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ABSTRACT 

 

This paper presents a new failure analysis method, Failure Identification for Mission 

Analysis (FIMA), which performs a general failure analysis for the overall state of a system, as 

well as a mission-specific analysis that identifies how failures may have differing effects on the 

various mission tasks that a system must complete.  The FIMA method is capable of being 

implemented at any point in the design process.  During early design stages, the FIMA method 

will identify various qualitative failure scenarios based on programmed functional relationships 

and any number of initial failures wished to be simulated.  The functional relationships for this 

method are unique in that along with traditional function-based failure modes, they also include 

manufacturing-based failure modes in each component’s performance model.  The models are 

then used to determine fault propagation paths as well as each failure scenario’s criticality on the 

overall system performance.  During later design stages, the FIMA method will introduce the 

usage of physics-based governing equations to more accurately identify the system’s behavior 

during different failure scenarios. The FIMA method is unique in its ability to identify a specific 

failure scenario’s effects on a system’s overall performance and then apply this failure 

information to specific mission tasks.  The FIMA method uses multiple metrics to determine the 

effects of a given failure scenario on a potential mission plan and then uses other unique metrics 

to assess and optimize a new mission plan based on the remaining tasks and the remaining 

functionality of the system’s components.   This method is demonstrated in two different 

theoretical case studies with experimental validation to be conducted in the future.  The results of 

the first case study will show how the FIMA method is able to automatically identify a large 

variety of possible failure scenarios and their varying effects on the overall system’s 

performance, while the second case study will show the FIMA method’s mission analysis 



 

capabilities by using multiple unique metrics for mission comparisons and optimizations during 

various potential failure scenarios.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

In a time when every new technology seems to be vastly more complex and sophisticated 

than its predecessor, it is obvious that the methods dedicated to modeling and analyzing these 

technologies must also become more complex and sophisticated.  Technological advancements 

have allowed for the creation of many complex systems capable of performing a variety of tasks 

a variety of different ways, simplifying processes and helping automate many industries. 

Unfortunately, along with the benefits of being able to produce complex behaviors, complex 

systems also produce complex failures, and herein lies possibly the biggest challenge currently 

faced in understanding complex systems; complex failure analysis can be incredibly difficult due 

to the fact that the different functions of a complex system may all experience significantly 

different effects from the same failures.  Therefore, the various possible use-cases of a complex 

system must be taken into account for accurate failure analysis.  For example, if an airplane’s 

landing gear fails in the open position, this failure would affect the performance while cruising, 

however, during takeoff and landing the failure would be inconsequential.  Unfortunately, most 

current failure analysis methods are ill equipped for such comprehensive complex system 

analysis due to their mission independence. A mission is defined here as the system’s high-level 

objective; for example, an airplane getting from point A to point B would be its mission.  

Mission tasks, on the other hand, are the discrete actions that must be done to complete a 

mission; for example, taking off, cruising a particular route, and landing would be three abstract 

mission tasks for an airplane. Current methods typically only identify potential failures and their 

likely effects on component and system-level behaviors in a general sense, but do not identify 
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how the faulty behaviors will affect the system’s ability to complete specific mission tasks, i.e. 

they do not take into account the three stages of flight in the previously stated example, and 

therefore, would not accurately be able to determine the severity of a failure on the various 

mission tasks.  

According to the Failure Identification and Mission Analysis (FIMA) method presented 

in this paper, accurate complex system failure analysis depends on three factors: the internal 

system state, the external system state, and the internal system’s mission.  An internal system is 

any collection of interconnected functional entities, or components, such as an airplane. An 

external system is the environment with which the internal system interacts, and a mission is a 

task, or set of tasks, to be performed by the internal system, within the external system, during a 

specific time period. While the internal system boundaries and overall mission do not change for 

a given complex system, the external system boundaries and current mission tasks may 

frequently change depending on the system’s current use.  For example, an airplane would 

represent an internal system, and, regardless of what functions it is performing at a given time, it 

is always an airplane.  Similarly, the airplane’s mission of getting from point A to point B does 

not change.  However, the current mission task changes from taking off to cruising to landing, 

and the external system changes with the changing weather that the airplane may fly through 

during its trip.  

Understanding the possible complex uses of a complex system is where current methods 

primarily fall short in providing comprehensive failure analysis.  Most current failure analysis 

methods and tools, many of which are discussed in Chapter 2, typically only identify potential 

failures and how they might affect component and system-level behaviors.  These methods do 

not consider a failure’s effect on specific missions however. This mission-independence greatly 
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limits their analyses because during one mission task a failure may cause drastic changes to the 

system’s performance, while during another, that same failure might not be noticed at all, and 

thus, it is vital to know how the complex system is to be used in the future, after a failure occurs, 

in order to accurately identify the high-level effects of the failure.  For example, if a failure 

occurs in the drivetrain of a vehicle and causes the vehicle to no longer be able to turn left 

effectively, it might seem that the vehicle has suffered a critical failure because one of its main 

functions is removed. However, if the vehicle’s mission was only to transport something down 

and back a straight path, then the turning failure would be inconsequential.  Unlike current 

methods, the FIMA method presented in this paper would be able to recognize this and instead 

identify the failure as manageable for this specific mission.  Likewise, for the same vehicle 

system, if the mission or external system were changed to include turns or obstacles, the 

proposed method would look for all possible paths that only require right turns and if no such 

solutions existed, then, and only then, would the failure be considered critical.   

As well as knowing which functions are still achievable, it is also important to know if 

there are any functional or control redundancies that could help restore the lost functionalities; a 

functional redundancy is the utilization of healthy components in a new fashion in order to 

compensate for reduced or lost functionalities of unhealthy components, and a control 

redundancy is a parameter change to maintain nominal performance [1,2].  Understanding a 

system’s functional and control redundancies is the first step towards optimizing a system’s 

robustness.  Robustness is a system’s ability to adapt to failures and is vital in being able to 

extend its own lifespan and get the most use before any external involvement is needed, such as 

the replacement of faulty components. Robustness depends on a system’s ability to adapt its 

behavior or its mission plan after a failure occurs in order to increase its overall functional 
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efficiency.  The human body is an excellent example of a robust complex system as it is 

constantly adapting to failures through the use of redundancies.  For example, if you sprain your 

ankle, the body’s pain sensors will feel the failure and adjust its functionality by walking slower 

and with a limp; putting more weight on the healthy leg is a functional redundancy and walking 

slower is a control redundancy.  If these adjustments were not made and a normal walking style 

at a normal pace was continued then the injured ankle would be more susceptible to further 

injury and eventually total failure.  Unfortunately, non-living complex systems cannot feel pain 

and thus will attempt to continue operating at full capacity on unhealthy components, increasing 

the likelihood and rate of further degradation until a total failure occurs.  Therefore, new 

strategies, such as those presented in this paper, should be implemented in order to identify 

when, where, and which redundancies are needed.    

The FIMA method described in this paper is broken down into three phases of modeling 

and analysis to be used in the design process depending on how much system information is 

known; these phases are (1) qualitative, (2) quasi-quantitative, and (3) quantitative.  The 

qualitative analysis phase focuses on abstract failure modes, such as ‘Nominal,’ ‘Degraded,’ and 

‘Defective,’ and is designed to determine potential failure scenarios, identify the difference 

between initial and propagating faults, and ultimately, provide a qualitative complexity gauge for 

conceptual design comparisons.  The quasi-quantitative phase also focuses on abstract failure 

modes but allows for different degrees and types of degradation, such as a channel being ‘10% 

too big/small.’  This phase also incorporates physics-based equations to more accurately define a 

system’s behavior during nominal and faulty conditions, which is then used to assess and 

optimize the system’s performance for specific mission plans. Lastly, the quantitative phase 

implements specific failure modes, such as ‘20% Wear,’ and utilizes a physical testbed for 
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experimental validation. By providing support for all three phases of analysis, the FIMA method 

will allow for a much more streamlined analysis process by allowing the same adaptable model, 

which simply expands and becomes more comprehensive with each new learned piece of 

information about the system, to be used throughout the entire design process.   

A major issue with most current failure analysis methods is that during the design process 

the majority of failure information is only used to improve a system’s reliability, i.e. its 

probability to function given time and scenario before a failure occurs [3,4].  Unfortunately, 

however, no matter how reliable, all systems are guaranteed to eventually fail, and therefore, it is 

important for designers to begin using a system’s robustness [5,6], i.e. its ability to adapt to 

failures, just as seriously as its reliability, and the proposed FIMA method attempts to help with 

this problem.  Utilizing the FIMA method allows for comprehensive models and simulations of 

failure scenarios in complex systems, but also allows for specific mission assessments and 

optimizations based on a system’s robustness. This paper will explain the detailed theory and 

methodology for the qualitative and quasi-quantitative phases of the FIMA method, as well as 

providing example case studies for each phase, in Chapters 3 and 4, respectively, where 

MATLAB/Simulink software was used to create the models.  The general description of the fully 

quantitative phase will then be discussed in the “Future Recommendations,” found in Chapter 6. 
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CHAPTER 2 

 

BACKGROUND 

 

 

 

The proposed method attempts to expand upon the research in model-based failure 

analysis by incorporating failure modes for not just components, but also manufacturing 

processes and environmental influences.  Function-based modeling enables a broad approach to 

failure analysis as it can be applied during early design stages when a system’s detailed 

information may not yet be known.  Function-based modeling can be used to examine multiple 

faults [7-32], and some can also help simulate propagating faults [7,8,19,32].  By using function-

based models, various components of different technology types, manufacturing processes, and 

physical connections, or lack of connections, between components can all be represented in the 

same failure simulation analysis.  The functional performances of the individual components, as 

well as the overall functional performance of the system, are then identified through discrete 

failure scenario simulations.  This paper’s research is based on this foundation of function-based 

design and failure analysis.  

Function-based modeling starts with a very abstract description and gets progressively 

more detailed. Function-based modeling classifies system functions into groups and subgroups, 

with abstract functional relationships connecting the high-level groups, and more detailed 

functional relationships connecting the low-level subgroups. These function groups are 

repeatedly divided into more and more detailed subgroups until the functions are detailed enough 

that specific components can be chosen to satisfy them [15].   For the purposes of the FIMA 

method, components are already chosen, however, the designer is responsible for determining 

their detailed functional relationships based on how each component’s function is related to the 
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desired overall system performance.  Then, depending on how much information is known, each 

component can be represented by either qualitative or quantitative equations.  When little 

information is known, qualitative math is used so that abstract values can be given to various 

components to represent certain abstract failure states with different degrees of degradation, 

which then allows for qualitative comparisons to be made between components [33].  For 

example, if a value of 5 is said to represent nominal performance and 0 represents defective 

performance, with the in between values representing degradations, then, if component(A)=5 and 

component(B)=2 then component(B) is said to be more degraded than component(A). Once 

sufficient information is known, however, more quantitative analysis with actual quantitative 

equations can be used to determine specific outputs. For example, a simple circuit would be 

given the equation V=I*R, but if the resistor lost 10% of its functionality, the new equation 

would become V=I*(.9R). 

Two of the main failure analysis methods currently used in industry are Failure Modes 

and Effects Analysis (FMEA) [34,35,36,37] and Failure Modes, Effects and Criticality Analysis 

(FMECA) [38,39].  However, these methods do not use function-based modeling.  These 

methods use only static failure definitions to identify the causes, effects, probabilities, and 

criticality of known failures that a system may experience. However, the analysis is explicitly on 

how a component’s failure will affect that single component’s performance, while the 

propagating effects on the other components’ and the overall system’s functions are not explored.  

Moreover, different use-cases, or missions, are not explored and therefore, these methods are 

limited when it comes to analyzing complex systems with complex behaviors. Also, because 

these are static methods that do not incorporate behavioral models, they rely on a fair amount of 
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detailed information to be known about the system in order to provide any useful analysis, which 

means they cannot typically be applied until late in the design process.   

On the other hand, existing methods that do explore model-based failure analysis include 

the Function-Failure Design Method (FFDM) [13,21], Function-Failure Identification and 

Propagation (FFIP) [8,19], and Risk in Early Design (RED) [22,24,25]. These methods focus on 

function-based modeling to identify the behavioral effects of a system’s possible failure modes, 

as well as how failures might propagate through the system.  Function-failure methods generally 

only care about whether or not an individual component is experiencing a functional failure, such 

as a valve not opening all the way, and how this affects the overall system performance, while 

the causes of these failures may be ignored.  Therefore, less detailed information is required to 

make these models, allowing them to be implemented early in the design process.  Some 

methods, such as FFIP, also provide a more expansive analysis by including physics-based 

behavioral equations in order to more accurately define failure effects on system performance.  

Unfortunately, these methods, similar to FMEA and FMECA, do not consider the various 

potential missions that a system may be asked to perform, and therefore, they provide only a 

limited understanding when it comes to complex systems and their complex behaviors. 

Other forms of analysis include dependency-based methods, such as Fault Tree Analysis 

(FTA) [40], which is a top-down approach that starts with a component’s possible failures and 

works downward to determine all possible causes for each failure.  The process begins by 

identifying the different ways that component functions may be limited.  For example, if analysis 

were being done on a vehicle, the process would begin by identifying potential high-level 

failures, such as a transmission failure. Then, the approach would be to work downward with less 

abstract descriptions to identify the different possible causes for this failure, such as the gears 
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being broken, the clutch being jammed, or through power loss, until all possible causes and the 

responsible components have been described in sufficient detail.  This same style of identifying 

causality will be used by the FIMA method, however it will be used for determining functional 

relationships for fault propagation purposes, where instead of choosing effects and working 

downward to identify causes, the FIMA method chooses high-level system functions and works 

downward to identify components that provide these functions.  Also, while this paper explores 

modeling with MATLAB/Simulink, the modeling of functional relationships could also be done 

using formal modeling languages, such as SysML. [41,42] 

Other methods introduce functional and control redundancies, as well as other criteria to 

help enhance a system’s robustness [1,2,3,4].  Redundancies, as previously mentioned, are when 

healthy components take on extra responsibilities and functionality in order to compensate for 

unhealthy components.  Self-maintenance machines are one such technology that use control and 

functional redundancies [1,2], however they only identify these once the design is already 

completed and cannot identify any of the backup procedures without first knowing the potential 

failure scenarios or failure probabilities, and therefore cannot be applied until such information is 

known, which is typically not until late in the design process. 
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CHAPTER 3 

 

PHASE I: QUALITATIVE ANALYSIS 

 

 

 

3.1. Phase I: Overview 

 

3.1.1. General Theory 

 

Phase I of the FIMA research was previously published and presented by the author at the 

2014 ASME IDETC/CIE conference as a stand-alone research project, and therefore, all 

information in Chapter 3 can be also found in that conference paper referenced in the “List of 

Publications” section [DeStefano & Jensen. 2014].  

The following sections detail the proposed approach for performing qualitative function-

based failure analysis on complex systems during early design stages. This analysis can be used 

during any design stage, however, typically it would only be used during early design stages of 

novel systems when detailed information about the system is not known, i.e. governing equations 

or failure modes. If such detailed information were already available it would likely be more 

beneficial to skip straight to Phase II for quasi-quantitative analysis. Despite only providing a 

qualitative analysis, Phase I of the FIMA method provides valuable abstract failure information, 

such as possible failure scenarios, fault propagation paths, critical versus manageable failure 

scenarios, and complexity gauges of the design.  Phase I analysis is to be used to compare 

multiple potential concept designs in hopes of being able to identify the best options, or at least 

being able to eliminate the worst.   

During this phase, the first step is to create an abstract model of functional relationships 

and dependencies between the system’s components. These functional relationships are the 

framework for further, more detailed analysis later on.  The models are not based on internal 
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system structure, but rather only on functionality, as well as any other factors that may affect a 

system’s performance, such as a component’s manufacturing process or environmental 

influences. Structure is not valued here because in complex systems where components can 

transfer electrical, material, or signal information, just because two components may be next to 

each other structurally, they do not necessarily have any interaction with one another.  Therefore, 

only a component’s functionality is assessed. 

The FIMA method uses Simulink state-flow models to identify the functional 

relationships and the different potential failure modes, and uses MATLAB coding to initiate 

failure scenario simulations. MATLAB and Simulink were used as the modeling software for 

this research, however the FIMA method should also be able to be applied using any other state-

based, signal processing software. Each system component within the Simulink model is 

connected to one another based on their functional relationships, i.e. the components that are 

directly dependent on the performances of the other. Each component has two types of Simulink 

diagrams: a state-machine diagram and a failure-logic diagram. State-machines allow for a 

component to switch between any of its potential performance states, such as “Good 

Performance” or “Faulty Performance,” and then provide a performance value based on which 

state the component is currently located.  On the other hand, failure-logics are essentially the 

reverse, as they provide the state of a component based on its individual performance value as 

well as the performance values of all of its dependent components.  Simply put, state-machines 

are used to simulate multiple failure scenarios by identifying different combinations of 

performance states throughout the system, and failure-logics are used to identify where the 

failures have occurred in the system for a specific scenario.  During the Phase I qualitative 

analysis, component state-machines contain three potential performance states: “Nominal,” 
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“Degraded,” and “Defective.”  While having only three performance states is very abstract, as 

most real-world components have more than one way to be “Degraded” or “Defective,” the more 

that is known about a system, the more detailed and extensive these faulty states can become; 

this expansion will be explored in more detail in the Phase II quasi-quantitative analysis method 

found in Chapter 4.  

3.1.2. General Methodology 

Once a system is chosen for modeling, the first step is to create a top-down functional 

relationship diagram by identifying the highest-level component, or components, that best 

express the overall performance of the system and then working downward to determine all 

dependent functional relationships.  For example, a functional relationship of a car would start 

with the wheels, because they are the component that actually allows the vehicle to move, and 

then the wheels would be dependent on the driveshaft, which would depend on the power 

system, and so forth, until every component was represented and related through their 

functionality.  Or for a simpler example, take a three component system where component(A) 

depends on component(B), which depends on component(C), as shown in Figure 3.1.  

 

 

 

 

 

 

 

 

Figure 3.1 – Functional Relationships between three components  

(C depends on B, which depends on A) 

 

C 

B 

A 
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Next, Simulink models are created based on these functional relationships. For qualitative 

models, the Simulink state-machines only contain abstract performance values based on the 

components’ different performance states and their functional relationships.  The functional 

relationships flow up, so analysis begins with the bottom components, which is component(A) 

for the aforementioned example.  If component(A) is in the “Nominal” state it would be given an 

abstract performance value, which for the purposes of this example we will set equal to 10.  On 

the other hand, if component(A) is in the “Degraded” state its performance value will be 9, or the 

“Nominal” performance value minus one, i.e. 10-1=9, and if it is “Defective” it will be 0. Then, 

component(B)’s “Nominal” state will inherit component(A)’s performance value and then 

proceed through the same subtraction for its “Degraded” state, while a “Defective” state is 

always given a performance value of 0.  That is to say that if component(A) is “Nominal,” i.e. 

has a performance value of 10, and if component(B) is also “Nominal,” then its performance 

value would also be 10 or it’s “Degraded” value would be 9, but if component(A) is “Degraded,” 

i.e. has a performance value of 9, then if component(B) is “Nominal” its performance value 

would be 9 and its “Degraded” value would be 8, and this process progresses for any number of 

components (A-Z).  So, for the example three-component system in Figure 3.1, if all three 

components were “Nominal” then they would all three have performance values of 10. However, 

if component(A) and component(B) are degraded from extended use, but component(C) is brand 

new, then component(A) would be labeled “Degraded” with a performance value of 9, 

component(B) would be labeled “Degraded” with a performance value of 8, and component(C) 

would be labeled as “Nominal” with a performance value of 8. This subtraction method is used 

so that if a single component becomes “Degraded” the reduced performance value will propagate 

to the next dependent component, however it will not necessarily be labeled as “Degraded,” it 
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would simply have a lower “Nominal” value; a component is only labeled “Degraded” if its 

decreased performance value is caused by an initial internal failure rather than by fault 

propagation. By making this distinction, we can easily identify if a component is affected by an 

initial or propagating failure based on the combination of its performance state and performance 

value. This allows for a quick check of how many initial faults are present within the system by 

comparing a component’s reduced performance value with the designated nominal value. For 

example, if a component, such as component(C) in the previous example, shows a “Nominal” 

state with a performance value of 8, instead of 10, then this indicates that there are 2 preceding 

failures in the system, and the component’s failure-logic diagram could then be used to identify 

where these initial failures occurred.  More detailed examples of state-machines and failure-logic 

diagrams will be explored in the following case study. 

Once the Simulink model is completed, the next step is to develop a code in MATLAB 

that can simulate the Simulink model to automatically generate possible failure scenarios by 

identifying all possible combinations of the programmed failure modes. A detailed example of 

this modeling process will be explored in the case study discussed in the following section.  

 

 

 

3.2. Phase I Case Study: MEMS DNA Sequencer 

 

3.2.1. Case Study: Overview 

 

 Along with advanced technologies becoming more and more complex, many are also 

becoming smaller and smaller; one such product area is known as MEMS, or micro-

electromechanical systems. Many of these devices deal with electrochemical machines and 

quantum physics, which can cause difficulty in understanding potential failure modes during 

early design phases. This lack of detail when it comes to electrochemical devices and quantum 
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physics is a perfect example of when the FIMA method’s Phase I qualitative analysis can be 

highly beneficial. Therefore, the case study presented in this paper will introduce such a device: 

a MEMS Nanochannel DNA sequencing device [43,44].  

The device, i.e. the internal system, as seen magnified in Figure 3.2, is comprised of a 

microchannel inlet and a microchannel outlet connected by a nanochannel, represented by the 

dashed line, along with transmitting and receiving electrodes on either side of the nanochannel; 

the image depicts five electrodes, however, this paper’s model only deals with one for the sake of 

simplicity. Including all five electrodes in the model would more accurately represent the 

system’s robustness due to the enhanced functional redundancy, however for the purposes of 

Phase I, the goal is to simply show that the qualitative process works for basic failure 

identification and mission assessment at even such a low level of detail.  More detailed analysis 

that will incorporate redundancies for mission optimization is reserved for the case study seen 

during Phase II in Chapter 4. 

 

 

 

 

 

 

 

Figure 3.2 - MEMS Nanochannel DNA Sequencer. [43,44] 

 

The modeled device uses the quantum principle of electron tunneling to detect and 

sequence a strand of DNA that traverses through the nanochannel, however, in the current 

developmental stage of this device, nanobeads are used to represent DNA strands. The theory 
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behind this device is that because DNA consists of four nucleotide bases, thymine (T), adenine 

(A), cytosine (C), and guanine (G), each with a different internal resistance, when the 

transmitting electrode emits a current at a passing DNA, or nanobead, the receiving electrode 

will register different voltages based on which nucleotide base is passing by, blocking the 

transmitted current [41,42]; this goal of identifying and sequencing the DNA would be 

considered the system’s mission.  Due to only a limited number of components, this device 

appears to have a fairly low complexity. However, the case study will show that the Phase I 

model is able to simulate a very large number of possible failure scenarios, which will illustrate 

how even seemingly simple devices can still have more failure scenarios than a human designer 

could ever think of within a reasonable timeframe, without the use of simulations. 

3.2.2. Case Study: Methodology 

 

 First, the system’s functional relationships had to be determined. Because this is a device 

with no moving parts, it can be more difficult to understand how failures might propagate, as an 

individual component has no means of influencing any other component through physical 

contact, rather only through complex combinations of electrical, material, or signal flows. 

However, it is because of this fact that this device is a perfect example for the proposed FIMA 

method’s qualitative analysis. Applying the proposed method to this device demonstrates how 

structural relationships do not matter, but instead, it is only functional relationships that matter 

for determining the system’s overall performance. In this case study, the focus is on how each 

component’s functional performance affects the final measurement of the DNA, therefore 

making the receiving electrode the highest-level component. A simple representation of the 

functional relationships for the device can be seen in Figure 3.3. The diagram also displays how 

the Simulink model will be approached; a component’s influence flows up, meaning components 
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in the diagram are dependent on the performance of those connected from below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 - Functional Relationship Diagram for Nanochannel DNA Sequencer 

 

Figure 3.3, identifies how the functional relationships between the components’ 

manufacturing and performance states will be modeled, where a state-machine and a failure logic 

will be created for each block.  Beginning at the low-level components and moving up, it can be 

seen that the state of the microfabrication of the nanochannel (NCMF) directly affects the 

performance state of the nanochannel (NBNC). The performance state of the nanochannel is also 

affected by the microfabrication and performance states of both the microchannel inlet 

(MCIMF/MCI) and the microchannel outlet (MCOMF/MCO). This is due to the fact that if the 

inlet or outlet is faulty, such as by being clogged, the result would respectively be either no 

nanobeads being able to enter or no nanobeads being able to exit the nanochannel, both of which 

would produce a non-nominal state within the nanochannel.   Next, the state of the nanochannel, 

along with the microfabrication and performance state of the transmitting electrode (ETMF/ET), 

combine to determine the conditions of the nanobead (NBE). For example, if the nanochannel is 

not the right size or if the transmitting electrode does not emit the correct current then the 
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nanobead will not be able to be accurately measured.  Finally, the performance state of the 

receiving electrode (ER) is affected by its microfabrication (ERMF) and the nanobeads’ 

conditions when they are between electrodes. Accurately identifying these functional 

relationships is vital in being able to properly detect the difference between initial and 

propagating failures.  For example, if the nanochannel were “Degraded,” such as not being the 

correct size, this would result in an inaccurate measurement taken by the receiving electrode 

without any failure to the receiving electrode itself.  Similarly, if the transmitting electrode is 

“Degraded” and emits a faulty current, then the receiving electrode will again have inaccurate 

measurements without any failure to itself, or, lastly, the nanobead itself could cause an 

inaccurate receiving electrode measurement, such as by being damaged or moving too fast.  All 

three listed examples of propagating failures, as well as initial failures of a degraded 

manufacturing or performance of the receiving electrode itself, will result in inaccurate 

measurements, however, by accurately identifying the functional relationships and through the 

use of Simulink state-machines and failure-logic diagrams the FIMA method should be able to 

effectively identify the root cause of the faulty measurements.  

A Simulink diagram is created using state-machine and failure logic diagrams instead of 

the blocks used in the functional relationships diagram. An overview of the entire Simulink 

model can be seen in Figure A1 in the Appendix, and examples of two different performance 

state-machines and a failure-logic diagram can be seen in Figures A2, A3 and A4, respectively.  

State-machine and failure-logic diagrams consist of two main parts: state-blocks and transition 

lines. The values and equations in each state-block represent the output performance states and 

values for that component, and the values and equations on each line represent the inputs that 

determine which state-block to activate, i.e. the state-machine begins at the default value, 



19 

represented by a line open at one end and connected to a state-block on the other, then the model 

observes the inputs, finds a matching transition line, and then transitions the component into that 

state. 

After the Simulink model is finished, the next step is to write a MATLAB code that 

simulates all combinations of potential performance states found in every component, where 

each possible combination is known as a failure scenario. As seen in Figure 3.3, the overall 

system is comprised of 11 parts, counting both manufacturing processes and functional 

performance for each internal system component, as well as the nanobeads.  However, the 

Simulink model includes a state-machine and failure-logic diagram for each component and 

therefore, there are 22 parts, as seen in Figure A1. The system inputs, seen as the small circles 

feeding into the left side of each component in Figure A1, represent the performance states being 

designated for each component during any given scenario. The system outputs, seen as the small 

circles exiting from the right side of the components, represent the components’ failure-logic and 

performance values. If all 11 components failed simultaneously, there would be a massive 

number of possible failure scenarios, and while simulating this would be possible, it does not 

seem probable as a real-world scenario. So, for the purposes of this paper, the MATLAB code is 

designed to simulate all possible failure scenarios based on the programmed functional 

relationships for single, double, and triple type failure scenarios i.e. all failure scenarios initiated 

by any combination of one, two, or three initial component failures, respectively. 

3.2.3. Case Study: Results and Discussion 

 

 After all simulations were complete, it was determined that there were 22 possible failure 

scenarios for single failures, 220 failure scenarios for double failures, and 1320 failure scenarios 

for triple failures. Also, by examining the performance states of the highest-level component in 
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the functional relationship diagram, i.e. the receiving electrode, it was determined that for the 

single type simulations, 9 of the 22 failure scenarios, or roughly 41%, resulted in critical failures.  

Critical failures are classified as when the receiving electrode’s performance value is 0, either 

through initial or propagating failures, and manageable failures are when the receiving 

electrode’s performance state is not 0; an example of the output data set for single failures can be 

seen in Figure 3.4, where each row is a different failure scenario and the columns are the failure-

logic states for each component and the performance value for the receiving electrode.   For the 

double type simulations, 144 of the 220 failure scenarios, or roughly 65%, resulted in critical 

failures, and for the triple type, 1056 of the 1320 failure scenarios, or roughly 80%, resulted in 

critical failures.  The reason every “Defective” performance state did not result in a critical 

failure in this example was because the microchannel outlet was given time-based failures.  For 

example, if the microchannel outlet was full or experienced a blockage, the effect would not 

instantly be seen in the nanochannel.  Only after a certain amount of time would the blockage 

back up into the nanochannel, and until that time, accurate measurements would continue to be 

made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Single Type Failure Scenario Results 
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Ultimately, the proposed method was able to simulate the case study model for all single, 

double, and triple failure scenarios. The example device used in the case study, which was only 

comprised of five main components, might intuitively be thought of as a fairly simple design, 

without that many possible ways of failing. However, this paper has demonstrated how even 

seemingly simple devices can, in fact, have a vast array of possible failure scenarios, many of 

which result in critical failures. This shows how with so many possibilities for failure, even on a 

seemingly simple design, a human designer could potentially overlook critical failure scenarios 

that may eventually cause costly redesigns down the line. Using the proposed method, along with 

some additional clustering analysis of the results, designers should be able to determine valuable 

failure information early on in the design process. Such information includes how each 

component’s functional performance relates to the design’s overall performance, how many 

failure scenarios are possible, how many failure scenarios are critical vs. manageable, which 

components are most sensitive, i.e. involved in the most failure scenarios/most critical failure 

scenarios, which manufacturing processes are most critical, and many others. Also, despite only 

one design having been talked about in regards to this device, this qualitative analysis would be 

very useful when there are multiple potential designs in question.  

In general, designers want to limit complexity as much as possible in their designs, and 

this type of qualitative analysis provides two very useful pieces of complexity information: (1) 

the higher the involvement of a component, the higher the component complexity, and (2) the 

more possible failure scenarios, the higher the overall device complexity. With these two criteria, 

a designer can compare two or more potential device designs to determine which design has the 

most balanced component involvement and the fewest failure scenarios.  Unfortunately, this 

device did not provide a very adaptable system model, as it only had one possible mission, i.e. 
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sequence DNA, and did not have any functional redundancies, due to limiting the number of 

electrodes within the model, and therefore, the full extent of the FIMA method’s mission 

assessment and optimization capabilities were not completely explored in this case study.  

Nevertheless, the Phase I qualitative analysis method has effectively laid the ground work for 

further, more comprehensive analysis, which will be explored in the following chapter where the 

quasi-quantitative analysis method will be explained, as well as demonstrated on an adaptable 

complex system in order to effectively show the mission analysis capabilities of the FIMA 

method. 
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CHAPTER 4 

 

PHASE II: QUASI-QUANTITATIVE ANALYSIS 

 

 

 

4.1. Phase II: Overview 

 

4.1.1. General Theory 

 

While Phase I of the proposed FIMA method effectively laid the framework for more 

detailed models and simulations, as well as effectively provided a variety of valuable early-stage 

failure information, the main benefits of the FIMA method begin with the Phase II quasi-

quantitative analysis.  During Phase II, additional information, such as a system’s behavioral 

equations and conditional functional objectives, are to be added to the already created, 

qualitative model. During this phase, both the Simulink models and MATLAB code must be 

updated to allow for more complex behaviors and mission plans.  Governing equations are added 

to each Simulink state-machine in order to more accurately describe how different types of 

failures may influence the system’s behavior.  Such behavioral equations are essential in 

understanding how failures at varying levels of severity, not just “Degraded” and “Defective,” 

may propagate through complex systems.   

During the Phase I qualitative analysis the only concern was if a failure occurred, not how 

it occurred and therefore, only one “Degraded” and one “Defective” performance states were 

created. This was due to the assumption that only limited behavioral knowledge of the 

components would be known during the early design stages.  Once this information is known, 

however, each “Degraded” and “Defective” performance state will likely need to be separated 

into multiple states to identify different types of degradation that a component may experience, 

such as a channel becoming too small or too big, possibly from clogs or wear, respectively, each 
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of which would have different effects on the overall behavior of the system.  Next, the models 

are updated to allow for different degrees of failure severity.  For example, the qualitative 

analysis would only have “Degraded” and “Defective” states, however, during the quasi-

quantitative analysis a “Degraded” failure’s severity can be simulated anywhere on a scale of 0-

100% degraded for the component’s functionality, as well as its speed if applicable.  Also, if a 

“Defective” failure occurs, a failed position can be identified, such as the airplane’s landing gear 

from the earlier example, failing open or closed.  Being able to identify different severity and 

types of failures is very important in being able to understand how various mission tasks will be 

affected.  For example, if the landing gear becomes “Defective” and fails in the open position 

after takeoff, the failure would still be manageable as the cruising performance would only be 

degraded, however, if the landing gear fails in the closed position, this would result in a critical 

failure as now the landing task would not be achievable without crashing.     

4.1.2. General Methodology 

Once all Simulink and MATLAB updates are completed, the user can begin simulating 

specific failure combinations for general system analysis, as well as specific mission analysis.  

First, the user will be prompted by MATLAB to input the health state of each component; the 

health state includes whether a failure has occurred and, if so, what type of failure it is, and 

lastly, how severe it is.  With this information, the updated behavioral models will be able to 

calculate the remaining functionalities of the overall system.  Next, the user can input specific 

mission tasks, such as move from point A to point B to point C.  Then, the program identifies the 

remaining functions that are capable of completing each individual task based on the system’s 

current health.  If the remaining functions are not capable of completing the mission tasks, then 

the program will indicate that the mission is not possible and will specify which parts are 
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responsible for losing that specific capability.  If the mission is possible, the program will 

indicate this along with what, if any, redundancies were needed. Redundancies are based on the 

optimization portion of the program.   

The MATLAB code’s optimization is based on trying to balance the failures throughout 

the system by looking at each component’s health and all possible remaining solutions to the 

individual mission tasks, and then ranking the faulty components from most degraded to least 

degraded. Then, if a system has three parts for example, the program looks at the top 20 solutions 

that limit the necessary functionality for the most degraded component, from which the top 10 

solutions are then chosen for the second most degraded component, from which the top solution 

for the least degraded component is finally chosen as the “best” solution.  By performing this 

type of optimization, the goal is to create a balanced rate of degradation by forcing the least 

degraded components to compensate for the most degraded, but still limiting these 

compensations as much as possible.  This is done to extend a system’s lifespan by keeping it 

from suffering a critical failure in one part, while all other parts are still healthy.  For example, a 

system would be able to get much more use if all parts were 90% degraded before one of them 

finally failed, as opposed to one part failing when all the other parts are only 20% degraded.  

This optimization is used to create the “best” course of action to complete specific mission tasks, 

but the “best” course of action is defined within the MATLAB code based on the necessary 

importance of certain aspects of the mission.  For example, a system could be optimized to 

complete a mission in the shortest amount of time, or it could be optimized to repeat a mission 

the most possible times before a critical failure occurs; for the case study described in the 

following section, the system was optimized for the latter.  Lastly, the optimization procedure 
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will not only help balance failure degradation among components but will also help make all 

mission plans more robust. 

Lastly, metrics within the MATLAB code are created to provide a system’s Overall 

Coverage Rating (OCR), Mission Time, and Mission Robustness Ratings (MRR).  Overall 

Coverage Rating is the ratio of a faulty system’s remaining possible functionalities versus a 

nominal system’s possible functionalities.  This OCR value will identify how much of a system’s 

functionality was eliminated by the system’s current failure scenario.  The Mission Time value 

will be the time it takes to complete all of the mission’s tasks based on the optimized solutions.  

Lastly, the Mission Robustness Ratings are essentially the same as the OCR, however, there is an 

MRR for each individual mission task in order to identify which tasks are most affected by the 

current failure scenario.   The OCR and MRR values are then used to compare and improve 

mission plans for specific failure scenarios, based on which missions are more robust and 

therefore, which will be better able to handle further system degradations. In the following 

sections, this method will be applied to an adaptable robot arm system. 

 

 

4.2. Phase II Case Study: 3-Linkage Robotic Arm 

 

4.2.1. Case Study: Overview 

 

 Despite the fact that the same model is meant to be used and expanded through each of 

the three FIMA phases, because the system used in the Phase I case study is a real system that is 

currently still only in the early design stage, a new 3-linkage robotic arm system, with a Base 

Joint that rotates on the X-Y axis, and three Arm Joints that rotate on the r-Z axis, as seen in 

Figure 4.1, was chosen for the Phase II case study. This robotic arm system was chosen because 

it has a well understood behavior with known governing equations, as well as the fact that it is an 
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adaptable complex system with multiple functional redundancies and mission possibilities, 

which will serve as an excellent example for the FIMA method’s mission analysis capabilities.  

The robotic arm system described here is meant to represent a potential manufacturing robot that 

might be found on a factory floor assembly line that would have missions of moving objects 

between different positions.   

 

 

 

 

  

 

 

 

Figure 4.1 – 3-Linkage Robotic Arm Assembly  

Unfortunately, when everything is working nominally there is no simple way of 

determining how good a mission plan truly is, and it is only when specific failures begin to 

appear that any accurate mission analysis can really take place. For example, one mission plan 

might only require moving an object a short distance, but one of the locations is at the robot’s 

maximum reach, while another mission plan has the robot moving an object much further 

distances, but the locations are closer to the base.  While the first mission plan may be quicker 

and require fewer movements, therefore, making it seem like the better mission, just a small 

degradation is all that would be necessary to make the maximum reach unachievable, making the 

first mission plan impossible, while the second mission plan would go virtually unaffected.  This 
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shows how the differentiation between how various missions will react to a given failure 

scenario is of the utmost importance because depending on the type of failures that occur, a 

system may need to re-optimize or possibly even completely change a mission plan.  This 

analysis problem is why the ability to identify the “best” mission based on the Mission 

Robustness Ratings for each mission task is one of the major unique contributions of the FIMA 

method.  Therefore, this robustness analysis will be addressed in much greater detail in this case 

study. 

4.2.2. Case Study: Methodology 

 

The first step of Phase II was to create an updated, quasi-quantitative Simulink model 

with state-machines and failure-logics for each component: the Base Joint, Joint1, Joint2, and 

Joint3.  Because all of the components are the same type of mechanism, i.e. joints, the state-

machines were all able to be nearly identical, differing only in their governing equations’ 

nominal values; the Base is defined as having a nominal movement range of 0 to 180 degrees, 

Joint1 can range from 0 to 90 degrees, and Joint2 and Joint3 can each range from -180 to 180 

degrees.  Each joint was sampled every 1 degree. Sensitivity analysis was done by altering the 

sampling size to every 3 degrees, as well as every 6 degrees, for each of the use-cases in section 

4.2.3.  For the 3-degree sampling size the differences in the resulting OCR, MRR, and Mission 

Time values were minor (average differences of less than 1% for the OCR values, roughly 2% 

for the MRR values, and roughly 1 minute for the Mission Times), however, for the 6-degree 

sampling size the difference in results were quite significant and unpredictable.  Each linkage 

was then given a length of 3 feet and the nominal rotational speed of each was defined as 30 

degrees per second. Next, for simplicity sake, during this case study it was assumed that there 

were no obstacles within the arm’s movement range, i.e. no external system failures.  Also, the 
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linkages were identified as connecting off-axis in order to allow the arm to rotate in on itself.  

These criteria were all chosen arbitrarily for this example and would likely differ depending on 

the type of arm assembly and quality of components. Also, these criteria could easily be changed 

to include obstacles or exclude certain types of arm movements by adding limitations within the 

MATLAB code.  Lastly, all arm coordinates were then calculated using the following forward 

kinematic equations within the MATLAB code:  

 

r = L1*cos(Theta1)+L2*cos(Theta1+Theta2)+L3*cos(Theta1+Theta2+Theta3)          (1) 

Z = L1*sin(Theta1)+L2*sin(Theta1+Theta2)+L3*sin(Theta1+Theta2+Theta3)           (2) 

X = LR*sin(Theta0)                                                         (3) 

Y = LR*cos(Theta0)                                                         (4) 

 

where the three arm joints are located in the r-Z coordinate plane, and the base is located in the 

X-Y coordinate plane. Also, L1, L2, and L3 are the lengths of the three arm linkages, LR is the 

total length of the arm in the r-direction, and Theta0, Theta1, Theta2, and Theta3 are the joint 

angles for the Base, Joint1, Joint2, and Joint3, respectively.  Examples of the different state-

based governing equations within the Simulink state-machines used for updating each joint’s 

movement range, i.e. adjusting the minimum and maximum rotational angles as well as each 

joint’s movement speed for given failure scenarios, can be seen for the Base Joint in Figures A5-

A7. 

 The Simulink model and MATLAB code are related in such a way that the input data for 

the Simulink model will come from the first portion of the MATLAB code and user inputs, then 

this information will be processed and outputted from Simulink back into the second portion of 
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the MATLAB code.  The Simulink inputs consist of multiple variables for each component that 

are dependent upon the user’s responses to prompts generated by the MATLAB code.  The user 

inputs the health of each component, as well as the degree of failure and type of failure that they 

wish to have simulated; the types of failure for this system are movement and speed-based.  A 

joint’s movement range can be “Defective,” resulting in the joint being stuck at a user-specified 

angle, or it can be “Degraded,” anywhere from 0-100% that can then be applied to either a 

Lower, Middle, or Upper limitation.  For example, a 10% Lower limitation for a range of 0-180 

degrees would result in a new range of 18-180 degrees, a 10% Middle limitation would result in 

a new range of 9-171 degrees, and a 10% Upper limitation would result in a new range of 0-162 

degrees.  Likewise, a joint’s speed can also be “Degraded” anywhere from 0-100%.  Also, along 

with the user-inputted, failure-based speed degradation, a joint’s speed is also programmed to 

decrease linearly over time depending on the component’s lifespan rating, i.e. if a joint has a 

lifespan of 10,000 180 degree movements with a speed of 30 degrees per second, then if that 

joint moves 180 degrees 5,000 times it will now only be capable of moving at 15 degrees per 

second. 

The Simulink model first processes the current state of each component based on the 

user’s inputs and then provides output data, such as updated performance values and new 

minimum and maximum achievable angles and speeds, that will then be processed by the 

MATLAB code to determine the Overall Coverage Rating, as well as the graphical representation 

of all functionalities for the overall system, which can be seen in Fig. 4.2; the top two plots 

represent the overall coverage of the arm for a nominal system on the X-Y and r-Z axes, 

respectively, and the bottom two plots represent the remaining coverage for a random faulty 

system. The example faults present in the bottom plots were: a 20% Middle limitation for the 
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Base, a 25% Middle limitation for Joint1, a 40% Upper limitation for Joint2, and a 35% Lower 

limitation for Joint3.   

 

Figure 4.2 – Possible Movement Coverage for 3-Linkage Robot Arm  

(Top: Nominal, Bottom: Degraded) 

(Left: X-Y axis, Right: r-Z axis) 

 

Next, the user will be asked to input various mission details, such as the various tasks, i.e. 

moving an object from point A to point B in the [X,Y,Z] coordinate plane, as well as how many 

cycles of these tasks need to be completed.  Each [X,Y,Z] location was given a margin of error of 

0.2 feet based on the assumption that the arm’s claw would be at least slightly bigger than the 

object it is picking up.  These user inputs will then result in mission-specific output data that will 

be compared with the overall system output data to determine mission feasibility, to optimize the 
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mission plan, and to identify any redundancies or repairs that may be needed.   An example of 

the plot generated comparing the original, nominal arm angles to the degraded but optimized arm 

angles for a given mission can be seen in Fig. 4.3; the mission tasks were to move between two 

arbitrarily chosen points, [3,4,4] to [2,2,5], and the degraded plot was for the same example 

failure scenario as seen in Fig. 4.2, where Joint2 is the most degraded component and therefore, 

the movements were optimized for Joint2. 

 
Figure 4.3 – Nominal (Left) vs. Optimized for Degradation (Right) arm positions  

on the r-Z axis 

 

For this system, two use-cases were explored in the following section.  The first is using 

the FIMA method for comparing two different missions during the same failure scenarios, and 

the second is utilizing the failure data to optimize a set mission plan to handle further failures by 

altering the position of the entire robot. 

4.2.3. Case Study: Results and Discussion 

 

4.2.3.1. Use-Case 1: Mission Comparisons 

 

The first use-case of the FIMA method’s quasi-quantitative analysis was to evaluate 

different mission plans, i.e. different sets of tasks, or initial and final positions, for different 

failure scenarios in order to show that by using the Overall Coverage Rating (OCR) and the 

Mission Robustness Ratings (MRR) the FIMA method can accurately identify which mission 
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plan is best.  The mission data for this use-case can be seen in Table 4.1.  This mission data 

includes three different failure scenarios, where three failure factors for each component are 

identified: Percent Degraded-Range, Limitation Type, and Percent Degraded-Speed, respectively.  

Each scenario is then evaluated for two different mission plans: A and B.  Each mission plan is 

responsible for two tasks: moving the robotic arm from an Initial position to a Final position, and 

these missions are to be repeated 250 times.  The outputs for each mission are the Mission 

Feasibility (including which component the mission’s optimization was based), the total Mission 

Time, and the Mission Robustness Ratings for both mission tasks, i.e. the initial and final points. 

Table 4.1 – Mission Data for Use-Case 1 

 Failure Scenario #1 Failure Scenario #2 Failure Scenario #3 

Base 0%, None, 0% 0%, None, 0% 0%, None, 0% 

Joint1 5%, Upper, 1% 10%, Upper, 1% 45%, Upper, 1% 

Joint2 12%, Middle, 1% 24%, Middle, 1% 48%, Middle, 1% 

Joint3 9%, Lower, 1% 18%, Lower, 1% 47%, Lower, 1% 

OCR 75.4% 56.1% 15.1% 

 A B A B A B 

Initial [3,4,5] [2,3,4] [3,4,5] [2,3,4] [3,4,5] [2,3,4] 

Final [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] 

Cycles 250 250 250 250 250 250 

Feasibility Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 

Time 24.01 min 46.68 min 23.73 min 50.63 min 24.57 min 37.86 min 

MRRi 94.3% 95.2% 89.1% 55.8% 27.6% 27.3% 

MRRf 95.2% 91.4% 90.1% 86.0% 32.0% 30.4% 

 

For Failure Scenario #1, the Overall Coverage Rating for the arm is 75.4%, which 

indicates that roughly a quarter of the system’s total functionality has been lost.  Next, looking at 

the two mission plans, both are feasible and both were functionally optimized for Joint 2, which 

is what was expected due to the fact that Joint 2 was the most degraded component.  Finally, the 

mission time, MRRi, and MRRf values are evaluated.  MRRi and MRRf are the Mission 
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Robustness Ratings for each of the mission tasks, i.e. the initial and final positions. For the time 

comparison, the shorter the Mission Time the better.  However, the shortest mission is not always 

the most robust and this is where the Mission Robustness Ratings’ importance is seen. As 

mentioned earlier, the individual Mission Robustness Ratings are indicators of how the system 

handles specific failure scenarios for its various mission tasks, and it is desired that both MRRi 

and MRRf values are larger than the OCR due to the fact that the OCR indicates the overall, 

average robustness, and therefore, larger MRR values would signify that the mission plans have 

above average robustness. As seen in Table 4.1 both missions have relatively high MRRi and 

MRRf values, implying that neither mission was very affected by Failure Scenario #1, and they 

are also above the OCR value, which as previously mentioned, is desired.   However, when 

directly comparing mission A to mission B, mission A is better all-around, as it not only can 

complete the necessary 250 cycles faster, but the mission tasks are more robust on average than 

those for mission B.  Even after only the first failure scenario, mission A can be identified as the 

preferred mission plan, however to show that this assumption holds true for further degradations, 

Failure Scenario #2 and #3 were simulated.  As expected, mission A remains faster and more 

robust than mission B for all scenarios.  In Failure Scenario #2, mission A becomes significantly 

better in all categories than mission B.  However, in Failure Scenario #3, while mission A is still 

better, the different components’ degradations are becoming balanced through optimization, and, 

as expected, the optimization has also begun to balance each mission’s robustness ratings, as well 

as helping to decrease each of their mission times, reducing them both below even their far less 

degraded Failure Scenario #1’s times.  
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4.2.3.2. Use-Case 2: Mission Adjustments 

 

 The second use-case for the FIMA method’s quasi-quantitative analysis was to 

demonstrate that by using the OCR and MRR values for a specific failure scenario, a mission 

plan could be greatly improved; both the failure scenario and mission plan were arbitrarily 

chosen for this study. Unfortunately, because certain mission plans might not be able to be 

altered, such as a robot picking up a bolt and then placing it on a specific area of a vehicle 

coming down the assembly line, the position of the entire robot itself might need to be altered in 

order to increase the system’s robustness. Therefore, it is assumed that the arm assembly is 

capable of being moved on the X-Y plane, such as by being placed on wheels, in order to 

optimize its position relative to the initial and final positions it must reach. As seen in Table 4.2, 

the original mission plan is again responsible for two tasks of moving the robotic arm from the 

initial position to the final position, 250 times, and the output variables for each mission are the 

same as for use-case 1: Mission Feasibility (including which component the mission’s 

optimization was based), total Mission Time, and Mission Robustness Ratings for both mission 

tasks.    

Table 4.2 – Mission Data for Use-Case 2 

Base 0% 

Joint1 15%, Lower, 1% 

Joint2 15%, Lower, 1% 

Joint3 20%, Middle, 1% 

OCR 57.6% 

  

 Original (Shift: -2Y) (Shift: +3X) (Shift: -1Y) 

Initial [-1,1,1] [-1,3,1] [-4,3,1] [-4,4,1] 

Final [4,3,-1] [4,5,-1] [1,5,-1] [1,6,-1] 

Cycles 250 250 250 250 

Feasibility Y, FO-J3 Y, FO-J3 Y, FO-J3 Y, FO-J3 

Time 71.57 min 44.46 min 34.99 min 31.03 min 

MRRi 17.9% 8.3% 60.5% 80.8% 

MRRf 50.3% 81.8% 53.1% 82.7% 
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 As seen in Table 4.2, when the failure scenario listed occurs, the original mission plan is 

identified as incredibly poor.  It is still feasible, however, both MRR values are well below the 

OCR, indicating that there are far better mission plans available, and this is where the designer 

would ideally be able to tweak the position of the robot in order to find a more robust mission 

plan.  First, a shift in the negative Y direction was applied, i.e. backing the robot away from the 

assembly line, and while this adjustment improved the mission time and the MRR of the final 

position, it reduced the MRR of the initial position.  Next, a shift in the positive X direction was 

applied, and this effectively improved the mission time and both MRR values, however, the 

MRR value of the final position is still below the OCR, so further improvements can still be 

made.  Finally, another shift in the negative Y direction was made and this resulted in vast 

improvements to both MRR values and the overall mission time.  While further improvements 

may have been possible through further adjustments, for the purposes of this study, these 

improvements were sufficient.  Ultimately, this study showed that by following the FIMA 

method, using the OCR and MRR values, a designer could effectively reduce the original 

mission time by more than half, while also vastly improving the system’s mission robustness. 
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CHAPTER 5 

CONCLUSIONS 

 

 

The Failure Identification for Mission Analysis (FIMA) method proposed in this paper is 

designed to allow a single, adaptable model to be used throughout the entire design process of a 

complex system.  The method was shown to be able to provide models for qualitative failure 

analysis during early design stages, and then expand these models for quasi-quantitative analysis, 

as more information about the system becomes available during the later design stages.  By using 

the FIMA method, designers should no longer be required to create new models or switch 

analysis techniques throughout the different design stages, making the whole process much more 

efficient and streamlined than with existing failure analysis methods.  Moreover, the FIMA 

method uniquely allows for the simulations of manufacturing-based failures, as well as 

traditional function-based failures.  However, the biggest and most unique contribution made by 

the FIMA method is its ability to take a complex system’s failure information and use it for 

mission assessment and optimization.   

With the constant advancement of technology and the ever-growing capabilities of 

complex systems, it is absolutely vital to know what the system is being used for in order to 

accurately understand the effects of failures on the overall system performance, and the lack of 

this mission analysis is where current methods fall short. By using the FIMA method, on the 

other hand, mission assessments and optimizations can be performed in order to balance failure 

degradations and increase mission robustness for any number of mission plans in an effort to 

maximize a system’s use in between repairs.  This unique ability could be especially beneficial 

for complex systems that are incapable of receiving repairs, such as the NASA rovers exploring 
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Mars, because even if certain functions are lost due to failures, it is vital to know which functions 

and mission tasks are still feasible in order to maximize the amount of use the existing rovers can 

perform before new ones need to be sent.    

By utilizing failure information for mission analysis, the FIMA method can provide more 

comprehensive and useful information than other current failure analysis methods.  With next-

generation technologies becoming increasingly more complex, it is not enough anymore simply 

to know how a system will fail.  What the system will be doing, what environment it will be 

doing it in, and what functional adjustments are available must all be accurately identified in 

order to effectively analyze the effects of complex failures in a complex system, and the FIMA 

method has been designed to do just that.  First, the FIMA method identifies and assesses the 

potential functions and mission tasks that a complex system may be asked to perform, and then 

based on various potential failure scenarios, the functions and tasks that are the most and least 

robust can be identified.  Then, by using this information, the FIMA method is able to optimize 

the system’s performance in order to more effectively achieve specific mission plans for any 

given failure scenario.  
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CHAPTER 6 

 

FUTURE RECOMMENDATIONS 

 

 

 

 The benefit of the FIMA method does not end with its ability to provide failure 

simulations.  While initially, during Phase II, the health state of each component and the specific 

degree of failure must be inputted by the user, in the future, with the addition of actual sensor 

data, the same MATLAB code that is used for the quasi-quantitative simulations could be used as 

a diagnostics tool for real-time optimization of real-world physical systems.  In this capacity, the 

code would again not care about the causes of failure, but instead only about the system’s 

functional capabilities that remain. For example, in the manufacturing robot used for the Phase II 

case studies, instead of the user inputting a “Percent Degraded” value prior to a mission, an 

actual robot would run a quick system diagnostics check by rotating each individual joint to their 

minimum and maximum angles at peak speed.  Then, instead of the state-machines having to 

calculate the individual minimum and maximum values and speeds, the sensors would send their 

data directly back to the code that would then proceed as before to optimize the arm angles based 

on the different minimums and maximums.  Therefore, by using the FIMA method, a designer 

should be able to use the same model, built congruently with the physical design, from the early, 

conceptual design phases, all the way to the final detailed phases, and ultimately, into real-world 

application. 

Furthermore, future work on Phase III of the FIMA method will focus on a fully 

quantitative analysis approach by adding more detailed failure modes to the Phase II models.  

The quasi-quantitative analysis will always be somewhat abstract, as the specific causes of 

degradation for certain failure modes are not specified.  During a fully quantitative analysis 
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however, each failure mode can be expanded.  For example, if a wheel was “Degraded” in the 

qualitative and quasi-quantitative phases, in Phase III’s fully quantitative models, “Degraded” 

could be expanded into such failure modes as “Traction Loss Caused by Wear” or “Low Tire 

Pressure,” and then “Defective” could be either “Flat” or “Jammed,” and each one of these 

would result in their own behavioral equations as well.  Also, the failures could be separated to 

indicate different internal and external causes, i.e. “Jammed” could be caused by an internal 

malfunction that is a critical failure and cannot be fixed without a total part replacement, or the 

jam could be caused by an external failure, such as the wheel being stuck in mud, which would 

not be a critical failure in the sense that a component needs replacement, it would only be a 

failure on the system-level objective of movement. Phase III of the FIMA method would then 

also be able to determine such differences between failures and be able to inform the user the 

best course of action moving forward; if the first definition of “Jammed” is simulated, the system 

would produce an error message indicating that the mission cannot be completed and that the 

broken component must be replaced.  If the second definition of “Jammed” is simulated, the 

system would produce an error message that identifies this failure as an external failure only, and 

if corrected, perhaps through redundancies from other non-compromised components, such as by 

switching into 4-wheel drive, would have no long-lasting effects on the system.  This ability 

would allow the model to identify even more potential failure scenarios, as well as effectively 

label which are critical vs. manageable. 

The FIMA method’s Phase III quantitative analysis also will be to explore path-planning 

optimization.  During the Phase II robotic arm case study, it was assumed that there were no 

external obstacles and therefore, the arm was able to move between points in a straight line.  

However, in more complex cases, it will be necessary not only to know how failures affect the 
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arm’s possible angle combinations at mission points, but also how failures affect the arms ability 

to move around obstacle to get from one point to the other.  For example, some internal failures 

or external obstacles may affect the arm’s ability to move left and right, while others may affect 

the ability to move forwards and backwards, and so depending on the required mission plan, the 

arm’s path between points will need to be optimized, along with the joint’s angle combination 

optimization done in Phase II. 

Next, future work on the Phase III quantitative analysis will also include validation of the 

models through experimentation on a physical testbed.  For the case study examined in Phase II, 

the 3-linkage robot arm, this validation could be done a number of ways.  Mission abilities and 

times could be tested and compared with the failure scenarios and mission plans simulated 

through control input constraints for each joint’s speed and minimum and maximum angles, or 

by physically replacing the testbed’s healthy joints with different types of degraded joints.  

Degraded joints could be manufactured to have various degrees of wear, jams, or breaks and then 

based on each of these effects on rotational speeds and minimum and maximum angles, mission 

plans, arm positions and paths, and the effects of further degradation on the overall system 

performance could be tested. 

Lastly, future work on the FIMA method should include its application to more complex 

systems with more complex missions in order to show its scalability and its true merit for diverse 

applications.  One such application idea would be to use the FIMA method to create an advanced 

GPS system.  Currently, GPS systems are essentially external system failure analysis tools with 

mission optimization capabilities.  GPS, generally speaking, identifies a mission plan, or route, 

based on shortest mission time, and then based on external system failures, such as things like 

traffic jams, missed turns, and construction detours, the system identifies all remaining possible 
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solutions and then re-optimizes based on mission time and provides a new mission plan.   

However, GPS systems do not consider the condition or capabilities of the vehicle being driven.  

For example, if a vehicle is about to run out of gas the GPS will simply find the closest gas 

station, regardless of the path needed to get there, i.e. if there is a gas station half a mile away, 

but all up hill with multiple stops, and there is another gas station one mile away, but all down 

hill with no stops, the GPS will still identify the first gas station as the top choice.  However, by 

using the FIMA method, the system could identify the internal system failure of “Low Gas” and 

understand that the second gas station is better due to there being fewer and less exhaustive 

functionalities needed to get there.  This would be especially useful in the future when there are 

self-driving cars, as there will not be a human driver that understands coasting down hill requires 

less gas.  Similarly, if there was a quicker path to get somewhere, but some of the roads were dirt 

roads, a truck might have no problem, but a Ferrari would likely rather take a longer, smoother 

path, and therefore, knowing the type of vehicle can also influence a mission’s optimization. This 

is just one of many future possible applications for using the FIMA method to help optimize 

missions after failures have occurred. 
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APPENDIX 

 

Figure A1. Overview of Simulink Model used for MEMS DNA Sequencer 
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Figure A2. Example of a simple Performance State-Machine (ET Component) 
 

 

 

Figure A3. Example of part of a more complicated State-Machine (NBNC Component) 
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Figure A4. Example Failure-Logic Diagram (ET Component) 
 

 

Figure A5. Example 1 of State-based equations (Base Joint) 
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Figure A6. Example 2 of State-based equations (Base Joint) 
 

 

 

 

Figure A7. Example 3 of State-based equations (Base Joint) 
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