Li X, 

2001; Kagawa S, 2000; Lowe SL, 2001 

Aberrant amplification of Sax-induced apoptosis can cause 

neurodegenerative or cardiac disease states. Increased levels of Sax have been 

found in a variety of neurological disorders including Alzheimer's disease, 

Parkinson's disease, and Huntington's disease. Studies have shown that 

Alzheimer's disease is associated with overexpressed levels of Sax, resulting in 

increased neurodegeneration Paradis E, 1996; Su JH, 1997; Tortosa A, 1998. In a transgenic 

mouse model of Huntington's disease, Sax was overexpressed in affected areas 

of the brain and correlated with increased levels of apoptosis compared to 

controls Teles AV, 2008. Abnormal overexpression of Sax is also seen in brain tissue 

of deceased Parkinson's disease patients compared to tissue from control 
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patients Vila M, 2001. It should be noted that it is difficult to distinguish cause and 

effect of Sax overexpression and nuerodegeneration in these studies. However, 

deletion of Sax increases resistance to neural cell death in a Parkinson's disease 

model, suggesting that Sax could be a therapeutic target in neurodegenerative 

disorders Vila M, 2001; Perier C, 2007. Sax is also a potential therapeutic target for heart 

disease Haunstetter A, 1998; Haunstetter A, 2000. Activation and translocation of Sax is 

detected during cardiac ischemia/reperfusion Lundberg KC, 2004; Hou Q, 2005; Capano M, 2006; 

Gupta S, 2005 Furthermore, absence of Sax results in increased resistance to 

ischemialreperfusion in mouse hearts Hochhauser E, 2003. In Sax homozygous 

knockout mice (-/-) , significant protective effects with ischemia/reperfusion 

treatment, as well as resistance to myocardial infarction, were detected 

compared to Sax homozygous wild-type mice (+/+) Hochhauser E, 2007; Hochhauser E, 2003. 

Bax mitochondrial targeting and the C-terminal tail 

The principle action of Sax is at the mitochondrial membrane. The 

mechanisms that target Sax to the mitochondria remain a matter of controversy. 

In particular, there is disagreement about the role of a hydrophobic alpha 

helix (a-helix9) at the carboxy-terminus of Bax in Bax targeting and 

activation. The Sax tail is tucked in a hydrophobic pocket within the 

inactive/closed conformation of Sax (Figure 10) Suzuki M, 2000; Cartron PF, 2005; Arokum H, 

2004 Upon Sax activation, a conformational change results in release of the tail 

from the pocket. This exposes the previously hidden SH3 domain and 

transmembrane a-helices 5 and 6. This conformational change also results in 
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FIGURE 10. 

Suzuki M, 2000 

25 



Figure 10. The Orientation of the C-terminal Helix. A close-up view of the Sax 

C-terminal helix and the hydrophobic pocket is shown. The side chains of the 

residues in the C terminal helix are represented by balls and sticks. Magenta 

balls represent oxygen atom in threonines and serine. A surface representation 

of the pocket is colored red, purple, and yellow to represent negative, positive, 

and hydrophobic residues, respectively. 
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exposure of a mitochondrial-targeting signal. In one model, upon release from 

the hydrophobic groove, the Bax tail serves as the mitochondrial-targeting signal. 

This is similar to the function of the C-terminal hydrophobic tail-anchors of Bcl-2, 

BcI-xL, and other so-called tail-anchored proteins that will be described in the 

next section Nguyen M, 1993; Kaufmann T, 2003; Borgese N, 2003. In support of this model, the 

Bax C-terminal tail alone is sufficient to target a passenger protein to the 

mitochondria Goping IS, 1998; Schinzel A, 2004. This model is also corroborated with tail 

mutation and deletion studies in full-length Bax Schinzel A, 2004; Wolter KG, 1997; Nechushtan A, 

1999. These studies indicate that the Bax tail can regulate Bax targeting and is 

required for Bax mitochondrial localization. Mutation of a single residue (8184) 

within the Sax tail has significant effects on Bax translocation Nechushtan A, 1999. 

Deletion of this residue or SUbstitution of this serine with a valine results in 

constitutive targeting of Bax to the mitochondria, On the contrary, substitution 

with a charged amino acid (lysine, glutamic acid, aspartic acid) inhibits 

translocation of Bax. Phosphorylation at this serine residue has also been 

detected Gardai SJ, 2004; Xin M, 2005. This phosphorylation is believed to be an 

important physiological regulator of Bax targeting. Specifically, Akt-mediated 

phosphorylation at 8184 inhibits Bax translocation and Bax-mediated apoptosis. 

Mutation of this serine to a non-phoshorylatable residue abrogates this inhibition. 

These findings indicate that the Bax tail alone can regulate Bax targeting. 

Complete deletion of the tail (BaxLlC) inhibits mitochondrial localization and 

abrogates apoptotic activity of Bax Schinzel A, 2004; Wolter KG, 1997. Upon addition of an 

apoptotic stimulus, the apoptotic-inducing ability of BaxLlC is comparable to that 
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of vector alone. These results imply that the Bax tail is essential for Bax 

targeting and function. 

This model has been challenged by reports that the C-terminal tail of Bax 

is dispensible for targeting to the mitochondria and subsequent Bax function 

Cartron PF, 2003; Cartron PF, 2005; Tremblais K, 1999. In addition, contradictory findings show 

that the Bax tail alone cannot target a passenger protein to the mitochondria 

Cartron PF. 2003 This supports an alternative model in which a mitochondrial-

targeting signal is present in Bax outside of the C-terminal tail domain. There 

have been reports suggesting a potential mitochondrial-targeting signal within a-

helix1 in the N-terminal portion of Bax Cartron PF, 2003; Cartron PF. 2005; Bellot G, 2007. This 

N-terminal targeting signal can localize a cytosolic passenger protein to the 

mitochondria. This domain was also shown to interact with the well-

characterized mitochondrial import receptor Tom22 and the import channel 

Tom40 Bellot G, 2007. Deletion of a-helix1 was shown to abrogate Bax mitochondrial 

targeting Cartron PF. 2003. In addition, an a-helix1 peptide could compete for binding 

of Bax to mitochondria in vitro. 

Tail-anchored proteins 

Tail-anchored proteins consist of an N-terminal cytosolic globular domain 

that is tethered to an intracellular membrane by a C-terminal hydrophobic 

transmembrane domain or tail-anchor Wattenberg BW, 2001; Borgese N, 2003; Habib SJ, 2003; , 

Borgese N. 2003. There are a variety of proteins considered to be tail-anchored 

proteins that have been identified and characterized (Table 1). A bioinformatic 
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Tai~anchored protein 

1. Localisation proteins 
Vamp. synaptobrevin family, 

svntaxin family 
Vamp-1B 
Sec61 (:I, SeC61"( 

Ramp-4 

Sec12 
SRPR~ 

Tom5, Tom6, Tom7, Tom22 

OMP25 
Fisl.Mdv2. Mdal 
Karl 

TABLE 1. 

Function 

SNAREs, mediating events of vesicle 
targeting and fusion 
Unknown 
Protein translocation across endoplasmic 
reticulum 
Co-translational protein giycosylation, 
ribosome-binding 
Sarlp binding 
Docking receptor for signal recognition 
particle 
Binding translocation of mitOChondrial 
precursor proteins 
Binding of inositol 5'-phosphatase 
Dynamin recruitment protein 
Cdc31 binding and binding to spindle pole 
body 

2. EnzYmes and metabolic cofecton 
Dolicolphosphate man nose Transfer of mannose residues onto lipid 

synthase anchor 
Cytochrome b. Electron transfer 
OM cytochrome br; Electron transfer 
Heme oxygenase Electron transfer 
Cytochrome P450 Electron transfer 
Aldehyde dehydrogenase Oxidation of small metabolites and drugs 
Monoamine oxidases Oxidation of small metabolites and drugs 
Camitine palmitoyl Transfer of Iong-chain fatty acids 

transferase I 
Pig-A 
Ubc6 

3. BcI-2 family 
Bax 
Bok, BcI-x." Bak, Bik, Hrk, 

Blk, Bim 
BcI-W, MC!-l, Boo 
BcI-2, B c ~XL 

Glycosylphosphoinositide anchc,r synthesis 
Conjugation of ubiquitin to substrates 

Pro-apopto!ic function 
Pro-apoptotic function 

Anti-apoptotic function 
Ant~apoPtotic function 

Located 

Organelles and vesicles of endomembrane 
system (endoplasmic reticulum) 
Mitochondrial outer membrane 
Endoplasmic reticulum 

Endoplasmic reticulum 

Endoplasmic reticulum 
Endoplasmic reticulum 

Mitochondrial outer membrane 

Mitochondrial outer membrane 
Mitochondrial outer membrane 
Outer nuclear envelope (endoplasmic 
reticuluml 

Endoplasmic reticulum 

Endoplasmic reticulum 
Mitochondrial outer membrane 
Endoplasmic reticulum 
Endoplasmic reticulum 
Endoplasmic reticulum 
Mitochondrial outer membrane 
Mitochondrial outer membrane 

Endoplasmic reticulum Goigi 
Endoplasmic reticulum 

Mitochondrial outer membrane 
Unknown 

Unknown 
Mitochondrial outer membrane and 
endoplasmic reticulum 

Since the biochemical activity of the BcI-2 family of proteins has not yet been defined. there may in fact be only two categories. There 
is already much evidence suggesting that the BcI-2 family of proteins acts by localising each other and other proteins to modulate cell 
death signals: they might then fall into the first category. Note that the endoplasmic reticulum is continuous with the other 
membranes of the secretory system and that tail-anchored proteins, as best illustrated by the SNARES, can be destined for locations 
throughout this endomembrane system. The sorting mechanism involved in this redistribution is not known: however, localisation 
within the endomembrane system depends on both the transmembrane and the cytoplasmic sequences. 

Wattenberg BW, 2001 
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study predicts that there are over 400 such proteins encoded in the human 

genome Wattenberg BW, 2007. The C-terminal transmembrane domain serves two 

essential functions in the localization of tail-anchored proteins Wattenberg BW, 2001; 

Habib SJ, 2003; Borgese N, 2003. First, the transmembrane domain and its flanking 

residues contain the sole targeting signal for specific membrane targeting. 

The tail alone contains sufficient information to specifically target a 

passenger protein to a destination membrane. Second, the C-terminal tail 

serves as an anchor to tether the protein to the membrane. Therefore, this 

signal-anchor is absolutely required for the correct targeting and insertion 

of these proteins. Tail-anchored proteins localize primarily to the endoplasmic 

reticulum or the mitochondria, and to a lesser extent at peroxisomal membranes 

Borgese N, 2003. Initial targeting to the ER can be followed by transport to a variety of 

other cellular sites by vesicular trafficking. Some proteins are localized 

exclusively at a single membrane. Others, such as BcI-2, are more broadly 

distributed. The targeting signal within the C-terminal tail that differentiates 

between membranes does not consist of specific amino acid sequences. 

Instead, distinctive structural characteristics of the tail allow for differential 

targeting (Table 2). These characteristics include hydrophobicity, polarity, 

charged flanking-residues, and spacing of residues Borgese N, 2001; Horie C, 2002; Isenmann 

S, 1998; Habib SJ, 2003; Borgese N, 2007; Wattenberg BW, 2007. ER-targeted tail-anchored proteins 

contain relatively hydrophobic transmembrane sequences. 

mitochondrial-targeted tail-anchored proteins contain less 

30 

Alternatively, 

hydrophobic 



TABLE 2. 

Table 2 List of constructs and summary of results 

Construct 

GFP-MOA Tail 

GFP-LI/\ 

Tail-sequence 

EGFP-LGMDELYKSGSGSKIlGFSTSVTALGFVL Y KKKLLPKS 

eGf-P-LGMDEL YKSGSGSKLLLLLLLLLLLLLLLLKKKLLPKS 

Mitochondrial 
targeting 

+++ 

-(endoplasmic 
reticulum) 

GFP-G3S5S7T9GI2 EGFP-LGMDELYKSGSGSKLLGLSLSLTLLGLLLLKKKLLPKS +++ 

GFP-mS5S7G 12 

OFP-mS 7T90 12 

GFP-G3S7GJ2 

KAKLLPRS 

KAAAKA 

KAAK 

KAKA 

KK 

eGW-LGMDEL YKSGSGSKLLGLSLSLLLLGLLLLKKKLLPKS +++ 

eGI-P-LGMDEL YKSGSGSKLLGLLLSLTLLOLLLLKKKLLPKS ++ 
eGI-P-LGMDEL YKSGSGSKLLGLLLSLLLLGLLLLKKKLLPKS -(endoplasmic 

reticulum) 

eGf-P-LGMDEL YKSGSGSKLLGLSLSL lLLGLLLLKAKLLPKS ++ 

eGf-P-LGMDEL YKSGSGSKLLGLSLSL TLLGLLLLKAAAKA ++ 

eGI-P-LGMDEL YKSGSGSKLLGLSLSLTLLGLLLLKAAK ++ 

eGI-P-LGMDELYKSGSCiSKLLGLSLSLTLLGLLLLKAKA ++ 
eGI-P-LGMDEL Y KSG SOS KLLGLSLSLTLLGLLLLKK +/-(endoplasmic 

reticulum) 

Shown are the names given to constructs (column II the sequence of the sequence of (,-terminus of each 
construct and a summary of localizati(ID experiments for each con.~truct. In bold type are positively charged 
residues. Underlined is the presumptive transmembrane sequence 

Wattenberg BW, 2007 
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transmembrane domains due to the presence of polar residues or due to 

containing shorter transmembrane segments. The mitochondrial-targeting tail 

anchors also contain positively-charged residues that flank the transmembrane 

sequence. Because the C-terminal sequence is the final portion of the protein to 

exit the ribosome during translation, targeting to the destination membrane is 

post-translational. Due to the hydrophobic nature of the tail-anchor, the tail is 

most likely bound by a cytosolic factor, such as a molecular chaperone, upon 

release from the ribosome (Figure 11) Lan L, 2000; Wattenberg BW, 2001. In the case of 

Sax, the protein itself acts as its own chaperone, whereby the CRterminal 

tail folds into a hydrophobic pocket within Sax Suzuki M, 2000. It has not yet 

been established whether a proteinaceous component directly acts as a receptor 

for tail-anchored proteins at the membrane Kim P, 1997; Stefanovic S, 2007; Ahting U, 2005; 

Wattenberg BW, 2001. Some studies have shown that pre-treating membranes with 

proteases abolishes targeting, while others have shown that this pre-treatment 

has no effect. In addition, potential membrane receptors have been identified. 

The requirement for a protein receptor at the membrane remains a matter of 

controversy. 
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FIGURE 11. 
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Wattenberg BW, 2001 
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Figure 11. Stages of targeting tail-anchored proteins to mitochondria. 

Nascent tail-anchored proteins can fold co-translationally in the cytoplasm and, to 

keep the polypeptide soluble in the cytosol, the hydrophobic tail-segments might 

interact with factors such as molecular chaperones (green). The identity of the 

soluble factor(s) is not known, but they might include general molecular 

chaperones such as HSP70, which are involved in the targeting of other protein 

precursors to the endoplasmic reticulum and mitochondria. Facilitation of tail­

anchor insertion into the membrane mayor may not involve the TOM complex. 
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Localization of Bax to the mitochondria is an essential step in Bax­

mediated apoptosis. However, the mechanisms that facilitate this 

translocation are not well-understood. It has generally been accepted that 

Bax is a tail-anchored protein. According to this view the C-terminal 

transmembrane domain facilitates targeting and anchoring of Bax to the 

mitochondria. However, contradictory results have made the role of the 

Bax tail in mitochondrial targeting a matter of debate. In light of these 

observations, I aim to elucidate the function of the C-terminal tail of Bax in 

mitochondrial translocation. 
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Cell culture 

CHAPTER II 

MATERIALS AND METHODS 

Mouse embryonic fibroblasts (MEFs) and Hela cells were grown in 

Dulbecco's modified Eagle's medium (OM EM) with 10% heat-inactivated fetal 

bovine serum (FBS), 20mM HEPES buffer (pH7.4), 2mM glutamine, 100U/mL 

penicillin, and 100llg/mL streptomycin. The MEFs used were generated from 

Bax/8ak knockout mouse embryos and were generously provided by Dr. Chi Li 

(University of Louisville). Hela cells were purchased through the American Type 

Tissue Collection. All cells were incubated at 37°C in 5% CO2 for culturing. 

Construct generation 

Baxa in the vector pcDNA3 was a gift from Dr. Richard Youle (National 

Institute of Health). Bax was amplified from this vector using PCR and was 

subcloned into p1RES-ne03 using EcoR1 and Not1 restriction enzymes. eGFP 

was then cloned into the N-terminal flanking region of Bax using Nhe1 and 

EcoR1 restriction enzymes to generate pIRES-eGFP-Baxa. The carboxy­

terminal tail portion (residues 166-192) of 8ax-WT was amplified from the pIRES­

eGFP-Bax construct using the following primers: 5' primer 5'- CCC CGG ATC 

CGG GAC GCC CAC GT -3' and 3' primer 5'- CCC CTC TAG ATC AGC CCA 
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TCT TCT TCC AGA TGG -3'. The amplified fragment was then cloned into 

pcDNA3-eGFP using BamH1 and Xba1 to generate pcDNA3-eGFP-Bax-tail. 

The shortened version of the WT -tail construct (residues 169-192) was 

generated using the QuikChange site-directed mutagenesis kit (Stratagene) to 

delete residues 166-169 from pcDNA3-eGFP-tail (WT). The forward 

mutagenesis primer used was 5' -GCT GTA CM GTC TGG TTC TGG ATC CAC 

GTG GCA GAC CGT GAC C -3'. The carboxy-terminal tail deleted form of Bax 

was generated by amplification from pIRES-eGFP-Baxa using the following 

primers: 5' primer 5'- GGG GGA A TT CGC CAC CAT GGA CTA CM GGA CGA 

CGA CGA CM AGA CGG GTC CGG GGA GCA -3' and 3' primer 5'- CCC CGC 

GGC CGC TCA GGG CGT CCC AM GTA G-3'. The amplified product was 

then cloned back into pIRES-eGFP-Baxa using EcoR1 and Not1 restriction 

enzymes, thereby replacing Baxa. The resulting construct was pIRES-eGFP­

BaxL1C. Amino acid substitutions for the Bax tail mutants were created using the 

QuikChange site-directed mutagenesis kit (Stratagene) according to the 

manufacturer's protocol. The template and the 5' to 3' primers used for each 

mutant are listed in Table 3. Some mutants required a two-step sequential 

mutagenesis. Each mutant was generated as a full-length Bax construct as well 

as a GFP-Bax-tail construct. The amino-terminal deleted forms of Bax were 

generated by amplification from pIRES-eGFP-Baxa (wild-type, 3xL, or 6xL) using 

the following primers: 5' primer 5'- GGG GGA ATT CGC CAC CAT GGA CTA 

CM GGA CGA CGA CGA CM AGG AGG GGA GGC ACC CGA G -3' and 3' 

primer 5'- CCC CGC GGC CGC TCA GCC CAT CTT CTT CCA G -3'. The 
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TABLE 3. 

Table 3 List of mutagenesis priners 

Bax mutant Template 5'-3' Primer sequence 

3xL 

6xL 

T186K 

G179K 

S184K 

S184D 

S184E 

Bax WT 1 st round: CGCCCACGTGGCAGCTCGTGCTCATCTTTGTGGCGGG 

2nd round: GTGCTCACCGCCTCACTCCTCATCTGGMGAAGATGGGC 

Sax 3xL 1 st round: GCTCGTGCTCATCTTTGTGGCGCTAGTGCTCACCGCCTC 

2nd round: GCTCATCTTTGTGGCGCTAGTGCTCCTCGCCTTGCT 

BaxWT GTGCTCACCGCCTCACTCMGATCTGGMGAAGATGGGC 

BaxWT GMGGTGACCATCTTTGTGGCGAMGTGCTCACCGCCTC 

BaxWT GCGGGAGTGCTCACCGCCAAACTCACCATCTGGAAGMG 

BaxWT GGCGGGAGTGCTCACCGCCGATCTCACCATCTGGAAGMG 

BaxWT GGCGGGAGTGCTCACCGCCGAACTCACCATCTGGAAGAAG 

V180K,L185K BaxWT 1 st round: GACCATCTTTGTGGCGGGAAAGCTCACCGCCTCACTCACCATC 
2nd round: GCGGGAAAGCTCACCGCCTCAAAGACCATCTGGAAGMGA TGGGC 

Shown are a list of the names given to the Bax tail mutants. The terJ1)late construct used for each of the mutants 
is listed as well as the 5' to 3' primer sequences used. Underlined nucleotides indicate mutated sites. 
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amplified product was then cloned back into pIRES-eGFP-Baxa using EcoR1 

and Not1 restriction enzymes, thereby replacing Baxa. The resulting constructs 

were pIRES-eGFP-Bax~N (wild-type, 3xL, or 6xL). All constructs were confirmed 

by sequencing. 

Antibodies 

Polyclonal anti-GFP (#A 11122) and polyclonal anti-PARP (214/215) 

cleavage site (#44698G) were from Invitrogen. Polyclonal anti-Calnexin (#SPA-

860) was from Stressgen. Monoclonal anti-Bax (6a7) (#556467) and monoclonal 

anti-Cytochrome c (#556433) were from BD Biosciences. Polyclonal anti-LDH-A 

(N14) (#sc-27230) and horseradish peroxidase conjugated bovine anti-goat (#sc-

2350) were from Santa Cruz. Polyclonal anti-Tom20 was produced by this 

laboratory in rabbits using GST-Tom20 as an antigen. Polyclonal anti-cleaved 

caspase-3 (Asp175) (#9661) was from Cell Signaling Technology. Horseradish 

peroxidase conjugated goat anti-rabbit (#31460) and horseradish peroxidase 

conjugated goat anti-mouse (#31430) were from Pierce. 

Confocal microscopy 

MEF (bax-/bak-) cells were grown on fibronectin-coated, 12mm round 

coverslips (Fisherbrand) within the wells of a 24-well plate. Cells were plated at 

7 x 104 cells/well for FuGENE transfection and 9 x 104 cells/well for 

LipoFectamine transfection. Transfection was done 24h later using 1 ~g 

DNAl2~L FuGENE (Roche Diagnostics) or 0.8~g DNAl2~L Lipofectamine2000 
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(Invitrogen) per well, following the protocol of the manufacturer. Indicated cells 

were treated with 10J/m2 ultraviolet (UV) light 24h after transfection. 1 h after UV 

treatment, cells were washed in PBS, fixed in fresh 4% paraformaldehyde for 

10min at RT, and permeabilized using PBS/0.1 % Triton X-1 00. Primary antibody 

incubation with the indicated antibodies (dilutions: a-Tom20 1 :200, a-calnexin 

1:1000, a-6a7 1:200) in PBS/0.1% Triton X-100/3% BSA was done for 1h at RT, 

followed by a PBS/0.1 % Triton X-100 wash. Secondary incubation was done in 

PBS/0.1% Triton X-100/3% BSA for 1h at RT using Red-Alexa 594-goat anti­

rabbit or Red Alexa 594-goat anti-mouse secondary antibody from Molecular 

Probes (dilution: 1:500). Cells were then washed with PBS/0.1% Triton X-100 

and mounted in fluorescent slide mounting medium from Oako. Fluorescence 

was analyzed under oil immersion using a 60X objective of an Olympus BX51WI 

confocal microscope. Images are presented as Z-stacks. 

Subcellular fractionation 

MEF (bax-/bak-) or Hela cells were plated in 60mm dishes at 1 x 106 

cells/dish. Transfection was done using 8f,lg DNAl20f,lL Lipofectamine2000 

according to the manufacturer's protocol. At 24 hours post-transfection, 

designated cells were treated with 8J/m2 UV light. 4h after UV treatment, cells 

were harvested by trypsinization and washed with PBS. The pelleted cells were 

brought up in 0.5mL MS buffer (210mM mannitol, 70mM sucrose, 5mM Tris, 

1mM EDTA, pH 7.5) + complete protease inhibitor (Roche Diagnostics) and 

broken with 5 back and forth strokes of a ball-bearing homogenizer as previously 
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described Balch WE, 1985. The Iysates were cleared of unbroken cells and nuclei 

with a 600rpm centrifugation step for 10min in a swing-bucket centrifuge (Sorvall 

Legend RT). Membrane was separated from cytosol by centrifugation of the 

cleared lysate for 20min at 100,000rpm in a TlA 100.2 rotor using an ultra-

centrifuge (Beckman Optimax, Beckman-Coulter). The supernatant was 

removed and saved as the cytosolic fraction. For the membrane fraction, the 

pellet was resuspended in 75/ll MS buffer + complete protease inhibitor and was 

subjected to 10 passages through a 26-gauge needle. For alkaline extraction, 

the pellet was instead resuspended in 75/ll Na2C03 (0.1 M, pH 11.5) for 30min at 

4°C with gentle agitation. The alkaline treated sample was then centrifuged as 

above in a Beckman Optimax ultra-centrifuge. The supernatant was saved as 

the alkaline-sensitive fraction. The pellet was resuspended in 75/ll MS buffer + 

complete protease inhibitor and was denoted as the alkaline-resistant fraction. 

Protein concentration was assessed using Coomassie plus Bradford protein 

assay reagent (Pierce). Ten micrograms of each protein fraction was separated 

by electrophoresis on poly-acrylamide gels, and then transferred onto PVDF 

membranes. After transfer, the membranes were incubated in blocking buffer 

(PBS/0.1 % Triton-X 100/5% milk) for 1 hr. After washing in wash buffer 

(PBS/0.1 % Triton-X 100), the membranes were incubated with the indicated 

primary antibodies in wash buffer for 1 h. The membranes were washed in wash 

buffer and then incubated in horseradish peroxidase-conjugated secondary 

antibody in wash buffer for 1 h. After the final washes in wash buffer, ECl-plus 
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reagent (Pierce) was added to the membrane and exposure to film was used to 

visualize bound antibody. 

Immunoprecipitation 

MEF (bax-/bak-) cells were plated in T75 flasks at 4 x 106 cells/flask, and 

transfected with Lipofectamine2000 using 16f.!g DNAl40f.!L Lipofectamine the 

next day. At 24h post-transfection, cells were trypsinized, and two T75 flasks 

were pooled for each construct transfected. The cells were washed with PBS 

and resuspended in 2mL MS buffer + complete protease inhibitor. The cells 

were lysed by 3 back and forth strokes with a ball-bearing homogenizer. The 

Iysates were cleared with a 15min spin at 600rpm in a swinging-bucket 

centrifuge. The resultant supernatant was separated into a membrane and 

cytosol fraction as described in the subcellular fractionation section. The 

membrane fraction was resuspended in 0.5mL CHAPS buffer (10mM HEPES, 

150mM NaCI, 1 % CHAPS, pH 7.4) + complete protease inhibitor and was 

passed 10 times through a 26-gauge needle. The cytosolic fraction was 

concentrated to 500f.!L using Amicon Ultra centrifugal filter devices (Millipore), 

and NaCI and CHAPS were added to a final concentration of 150mM and 1 %, 

respectively. One milligram of each membrane or cytosol fraction was incubated 

with 2f.!g Bax (6a7) antibody in 500f.!L total volume. Each sample was rotated for 

24h at 4 cC. Forty microliters of protein AlG Plus agarose beads (Santa Cruz) 

were then added to each sample and rotated for an additional 2h at 4 cG. The 

supernatant was removed and saved as the non-binding fraction. The beads 
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were washed 3 times with CHAPS buffer using centrifugation in an Eppendorf 

5415R microcentrifuge at 2500rpm for 1min. The beads were then resuspended 

in 50llL 1X SOS Loading Buffer (60mM Tris pH6.8, 2% SOS, 10% glycerol, 

0.02% Bromophenol Blue, 10% p-mercaptoethanol) and boiled. The beads were 

pelleted and the resulting supernatant, in addition to 20119 of protein of each 

corresponding non-binding fraction, was analyzed by Western analysis. Western 

analysis was performed as described in the subcellular fractionation section. 

Assay for apoptotic markers 

Hela cells were plated at 2 x 105 cells/well in a 12-well plate. Transfection 

was performed 24h after plating with 1.61lg ONAl41lL Lipofectamine2000. Cells 

were harvested by trypsinization at 24h post-transfection. Following the washes, 

the cells were resuspended in 751lL extraction buffer (50mM Tris, 150mM NaCI, 

0.1% Triton X-100, pH 7.4) + complete protease inhibitor and lysed by passaging 

10 times through a 26-gauge needle. The Iysates were cleared by spinning at 

13,000rpm for 15min in a Galaxy 140 microcentrifuge (VWR). Twenty 

micrograms of protein were analyzed with Western analysis as described in the 

subcellular fractionation section. Probing of PARP cleavage and caspase-3 

cleavage was used as an indicator of apoptosis. 
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CHAPTER III 

RESULTS 

The Bax carboxy-terminal tail is a bona fide mitochondrial-targeting 

signal/anchor. Increasing the hydrophobicity of the sequence converts the 

Bax signal to an ER targeting signal. The function of a-helix9 within the tail of 

Bax has recently been the subject of controversy. To determine the targeting 

ability of a-helix9, the tail portion of Bax (residues166-192) was fused to the C­

terminus of GFP (Figure 12A). Confocal fluorescence was used to measure the 

localization of this construct within mouse embryonic fibroblasts lacking Bax and 

Bak (MEF bax-/bak-). In my hands it is quite clear that a-helix9 is a strong and 

specific MOM targeting signal (Figure 12B). GFP alone displays a 

diffuse/cytosolic localization (data not shown). 

To address whether the Bax tail serves a specific mitochondrial-targeting 

function, I sought to introduce mutations that would alter mitochondrial targeting. 

Initially, I explored the effect of these mutations on targeting GFP to the MOM. 

Studies from this and other laboratories have established that ER-targeted tail­

anchored proteins have relatively hydrophobic tails. In contrast, the tails of 

mitochondrially-targeted tail-anchored proteins are less hydrophobic and have 

positively charged residues flanking the transmembrane (TM) sequence Borgese N. 

2007; Horie C. 2002; Isenmann S. 1998; Wattenberg BW, 2007. Using these general properties as a 
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guide, I explored the targeting function of the Bax C-terminus. Because the Bax 

tail resembles a classic mitochondrial signal, I tested whether increasing the 

overall hydrophobicity of the Bax tail could shift targeting from the mitochondria 

to the ER. I specifically mutated polar residues within the Bax tail into 

hydrophobic leucines (Figure 12A). The 3xL tail contains three substituted 

leucines, while the 6xL tail is even more hydrophobic with six substituted 

leucines. As shown in Figure 12B, the 3xL tail co-localized with the mitochondrial 

marker. This indicates that the degree of hydrophobicity is not enough to drive 

targeting to the ER. On the other hand, the more hydrophobic 6xL tail targets 

GFP to the ER, as seen by the overlay of GFP with calnexin. These results 

confirm that the information in the Bax tail is sufficient for targeting a cytosolic 

protein to the mitochondria. Further, this mitochondrial-targeting signal can be 

switched to an ER-targeting signal by increasing the overall hydrophobicity of the 

tail. 

I then established the degree of membrane targeting and insertion of 

these constructs biochemically. The GFP-taii constructs were transfected into 

MEF (bax-/bak-) cells, and the cells were fractionated into lysate, cytosol, and 

membrane portions. The wild-type, 3xL, and 6xL tails all result in constitutive 

membrane targeting (Figure 13A). Moreover, the membrane-associated 

constructs were embedded in the membrane as assessed by resistance to 

extraction by sodium carbonate (Figure 13B). This reiterates the finding that the 

Bax tail contains all the information needed for the targeting and anchoring into 

membrane. My results contrast with those of Vallette's group, who reported that 
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the tail of Bax alone cannot target a cytosolic protein to membrane Cartron PF, 2003. 

The Bax tail used by that group was three residues shorter than the tail I have 

fused to GFP in my study. I therefore generated a GFP-fused construct with the 

exact portion of the Bax tail (residues 169-192) used in the previous studies. 

This construct localized to mitochondria as assessed by fluorescence microscopy 

(data not shown). In addition, the shortened tail was predominantly membrane 

associated (Figure 13C), although a slight increase in cytosolic localization was 

observed in comparison to the longer Bax tail in Figure 12A. 
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Figure 12. The Bax carboxy-terminus constitutes a mitochondrial-targeting 

signal that can be switched to an ER-targeting signal by increasing the 

overall hydrophobicity. (A) Site-directed mutagenesis was used to introduce 

hydrophobic residues within the Bax tail. The tails alone (residues 166-192) were 

fused to the C-terminal end of GFP. The tail sequences of wild-type Bax and the 

Bax mutants are shown. The mutated residues are shown in red. (B) The GFP­

Bax tail constructs were transfected into mouse embryonic fibroblasts lacking 

Bax and Bak (MEF bax-/bak-). Confocal microscopy was then used to visualize 

the localization of these constructs. An anti-Tom20 antibody and an anti-calnexin 

antibody were used as a mitochondrial and ER markers, respectively. 
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FIGURE 13. 
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Figure 13. The signals in the wild-type and mutated Bax tails result in 

membrane targeting and insertion of GFP. (A) The GFP-Sax tail constructs 

were transfected into MEF (bax-/bak-) cells as in Figure 12. Subcellular 

fractionation was used to isolate lysate, membrane, and cytosol fractions from 

these cells. Western analysis was then used to analyze the localization of the 

Sax tail constructs within these fractions. Tom20 and lactate dehydrogenase 

(LDH) were used as a membrane marker and cytosolic marker, respectively. L­

lysate, M-membrane, C-cytosol. (B) Membrane fractions from (A) were 

treated with 0.1 M Na2C03 (pH 11.5) and separated into pelletable and 

supernatant fractions to test for stable membrane insertion. Appearance of the 

construct in the pellet fraction indicates stable membrane insertion. Tom20 

(membrane inserted) and cytochrome c (soluble) were used as controls. Att­

attached, Ins-inserted. (C) A shorter version of the wild-type Sax tail containing 

residues 169-192, previously examined by Cartron et ai, was tested for its ability 

to target a passenger protein to membrane fractions. Subcellular fractionation 

and Western analysis were used as in (A). 
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The targeting signal in the Bax tail does not play the primary 

mitochondrial-addressing role in full-length Bax. Having confirmed that the 

Bax tail can specifically target a cytosolic passenger protein to the mitochondria, I 

tested this targeting function within the context of full-length Bax. GFP was fused 

to the N-terminus of full-length Bax (Figure 14A), and the localization of this 

construct was assessed using confocal microscopy. Previous studies have 

shown that fused GFP has no effect on the function of Bax Schinzel A, 2004; Nechushtan A, 

1999; Wolter KG, 1997. Under normal conditions, Bax exhibits a diffuse pattern in the 

cytosol (Figure 14B). Using ultraviolet light (UV) treatment as an apoptotic 

inducer, Bax then translocated to the mitochondria. This is shown by the co­

localization with the mitochondrial marker Tom20. The same 3xL and 6xL tail 

mutations depicted in Figure 12A were then introduced into the full-length Bax 

construct to determine if this could shift targeting of Bax from the mitochondria to 

the ER (Figure 14A). As expected, the 3xL mutant resulted in mitochondrial 

targeting (Figure 14B). Surprisingly, the 6xL mutant also displayed mitochondrial 

targeting, in contrast to the ER-targeting exhibited with the 6xL tail fused to GFP 

as depicted in Figure 12B. Because Bax6xL localized to the mitochondria 

despite the ER-targeting signal within the tail, this suggests that the targeting of 

full-length Bax does not depend on the information within the tail. 
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Figure 14. Increasing the hydrophobicity of the Bax signal/anchor in the 

context of full~length Bax does not alter Bax mitochondrial targeting. (A) 

Mutations increasing the hydrophobicity of the Bax signal/anchor, corresponding 

to those depicted in Figures 12 and 13, were introduced into a full-length Bax 

construct. GFP was fused to the amino-terminus of this construct. The tail 

sequences of wild-type Bax and the Bax mutants are shown. The mutated 

residues are shown in red. (B) The GFP-fused Bax constructs were transfected 

into MEF (bax-/bak-) cells. Wild-type transfected cells were subjected to UV 

treatment as described in materials and methods. Confocal microscopy was then 

used to visualize the localization of these constructs. An anti-Tom20 antibody 

was used as a mitochondrial marker. 

53 



Deletion of the N-terminal a-helix1 of Sax disrupts mitochondrial 

targeting and results in constitutive ER-targeting. Vallette's group has 

identified a potential mitochondrial-addressing signal within the N-terminal Q­

helix1 of Bax Cartron PF, 2003; Cartron PF, 2005; Belio! G, 2007. This finding is in accordance 

with my results that indicate that the Bax C-terminal tail is not the primary 

addressing signal for Bax mitochondrial targeting. Thus, I wanted to inv~stigate 

the requirement of the Bax N-terminal domain for mitochondrial-targeting. I also 

wanted to determine if the Bax tail could control Bax targeting in the absence of 

the N-terminus. I therefore deleted the entire N-terminus (6.N) containing Q­

helix1 (residues 1-37) from wild-type Bax, as well as the 3xL and 6xL Bax tail 

mutants (Figure 15A). Localization of the GFP-fused Bax6.N constructs was 

visualized in MEF (bax-/bak-) cells by confocal microscopy. As shown in Figure 

15B, deletion of the N-terminal domain of Bax inhibits mitochondrial targeting and 

results in predominantly ER targeting regardless of the signal within the tail. This 

indicates that the N-terminal domain is required for correct mitochondrial 

targeting, and that the Bax tail does not function as a targeting signal even in the 

absence of the N-terminal domain. 

I also determined the degree of membrane targeting and insertion of these 

constructs biochemically. Each Bax6.N construct was transfected into MEF (bax­

/bak-) cells. The transfected cells were then fractionated into lysate, membrane, 

and cytosol fractions. Deletion of the N-terminus of Bax wild-type, 3xL, and 6xL 

results in constitutive membrane targeting of each construct (Figure 16A). 

Moreover, each of these Bax6.N constructs is inserted within the membrane, as 
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assessed by alkaline resistance (Figure 16B). These results suggest that 

deletion of the N-terminal domain disrupts the regulation of Bax that keeps it in 

an inactive state within the cytosol. 
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Figure 15. Deletion of the N-terminal a-helix1 of Bax results in a shift from 

mitochondrial targeting to ER-targeting of Bax. (A) The amino-terminal 

residues 1-37, including a-helix1, were deleted from the full-length wild-type, 3xL, 

and 6xL Sax constructs. These proteins were expressed as GFP-fusion proteins 

where GFP was fused to the N-terminus of each Sax construct. (B) The GFP­

fused SaxflN constructs were transfected into MEF (bax-/bak-) cells. Confocal 

microscopy was then used to visualize the localization of these constructs. An 

anti-Tom20 antibody and an anti-calnexin antibody were used as a mitochondrial 

and ER marker, respectively. 
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Figure 16. Deletion of the N-terminal a-helix1 of Bax results in constitutive 

membrane targeting and insertion of full-length Bax. (A) The GFP-fused, full­

length BaxLlN constructs used in Figure 15 were tested. These constructs were 

transfected into MEF (bax-/bak-). Subcellular fractionation was performed in 

order to obtain lysate, membrane, and cytosol fractions. Localization of the Bax 

constructs within these fractions was determined using Western analysis. L­

lysate, M-membrane, C-cytosol. (B) Membrane fractions from the MEF (bax­

/bak-) cells from (A) were treated with 0.1 M Na2C03 (pH 11.5) to observe 

insertion properties of the Bax mutant constructs as described in Figure 13B. 
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The Bax tail plays a role in regulating the membrane targeting of Bax 

and the change into an open/active conformation of Bax. Some studies 

have indicated that the Bax tail functions as a regulator of Bax activation Suzuki M, 

2000; Arokium H, 2004. As shown in Figure 14B, the 3xL and 6xL full-length Bax 

mutants constitutively target to the mitochondria in the absence of an apoptotic 

inducer. Subcellular fractionation of 3xL and 6xL transfected cells displays a 

constitutive membrane distribution of these mutants in both MEF (bax-/bak-) and 

Hela cells (Figure 17 A), in agreement with the confocal microscopy results. For 

reasons that are not clear, somewhat more cytosolic Bax is observed in Hela 

cells than in MEF cells. Alkaline extraction shows that the 3xL and 6xL Bax 

mutants are integrated into the membrane (Figure 17B). Conversely, wild-type 

Bax is found predominantly in the cytosolic fraction (Figure 17 A). These results 

indicate that the mutations made within the tail disrupt a negative regulatory 

effect that the tail has on Bax targeting. 

To further investigate this effect, I therefore assessed the conformational 

state of these Bax constructs. Previous results have demonstrated that Bax is in 

a closed conformation when inactive, and when activated Bax changes into a 

more open conformation, exposing a targeting signal. I wanted to determine if 

the 3xL and 6xL mutations result in an open/active conformation of Bax, thereby 

allowing for constitutive targeting. GFP-fused full-length wild-type, 3xL, and 6xL 

Bax were transfected into MEF (bax-/bak-) cells. A Bax antibody (6a7) that 

specifically recognizes Bax in the open/active conformation was used to evaluate 

the conformation of these constructs Hsu YT, 1998; Hsu YT, 1997; Yethon JA, 2003 

60 



confirmed, by confocal microscopy, that wild-type Sax is not recognized by the 

6a7 antibody unless it is treated with UV (Figure 18A). Conversely, the 3xL and 

6xL Sax mutants are in an open/active conformation in the absence of UV 

treatment, as probed by staining with the 6a7 antibody. I then tested whether 

this conformational change is a stable property induced by these mutations, or is 

a result of membrane binding. Cytosol and membrane fractions were prepared 

from transfected cells and immunoprecipitated with the 6a7 antibody. The 

immunoprecipitates were then analyzed by immunoblotting to GFP. Although the 

3xL and 6xL mutants are predominantly in the membrane fraction, a small 

amount of these proteins are found within the cytosol and can be measured 

using this method. Wild-type Sax does not immunoprecipitate with the 6a7 

antibody and is found in the non-binding fraction as expected (Figure 18S). 3xL 

and 6xL solubilized from the membrane fractions are immunoprecipitated with 

6a7, in agreement with the confocal microscopy results. Cytosolic 6xL is 

immunoprecipitated from the cytosolic fraction. This illustrates that the 6xL 

mutation leads to the conformational activation of Sax directly and independently 

of membrane integration. In contrast, the cytosolic 3xL mutant was not 6a7 

reactive. This may indicate that the activation of Sax by the 3xL mutation is more 

transient than that induced by 6xL. 
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FIGURE 17. 
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Figure 17. Mutations that increase the hydrophobicity of the 8ax 

tail/anchor result in constitutive membrane targeting and insertion of full­

length 8ax (A) The GFP-fused, full-length Bax constructs used in Figure 14 

were tested. These constructs were transfected into MEF (bax-/bak-) cells and 

Hela cells. Subcellular fractionation was performed in order to obtain lysate, 

membrane, and cytosol fractions. Localization of the Bax constructs within these 

fractions was determined using Western analysis. L-Iysate, M-membrane, C­

cytosol. (8) Membrane fractions from the MEF (bax-/bak-) cells from (A) were 

treated with 0.1 M Na2C03 (pH 11.5) to observe insertion properties of the Bax 

mutant constructs as described in Figure 13B. 
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Figure 18. The mutations made in the Bax tail result in an active 

conformation of Bax. (A) The GFP-fused Bax constructs were transfected into 

MEF (bax-/bak-) cells. Wild-type transfected cells were subjected to UV 

treatment as described in materials and methods. Bax (6a?) antibody was used 

to specifically detect Bax in an active conformation. Confocal microscopy was 

used to visualize binding of the 6a? antibody. (B) Immunoprecipitation (IP) with 

the Bax (6a?) antibody was used to pull-down GFP-fused WT, 3xL, or 6xL Bax 

that was in the active conformation. The IPs were performed on either cytosolic 

or membrane subcellular fractions. Probing for WT in the cytosol was used as a 

negative control. The IP samples, as well as the non-binding fractions, were then 

analyzed using Western analysis and a GFP-specific antibody to detect the Bax 

constructs. 
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Deletion of the Bax tail results in an open/active conformation of 

Bax, yet Bax cannot target to the mitochondria without the tail. Studies by 

various groups have produced contradictory findings on the requirement of the 

Bax tail for Bax targeting and activity. My results indicate that the Bax tail is not 

the primary targeting signal for mitochondrial targeting, yet the tail plays an 

important role in the regulation of Bax conformational change and targeting. 

Therefore, I deleted the Bax tail to test whether this domain is dispensible for Bax 

activation and targeting. The deletion mutant (Bax~C) was generated by 

removing residues 169-192, which includes a-helix9 and its flanking residues, 

from GFP-fused full-length Bax (Figure 19A). To determine the effect of this 

deletion on the conformational state of Bax, I used the Bax 6a7 antibody specific 

for the active conformation of Bax. BaxL1C was transfected into MEF (bax-/bak-) 

cells, and confocal microscopy was used to analyze Bax 6a7 binding with or 

without UV treatment. The deletion of the Bax tail resulted in an open/active 

conformation of Bax independent of an apoptotic inducer as measured by 6a7 

reactivity (Figure 19B). This result supports my findings with the 3xL and 6xL tail 

mutants that the tail is an important negative regulator of Bax activation, 

specifically by maintaining Bax in a closed/inactive conformational state. 

Because BaxL1C is in an open/active conformation, it would be expected that 

BaxL1C would constitutively target to the mitochondria, as seen with 3xL and 6xL. 

Therefore, BaxL1C was transfected into MEF (bax-/bak-) cells, and localization of 

this construct was assessed by confocal fluorescence with or without UV 

treatment. Surprisingly, despite the fact that Bax~C is in an active conformation, 
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this construct remains predominantly in the cytosol even upon apoptotic induction 

by UV treatment (Figure 20A). Subcellular fractionation of BaxLiC-transfected 

Hela cells reinforces these results. As previously observed, wild-type Bax 

becomes membrane localized after UV treatment, yet BaxLiC remains in the 

cytosol (Figure 20B). Therefore, while the Bax tail does not dominate the 

organelle-specific targeting, this sequence is essential for membrane integration 

of Bax. 
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FIGURE 19. 
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Figure 19. Deletion of the Bax tail results in an active conformation of Bax. 

(A) A tail-deleted form of Sax (~C) was generated by deletion of residues 169-

192. The ~C mutant was fused to the C-terminus of GFP. (B) The GFP-fused 

Sax~C construct was transfected into MEF (bax-/bak-) cells. The Sax (6a7) 

antibody was used to specifically detect Sax in an active conformation. Confocal 

microscopy was used to visualize binding of the 6a7 antibody in the absence or 

presence of UV treatment. 
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Figure 20. Deletion of the Bax tail results in a cytosolic distribution 

independent of apoptotic stimulus. (A) The GFP-fused Bax~C construct was 

transfected into MEF (bax-/bak-) cells. Confocal microscopy was then used to 

visualize the localization of this construct. An anti-Tom20 antibody was used as a 

mitochondrial marker. (B) BaxWT and Bax~C were transfected into Hela cells 

and were either treated or not treated with UV light. Subcellular fractionation was 

performed to obtain lysate, membrane, and cytosol fractions. Localization of the 

Bax constructs within these fractions was determined using Western analysis. 

L-Iysate, M-membrane, C-cytosol. 
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The constitutively-targeted 3xL and 6xL Bax mutants exhibit 

enhanced apoptotic-inducing ability in comparison to wild-type and AC 

Bax. Bax 3xL, 6xL, and I1C mutants are all in an open/active conformation. 

However, while 3xL and 6xL are constitutively mitochondrial-targeted, Baxl1C is 

constitutively cytosolic. This prompted us to evaluate the subsequent apoptotic­

inducing ability of these Sax mutants in the absence of an apoptotic stimulus in 

Hela cells. These cells produce more robust apoptotic signals than the MEF 

cells used in the experiments depicted above. Sax wild-type, 3xL, 6xL, and I1C 

were transfected into Hela cells along with empty vector as a negative control, 

and apoptosis was measured without addition of an apoptotic inducer. PARP 

cleavage and caspase-3 cleavage were used to measure apoptosis. As shown 

in Figure 21, wild-type Sax and Baxl1C do not stimulate apoptosis and are 

comparable to vector alone. Conversely, 3xL and 6xL show clear induction of 

apoptosis in the absence of an external apoptotic stimulus, as measured by 

PARP and caspase-3 cleavage. 
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Figure 21. In the absence of apoptotic stimulus, the constitutively-targeted 

3xL and 6xL mutants of Bax exhibit enhanced apoptosis in comparison to 

BaxWT and BaxflC. GFP-fused Sax constructs were transfected into Hela cells 

for 24 hours. Lysates from these cells were then subjected to Western analysis. 

An antibody that specifically recognizes cleaved PARP and an antibody that 

specifically recognizes cleaved caspase-3 were used as a measure of apoptosis. 

LDH was used as a loading control. EV-empty vector 
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Inhibiting insertion of the Bax tail disrupts Bax mitochondrial~ 

targeting. My results have revealed that the Bax tail does not play the 

addressing role in Bax mitochondrial targeting. However, I have shown that the 

tail is indispensable for Bax targeting. This led us to investigate whether the 

membrane-insertion property of the Bax tail is important for Bax mitochondrial 

translocation. Selected residues within the Bax hydrophobic transmembrane 

domain of the tail were replaced with charged residues in order to inhibit insertion 

of the tail into the membrane (Figure 22A). Residues G179 and T186 were 

chosen due to their location in the middle and end of the transmembrane 

segment, respectively. S184 was chosen because previous studies have 

identified this residue as having effects on Bax mitochondrial targeting Nechushtan A, 

1999; Gardai SJ, 2004; Xin M, 2005. V180 and L 185 were chosen in order to replace 

hydrophobic residues of the transmembrane sequence rather than polar 

residues. Initially, the tails in the context of GFP as a passenger protein were 

assessed by microscopy to confirm that these sequence changes disrupt the 

membrane insertion of the tail sequence (Figure 22B, first column). GFP was 

fused to the N-terminus of each of the mutant tails. The GFP-taii constructs were 

transfected into MEF (bax-/bak-) cells, and localization was visualized using 

confocal microscopy. Introducing a single charged residue at serine 184 (S184K, 

S1840, S184E) or substituting two charged residues for hydrophobic residues 

(V180K,L 185K) resulted in a diffuse, cytosolic distribution. This contrasts sharply 

with the distinct mitochondrial targeting of GFP fused to the wild-type and 3xL 

sequence or the endoplasmic reticulum targeting of the 6xL sequence (Figure 
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12). However, T186K and G179K tails only partially inhibited the targeting of 

GFP to mitochondria. Although a portion of these latter constructs is localized to 

the mitochondria, a significant amount is diffuse throughout the cell. 

The effects of these same mutations were then investigated in the context 

of full-length Bax. GFP was fused to the N-terminus of the full-length Bax 

mutants. These constructs were transfected into MEF (bax-/bak-) cells. 

Transfected cells were then subjected to analysis using confocal microscopy and 

subcellular fractionation. The introduction of charged residues within the Bax tail 

resulted in an open/active conformation of Bax, as detected by 6a7 reactivity 

(Figure 22B). However, even in the active conformation, Bax is not able to target 

to the mitochondria with a mutated tail that cannot insert. All of the mutants 

display a cytosolic distribution (Figures 22B and 22C). This is in contrast to Bax 

3xL and 6xL mutants that are in the active conformation, yet constitutively target 

to the mitochondria (Figures 14 and 17, Table 2). These results indicate that 

inhibiting the ability of the tail sequence to insert into membranes disrupts 

mitochondrial targeting of Bax. 
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Figure 22. Inhibiting insertion of the Bax tail by introducing charged 

residues disrupts Bax mitochondrial-targeting. (A) Site-directed mutagenesis 

was used to introduce charged residues within the Bax tail. These mutations 

were made in both GFP-tagged full-length Bax as well as GFP fused to the tails 

alone (residues 166-192). The tail sequences of wild-type Bax and the 8ax 

mutants are shown. The mutated residues are shown in red. (B) The GFP-taii 

and GFP-Bax (full-length) constructs were transfected into MEF (bax-/bak-) cells. 

Confocal microscopy was then used to visualize the localization of these 

constructs. An anti-Tom20 antibody and an anti-calnexin antibody were used as 

a mitochondrial and ER marker, respectively. 8ax 6a7 antibody was used to 

detect the open/active conformation of full-length 8ax constructs. (C) The GFP­

fused, full-length 8ax mutants used in (8) were tested. These constructs were 

transfected into MEF (bax-/bak-) cells. Subcellular fractionation was performed in 

order to obtain lysate, membrane, and cytosol fractions. Localization of the 8ax 

constructs within these fractions was determined using Western analysis. L­

lysate, M-membrane, C-cytosol. 
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TABLE 4. 

Table 4 Summary of conformation and localization of Bax constructs 

Bax 

Construct 

WT 

3xL 

6xL 

AC 

T186K 

G179K 

5184K 

5184D 

5184E 

V180K, L 185K 

6a7 Reactivity 

x 
X 

X 

X 

X 

X 

X 

X 

X 

Mitochondrial Cytosolic 

localization localization 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Shown are a list of the names given to Bax wr and the Bax mutants. An open/active conformation is 
indicated by 6a7 reactivity. Mitochondrial or cytosolic localization is also indicated. 
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CHAPTER IV 

DISCUSSION 

In these studies, I first show that the carboxy-terminal tail of Bax can serve 

as a bona-fide mitochondrial-targeting signal/anchor. Surprisingly, despite this 

property I demonstrate that the Sax tail does not play the primary role in 

addressing of full-length Bax to the mitochondria. However, I show that the Bax 

tail does play an important negative regulatory role in Bax activation of targeting. 

Deletion of the Sax tail results in an open/active conformation, yet Sax cannot 

localize to the mitochondria without the Sax tail. This indicates a requirement of 

the Sax tail for Sax mitochondrial translocation. Sy making mutations within the 

Sax tail that inhibit insertion of this domain, I illustrate that the membrane 

insertion of the Bax tail is crucial for Sax mitochondrial targeting. 

Studies on Sax have yielded conflicting results as to whether the Sax tail 

functions as a targeting signal that is necessary for Sax mitochondrial 

translocation. There have been reports that the Bax tail cannot target a fused 

cytosolic passenger protein to the mitochondrial membrane, suggesting that the 

Sax tail does not contain a mitochondrial-targeting signal Cartron PF, 2003; Nechushtan A, 

1999. Vallette's group has also presented findings in which the deletion of the Sax 

tail has no effect on mitochondrial targeting or apoptotic inducing ability in 

comparison to wild-type Sax, indicating that the Sax tail is 
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dispensible for targeting and Bax activation Cartran PF, 2005; Cartran PF, 2003; Tremblais K, 

1999. In addition, they have identified a potential targeting signal within the N­

terminal a-helix1 of Bax that directly interacts with the MOM receptor Tom22. 

On the other hand, several other groups have presented results that 

indicate a mitochondrial-targeting function of the Bax tail. Studies have shown 

that the Bax tail itself contains sufficient mitochondrial-targeting and anchoring 

information when fused to a cytosolic passenger protein Gaping IS, 1998; Schinzel A 2004. 

Deletion of the Bax tail can prevent targeting of full-length Bax to the 

mitochondria as well as inhibit the apoptotic inducing ability of Bax Schinzel A, 2004; 

Wolter KG, 1997; Nechushtan A, 1999. Nechushtan et al showed that even deletion of the 

last 5 amino acids from the Bax tail can inhibit targeting. In the same study, they 

demonstrated that various point mutations at residue S184 in the Bax tail either 

increased or inhibited Bax mitochondrial targeting, further indicating an important 

targeting role of the Bax tail. These localization and functional studies have 

established that the Bax carboxy-terminus serves a role identical to that of 

homologous sequences in other "tail-anchored" proteins, in which the carboxy 

terminus serves as both the addressing signal and membrane anchor Wolter KG, 

1997; Gaping IS, 1998; Hsu YT, 1998; Nguyen M, 1993 

In my hands, it is clear that the Bax tail itself can serve as a mitochondrial­

targeting signal and can direct a cytosolic passenger protein specifically to the 

mitochondria. Moreover, the behavior of the 6xL mutation demonstrates that the 

tail obeys the sequence rules that determine whether tail-anchors direct proteins 

to the mitochondria versus the endoplasmic reticulum. The varying lengths of the 
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Bax tail used in previous studies may account for the differences in results. 

Vallette's group used residues 169-192. In contrast, I used residues 166-192 of 

the Bax tail, which contains the entire transmembrane domain in addition to the 

N-terminal and C-terminal flanking residues. Studies of targeting requirements 

for tail-anchored proteins have demonstrated that the residues flanking the 

hydrophobic portion of the membrane anchor are essential for targeting Isenmann 8, 

1998; Kaufmann T, 2003; Masaki R, 2003; Kim PK, 1997. Shorter portions of the Bax tail may not 

contain all of the essential residues for correct mitochondrial targeting, resulting 

in cytosolic localization. Using a shorter Bax tail segment (residues 169-192) 

that was used by Vallette's group, I show that although this shorter version can 

still target to the mitochondria to some extent, the efficiency is lower than the 

longer version (Figure 13C). 

However, my results are in agreement with the notion of the mitochondrial­

targeting signal of Bax residing in the N-terminal a-helix1 and not in the Bax tail 

Cartron PF, 2003. I demonstrate that replacing the C-terminal tail of Bax with an ER-

targeting signal (6xL) has no effect on targeting of full-length Bax. This indicates 

that another targeting-signal exists in the structure of Bax that overrides the 

targeting signal within the tail, refuting the idea that the tail is the primary 

targeting signal within Bax. In accordance with this, when I deleted the Bax N­

terminal domain including a-helix1, mitochondrial-targeting of Bax was abolished. 

Instead, BaxflN localized predominantly to the ER. Additionally, translocation to 

the ER was observed independently of the targeting signal within the tail. This is 

consistent with the results of Vallette's group that indicate that the primary 
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mitochondrial-targeting signal is within the N-terminal a-helix1 domain. It is not 

clear why the N-terminal deleted form of Sax targets to the ER. Localization of 

wild-type Sax to the ER is not widely studied at this point. Therefore, little is 

known about the mechanism of Sax targeting to this organelle. It is possible that 

there is another targeting signal within the Sax structure that allows for targeting 

to the ER. 

While the Sax tail does not serve as a targeting sequence, I find that it is 

absolutely required for Sax localization to the mitochondria. What then is its 

function? My results suggest that the Sax tail tethers Sax to the mitochondrial 

membrane subsequent to or in conjunction with a targeting interaction mediated 

by sequences elsewhere in the protein. I come to this conclusion based on my 

observation that disrupting the ability of the tail sequence to insert into 

membranes blocks Sax mitochondrial localization. This finding provides a 

possible explanation for the necessity of the Sax tail for targeting, and is 

consistent with the results obtained when the Sax tail is deleted and 

mitochondrial targeting is inhibited. Interestingly, previous studies have shown 

that Sax mitochondrial translocation can be inhibited by phosphorylation of the 

tail residue 8184 Gardai SJ, 2004; Xin M, 2005 My results suggest that this 

phoshorylation prevents the required membrane insertion of the tail, thereby 

inhibiting Sax targeting. My data using the phosporylation-mimicking residues D 

and E at residue 8184 are consistent with this notion. I cannot rule out that the 

introduction of charged residues within the tail does not have additional effects 

on the Sax protein. The inhibition of mitochondrial targeting that is observed with 
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these tail mutants could also be due, in part, to disruption or promotion of Bax 

interaction with other proteins. It is also unclear why Vallette's group has 

described the Bax tail as being dispensible for Bax mitochondrial-targeting. 

Expression level differences or cell-type differences could result in suitable 

conditions for stable association of the tail-deleted form of Bax with the 

mitochondria, accounting for these discrepancies. 

The Bax tail also appears to function as a negative regulator of Bax 

activation Suzuki M, 2000; Arokium H, 2004. The C-terminal tail of Bax is tucked into a 

hydrophobic pocket in the structure of Bax, covering the BH3 domain and a­

helices 5 and 6. The tail is retained in the pocket by hydrophobic interactions 

and hydrogen bonding Suzuki M, 2000. Replacement of the Bax tail with the C-

terminal tail of either BcI-2 or BcI-xL results in constitutive mitochondrial targeting 

of Bax Goping IS, 1998; Suzuki M, 2000; Tremblais K, 1999. Whereas the conserved sequence of 

the Bax tail allows for a tight fit into the hydrophobic pocket, the imperfect fit of 

the alternative tails into the hydrophobic groove allows for an open/active 

conformation of Bax. This would result in the constitutive exposure of the tail 

sequence and the activation of Bax. My results have demonstrated a 

comparable phenomenon, where mutations within the Bax tail result in an 

open/active conformation of Bax, constitutive mitochondrial targeting, and 

enhanced apoptotic-inducing ability. Moreover, mutation of six residues within 

the tail, rather than three, had a greater effect on Bax conformation, reiterating 

the idea that increased disruption of the interactions between the tail and the 

hydrophobic groove results in dissocation of the Bax tail. The complete deletion 
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of the tail also results in an open conformation of Sax, illustrating that the specific 

positioning of the tail within the hydrophobic pocket is important in maintaining 

Bax in a closed/inactive conformation. This negative regulatory role of the Bax 

tail is comparable to that of the ART (apoptotic regulation of targeting) domain in 

the N-terminal portion of Bax Goping IS, 1998; Cartron PF, 2005; Cartron PF, 2003. 

Taken together, my findings have presented possible explanations for the 

conflicting results describing the function of the Bax tail. My results support 

previous findings that the Bax tail serves as a negative regulator of the initial 

conformational change that leads to Bax mitochondrial translocation. While my 

data contradict the notion that the Bax tail serves as the primary targeting signal 

for mitochondrial targeting, I suggest an important anchoring/tethering role of the 

Bax tail that is required for mitochondrial targeting of Bax. I propose a model 

where after the initial addressing of Sax to the MOM, the Bax tail functions to 

stabilize Bax at the membrane (Figure 23). This would then allow for complete 

integration of Bax into the membrane where helices 5 and 6 can be inserted. 

Consistent with this model, Andrews and colleagues also suggest a stepwise 

process of transient to stable interaction of Bax with the membrane Yethon JA, 2003; 

Leber B, 2007. Further studies will be needed to elucidate greater detail of this 

insertion process. 

It is well accepted that translocation of Bax to the mitochondria is essential 

for Bax-induced apoptosis. The numerous studies on Bax have uncovered 

various mechanisms involved in Bax activation and mitochondrial translocation. I 

believe that Bax activation and translocation are achieved through a stepwise 
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process that consists of these various mechanisms that have been identified. 

Bax is retained in an inactive state in the cytosol due to a specific conformation of 

Bax. The N-terminal ART sequence and the carboxy-terminal tail of Bax serve to 

keep Bax in an inactive/closed conformation. By sitting in the hydrophobic 

groove, the Bax tail also functions to cover the Bax BH3 domain that can interact 

with activating proteins such as tBid. Inhibitory proteins, such as 14-3-3 and 

Ku70, can also bind to Bax and maintain Bax in an inactive conformation. 

Interactions with the inhibitory proteins must be disrupted and Bax must 

undergo a conformational change before it can translocate to the mitochondrial 

outer membrane (MOM). It is unclear what triggers this conformational change 

of Bax, though addition of cytosolic extract stimulates translocation of 

recombinant Bax. Therefore, it is likely that activating proteins are involved. 

These proteins may induce a conformational change by competing with the Bax 

tail for the BH3 domain in the hydrophobic pocket. The best described example 

of a Bax activating protein is the BcI-2 BH3-only protein, Bid. The truncated form 

of Bid, tBid, induces Bax conformational change and mitochondrial translocation. 

tBid has been shown to interact with the BH3 domain of Sax, hence this 

interaction could facilitate release of the Bax tail and the subsequent activating 

conformational change. In addition, other factors may serve as indirect activators 

by blocking the inhibitory actions of the inhibitory proteins. This is exemplified by 

the action of the BH3-only proteins that block the Bax-inhibitory proteins BcI-2 

and Bcl-xL. 
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I believe that the conformational change of Bax allows for exposure of a 

mitochondrial signal, possibly a-helix1 of the Bax N-terminus. This 

mitochondrial-targeting signal interacts loosely with a factor at the surface of the 

mitochondria and does not insert into the MOM. The interaction of the Bax 

mitochondrial-targeting signal with the mitochondria is transient until the Bax C­

terminal tail inserts into the membrane. Insertion of the Bax tail is essential for 

tethering of Bax to the mitochondrial membrane. The insertion of the Bax tail 

then stabilizes Bax for complete integration of Bax a-helices 5 and 6 into the 

MOM. Once the Bax tail is inserted, I believe that the subsequent integration of 

a-helices 5 and 6 occurs rapidly. 

This proposes a complex model that involves a stepwise process of Bax 

activation. This sequential activation allows for a tight regulation of Bax due to 

the number of steps that are required for complete activation. Tight control is 

vital to keep Bax from aberrantly being activated, since Bax is such a potent 

stimulus of cell death. Future studies need to focus on verifying each step. 

However, it is difficult to isolate intermediate steps in order to show it is in a 

stepwise fashion. Identifying all of the steps of Bax activation will provide more 

pOints of intervention in the context of potential therapeutic targets. 
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Figure 23. Model of Bax targeting to the mitochondria. Sax is found in a 

closed/inactive state in the cytosol. The correct orientation of the tail in the 

hydrophobic pocket keeps Sax in a closed/inactive conformation. 1) An apoptotic 

trigger induces a conformational change into an open conformation of Sax, 

thereby exposing a mitochondrial-addressing signal. 2) The exposed addressing 

signal interacts with the mitochondrial membrane in a loose fashion whereby Sax 

can attach and detach from the membrane. 3) The Sax tail must insert into the 

MOM, tethering Sax to the membrane and 4) allowing for complete integration of 

Bax into the bilayer. 
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CHAPTER V 

RELATED PROJECT: 

A PEPTIDE DERIVED FROM A MITOCHONDRIAL TAIL-ANCHOR SHOWS 
AN INCREASED PROPENSITY FOR HELIX FORMATION AS COMPARED 

TO A PEPTIDE DERIVED FROM AN ER-DIRECTED SEQUENCE 

Introduction 

Tail-anchored proteins consist of an N-terminal cytosolic globular domain 

that is tethered to an intracellular membrane by a C-terminal hydrophobic 

transmembrane domain or tail-anchor Wattenberg BW, 2001; Borgese N, 2003; Habib SJ, 2003; , 

Borgese N, 2003. The C-terminal transmembrane domain serves as the addressing 

signal as well as the anchor that tethers the protein to the correct membrane 

Wattenberg BW, 2001; Habib SJ, 2003; Borgese N, 2003. Because the C-terminal sequence is the 

final portion of the protein to exit the ribosome during translation, targeting to the 

destination membrane is post-translational. Tail-anchored proteins localize 

initially to the endoplasmic reticulum or the mitochondria, and to a lesser extent 

at peroxisomal membranes Borgese N, 2003. The targeting signal within the C-

terminal tail that differentiates between membranes does not consist of specific 

amino acid sequences. Instead, distinctive structural characteristics of the tail 

allow for differential targeting (Table 2). These characteristics include 

hydrophobicity, polarity, charged flanking-residues, and spacing of residues 

Borgese N, 2001; Horie C, 2002; Isenmann S, 1998; Habib SJ, 2003 ER-targeted tail-anchored 
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proteins contain relatively hydrophobic transmembrane sequences. Alternatively, 

mitochondrial-targeted tail-anchored proteins contain less hydrophobic 

transmembrane domains due to the presence of polar residues or due to 

containing shorter transmembrane segments. The mitochondrial-targeting tail 

anchors also contain positively-charged residues that flank the transmembrane 

sequence. A relevant example of these properties can be described with two 

splice isoforms, A and B, of the tail-anchored protein VAMP1 Isenmann S, 1998. 

VAMP1A targets specifically to the ER. The tail anchor of VAMP1 B differs from 

the tail anchor of VAMP1A only by shortening of the hydrophobic transmembrane 

domain and the addition of positively charged residues at the end of the tail­

anchor sequence. These slight changes allow for targeting of VAMP1 B 

specifically to the mitochondria. Although these general structural characteristics 

have been established, the mechanism by which these differing structures 

selectively target to destination membranes is poorly understood. To shed more 

light on the differences in biophysical properties of mitochondrial- versus ER­

targeted tail anchors, I investigated differences in secondary structure formation 

of representative artificial tail-anchor sequences. 

Materials and Methods 

Circular dichroism of tail-anchor peptides 

The following synthetic peptides (Invitrogen) were examined by circular 

dichroism: MOA-tail (KSGSGSRIIGFSTSVTALGFVLYRYRLLPRS) and L16 

(KSGSGSRLLLLLLLLLLLLLLLLRYRLLPRS). Differing concentrations of 
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trifluoroethanol (TFE) or dodecylphosphocholine (OPC; Avanti Polar Lipids) in 

10mM phosphate buffer, or 4mM SOS in 5mM Tris pH 7.6 were used to solubilize 

the peptides. Peptide concentrations were determined using absorbance 

readings at a wavelength of 220. Concentrations corresponding to an 

absorbance reading of 0.7-0.8 were found to be optimal for CO readings. 

Spectra were collected on a Jasco J-800 spectropolarimeter equipped with a 

thermoeclectric temperature control unit. Parameters for the CD analysis are as 

follows: temperature-20°C, sensitivity-standard (100mdeg), start-260nm, 

end-178nm, data pitch-0.2nm, scan mode-continuous, scan speed-

50nm/min, response-2s, bandwidth-1 nm, accumulation-10. The spectra 

resulting from the CD analysis were analyzed using CONTINLL software to 

determine the percent of helical conformation Provencher SW, 1981. 

Results and Discussion 

Tail-anchors direct targeting based on distinct structural characteristics 

rather than specific sequence requirements. By measuring the formation of 

secondary structure, I determined differing biophysical properties of a 

mitochondrial- versus an ER-targeted tail-anchor peptide. The mitochondrial­

targeted tail-anchor peptide was derived using sequence from the tail-anchor of 

the mitochondrially-targeted protein monoamine oxidase: 

KSGSGSRIIGFSTSVTALGFVLYRYRLLPRS. A poly-leucine sequence was 

used to represent an ER-targeted tail-anchor peptide, based on the high 

hydrophobicity characteristics of ER-targeted tail-anchors. This poly-leucine 
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sequence was substituted into the tail-anchor sequence of monoamine oxidase: 

KSGSGSRLLLLLLLLLLLLLLLLRYRLLPRS. Both of these sequences were 

confirmed to target to the specified membrane (Table 2). Two conditions were 

used to measure the propensity of these peptides to form secondary structure. 

First, I wanted to test increasing concentrations of trifluoroethanol (TFE), a 

solvent that promotes helix formation. Secondly, dodecyl phosphocholine (DPC) 

was used as a membrane-mimetic zwitterionic detergent. 

Peptides were first dissolved in aqueous buffer containing increasing 

concentrations of TFE. Circular dichroism was used to determine secondary 

structure at the various concentrations. Figure 24A shows the delta epsilon 

measurements versus wavelength for the mitochondrial tail-anchor peptide, 

MOA, at the increasing TFE concentrations. The corresponding curves for the 

ER-targeted tail-anchor peptide, L16 , are displayed in Figure 24B. Both peptides 

exhibit a-helical formation upon increasing concentrations of TFE. This is shown 

by the characteristic spectrum indicative of a-helical secondary structure, a 

maximum peak around 195nm and two minimum peaks around 209nm and 

222nm. In aqueous buffer and at a lower concentration of TFE, the spectra are 

indicative of random coil structure. Random coil secondary structure is depicted 

by a minimum peak around 195-200nm. In buffer containing 25% TFE, the 

MOA-tail peptide appears to have more helical formation than the L16-tail peptide 

(Figure 24C). This is evident from the increase in delta epsilon for the MOA-tail 

peptide at 192nm, characteristic of alpha helix formation. This is also illustrated 

in Figure 24D where the calculated percentage of alpha helix was graphed 
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FIGURE 24. 
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Figure 24. The mitochondrially targeted MOA-tail peptide has a higher 

propensity for TFE-induced a-helix formation than the ER-targeted peptide 

L 16. Synthetic peptides were dissolved in aqueous buffer containing the 

indicated amounts of TFE. Circular dichroism was measured as described in 

Materials and Methods. (A) MOA-tail peptide was measured with 0, 10%, 25%, 

40%, 50%, and 100% TFE. Results are reported as delta epsilon. (8) L 16 

peptide was measured as in panel (A). (C) The spectra for 25% TFE are shown 

in greater detail for comparison of MOA-tail peptide and the L 16 peptide. (0) The 

percent helical content, calculated as described in Materials and Methods, is 

plotted for the two peptides versus TFE concentration. 
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versus TFE concentration. Both peptides reached maximum helix formation in 

40% TFE. However, while MOA-tail peptide was highly helical (76%) in 25% 

TFE, L16-tail peptide was only slightly more helical (38%) than in completely 

aqueous buffer. This indicates that the mitochondrial-targeted tail-anchor peptide 

has a greater propensity to form helical structure in a helix-promoting solvent. 

These peptides exhibited similar behavior in OPC. The MOA-tail peptide 

exhibited helical formation even at the lowest concentration of 0.8mM OPC 

(Figure 25A). In contrast, the L16-tail peptide did not display helical formation 

until a higher concentration of 30mM OPC was used (Figure 25B). Percent 

helical content of these peptides at the various OPC concentrations is graphed in 

Figure 25C. As shown above, the MOA-tail peptide shows a higher propensity to 

form a helix in increasing concentrations of OPC, in comparison to the L16-tail 

peptide~ It should be noted that the concentrations of OPC were chosen in terms 

of the amount of micelle that is formed. The critical micelle concentration of OPC 

is 1.1 mM Stafford RE, 1989. At 0.8mM, OPC is entirely monomeric. At 3mM, there is 

more or less an even distribution of OPC in monomeric versus micelle form. At 

30mM, OPC is predominantly in micelles. Therefore, while the MOA-tail peptide 

exhibits a tendency to form helix in the presence of monomeric OPC, the L16-tail 

peptide does not. However, both peptides display helical formation in the 

presence of micellar OPC. A summary of these data are represented in Table 3. 

Comparisons of the percent helicity in the various solutions demonstrate an 

increased propensity of the MOA-tail peptide to form helix compared to the L16-

tail peptide. 
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As the data indicate, the mitochondrial-targeted tail-anchor peptide more 

readily forms a-helical secondary structure in comparison to the ER-targeted tail­

anchor peptide. This illustrates divergent biophysical properties that could 

account for the differential targeting of these tail-anchor sequences. In the 

context of physiological tail-anchored proteins, the translocation to differential 

membranes could depend partly on the helix-forming propensity of the various 

tail anchors. Future studies should expand this analysis by looking at larger 

subsets of mitochondrial- versus ER-targeted tail anchors. 
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FIGURE 25. 
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Figure 25. The mitochondrially targeted MOA-tail peptide has a higher 

propensity for a-helix formation in the membrane mimetic OPC than the 

ER-targeted peptide L 16. Synthetic peptides were dissolved in aqueous buffer 

containing the indicated amounts of OPC. Circular dichroism was measured as 

described in Materials and Methods. (A) MOA-tail peptide was measured with 

O.3mM, 3mM, and 30mM OPC. Results are reported as delta epsilon. (8) L 16 

peptide was measured as in panel (A). (C) The percent helical content, 

calculated as described in Materials and Methods, is plotted for the two peptides 

versus OPC concentration. 
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TABLE 5. 

Table 5 Summary of alpha helix content of the indicated peptides in the solutions shown 

Solution MOA-tail % helix Lu,tail % helix 

Phosphate Buffer 18 21 

10% TFE 18 15 

25% TFE 76 38 

40% TFE 98 98 

50% TFE 98 95 

0.8mM ope 73 18 

3mM ope 99 51 

30mM ope 99 99 

Alpha helix content was calculated from the curves shown in Figs 12 and 13 as described in 
Materials and Methods. The remainder of the structure was almost exclusively random coil. 
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