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ABSTRACT 

 Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core 

surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in 

response to compression loading.  Most notably, these nanostructures exhibit substantial 

deformation recovery, even when loaded much beyond the elastic limit.  Nanoindentation 

measurements revealed a unique mechanical response characterized by discontinuous signatures 

in the load-displacement data.  In conjunction with the indentation signatures, nearly complete 

deformation recovery is observed.  This behavior is attributed to dislocation nucleation and 

annihilation events enabled by the 3-dimensional confinement of the Al core.  As the core 

confinement is reduced, either through an increase in confined core volume or a change in the 

geometrical confinement, the indentation signatures and deformation resistance are significantly 

reduced. 

 

 Complimentary molecular dynamics simulations show that a substantial amount of 

dislocation egression occurs in the core of CSNs during unloading as dislocations annihilate at 

the core/shell interface.  Smaller core diameters correlate with the development of a larger back-

stress within the core during unloading, which further correlates with improved dislocation 

annihilation after unloading.  Furthermore, dislocations nucleated in the core of core-shell 

nanorods are not as effectively removed as compared to CSNs. 

 

 Nanostructure-textured surfaces (NSTSs) composed of Al/a-Si CSNs have improved 

tribological properties compared surfaces patterned with Al nanodots and a flat (100) Si surface.  

NSTSs have a coefficient of friction (COF) as low as 0.015, exhibit low adhesion with adhesion 



forces on the order of less than 1 µN, and are highly deformation resistant, with no apparent 

surface deformation after nanoscratch testing, even at contact forces up to 8000 µN.  In 

comparison, (100) Si has substantially higher adhesion and COF (~10 µN and ~0.062, 

respectively), while the Al nanodots have both higher friction (COF ~0.044) and are deformed 

when subjected to contact loads as low as 250 µN. 

 

 This integrated experimental and computational study elucidates the mechanisms that 

contribute to the novel properties of Al/a-Si CSNs and characterizes the tribological properties of 

surface composed of these nanostructures, which provides a foundation for the rational design of 

novel technologies based on CSNs. 
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CHAPTER 1 

INTRODUCTION 

 Core-shell nanostructures (CSNs) are a unique type of nanomaterial composed of a 

nanoscale internal core surrounded by a shell with a distinct material composition.  In principle, 

both the core and shell components of a CSN can be created from any material, including metals, 

ceramics, semiconductors, or polymers.  This broad range of material combinations allows for 

the design and fabrication of CSNs that combine the material properties of both the core and 

shell components.  With the right material combinations, CSNs can exhibit improved functional 

properties compared to single-material nanostructures.  Much research interest has been directed 

toward designing CSNs with properties that are desirable for a variety of applications. 

 

1.1 Background and Motivation 

 CSNs offer the opportunity to potentially engineer nanostructures with unique 

mechanical properties.  Notable examples of interesting mechanical phenomena enabled by 

nanoscale materials include strengthening mechanisms in nano-grained metals [1,2], multilayer 

nanolaminate composites with enhanced hardness [3-5], size effects [6-13], and mechanical 

annealing and dislocation starvation processes [14,15].  However, nearly all nanomaterials suffer 

from permanent plastic deformation when subjected to contact loading that reduces their 

effectiveness in applications.  This is due to the nanoscale sizes of these structures and the 

resulting small contact areas during loading, which allows very high contact pressures to be 

generated, even at moderate contact loads.   
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 For example, nanopatterned poly(methyl methacrylate) (PMMA) surfaces have been 

shown to have reduced friction compared to smooth polymer surfaces when subjected to 

microscale friction tests, but the polymer nanostructures were found to be significantly damaged 

after testing [16,17].  Similar behavior has also been reported for nanotextured Al surfaces [18], 

Ni nanodot patterned surfaces [19,20], and amorphous carbon surfaces [21].  In all of these 

examples, the desirable material properties are compromised by a lack of structural integrity of 

the individual nanostructures. While this is most commonly an issue when nanostructures are 

used in nanotextured surfaces for low-friction applications, it is clearly an issue for all 

nanostructures subjected to contact loading.  This severely limits the implementation of 

nanostructures in applications where the mechanical integrity of the nanostructures is important.  

 

 Recently, Al/a-Si CSNs have been discovered to have unique deformation-resistant 

properties [22].  These CSNs were fabricated from a nanotextured Al thin film that was then 

conformably coated with a-Si, forming a surface populated with an ensemble of Al/a-Si CSNs.  

The individual nanostructures were composed of ~200 nm diameter polycrystalline Al nanodots 

protruding from the Al thin film, which were then coated with a 300 nm a-Si shell.  When the 

CSNs were subjected to load-controlled nanoindentation up to 300 µN, it was found that the 

structures had a higher yield strength than either Al or a-Si natively and could sustain up to 23% 

engineering strain without fracture.  In addition, these structures exhibited an unconventional 

mechanical response, consisting of discontinuous indentation signatures referred to as “pop-ins” 

and “pop-outs” during loading and unloading, respectively.  Furthermore, despite the large 

indenter displacement compared to the size of the CSN, the load-displacement curve shows no 

residual displacement, which suggests that the nanostructure deformation is completely 
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recovered during unloading.  This recovery is further confirmed by scanning probe microscopy 

imaging that shows no structure height change after indentation.  Nanotribological testing on 

nanotextured surfaces composed of Al/a-Si CSNs have further confirmed these deformation-

resistant properties [18].  When subjected to nanoscratch testing, these surfaces were found to 

have no detectable nanostructure deformation at contact loads up to 8000 µN, while still 

maintaining a low coefficient of friction.   

 

 Exploratory experiments strongly indicate that dislocation activities within the Al core 

must be responsible for the unique mechanical behavior exhibited by these structures.  More 

specifically, it is hypothesized that the deformation behavior of these structures is critically 

dependent on the confinement of the Al core and its effects on the dislocation activities within 

the core.  Additional research is warranted because of the unique mechanical behavior observed 

in Al/a-Si CSNs.  However, the previously reported fabrication method provides little control 

over the size, shape, location, and density of the nanostructures.  To overcome this limitation, a 

new fabrication method using electron beam lithography (EBL) has been developed to fabricate 

well-ordered arrays of nanostructures.  The deformation behavior of the CSNs has been 

characterized using instrumented nanoindentation and further characterized with a combination 

of scanning probe and electron microscopy.  The role that geometric confinement of the Al core 

– defined in terms of either the size of the confined core volume or the “dimensionality” of the 

confinement – plays on the mechanical behavior of these structures is studied through 

comparative experiments on hemispherical CSNs with different core sizes and experiments on 

horizontally-aligned core-shell rods and layered thin films.  Complimentary to the experimental 

investigations, molecular dynamics simulations have been performed to provide insight into the 
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underlying dislocation dynamics that occur during nanoindentation.  The results show that core 

confinement critically influences the deformation behavior of the CSNs, both in terms of the size 

of the confined core volume as well as the “dimensionality” of confinement.  Deformation-

resistant behavior is only observed in hemispherical CSNs with 100 nm core diameters, while an 

attendant loss of deformation resistance is noted as the core confinement decreases.  This 

integrated experimental and computational investigation clarifies the mechanisms that contribute 

to the unique deformation-resistant behavior of Al/a-Si core-shell nanostructures.  

 

1.2 Objectives 

 The objective of this study is to gain a fundamental understanding of the deformation-

resistant mechanical behavior of Al/a-Si core-shell nanostructures through a combination of 

experiments and atomistic modeling.  This knowledge will enable the rational design of 

deformation-resistant nanostructures that can be used in a variety of nanomechanical 

applications.  The specific goals are: 

1. Experimentally investigate the role that core confinement, defined by the size of the 

confined core volume, plays on the mechanical deformation behavior of hemispherical 

Al/a-Si CSNs. 

2. Experimentally investigate how the “dimensionality” of core confinement affects the 

mechanical behavior of these nanostructures through experiments on horizontally- 

aligned core-shell rods and layered thin films. 

3. Use atomistic modeling to gain insight into the dislocation-based mechanisms that govern 

the mechanical behavior of these nanostructures. 
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4. Characterize the friction, adhesion, and surface deformation of surfaces patterned with 

Al/a-Si CSNs. 

 

1.3 Layout of Dissertation 

 This dissertation is divided into 7 chapters, including the introductory chapter.  Chapter 2 

is a comprehensive literature review on the mechanical properties and behavior of nanomaterials, 

focusing on unique mechanical behaviors that are evident in small-scale material volumes.  

Chapter 3 covers the relevant experimental methods and simulation techniques used to 

investigate the novel properties of Al/a-Si CSNs.  Chapters 4 and 5 explore the ways that core 

confinement affects the mechanical behavior of these structures, with an emphasis on core size 

effects and core confinement dimensionality, respectively.  Chapter 6 presents a nanotribological 

characterization of friction, adhesion, and surface deformation of surfaces patterned with CSNs.  

Finally, Chapter 7 contains the conclusions and an outlook on future research directions for 

CSNs. 
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CHAPTER 2 

LITERATURE REVIEW 

 CSNs have primarily been studied in terms of the enhancement of optical [23-27], 

magnetic [25,28-30], and catalytic properties [31-33], with an emphasis on emergent behavior 

that occurs due to the nanoscale structure size and related confinement effects.  Examples 

include tunable photoluminescence in metal/semiconductor nanoparticles [27], improved 

dielectric properties of perovskite composite nanoparticles [30], and size-dependent catalytic 

efficiencies in bimetallic core-shell nanostructures [33].  These enhanced properties are the result 

of a combination of the familiar size effects observed in nanomaterials [34] due to the large 

surface-to-volume ratios and the non-trivial role the core-shell structure plays in the applicable 

photonic, electronic, plasmonic, magnetic spin, band-gap, and other interactions within the CSN.  

Recently, CSNs have also been investigated for use in biomedical applications [35-37], 

particularly as platforms for drug delivery [38], gene therapy [39], and contrast agents for 

magnetic imaging [40,41].  Clearly, the wide range of improved material properties that CSNs 

exhibit can benefit a variety of fields. 

 

 Despite the large number of studies on the enhanced properties of CSNs, very little 

research exists on the mechanical behavior of these structures.  Knowledge of both the 

mechanical properties and deformation behavior of CSNs is becoming increasingly important as 

these structures are implemented into a wider range of practical applications, especially those 

where the CSNs will be active mechanical components, such as nanotribology and micro/nano-

electro-mechanical systems (MEMS/NEMS). 
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2.1 Mechanical Behavior of Nanomaterials 

 It is well known that the mechanical properties of thin films, nanostructures, and other 

nanomaterials can greatly differ from those of bulk materials as the dimensions of these 

structures are sufficiently reduced below the sub-micron length scale.  For crystalline and 

polycrystalline materials, the mechanical behavior becomes much more dependent on the 

dynamics of the included dislocations [9,42-44], leading to unique mechanical behaviors that are 

not observed in bulk materials.  These enhanced mechanical properties provide avenues for 

engineering structures with desirable properties [45], potentially benefiting diverse fields such as 

MEMS/NEMS [46-49], nanotribology [50,51], and biomedical applications [17,52]. 

 

 The earliest embodiments of materials with nanoscale features include both nano-grained 

metals and solid thin films.  The familiar Hall-Petch relationship, known since the 1950s, 

predicts that the yield strength of a metal increases with decreasing grain size down to ~10 nm 

[53].  For these materials, the closely-spaced grain boundaries act as obstacles for dislocation 

motion, and the associated dislocation pile-ups that occur result in material strengthening.  As the 

grain size decreases below 10 nm, this strengthening mechanism gives way to grain boundary 

sliding and rotation [54].  This interplay between macroscale mechanical properties, grain size, 

dislocation dynamics, and grain boundary motion serves as one of the most prominent examples 

of the unexpected and usually non-intuitive way that nanoscale features can affect material 

properties. 

 

 Thin film systems have also been widely studied to better understand the mechanical 

behavior enabled by their quasi-2-dimensional structure [42].  Residual stress develops due to the 
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lattice mismatch between the substrate and film, which is potentially thickness-dependent and 

can vastly alter the microstructure and cohesiveness of the film.  When a lattice mismatch exists, 

a strained dislocation-free thin film can only exist up to a specific critical thickness, above which 

stress relaxation occurs in the film in the form of misfit dislocations at the film-substrate 

interface.  Residual stress developed in the thin film can have a marked effect on the mechanical 

properties of the thin film layer [55].  Furthermore, for materials that can accommodate 

dislocations, the thin film geometry is subject to the dislocation channeling mechanism, in which 

the film acts as channel in which the motion of dislocations is constrained [56].  In this way, the 

behavior of dislocations in the thin film, and thus the mechanical properties, are altered simply 

through geometry. 

 

 Utilizing this layer confinement effect, multilayer composites have been investigated in 

order to engineer layered nanocomposites with improved mechanical properties.  Chawla et al. 

studied the indentation behavior of multilayer Al/SiC composites [4].  The composites were 

fabricated from alternating layers of magnetron sputtered Al and SiC, with individual layer 

thicknesses of 25-50 nm and 41 total layers for each sample (21 A1 layers, 20 SiC layers).  

Improved hardness was noted in composites with thinner individual layers, which was attributed 

to constrained plasticity in the Al layers.  Yielding of the multilayer film occurred as a result of 

cracking of the SiC layers and void formation due to plastic deformation in the Al layers.  

Notably, delamination or fracture of the Al/SiC interface was not observed, implying that the 

interfacial strength is stronger than the cohesive strength of either the Al or SiC.  
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 Shao et al. investigated the role that interfaces play on the work hardening behavior of 

multilayer Cu/Ni, Cu/Nb, and Cu/Ni/Nb metallic nanocomposites using molecular dynamics 

simulations [57].  The results show that stronger work hardening is observed at the incoherent 

FCC/BCC Cu/Nb and Ni/Nb interfaces compared to the coherent FCC Cu/Ni interface, 

underscoring the role that interfacial effects can have on the behavior of dislocations in layered 

thin films.  Brandl et al. further analyzed the role of metallic/amorphous interfaces, specifically 

the interface between FCC Cu and a Cu-Zr bulk metallic glass [58].  In this case, the presence of 

an amorphous material promotes the absorption of lattice dislocations by the 

crystalline/amorphous interface, in contrast to the previously referenced Cu/Ni/Nb interfaces that 

instead resulted in dislocation pile-up at the interfaces.  The influence of interfacial effects 

provides a fascinating vantage point for engineering materials that can take advantage of 

controlled dislocation behavior. 

 

 More recently, studies on the mechanical behavior of 1-dimensional nanostructures such 

as nanopillars and nanorods have become more prevalent, especially since shear strengths 

approaching theoretical limits have been demonstrated in metallic nanowhiskers [59].  Jennings 

and Greer performed uniaxial compression tests on electroplated single-crystal Cu nanopillars 

with diameters ranging from 25-525 nm [44,60].  During the tests, they found a size-dependent 

strength for nanopillar diameters down to 100 nm, while for pillar diameters smaller than this 

value, the mechanical behavior transitioned to a size-independent regime.  This transition is 

mediated by a preference for homogeneous dislocation nucleation of perfect dislocations in large 

pillars and for heterogeneous dislocation nucleation of partial dislocations from surfaces and 

defects in smaller pillars. 
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 The dependence of material properties on nanostructure size are a manifestation of so-

called “size effects” in nanomaterials.  Although these size effects are described as a purely 

geometric effect, the underlying mechanism is more subtly related to statistically decreased 

defect content in nano-sized material volumes.  Rinaldi et al. performed compression tests on Ni 

pillars with different initial dislocation densities and claim that increased defect content can 

substantially suppress the expected size dependence on yield strength [9].  Ni nanopillars were 

fabricated using focused ion beam (FIB) milling from two different samples of bulk Ni: polished 

cold-rolled Ni plate, which represented a relatively higher initial dislocation density, and 

polished, well-annealed Ni plate, which represented a relatively lower initial dislocation density.  

For the Ni pillars fabricated from the well-annealed material, the power-law scaling that 

accompanies material strengthening was observed, as expected.  However, for the nanopillars 

fabricated from the disordered material, no size dependence on yield strength/hardness was 

noted, even for relatively large pillar diameters of 200-300 nm.  Because of the discrete nature of 

dislocations, a lower initial dislocation density in the bulk material corresponds to a higher 

statistical probability that differently sized nanostructures machined from this material will have 

statistically different dislocation content, resulting in emergent size effects.  This result largely 

underscores the role that not only nanostructure size, but also defect content, plays in tailoring 

the mechanical behavior of nanostructures. 

 

 The idea that the “smaller is stronger” phenomenon is related to statistical differences in 

dislocation content in pillars with different diameters has also been employed to study the 

mechanical properties of Ni nanobuttons, i.e., pillars with very short lengths [43].  Compared to 
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nanopillars, nanobuttons exhibit increased hardness as a result of plasticity confinement to 

increasingly smaller volumes.  Whereas the Ni nanopillars fail by shear-slip at an applied stress 

between 500 and 1000 MPa, depending on diameter, the nanobuttons were found to withstand 

applied stresses in excess of 2 GPa without failure.   

 

 The role material “dimensionality” can have on the mechanical behavior of materials 

with sub-micron dimensions has been studied by Mordehai et al., who performed indentation 

experiments on several different Au nanomaterials, including symmetric single-crystal 

nanoparticles, laterally-elongated nanostructures, and thin films [61].  Au nanoparticles were 

fabricated from a Au thin film on a sapphire substrate using solid-state dewetting, resulting in an 

ensemble of both faceted equiaxial nanoparticles and elongated nanostructures.  Mechanically, 

both the equiaxial nanoparticles and elongated particles are more compliant than the Au thin 

films due to the proximity of lateral free surfaces.  Atomistic modeling further suggests that the 

mechanical behavior of the nanoparticles was dominated by dislocation annihilation events at the 

free surfaces, while indentation of the thin films resulted in dislocation pile-up beneath the 

indenter.  Furthermore, the laterally-elongated structures exhibited an intermediate behavior, due 

to competition between dislocation annihilation at free surfaces and the formation of sessile 

dislocation structures. 

 

2.1.1 Material Insights from in situ Transmission Electron Microscopy Experiments  

 Recent advances in nanomechanical transducer technology have enabled the possibility 

of novel in situ contact mechanics and nanoindentation experiments within a transmission 

electron microscope (TEM) [62].  This technique allows for real-time imaging of the mechanical 
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behavior and manipulation of nanostructures with unprecedented resolution and magnification.  

Materials that can be characterized by in situ TEM are subject to the limitations of TEM sample 

preparation, namely that the materials must be sufficiently thin to be electron transparent.  

Currently, this restricts in situ TEM experiments primarily to nanoparticles and thin film 

lamellae.  Furthermore, difficulties in precisely aligning both the indenting tip and sample 

relative to the electron beam, and maintaining this alignment during the entirety of the 

experiment, can convolute the analysis, especially if the sample rotates out of the focal plane 

during testing [48].  Despite these limitations, in situ TEM experiments have been performed on 

a wide variety of materials, with significant insights into the small-scale behavior of materials 

obtained. 

 

 Minor et al. investigated the onset of plasticity in an Al thin film [63], specifically 

looking at the discontinuous indentation signatures that correspond to incipient plasticity in 

metals.  In this experiment, a dislocation-free Al grain was indented with a sculpted diamond 

indenter with a radius of curvature of 100 nm.  Conventionally, it is believed that ductile metals 

will exhibit a continuous, smooth rise in indentation load up to the elastic limit.  At this point, a 

substantial load relaxation occurs, corresponding to the dislocation burst that accompanies the 

onset of plasticity.  However, in this experiment, an indentation signature corresponding to 

plasticity was observed almost immediately after contact, even before a sustained rise in 

indentation load.  Notably, this minor load relaxation occurred at shear stresses very close to the 

theoretical maximum for Al.  This result clarifies the understanding of the onset of incipient 

plasticity in nanomaterials, namely that dislocation nucleation can potentially occur at much 
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lower loads than the load required to initiate a discontinuous indentation signature after a 

sustained rise in contact load.  

 

 Deneen et al. studied the deformation of single-crystal Si nanospheres during 

compression with a boron-doped diamond tip [64].  Both elastic and plastic deformation was 

observed, as well as particle fracture.  Nowak et al. specifically studied the fracture behavior of a 

single-crystal Si nanosphere [65].  The nanoparticle radius was 108 nm, with a 5.4 nm native 

oxide film.  After compressing the particle 29 nm (which corresponds to 13% engineering 

strain), fracture occurred.  Analysis of the real-time images indicated that fracture likely began as 

a crack that was nucleated in the native oxide layer and advanced along the (111) 

crystallographic plane.  In addition to identification of the orientation of the fracture plane, it was 

also possible to directly calculate the plane strain fracture toughness, KIc, which is an important 

fracture parameter.   

  

 In a study by Shan et al., ultrahigh stress and strain were measured in hollow CdS 

nanoparticles, based on hierarchical effects related to nanoparticle diameter, shell thickness, and 

grain size [66].  Individual nanoparticles were observed to sustain up to 20% compressive strain 

and a contact pressure of over 1 GPa before fracture, which is a substantial amount of stress and 

strain for a normally brittle material.  In addition, finite element modeling shows that local 

stresses within the shell can approach the ideal shear strength of CdS.  The exact deformation 

mechanism is unknown, but theorized to be due to a combination of grain boundary diffusion, 

small-scale crack initiation, and dislocation plasticity.  Based on these mechanisms, it is perhaps 
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possible to further tune the mechanical properties of these nanostructures by modifying the ratio 

of shell thickness to particle diameter, as well as the grain size of the shell. 

  

 Carlton and Ferreira studied the deformation behavior of nanoparticles and assessed 

various TEM contrast modes for identifying dislocations [67].  Notably, this experiment did not 

utilize any load-sensing capabilities of the in situ transducer.  Diffraction contrast imaging was 

undertaken to study the deformation of a Ag nanoparticle when compressed with a diamond tip.  

A contrast band was observed in the nanoparticle immediately after contact, with more contrast 

bands forming as the strain on the particle was increased.  Although these contrast bands can be 

attributed to dislocations, they can also be the result of diffraction artifacts.  Unambiguous 

identification of dislocations in this imaging mode requires accurate knowledge of the diffraction 

conditions, which is not trivial during nanoindentation.  Phase contrast experiments were also 

performed on a Ag nanoparticle indented by a W tip.  In this mode, the atomic structure of the 

nanoparticle is imaged as lattice fringes.  As a result, dislocations appear as an additional lattice 

fringe corresponding to the additional half-plane of atoms, meaning that the presence of 

dislocations is much more readily apparent compared to diffraction contrast imaging.  In both of 

these experiments, the contrast signals that form during indentation disappear after the particle 

was unloaded, implying that the dislocations annihilated during unloading. 

 

 Direct observation of large reverse dislocation motion and associated dislocation 

annihilation was confirmed by Mompiou et al. in tensile-loaded ultrafine grained (UFG) Al [68], 

which was further correlated with large elastic back-strains during unloading.  In this 

experiment, a tensile strain was applied to an electron transparent UFG Al foil (grain size ~500 
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nm) in situ, and the resulting dislocation dynamics were captured in real time.  During loading, 

dislocations were heterogeneously nucleated at grain boundaries and traverse across the interior 

of the grain.  Upon reaching the boundary of a neighboring grain, the dislocations either became 

partially inserted into the grain boundary or simply pile-up at the grain boundary, depending on 

the magnitude of applied stress.  The repulsive stress fields generated by these dislocations create 

a substantial back-stress large enough to cause reverse dislocation motion upon unloading.  In a 

coarse-grained material, the extent of this reverse dislocation motion would be negligible; 

however, due to the small grain size of UFG Al, dislocations can actually move back across the 

entire width of the grain and annihilate at the original source.  This behavior is more prevalent 

with decreasing grain size, due to a more rapid build-up of dislocation pile-ups at adjacent grain 

boundaries, a larger stress concentration, and a higher likelihood that the reverse dislocation 

motion will be sufficient for the dislocations to move back to their source and annihilate. 

 

 Dislocation annihilation at surfaces and interfaces has also been shown to result in a 

phenomenon known as mechanical annealing, as studied by Shan et al. in FIB-milled Ni 

nanopillars [15].  Nanocompression experiments with a flat diamond punch were performed on 

an initially defect-filled nanopillar, with a dislocation density of ~1015 m-2.  After compression, 

the pillar was found to be free of dislocations due to the existing defects annihilating at the free 

surfaces of the nanopillar, albeit with significant plastic deformation at the apex of the pillar.  

The now dislocation-free pillar was found to have improved strength, in accordance with the 

hardening behavior that occurs due to dislocation starvation in small material volumes.   
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2.1.2 Mechanical Behavior of Core-shell Structures 

 Compared to the broad range of studies on both the physiochemical properties of CSNs 

[69] and the nanomechanical behavior of single material nanostructures, very little information 

exists about the mechanical properties of CSNs.  Often, mechanical investigations of CSNs rely 

extensively on computational modeling, using both atomistic and continuum methods. 

 

 Li et al. used the elasto-plastic finite element method to simulate yielding of a 

hemispherical shell during compression loading [70].  In this study, the authors developed a 

universal shell parameter that predicts the spatial location of yielding as a function of shell 

thickness, shell radius, elastic modulus, and yield strength.  Notably, this model predicts that, 

above a critical shell parameter value, a hemispherical shell will behave identically to a solid 

hemisphere.   

 

 This analysis was extended by Goltsberg et al. to model yielding in hemispheres coated 

with hard shells [71].  An improved universal coating parameter was developed to predict the 

location of yield in core-shell hemispheres.  Depending on shell thickness, yield was primarily 

found to occur in either the shell (for thicker shells) or at the core/shell interface (for thinner 

shells), with yield occurring within the core only in the limit of very thin shell thicknesses.  In 

this limit, a weakening effect was predicted in spheres coated with very hard, thin shells, which 

was experimentally validated for steel and brass spheres coated with TiN [72]. 

 

 Zheng et al. used atomistic modeling to study uniaxial compression of core-shell Cu/Ag 

nanoparticles, with an emphasis on the dislocation behavior in these structures [73].  Compared 
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to bare Cu nanoparticles, the presence of the Ag shell was found to substantially modify the 

behavior of dislocations within the Cu core.  The core-shell interface acts as a nucleation site for 

Shockley partial dislocations with four different Burgers vectors in the <112> family within the 

Cu core; however, whenever a dislocation with one of the four Burgers vectors was nucleated, 

nucleation of partial dislocations with the other three Burgers vectors was suppressed.  This 

suppression was not observed in the bare Cu nanoparticles, which resulted in the formation of 

dislocation tangles. 

 

 Experimentally, it has been shown that it is possible to indirectly calculate material 

properties such as Young’s modulus and shear modulus of CSNs through the excitation of elastic 

vibrational modes using either pump-probe optical methods or inelastic light scatting [74,75].  

By tuning the frequency of the excitation source, both the core and shell can be separately 

excited, allowing independent measurement of the constituent materials of the CSN.  Both of 

these techniques are generally limited to isotropic, linear-elastic materials that also have coherent 

vibrational modes, i.e., they not applicable to amorphous materials.  Due to this limitation, the 

application of these methods is limited to a fairly small subset of CSN material systems, and they 

further provide no information about the actual deformation behavior of CSNs.  In order to more 

completely characterize the mechanical deformation of CSNs, a more direct approach is 

required. 

 

 One of the few studies to directly investigate the deformation behavior of CSNs involved 

nanoindentation of CSNs composed of CoB2 cores with very thin (~10 nm) SiO2 shells [76,77].  

Three different regimes of particle deformation - one elastic and two plastic regimes with 
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different hardening rates - were observed as a function of indentation depth.  This type of 

indentation behavior was hypothesized to be the result of a combination of interactions of pre-

existing defects in the core with the SiO2 shell and irreversible strain hardening.  Clearly, the 

core-shell structure resulted in demonstrable changes in material behavior. 

 

2.2 Deformation Recovery Observed in Nanomaterials 

 Anomalous deformation recovery has been observed in a handful of nanomaterials, which 

is desirable for the development of nanostructures with deformation-resistant properties.  To be 

clear, the deformation recovery observed in these materials is unambiguously beyond what 

would be expected for elastic recovery, nor can it be attributed to true viscoelastic effects.  

Several authors have used the term “reverse plasticity” to describe this phenomenon, although it 

may be more accurately described as “deformation recovery beyond the elastic limit.”  

 

 Gerberich et al. studied reverse plastic strain in single-crystal Si nanospheres in two 

separate studies [78,79].  In these studies, additional height recovery of the nanospheres was 

measured from scanning probe microscopy (SPM) after unloading, as compared to the 

cumulative residual displacement calculated from the load-displacement data from a 

nanoindentation test.  For example, a nanosphere with a 50.3 nm diameter was sequentially 

indented 6 times, with a cumulative residual displacement of 30 nm as calculated from the load-

displacement data.  However, when the nanosphere height was measured using SPM, it was 

found to be 37.4 nm tall, which is 17.1 nm taller than would be calculated from the residual 

displacement.  Ostensibly, this height recovery happened after unloading, and corresponds to 

34% strain recovery.  The percentage of recovery was found to increase with increasing 
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indentation load and decreasing nanosphere radius, in some cases reaching nearly 50%.  This 

mechanical response was hypothesized to be the result of dislocations retracing their paths due to 

a high internal back-stress generated during nanosphere compression.  It should be noted that the 

largest reverse strains corresponded with the most severe indentations, meaning that a substantial 

amount permanent deformation still accompanied the strain recovery. 

 

 Zou and Yang also observed reverse plastic deformation in amorphous silica 

nanoparticles with particle radii of 35-40 nm [80].  In this case, the recovery of plastic 

deformation was more directly observed using SPM.  Immediately after a 30 µN indent, 

consecutive SPM images were taken to assess the deformation of the nanostructure.  After the 

first image, a depression of 5 nm depth was observed at the apex of the nanoparticle.  However, 

after a second consecutive image, the depth in the depression decreased by approximately 2 nm.  

In contrast to the theory by Gerberich that this recovery is mediated by dislocations, these 

nanoparticles are amorphous and therefore cannot support dislocations.  Instead, it was theorized 

that the recovery of plastic deformation in these nanoparticles might be activated by thermal 

fluctuations or some other perturbation by the SPM tip. 

 

 A limited amount of reverse plasticity has also been observed in the CoB2/SiO2 core-shell 

structures mentioned previously [76,77].  Much like silica nanoparticles, the core of these 

nanoparticles is also amorphous, which precludes dislocation-based strain recovery mechanisms.  

Instead, the deformation recovery is attributed to possible mechanical-magnetic coupling effects 

in the CoB2 core.  Like the Si nanospheres and silica nanoparticles, the deformation recovery is 

not complete. 
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 Vlassov et al. reported on the mechanical behavior of Ag/SiO2 core-shell nanowires in 

response to bending deformation [81].  These nanowires exhibited enhanced fracture resistance 

and nearly complete recovery of bending deformation during in situ SEM bending experiments, 

even with bending deflections approaching 90°.  This behavior was shown to only occur in the 

core-shell nanowires, and not in identically prepared Ag nanowires and hollow SiO2 nanotubes, 

which indicates that this phenomenon is an explicit result of the core-shell structure.  However, it 

was also found that this shape recovery is a purely extrinsic effect related to electron beam 

irradiation.  That is, shape recovery of the nanowires did not occur without direct exposure to the 

electron beam after deformation.  Both the bending ductility and the deformation recovery were 

postulated to be the result of e-beam induced viscosity in the SiO2 shell, which allowed the 

elasticity of the Ag core to dominate the nanowire deformation behavior. 

 

 In a study by Tidwell et al., complete deformation recovery was identified in Al/a-Si 

core-shell nanostructures, fabricated from a nanotextured Al thin film that was conformably 

coated with a-Si [22].  The individual nanostructures were composed of ~200 nm diameter 

polycrystalline Al dots protruding from an Al film that were coated with a 300 nm a-Si shell, 

which produced hemispherical core-shell structures.  When subjected to load-controlled 

nanoindentation up to 300 µN, these structures display unusual load-displacement behavior, most 

notably a complete lack of residual deformation in the load-displacement data.  This suggests 

that the nanostructure experienced no permanent deformation after indentation, a conclusion that 

was further supported by scanning probe microscope images that show no structure height 

change after indentation.  These structures were found to have a yield strength higher than either 
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Al or a-Si alone, and were able to sustain up to 23% engineering strain during loading, with 

nearly 100% recovery of this deformation after unloading.  This combination of high strain-

bearing capacity and deformation recovery far exceeds anything else reported in the literature.  

However, the mechanisms that contribute to this behavior were not determined. 

 

2.3 Tribological Properties of Nanotextured Surfaces 

 Surface nano-texturing is an effective method for designing surfaces with improved 

tribological properties such as friction, adhesion, and wear.  This is especially true for 

applications where the contact interactions occur on the micro- or nanoscale.  In these systems, 

adhesion and friction issues are exacerbated due to the large surface-to-volume ratios compared 

to macroscale systems [82], which frequently cause device reliability issues when contact 

interactions are involved [83].  Nanotextured surfaces (NTSs) have demonstrated significantly 

reduce adhesion and friction in polymers [16,84], metals [19,20,85], and other materials [86,87].  

Despite these improved tribological properties, a common weakness of NTSs is a lack of 

structural integrity of the individual nanotextures when subjected to contact loading.  This results 

in permanent deformation of the surface at even moderate contact forces, as well as an associated 

loss of desirable tribological properties, such as reduced friction or adhesion.   

 

 Yoon et al. studied the tribological properties of patterned PMMA films with topography 

based on the lotus leaf [16].  This surface exhibited improved friction and adhesion behavior 

compared to a non-patterned PMMA thin film due to a combination of a hydrophobic surface 

chemistry and nanoscale surface topography that serves to reduce the contact area during 

loading, although the PMMA nanotextures were significantly deformed during microscale 
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friction testing.  In turn, this deformation results in an increase in real area of contact during 

subsequent frictional contact and an attendant increase in friction.  Beyond the simple geometric 

aspect of contact area, surface topography contributes to the surface free energy, which governs 

solid-solid adhesion.  The surface free energy, in turn, determines the surface wettability 

(hydrophilicity/hydrophobicity) that governs capillary (solid-liquid) adhesion [84].  Therefore, 

the implications of surface deformation go beyond mechanical damage and can potentially result 

in more comprehensive surface property degradation. 

 

 The tribological properties of Ni nanodot patterned surfaces have been studied by Zou et 

al. [19] and Wang et al. [20].  The nanodot patterned surfaces were fabricated by thermal 

evaporation of Ni through an anodized aluminum oxide membrane, which created large area 

hexagonal arrays of Ni nanodots.  Ni nanodot patterned surfaces exhibited superior friction and 

adhesion performance compared to single crystal Si, primarily due to a reduction of contact area 

with the nanotextured surface.  Even still, the mechanical durability was found to be lacking.  

Although the individual Ni nanodots were shown to have a higher hardness compared to bulk Ni 

[85], when subjected to nanoscratch testing with a 1 µm diamond tip, deformation occurred at 

normal loads as low as 4 µN.  Hertzian contact theory calculations indicate that the shear stress at 

this normal load is over 3 times larger than the theoretical shear strength of Ni, which explains 

why the nanodots deformed at such a low load.  Based on this data, it is possible to conclude that 

purely metallic nanostructures may not be sufficiently resistant to surface deformation for use in 

practical applications. 
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 Park et al. studied the tribological behavior of nano-undulated diamond-like carbon 

(DLC) films, fabricated by deposition of DLC onto a surface patterned with Ni nanodots.  The 

study found them to have favorable microscale frictional properties compared to smooth DLC 

films [88].  The improved tribological properties were attributed to a reduced area of contact due 

to the nano-undulated surface, as well as a suppression of the tribochemical reaction with the 

environment with increasing roughness in the presence of humidity [89].  In these studies, there 

is no stated influence from the underlying Ni nanodots on the mechanical behavior of these 

surfaces, and the formation of wear debris was still observed during ball-on-disk tribometer 

experiments.  These surfaces have also been evaluated for possible use in MEMS devices [90], 

and have been found to have reduced friction, as well as reduced solid-solid and capillary 

adhesion, compared to smooth DLC films.  Microtribometer experiments using a 0.5 mm soda 

lime ball and 3000 µN normal load, which corresponds to an extremely low contact pressure, 

showed no evidence of microscale surface deformation after 150 cycles, although it was not 

determined if any deformation occurred at the nanoscale. 

 

 Morton et al. investigated the nanotribological properties of NTSs composed of both Al 

nanodots and Al/a-Si CSNs [18], the latter of which have been shown by Tidwell et al. [22] to 

have interesting deformation-resistant properties.  Compared to a smooth Si wafer, the Al 

nanodots effectively decreased the measured coefficient of friction at low normal loads when 

characterized by nanoscratch testing with a 100 µm diamond tip.  Surface deformation of the 

nanodots was detected at normal loads as low as 750 µN, causing a notable increase in plowing 

friction.  At higher loads (4000 µN and above), the plowing friction became so severe that the Al 

nanodots performed worse than smooth Si.  Far superior frictional properties were obtained from 
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the CSNs, which showed a reduction in coefficient of friction of 56-74% compared to smooth Si, 

depending on normal load.  In addition, no observable surface deformation occurred, even for 

normal loads as high as 8000 µN.  This combination of reduced friction and improved 

deformation resistance is unusual, especially at relatively large contact pressures.  Typically, 

there will be a tradeoff between these attributes. 

 

2.4 Summary 

 Clearly, a plurality of unique mechanical phenomena is observed in nanomaterials.  

Based on a survey of the relevant literature, it is plausible that the unique deformation-resistant 

properties of Al/a-Si CSNs could be facilitated by a number of nanoscale material behaviors, 

including conventional size effects; dislocation interactions within the Al core, including 

interactions with grain boundaries and the core-shell interface; and core-shell mechanics.  

Determination of the exact mechanisms that contribute to the mechanical behavior of the CSNs 

will further enable the development of nanomaterials with desirable mechanical properties, 

potentially benefiting a number of high-tech fields.  
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CHAPTER 3 

EXPERIMENTAL METHODS AND SIMULATION TECHNIQUES 

 In this chapter, an overview of the techniques used to design, fabricate, and characterize 

the properties of Al/a-Si core-shell nanostructures are presented.  In addition, modeling methods 

utilizing molecular dynamics simulations are also described. 

 

3.1 Nanostructure Fabrication 

 The fabrication method used in the foundational studies on the properties of Al/a-Si 

CSNs [18,22] resulted in a textured surface populated with a random ensemble of CSNs, with 

minimal control over the CSN size, shape, location, or density.  This lack of spatial control 

severely limited the characterization and comparative analysis of multiple structures and 

prevented the detailed analysis of a single structure by multiple characterization techniques.  To 

rectify this limitation, a new fabrication method employing electron beam lithography (EBL) and 

a metal lift-off procedure has been developed.  This method can produce regular arrays of 

nanostructures with great control over the size, shape, and location of the individual metallic 

cores.  From these metallic nanostructure arrays, core-shell structures are fabricated by 

depositing a-Si using plasma-enhanced chemical vapor deposition. 

 

3.1.1 Electron Beam Lithography and Metal Lift-off 

 EBL is a maskless lithographic technique in which a pattern is written into an electron 

resist (an electron-sensitive polymer) by rastering an electron beam over the desired area of a 

sample surface, typically with nanometer resolution [91].  The attainable size and resolution of 

patterns written by EBL are strongly dependent on electron beam parameters, such as 
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voltage/dose and spot size, and the resist chemistry.  Analogous to photoresists used in 

conventional photolithography, both positive and negative electron resists exist.  For positive 

resists, electron beam exposure induces scission reactions in the exposed polymer, resulting in 

higher dissolution sensitivity to the development solvent compared to the unexposed polymer.  

Conversely, negative resists become cross-linked during electron exposure, resulting in lower 

dissolution sensitivity during development.  

 

 The process for fabricating metallic nanostructure arrays on a conductive substrate is 

outlined in Fig. 3.1.  First, 4% concentration of 495k MW PMMA (a positive electron resist with 

a suitable undercut for metal liftoff applications) is spin-coated onto the substrate at 3000 rpm.  

At this concentration and speed, the resulting PMMA film is ~200 nm thick.  Patterned areas are 

then written into the PMMA film by selective electron beam exposure (a).  After exposure, the 

samples are developed in a 1:3 mixture of methyl isobutyl ketone (MIBK) and isopropyl alcohol 

(IPA) for 30-45 s, and then rinsed in pure IPA for 15 s (b).  This can be followed by an optional 

low-power plasma etch to help smooth the rough edges of the features developed in the PMMA 

film.  After development, a thin film of metal is deposited onto the patterned PMMA arrays, 

resulting in metal infill into the holes in the PMMA film (c).  In principle, this can be 

accomplished with almost any low temperature deposition technique, such as physical vapor 

deposition (PVD), metal plating, or chemical vapor deposition (CVD) methods that utilize 

substrate temperatures below the glass transition temperature of PMMA (~105 °C).  For best lift-

off performance, the deposited metal film should be no thicker than half the electron resist 

thickness.  The remaining PMMA is then selectively removed by immersion in a solvent 
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(Remover PG, MicroChem Corp.) at 70-80°C (d), resulting in regular metallic nanostructure 

arrays (e). 

  

Fig. 3.1:  Flowchart of the EBL and metal lift-off procedure for fabricating metallic 
nanostructures. 
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   A dedicated electron beam writer (JBX-9300FS, JEOL Ltd.) was used to produce 

templates for fabricating metallic nanodots and horizontally-aligned nanorods.  The exposure 

parameters were 1 nA of current, a 50 kV accelerating voltage, and a size dependent beam dose: 

775 µC/cm2 for 100 nm hole diameters and 1000 µC/cm2 for 200-300 nm hole diameters.  The 

metallic nanostructures were deposited using thermal evaporation (Auto 306D, Edwards 

Vacuum).  Ingots of Al (99.99% purity) were loaded into a resistively-heated tungsten boat 

inside an evacuated bell jar.  The current passed through the evaporation boat was increased until 

the Al source material melted and then vaporized, with the deposition thickness monitored by a 

quartz crystal microbalance (QCM) sensor.  To fabricate the cores for the CSNs, 100 nm of Al 

was evaporated onto the patterned PMMA films at a rate of 0.4 nm/s.  Using this method, Al 

nanodots with base diameters of 100, 200, and 300 nm, as well as Al nanorods with diameters of 

100 nm and lengths of 100 nm, 500 nm, and 10 µm, have been produced. 

 

3.1.2 Plasma-enhanced Chemical Vapor Deposition 

 CVD is frequently used in the microelectronics industry for fabricating semiconductor or 

ceramic thin films on substrates.  In contrast to PVD methods, in which material is deposited 

through vaporization or atomization of a source material that then condenses on a substrate, thin 

film deposition using CVD techniques occurs via chemical reactions and/or chemical 

decomposition of precursor gasses at elevated temperatures [92].  Plasma-enhanced chemical 

vapor deposition (PEVCD) is a CVD process that allows for deposition of semiconductor and 

ceramic materials at substantially lower temperatures than conventional CVD.  In this method, 

the sample and precursor gasses are contained between parallel plate electrodes that are biased to 
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create either a radio frequency or direct current plasma.  This plasma serves to considerably 

increase the reaction rate of the deposition reaction at lower temperatures. 

 

 To fabricate the shells of the CSNs, a-Si was directly deposited onto the patterned Al 

nanodot arrays using PECVD (Plasma-Therm SLR730).  The substrate temperature, radio 

frequency power, and silane flow rate were 250° C, 20 W, and 85 sccm, respectively, during a-Si 

deposition.  The a-Si deposition rate was characterized by depositing a-Si thin films on Si wafers 

for various durations, and then measuring the resulting film thicknesses as a function of 

deposition time with an optical spectrometer (aRTie, Filmetrics).  The thickness-time 

relationship, which is sufficiently linear in the time range under investigation, is shown in Fig. 

3.2.  From this relationship, the necessary deposition times to produce a-Si films with 100 nm 

and 300 nm thickness were determined. 

  

Fig. 3.2:  Characterization of PECVD a-Si film thickness as a function of deposition time. 
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3.2 Instrumented Nanoindentation 

 Nanoindentation is a powerful nanomechanical technique for probing the mechanical 

properties of small material volumes [93].  Originally developed to quantitatively measure elastic 

moduli and hardness in isotropic solids [94-96], the field of nanoindentation research has 

expanded to include nanomechanical measurements on thin films [97-99], nanoparticles [78,80], 

nanocomposites [12,100,101], biomaterials [102,103], and polymers [104,105]. 

 

3.2.1 Load- and Displacement-controlled Indentation 

 In a typical nanoindentation experiment, a hard (usually diamond) tip with a well-defined 

shape is pushed into a sample surface while simultaneously measuring load and displacement of 

the indenter, with force and displacement resolution that could reach nN and sub-nm levels, 

respectively.  Through the use of feedback control, tests can be conducted with a wide range of 

load/displacement profiles and loading rates.  In load-control mode, the nanoindenter transducer 

is controlled to apply load at a specified loading rate, while measuring the resulting 

displacement.  In displacement-control mode, the load is measured in response to a specified 

displacement profile.  

 

The resulting load-displacement curves obtained from nanoindentation experiments offer 

a wealth of material behavior information.  Schematics of typical load-displacement curves are 

shown in Figure 3.3, for both load-controlled and displacement-controlled modes.  Aside from 

characterizing indentation parameters such as maximum load, maximum indenter displacement, 

contact stiffness, and residual displacement after unloading, discontinuous indentation 

signatures, which represent microscopic events occurring in the material volume beneath the 
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indenter tip, are also characterized.  For load-controlled indents, these signatures appear as 

displacement excursions at constant load, often called “pop-ins” and “pop-outs” when the 

signatures appear in the loading and unloading portions of the load-displacement curve, 

respectively.  In displacement-control mode, the analogous signature to the pop-in, known as a 

“load-drop,” appears as a sudden relaxation in the indentation load.  Likewise, the displacement 

control analog of the pop-out, called a “load-jump,” appears as an anomalous increase in contact 

load during unloading.  Physically, these signatures represent a discontinuity in the stiffness of 

the material being indented, which can be attributed to a variety of material behaviors, such as 

plasticity, phase transformations, and fracture.  For multi-component materials, such as CSNs, 

the physical origin of the indentation signatures is potentially ambiguous and substantial 

additional characterization is required. 

 

An instrumented nanoindenter (TriboIndenter, Hysitron) was used to characterize the 

deformation behavior of individual core-shell nanostructures, using a conical diamond tip with a 

1 µm tip radius of curvature.  The TriboIndenter features a 0.2 nm displacement resolution and a 

3 nN indentation force resolution, feedback control modes for both force-controlled and 

displacement-controlled indentation, and an integrated scanning probe microscope for accurately 

locating and indenting individual nanostructures.  A schematic of the TriboIndenter transducer 

setup is shown in Fig. 3.4.  The sample under investigation is placed on the XY stage and then 

maneuvered under the transducer assembly.  The indenter tip is then brought into contact with 

the sample.  During the indentation experiment, the indentation load is applied electrostatically 

by biasing the bottom driving plate relative to the center plate (which is attached to the tip), and 

the resulting displacement is measured from the capacitance of the three-plate capacitor 
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composed of the center plate and the two electrostatic driving plates.  Feedback algorithms are 

used to control the transducer motion to follow either a specified loading/unloading rate or a 

specified linear displacement profile, and the resulting load-displacement data is logged.  The 

load-displacement behavior of CSNs, CSRs, and layered thin films have been characterized 

primarily using displacement-controlled nanoindentation, which is more sensitive to the transient 

events that correspond to the discontinuous indentation signatures [106]. 

  

Fig. 3.3:  Schematics of load-displacement curves for load-controlled and displacement-
controlled indentations. 
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Fig. 3.4:  Schematic of the nanoindenter transducer.  The transducer can be feedback controlled 
to follow a specified normal load or displacement profile, with the resulting displacement or load 

response logged, respectively. 
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3.3 Nanoscale Imaging Characterization 

 Since the deformation behavior of CSNs is of interest, imaging techniques with nanoscale 

resolution are required to characterize the geometric properties of the nanostructures before and 

after deformation of the nanostructures.  Detailed nanostructure morphology is characterized by 

scanning electron microscopy (SEM) and atomic force microscopy (AFM).  In addition, an in 

situ scanning probe microscope (SPM) integrated with the nanoindenter allows for comparative 

measurements of nanostructure height immediately before and after nanoindentation. 

 

3.3.1 Scanning Electron Microscopy 

 SEM is a common technique for imaging surface features of conducting or 

semiconducting materials in vacuum, usually with nanometer resolution.  In a typical SEM, a 

beam of electrons is produced with either a field emission or thermionic emission electron gun 

and is accelerated toward the specimen with a specified accelerating voltage.  The incident beam 

of electrons penetrates into the sample, causing secondary electrons to be emitted.  These 

secondary electrons are then collected by an electron detector as the beam rasters over the 

sample surface to produce a spatial intensity map, which is then digitized to form an image. 

 

 The surface morphology of the Al nanostructures, CSNs, CSRs, and thin films were 

imaged using a field-emission SEM (Nova NanoLab, FEI), with acceleration voltages of 5-15 kV 

and beam currents of 0.2-2.2 nA.  The Nova is a dual-beam unit that also includes a focused ion 

beam (FIB) for preparing cross-sectional images of individual nanostructures.  Cross-sectioning 

in accomplished by first using electron or ion beam-assisted deposition to deposit a protective Pt 

layer over the area of interest, followed by milling a suitable depth into the sample surface at 
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normal incidence with the FIB.  The exposed cross-sections are then imaged by the SEM at 

oblique incidence. 

 

3.3.2 Atomic Force Microscopy 

 AFM is a scanning probe technique in which small-scale surface topography is physically 

measured by the deflection of a piezoelectric tube as it is scanned over the surface, with sub-

nanometer resolution.  In a typical AFM set-up, a micromachined cantilever with a sharp 

pyramidal tip (radius of curvature <10 nm), generally fabricated from crystalline Si or Si3N4, is 

affixed to the piezoelectric scanning tube.  The motion of the cantilever beam is measured as the 

tip is scanned over the sample surface, and feedback controls are used to modulate the piezo 

voltage such that it accurately follows the surface topography.  Three different imaging modes – 

contact, tapping, and peak-force tapping, each with different feedback metrics - are prominently 

used for measuring topography.   

 

 In contact mode, the tip is brought into intimate contact with the sample surface until a 

specified cantilever deflection is reached, and the piezo voltage is then modulated to maintain 

this deflection value.  This mode provides the most direct measurement of topography; however, 

there is a high risk of tip and/or surface damage due to prolonged contact.  In addition, this mode 

is very susceptible to tip-sample adhesion, which can significantly degrade image quality.  In 

tapping mode AFM, the cantilever is oscillated such that it only makes intermittent contact with 

the sample, with the driving frequency typically just below the resonance frequency.  This 

frequency becomes damped as the tip interacts with the sample, and the piezo is feedback-

controlled to maintain the target oscillation frequency.  Peak-force tapping mode operates 
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similarly, except the target set point is instead the tapping force exerted by the tip as it comes 

into contact with the sample, rather than the oscillation frequency. 

 

 The surface topography of Al nanostructures, CSNs, and CSRs was imaged using AFM 

(Dimension Icon, Bruker), primarily in peak-force tapping mode.  The Dimension Icon features a 

proprietary imaging algorithm (ScanAsyst) that dynamically optimizes the peak-force set point 

and set point gain to achieve high-quality image fidelity with minimal operator input.  Triangular 

Si3N4 cantilevers (SCANASYST-AIR) with a nominal tip radius of 2 nm were used to image at a 

scan rate of 1 Hz.   

 

3.3.3 In situ Scanning Probe Microscopy 

 The TriboIndenter is equipped with a piezoelectric transducer that functions as a SPM.  

Fundamentally, this imaging technique operates similarly to an AFM, except that the feedback 

metric is the normal load measured by the electrostatic transducer on the nanoindenter.  The 

transducer is mounted to the piezoelectric scanner head, and the diamond tip is lowered onto the 

sample surface until a user-defined normal force is reached.  As the scanner rasters over the 

surface, the topography is tracked by modulating the piezo voltage to maintain a constant normal 

force as measured by the force transducer.  Since topography measurements are performed with 

the same tip as the nanoindentation experiments, tip convolution effects can potentially result in 

substantially exaggerated lateral dimension measurements compared to AFM, especially for 

large tip radii.  However, height resolution is largely unaffected by tip convolution, so highly 

accurate height measurements can still be achieved with this technique. 
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 The mechanical stage on the nanoindenter has a positioning resolution on the order of 0.5 

µm, so the in situ SPM is instrumental for precisely locating and indenting individual 

nanostructures.  After coarsely positioning the nanoindenter transducer with the XY stage, SPM 

imaging mode was engaged, and piezo offsets were applied to bring the nanostructured desired 

for investigation directly under the transducer.  SPM topography images were acquired before 

and after each indentation, with a force set point of 1 µN. 

 

3.4 Molecular Dynamics Simulations 

 Molecular dynamics (MD) is a widely used computational method for modeling material 

behavior on the atomistic scale.  Specifically, MD has proven to be a very effective method for 

simulating dislocation activities and interfacial phenomena [73,107-112].  In an MD simulation, 

atoms are represented as point masses that obey Newton’s laws of motion, with the mutual 

interactions between atoms described by a specified interatomic potential.  Numerically 

integrating the equations of motion, subject to appropriate initial and boundary conditions, 

allows atomic trajectories to be calculated and tracked.  Additional thermodynamic boundary 

conditions, such as thermostats [113] and barostats [114] that approximate canonical (NVT) and 

isobaric-isothermal (NPT) ensembles [115], can be introduced by appropriately modifying the 

equations of motion to couple the atomistic system to the surrounding environment [116]. 

 

 Large-scale simulations of nanoindentation processes in atomic systems are now quite 

common [117-119] and can provide insight to the nanoscale mechanisms that determine material 

behavior during nanoindentation.  Such simulations have elucidated the role of tip-surface 

interactions [120-123], dislocation nucleation at surfaces and interfaces [124-126], elastic-plastic 
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transitions [6], film-substrate interactions [127], and surface defect effects [128,129] on 

mechanical behavior, among other relevant nanoscale mechanical phenomena that are not 

typically experimentally accessible.  The utility of MD nanoindentation modeling allows for 

simulation of nanoindentation experiments on core-shell nanostructures, with the goal of 

determining the microscopic mechanisms that contribute to the observed deformation-resistant 

behavior in these structures. 

 

3.4.1 The Modified Embedded Atom Method 

 The embedded atom method (EAM) describes the interatomic potential, and thus the 

atomic potential energy, as a many-body functional of the background electron density of a 

system [130].  More plainly, EAM calculates the potential energy of an atom as the energy 

required to “embed” the atom into the background electron cloud.  The most salient feature of 

EAM is its ability to successfully model cohesive interactions and defects in metals.  While 

EAM is suitable for simulating metallic systems, it is unsuitable for modeling materials with 

directional bonding interactions, such as Si.  The modified embedded atom method (MEAM) 

corrects this deficiency by replacing the spherically averaged electron density used in EAM with 

an angularly dependent electron density [131], which allows simulation of metallic and non-

metallic elements within the same theoretical framework.  Recent efforts by Jelinek et al. have 

produced a MEAM potential that includes combinatorial parameters for Al-Si interactions [132], 

which should be suitable for modeling the interfacial interactions between the core and shell in 

Al/a-Si core-shell structures.   
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3.4.2 Dislocation Extraction Algorithm 

 As long as an appropriate interatomic potential is used, molecular dynamic simulations 

can model dynamic changes in crystal structure, such as phase transformations and defect 

nucleation, without additional constitutive laws.  However, changes in crystal structure are 

potentially difficult to identify simply by atomic positions, especially at system temperatures 

where thermal vibrations can be significant.  To remedy this, a number of metrics to 

quantitatively assess changes in crystal structure have been developed, each with their own 

strengths and weaknesses. 

 

 Common neighbor analysis (CNA) [133] is an effective method of discriminating 

different crystal structures within a lattice, making it ideal for identifying phase transformations.  

This method assigns a crystal structure (i.e., FCC, BCC, or HCP) to an atom by analyzing the 

number of nearest neighbors to the atom as well as the bonding topology of these neighbors.  To 

this end, CNA can identify the presence of defects through atoms that do not have the 

appropriate bonding that corresponds to a known crystal structure, but yields little other 

information about the type of defect.  Another method, the centrosymmetry parameter (CSP), 

quantifies the local deviations from centrosymmetry that often accompany defects in 

centrosymmetric lattices [134].  Characteristic values of this parameter can be used to identify 

bulk atoms, atoms within a dislocation core, stacking faults, and surface atoms.  Conversely, this 

method is only applicable to centrosymmetric lattices, and even then, it cannot distinguish 

between multiple crystal structures.  Other structure identification methods, such as bond order 

analysis, bond angle analysis, and Voronoi decomposition, also exist [135].  A major limitation 
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of all of these methods is that they do not directly characterize the defect, but rather the effect 

that the defect causes on the surrounding atoms. 

 

 For dislocations, this limiting weakness means that no information about dislocation type 

or Burgers vector can be obtained from these methods.  In order to study in-depth dislocation 

dynamics from atomistic simulations, a method of analyzing and representing complete 

dislocation lines is preferable.  The dislocation extraction algorithm (DXA) provides defect 

identification in cubic and hexagonal lattices, including dislocations, grain boundaries, free 

surfaces, and pores [136].  DXA uses CNA to identify “defected” atoms that are not in a perfect 

lattice configuration, generates a closed 2-dimensional mesh to separate crystalline atoms from 

defect atoms, and then systematically constructs a Burgers circuit around the defected material to 

identify individual dislocation lines.  The functionality of this algorithm provides a very 

complete quantitative characterization of atomic distortion, making it useful for studying 

dislocation dynamics.  For example, in FCC Al, DXA can effectively distinguish between perfect 

FCC and Shockley partial dislocations, as well as identify unperturbed atoms in an FCC 

configuration and the HCP atoms in the stacking faults bounded by Shockley partials. 

 

3.4.3 MD Nanoindentation Simulation of Core-shell Nanostructures 

 MD simulations of nanoindentation of Al/a-Si core-shell nanostructures and core-shell 

nanorods were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) [137] to determine the effects of core confinement on the dislocation behavior of 

these structures.  A schematic of a CSN simulation domain is shown in Fig. 3.5.  The simulation 

domain consists of a single-crystal (001) FCC Al core on a 1 nm rigid substrate of frozen FCC 
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Al atoms, covered by a shell of a-Si.  A rigid Al substrate was chosen to provide a commensurate 

core/substrate interface to prevent the formation of misfit dislocations at the core/substrate 

interface due to the lattice mismatch between Al and Si.  The nanostructure is indented along the 

y-axis, and periodic boundary conditions are applied in the x- and z-directions.  The a-Si shell 

was constructed by calculating the number of Si atoms that would be contained in the shell 

region if it were composed of crystalline Si with a diamond cubic crystal structure, and then 

randomly populating the shell region with this number of Si atoms to form a fully-dense a-Si 

shell.  The biggest limitation to using MEAM to model a-Si is the unrealistic densities obtained 

from the classical method of slowly quenching a Si melt [138].  To rectify this, the density of the 

a-Si shell was corrected by systematically removing Si atoms that were within 1.5 Å of another 

Si atom in order to achieve an experimentally validated shell density of 2.28 g/cm3 [139] after 

equilibration.   

 

 In these simulations, the indenter is modeled as a spherical repulsive potential of 100 nm 

radius, which is more computationally efficient than explicitly modeling the indenter tip as a 

collection of atoms or a rigid body.  The force exerted on an atom by the indenter is calculated 

as: 

     
     (3.1) 

where K is a constant describing the “strength” of the indenter, R is the radius of the indenter, 

and r is the distance of the atom from the center of the indenter.  To model the nanoindentation 

process, a spherical indenter (K  = 10 eV/Å3) is controlled to move into the CSN a specified 

depth with a constant velocity of 0.5 Å/ps while maintaining a system temperature of 300 K.  

This process closely mimics a displacement-controlled nanoindentation experiment, albeit with a 

F r( ) = −K r − R( )2 , r < R
F r( ) = 0, r > R
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displacement rate that is 9-12 orders of magnitude larger than is used in typical nanoindentation 

experiments.  Examples of LAMMPS scripts for CSN and CSR nanoindentation simulations are 

located in Appendix 1.  Dislocation activities within the cores of the CSNs are visualized using 

DXA within the Open Visualization Tool (OVITO) [140].  DXA enumerates the length of each 

dislocation segment, which allows the dislocation density within the Al core to be calculated 

according to the formula: 

      
          (3.2) 

where ℓi is the length of the i-th dislocation line and V is the volume of the Al core. 

  

 
ρ = ∑ ℓ i

V

Fig. 3.5:  Schematic of the MD simulation domain used during the nanoindentation simulations. 
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3.5 Nanotribological Property Characterization 

 The TriboIndenter is equipped with a two-axis transducer that can measure lateral forces 

in response to controlled lateral displacements.  This functionality is useful for nanotribological 

characterization of surfaces, especially measuring friction forces and coefficients of friction 

(COFs).  In addition, pull-off adhesion forces can be directly measured from shallow-depth 

displacement control indentations. 

 

3.5.1 Nanoscratch Testing 

 Nanoscratch tests were performed with the two-axis nanoindentation transducer, which 

has a 500 nN lateral force resolution.  A schematic of a typical nanoscratch load/displacement 

profile is shown in Fig. 3.6.  Friction behavior was characterized by scratches 8 µm in length at a 

lateral displacement rate of 1 µm/s and a conical diamond tip with a 100 µm tip radius of 

curvature.  During each scratch test, the normal and lateral forces and displacements are 

measured, which allows the COF to be calculated as the ratio of the lateral force to the normal 

force averaged over the scratch length. 
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Fig. 3.6:  Schematic of the transducer operation during a nanoscratch experiment. 
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3.5.2 Adhesion Measurements 

 Adhesion tests were also performed with the nanoindenter using displacement-controlled 

indents with a 100 µm tip.  As the tip approaches the surface, an attractive tip-sample force 

results in a “snap-to-contact” event.  Then, the tip indents a specified distance into the sample 

surface, and finally withdraws completely from the surface.  During withdrawal, the measured 

normal force will become negative as the tip breaks the solid-solid adhesion between the 

diamond tip and the surface.  The adhesion force is then the minimum force measured during 

withdrawal, which is illustrated in Fig. 3.7.  To reduce the influence of feedback-induced noise 

on the adhesion measurements, the load-displacement data during unloading is first smoothed 

with a 7-point quadratic polynomial Savitsky-Golay filter [141] before analysis.  

  

Fig. 3.7:  Schematic of an adhesion measurement from the load-displacement data of a 
displacement-controlled indentation. 
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CHAPTER 4 

THE ROLE OF CONFINED CORE VOLUME ON THE MECHANICAL BEHAVIOR 

OF AL/A-SI CORE-SHELL NANOSTRUCTURES 

 In this chapter, the mechanical behavior of novel Al/a-Si core-shell nanostructures 

(CSNs) is studied using instrumented nanoindentation to investigate the role that the size of the 

confined core volume plays on the mechanical response of these structures.  The results show 

that CSNs with the smallest core diameter, and therefore the smallest confined core volume, have 

a unique load-displacement behavior characterized by discontinuous indentation signatures 

known as “load-drops” and “load-jumps” that occur during loading and unloading, respectively.  

In conjunction with these indentation signatures, nearly complete recovery of deformation 

beyond the elastic limit is observed, which is enabled by dislocation activities within the 

confined Al core.  As the size of the confined core volume increases, the indentation signatures 

are suppressed and the deformation-resistant properties are reduced.  Supporting molecular 

dynamics simulations show that a smaller core volume results in a larger back-stress developed 

in the core during indentation, which further correlates with improved dislocation removal from 

the core after unloading.  The results presented in this chapter are based on a published study by 

Fleming and Zou [142]. 

 

4.1 CSN Surface Morphology Characterization 

 Using the EBL fabrication method, very uniform arrays of Al nanodots were fabricated to 

serve as the cores of the CSNs.  SEM images of Al nanodots with 100, 200, and 300 nm base 

diameters are shown in Fig. 4.1.  Geometrically, the nanodots are best described as truncated 

hemispheres, as all the structures are ~100 nm tall, regardless of base diameter, due to the lift-off 
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fabrication method.  The individual nanodots are polycrystalline, with a mixture of (111) and 

(200) crystallites and a crystallite size of ~25 nm, based on X-ray diffraction measurements on a 

similarly prepared Al thin film. 

  

 After coating with PECVD a-Si, the Al nanodot arrays were transformed into arrays of 

regularly spaced CSNs that are firmly attached to the underlying Si substrate.  This is shown 

schematically in Fig. 4.2, along with representative AFM images of CSNs with 100, 200, and 

300 nm core diameters, all with 300 nm shell thicknesses.  As a result of the shell skirting 

between structures, the final CNS height is still ~100 nm when measured by AFM, with some 

statistical variations from both the Al deposition and a-Si deposition processes. 

 

4.2 Nanoindentation Experiments 

 The mechanical behavior of the CSNs was characterized by displacement-controlled 

nanoindentation.  A spherical diamond tip of 1 µm radius of curvature was used to indent 

individual CSNs with a displacement rate of 3 nm/s while simultaneously measuring the applied 

force.  The relatively large tip radius, as compared to the CSN size, was chosen to provide 

compression loading to the CSNs, rather than indenting the structures. 
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Fig. 4.1:  SEM micrographs of Al nanodot arrays with 100 nm (a), 200 nm (b), and 300 nm (c) 
structure base diameters. 
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Fig. 4.2:  Schematic of the CSN geometry (a), along with representative AFM images of CSNs 
with 100 nm (b), 200 nm (c), and 300 nm (d) core base diameters, all with 300 nm shell 

thickness. 
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4.2.1 Load-Displacement Behavior of CSNs with 100 nm Core Diameters 

 Representative load-displacement curves for 20, 40, 60, and 80 nm indentations on CSNs 

with 100 nm diameter cores and 300 nm shell thickness are shown in Fig. 4.3.  The indenter 

displacement returns to zero (or nearly to zero) for all loading conditions, indicating that very 

little residual deformation remains after indentation.  Several types of indentation response are 

observed as a function of maximum indenter displacement, which are summarized in Table 4.1.  

The indentation response is either elastic or a small hysteresis loop for 20 nm indents, which 

indicates that this loading is at or near the elastic limit of the structures.  For the 40 nm indents, 

the load-displacement response is characterized by a smooth loading curve, along with an 

unloading curve with a slope inflection at a load of ~100 µN that serves to bring the residual 

displacement back to zero.  At both 60 and 80 nm displacements, a large number of load-drops 

appear during loading.  Then, during unloading, load-jumps occur in conjunction with a slope 

inflection.  These indentation signatures represent microscopic events occurring beneath the 

indenter tip during loading and unloading. 

 

Table 4.1: Indentation Response of CSNs 

 
 

Indentation Depth Maximum Indentation Load Indentation Response 

20 nm 108 µN Elastic or 
Hysteresis Loop 

40 nm 221 µN Smooth Loading Curve 
Slope Inflection During Unloading 

60 nm 336 µN Load-Drops/Jumps 
Slope Inflection During Unloading 

80 nm 359 µN Load-Drops/Jumps 
Slope Inflection During Unloading 
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 SPM images of a CSN before and after an 80 nm indent are shown in Fig. 4.4, along with 

the corresponding load-displacement curve.  After indentation, the measured height of the CSN 

decreases by 3.4 nm, but the structure morphology remains hemispherical (up to the resolution of 

the SPM), with no residual impression left from the indenter tip.  From the load-displacement 

data, a residual displacement of ~9.5 nm is observed after unloading.  The discrepancy between 

the SPM measurements and the load-displacement data implies that additional recovery is 

occurring after the structure is fully unloaded.  Regardless, this substantial deformation recovery 

beyond the elastic limit is especially remarkable considering the maximum indenter 

displacement is approximately 80% of the protruding structure height of ~100 nm. 

  

Fig. 4.3:  Load-displacement curves for 20, 40, 60, and 80 nm indents on CSNs with 100 nm 
core diameters and 300 nm shell thickness. 
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Fig. 4.4:  SPM images of a CSN before (a) and after (b) an 80 nm indentation, along with the 
corresponding load-displacement curve (c). 
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 4.2.2 Origin of the Indentation Signatures 

 The role the discontinuous indentation signatures play on the novel deformation-resistant 

properties of CSNs are not readily apparent.  These signatures can be the result of dislocation 

nucleation events and their propagation in metals [124,143], phase transformations in 

semiconductors [144], fracture in brittle materials [145], and thin film delamination [146]; in 

general, the contribution from each source is potentially ambiguous and requires more detailed 

analysis.  For Al/a-Si CSNs, the load-drops/jumps could potentially be attributed to dislocation 

activities in the Al core, pressure-induced phase transformations in a-Si, and shell 

fracture/delamination.  

 
 To gain further insight into the origin of the load-drops, multiple sequential indentations 

were performed on individual CSNs.  Load-displacement curves for 4 sequential 80 nm indents 

on a single CSN are shown in Fig. 4.5, which show consistent hardening behavior after each 

indent.  This hardening behavior suggests that neither shell delamination nor shell fracture can be 

the source of the observed load signatures, as elementary fracture mechanics predicts that these 

would both elicit a weakening effect in the CSNs.  In addition, even if they occurred during 

loading, the formation of cracks or shell delamination could not be rationally correlated with the 

load-jumps observed during unloading on physical grounds. 

 

 The lack of cracks and shell delamination was further confirmed by high resolution SEM 

images of focused ion beam (FIB) milled cross-sections of an unindented CSN and a CSN that 

has been subjected to 4 sequential 1000 µN load-controlled indentations, shown in Fig. 4.6.  In 

comparison to the unindented CSN, the apex of the indented nanostructure appears to be slightly 

flattened; however, it should be noted this CSN was indented to almost twice the maximum 
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contact load than the CSN characterized in Fig. 4.5.  Even at this much larger contact load, no 

evidence of shell delamination or crack formation is observed.   

  

Fig. 4.5:  Load-displacement curves for 4 repeated 80 nm indents on a CSN with 100 nm core 
diameter and 300 nm shell thickness.  The maximum contact load increases after each 

subsequent indent, indicating hardening behavior. 
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Fig. 4.6:  High resolution SEM micrographs of FIB milled cross-sections of an unindented CSN 
(a) and a CSN after 4 sequential 1000 µN indentations (b), showing no evidence of shell 

delamination or crack formation. 
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 In order to investigate the possibility of pressure-induced a-Si phase transformations as 

the source of the indentation signatures, load-controlled nanoindentation experiments were 

performed on a 300 nm smooth a-Si thin film fabricated with the same process conditions as the 

a-Si shells used to coat the CSNs.  These phase transformations will typically appear as a pop-

out or sharp slope inflection during the unloading portion of the load-displacement data 

[144,147], and are predicted to occur at contact pressures of 8.4 GPa, 16.25 GPa, and 19 GPa.  

As seen in Fig. 4.7, no evidence of a phase transformation is observed for contact pressures up to 

~22 GPa.  The elimination of shell delamination, shell fracture, and a-Si phase transformations 

as potential sources of the load-drops/jumps seen in the load-displacement curves strongly 

suggests that dislocation-based mechanisms in the Al core are instead responsible. 

 

 Further insight into the material deformation behavior can be found from analysis of the 

load vs. time and indenter displacement vs. time data.  A plot of both contact load and indenter 

displacement vs. time for an 80 nm indent on an individual CSN is shown in Fig. 4.8.  During 

loading, each drop in contact load corresponds to a forward indenter excursion as the contact 

stiffness suddenly and discontinuously decreases.  More interesting, however, are the indenter 

signals observed during unloading, where each increase in the contact load correlates with an 

anomalous indenter retraction.  Since this is a displacement-controlled indent, the only way the 

indenter can retract faster than the specified unloading rate is if something suddenly and 

unexpectedly pushes back against the indenter.  This is a strong indication that the load-jumps 

during unloading are a result of rapid deformation recovery in the CSNs. 
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Fig. 4.7:  Load-displacement curves for 250 µN, 1000 µN, and 2000 µN indents on a 300 nm a-Si 
thin film to investigate the existence of pressure-induced phase transformations.  The estimated 

maximum contact pressures for each indent are indicated at the apex of each curve. 
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Fig. 4.8:  Load and displacement vs. time curves for an 80 nm indent on a CSN with a 100 nm 
core diameter and 300 nm shell thickness (a); Zoom-in of the boxed area in (a) is shown in (b).  
During loading, load-drops are observed, in conjunction with a forward indenter excursion for 
each signature.  During unloading, each anomalous increase in load correlates with a sudden 

indenter retraction. 
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 Given the substantial amount of deformation recovery during unloading, it is not 

reasonable to expect that much of this deformation can be attributed to typically-brittle a-Si.  

This is especially true for large indentation depths, as there is no evidence to suggest such large 

recoverable deformations of a-Si should be possible.  Since very little residual deformation is 

observed and the CSNs remain hemispherical after nanoindentation, it is very likely that the 

harder and stronger a-Si shell acts a vehicle to transmit stress to the Al core, and the primary 

deformation occurs due to compression of the softer Al core between the harder shell and Si 

substrate.  At 20 nm indentation depth, where the CSNs behave elastically, the indenter is likely 

only interacting with the a-Si shell due to the relatively large thickness of the shell and the 

shallow indentation depth.  As the indentation depth increases to 40 nm, the Al core is elastically 

compressed between the shell and the substrate, and during unloading, the elastic recovery 

correlates with the slope-inflection seen in the load-displacement curve.  Further increases in 

indentation depth result in plastic deformation within the Al core, as indicated by the load-drops 

during loading that correspond to the nucleation and propagation of dislocations in the 60 and 80 

nm indentations.   

 

 With the knowledge that dislocation activities in the Al core play a vital role in the 

mechanical behavior of these structures, new insights into the mechanisms that enable 

deformation resistance can be attained.  In accordance with previous hypotheses [22,78,79], the 

existence of reverse plastic deformation depends on the generation of a sufficient back-stress to 

cause dislocations to retrace their paths or otherwise annihilate during unloading.  For CSNs, this 

back-stress is generated as the confined core volume is compressed between the hard a-Si shell 
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and Si substrate.  As the core diameter is increased, the confinement is reduced, which should 

have an effect on the mechanical behavior of these structures.  

 

4.2.3 Effects of Confined Core Volume 

 To explore the role of the size of the confined core volume, nanoindentation experiments 

were conducted on CSNs with 100, 200, and 300 nm core diameters and 300 nm shell thickness.  

Load-displacement curves for 60 and 80 nm indents on these structures are shown in Fig. 4.9.  

For the 60 nm indents, load-drops/jumps are observed for the 100 nm core CSN, as expected.  As 

the core diameter increases, the indentation signatures are at first partially suppressed, as seen for 

the CSN with the 200 nm core diameter, resulting in a load-displacement response similar to that 

seen in Fig. 4.3 for a 40 nm indent on a CSN with a 100 nm diameter core and 300 nm shell 

thickness.  The occurrence of these load-drops/jumps indicates that a sufficient back-stress to 

trigger dislocation annihilation during unloading can be generated in this structure. With a 

further increase in core diameter, the displacement behavior completely changes, with full 

suppression of the load-drop/jump signatures.  In addition, a residual displacement of 12.8 nm is 

seen in the load-displacement data.  Similar results are obtained for the 80 nm indents. 

 

 It is worth noting that while core confinement is important for these structures, 

deformation resistance is not achieved for arbitrary shell thicknesses.  Fig. 4.10 shows load-

displacement curves for 80 nm indents on CSNs with 100 nm core diameters and 100 and 300 

nm shell thicknesses, as well as SPM images of CSN height before and after indentation.  While 

load-drops/jumps and reverse plastic deformation are present in both curves, more deformation 

recovery is observed with the 300 nm shell thickness compared to the 100 nm shell thickness.  
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According to the SPM images, the height of the CSN with the 100 nm shell thickness decreases 

by 10.9 nm, compared to only 3.6 nm for the CSN with the 300 nm shell thickness.  As 

mentioned previously, it is not reasonable to expect that this deformation be localized to within 

the a-Si shell.  Rather, much of the deformation occurs as the soft Al core is compressed between 

the hard a-Si shell and Si substrate.  Since both of these CSNs are indented to a depth of 80 nm, 

the thinner shell results in higher stress being transmitted to the Al core due to the close 

proximity of the core to the location of indentation contact, and this higher stress results in more 

plastic deformation than can be recovered.  Clearly, core size, shell thickness, and indentation 

load/displacement can affect the desirable deformation-resistant properties of Al/a-Si CSNs, 

which will allow for further optimization of the CSN properties.   
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Fig. 4.9:  Load-displacement plots for 60 nm indents (a) and 80 nm indents (b) on CSNs with 
300 nm shell thickness and 100, 200, and 300 nm core base diameters. 

 



 63 

  

Fig. 4.10:  Load-displacement plots for 80 nm indents on CSNs with 100 nm core base diameters 
and 100 and 300 nm shell thicknesses (a); SPM images of the 300 nm shell structure before (b) 

and after indentation (c); SPM images of the 100 nm shell structure before (d) and after 
indentation (e). 

 



 64 

4.3 Molecular Dynamics Simulations 

 MD nanoindentation simulations were performed on CSNs and Al nanodots to study the 

underlying dislocation dynamics in these structures, with an emphasis on how the size of the 

confined core volume affects the dislocation behavior within the Al core.  CSNs with core 

diameters of 20 and 30 nm, both with 10 nm shell thicknesses, were subjected to 9-11 nm 

indents.  Prior to indentation, the potential energy of each system was minimized using a 

conjugate gradient method with a relative energy tolerance of 10-6, followed by equilibration to 

300 K with a Nosé-Hoover thermostat [113].  Dislocation activities within the Al core were 

visualized using the dislocation extraction algorithm (DXA) within the Open Visualization Tool 

(OVITO).   

 

4.3.1 Dislocation Dynamics During Nanoindentation 

 Atomistic snapshots of dislocations generated during nanoindentation simulations in both 

the core of a CSN with a 20 nm diameter core and a 10 nm shell thickness, as well as a 20 nm 

diameter Al nanodot, are shown in Fig. 4.11.  The dislocations are colored by Burgers’ vector, 

with perfect FCC, Shockley partial, Hirth, stair-rod, and other dislocations colored blue, green, 

yellow, purple, and red, respectively.  In this illustration, these structures have comparable 

maximum dislocation densities of 7.02⋅1016 m-2 and 1.00⋅1017 m-2 for the CSN and Al nanodot, 

respectively; additional dislocations may be obscured by the visualization perspective.  For the 

CSN, dislocations are first nucleated at the Al/a-Si interface and propagate into the Al core 

during loading, eventually reaching a maximum dislocation density at the maximum indenter 

displacement.  Upon unloading, the number of dislocations within the core decreases as 

dislocations are absorbed by the Al/a-Si interface or annihilate through reactions with other 
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dislocations.  This process continues even after the indenter loses contact with the structure after 

unloading, eventually leading to the complete removal of all the dislocations in some 

circumstances.  In comparison, the dislocation content within the Al nanodot is far more stable, 

with less dislocation annihilation occurring during unloading. 

 

 A more detailed look at the underlying dislocation dynamics yields some interesting 

observations about the behavior of dislocations in these structures.  In the CSN, dislocations are 

first nucleated at the core-shell interface, and the resulting dislocation content at the maximum 

indenter displacement is primarily composed of glissile Shockley partials, as shown in Fig. 4.12.  

The high proportionality of mobile dislocations leads to significant egression of dislocations 

when the stress generated within the core is relieved during unloading, as indicated by the 

dislocation content within the core 22,000 time steps later.  As these dislocations begin to be 

absorbed by the core-shell interface, the remaining sessile dislocation structures can become 

destabilized due to reactions with passing mobile dislocations, a phenomenon that has also been 

documented in MD simulations of amorphous/crystalline nanolaminates [148].  Note that further 

dislocation annihilation occurs after this time step, eventually leading to the dislocation-free state 

seen in Fig. 4.11. 
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Fig. 4.11:  Atomistic snapshots of dislocation content in the core of a CSN with a 20 nm core 
diameter and 10 nm shell thickness (a) and an Al nanodot with a 20 nm diameter (b) during 

nanoindentation simulations. 
 

Fig. 4.12:  Dislocation content in the core of a CSN with a 20 nm core diameter and 10 nm shell 
thickness, showing the egression of dislocations over time during unloading. 
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 Dislocations in the Al nanodot are instead nucleated at or slightly below the nanodot 

surface, which is in good agreement with the location of maximum shear stress predicted from 

contact mechanics theory for sphere-on-sphere contact with radii of 10 nm (nanodot) and 100 nm 

(indenter) and a contact interference of 2 nm.  In contrast to the CSN, more prominent sessile 

dislocations structures involving Hirth dislocations, Frank dislocations, and Lomer-Cottrell locks 

are formed within the Al nanodot, as shown in Fig. 4.13.  This disparity in mobile vs. sessile 

dislocations formed within the two structures is perhaps the result of the difference in dislocation 

nucleation site, i.e., heterogeneous nucleation at the interface in the CSN and homogenous 

nucleation in the Al nanodot. 

  

Fig. 4.13:  Dislocation content in a 20 nm diameter Al nanodot.  Significantly less dislocation 
annihilation occurs compared to the CSN due to the formation of sessile dislocation structures, 

Lomer-Cottrell locks, and Frank dislocations. 
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4.3.2 Effects of Core Size on Dislocation Density 

 To characterize the dislocation content within the Al core at various points during the 

indentation process, the dislocation densities at maximum indenter depth (full load), immediately 

after the indenter loses contact with the CSN during unloading (full unload), and at equilibrium 

after indenter removal were calculated.  Fig. 4.14 shows the calculated dislocation densities at 

several different maximum indenter displacements for CSNs consisting of 20 and 30 nm 

diameter cores, both with 10 nm shell thicknesses, as well as a 30 nm diameter Al nanodot.  

Furthermore, these values are summarized in Table 4.2.  For the CSN with the 20 nm core 

diameter, 82% of the nucleated dislocations are removed from the core during unloading of a 9 

nm indent, eventually reaching 100% removal at equilibrium.  As the indentation depth is 

increased to 10 nm, fewer dislocations (64%) are removed at full unloading, while still reaching 

full removal at equilibrium.  Finally, for the 11 nm indent, the dislocation removal at full 

unloading again decreases to 57%; in addition, dislocations are still present in the core volume 

even at equilibrium, with a residual dislocation density of 11% remaining.  As the core diameter 

increases to 30 nm, dislocations are less readily removed from the core volume during unloading.  

For this structure, the reduction of dislocation content at equilibrium is 100%, 81%, and 71% for 

the 9, 10, and 11 nm indents, respectively.  Far less dislocation annihilation during unloading is 

observed in the Al nanodot.  Although the nanodot is subjected to lower maximum indenter 

displacements due to the lack of a shell, the resulting dislocation densities at full load are 

comparable to those of the CSNs.  For these simulations, the amount of dislocation recovery at 

equilibrium ranges from 53%-61%, depending on indentation depth.  Clearly, confinement of the 

Al core by the a-Si shell correlates with improved dislocation removal during unloading.  In 

addition, smaller confined core volume further correlates with improved dislocation removal, 
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which supports the hypothesis that core confinement is a critical component to the deformation-

resistant properties of Al/a-Si CSNs. 

 

 

Table 4.2: Calculated Dislocation Densities from MD Nanoindentation Simulations of CSNs 
and Al Nanodots 

 

Nanostructure Indentation 
Depth 

Maximum 
Load Fully Unloaded Equilibrium 

ρ (1/m2) ρ (1/m2) Dislocation 
Recovery  ρ (1/m2) Dislocation 

Recovery 

CSN 
(20 nm Core) 

9 nm 7.02⋅1016 1.29⋅1016 81.6% 0 100% 
10 nm 1.82⋅1017 6.60⋅1016 63.6% 0 100% 
11 nm 2.33⋅1017 9.96⋅1016 57.3% 2.60⋅1016 88.8% 

CSN 
(30 nm Core) 

9 nm 1.29⋅1016 6.32⋅1015 51.0% 0 100% 
10 nm 8.32⋅1016 2.98⋅1016 64.2% 1.55⋅1016 81.3% 
11 nm 1.64⋅1017 8.58⋅1016 47.7% 4.80⋅1016 70.7% 

Al Nanodot 
(30 nm) 

3 nm 1.09⋅1017 6.97⋅1016 35.8% 5.07⋅1016 53.3% 
4 nm 1.61⋅1017 8.09⋅1016 49.7% 6.34⋅1016 60.5% 
5 nm 2.05⋅1017 1.11⋅1017 45.7% 8.39⋅1016 59.0% 
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Fig. 4.14:  Dislocation densities calculated from MD nanoindentation simulations for CSNs with 
20 nm core diameter (a) and 30 nm core diameter (b) (both with 10 nm shell thickness) and a 30 

nm diameter Al nanodot (c). 
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4.3.3 Back-stress Calculations 

 The stress state in the core of the CSNs during nanoindentation was also studied.  Since 

the stress within the Al core is inhomogeneous due to the CSN shape and tip curvature, this was 

characterized by defining a volume-weighted state of stress for the entire core and tracking this 

value as a function of time during nanoindentation.  In LAMMPS, atomic stress is calculated 

using an energy equation [149], meaning that the computed quantity actually has units of 

stress⋅volume.  As a result, the actual per-atom stress would be obtained by dividing the 

computed quantity by the per-atom volume to calculate a true stress.  However, the volume of an 

individual atom is ill-defined in a deformed solid.  To resolve this limitation, a global state of 

stress within the core was calculated by first computing the per-atom stress tensor (which has 

units of stress⋅volume), summing the value of each component over all atoms in the core, and 

then dividing these summed components by the total core volume to produce a volume-weighted 

global stress tensor.  Finally, the components of the global stress tensor were used to calculate 

the von Mises stress in the core.  Of particular interest is the residual stress that the core relaxes 

to after unloading, which can be interpreted as the back-stress generated within the core.  Plots of 

von Mises stress vs. time for 10 nm indents on CSNs with both 20 nm and 30 nm core diameters 

are shown in Fig. 4.15.  A substantially larger back-stress is generated in the CSN with the 20 

nm core (208 MPa) compared to the CSN with the 30 nm core (62 MPa).  The concurrence of 

increased back-stress and improved dislocation annihilation in the CSN with the 20 nm core 

strongly indicates that the removal of dislocation from the core is mediated by the higher residual 

stress developed in these structures. 
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Fig. 4.15:  Calculated von Mises stress in the core of CSNs with 20 and 30 nm core diameters 
during nanoindentation simulations.  The residual stress after unloading is the back-stress 

generated in the core. 
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4.3.4 Insights from MD Simulations Applied to Experimental Results 

 The MD models demonstrate a significant egression of dislocations from single-crystal 

Al cores during unloading, with more dislocation annihilation occurring in CSNs with smaller 

cores.  However, whereas the models use a single-crystal Al core, the as-fabricated Al cores are 

polycrystalline, with a grain size on the order of 25 nm.  With this grain size, each 100 nm 

diameter Al core likely contains less than 25 grains, and the grain boundaries themselves can 

ostensibly act as sources for heterogeneous dislocation nucleation [150,151].  The annihilation 

mechanisms determined from the MD models likely very well describe the behavior of 

dislocations that are nucleated at the core-shell interface in grains on the surface of the Al core.  

For dislocations that are heterogeneously nucleated in the interior grains of the core far from the 

core-shell interface, the grain boundaries can act to obstruct dislocation motion and prevent the 

dislocations from annihilating at the core-shell interface.  In this case, annihilation of 

dislocations may potentially be achieved by reverse dislocation motion enabled by the stress 

fields generated by dislocations piling up in front of grain boundaries, which has been observed 

in ultrafine grained Al during in-situ TEM experiments [68].  In the in-situ TEM experiments, 

the magnitude of reverse motion was large enough to result in dislocation annihilation at the 

original grain boundary source, due to the small grain size of the UFG Al (~500 nm, which is 

substantially larger than the grain size of the cores of the CSNs).  It is plausible that such a 

mechanism could occur in the CSNs, with the dislocations that nucleate and propagate within 

interior grains moving back and annihilating at the nucleation source under the generated back-

stress.   
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 In consideration of MD length scales, there are significant computational challenges in 

modeling the polycrystalline structure of the CSN cores with 25 nm grains in order to capture 

similar deformation mechanisms to the experiments.  The Hall-Petch strengthening mechanism 

predicts an increase in material strength with decreasing grain size due to dislocation pile-ups at 

grain boundaries.  However, this behavior breaks down when the grain size is below a critical 

value (typically in the range of 10-50 nm [53]) and transitions to a so-called “inverse Hall-Petch” 

regime where material softening with decreasing grain size is observed.  Below this critical grain 

size, dislocation nucleation events are largely suppressed [152], and the mechanical behavior is 

dominated by grain boundary sliding [54].  MD simulations of nanocrystalline Al show that the 

critical grain size is less than 18 nm [153], which is less than the 25 nm Al core grain size in the 

fabricated CSNs.  This means that simulations of CSNs with polycrystalline cores having grain 

sizes smaller than 18 nm will be modeling a situation that is not consistent with the experiments.  

An MD simulation of a CSN with a realistic core grain size (~25 nm) and enough grains to form 

at least one interior grain will require a core diameter of at least 75 nm plus additional shell 

thickness.   

 

 Based on the experiments and simulations performed in this study, the material and 

geometrical properties that are sufficient to produce Al/a-Si CSNs with deformation-resistant 

properties are: 

1. A core that supports dislocation-based plasticity, 

2. A hard shell of suitable thickness to mitigate the transmission of stress into the core, and 

3. A core volume small enough to allow the generation of a back-stress large enough to 

cause dislocation egression during unloading. 
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These guiding principles will potentially aid in the development of deformation-resistant CSNs 

from other material combinations, which will further enhance the understanding of the 

microscopic mechanisms that contribute to the mechanical behavior of these structures. 

 

4.4 Conclusions 

 Nanoindentation experiments were performed to investigate the origin of the unique 

mechanical behavior observed in Al/a-Si CSNs.  The results show that confinement of Al core, 

and particularly the size of confined core volume, are critically important for the deformation-

resistant properties of these structures.  Based on the indentation signatures exhibited by the 

CSNs with the smallest core diameter, the deformation behavior is mediated by dislocation 

activities within the confined core, with the deformation recovery resulting from dislocations 

retracing their paths or otherwise annihilating due to a back-stress generated during unloading.  

As the size of the confined core volume increases, the magnitude of this back-stress decreases, 

and deformation resistance is eventually completely suppressed as a result.  Complimentary MD 

simulations show that smaller core diameters correlate with both a larger back-stress being 

developed and improved dislocation removal during unloading.  These findings clarify the 

mechanisms that contribute to the desirable properties of Al/a-Si CSNs so that they can be 

designed to be effectively used in applications where the mechanical integrity of nanostructures 

is important. 
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CHAPTER 5 

THE ROLE OF MATERIAL DIMENSIONALITY ON THE MECHANICAL 

BEHAVIOR OF AL/A-SI CORE-SHELL NANOSTRUCTURES 

 In chapter 4, the role of core confinement on the mechanical behavior of Al/a-Si CSNs 

was explored through experiments on CSNs with different core sizes.  In this chapter, core 

confinement is instead studied in terms of the dimensionality of the confinement.  

Nanoindentation experiments were performed on hemispherical Al/a-Si CSNs, horizontally-

aligned Al/a-Si core-shell nanorods (CSRs) with various core lengths, and an Al/a-Si layered thin 

film to study the effects of geometrical confinement of the Al core on the CSN deformation 

behavior.  Whereas the CSNs have an unconventional load-displacement response characterized 

by no residual displacement after unloading when loaded beyond the elastic limit, a slight 

reduction in the geometrical confinement results in a loss of deformation resistance, as in the 

case of CSRs with the shortest rod length.  Further decreases in core confinement result in 

conventional nanoindentation behavior, regardless of geometry.  Supporting molecular dynamics 

simulations show that dislocations nucleated in the core of a CSN are more effectively removed 

during unloading compared to CSRs, which supports the hypothesis that the unique deformation 

resistance of Al/a-Si CSNs is enabled by 3-dimensional confinement of the Al core.  The results 

presented in this chapter are based on a published study by Fleming et al. [154]. 

 

5.1 Nanostructure Morphology Characterization 

 Uniform arrays of Al nanodots and nanorods were deposited as the cores of the CSNs and 

CSRs, respectively, using the EBL and metal lift-off fabrication method.  A schematic of the rod 

geometry is shown in Fig. 5.1; note that the specified rod length excludes the hemispherical end-
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caps of each rod.  A 100 nm thick Al thin film was also fabricated with thermal evaporation 

using the same deposition parameters as in the EBL procedure.  SEM micrographs of 100 nm 

diameter Al nanodots and 100 nm, 500 nm, and 10 µm long Al nanorods (all with 100 nm rod 

diameters) are shown in Fig. 5.2.  The Al nanostructures are polycrystalline, with a mixture of 

(111) and (200) crystallites, based on X-ray diffraction measurements of a similarly prepared Al 

thin film.  Deposition of a-Si on these nanostructures results in a conformal shell on the 

nanostructures, as seen in SEM images in Fig. 5.3.  Due to the conformal nature of the coating, 

the lateral dimensions of the visible portion of the individual nanostructures measured from the 

SEM images uniformly increases by 300 nm for both the CSNs and the CSRs, with only the top 

~100 nm of the structure protruding from the surface.  The diameter of the CSNs increases to 

400 nm, while the width of the CSRs increases to 400 nm, regardless of core length, and the 

length of the CSRs increases by 300 nm compared to the lengths of Al nanorods.  Some small-

scale roughness is evident in the shell morphology, as seen in the AFM images in Fig. 5.4, but 

since it is substantially smaller than the tip radius used during nanoindentation, it is not expected 

to interfere with the mechanical characterization.  All together, three different geometries of 

Al/a-Si nanostructures have been fabricated, each representing different levels of core 

confinement: hemispherical CSNs, in which the Al core is axisymmetrically confined by the a-Si 

shell and by the Si substrate; CSRs, which have reduced core confinement along the longitudinal 

axis of the rod; and an Al/a-Si layered thin film, where the Al layer is only confined between the 

Si substrate and the a-Si film, with no lateral confinement.  These 3 geometries are shown 

schematically in Fig. 5.5. 
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Fig. 5.1:  Schematic of the nanorod geometry. 
 

Fig. 5.2:  SEM micrographs of 100 nm diameter Al nanodots (a) and horizontally-aligned Al 
nanorods with lengths of 100 nm (b), 500 nm (c), and 10 µm (d). 
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Fig. 5.3:  SEM micrographs of CSNs (a) and CSRs with core lengths of 100 nm (b), 500 nm (c), 
and 10 µm (d). 
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Fig. 5.4:  AFM images of a CSN (a) and CSRs with core lengths of 100 nm (b), 500 nm (c), and 
10 µm (d). 
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Fig. 5.5:  Schematics of the three geometrical confinements: hemispherical core-shell (a), core-
shell rod (b), and layered thin film (c). 
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5.2 Nanoindentation Experiments  

 The mechanical behavior of the CSNs, CSRs, and layered thin film was characterized 

using displacement-controlled nanoindentation with a spherical diamond tip of 1 µm radius of 

curvature and a displacement rate of 3 nm/s.  The differences in mechanical behavior are 

qualitatively characterized in terms of load-displacement response, as well as quantitatively in 

terms of contact stiffness and residual displacement. 

 

5.2.1 Deformation Resistance of CSNs 

 As detailed in Chapter 4, nanoindentation experiments were performed to characterize the 

mechanical response of hemispherical CSNs to compression loading.  The CSNs exhibited 

nearly complete recovery of deformation beyond the elastic limit, as demonstrated in Fig. 5.6.  

This behavior was attributed to the generation of a back-stress in the Al core that induces 

dislocation annihilation during unloading.  Development of this back-stress is dependent on 

confinement of the Al core by the hard a-Si shell, with higher stresses correlating with smaller 

confined core volumes.  Ostensibly, the 3-dimensional axisymmetric core confinement of the 

CSNs plays a role in this behavior, and structures with reduced core confinement, namely 

horizontally aligned CSRs and layered thin films, should display different mechanical behavior 

as the core confinement is decreased. 
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Fig. 5.6:  Load-displacement curves for 4 repeated 80 nm indents on a CSN with 100 nm core 
diameter and 300 nm shell thickness. 
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5.2.2 Effects of Decreased Core Confinement 

 Nanoindentation experiments were conducted on CSRs with a core length of 100 nm to 

test this hypothesis.  The elongated core of this structure breaks the axisymmetric core 

confinement of the CSNs, resulting in quasi-2-dimensional core confinement due to the 

additional core volume along the longitudinal axis of the rod.  A load-displacement curve for an 

80 nm indentation on a CSR is shown in Fig. 5.7, along with an AFM image of the structure 

morphology after indentation.  The load signatures seen in the load-displacement data of the 

CSNs are still evident in the CSR, but the number and magnitude are significantly changed.  For 

example, in the first indent in Fig. 5.6, approximately 9 load-drops and 8 load-jumps are 

observed, with average magnitudes of 13.7 µN and 10.7 µN, respectively.  In comparison, 

approximately 4 load-drops and 5 load-jumps are seen in Fig. 5.7(a), with the indentation 

signatures dominated by a single, large magnitude signature, along with several much smaller 

secondary load signatures.  During loading, a large load-drop with a magnitude of 63.2 µN 

occurs near the maximum indenter displacement, as well as 3 other load-drops with an average 

magnitude of 1.5 µN.  Similarly, during unloading, a 30.2 µN load-jump occurs in addition to 4 

other load-jumps with an average magnitude of 9.4 µN.  In addition, the indenter displacement 

no longer returns to zero during unloading and residual deformation of the structure is clearly 

seen from the AFM image, meaning that the CSRs are not deformation-resistant. 

 

 Multiple repeated indents on a single CSR results in an increase in maximum indentation 

load after each indentation, as seen in the load-displacement curves for 4 sequential indents on a 

CSR in Fig. 5.8.  Although this behavior was attributed to strain hardening in the CSNs, the 

residual deformation on the CSRs after indentation (Fig. 5.7(b)) results in an increase in contact 
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area for each subsequent indentation, which can also explain the increase in maximum 

indentation load for multiple indentations.  Even so, the presence of load-drops and load-jumps 

suggests that dislocations activities within the confined Al core of the CSR still play a key role 

on the mechanical behavior, but the reduced confinement perhaps inhibits the ability of 

dislocations to annihilate during unloading.  To further explore this, nanoindentation experiments 

were also performed on CSRs with core lengths of 500 nm and 10 µm, as well as an Al/a-Si thin 

film.  Representative load-displacement curves for 80 nm displacement-controlled indents on all 

5 geometries, including the hemispherical CSNs and the 100 nm CSRs, are shown in Fig. 5.9.  

As previously noted, the CSN has an unconventional mechanical response characterized by 

numerous discontinuous indentation signatures and deformation-resistant behavior as indicated 

by zero residual displacement after unloading.  When the confinement of the Al core is slightly 

reduced, as in the 100 nm CSR, the number and magnitude of the observed indentation 

signatures are heavily reduced, along with the deformation resistance.  As the core confinement 

is reduced further, however, there is a sharp transition in the mechanical behavior.  The 500 nm 

and 10 µm CSRs, as well as the layered thin film, all have a more conventional load-

displacement response, with no indentation signatures observed during loading and unloading 

and a substantial residual displacement evident in the load-displacement curve.  This residual 

displacement accompanies the residual impressions left on the structures after indentation, as 

shown in SPM images in Fig. 5.10. 
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Fig. 5.7:  Load-displacement curve for an 80 nm indent on a CSR with a 100 nm core length (a).  
The AFM image of the surface morphology of the CSR (b) clearly shows residual deformation 

after indentation. 
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Fig. 5.8:  Load-displacement curves for 4 repeated 80 nm indents on a CSR with a 100 nm core 
length.   The indentation signatures are suppressed compared to the CSNs. 

 

Fig. 5.9:  Load-displacement curves for 80 nm indents on a CSN, CSRs with 100 nm, 500 nm, 
and 10 µm core lengths, and a layered thin film. 
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Fig. 5.10:  SPM images of the surface morphology after 80 nm indents on a CSN (a), CSRs with 
100 nm (b), 500 nm (c), and 10 µm (d) core lengths, and a layered thin film (e). 
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 Analysis of the contact stiffness provides further insights into the mechanical behavior of 

these structures.  A plot of contact stiffness vs. maximum indentation depth for all 5 geometries 

is shown in Fig. 5.11.  For the CSNs, the contact stiffness increases with indentation depth up to 

60 nm, at which point it becomes practically constant. Similar contact stiffness behavior is also 

observed in the 100 nm CSRs, which also show some evidence of dislocation activities during 

indentation, as noted in Fig. 5.7 and 5.8.  The contact stiffnesses of the 500 nm CSRs, 10 µm 

CSRs, and layered thin film, however, all increase linearly with indentation depth, with values 

that generally overlap.  In effect, the longer CSRs have a mechanical response that is largely 

indistinguishable from that of the layered thin film geometry.  Moreover, the transition from the 

deformation-resistant behavior in the CSNs to the conventional indentation behavior of the 

layered thin films occurs abruptly, i.e., when the 3-dimensional core confinement of the CSN is 

reduced slightly, as in the 100 nm CSR, the deformation resistance and the accompanying 

indentation signatures are heavily reduced.  More drastic reductions in core confinement result in 

a conventional indentation response, regardless of the dimensionality of the core confinement.  

As a result, it is very clear that 3-dimensional core confinement plays a critical role in the novel 

deformation-resistant behavior of Al/a-Si CSNs.   
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Fig. 5.11:  Plot of contact stiffness vs. indentation displacement for a CSN, CSRs with 100 nm, 
500 nm, and 10 µm core lengths, and a layered thin film. 
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5.3 Molecular Dynamics Simulations 

 Nanoindentation simulations were performed on several different geometries of Al/a-Si 

nanostructures: a CSN with a 15 nm core radius and CSRs with a rod radius of 15 nm and core 

lengths of 15, 25, and 35 nm, all with a 5 nm shell thickness.  For these simulations, the indenter 

is controlled to move 6 nm into the nanostructure at a constant rate of 0.5 Å/ps while maintaining 

a system temperature of 300 K.  After reaching the specified indenter displacement, the indenter 

is completely retracted at the same displacement rate.   

 

5.3.1 Effects of Core Confinement on Dislocation Density 

 A snapshot of the atomic distortion resulting from dislocations nucleated in the core of a 

CSN at maximum indenter displacement is shown in Fig. 5.12(a).  The core has been sliced 

down the middle to visualize an interior plain of atoms, which are colored by lattice structure.  

The green atoms are in a FCC arrangement and the red atoms are HCP atoms representing a 

stacking fault formed by the nucleation of Shockley partial dislocations.  A more detailed view 

of the dislocation content is provided in Fig. 5.12(b), showing only the HCP atoms that primarily 

comprise the stacking faults, with the leading and trailing Shockley partials represented as green 

lines.  As indicated, one pair of Shockley partials has cross-slipped into an adjacent slip plane.  

This cross-slipped dislocation structure is far less mobile than in-plane Shockley partial 

dislocations, which will potentially affect the dynamics of these dislocations after the removal of 

the applied indentation load.  To visualize this, the time evolution of the dislocation content 

within the core is shown in Fig. 5.12(c), with all atoms removed to show only the dislocations 

within the interior of the core.  The individual dislocation lines are colored by Burgers vector, 

with perfect FCC dislocations, Shockley partials, Hirth dislocations, and other dislocations 
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colored blue, green, black and red, respectively.  As the nanostructure is indented, dislocations 

consisting primarily of glissile Shockley partials are nucleated at the core/shell interface and 

further propagate.  This continues until a maximum dislocation density is reached at the 

maximum indenter displacement.  During unloading, a notable egression of dislocations occurs 

as the mobile dislocations are reabsorbed by the core/shell interface.  This continues even after 

the indenter loses contact with the CSN, eventually reaching an equilibrium dislocation density.  

A non-zero equilibrium dislocation density is typically due to the formation of sessile dislocation 

structures, either due to cross-slip (as demonstrated here) or other dislocation reactions.  In this 

case, ~93% of the dislocations nucleated during loading have been reabsorbed by the core/shell 

interface or otherwise annihilated.  Again, it should be noted that this phenomenon is specific to 

the core-shell structure, as similar simulations performed on Al nanodots result in stable 

dislocation densities that do not substantially decrease during unloading. 

 
 To characterize how the dimensionality of core confinement affects the behavior of 

dislocations in CSNs and CSRs, the dislocations densities at key points during the 

nanoindentation simulations were calculated.  Fig. 5.13 shows the calculated dislocations 

densities at maximum indenter displacement, immediately after the indenter loses contact with 

the nanostructure during unloading, and at equilibrium (at least 85,000 time steps after the 

indenter has lost contact with the nanostructure); these values are summarized in Table 5.1.  For 

the CSN, which is the structure with the most highly confined core, approximately 65.1% of the 

dislocations nucleated during indentation are removed when the structure is fully unloaded and 

further increases to 92.6% at equilibrium.  When this confinement is reduced, as in the CSRs, the 

dislocation density relaxes to a nearly constant value when fully unloaded, regardless of core 

length, with minimal additional recovery occurring at equilibrium.  For these structures, the 
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proportion of dislocations removed at equilibrium from the core of the CSRs decreases from 

89.1% to 84.8% and then to 83.0% as the core length increases from 15 nm to 25 nm and 35 nm, 

respectively.  The reduced lateral confinement exhibited in the CSRs allows more opportunity 

for dislocations to cross-slip or otherwise form sessile dislocations, such as Hirth or stair-rod 

dislocations, resulting in less dislocation recovery compared to the CSN.   

 

Table 5.1: Calculated Dislocation Densities from MD Nanoindentation Simulations of a 
CSN and CSRs of Various Lengths 

 

Nanostructure 

Maximum 
Load Fully Unloaded Equilibrium 

ρ (1/m2) ρ (1/m2) Dislocation 
Recovery  ρ (1/m2) Dislocation 

Recovery 

CSN 1.90⋅1016 6.62⋅1015 65.1% 1.40⋅1015 92.6% 

15 nm 
CSR 3.63⋅1016 4.35⋅1015 88.0% 3.96⋅1015 89.1% 

25 nm 
CSR 2.40⋅1016 3.59⋅1015 85.0% 3.65⋅1015 84.8% 

35 nm 
CSR 2.37⋅1016 5.13⋅1015 78.3% 4.01⋅1015 83.0% 

      



 94 

  

Fig. 5.12:  A snapshot of atomic distortion resulting from dislocations nucleated in the core of a 
CSN (a); a snapshot of the dislocation content within the core, showing cross-slipped 

dislocations (b);  and the time evolution of dislocation egression and sessile dislocation structure 
formation during unloading (c). 
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Fig. 5.13:  Dislocation densities calculated from MD nanoindentation simulations for a CSN with 
a 15 nm core diameter and CSRs with various core lengths. 
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5.4 Conclusions 

 Nanoindentation experiments were performed on several different geometries of Al/a-Si 

nanostructures, including hemispherical CSNs, horizontally-aligned CSRs, and a layered thin 

film, to investigate the effects of geometrical confinement of the Al core on the CSN 

deformation behavior.  The CSNs have deformation-resistant properties, as indicated by 

complete recovery of deformation beyond the elastic limit.  When the core confinement is 

slightly reduced, the deformation resistance that is observed in the CSNs is substantially reduced.  

A further reduction in core confinement results in more conventional indentation behavior 

regardless of geometry.  Supporting molecular dynamics simulations show that dislocations 

nucleated in the core of CSNs are more readily removed during unloading compared to CSRs, 

which indicates that the 3-dimensional core confinement of the CSNs plays an important role in 

the deformation-resistant properties of CSNs.  This study elucidates the effects that core 

confinement plays on the novel nanoindentation behavior of hemispherical Al/a-Si CSNs, which 

will allow for the rational design and effective implementation of these structures in 

nanomechanical applications. 
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CHAPTER 6 

TRIBOLOGICAL PROPERTIES OF NANOSTRUCTURE-TEXTURED SURFACES 

 Nanotextured surfaces can effectively reduce friction and adhesion, especially in 

applications with micro- and nanoscale contact interactions.  However, for these surfaces, a 

common weakness is a lack of structural integrity of the individual nanotextures when subjected 

to contact loading, resulting in permanent deformation at even the moderate contact forces 

encountered in microscale systems.  In this chapter, nanostructure-textured surfaces (NSTSs), 

comprised of arrays of novel Al/a-Si core-shell nanostructures (CSNs), have been developed 

with a desirable combination of low friction and high deformation resistance.  Compared to Al 

nanodot-textured surfaces (ANDTSs), the NSTSs exhibit superior tribological properties.  

Specifically, when subjected to nanoscratch testing, the NSTSs have extremely low COFs 

(~0.015 at 8000 µN normal load), as well as no detectable nanostructure deformation at contact 

loads up to 8000 µN (estimated contact pressure greater than 1 GPa); the ANDTSs, in 

comparison, have higher COFs and are significantly deformed after scratch testing.  In addition, 

the NSTSs have low adhesion (pull-off) forces on the order of less than 1 µN.  The unique 

properties of NSTSs provide avenues for designing low friction, deformation-resistant surfaces 

that could potentially benefit a variety of fields, such as MEMS/NEMS, microelectronics, and 

magnetic recording.  The results presented in this chapter are based on a published study by 

Fleming and Zou [155] . 

 

6.1 Surface Morphology Characterization of ANDTSs and NSTSs 

 Using the EBL fabrication procedure, ANDTSs comprised of very uniform, densely 

packed arrays of polycrystalline Al nanodots were fabricated.  SEM micrographs and 
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representative AFM topography profiles of ANDTSs with nanodot base diameters of 100, 200, 

and 300 nm and 1 µm structure pitch are shown in Fig. 6.1.  As in Chapters 4 and 5, the 

ANDTSs were fabricated using a lift-off method, meaning that all the structures are 

approximately 100 nm tall, regardless of base diameter.  The individual nanodots are 

polycrystalline, with a grain size of ~25 nm.  As a result of this graininess, the height of each 

nanodot can potentially vary by up to ~25 nm, resulting in the subtle height variations seen in the 

AFM topography profiles.  The areal surface roughness parameter Sa, calculated from 10x10 

µm2 AFM topography scans, is 5.9, 9.8, and 12.7 nm for nanodot diameters of 100, 200, and 300 

nm, respectively.   

 

 To produce the NSTSs, these nanodot arrays were coated with a-Si, resulting in uniform 

arrays of CSNs that are rigidly attached to the substrate.  The a-Si coating results in a uniform 

nanotextured surface, as can be seen from the SEM images and AFM topography profiles in Fig. 

6.2.  Due to the conformal nature of the coating, the diameter of the visible portion of the 

individual nanostructures measured from the SEM images increases by ~300 nm, with only the 

top ~100 nm of the structure protruding from the surface.  The addition of the a-Si coating results 

in an increase in surface roughness of the NSTSs compared to the ANDTSs.  For the NSTSs, the 

Sa values are 27.4, 37.5, and 40.3 nm for core diameters of 100, 200, and 300 nm, respectively. 
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Fig. 6.1:  SEM micrographs and AFM topography profiles of ANDTSs with base diameters of  
(a) 100, (b) 200, and (c) 300 nm. 
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Fig. 6.2:  SEM micrographs and AFM topography profiles of NSTSs composed of CSNs with 
core diameters of  (a) 100, (b) 200, and (c) 300 nm. 
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6.2 Friction Measurements 

 The average COFs as a function of applied normal load are shown in Fig. 6.3 for an 

ANDTS composed of 100 nm diameter Al nanodots, a NSTS fabricated from CSNs with 100 nm 

diameter Al cores, and a polished (100) Si wafer, based on five scratches for each normal load.  

For all three surfaces, the COF varies significantly with applied normal load at low loads and 

then becomes relatively independent of load for higher applied normal loads.  Both the ANDTS 

and the NSTS have reduced COFs compared to smooth Si across the entire load range.  In the 

high normal load range, the COF of the ANDTS is notably reduced compared to smooth Si.  For 

example, at 8000 µN normal load, the COFs of these two surfaces are 0.044 and 0.062, 

respectively.  The NSTS performs even better, with a very low minimum COF of 0.015.  This 

represents a 66% reduction in COF compared to the ANDTS and a 76% reduction compared to 

smooth Si at 8000 µN normal load.  

 

 At low loads, the heavy dependence of the COF on applied normal load indicates that 

adhesive effects are significantly contributing to the frictional behavior.  More insight can be 

attained from the relationship between the measured friction force and the applied normal load, 

as shown in Fig. 6.4.  The friction coefficient is usually defined from Amontons’ law, which 

establishes a direct proportionality between friction force and applied normal load.  This implies 

that, in the absence of adhesive effects, a plot of friction vs. normal load would have a constant 

slope equal to the friction coefficient and a y-intercept that is precisely zero.  However, for all 

three surfaces measured, the friction vs. load relationship at normal loads up to 2000 µN is 

roughly linear, with a linear fit that does not pass through the origin.  In this case, the magnitude 

of the y-intercept of these fits is a qualitative measure of the adhesive contribution to friction, 
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with a lower y-intercept value corresponding to lower adhesion.  Based on the relative 

magnitudes of the y-intercepts of these trend lines, it can be concluded that adhesion plays a 

larger role in the frictional behavior of the (100) Si and the ANDTS compared to the NSTS.  At 

higher loads (4000 µN and above), the data is best fit using a linear trend line with a different 

slope.  Notably, however, these trend lines still have a non-zero y-intercept, which means that 

adhesion still plays a demonstrable role on the measured friction values.  

 

 The dependence of friction on the size of the individual nanotextures is also of interest.  

The measured friction for ANDTSs with 100, 200, and 300 nm base diameters are shown in Fig. 

6.5(a).  For loads up to 2000 µN, the measured friction values largely overlap, regardless of 

nanodot diameter.  At higher loads, the friction measurements begin to diverge, with higher 

friction forces occurring for larger nanodot diameters.  In this case, increased nanodot size 

correlates with increased nanodot volume fraction within the contact area with the tip during 

nanoscratch tests, which effectively increases the contact area and leads to higher friction.  

Similar measurements on NSTSs composed of CSNs with various core diameters are plotted in 

Fig. 6.5(b).  For these surfaces, the measured friction forces are effectively identical, regardless 

of core diameter.  Due to the larger CSN diameters caused by the a-Si shell, the relative size 

difference between each of the CSN sizes (400, 500, and 600 nm diameters) is not as pronounced 

as compared to the Al nanodots (100, 200, and 300 nm diameters).  As a result, the contact area 

for the NSTSs does not change very much as the CSN diameter increases, resulting in similar 

friction for all the NSTSs, regardless of CSN core diameter. 
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Fig. 6.4:  Friction force measurements for a 100 nm diameter ANDTS, a NSTS fabricated from 
CSNs with 100 nm diameter Al cores, and a polished (100) Si wafer. 

 

Fig. 6.3:  COF measurements for a 100 nm diameter ANDTS, a NSTS fabricated from CSNs 
with 100 nm diameter Al cores, and a polished (100) Si wafer. 
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Fig. 6.5:  Friction force measurements for ANDTSs with different nanodot diameters (a) and 
NSTSs fabricated from CSNs with different core diameters (b). 
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6.2.1 Friction Mechanisms 

 From the plot of COF vs. applied normal load in Fig. 6.3, it is apparent that COF varies 

heavily with applied load at low normal loads and is relatively independent of load at high loads.  

This strong dependence of COF on normal load, as well as the non-zero y-intercept obtained 

from the friction vs. normal load data in Fig. 6.4, further indicates that adhesive interactions play 

a significant role in the frictional behavior of these surfaces at low normal loads.  Hertzian 

contact theory predicts that when the contact deformations are purely elastic, as might be the 

case at low normal loads, the contact area depends on applied normal load as [156]: 

       A ∝P2/3           (6.1) 

where A is the real area of contact and P is the applied normal load.  Furthermore, the frictional 

force F is proportional to the contact area when adhesion is the dominant mechanism of friction, 

which has been verified to be valid even for nanotextured surfaces [20].  Therefore, when 

adhesion effects are significant, the COF should be proportional to the normal load raised to the  

-1/3 power, as shown in Eq. 6.2 below. 

     COF = F
P
∝ A
P
∝P−1/3                     (6.2) 

 

 A plot of COF vs. applied normal load raised to the -1/3 power is shown in Fig. 6.6 for a 

100 nm diameter ANDTS, a NSTS fabricated from CSNs with 100 nm diameter Al cores, and 

smooth Si.  For all three surfaces, there are three friction regimes with different dependencies on 

normal load raised to the -1/3 power.  For loads at or below 250 µN (denoted as 0.16 µN-1/3), a 

strong proportionality between COF and applied load raised to the -1/3 power is observed, which 

suggests that significant adhesive friction occurs in this regime.  At the highest loads, namely 

4000 µN (0.063 µN-1/3) and above, the COF depends much more weakly on applied load raised 
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to the -1/3 power, as indicated by the smaller slopes of the linear trend lines.  For example, for 

the smooth Si surface, the slope decreases from 4.91 at low load to 0.82 at high load, which 

represents an 83% decrease.  Similarly, the slopes for these two load ranges decrease by 76% and 

87% for the ANDTS and the NSTS, respectively.  This substantially reduced dependence on 

applied normal load suggests that deformation mechanisms play a larger, perhaps even dominant, 

role in friction at these loads.  However, as previously noted in Fig. 6.4, adhesive interactions 

clearly still influence the frictional behavior of all 3 surfaces at high loads.  At intermediate loads 

(500-2000 µN), the data is best fit by linear trend lines with different slopes than those obtained 

from both the high- and low-load ranges.  This suggests that both adhesive and deformational 

components of friction are important in this region, with neither truly dominating. 
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Fig. 6.6:  COF vs. normal load raised to -1/3 power for a 100 nm diameter ANDTS, a NSTS 
fabricated from CSNs with 100 nm diameter Al cores, and a polished (100) Si wafer. 
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6.3 Adhesion Measurements 

 Pull-off adhesion forces were characterized for the ANDTSs and NSTSs.  Since the 

adhesion force is the negative-valued force measured by the nanoindenter transducer as the 

diamond tip breaks contact with the sample surface, these measurements must be performed 

using feedback control to govern the displacement of the transducer.  As a result, it is customary 

to plot adhesion as a function of maximum indenter displacement.  The average adhesion forces 

measured by the diamond tip on the 100 nm diameter ANDTS and the NSTS fabricated from 

CSNs with 100 nm diameter Al cores are shown in Fig. 6.7(a) for indentation depths ranging 

from 2 to 40 nm.  For indentation depths up to 20 nm, the measured adhesion forces on the 

ANDTSs range from 0.32 to 0.44 µN.  Higher adhesion is observed for the NSTS, in some cases 

increasing by 100% compared to the ANDTS at the same indentation depth; however, these 

values are still below 1 µN.  At 40 nm indentation depth, the adhesion on the ANDTS increases 

to 1.1 µN, which is 59% higher than the measured adhesion of 0.71 µN on the NSTS.  For this 

larger indentation depth, more significant deformation of the soft Al nanodots occurs, leading to 

a substantial increase in contact area and adhesion. 

 

 Compared to reported adhesion values of 9-15 µN on smooth (100) Si across the same 

indentation depth range and using the same 100 µm tip [87], the measured adhesion on both the 

ANDTSs and the NSTSs represents a greater than 95% decrease in adhesion.  Although the 

friction data suggests that the NSTS should be less adhesive compared to the ANDTS, lower 

measured adhesion forces are found for the ANDTS at small indentation depth.  However, it is 

important to point out that the size of the individual nanostructures is different for the two 

surfaces.  The larger size of the CSNs on the NSTSs means that the real area of contact on this 
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surface will be larger compared to the ANDTS for a given indentation depth.  Therefore, higher 

adhesion is expected for the NSTS when the two surfaces are subjected to the same normal 

displacements.  Furthermore, when the adhesion force is plotted against the average indentation 

load corresponding to each displacement used during adhesion testing, as shown in Fig. 6.7(b), it 

is clear that for loads above 10 µN, the NSTS has less adhesion than the ANDTS.  Notably, the 

measured adhesion increases drastically with increasing contact load for the ANDTS, while the 

adhesion on the NSTS remains relatively constant at ~0.6-0.7 µN over a much wider load range.  

This is in agreement with the measured COF and friction force data (Figs. 6.3 and 6.4), which 

indicates that the NSTS has lower adhesive friction compared to the ANDTS. 
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Fig. 6.7:  Adhesion measurements for a 100 nm diameter ANDTS and a NSTS composed of 
CSNs with 100 nm diameter Al cores as a function of indentation depth (a) and as a function of 

indentation load (b). 
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6.4 Surface Deformation Characterization 

 After scratch testing, the surface deformation of both the ANDTSs and the NSTSs were 

characterized by SEM and AFM.  For the ANDTSs, surface deformation was first detected for 

scratches at 250 µN normal load, with the severity of the scratch deformation increasing with 

increasing normal load.  Fig. 6.8 shows SEM micrographs of surface deformations from 250 µN, 

1000 µN, and 8000 µN normal load scratches, as well as representative AFM topography profiles 

across the middle of each scratch region.  At 250 µN, while the individual nanodots appear to be 

only slightly deformed from the SEM image, the AFM topography profile shows that the 

nanodots in the center of the scratch region have been deformed to a height of ~55 nm, which is 

roughly half the height of an undeformed nanodot.  From the COF analysis in Fig. 6.6, the data 

indicates that primarily adhesive friction occurs for applied normal loads up to 250 µN, which 

correlates with the normal load at which plastic deformation is first observed from the SEM 

images.  However, from the AFM analysis, it is clear that the nanodots are significantly 

deformed at 250 µN, so although adhesive effects are clearly present, it cannot be said that this is 

truly the transition point from an adhesion dominated friction regime to a regime where 

deformation-mediated friction begins to contribute. 

 

 As the applied normal load is increased to 1000 µN, significantly more plastic 

deformation is observed in the contact area.  At the largest scratch load of 8000 µN, the nanodots 

are substantially flattened, but not completely removed.  The topography profile for these 

scratches reveals that the most severely deformed nanodots have a residual height of ~10 nm.  

Because the individual nanodots are neither removed nor flattened all the way to the substrate 
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during scratching, the COF for the ANDTS never reaches that of smooth Si because the tip never 

comes in contact with substrate.  

 

 For the NSTSs, no observable deformation was detected at any applied normal load.  

SEM micrographs of 8000 µN normal load scratches are shown in Fig. 6.9 for NSTSs composed 

of CSNs with 100, 200, and 300 nm diameter cores, along with representative AFM topography 

profiles across the middle of each scratch region.  The CSNs have unique deformation-resistant 

properties that result in very high deformation resistance under frictional loading.  This 

deformation resistance, combined with the superior COF of the NSTS, is potentially useful in 

applications with microscale contact interactions.  Notably, there is no tradeoff between 

deformation resistance and COF with the NSTSs. 

 

6.4.1 Estimation of Contact Pressure from Scratch Deformation Measurements 

 Characterization of the extent of the plastic deformation from scratches on the ANTDS 

allows for the contact pressure during scratch testing to be estimated.  This is achieved by using 

the width of each scratch, as measured from SEM, to estimate the contact area as a function of 

applied normal load.  Since the tip is spherically symmetric, the scratch width defines the contact 

diameter during each test.  To calculate the estimated contact area, image processing software 

(ImageJ, NIH) was used to calculate the surface area of only the deformed Al nanodots contained 

within a circle (with a diameter equal to the scratch width; dashed circles in Fig. 6.8) located at 

the center of each scratch.  As this contact area is really an estimated contact area, it does not 

account for any elastic deformations.  However, it is perhaps still useful for comparative 

purposes, especially when large plastic deformations occur. 
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 For the 100 nm diameter ANDTS, the estimated contact pressure ranges from 

approximately 530 MPa for 50 µN normal load scratches to slightly over 1 GPa for 8000 µN 

scratches, without considering frictional effects.  Since no deformation was detected for 

scratches on the NSTSs, the same analysis cannot be applied to these surfaces.  However, the 

normal displacement during scratch testing is substantially smaller than that of the ANDTS when 

subjected to the same normal load.   This is illustrated in Fig. 6.10, which plots the indentation 

depth as a function of maximum indentation load for several displacement-controlled indents on 

both surfaces.  It can be seen that for a given indentation load, the corresponding indentation 

depth is much smaller for the NSTS compared to the ANDTS.  For example, when the 

indentation load is ~75 µN, the indentation depth for the ANDTS is 40 nm, while the indentation 

depth for the NSTS is much smaller at only 5 nm.  As a result, the contact area should be more 

than proportionally smaller for the NSTSs, meaning they are subjected to even higher contact 

pressures than the ANDTSs during nanoscratch testing. 
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Fig. 6.8:  SEM micrographs of scratches at (a) 250, (b) 1000, and (c) 8000 µN normal loads on a 
100 nm diameter ANDTS.  The scratch areas are indicated by the solid ovals, while the dashed 
circles represents the regions used to estimate contact pressure. To the right of each micrograph 

is an AFM topography profile of the scratch area; the nominal height of the nanodots (100 nm) is 
indicated by the dashed red line. 
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Fig. 6.9:  SEM micrographs of scratches at 8000 µN normal load on NSTSs composed of CSNs 
with core diameters of  (a) 100, (b) 200, and (c) 300 nm. To the right of each micrograph is an 

AFM topography profile of the scratch area; the nominal height of the CSNs (100 nm) is 
indicated by the dashed red line. 
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Fig. 6.10:  Indentation depth as a function of maximum indentation load for a 100 nm diameter 
ANDTS and a NSTS composed of CSNs with 100 nm diameter Al cores. 
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6.5 Conclusions 

 Nanotextured surfaces composed of Al nanodots and NSTSs composed of Al/a-Si CSNs 

have been characterized to assess the frictional, adhesion, and deformation behavior of these 

surfaces.  Compared to smooth Si, the ANDTSs and the NSTSs have reduced COFs, as low as 

0.044 and 0.015, respectively.  In addition, both surfaces exhibit low adhesion with pull-off 

forces on the order of less than 1 µN.  The NSTSs are highly deformation-resistant, with no 

surface deformation apparent after nanoscratch testing, even at contact forces up to 8000 µN 

(estimated contact pressure greater than 1 GPa).  In comparison, the Al nanodots are plastically 

deformed at contact loads as low as 250 µN.  An analysis of the COF dependence on applied 

normal load shows that the substantial adhesive friction occurs for normal loads below 250 µN, 

while deformation mechanisms contribute more significantly at higher loads.  Together, this 

combination of low COF, low adhesion, and high deformation resistance of NSTSs show 

promise for their use in micro- and nanotribological applications where low friction and 

deformation resistance are desired.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 A comprehensive investigation of the mechanical behavior of novel Al/a-Si CSNs has 

been performed to determine the foundational mechanisms that govern the deformation-resistant 

properties of Al/a-Si CSNs.  Herein, the results of the investigation are summarized, conclusions 

are drawn from these results, and recommendations for future research efforts are proposed. 

 

7.1 Summary of Results 

 In Chapter 4, the origin of the unique mechanical properties of Al/a-Si CSNs was 

explored through nanoindentation experiments and MD modeling.  The results show that 

dislocation mechanisms in the Al core play a substantial role in the mechanical behavior of the 

CSNs, which is enabled by geometrical confinement of the soft Al core by the hard a-Si shell.  In 

particular, the deformation behavior of these structures is critically dependent on the size of the 

confined core volume.  As the core diameter increases, the mechanical response is significantly 

altered and the deformation resistance is reduced.  Based on the indentation signatures exhibited 

by the CSNs with the smallest core diameter, the deformation behavior is mediated by 

dislocation activities within the confined core, with the deformation recovery resulting from 

dislocations retracing their paths or otherwise annihilating due to a back-stress generated during 

unloading.  As the size of the confined core volume increases, the magnitude of this back-stress 

decreases, and deformation resistance is eventually completely suppressed as a result.  

Complimentary MD simulations show that smaller core diameters correlate with both a larger 

back-stress being developed and improved dislocation removal during unloading. 
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 In Chapter 5, the role of geometric dimensionality on the mechanical behavior of Al/a-Si 

CSNs was assessed through experiments on hemispherical CSNs, horizontally-aligned CSRs of 

various lengths, and a layered thin film.  Whereas the hemispherical CSNs are deformation-

resistant, with nearly complete deformation recovery after indentation (even when loaded much 

beyond the elastic limit), the slight asymmetry in the core confinement of short CSRs results in a 

substantial decrease in the deformation resistance.  More conventional indentation behavior is 

observed in the long CSRs and layered thin film.  Supporting molecular dynamics simulations 

show that dislocations nucleated in the core of CSNs are more readily removed during unloading 

compared to CSRs, which indicates that the 3-dimensional core confinement of the CSNs plays 

an important role in the deformation-resistant properties of CSNs. 

 

 Finally, in Chapter 6, the friction, adhesion, and deformation of NSTSs composed of 

Al/a-Si CSNs were characterized.  The results show that the NSTSs have extremely low COFs 

(~0.015 at 8000 µN normal load), as well as no detectable nanostructure deformation at contact 

loads up to 8000 µN (estimated contact pressure greater than 1 GPa).  Analysis of the COF 

dependence on applied normal load shows that adhesive interactions contribute significantly to 

friction for normal loads below 250 µN, while deformation mechanisms contribute more 

significantly at higher loads.  NSTSs not only provide low adhesion and friction at low normal 

loads due to reduced contact area, but also provide low COF at high normal loads due to high 

deformation resistance.  Together, this combination of low adhesion, low COF, and high 

deformation resistance of NSTSs shows promise for their use in micro- and nanotribological 

applications where low adhesion, low friction and deformation resistance are desired.  
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7.2 Conclusions 

 The specific objectives of this investigation, as outlined in section 1.2, have been 

addressed through the experiments and simulations performed as a part of this study.  The 

conclusions drawn based on these results are summarized below: 

1. Confinement of the Al core, and particularly the size of the confined core volume, is 

critically important for the deformation-resistant properties of Al/a-Si CSNs.  For CSNs 

with a core diameter of 100 nm, discontinuous indentation signatures are observed during 

nanoindentation in conjunction with nearly complete recovery of deformation beyond the 

elastic limit.  These signatures are attributed to dislocation activities within the confined 

core, with the deformation recovery mediated by dislocations retracing their paths or 

otherwise annihilating during unloading.  As the size of the confined core volume 

increases, the dislocation signatures are suppressed, with an attendant loss of deformation 

resistance. 

2. The “dimensionality” of core confinement substantially influences the deformation 

behavior of Al/a-Si CSNs.  Whereas the hemispherical CSNs have deformation-resistant 

properties, when the axisymmetric core confinement is broken, as in the case of CSRs 

with short core lengths, the deformation resistance that is observed in the CSNs is 

substantially reduced.  In the limit of very long CSRs and layered thin films, conventional 

indentation behavior is observed, regardless of geometry. 

3. During MD simulations of hemispherical CSNs, a high proportionality of glissile 

Shockley partial dislocations are nucleated in the Al core during compression, which then 

leads to significant egression of dislocations when the stress generated within the core is 

relieved during unloading.  Furthermore, smaller core diameters correlate with both a 
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larger back-stress being developed and improved dislocation removal during unloading. 

MD simulations on CSRs show that dislocations nucleated in the core of CSRs are not as 

effectively removed during unloading compared to CSNs, which indicates that the 3-

dimensional core confinement of the CSNs plays an important role in the deformation-

resistant properties of CSNs. 

4. NSTSs composed of hemispherical CSNs exhibit improved tribological properties 

compared to ANDTSs and single crystal Si.  NSTSs have a COF as low as 0.015, exhibit 

low adhesion with adhesion forces on the order of less than 1 µN, and are highly 

deformation-resistant, with no surface deformation apparent after nanoscratch testing, 

even at contact forces up to 8000 µN (estimated contact pressure greater than 1 GPa). 

These findings clarify the mechanisms that contribute to the desirable properties of Al/a-Si CSNs 

so that they can be designed to be effectively used in applications where the mechanical integrity 

of nanostructures is important. 

 

7.3 Recommendations for Future Work 

 The results of this investigation provide significant insights into the origins of the novel 

mechanical behavior of Al/a-Si CSNs.  Based on these results, further research paths into both 

the fundamental material physics of CSNs and the practical applications of CSNs are opened. 

 

7.3.1 CSNs Fabricated from Other Core and Shell Materials 

  Whereas the mechanical behavior of Al/a-Si CSNs is attributed to dislocation dynamics 

within the Al core as it is compressed between the hard a-Si shell and hard Si substrate, further 

investigation is needed to determine if this behavior is specific to the combination of Al and a-Si, 
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or is rather a more general core/shell phenomenon.  This can be addressed through experiments 

and simulations of CSNs with other core and shell materials, which can evaluate the effects of a 

wide variety of material properties and CSN characteristics, such as stacking fault energy, crystal 

structure, core/shell interface, etc., in a fundamental way.  Since dislocations, particularly 

Shockley partials, play such a key role in Al/a-Si CSNs, the behavior of CSNs with other 

metallic cores is of interest.  For example, using a Au core, which has a lower stacking fault 

energy compared to Al, or a Ni core, which will support different types of dislocations than FCC 

Al, may give rise to different material behaviors.  Also of interest are polymer cores.  Although 

polymers do not support dislocations in general, it may be interesting to assess whether 

deformation recovery can exist in CSNs with polymer cores through some other mechanism, 

such as viscoelasticity or shear banding. 

 

7.3.2 In situ TEM Nanoindentation Experiments 

 In situ TEM nanoindentation is one of the most advanced techniques for assessing 

mechanical behavior of nanomaterials in response to applied stress and strain.  Such experiments 

could, in principle, directly observe the dislocation activities within the cores of CSNs during 

compression.  Presently, however, the CSN fabrication method utilized in this investigation 

cannot produce CSNs that are suitable for in situ TEM nanoindentation.  Specifically, the CSN 

dimensions are somewhat too large to be electron transparent, and the planar processing 

techniques used to fabricate the CSNs are not compatible with the Si microwedge substrates that 

are widely utilized in in situ TEM nanocompression experiments.  This limitation can be 

overcome through the development of a solution-synthesis CSN fabrication method [157,158].  

Such a method will allow for the synthesis of isolated core-shell nanoparticles with extensive 
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control of the core and shell dimensions, with an aim to produce CSNs that are small enough for 

in situ TEM experiments and can be reliably deposited on Si microwedge substrates.  Although 

these isolated nanostructures will potentially display different mechanical behavior compared to 

the CSNs detailed in this study since they are not rigidly attached to a substrate, these 

experiments will still provide a unique opportunity to directly observe the dynamics of confined 

dislocations. 

 

7.3.3 Large-scale MD and Multiscale Simulations 

 The MD simulations performed in this investigation provide a substantial improvement in 

the understanding of the mechanisms that contribute to the novel mechanical behavior of Al/a-Si 

CSNs.  However, several aspects of the real-world CSNs were not considered in the models.  

Notably, the models used a single crystal Al core, while the as-fabricated CSNs have a 

polycrystalline core structure.  In addition, the as-fabricated Al cores are not expected to be 

pristine and should have a non-zero initial dislocation density, potentially including misfit 

dislocations at the core/substrate interface due to the lattice mismatch between Al and Si.  There 

is also an interest in how the amorphous/crystalline interphase region at the core/shell interface 

affects the underlying dislocation dynamics in the CSNs.  More sophisticated and larger scale 

MD simulations investigating the effects of realistic polycrystalline Al cores on Si substrates, 

non-zero initial dislocation densities, and the core/shell interphase structure can provide further 

insight into the properties of CSNs.  Furthermore, due to the inherent size and timescale 

limitations of MD, the mechanical behavior of CSNs can also be studied using multiscale 

methods such as the coupled atomistics and discrete dislocation (CADD) method [159,160], 

which will allow access to more experimentally relevant length and time scales.   
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7.3.4 Long-term Durability  

 In terms of utilizing NSTSs in practical applications, the long-term durability of these 

surfaces still needs to be assessed.  This is especially important for MEMS/NEMS applications, 

in which reliability is characterized by the ability to withstand millions of actuation cycles.  In 

this investigation, individual CSNs were subjected to a maximum of 4 loading/unloading cycles, 

while the friction and deformation of NSTSs were assessed after only a single nanoscratch.  

Obviously, this is not enough to make definitive claims about the resilience of the CSNs and 

NSTSs over time.  The durability of CSNs can be evaluated using nanoscale dynamic 

mechanical analysis (DMA) [161], a nanoindentation technique in which a sinusoidal load 

oscillation is applied to a CSN with a specified loading frequency.  Using a loading frequency of 

60 Hz, for example, DMA can apply over 100,000 loading/unloading cycles to a single CSN 

over a span of 30 minutes.  Likewise, traditional micro- and nanotribometry experiments can be 

used to measure the friction and durability of NSTSs in response to reciprocating abrasion with 

precise load control.  These experiments, however, require relatively large-scale patterned areas, 

typically on the order of at least square centimeters.  The serial throughput of EBL makes 

fabricating such large areas of CSNs potentially untenable, so further research into more efficient 

NSTS fabrication methods is also needed. 
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APPENDIX I:  EXAMPLE LAMMPS INPUT SCRIPTS 

 The following LAMMPS script files were used to perform molecular dynamics 

nanoindentation simulations on CSNs, CSRs, and Al nanodots in this study.  The various input 

parameters can be adjusted to simulate different structure geometries (e.g., core diameter, 

nanorod length, etc.), system temperatures, and indentation rates and depths.  The MEAM 

potential files ‘meam.meamf’ and ‘meam.alsimgcufe’ were obtained from the NIST Interatomic 

Potential Repository (https://www.ctcms.nist.gov/potentials/).  The simulations performed in this 

study were run primarily on the stable LAMMPS release dated June 28, 2014. 

CSN Script: 
######################################## 
log CSN.log 
# 3d Al/a-Si Hemispherical Core-Shell Structure 
 
units  metal 
boundary p m p 
atom_style atomic 
processors * 1 * 
 
# Define Variables for Geometry and Simulation Parameters 
variable  Base equal 10.0    # Base Height in Angstroms 
variable  Radius equal 100    # Metal Core Radius in Angstroms 
variable  Thick equal 100    # Shell Thickness in Angstroms 
variable Lat equal 4.05  # Lattice parameter of the Base Material in Angstroms 
variable Sim equal floor((3*(${Radius}+${Thick}))/${Lat})*${Lat} # Size of 
Simulation Cell in Angstroms 
variable IndentR equal 1000   # Radius of Spherical Indenter in Angstroms 
variable IRate equal 0.5   # Indent Rate in Angstroms/1000 timesteps 
variable t equal 300    # Desired Simulation Temperature 
 
# Create Simulation Box with FCC Al Lattice 
lattice  fcc ${Lat} 
region  box block 0 ${Sim} 0 ${Sim} 0 ${Sim} units box 
create_box 3 box 
 
# Al-Si MEAM Parameters from Jelinek et al. 
pair_style      meam                     
pair_coeff      * * meam.meamf AlS SiS MgS CuS FeS meam.alsimgcufe AlS AlS SiS 
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# Define Regions for Al Core and Rigid Substrate 
region  base block INF INF INF ${Base} INF INF units box 
region  above-base block INF INF INF ${Base} INF INF side out units box 
region  core-sphere sphere $(v_Sim/2) ${Base} $(v_Sim/2) ${Radius} units box 
region  core intersect 2 core-sphere above-base 
# Create Atoms and Groups for Al Structure 
create_atoms 1 region core 
create_atoms 2 region base 
group  core region core 
group  base region base 
 
# Change Lattice to Si 
lattice  diamond 5.43 
 
# Define Regions for Si Shell 
region  shell block INF INF ${Base} $(v_Base+v_Thick) INF INF units box 
region  core-void sphere $(v_Sim/2) ${Base} $(v_Sim/2) ${Radius} side out units box 
region  shell-skirt intersect 2 shell core-void 
region  above-skirt block INF INF INF $(v_Base+v_Thick) INF INF side out units box 
region  shell-sphere sphere $(v_Sim/2) ${Base} $(v_Sim/2) $(v_Radius+v_Thick) units 
box 
region  shell-cap intersect 3 shell-sphere above-skirt core-void 
region  shell-structure union 2 shell-cap shell-skirt 
 
# Create Atoms and Group for Si Shell 
create_atoms 3 region shell-structure 
group  shell-structure-cr region shell-structure # Creates a shell of crystalline Si 
variable NumAtoms equal count(shell-structure-cr) # Calculates the number of atoms in 
the crystalline shell 
create_atoms 3 random ${NumAtoms} 25 shell-structure 
group  shell-structure region shell-structure 
delete_atoms group shell-structure-cr 
group  shell-structure-cr delete 
 
# Delete atoms that are too close in the a-Si shell 
delete_atoms overlap 1.5 shell-structure shell-structure 
 
# Shift processor grid for increased efficiency 
balance  1.1 shift xz 5 1.0 
 
# Screen and file output 
thermo          10 
thermo_style    custom step ke pe etotal temp fmax fnorm 
compute  csym all centro/atom fcc  
compute  pnrg all pe/atom 
dump  cg all custom 1000 CSN.min id type x y z c_csym c_pnrg 
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# Freeze the lower layer of the substrate 
fix  1 base setforce 0.0 0.0 0.0 
 
 
# Minimize total structure 
min_style       cg 
min_modify      line backtrack 
minimize        1.0e-6 1.0e-8 3000 100000 
undump  cg 
 
# Delete atoms that are too close at core/shell interface 
delete_atoms    overlap 2.0 shell-structure core 
delete_atoms    overlap 2.0 shell-structure base 
 
# Equilibrate to Desired Temperature 
velocity        all create $t 239427349 dist gaussian 
velocity        base set 0.00 0.00 0.00 units box 
fix             2 all nvt temp $t $t 0.05 
 
# Output commands 
thermo          200 
thermo_style    custom step ke pe etotal temp 
thermo_modify  lost warn flush yes 
dump  1 all custom 2000 CSN.eqil id type x y z c_csym c_pnrg 
 
# Run Equilibration 
reset_timestep 0 
run   30000 
undump 1 
 
# Indent 
variable YMax equal bound(all,ymax) 
variable Iy0 equal (${YMax}+${IndentR}) 
#variable YMax delete 
variable y equal ${Iy0}+1-${IRate}*step*dt 
fix  3 all indent 10 sphere $(v_Sim/2) v_y $(v_Sim/2) ${IndentR} units box 
 
compute         strs core stress/atom NULL     
compute         s11 core reduce sum c_strs[1] 
compute         s22 core reduce sum c_strs[2] 
compute         s33 core reduce sum c_strs[3] 
compute         s12 core reduce sum c_strs[4] 
compute         s13 core reduce sum c_strs[5]           
compute         s23 core reduce sum c_strs[6] 
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thermo  500 
thermo_style custom step temp pe v_y f_3[1] f_3[2] f_3[3] c_s11 c_s22 c_s33 c_s12 c_s13 
c_s23 
thermo_modify   lost warn flush yes 
reset_timestep 0 
dump  2 all custom 2000 CSN.indent id type x y z c_csym c_pnrg c_strs[1] c_strs[2] 
c_strs[3] c_strs[4] c_strs[5] c_strs[6] 
run   162000 
undump 2 
 
# Retract Indenter 
dump  3 all custom 2000 CSN.retract id type x y z c_csym c_pnrg c_strs[1] c_strs[2] 
c_strs[3] c_strs[4] c_strs[5] c_strs[6] 
variable y0 equal $y 
variable y delete 
variable y equal ${y0}+${IRate}*elapsed*dt  
run  162000 
######################################## 
 
 
CSR Script: 
######################################## 
log  CSR.log 
# 3d Al/a-Si Core-Shell Rod Structure 
 
units  metal 
boundary p m p 
atom_style atomic 
processors * 1 * 
 
# Define Variables for Geometry and Simulation Parameters 
variable  Base equal 10.0   # Base Height in Angstroms 
variable Length equal 100   # Length of Rod (minus caps) in Angstroms 
variable  Radius equal 100   # Radius of Rod Caps in Angstroms 
variable  Thick equal 100   # Shell Thickness in Angstroms 
variable Lat equal 4.05  # Lattice parameter of the Base Material in Angstroms 
variable MaxDim equal 3*(${Radius}+${Thick})+${Length}   
variable Sim equal floor((${MaxDim}/${Lat}))*${Lat} # Size of Simulation Cell in 
Angstroms 
variable IndentR equal 1000   # Radius of spherical Indenter in Angstroms 
variable IRate equal 0.5   # Indent rate in Angstroms/1000 timesteps 
variable t equal 300    # Desired Simulation Temperature 
 
# Create Simulation Box with FCC Al Lattice 
lattice  fcc ${Lat} 
region  box block 0 ${Sim} 0 ${Sim} 0 ${Sim} units box 
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create_box 3 box 
 
# Al-Si MEAM Parameters from Jelinek et al. 
pair_style      meam                     
 
pair_coeff      * * meam.meamf AlS SiS MgS CuS FeS meam.alsimgcufe AlS AlS SiS 
 
# Define Regions for Al Core and Rigid Substrate 
region  base block INF INF INF ${Base} INF INF units box 
region  above-base block INF INF INF ${Base} INF INF side out units box 
region  core-cyl cylinder x ${Base} $(v_Sim/2) ${Radius} $(v_Sim/2-v_Length/2) 
$(v_Sim/2+v_Length/2) units box 
region  core-shaft intersect 2 core-cyl above-base 
region  LofCyl block INF $(v_Sim/2-v_Length/2) ${Base} INF INF INF units box 
region  RofCyl block $(v_Sim/2+v_Length/2) INF ${Base} INF INF INF units box 
region  LCap-sphere sphere $(v_Sim/2-v_Length/2) ${Base} $(v_Sim/2) ${Radius} units 
box 
region  RCap-sphere sphere $(v_Sim/2+v_Length/2) ${Base} $(v_Sim/2) ${Radius}units 
box 
region  LCap intersect 2 LofCyl LCap-sphere 
region  RCap intersect 2 RofCyl RCap-sphere 
region  core union 3 core-shaft LCap RCap 
 
# Create Atoms and Groups for Al Structure 
create_atoms 1 region core 
create_atoms 2 region base 
group  core region core 
group  base region base 
 
# Change Lattice to Si 
lattice  diamond 5.43 
 
# Define Regions for Si Shell 
region  shell block INF INF ${Base} $(v_Base+v_Thick) INF INF units box 
region  core-void union 3 core-shaft LCap RCap side out 
region  shell-skirt intersect 2 shell core-void 
region  above-skirt block INF INF INF $(v_Base+v_Thick) INF INF side out units box 
region  shell-cyl cylinder x ${Base} $(v_Sim/2) $(v_Radius+v_Thick) $(v_Sim/2-
v_Length/2) $(v_Sim/2+v_Length/2) units box 
region  LofCyl-shell block INF $(v_Sim/2-v_Length/2) $(v_Base+v_Thick) INF INF 
INF units box 
region  RofCyl-shell block $(v_Sim/2+v_Length/2) INF $(v_Base+v_Thick) INF INF 
INF units box 
region  LCap-shell-sphere sphere $(v_Sim/2-v_Length/2) ${Base} $(v_Sim/2) 
$(v_Radius+v_Thick) units box 
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region  RCap-shell-sphere sphere $(v_Sim/2+v_Length/2) ${Base} $(v_Sim/2) 
$(v_Radius+v_Thick) units box 
region  LCap-shell intersect 2 LofCyl-shell LCap-shell-sphere 
region  RCap-shell intersect 2 RofCyl-shell RCap-shell-sphere 
region  shell-cylinder union 3 shell-cyl LCap-shell RCap-shell  
region  shell-cap intersect 3 shell-cylinder above-skirt core-void 
region  shell-structure union 2 shell-cap shell-skirt 
 
# Create Atoms and Group for Si Shell 
create_atoms 3 region shell-structure 
group  shell-structure-cr region shell-structure # Creates a shell of crystalline Si 
variable NumAtoms equal count(shell-structure-cr) # Calculates the number of atoms in 
the crystalline shell 
create_atoms 3 random ${NumAtoms} 25 shell-structure 
group  shell-structure region shell-structure 
delete_atoms group shell-structure-cr 
group  shell-structure-cr delete 
 
# Delete atoms that are too close in the a-Si shell 
delete_atoms overlap 1.5 shell-structure shell-structure 
 
# Shift processor grid for increased efficiency 
balance  1.1 shift xz 5 1.0 
 
# Screen and file output 
thermo          10 
thermo_style    custom step ke pe etotal temp fmax fnorm 
compute  csym all centro/atom fcc  
compute pnrg all pe/atom 
dump  cg all custom 1000 CSR.min id type x y z c_csym c_pnrg 
 
# Freeze the lower layer of the substrate 
fix  1 base setforce 0.0 0.0 0.0 
 
# Minimize total structure 
min_style       cg 
min_modify      line backtrack 
minimize        1.0e-6 1.0e-8 3000 100000 
undump cg 
 
# Delete atoms that are too close at core/shell interface 
delete_atoms    overlap 2.0 shell-structure core 
#delete_atoms    overlap 2.0 shell-structure base 
 
# Equilibrate to Desired Temperature 
velocity        all create $t 239427349 dist gaussian 
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velocity        base set 0.00 0.00 0.00 units box 
fix             2 all nvt temp $t $t 0.05 
 
# Output commands 
thermo          200 
thermo_style    custom step ke pe etotal temp 
thermo_modify  lost warn flush yes 
dump  1 all custom 2000 CSR.eqil id type x y z c_csym c_pnrg 
 
# Run Equilibration 
reset_timestep 0 
run   20000 
undump  1 
 
# Indent 
variable YMax equal bound(all,ymax) 
variable Iy0 equal (${YMax}+${IndentR}) 
#variable YMax delete 
variable y equal ${Iy0}+1-${IRate}*step*dt 
fix  3 all indent 10 sphere $(v_Sim/2) v_y $(v_Sim/2) ${IndentR} units box 
thermo  500 
thermo_style custom step temp pe v_y f_3[1] f_3[2] f_3[3] 
thermo_modify   lost warn flush yes 
reset_timestep 0 
dump  2 all custom 2000 CSR.indent id type x y z c_csym c_pnrg 
run   162000 
 
# Retract Indenter 
variable     y0 equal $y 
variable     y delete 
variable     y equal ${y0}+${IRate}*elapsed*dt   
run          162000 
######################################## 
 
 
Al Nanodot Script: 
######################################## 
log  AlND.log 
# 3d Al Hemispherical Nanodot 
units  metal 
boundary p m p 
atom_style atomic 
processors * 1 * 
 
# Define Variables for Geometry and Simulation Parameters 
variable  Base equal 10  # Base Height in Angstroms 
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variable  Radius equal 100 # Metal Core Radius in Angstroms 
variable Lat equal 4.05  # Lattice parameter of the Base Material in Angstroms 
variable Sim equal floor((4*${Radius})/${Lat})*${Lat} # Size of Simulation Cell in 
Angstroms 
variable IndentR equal 1000 # Radius of spherical Indenter in Angstroms 
variable IRate equal 0.5 # Indent rate in Angstroms/1000 timesteps 
variable t equal 300  # Desired Simulation Temperature 
 
# Create Simulation Box with FCC Al Lattice 
lattice  fcc ${Lat} 
region  box block 0 ${Sim} 0 ${Sim} 0 ${Sim} units box 
create_box 3 box 
 
# Al-Si MEAM Parameters from Jelinek et al. 
pair_style meam 
pair_coeff * * meam.meamf AlS SiS MgS CuS FeS meam.alsimgcufe AlS AlS SiS 
 
# Define Regions for Al Core and Rigid Substrate 
region  base block INF INF INF ${Base} INF INF units box 
region  above-base block INF INF INF ${Base} INF INF side out units box 
region  core-sphere sphere $(v_Sim/2) ${Base} $(v_Sim/2) ${Radius} units box 
region  core intersect 2 core-sphere above-base 
 
# Create Atoms and Groups for Al Structure 
create_atoms 1 region core 
create_atoms 2 region base 
group  core region core 
group  base region base 
 
# Shift processor grid for increased efficiency 
balance  1.1 shift xz 5 1.0 
 
# Screen and file output 
thermo          10 
thermo_style    custom step ke pe etotal temp fmax fnorm 
 
compute   csym all centro/atom fcc  
compute  pnrg all pe/atom 
dump  cg all custom 1000 AlND.min id type x y z c_csym c_pnrg 
 
# Freeze the lower layer of the substrate 
fix  1 base setforce 0.0 0.0 0.0 
 
# Minimize total structure 
min_style       cg 
min_modify      line backtrack 
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minimize        1.0e-6 1.0e-8 3000 100000 
undump  cg 
 
# Equilibrate to Desired Temperature 
velocity all create $t 39427349 dist gaussian 
velocity base set 0.00 0.00 0.00 units box 
fix 2 all nvt temp $t $t 0.05 
 
# Output commands 
thermo  200 
thermo_style custom step ke pe etotal temp 
thermo_modify  lost warn flush yes 
dump  1 all custom 1000 AlND_10_1B.eqil id type x y z c_csym c_pnrg  
 
# Run simulation 
reset_timestep 0 
run   30000 
undump  1 
 
# Indent 
variable YMax equal bound(all,ymax) 
variable Iy0 equal (${YMax}+${IndentR}) 
#variable YMax delete 
variable y equal ${Iy0}+1-${IRate}*step*dt 
fix  3 all indent 10 sphere $(v_Sim/2) v_y $(v_Sim/2) ${IndentR} units box 
 
compute         strs core stress/atom NULL     
compute         s11 core reduce sum c_strs[1] 
compute         s22 core reduce sum c_strs[2] 
compute         s33 core reduce sum c_strs[3] 
compute         s12 core reduce sum c_strs[4] 
compute         s13 core reduce sum c_strs[5] 
compute         s23 core reduce sum c_strs[6] 
 
thermo  500 
thermo_style custom step temp pe v_y f_3[1] f_3[2] f_3[3] c_s11 c_s22 c_s33 c_s12 c_s13 
c_s23 
thermo_modify   lost warn flush yes 
reset_timestep 0 
dump  2 all custom 2000 AlND.indent id type x y z c_csym c_pnrg c_strs[1] c_strs[2] 
c_strs[3] c_strs[4] c_strs[5] c_strs[6] 
 
run   42000 
undump 2 
 
# Retract Indenter 
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dump  3 all custom 2000 AlND.retract id type x y z c_csym c_pnrg c_strs[1] c_strs[2] 
c_strs[3] c_strs[4] c_strs[5] c_strs[6] 
variable y0 equal $y 
variable y delete 
variable y equal ${y0}+${IRate}*elapsed*dt  
run   72000 
######################################## 
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