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Abstract 

Membrane chromatography, or membrane adsorber, represents an attractive 

alternative to conventional packed bed chromatography used in downstream processing. 

Membrane chromatography has many advantages, including high productivity, low buffer 

consumption and ease to scale up. This doctoral dissertation focuses on developing novel 

polymeric ligands for protein separations using membrane chromatography. Atom transfer 

radical polymerization (ATRP), known as a controlled radical polymerization technique, has 

been used to control the architecture of grafted polymeric ligands. The center theme of this 

dissertation is to develop new polymeric ligands and investigate how the polymer’s property 

(e.g. flexibility, hydrophobicity) and architecture (e.g. chain density, chain length) affect the 

protein separation performances.  

In chapter 2, a synthetic polymeric ligand has been developed for affinity membrane 

chromatography. It is the first time that bisphosphonate-type monomers with high affinity to 

arginine have been successfully polymerized and grafted from membrane surfaces with 

ATRP. Binding capacity for lysozyme (an arginine-rich protein) reaches 12 mg/mL and 4 

mg/mL for static binding and dynamic binding (recovery 90%), respectively. Our results 

show binding capacity increases with the amount of copolymerized affinity monomer and the 

importance of introducing the hydrophilic spacer monomer for effective binding of lysozyme.  

Chapter 3 and 4 involve developing responsive membranes for hydrophobic 

interaction chromatography (HIC). The responsive HIC ligand can switch between 

hydrophobic to hydrophilic state depending on salt concentrations and salt types. In chapter 



3, in order to provide more understanding of the responsive HIC membrane system, we have 

mainly investigated how the binding conditions (varied pHs, salts and proteins) influence the 

binding performances. 

Finally, comb-like copolymeric ligands were designed for our responsive HIC 

membranes (chapter 4). The effects of backbone density, backbone length and PVCL density 

were investigated by dynamic binding studies. Our results show the BSA binding capacity 

and recovery strongly depend on the structure of grafted comb-like ligands. In chapter 5, we 

have shown the effect of copolymerization with different monomers on binding capacity and 

recovery. Preliminary data shows possibilities of developing ph-and-salt responsive 

membrane adsorbers for bioseparations. 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgement 

First of all, I would like to express my sincere gratitude to my supervisor Xianghong 

Qian for her motivation, patience and support for my Ph.D. study. Her guidance helps me in 

my research and propels me to try my best for not only experiments but also my presentation 

and writing. I could not thank enough for her insightful comments and encouragements for 

making me grow from an undergraduate student to an independent researcher. Thank you and 

Prof. Ranil Wickramasinghe for bringing me into the membrane research field.  

Besides my advisor, I would like to thank my dissertation committee: Prof. Ranil 

Wickramasinghe (co-advisor), Prof. Jeff Wolchok, Prof. Peter Czermak and Prof. Steve 

Cramer. Thanks for your time to attend my defense, especially for Prof. Peter Czermak and 

Prof. Steve Cramer from outside of university. Also thanks for your inputs that broaden and 

deepen my research from many perspectives. 

My thank also goes to Dr. Schwark from Prof. Ulbricht’s group who gave me great 

help for monomer synthesis, Dr. Lester and Dr. Shein who helped to test my NMR samples, 

Dr. Yang and Dr. Lei who taught me ATRP and UV-initiated polymerization and Dr. Du who 

collaborated with me on the affinity membrane work. I want to thank all the other group 

members who helped me in my research. Financial support from the Arkansas Biosciences 

Institute and University of Arkansas are gratefully acknowledged.  

Last but not the least, I would like to thank my family for supporting me in the U.S., 

especially on cooking and other general living skills. Your love always keeps me moving 

forward.  



Table of Contents 

Chapter 1 Introduction: Membrane Chromatography for Protein Purifications from 

Ligand Design to Functionalization ....................................................................................... 1 

1.1 Therapeutic Monoclonal Antibody: Current Market and Manufacturing Challenges ..... 1 

1.2 Current Chromatographic Materials: An Overview of Ligands ...................................... 2 

1.2.1 Protein A Chromatography ....................................................................................... 4 

1.2.2 Ion Exchange Chromatography ................................................................................ 5 

1.2.3 Hydrophobic Interaction Chromatography ............................................................... 7 

1.2.4 Multi-modal Chromatography .................................................................................. 9 

1.3 Membrane Chromatography: An Alternative to Packed Bed Chromatography ............ 11 

1.4 Membrane Functionalization ......................................................................................... 18 

1.4.1 “Grafting From” Method ........................................................................................ 19 

1.4.2 UV-induced Polymerization ................................................................................... 20 

1.4.3 Atom Transfer Radical Polymerization (ATRP) .................................................... 28 

1.5 Membrane Surface Characterization .............................................................................. 37 

1.5.1 Chemical Composition............................................................................................ 38 

1.5.2 Membrane Morphology .......................................................................................... 41 

1.5.3 Wettability: Contact Angle Measurement .............................................................. 45 

1.5.4 Surface Zeta Potential ............................................................................................. 47 



1.6 Future Outlooks ............................................................................................................. 49 

1.6.1 Downstream Process Development ........................................................................ 49 

1.6.2 Membrane Chromatography ................................................................................... 51 

1.6.3 Ligand Design for Downstream Process................................................................. 52 

1.6.4 In Silico Ligand Design and Elucidation of Binding Mechanism .......................... 54 

Acknowledgement ........................................................................................................... 55 

Reference ............................................................................................................................. 55 

Chapter 2 Membrane Surface Engineering for Protein Separations: Experiments and 

Simulations ............................................................................................................................. 71 

2.1 Introduction ............................................................................................................... 71 

2.2 Materials .................................................................................................................... 75 

2.3 Experimental .................................................................................................................. 76 

2.3.1 Synthesis of 5-(methacryloylamino)-m-xylylenebisphosphonic acid 

tetramethylester ................................................................................................................ 76 

2.3.2 ATRP Initiator Immobilization ............................................................................... 76 

2.3.3 Polymerization ........................................................................................................ 76 

2.3.4 Protein Binding Test ............................................................................................... 77 

2.3.5 Surface Analysis ..................................................................................................... 79 

2.4 Results and Discussion .................................................................................................. 81 



2.4.1 Polymer Syntheses and Characterization ................................................................ 81 

2.4.2 Static Binding Results ............................................................................................. 84 

2.4.3 Dynamic Binding Results ....................................................................................... 89 

2.4.4 Binding Interactions from Classical MD Simulations ............................................ 91 

2.5 Conclusions ............................................................................................................... 96 

Chapter 3 The Effects of Salt Ions on Responsive Hydrophobic Interaction Membrane 

Chromatography .................................................................................................................. 101 

3.1 Introduction ............................................................................................................. 101 

3.2 Materials .................................................................................................................. 107 

3.3 Experiments ............................................................................................................. 107 

3.3.1 Membrane Surface Modification .......................................................................... 107 

3.3.2 Characterization .................................................................................................... 108 

3.3.3 Protein Binding Experiments for HIC Membranes .............................................. 109 

3.4 Result and Discussion ............................................................................................. 111 

3.4.1 Salt Effects on PVCL ligand ................................................................................. 111 

3.4.2 Salt Effects on Protein Binding Studies ................................................................ 115 

3.4.3. pH Effect on Protein Binding Studies .................................................................. 123 

3.5 Conclusion ............................................................................................................... 126 



Chapter 4 The Effects of Polymer Architecture on Responsive Hydrophobic Interaction 

Membrane Chromatography .............................................................................................. 133 

4.1 Introduction .................................................................................................................. 133 

4.2 Materials ...................................................................................................................... 138 

4.3 Experimental ................................................................................................................ 139 

4.3.1 Membrane Surface Modification .......................................................................... 139 

4.3.2 Membrane Surface Characterization..................................................................... 140 

4.3.3 Protein Binding Studies ........................................................................................ 141 

4.4 Results and Discussion ................................................................................................ 142 

4.4.1 Comb-like PVCL .................................................................................................. 142 

4.5 Conclusions .................................................................................................................. 158 

Chapter 5 The Effects of Copolymerization on Responsive Hydrophobic Interaction 

Membrane Chromatography .............................................................................................. 164 

5.1 Introduction .................................................................................................................. 165 

5.2 Materials ...................................................................................................................... 168 

5.3 Experimental ................................................................................................................ 169 

5.3.1 Membrane Surface Modification .......................................................................... 169 

5.3.2 Membrane Surface Characterization..................................................................... 170 

5.3.3 Protein Binding Studies ........................................................................................ 170 



5.4 Results and Discussion ................................................................................................ 171 

5.4.1 UV-induced polymerization.................................................................................. 171 

5.4.2 Linear copolymerization ....................................................................................... 175 

5.5 Conclusions .................................................................................................................. 181 

Chapter 6: Conclusions and Future Direction .................................................................. 185 

6.1 Conclusions .................................................................................................................. 185 

6.2 Future Direction and Suggestion ................................................................................. 187 

6.2.1 Ligand Characterization ........................................................................................ 187 

6.2.2 Controlled Polymerization of PVCL .................................................................... 187 

6.2.3 Decouple LCST Effect on Protein Binding .......................................................... 188 

6.2.4 Developing High Capacity Responsive Ligand with a Facile Elution Advantage188 

Appendix I ............................................................................................................................ 190 

Appendix II ........................................................................................................................... 197 

Appendix III ......................................................................................................................... 199 

Appendix IV ......................................................................................................................... 205 

 

 

 

 



List of Figures 

Figure 1.1 Major chromatographic steps for mAb purifications after clarification. 

Chromatographic processes normally start with a capture step utilizing protein-A 

chromatography, followed by two polishing steps involving IEX and HIC.............................. 4 

Figure 1.2 Charges of impurities and mAbs (pI >7.5) in ion-exchange chromatography step. 

(166). At pH 7-8, negatively charged impurities including viruses, endotoxins, DNAs and part 

of negatively charged HCPs can be removed by AEX in the flow-through mode. ................... 6 

Figure 1.3 Two general types of traditional HIC ligands (aliphatic and aromatic HIC ligands).

.................................................................................................................................................... 7 

Figure 1.4 Commercialized MMC ligands by Pall Corporation (a), GE Healthcare (b,c) and 

Bio-Rad (d). ............................................................................................................................. 10 

Figure 1.5 Transport mechanism of packed bed chromatography. ......................................... 12 

Figure 1.6 Transport mechanism of membrane chromatography. Compared to packed bed 

chromatography, the pore diffusion process is basically eliminated due to the macroporous 

structure of membranes. ........................................................................................................... 14 

Figure 1.7 Mechanism of UV-induced polymerization with type II photo-initiator (a) and 

without photo-initiator (b, PES membrane). ............................................................................ 21 

Figure 1.8 Initiation mechanism of immobilized type I BEE initiator. The high activity radical 

is formed on the immobilized BEE initiator side. Low activity radical is formed in the bulk 

solution. .................................................................................................................................... 23 

Figure 1.9 Scheme of ATRP catalyzed by transition metal complex system (X, M and Y 

represents halogen atom, metal and another halogen atom, respectively. kact, kdeact, kp and kt are 

rate constants for activation, deactivation, polymerization and termination reactions, 

respectively. For kinetics Eq.1, [P*] is the radical concentration. Keq is the equilibrium constant. 

[I0], [CuI] and [CuII] are concentration of initial initiator, CuI and CuII , respectively. ........... 29 

Figure 1.10 Scheme of initiator immobilization on the substrate with abundant hydroxyl 

groups. ...................................................................................................................................... 31 

Figure 1.11 ATR-FTIR measurement for polymeric membrane surface. ............................... 39 



Figure 1.12 A simplified scheme of SEM instrument (electron gun, lenses, sample, detector 

and sample chamber). .............................................................................................................. 43 

Figure 1.13 Scheme of AFM instrument (a) and operation modes based on the force-distance 

curve (b). .................................................................................................................................. 45 

Figure 1.14 Scheme of the contact angle of an ideal surface (homogenous, flat and smooth).

.................................................................................................................................................. 46 

Figure 1.15 Zeta potential measurement Device and principle for surface zeta measurement.

.................................................................................................................................................. 48 
 

Figure 2.1 Monomers in the various synthesized copolymer ligands for specific protein 

separations: 5-(methacryloylamino)-m-xylylene bisphosphonic acid tetramethylester (Bis-P, 

a), 5-(methacryloylamino)-m-xylylene monophosphonic acid tetramethylester (Mono-P, b) 

and N-(2-hydroxypropyl) methacrylamide (HPMA, c) ........................................................... 73 

Figure 2.2 Degree of grafting (DG) as a function of polymerization time for both poly (HPMA) 

and poly (Bis-P-co-HPMA) grown on regenerated cellulose membranes. .............................. 81 

Figure 2.3 XPS spectra for the unmodified, initiator immobilized, Bis-P and Bis-P-co-HPMA 

modified membranes. ............................................................................................................... 83 

Figure 2.4 SEM images for unmodified, Mono-P-co-HPMA modified after ATRP 5 h, and 

Bis-P-co-HPMA modified after ATRP 3h and 5 h membranes. ............................................. 84 

Figure 2.5 Langmuir isotherm curves (a) for ATRP 1, 3 and 5 h Bis-P-co-HPMA modified 

membranes as well as HPMA modified membrane for comparison. Langmuir linear regression 

(b) for ATRP 1, 3 and 5 h Bis-P-co-HPMA modified membranes. ........................................ 85 

Figure 2.6 Breakthrough (a) and elution curves (b) at lysozyme loading and elution rate 2 

mL/min for unmodified membranes, poly (Bis-P-co-HPMA) modified membranes at ATRP 

time 1, 3 and 5 h respectively. ................................................................................................. 91 

Figure 2.7 The Interaction energies between lysozyme and the copolymer in aqueous solution 

during the 940 ns simulation time. ........................................................................................... 92 



Figure 2.8 The protein-copolymer ligand complex at four different simulation times 

demonstrating the topological matching as well as more specific cation-

bonding interactions between lysozyme and copolymer ligand. ............................................. 94 

Figure 2.9 The average number of H-bonds formed between Bis-P residues (a) / HPMA (b) 

and various amino acids on lysozyme during three simulation periods at 580-700, 700-820 and 

820-940 ns respectively. .......................................................................................................... 95 
  

Figure 3.1 Reaction scheme of ATRP for surface modification of regenerated cellulose 

membranes. ............................................................................................................................ 108 

Figure 3.2 The variation of transmittance of the synthesized PVCL as a function of ionic 

strength (a) and ionic activity (b) in various sulfate salt solutions at room temperature during 

the turbidity test. Transmittance was measured at 515 nm at 1 mg/mL PVCL concentration. 

Activity coefficients were from literature 76, 77. ..................................................................... 113 

Figure 3.3 Salt concentration effects on contact angle of HIC membranes (Na2SO4 solutions 

were tested here for concentrations ranging from 0.2 M to 1.2 M). The average results of five 

different locations were reported here (Figure 3.3a). ............................................................ 115 

Figure 3.4 Salt type effect on BSA isotherm curves ............................................................. 118 

Figure 3.5 Salt concentration effects on breakthrough curves and elution curves with IgG4 (a) 

and BSA (b). .......................................................................................................................... 120 

Figure 3.6 Binding capacity and recovery of IgG4 and BSA under various ionic strength of 

Na2SO4. .................................................................................................................................. 122 

Figure 3.7 Salt type effect on the dynamic binding capacity and recovery of BSA. Since the 

solubility of K2SO4 in water is very low, it reached its solubility limitation on the second data 

point and so only two points were shown here. ..................................................................... 123 

Figure 3.8 The pH effect on BSA binding capacity and recovery for Na2SO4 (3.8a) and 

(NH4)2SO4 (3.8b). .................................................................................................................. 125 
 

Figure 4.1 Scheme of comb-like PVCL ligand compared to old PVCL ligand. Backbone 

density (1) and length (2) are varied by HEMA initiator concentration and ATRP time of 



HEMA. The density of PVCL (3) on each backbone is varied by VCL initiator concentration.

................................................................................................................................................ 137 

Figure 4.2 Structure of ATRP initiator, BIB (a), primary monomer, HEMA (b) and secondary 

HIC monomer, VCL (c). ........................................................................................................ 138 

Figure 4.3 Modification scheme of comb-like PVCL through ATRP. Except for the 2nd ATRP 

for grafting PVCL, the initiation conditions as well as the 1st ATRP for grafting poly (HEMA) 

were varied accordingly to investigate PVCL chain density effect. ...................................... 140 

Figure 4.4 Grafting degree of poly (HEMA) under two initiator concentrations (40 mM and 

160 mM) and four different polymerization times (1-4 h). ................................................... 143 

Figure 4.5 The effects of the primary polymer poly (HEMA) chain density and chain length 

on the grafting density of the 2nd initiation reaction .............................................................. 145 

Figure 4. 6 Conversion of hydroxyl group to alkyl bromide in the 2nd initiation reaction. Black, 

red and blue represent 10 mM, 160 mM and 200 mM concentrations of BIB used for the 

secondary initiation reaction. ................................................................................................. 146 

Figure 4.7 Degree of grafting for PVCL as a function of backbone length and density (a) and 

2nd BIB concentration (b) ....................................................................................................... 148 

Figure 4.8 ATR-FTIR spectrum of unmodified RC membrane, poly (HEMA) and poly 

(HEMA)-r-PVCL modified membranes. ............................................................................... 149 

Figure 4.9 Dynamic binding capacity (a) and recovery (b) as a function of PVCL grafting 

density. ................................................................................................................................... 152 

Figure 4.10 Backbone density/length effect on capacity and recovery. ............................... 153 

Figure 4.11 AFM results of unmodified membrane and comb-like PVCL modified membranes 

(a-d, 160mM BIB and 1,2,3 and 4h ATRP of HEMA; e-h, 40 mM BIB and 1,2,3,4 h ATRP of 

HEMA). ................................................................................................................................. 154 

Figure 4.12 Root mean square roughness (Rq) analysis of the comb-like modified membranes.

................................................................................................................................................ 154 



Figure 4.13 Freundlich linear fitting of BSA isotherm for comb-like HIC membranes. Two 

backbone densities were tested here with 40 mM and 160 mM BIB used in the first initiation 

step. ........................................................................................................................................ 158 
 

Figure A1.1 Two-step synthesis of 5-nitro-xylylene bisphosphonic acid tetramethylester. . 191 

Figure A1.2 1H NMR (CDCl3; 400Hz) of the product 5-nitro-xylylene bisphosphonic acid 

tetramethylester. ..................................................................................................................... 192 

Figure A1.3 1H NMR (CDCl3; 400Hz) of the product 5-amino-m-xylene bisphosphonic acid 

tetramethylester. ..................................................................................................................... 193 

Figure A1.4 1H NMR (CDCl3; 400Hz) of the final product 5-(methacryloylamino)-m-

xylylenebisphosphonic acid tetramethylester. ....................................................................... 195 

Figure A1.5 The pair correlation function between the oxygen atoms (OP) in the phosphate 

groups of Bis-P and the carbon atoms (CZ) in the Arg residues of lysozyme during three 

simulation periods at 580-700, 700-820 and 820-940 ns. ...................................................... 196 
 

Figure A2.1 1HNMR of synthesized poly (vinylcaprolactam) (PVCL) by solution free radical 

polymerization. ...................................................................................................................... 197 

Figure A2.2 Size measurement of synthesized PVCL under different temperature by dynamic 

light scattering. ....................................................................................................................... 197 

Figure A2.3  Excess surface tension of (NH4)2SO4, Na2SO4 and NaCl at various concentrations 

(water surface tension is 73.54±0.16 mN/m). All data were averaged by five measurements.

................................................................................................................................................ 198 

Figure A2.4 The pH effects of BSA binding under various ionic strength of ZnSO4. All results 

are averaged by two membranes’ results conducted under the same binding condition. Initial 

BSA concentration was kept at 0.09 mg/mL. ........................................................................ 198 
 

Figure A3.1 A general cleavage procedure for grafted PNIPAM ligands, including hydrolysis, 

filtration, drying and re-dissolving 4 steps. ........................................................................... 199 

Figure A3.2 Cleavage temperature and time effect on the cleavage yield (measured by weight 

decrease of membrane). Weight decrease %=(w0-w1)/wgrafted PNIPAM .................................... 202 

Figure A3.3 1HNMR for cleaved PNIPAM (hydrolyzed in ethylenediamine). .................... 202 



Figure A3.4 Turbidity change of cleaved PNIPAM re-dissolved in D2O. Solution (left) 

obtained from unmodified membrane was used as a control from the same cleavage condition.

................................................................................................................................................ 203 

Figure A3.5 GPC chromatogram of cleaved PNIPMA polymers dissolved in water........... 203 

Figure A3.6 Relation between GPC elution times of cleaved PNIPAM and DG/ATRP time

................................................................................................................................................ 204 

Figure A3.7 Procedure of the investigation of wash effect in the cleavage process ............. 204 

Figure A3.8 Standard curve of PVCL and wash effect on the total yield of the process ..... 204 

Figure A4.1 FPLC set-up and testing protocols for HIC Phenyl membranes (A) and HIC 

PVCL membranes (B, Mustang Coin ® Membrane Holder (Pall Corporation)). 205 

Figure A4.2 Operating pressure and flow rate relationship for HIC phenyl and HIC PVCL. 

Tests were conducted in 20 mM sodium phosphate buffer at room temperature. ................. 205 

Figure A4.3 FPLC dead volume measurement for HIC PVCL and HIC Phenyl under 1mL/min. 

Measurements were conducted with BSA dissolved in the 20 mM sodium phosphate buffer 

with membranes in the module or holder. ............................................................................. 206 

Figure A4.4 DBC measurement protocols for old HIC binding test (A) and new test protocol 

(B) with a shorter running cycle time (reduced from 1h to 30min). ...................................... 206 

Figure A4.5 Breakthrough curves of 10 consecutive runs at 1.8 M (NH4)2SO4 for 0.1 mg/mL 

BSA. Loading volume is determined by the program that it stops when 10% breakthrough (3 

mAu in this case) reaches. ..................................................................................................... 208 

Figure A4.6 Dynamic binding capacity (DBC10%) of HIC phenyl and PVCL membranes in 10 

consecutive runs. .................................................................................................................... 209 

Figure A4.7 Recovery of DBC10% of HIC phenyl membranes in 10 consecutive runs. The 

results are based on the mass balance. ................................................................................... 209 

 

 

 



List of Tables 

Table 1.1 Comparison of four chromatographic steps in the downstream process................... 3 

Table 1.2 Summary of commercialized membrane adsorbers used in downstream polish steps.

.................................................................................................................................................. 16 

Table 1.3 Detailed information on ligands and binding capacities of commercialized 

membrane adsorbers. ............................................................................................................... 17 

Table 1.4 Initiator immobilization strategy based on various surface functional groups. ...... 32 

Table 1.5 Summary of membrane adsorbers prepared by ATRP. .......................................... 36 
  

Table 2.1 The fitting parameters obtained based on Langmuir linear regression for lysozyme 

binding to three different Bis-P-co-HPMA modified membranes. .......................................... 86 

Table 2.2 Dynamic binding capacity, recovery and mass balance for unmodified and poly (Bis-

P-co-HPMA) modified membranes at lysozyme concentration 0.1 mg/mL and flow rate 2 

mg/ml. The mean values and standard deviations are determined with three measurements. 89 
 

Table 3.1 Langmuir fitting of BSA isotherm under different salt conditions ....................... 118 
 

Table 4.1 Backbone density and length effects on dynamic binding capacity and recovery 151 

Table 4.2 Membrane pore size effects on binding capacity and recovery. Grafting degrees are 

normalized by the weight of unmodified membranes. ........................................................... 156 

Table 4.3 PVCL polymer chain density effect on binding capacity and recovery at the same 

the grafting conditions (10 mM BIB and 0.25 h ATRP for grafting poly (HEMA)) for the 

primary poly(HEMA) chains on 0.45 m pore size RC membranes ..................................... 157 

Table 4.4 Fitting parameters of Freundlich model for comb-like PVCL modified membranes 

with a high/low density of poly (HEMA) backbones. ........................................................... 158 

Table A4.1 Dynamic binding capacity (DBC) comparison between HIC Phenyl pico and HIC 

PVCL. 207 

 

 

 



List of Published Papers 

Liu, Z., Wickramasinghe, S. R., Qian, X. “Membrane Chromatography for Protein 

Purifications from Ligand Design to Functionalization”, Separation Science and Technology, 

2016 (accepted, chapter 1) 

 

Liu, Z.; Du, H.; Wickramasinghe, S.R.; Qian, X. (2014) Membrane Surface Engineering for 

Protein Separations: Experiments and Simulations. Langmuir, 30(35): 10651-10660. 

(published, chapter 2) 

 

Liu, Z.; Wickramasinghe, S.R.; Qian, X. The Effects of Salt Ions on Responsive Hydrophobic 

Interaction Membrane Chromatography. To be submitted, chapter 3 

 

Liu, Z.; Wickramasinghe, S.R.; Qian, X. The Effects of Polymer Architecture on Responsive 

Hydrophobic Interaction Membrane Chromatography. To be submitted, chapter 4 

 

 



1 

Chapter 1 Introduction: Membrane Chromatography for Protein Purifications from 

Ligand Design to Functionalization 

*This chapter is based on an accepted manuscript: Liu, Z., Wickramasinghe, S. R., Qian, X. 

“Membrane Chromatography for Protein Purifications from Ligand Design to 

Functionalization” accepted, Separation Science and Technology, 2016 

Abstract 

Protein-based therapeutics, in particular monoclonal antibodies (mAbs) are in high 

demand for treating a variety of conditions. Here membrane chromatography for protein 

purifications is reviewed. In particular, current status and development for various capture 

and polishing steps including protein A, ion exchange and hydrophobic interaction 

chromatography are discussed. In addition, new developments in ligand design and 

membrane functionalization for membrane chromatography are discussed. In-depth 

discussions on polymeric ligands with UV-initiated polymerization or atom transfer radical 

polymerization (ATRP) are included. Finally in silico simulations to help design new ligands 

and elucidate the binding interactions are also briefly reviewed. 

 

1.1 Therapeutic Monoclonal Antibody: Current Market and Manufacturing Challenges 

A therapeutic monoclonal antibody (mAb), or immunoglobulin G (IgG), is capable of 

binding a targeted molecule specifically by its fragment-antigen binding (Fab) region. 

Through this specific binding, it can trigger cell apoptosis or changes in signaling pathways. 

This binding specificity greatly reduces the drug side effects and enables mAbs to be used in 

cancer and autoimmune disease treatment with a significant advantage over other non-



2 

specific therapies such as radiotherapy and chemotherapy. Up till 2015, 47 mAb products 

have been approved in US and Europe with more than 300 mAb candidates in development 1. 

The total sale of mAb products reached $75 billion in 2013, which was an increase of 90% 

compared to the total sale in 2008 1, indicating a rapid growth of the mAb market.  

The large demand for mAb products places a great challenge on the manufacturing 

process.  The drastic improvement in the upstream process has led to a more than ten-fold 

increase of cell titers, which shifts the bottleneck of the manufacturing process to the 

downstream 2, 3, 4. The total cost for downstream process accounts for up to 80% of the total 

manufacturing cost 5. Therefore, there is a large driving force to reduce the cost by 

developing new downstream processing technologies. 

1.2 Current Chromatographic Materials: An Overview of Ligands  

A common mAb manufacturing process is shown schematically in Figure 1.1. After 

fermentation, mAb products are first clarified by the removal of solids and cell debris through 

depth filtrations or centrifugations. Then, the clarified mAb filtrate or supernatant is 

processed through 2-3 stages of chromatographic unit operations to remove impurities, 

including host cell proteins (HCPs), DNAs, media components, endotoxins, viruses and 

aggregates. These chromatographic steps include protein A chromatography, ion-exchange 

chromatography (IEX), hydrophobic interaction chromatography (HIC) and multi-modal 

chromatography (MMC). The mechanism, mode of operation and limitations for these four 

different chromatographic steps are summarized in Table 1.1. Each of the chromatographic 

steps will be discussed in the following sections. After the downstream processing, the HCP 
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and DNA impurity levels are required to be below 100 ppm and 10 ppb respectively 6. Virus 

particles need to be less than 1 per 106 does, which translates to 12-18 log10 removal for 

endogenous retroviruses and 6 log10 removal for adventitious viruses when Chinese Hamster 

Ovaries (CHO) is used as the cell line 7. 

Table 1.1 Comparison of four chromatographic steps in the downstream process. 

Chromatography Mechanism 
Runnin

g Mode 

Elution 

Strategy 
Limitations 

Protein A 

Chromatography 

Affinity 

Interaction 

Bind and 

elute 

Low pH 

(4-5 6) 

Expensive, ligand 

leaching and denature, 

product aggregation 

due to low pH elution 

IEC 
Electrostatic 

interaction 

Flow 

through 

/Bind 

and 

Elute 

(CEX) 

High salt 

conc. 

(>150 

mM) 

Large buffer usage due 

to low conductivity 

required for binding 

HIC 
Hydrophobi

c interaction 

Flow 

through 

Low salt 

conc. 

Low binding capacity, 

salt disposal cost, 

protein solubility 

limitation under high 

salt conc. 

Multi-modal 

Multi-type 

interactions 

(electrostati

c 

interaction, 

hydrophobic 

interaction 

and 

hydrogen 

bonding 

interaction) 

Flow 

through 

Condition 

from 

DOE 

Still under 

development: lack of 

deep understanding  
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Figure 1.1 Major chromatographic steps for mAb purifications after clarification. 

Chromatographic processes normally start with a capture step utilizing protein-A 

chromatography, followed by two polishing steps involving IEX and HIC. 

1.2.1 Protein A Chromatography 

The first step during chromatographic purification begins with protein A 

chromatography, which is the workhorse among all the chromatographic unit operations. 

Protein A is a 42 kDa protein from the cell wall of S. aureus (SpA) 8, 9. The high affinity of 

protein A to the fragment crystallizable (Fc) region of IgG enables it to capture mAb products 

directly from harvested cell culture fluid (HCCF) effectively. The specific interactions 

between protein A and mAbs involve the formation of hydrogen bonds and two salt bridges 

10. The binding strength appears to be pH dependent. The strong binding interaction occurs at 

close to pH 7. Protein A chromatography runs in a bind and elute mode, where mAbs bind at 

the neutral condition and elute at the acidic condition. Most impurities are washed away 

during the binding and wash steps, rendering a final purity of mAb products to be over 95% 

11. Elution is normally conducted at lower pH condition (4-5) and the yield is generally above 

90%.  

Even though protein A chromatography has been widely used in industry, the high 

material cost and ligand stability issue are the two main challenges that propel the 
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development of alternative mAb capture step. Currently with the recombinant DNA 

technology, protein A is expressed in Escherichia coli (E.coli) as the host cell, which makes 

manufacturing cost very high. As a result, protein A resin material cost can go up to $9,000–

12,000 per liter, which is about 30 times higher than the other non-affinity media 12, including 

IEX and HIC. Therefore, there is a great demand for designing new cheaper affinity ligand. 

In addition, the denaturation of protein A due to the harsh regeneration condition is a major 

concern. As protein A column is expensive, it is usually used for many cycles with NaOH as 

a cleaning reagent for regeneration. After several regeneration steps, the caustic condition 

tends to denature protein A and reduces its binding capacity. Significant efforts have been 

devoted to mutate protein A in order to improve its stability under alkali condition. For 

example, alkali-tolerant rProtein A ligand has been developed by GE Healthcare as the 

“MabSelect SuRe” resin. In addition, protein A leaching is another serious concern. Protein A 

is immune-toxic and has to be removed by the subsequent ion exchange chromatography 

steps. GE Healthcare has developed “Mabselect” series of resins to reduce the leaching by 

engineering a C-terminal cysteine into protein A to form a thio-ether linkage with the epoxide 

spacer arm to the base matrix. In addition, mutated protein A is under development to 

increase the elution pH in order to reduce mAb aggregation 13.  

1.2.2 Ion Exchange Chromatography 

Ion exchange chromatography (IEC) is commonly used afterward the protein A 

capture step to further remove remaining HCPs, viruses, leached protein As and endotoxins. 

Based on the charges on mAbs and impurities as shown in Figure 1.2, cation exchange 



6 

chromatography (CEX) and anion exchange chromatography (AEX) are used accordingly in 

a flow-through mode. Compared to protein A chromatography, IEC has a much lower 

material cost, higher resistance to alkaline cleaning buffer and relatively high binding 

capacity. In recently years, high capacity CEX has been developed as an alternative to protein 

A chromatography 14, 15, 16, 17. Membrane adsorbers have found the niche application in IEC 

due to its high-throughput binding, low operating pressure and ease of scale up. Since the 

impurity amount is actually very low after protein A step, membrane adsorbers have enough 

binding capacity to achieve the separation goal by binding the impurities in a flow-through 

mode.  

 

Figure 1.2 Charges of impurities and mAbs (pI >7.5) in ion-exchange chromatography step. 

(166). At pH 7-8, negatively charged impurities including viruses, endotoxins, DNAs and 

part of negatively charged HCPs can be removed by AEX in the flow-through mode. 

A major advance for anion exchange chromatography (AEX) development is the 

usage of primary amine as the salt tolerant ligand 18, 19, 20. Compare to strong the quaternary 

amine (Q ligand), The electrostatic interaction and hydrogen bonding interaction enable the 

primary amine to bind protein under relatively high conductivity (up to 200 mM NaCl) 21, 22, 

23. This salt tolerance feature makes it possible for AEX to be directly loaded from the elution 
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pool of CEX (∼15 mS/cm) without dilution. More discussion on the development of salt 

tolerant AEX membranes will be presented below. 

1.2.3 Hydrophobic Interaction Chromatography 

The last polishing step is normally carried out using hydrophobic interaction 

chromatography (HIC). HIC has been widely used as the second polishing step, following the 

IEC step. It has been used extensively in a flow-through mode to remove aggregates and 

HCPs which are more hydrophobic comparing to the mAb products. At high salt 

concentration, the aqueous surface tension increases leading to the more favorable 

hydrophobic interaction. In addition, enhanced charge screening at high salt concentration 

leads to the reduced electrostatic interaction and further promotes the hydrophobic 

interaction. N-alkyl (C1-C8) and aryl (phenyl) are the two most common ligand types for HIC 

as shown in Figure 1.3.  

 

Figure 1.3 Two general types of traditional HIC ligands (aliphatic and aromatic HIC 

ligands). 

Compared to reverse phase chromatography, HIC ligands are considered to be mildly 

hydrophobic, which ensures the eluted proteins to be biologically active instead of being 

denatured. The ammonium sulfate concentration reported to be used in the existing HIC flow-

through process is ranged from 200 mM to 650 mM (NH4)2SO4 
24.  

Compared to reverse phase chromatography, HIC ligands are considered to be mildly 

hydrophobic, which ensures the eluted proteins to be biologically active instead of being 



8 

denatured. Ammonium sulfate (NH4)2SO4 is effective and gentle as a salt medium. The 

concentrations reported to be used in the existing HIC flow-through processes range from 

200 mM to 650 mM 24.  

Recently there is a growing interest in developing HIC membrane adsorbers for 

protein separations 25, 26, 27, 28, 29, 30, 31. These HIC membrane adsorbers possess the advantages 

of membrane chromatography and perform the purification based on the HIC principles. 

Sartobind® Phenyl membranes (Sartorius AG) were the first commercialized HIC membrane 

adsorbers that are marketed for protein capture (20 mg IgG/mL) or polishing step to remove 

impurities such as aggregates and HCPs. HIC membranes have been also developed for 

protein fractionations 26, 32, 33, 34, 35 and preparative protein purifications 27, 28, 29, 36. The 

disadvantages of traditional HIC chromatography are its low capacity, low recovery and high 

concentration of salt required during the process. The capacity for these HIC ligands is 

generally below 40 mg/mL 24, which is significantly lower than the capacity of protein A, 

ion-exchange, and mixed mode based resins (> 100 mg/mL). Conventional hydrophobic 

ligands tend to denature protein leading to irreversible binding of the protein as well as 

protein aggregation. New efforts are dedicated to developing more gentle thermo-responsive 

HIC ligands for protein separations 37. Chapter 3 and 4 are presenting a thermo-responsive 

polymer used as the HIC ligand for protein separations. Compared to traditional non-

responsive HIC ligands, thermo-responsive polymers possessing both hydrophobic and 

hydrophilic residues are only moderately hydrophobic. The hydrophobic-to-hydrophilic 

transition can be switched by reducing the temperature and/or salt concentration. Since the 



9 

binding and elution of the proteins are based on the conformational and hydrophobicity 

switching of the thermo-responsive ligands, high resolution and high recovery of the protein 

separations can be achieved 28, 38, 39, 40, 41. 

1.2.4 Multi-modal Chromatography 

Multi-modal chromatography (MMC) binds proteins based on more than one type of 

interactions, which includes van der Waals, electrostatic and hydrogen bonding interactions. 

The interactions can come from the ligand, spacer or matrix. MMC has been developed for 

separating mAbs 42, 43, 44, glycosylated proteins 45 and vaccines 46. The earliest MMC was 

reported almost at the same time when HIC was first developed 47. In early 1990, Kasche et.al 

developed pH-induced multimodal chromatography with phenylbutyl amine as the ligand. 

Penicillin amidase was adsorbed via the hydrophobic interaction and eluted at lower pH due 

to electrostatic repulsion. Burton and Harding developed hydrophobic charge induction 

chromatography (HCIC) with pyridyl and imidazolyl ligands in 1998 48. It was found that at 

high ligand density, protein adsorption is almost salt independent. The pyridiyl ligand (4-

mercaptoethylpyridine) was subsequently commercialized by Pall Corporation as the MEP 

Hypercel MMC sorbent. Besides hydrophobic interaction, the S atom on the ligand can 

selectively interact with IgG via thio-philic interaction 43, 49. CaptoTM adhere is marketed as 

an alternative to conventional IEX and HIC. It is a strong anion-exchange type MMC. 

Quaternary amine, hydroxyl and phenyl groups provide electrostatic, hydrogen bonding and 

hydrophobic interactions respectively. Another ligand 2-benzamido-4-mercaptobutanoic acid 

developed by Li and co-workers 50 has been commercialized by GE Healthcare with a brand 
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named Capto MMC. A similar cation exchange hydrophobic ligand has been commercialized 

by Bio-Rad (Nuvia cPrime). The structures of these commercialized ligands are shown in 

Figure 1.4. 

 
Figure 1.4 Commercialized MMC ligands by Pall Corporation (a), GE Healthcare (b,c) and 

Bio-Rad (d). 

Recently, a phenylboronic acid ligand is developed as a synthetic ligand for direct 

capture of mAbs from serum-free CHO cell cultures. Boronic acid group can offer an affinity 

interaction with the oligosaccharide on the Fc domain besides the hydrophobic interaction 51. 

A new HCIC ligand has been developed by Tong and co-workers 44. The new HCIC ligand 

contains a tryptophan moiety which has an affinity to Fc and 5-amino-benzimidazole for 

facile elution with pH change. The same ligand has been used for human serum albumin 

(HSA) capture from culture broth 52. The capacity reaches 141.33 mg/g at pH 5, which is two 

times higher than the commercialized MX-Trp-650m resin manufactured by TOSOH. 

There are many advantages of using MMC over the conventional ion-exchange and 

hydrophobic interaction chromatography. First, it has been shown that proteins can be bound 

to MMC at a wide range of ionic strength 48, 53, 54. As a result, MMC is salt-tolerant (up to 300 
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mM NaCl). In addition, it can maintain the high capacity for targeted proteins at much lower 

salt concentrations compared to the conventional HIC. In addition, a wider operation window 

means that more conditions (pH and salt concentration) can be selected. Secondly, by 

carefully balancing the electrostatic and hydrophobic interactions, it is possible to achieve 

highly selective separations. Cramer’s group recently studied the selectivity of MMC with 

different Fabs and related variants 55 and two MMC resins (Capto MMC and Nuvia cPrime) 

to investigate the ligand geometric  re-arrangement  effects 56. Their results show the spatial 

organization of MMC ligands plays very important roles in binding the complementarity-

determining region (CDR) on the Fabs, which is hypothesized to be the critical binding site 

for MMC. Their results further show that Nuvia cPrime and some other MMC prototype 

ligands have higher selectivity over Capto MMC. Quantitative structure–activity relationship 

(QSAR) models were used to predict the protein retention to evaluate the effects of ligand 

structure. Overall, the exposure, shape and density of hydrophobic moiety in MMC ligand 

can affect the selectivity between aliphatic and aromatic residues on proteins. Different 

mobile phase modulators 57, 58, 59 (urea, arginine, ethylene glycol etc.) and controlled pH 

gradient elution methods 60 have also been investigated for increasing the selectivity of 

MMC.  

1.3 Membrane Chromatography: An Alternative to Packed Bed Chromatography 

Packed bed column chromatography has been widely used in downstream processing for 

purification of proteins, DNAs and other pharmaceutical products. However, one major 

drawback of the packed bed column chromatography is the slow pore-diffusion which 
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severely restricts its efficiency for separation (shown in Figure 1.5). The diffusion of targeted 

products to the ligands on the chromatography is a slow process leading to the dramatic drop 

of binding capacity as the feed flow rate increases. Besides diffusion limitation, the packed 

bed chromatography also suffers from large buffer consumption as well as extra costs for 

packing and testing.  

                        

 

Figure 1.5 Transport mechanism of packed bed chromatography. 

An alternative is to use adsorptive membrane chromatography during downstream 

processing 61, 62. Adsorptive membranes, known as membrane adsorbers, are a type of 

macroporous membranes functionalized by ligands attached on the membrane pore surface 

(Figure 1.6). Membrane adsorbers represent a type of liquid-solid membrane contactor and 

have been used extensively in the flow-through mode 23 to remove containments, such as 

aggregates 63, virus 22, 64and DNA 64, 65. In recent years, with the enhanced capacity, there has 

been an increased interest in using adsorptive membranes in a bind and elute mode for 

protein separations 66, 67, 68, 69, 70, 71, 72.  

Narrow pore: <100 nm 

“Pore Diffusion” 

Bulk Convection 

Film Diffusion 
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Compared to the resin-based chromatography, the pore diffusion limitation is 

eliminated in membrane adsorbers during the transport process where convection becomes 

the dominated transport mechanism as illustrated in Figure 1.6. Consequently, several studies 

show that the binding capacity is independent of a wide range of flow rate 71, 72, 73. Moreover, 

the operation can be performed at relatively low pressure, which reduces protein denaturation 

and aggregation. Buffer usage of membranes is lower than resin due to a lower void volume. 

Membranes have captured more attentions in recent years because of the “single-use” 

(disposable) application in many downstream processes. Due to the low material cost of 

membranes, single-use membrane processes, such as mAb purification (flow through) and 

virus filtration, greatly reduce the cost of re-validation. Finally, the membrane system is 

easier to scale up and the cost of packing and testing is subsequently reduced significantly. 

Traditionally, membrane-based purification is always limited by its low capacity. However, 

with the improvement of the matrix for higher surface area 74 or introducing polymeric 

ligands 54, 71, 75, high capacity membranes have been developed to compete with protein A 

resins. Recently, a new membrane laterally-fed device has been designed for a large scale 

membrane-based bind-and-elute mAb purification process 76. Traditional stacked-disc and 

radial flow devices suffer from low binding efficiency due to the large dead volume and 

dispersion caused by the flow-path variability. Using the laterally-fed membrane device, the 

elution peak becomes significantly sharper and more symmetrical. Their protein fractionation 

results show a clear advantage of using this laterally-fed device with an improved resolving 

power.  
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Figure 1.6 Transport mechanism of membrane chromatography. Compared to packed bed 

chromatography, the pore diffusion process is basically eliminated due to the macroporous 

structure of membranes. 

The commercialized membrane adsorbers are summarized in Tables 1.2 and 1.3 based 

on the membrane type, ligand and binding capacity. As described in the Tables, the 

microporous membranes are used with pore size ranging from 0.65 µm to 3 µm. 

Polyethylene, polyethersulfone (PES) and regenerated cellulose membranes are commonly 

used as membrane substrates. Most membrane adsorbers are stacked-disks, but hollow fiber 

membrane adsorbers have also been commercialized. Hydrophilic membrane substrate is 

preferred because of its good biocompatibility and low non-specific protein binding. It is 

important to note that the base membrane is normally bio-insert so that fouling or non-

specific binding is reduced and ligand selectivity is enhanced 77. The base membrane is also 

important for IEX, which is known as the mix-mode effect 78. Similarly, any electrostatic 

interaction between base membrane and protein will affect HIC. Leonard provided a detailed 

review on the packing materials for protein chromatography 79. Lenhoff also reviewed 

different adsorbent structures for ion-exchange chromatography 80. Major membrane 

adsorbers are cation or anion exchange type. The anion exchange ligands include quaternary 
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amine (Q), diethylamine (D) and primary amine. Traditionally, quaternary amine was widely 

used as the strong anion exchange ligand. However, it was found that the virus clearance 

drops dramatically at moderate salt concentrations. When salt concentration increased to 50 -

150 mM NaCl, virus clearance of MMV or ΦX 174 could decrease from 5-6 log removal 

value (LRV) to only 1 LRV 64. The HCP clearance also becomes less than 1 LRV in 50 mM 

NaCl 64. As a result, Q ligand-based anion exchange purification step requires a large amount 

of buffer to dilute the loading product in order to maintain its binding capacity. Primary 

amine was then developed as a salt tolerant ligand by introducing the secondary hydrogen 

bonding interaction in addition to the electrostatic interaction. The primary amine ligand was 

first designed and selected by Riordan et.al 18, 81 for virus removal and then developed and 

commercialized, e.g. “ChromaSorb” by MilliporeSigma 20. This primary amine based AEX 

can have a 5 LRV for ΦX 174 under 150 mM NaCl condition, whereas Q based AEX has 

zero clearance 18. Sulfonic and carboxylic acid groups have been used in the cation exchange 

membranes. Sartorius AG launched HIC membrane using phenyl as the ligand. Phenyl 

groups are first used in HIC membrane by Kubota et.al in 1995 82 and developed later by 

Faber et.al from Sartorius Stedim Biotech GmbH 29. HIC phenyl membrane has been scaled 

up to 5 L marketed for both capture and polishing steps. Sartorius AG also has affinity 

membranes with protein A as ligands. However, this affinity membrane is only 

commercialized in a lab-scale with a small bed volume (2 mL) for mg level IgG purification. 

Another affinity membrane developed by Sartorius AG is the metal chelate adsorbers. This 

membrane is based on immobilized metal affinity chromatography (IMAC), where 
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genetically expressed protein with His-6-tag can bind to Ni2+, Co2+, Zn2+ or Cu2+ ions which 

are pre-loaded on membranes grafted with iminodiacetic acid (IDA) ligands.  

Table 1.2 Summary of commercialized membrane adsorbers used in downstream polish 

steps. 

Company 
Membrane  

Adsorber 
Type Application 

Asahi Kasei Medical QYUSPEED D AEX 
Removal of HCP, virus, DNA 

etc. 

MilliporeSigma ChromaSorb™ AEX  
Removal of HCP, virus, DNA 

etc. 

Pall Corporation 

Mustang® Q AEX 
Removal of DNA, HCP, virus 

etc. 

Mustang® E AEX Removal of endotoxin  

Mustang® S CEX 
IgG, Factor VIII, removal of 

HCP(+) 

Sartorius AG 

Sartobind®S CEX 
Removal of positive charge HCP 

Sartobind®C CEX 

Sartobind®Q AEX 
Removal of virus, DNA, 

HCP(-),endotoxin 
Sartobind®D AEX 

Sartobind®STIC AEX  

Protein A Affinity IgG purification(mg level) 

IDA-Ni2+ or Co2+ Affinity His-tag proteins purification 

Sartobind®Phenyl HIC Aggregates removal 

Natrix  

Separations, Inc. 

NatriFlo® HD-Q AEX 
HCP removal, DNA removal 

and Viral Clearance 

Natrix HD-Sb 
Multi-

modal 

mAb capture and aggregates 

removal 
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Table 1.3 Detailed information on ligands and binding capacities of commercialized 

membrane adsorbers.  

Membrane Impurity removal 
Membrane substrate 

and Ligand 

Additional 

information 

QYUSPEED D 

BSA: >40 mg/ml (DBC 10%)

，DNA: >25 mg/ml, Porcine 

Parvovirus: > 5 LRV 

Polyethylene 

membrane with 

Diethylamino group 

First AEX hollow 

fiber membrane 

adsorbers 

ChromaSorb™ 
Virus (MMV)>4 LRV, DNA>3 

LRV, Endotoxin>3 LRV 

Polyethylene 

membrane   (0.65 μm) 

with poly allylamine 

ligand 

Salt tolerant (>150 

mM NaCl, 30 mS/cm 

in buffer when 

remove 

MMV),Scales up 

from 0.08 ml to 50 

ml 

Mustang® Q 
DNA: 30 mg/ml, BSA: 70 

mg/ml 

PES membrane 0.8μm 

with quaternary 

amines ligands 

Strong anion-

exchange membrane 

Sartorius® Q 
DNA>2 LRV, Endotoxin>2.8, 

HCP:1.9 LRV, BSA: 29 mg/ml 

Regenerated cellulose 

membrane(>3μm pore 

size) with quaternary 

amines ligand 

Strong anion-

exchange membrane, 

Scale up from 0.08 to 

1620 ml 

Sartorius® D BSA: 22 mg/ml 

Regenerated cellulose 

membrane with 

diethylamine as ligand 

Weak anion-

exchange membrane 

Sartorius salt 

tolerant AEX 

BSA: 36 mg/ml in 200 mM 

NaCl compare to 3.6 

mg/l(Sartorius Q) at the same 

condition, DNA: 22 mg/ml, 

LRV for MMV: >4.96 

Primary amine as 

ligand 

Weak anion-

exchange membrane  

NatriFlo® HD-Q 

3D hydrogel matrix, BSA: 

>200 mg/ml, DNA: > 20 

mg/ml, xMuLV:>4.8 LRV, 

HCP: up to 4 kg/L 

Quaternary amine as 

ligand 

Strong anion-

exchange membrane 

Natrix® HD-Sb 

mAb:> 90 mg/ml (10% 

breakthrough)，HCP: 

>1.4LR,Aggregates: up to 12% 

removal 

Sulfonic acid and t-

butyl 

Multi-modal 

membrane 

Mustang® S 
60 mg/ml human IgG, 47 

mg/ml for lysozyme 

0.8 μm pore size 

membrane+ Sulfonic 

acid (S) 

Used for 

Baculoviruses 

capture 

Sartorius® S Lysozyme: >29 mg/ml 

Regenerated cellulose 

membrane ( >3μm 

pore size)with sulfonic 

acid as ligand 

Strong cation-

exchange membrane 

Sartorius® C Lysozyme: 22 mg/ml 

Regenerated cellulose 

membrane with 

carboxylic acid as 

ligand 

Weak cation-

exchange membrane 

Sartobind® 

Phenyl 

membrane 

14.6 mg/ml(globulin, at 0.9M 

(NH4)2SO4) 

Regenerated cellulose 

membrane with phenyl 

as ligand 

First commercialized 

HIC membrane,0.08 

mL to 5 L 

Sartobind® 

Protein A 
membrane 

10-15 mg/unit polyclonal IgG 

Regenerated cellulose 

membrane with protein 
A as ligand 

Only available in 

2mL bed volume 
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1.4 Membrane Functionalization 

Membrane functionalization is an effective way to change the property of membrane 

drastically without altering too much of the membrane bulk structure 83. Functional groups 

can be introduced to control the interaction of different species within the membrane surface 

region for various applications such as anti-fouling 84, 85, 86, metal ions removal 87, 88 and 

protein separations 37, 70, 75, 89, 90. Besides controlling surface interaction during separations, 

new properties can be introduced through membrane functionalization such as catalytic 

membranes designed for cellulose hydrolysis 91 and responsive membranes for many 

applications 30, 37, 92, 93, 94. Physical coating 95, 96, chemical treatment 97, plasma treatment 98, 

self-assembly (self-assembled monolayers 99 and layer-by-layer assembly 100, 101, 102, 103) and 

polymer-grafting method 67, 89, 90 are common methods to modify membrane surfaces.  

Polymer-grafting method has many advantages compared to other surface 

modification techniques for developing membrane adsorbers. First, it is a chemical 

modification method with polymers covalently attached to the membrane surfaces. Therefore, 

the stability of grafted polymers is much higher than physical coating and self-assembly 

methods. This is especially important when developing membrane adsorbers to prevent 

ligand leakage particularly during bioseparations. Secondly, instead of introducing simple 

functional groups such as hydroxyl or amine groups by chemical or plasma treatment, 

complex polymer structures can be utilized for realizing sophisticated protein separations. 

The surface properties of the membranes can be tailored easily and dramatically by selecting 
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specific monomers. Furthermore, by varying polymerization time and initiation condition, it 

is possible to control the polymer chain length and density in a decoupled way. The 

architecture of grafted polymeric ligands has been shown to have a critical impact on the 

performance of the membrane adsorbers 31, 68, 71, 90, 104. Therefore, polymer-grafting method is 

superior to other surface modification techniques for preparing membrane adsorbers used in 

downstream bioseparations.  

“Grafting to” and “grafting from” are the two most common strategies for grafting 

polymers on the membrane surfaces 83. The “grafting to” method involves conjugation of pre-

synthesized polymers with reactive anchor groups onto the membrane. On the other hand, 

polymerization can be initiated from the membrane surface via “grafting from” method. 

“Grafting to” method has a better knowledge of grafted polymer properties, such as the 

polymer molecular weight and polydispersity. However, the grafting density is usually lower 

than polymers grafted by “grafting from” method 105. The ‘grafting from’ method will be 

discussed in more detail below.  

1.4.1 “Grafting From” Method 

Three different initiation processes are commonly used in the “grafting from” method. 

The first approach starts the initiation of polymerization on membrane surface by plasma 

treatment 106, 107, 108, UV irradiation 109, 110, high-energy radiation 111 (γ-ray irradiation) to 

create radicals from the membrane substrate. The second approach is to use a photo-initiator 

68, 70, 89 grafted on the membrane substrate.  The third one is to immobilize a radical initiator 

for living polymerization 54, 112, 113, 114. In this section, we focus on UV-initiated 
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polymerization (with and without photo-initiator) and surface-initiated atom transfer radical 

polymerization (SI-ATRP) as a living polymerization technique. 

1.4.2 UV-induced Polymerization 

UV-initiated polymerization has been widely used in membrane surface modification 

for many applications, such as protein separations 68, 70, 89, 104, 115, 116, 117, 118, surface 

hydrophilicity enhancement 119, 120, 121, anti-fouling 85, 110, 122, 123, 124, 125, catalysis of reaction 91, 

responsive membranes 126, 127, 128, nanofiltration 129 and metal ion removal 130. Polymerization 

initiation starts by abstracting a hydrogen atom on the membrane surface from the radicals 

induced by UV light. For example, the carbonyl group can be excited to the triplet state to 

form a reactive free radical as shown in Figure 1.7a. If the membrane itself is photosensitive, 

then the free radicals can be generated on the membrane backbone as shown in Figure 1.7b. 

Polysulfone (PS) or poly (ethersulfone) (PES) membranes are sensitive to the UV light in the 

range from 200 to 320 nanometer (nm) 131.  
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Figure 1.7 Mechanism of UV-induced polymerization with type II photo-initiator (a) and 

without photo-initiator (b, PES membrane). 

Compared to other polymer-grafting methods, UV-initiated polymerization has many 

advantages in terms of cost and efficiency. Firstly, the modification is much simpler and 

cheaper than other methods such as SI-ATRP. The UV-initiated polymerization can be 

carried out in air, whereas typical SI-ATRP requires an oxygen-free environment during 

polymerization. It is also cheaper than plasma-initiated polymerization due to the lower 

energy required. Secondly, the UV-initiated polymerization process is quite clean where only 

monomers, solvent and UV light are required whereas catalyst removal for ATRP remains to 

be one of the major challenges. Thirdly, the polymerization rate and degree of polymerization 

are generally much higher for UV-initiated polymerization than for ATRP resulting in higher 

modification efficiency.  

1.4.2.1 UV-induced Polymerization without Photo-initiator 

As described before, PS and PES membranes are photo-sensitive and polymers can be 

grafted on the membrane backbone. Many monomers have been grafted by this method with 

PES or PS membranes, including hydroxyethylmethacrylate (HEMA) 109, glycidyl 

methacrylate (GMA) 109 and methyl methacrylate (MAA) 109, N-vinyl-2-pyrrolidinone (NVP) 

132, 133. As a result, hydroxyl, epoxy and carboxylic groups can be easily introduced for post-

modification. UV-initiated polymerization on PES membranes has studied extensively 109, 110, 

132, 133, 134, 135. It was found that polymers on membrane backbone were cleaved initially 

generating radicals followed by polymerization with the monomers 109. It was further found 

that the polymerization occurred deeply inside the ultrafiltration (UF) PES membranes 109. 
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The main advantage of this method is that the modification procedure is rather simple without 

any need of pre-treatment. PES or PS membranes can be immersed inside the monomer 

solution while polymerization starts from the radicals formed at the membrane backbones as 

shown in Figure 1.7b. It was also found that PES membranes are more susceptible to UV 

initiated polymerization than PS membranes using the same monomers 132.  

1.4.2.2 UV-induced Polymerization with Photo-initiator 

Currently there exist two photo-initiator types used for membrane surface 

modification. Type I initiator has been developed and used in industry to hydrophilize 

polyvinylidene fluoride (PVDF) 136 and polyethylene (PP) 137 membranes. The initiation of 

type I initiator is the free radical generation from the cleavage of initiator itself under UV 

irradiation. The radicals formed on membrane surface abstract hydrogen atoms on membrane 

substrate thus transferring radicals to the membrane. Benzoin derivatives, peroxides and azo 

compounds are commonly used type I photo-initiators. For example, benzoin ethyl ether 

(BEE) derivative has been used for membrane imprinting by cross-linking via UV-initiated 

polymerization 138. Interestingly, the BEE initiators could be covalently immobilized on the 

membrane surface prior to UV irradiation through the carbodiimide coupling 68, 91, 139. After 

UV irradiation of BEE, highly reactive radicals are generated from the immobilized BEE 

initiator whereas radicals formed in the bulk solution have very low reactivity as shown in 

Figure 1.8 139. 
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Figure 1.8 Initiation mechanism of immobilized type I BEE initiator. The high activity 

radical is formed on the immobilized BEE initiator side. Low activity radical is formed in the 

bulk solution. 

Type II initiators, such as benzophenone (BP) or its derivatives have been widely 

studied and used for the modification of polyethylene terephthalate (PET) 140, 141, 142, 143, 144, 

polypropylene 89, 119, 145, 146, polyacrylonitrile (PAN) 126, 147, 148, PVDF 149 and regenerated 

cellulose membranes 104. The enhanced polymerization on surfaces comes from radical 

generation via H abstraction from the substrate polymers leading to higher grafting densities. 

Many protocols have been developed using BP initiator to improve the initiation efficiency. 

Simultaneous and two-step polymerizations are the two common approaches to conduct UV-

initiated polymerizations. Simultaneous method involves grafting process in a solution 

containing both monomers and BP initiator 142, 143, 150, 151. The grafting density obtained by 

this method is relatively low with significant amount of polymerization occurring in the bulk 

solution. In addition, this approach is limited by the solvents that can be used since BP 

initiators are not soluble in water. In addition, only some solvents will be effective for the 

hydrogen abstraction reaction. For the two-step polymerization method, local BP 

concentration can been increased by pre-coating the initiator on the membrane surface prior 

to UV irradiation. The polymerization reaction can be conducted in a different solvent so that 

monomers can be easily dissolved.  This approach greatly extends the application of BP 
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initiators. This protocol works quite well with the hydrophobic membranes and monomers 

that have high solubility in water. BP initiators adsorbed on the membrane surface have a low 

solubility in water leading to the reduced bulk solution phase polymerization. Ma and co-

workers developed sequential UV irradiation steps with BP initiator covalently attached on 

PP membrane first 145. The grafting degree has increased 4 times compared to the 

simultaneous method. More importantly, the grafting density can be controlled to some 

degree through the initiator immobilization step. Many other attempts have been made to 

improve the immobilization efficiency of BP initiators in order to have a better control of the 

grafting density. Geismann and Ulbricht have immobilized a charged BP derivative initiator 

on PET membrane through electrostatic interaction 144. Ulbricht and Yang have introduced a 

new “entrapping method” for BP initiator immobilization. PP membrane was first pre-

swelled in heptane with the BP initiators. The membrane was then washed with non-swelling 

solvent to remove the surface adsorbed initiators. Finally, polymerization on the membrane 

substrate was performed using a non-swelling monomer solution. The entrapping method has 

many advantages over BP surface adsorption method. Firstly, after BP initiators are 

entrapped inside the membrane substrate, other non-aqueous solvents can be used for 

polymerization without the concern of BP dissolving in the bulk solution leading to bulk 

solution phase polymerization. Secondly, grafting density can be controlled to some degree 

by varying the initial BP concentration during the pre-swelling step. Wang et.al has modified 

regenerated cellulose (RC) membranes with poly (acrylic acid) for protein separations. 

Heptane was used as a non-polar solvent to coat the BP initiators on the RC membrane 
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surface which is considered polar. The heptane solvent prevents the entrapment of the BP 

initiators into the bulk cellulose substrate 104. Hu and co-worker reported using FeCl3 with the 

BP initiators to improve the degree of grafting of 2-hydroxyethyl methacrylate on PP 

membranes. It is believed that there is a synergistic effect between Fe3+ and BP initiator. 

Their results showed that there was 2.5 times increase in grafting degree compared to the 

direct BP adsorption method. Similar synergist effect was also reported by He et.al for the 

PET membrane modification when tertiary amine groups were present 140, 152. There is a 

better control for both the grafting density and polymer chain length in the presence of 

tertiary amines compared to the non-aminolysed PET membranes 152. 

1.4.2.3 Membrane Adsorbers Prepared by UV-initiated Polymerization 

Various types of ligands have been grafted on membrane substrates via UV-initiated 

polymerization reactions. These ligands include protein streptavidin 117, polymer brushes 89, 

104, 140, responsive hydrogels 30, 41, 118 and molecularly imprinted polymers. Affinity 115, 116, 117, 

140, ion-exchange 89, 104 and HIC membranes 30, 41, 118 were developed for protein separations 

and purifications.  

Borcherding et al. prepared an affinity membrane by immobilizing proteins as 

ligands. The affinity comes from the specific interactions between streptavidin and biotin. 

Epoxy groups were first grafted on membranes via UV-initiated polymerization followed by 

coupling with affinity protein ligand streptavidin. BP initiators were coated on PP membranes 

(0.4 µm pore size) for 18 h followed by grafting of poly (glycidylmethacrylate (GMA)) in a 

monomer solution containing BP, NaIO4, GMA and water (10% v/v methanol). Streptavidin 
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was then covalently immobilized reacting with the epoxy groups on the membrane. The 

binding capacity is comparable to commercialized streptavidin immobilized particles.  

Affinity membranes have also been developed by He et al 140 using synthetic 

copolymer brushes as ligands for the first time. This protein-selective copolymer ligand 

contains bisphosphonato-m-xylylene methacrylamide monomer that has a high affinity to 

arginine. It is possible to separate cytochrome C (lysine rich) from lysozyme (arginine rich) 

with similar pIs and sizes since these two proteins have a different number of arginine 

residues. The adsorption isotherm shows the binding constant with the copolymer ligand is 15 

times higher for lysozyme than for cytochrome C. Selective binding of lysozyme in a 1:1 

lysozyme and cytochrome C mixture was also successful. This work demonstrates for the 

first time that synthetic polymer brushes can be used as high performance affinity ligands to 

achieve high-resolution protein separations.  

Poly (vinylcaprolactam) (PVCL) hydrogel has been coated with cellulose filter papers 

118 and PVDF membranes 41 by a simultaneous UV-initiated polymerization using BP 

initiators. PVCL is a thermo-responsive polymer which is also salt responsive since its LCST 

is salt concentration and salt type dependent. Protein binds to the ligands under high salt 

concentration when PVCL is hydrophobic and elution is promoted under low salt 

concentration when PVCL changes to hydrophilic state. Recently, Wu et.al designed a 

branched poly (N-isopropyl acrylamide (NIPAM)-co-butyl acrylate) ligands coated on 

cellulose filter by simultaneous UV-initiated polymerization 30. The bind and elute studies 

were supposed to be conducted in a salt-free environment by varying the temperature 
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between 41oC and 10oC for bind and elute respectively. However, they found out that 1.75 M 

(NH4)2SO4 is still needed for IgG to bind to the ligands at 41oC.  

Ulbricht and Yang have modified PP membranes with copolymer cation-exchange 

ligands comprised of acrylic acid (AA), acryl amide (AAm) monomers and cross-linker 

methylene bisacrylamide (MBAA) 89. Binding capacity and recovery were compared for poly 

(AA) brushes, poly (AA-co-AAm) and cross-linked poly (AA-co-MBAA) modified 

membranes. Both the adsorption and entrapping methods for coating BP were used. The 

modified membranes showed a pH-dependent water permeability as well as reversible 

lysozyme binding. Results from binding capacity indicate that membranes modified via BP 

entrapping method have twice as higher a capacity than those modified via BP adsorption 

method. The cross-linked poly (AA-co-MBAA) modified membranes have a lower pH 

responsiveness but higher lysozyme binding capacity than the non cross-linked PAA 

modified membranes. It is also interesting to see that poly (AA-co-AAm) modified 

membranes also have higher binding capacity than poly (AA) modified membranes. Poly 

(AA) brushes have also been grafted on regenerated cellulose membranes by Wang et al. 104. 

Again, the 10% breakthrough binding capacity increased about 70% after incorporating a 

cross-linked PAA compared to the linear PAA ligands. The highest dynamic binding capacity 

was obtained on a membrane substrate with uniform pore sizes functionalized with cross-

linked PAA ligands. At 10 ml/min flow rate, the binding capacity reached 38 mg/ml for 

lysozyme and 36 mg/ml for IgG. 
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More sophisticated molecularly imprinted polymer (MIP) ligands were developed by 

UV-initiated polymerization 115. IgG was used as a template protein to first bind to PET 

membrane  modified with poly (methacrylic acid) via ATRP as the scaffold. Then, a MIP 

hydrogel layer is synthesized in the presence of bound IgG by UV-initiated polymerization of 

acrylamide and with MBAA as a cross-linker. IgG was successfully separated from HSA 

(human serum albumin) by this MIP ligands. Their results show that the scaffold length, 

hydrogel layer thickness and degree of cross-linking are all crucial parameters for the binding 

capacity and protein selectivity. The slow mass transfer rate of IgG in the MIP polymer 

matrix is one of the major barriers for the application. A responsive MIP ligand was also 

developed 116. The hydrogel layer consists of poly (N-isopropylacrylamide) (PNIPAM).  A 

pronounced de-swelling occurred when proteins bound to the MIP hydrogel ligands. 

1.4.3 Atom Transfer Radical Polymerization (ATRP)  

1.4.3.1 ATRP Fundamentals 

The control of polymer architecture and composition has long been a great challenge 

for making well-defined and uniform polymer materials. The rapid uncontrollable 

polymerization including UV- or thermo-initiated polymerization leads to a board molecular 

weight (MW) distribution. ATRP has emerged as one of the most effective and commonly 

used controllable radical polymerization technique since it was first reported by 

Matyjaszewski in 1995 153. The narrow MW distribution, first-order polymerization kinetics, 

ease of control and versatile end-group functionality make ATRP a superior polymerization 

method compared to other conventional radical polymerization methods. As shown in Figure 
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1.9, ATRP process is established by an equilibrium between the activation and deactivation 

reactions, where a transition metal complex serves as the catalyst. R-X is the dormant species 

(cannot polymerize) with a halogen group whereas R· represents the active radical. 

 

Rp = kp ∙ [M] ∙ [𝑃∗] = 𝑘𝑝 ∙ 𝐾𝑒𝑞 ∙ [M] ∙ [𝐼0] ∙ [𝐶𝑢𝐼]/[𝐶𝑢𝐼𝐼] (Eq.1) 

Figure 1.9 Scheme of ATRP catalyzed by transition metal complex system (X, M and Y 

represents halogen atom, metal and another halogen atom, respectively. kact, kdeact, kp and kt 

are rate constants for activation, deactivation, polymerization and termination reactions, 

respectively. For kinetics Eq.1, [P*] is the radical concentration. Keq is the equilibrium 

constant. [I0], [CuI] and [CuII] are concentration of initial initiator, CuI and CuII , respectively.  

In contrast to the uncontrollable radical polymerization, the radical concentration with 

ATRP is much lower leading to low probability of termination (1-10%) 154. Based on the 

kinetics as described by Eq.1 155, the polymerization rate (Rp) can be controlled by  the 

monomer and initiator concentrations, and the ratio between CuI and CuII. The reactivity (kp) 

and equilibrium constant (Keq) depend on monomer type, catalyst used as well as the solvent 

media. Ideally, the radical concentration remains constant with first-order kinetics to 

monomer concentration 155. However, in reality, due to radical termination or catalyst 

oxidization, the CuII concentration will build up leading to a decrease in polymerization rate.  

1.4.3.2 Selection of Appropriate Polymerization Conditions 

Based on the monomer reactivity, it is critical to select an appropriate ligand, the 

initiator, the catalyst CuI/CuII ratio, the solvent medium as well as the temperature for ATRP 

reaction. In particular, an appropriate ratio of the CuI/CuII is critical for a reasonable 
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polymerization rate with minimum chain termination. Usually, there is a tradeoff between the 

rate of polymerization and amount of chain termination. Typically for a well-controlled 

ATRP, less than 5% of the chains are terminated at the initial stage and more than 90% of the 

chains continue to grow 155. It has been shown that adding more CuII can effectively reduce 

the termination at the initial stage of polymerization. Therefore, CuII is usually added at the 

beginning to slow down the polymerization. If there is not sufficient concentration of CuII at 

the beginning, more CuII ions will be generated during the ATRP reactions irreversibly due to 

radical termination (each termination event will generate two equal moles of CuII). 

The reactivity of radical polymerization is largely intrinsic to the monomer. The 

general order of monomer reactivity follows acrylonitrile > methacrylates > acrylates≈

styrene > acrylamides 154. Halide reactivity follows I > Br > Cl, which affects the selection of 

appropriate initiator and catalyst. For example, CuBr will be catalytically more active than 

CuCl. For the same halide end group, the reactivity order follows 3o > 2o > 1o.  

One of the most efficient ways to modulate polymerization rate is to select an 

appropriate ligand that complexes with the transition metal catalyst. The equilibrium constant 

Keq or KATRP can vary from 10-2 to 10-11 for different ligands. With regard to the solvent 

medium, both the catalyst and monomer need to be dissolved or at least in one phase of the 

solvent. Various aqueous, water mixtures and organic solvents have been successful for 

ATRP. Moreover, the rate of ATRP polymerization is strongly influenced by the solvent 

polarity 156.  

1.4.3.3 Surface-initiated ATRP (SI-ATRP) 
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SI-ATRP plays an important and unique role in surface modification of polymer 

chains. Poly- dispersity of the modified polymer chains affects membrane transport, binding 

and antifouling properties. SI-ATRP provides a unique polymerization scheme to control 

independently the polymer chain length and chain density.  

Generally, the membrane modification procedure involves initiator immobilization 

and polymerization steps. Unlike solution ATRP, the initiator needs to be first immobilized 

on the surface as schematically shown in Figure 1.13 followed by polymerization at the 

liquid/solid interface. The strategies to immobilize ATRP initiators on membrane substrates 

are summarized in Table 1.4. The initiation efficiency is generally hard to predict. The 

surface curvature seems to have an impact on the immobilization efficiency. The reported 

initiation efficiency is higher for particles (80%) than for flat surfaces (10%) and convex 

surfaces (30%) 157.   

 

Figure 1.10 Scheme of initiator immobilization on the substrate with abundant hydroxyl 

groups. 

 

 

 

 

 

  



32 

Table 1.4 Initiator immobilization strategy based on various surface functional groups. 

 
Cellulose/Polyamide 

Membrane 
Silicon/Ceramic  

Metal 

(oxide) 

Functional Group 

Surface -OH or -NH2 

-OH after 

pretreatment 

with piranha 

solution 

e.g. Gold 

Initiator 

 
 

 

Non-initiator (density regulator) 

 

 

 

 

The main advantage of SI-ATRP comes from its ability to control the grafting density 

and chain length of polymer chains independently. There are a number of different 

commercialized initiators suitable for different substrates. In addition, the “living” 

polymerization feature of ATRP makes it possible to graft block, gradient and statistical 

copolymers from surfaces, which is hard to achieve using other radical polymerization 

methods. Different polymeric shapes can also be synthesized including comb, star, or 

dendritic conformations. Moreover, the halide end group enables post-modification by 

nucleophilic substitution to introduce other functional groups. 

The propagation and termination of SI-ATRP on a flat substrate could be quite 

different from the reactions occurred solution. It is possible that when the grafting density is 

high, the radicals at the polymer ends will combine and terminate. The assumption that 

polymers grown in solution and on substrates have similar properties is still an open question, 
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especially at high grafting densities 157. Quantification of grafted polymer chain density and 

chain length is another major challenge. 

1.4.3.4 Membrane Adsorbers Prepared by ATRP 

ATRP has been successfully applied to develop membrane adsorbers for protein 

separations. High capacity membrane adsorbers with cation-exchange ligands grafted via 

ATRP were first reported in 2008 112. PAA was grafted from 1 µm pore size regenerated 

cellulose membrane substrate. The binding capacities for lysozyme reached 98.5 mg/mL and 

71.2 mg/mL for static and dynamic binding studies respectively. It is higher than 21.8 mg/mL 

from the Sartobind C membranes’ dynamic binding capacity at the time. They found that the 

effective pore size is reduced to around 100 nm after modification but the pore morphology 

remains more or less the same. The polymer chain length on binding was investigated by 

varying the ATRP time. The binding capacity reached the maximum value at ATRP 1 h and 

decreases with longer ATRP times. High capacity anion-exchange membrane adsorbers have 

also been developed using poly (2-dimethylaminoethyl methacrylate) (poly (DMAEMA)) as 

ligands 75. BSA binding capacity increases with chain length and reaches the maximum of 

66.3 mg/mL for the static binding capacity after 12 h ATRP. Significant flux reduction was 

observed for longer ATRP times. Anthrax protective antigen (PA) protein was purified from 

Escherichia coli lysate using the same anion exchange membrane adsorbers with poly 

(DMAEMA) ligands 113. The BSA dynamic binding capacity reached 80 mg/mL, compared 

to 20 mg/mL from Sartobind D and 20-60 mg/mL from HiTrapTM DEAE FF resin. Sulfonic 

groups have been polymerized from the membranes with 0.2, 0.45 and 1 µm pore sizes. 
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Again, high binding capacities were achieved but the effects of pore size effect on capacity 

are not conclusive. Finally, high capacity multimodal (MM) membrane adsorbers have been 

developed using ATRP 54. Poly (4-mercaptobenzoic acid) was modified on membranes by 

epoxy conjugation after ATRP of the epoxy monomer. IgG static binding capacity reached 

180 mg/mL and 60 mg/mL for 10% dynamic binding capacity 158, which is higher than the 

commercialized Capto MMC resins (60-70 mg/mL). The MM membranes show salt-tolerant 

binding (up to 300 mM ionic strength, SBC remains 120 mg/mL). The kinetic studies showed 

the major limitation step of protein adsorption is the binding process between proteins and 

ligands other than the transport process.  

Besides the high capacity ion-exchange membranes, HIC 37 and affinity membranes 

31, 69, 90, 114 have been developed by SI-ATRP as well. PVCL has been grafted as HIC ligands 

on RC membranes by SI-ATRP 37. The PVCL modified membranes show a higher binding 

capacity than the hydrophilized PVDF membrane used as HIC membranes 118. Overall, the 

binding capacity is comparable to Sartobind®phenyl membranes. High protein recovery 

(>97%) was achieved in a bind-and-elute mode with BSA. The recovery of BSA decreases 

evidently with high PVCL grafting density (> 5 h initiation reaction time). Salt effects on 

binding capacity and recovery were systematically investigated and correlated to the 

hydrophobicity change of PVCL. In addition, monomers with a high affinity to arginine have 

been modified on RC membrane as synthetic affinity ligands. Lysozyme binding capacity 

reached 12 mg/mL, which is six times higher than what achieved before with UV-initiated 

polymerization for grafting the same type of ligands. It is likely that ATRP leads to more 
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uniform brushes as well as high grafting degrees compared to UV-initiated polymerization, 

resulting in improvement in binding capacity. Moreover, it shows that the binding capacity 

increases with the amount of copolymerized affinity monomers. The results also demonstrate 

that copolymerization of a hydrophilic spacer monomer, which increases the flexibility of 

polymeric ligand, is critical to have a high lysozyme binding capacity. The complementary 

molecular dynamics simulation results show that the affinity between the copolymer ligand to 

lysozyme comes from multiple interactions, including hydrogen bonding, electrostatic and 

cation-π interactions. A summary of different polymeric ligand structures, membrane 

adsorber types and binding capacities are shown in Table 1.5. 
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Table 1.5 Summary of membrane adsorbers prepared by ATRP. 

 

Membrane 

Adsorber
Binding Capacity

poly(sulfonic 

acid)

Static: 70 mg lysozyme/mL Dynamic: 50 mg 

lysozyme/mL

poly(acrylic 

acid)

Static: 98.5 mg lysozyme /mL Dynamic: 71.2 

mg lysozyme/mL

Multimodal 

membrane

poly(4-

mercaptobenzoic 

acid)

Static: 180 mg IgG /mL 

Anion 

Exchange 

membrane

poly(2-

dimethylaminoet

hyl 

methacrylate)

Static:80 mg BSA/mL 

HIC 

membrane

poly(vinyl)caprol

actam

Static: 14 mg BSA/mL Dynamic: 5.5 mg 

BSA/mL

poly(nitrilotriacet

ate (NTA)-Ni2+)
Dynamic: 85 mg HisU/mL

poly(5-

(methacryloylam

ino)-m-xylylene 

bisphosphonic 

acid 

tetramethylester)-

co-poly(N-(2-

hydroxypropyl) 

methacrylamide) 

Static: 12 mg lysozyme/mL Dynamic: 4 mg 

lysozyme/mL

polysaccharides Dynamic: 23.6 mg Peanut agglutinin /mL

Ligand and Sturcture

Affinity 

membrane

Cation 

Exchange 

membrane
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1.5 Membrane Surface Characterization 

Membrane surface characterization is important to correlate the performance of modified 

membranes and provide guidance to optimize the modification condition for better 

performances. Here, we focus on four categories of characterization techniques on membrane 

properties of the composition, morphology, wettability and surface zeta potential. Those 

properties are crucial characterize in order to provide a deep understanding of membrane 

performances. This section provides a brief introduction to the techniques used for polymeric 

membrane surface characterization. Attenuated total reflectance fourier transform infrared 

(ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) will be presented as 

techniques for chemical composition characterization of membranes. Scanning electron 

microscopy (SEM) and atomic force microscopy (AFM) are techniques used for membrane 

morphology characterization. Contact angle measurements are used for testing the wettability 

of membranes. Surface zeta potential of membranes can also be measured in our lab. 

Membrane surface characterization is different from common surface analysis. First, 

sample preparation becomes extremely critical for preservation of membrane’s structure and 

prevention of contamination from outside. Any process causing property change of 

membranes should be conducted carefully to minimize the artifacts. For example, membrane 

washing and drying processes may have large impacts on the many characterization results. 

Inappropriate washing or drying can cause a drastic change of membrane properties like pore 

collapsing, swelling, degradation, surface reconstruction 159 etc. Secondly, there is a 

limitation on the analysis of membrane surface in term of depth. Generally, ATR-FTIR can 
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detect functional groups on membrane surface with a depth of 0.1 to 10 µm whereas the 

analysis depth for XPS is only about 10 nm. Thirdly, it is important to note that the 

characterization environment might be completely different from the membrane’s 

performance environment. Overall, results of non-invasive, in-situ and real-time 

characterization with minimum sample preparation are always more representative for 

elucidating the membrane performances.  

1.5.1 Chemical Composition  

ATR-FTIR and XPS are frequently used for analyzing the chemical composition of 

membranes after surface modification. functional groups presented on the membrane can be 

detected by ATR-FTIR and the state and type of elements are usually measured by XPS. 

ATR-FTIR is a technique designed for surface characterization based on FTIR 

principles. The transmittance peaks in FTIR results indicate IR light (4000 to 400 cm-1) is 

absorbed at frequencies that match energy required for molecular vibrations in certain modes. 

Because different functional groups have their unique molecular vibration modes which can 

only absorb certain frequencies of IR light, therefore it is possible to distinguish each 

functional group based on the position of the FTIR peaks. For surface analysis, an ATR 

accessory is needed for a total internal reflection between the membrane surface and an 

internal reflection element (IRE). IRE is usually made of crystals (ZnSe or Germanium etc.) 

that have a high reflective index than most membranes. Eventually, an evanescent wave is 

formed when the reflected IR light penetrates a short depth (dp) into the membrane surface 

(Figure 1.14).  
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Figure 1.11 ATR-FTIR measurement for polymeric membrane surface. 

Therefore, the ATR-FTIR peaks represent the interaction between the evanescent IR 

wave and functional group on the membrane surface. The penetration depth (dp) is 

proportional to IR wavelength. In other words, ATR-FTIR spectrum intensities at longer 

wavelength tend to be higher since it has a larger penetration depth 105. Overall, the ATR-

FTIR peak position and shape are similar to FTIR spectrum except at long wavelength region 

160. One of the challenges associated with ATR-FTIR is the contact problem between 

membrane and IRE crystal. When the membrane is stiff or non-deformable, it is tricky to 

make sure a good contact even with the sample clamp to apply pressure. The poor contact 

will affect more on the short wavelengths region due to its short penetration depth. There is 

also a chance of scratching the IRE crystal surface if membranes were pressed too hard on the 

surface. It also imposes difficulty on quantitative analysis of ATR-FTIR spectrum when the 

contact area is different for each measurement.  

Compared to ATR-FTIR, XPS is far more surface sensitive. It is possible for XPS to 

have ppm level detection. The spatial resolution can reach about 10 µm 161. XPS can provide 

information on the functional groups presented on membrane surfaces. The penetration depth 

of XPS is between 1 nm to 10 nm, depending on the detector angle. XPS is based on a 
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process when electrons emit from atoms under the excitation of X-ray (photons). Einstein 

equation describes the relation of energy terms related to the process: 

EB=hν-EK-Φ,                                    (Eq.1.1) 

Where EB is the binding energy of the electron. EK is the kinetic energy of electron depending 

on X-ray energy and Φ is a constant represented the work function of the detector. Since hν, 

EK and Φ are measurable or known, EB is calculated based on the Einstein equation (Eq.1.1). 

Not only each element has different binding energy, but different oxidation states of the same 

element also have different values of binding energy. In a typical XPS spectrum, the peak 

represents electrons excited and escaped without energy loss at a certain binding energy. 

Therefore, the XPS spectrum presents an accurate electronic structure of an element since all 

electrons with a binding energy less than X-ray energy contribute peaks in the spectrum. 

Usually, a wide scan is first conducted to cover a range of 0-1000 eV for the detection of all 

elements except hydrogen and helium. Then, a high-resolution scan can be carried out for 

interested peaks. The chemical bond can be characterized as well because the binding energy 

will be shifted by the electron density change induced by the neighboring atoms. For 

example, when C1s has more O around (C-O or -O-C=O), the binding energy will shift up to 

4 eV higher. It is the same reason why different oxidation states of metals can be detected 

because of the binding energy change. The high-resolution peak can therefore be decoupled 

into various single peaks which represent each type of binding energy peak based on different 

neighboring groups. Angle-resolved XPS is another powerful tool to analyze membrane 

surfaces if gradient chemical composition existed after surface modification.  
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I=I0exp(-d/(λcosϴ))   (Eq 1.2) 

Where I is the intensity of electrons emitted from all depths greater than d form a 90o detector 

angle (normal to the surface). I0 represents intensity from an infinitely thick substrate. ϴ is 

the detector angle, which is the angle to the normal direction of the surface. Λ is known as the 

attenuation length of the electrons. Normally, for collecting 95% of the signal, the XPS 

analysis depth is defined as 3λ. By changing the detection angle ϴ from 90o, the analysis 

depth is reduced by cos ϴ (Eq 1.2). So, by comparing the spectrum at different detection 

angles, a composition profile can be constructed corresponding to different depths. 

1.5.2 Membrane Morphology  

 Membrane morphology is often characterized by pore structures (pore size and pore 

size distribution), porosity, roughness, thickness etc.. Membrane morphology is critical for 

membrane performances. For example, the pore size distribution (especially the largest pore) 

is extremely important for virus filtration membrane since any virus leakage should be 

prevented during the filtration. SEM and AFM are two common microscopy techniques for 

membrane morphology characterization. Compared to conventional optical microscopes, 

SEM and AFM have much higher resolution. The wavelength of a 50 keV electron beam is 

0.0055 nm, which will be able to resolve 0.0024 nm theoretically105. Modern AFM can reach 

atom level resolution with single molecule attached on the tip. There are many differences 

between SEM and AFM. First, SEM usually requires an ultra-high vacuum environment 

whereas AFM can work in atmospheric pressure. AFM in our lab can even scan surfaces 

placed in liquid. Secondly, for SEM, polymeric membranes often need a metal coating 
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(several nm) to increase the conductivity of the surface but AFM does not any pre-coating. 

Thirdly, SEM can easily scan much larger and rougher surfaces than AFM. For very rough or 

porous surfaces, the scanning rate becomes very slow for AFM if the scanning area is large at 

the same time. The maximum scan size of Bruker Dimension Icon AFM in our lab is 80 µm 

under the tapping mode. Furthermore, AFM results are naturally three-dimensional (3D) so 

that roughness can be calculated easily while SEM needs a reconstruction process to restore 

the 3D image.  

 The interactions of the electron beam with specimen can generate many signals, 

which includes backscattered electrons, secondary electrons, adsorbed electrons, transmitted 

electrons and characteristic X-rays. Secondary electron detectors are the standard detector for 

SEM. Cold field emission filament has been widely used as the electron gun for SEM, which 

is also named field emission SEM (FESEM). High electric field is used in FESEM so that 

electrons can be emitted at low temperature with a narrow 10 nm crossover size. Other 

electron guns like thermionic emission W-filament have much larger µm range beam size. A 

high vacuum is needed for the electron gun and sample chamber to avoid the foreign atom 

interference. A typical setup of SEM is shown in Figure 1.15. The resolution of SEM can be 

optimized by adjusting beam current, accelerating voltage and working distance. Usually, the 

resolution will be higher under conditions of low beam current, high accelerating voltage and 

short working distance (mm range). However, there is a trade-off between resolution and 

noise level. 
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Figure 1.12 A simplified scheme of SEM instrument (electron gun, lenses, sample, detector 

and sample chamber). 

 SEM has been used for membrane surface characterization for many purposes, 

including membrane surface fouling studies 162, 163, 164, observing pore structures after surface 

modifications 31, 66, 74, 165, observing membrane cross-section structures 164, 166, 167, etc.. 

Membrane sample preparation is very important to have SEM imagines reflecting the true 

surface morphology of membranes. For example, direct drying from high surface tension 

solvent like water may cause dramatic structure change. Freeze-drying and critical point 

drying are common methods used for drying membranes to keep the original structure. 

Critical point drying starts with a gradient solvent changing process from high surface tension 

solvent (water) to low surface tension solvent (ethanol). Then, the solvent is replaced by 

liquid CO2 and finally the membrane is dried by removal of liquid CO2 by rising temperature. 

The cross-section of a membrane is normally prepared by a freeze-fracturing method, where 

the membrane is immersed into liquid nitrogen and fractured to expose the cross-section. 

Another sample preparation required is metal coating because most polymeric membranes are 



44 

not conductive. Charging artifacts are always the concern when electrons accumulate on the 

membrane surface when the surface coating is not enough. 

 AFM has become increasingly popular for membrane surface characterization over 

the years. The principle of AFM relies on the force between the tip and sample (Figure 1.16 

(b)). The tip movement is tracked by a laser system. Based on the sample-tip separation 

distance, AFM can be run in the contact mode, tapping mode or non-contact mode. Most 

polymeric membranes are using tapping mode for characterization. The surface tracking with 

the AFM tip relies on a program of a feed-back loop that has a “setpoint” of tip-sample 

separation distance or force in contact mode, or the probe oscillation amplitude in the tapping 

mode. The computer will compare the current status of the tip with the “setpoint” and move 

the tip towards the “setpoint” by changing the shape of probe base which is made of voltage 

sensitive piezoelectric material. Thus, at each horizontal scanning direction (x and y), the 

movements of the tip in the vertical direction (z) are recorded by the laser system and plotted 

as height AFM image. The laser system can provide a resolution of less than 1 nm for the tip 

vertical movement, which is good enough for most membrane surface characterization.  
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Figure 1.13 Scheme of AFM instrument (a) and operation modes based on the force-distance 

curve (b). 

Compared with SEM, membrane surface can be characterized by AFM in its natural 

state without coating. AFM can even characterize a membrane immersed in the liquid which 

is close to its working state and without drying. The roughness of membrane is always 

obtained by AFM. Recently, AFM colloidal probe has been developed for studying the 

interaction between the membrane and other molecules such as foulants or other 

biomolecules 138, 149, 168, 169, 170. The AFM force-distance curve provides a powerful tool to 

study the affinity between a modified AFM tip and a modified surface. Furthermore, nano-

mechanical properties, such as modulus, deformation and adhesion, can also be measured by 

AFM with a calibrated tip. 

1.5.3 Wettability: Contact Angle Measurement 

The wettability of membrane surfaces can be measured by contact angles. Contact angles 

indicate the wettability of the surface for a certain type of testing liquid. For a flat and 

homogenous surface (Figure 1.17), contact angles can be correlated with surface tension by 

Young’s equation (Eq. 1.3). 
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𝛾𝑆𝐺, 𝛾𝑆𝐿 𝑎𝑛𝑑 𝛾𝐿𝐺 represent surface tension between solid(S), liquid (L) and gas (G), 

respectively.  

 

Figure 1.14 Scheme of the contact angle of an ideal surface (homogenous, flat and smooth). 

Generally, for a certain type of liquid, the lower the contact angle, the higher 

wettability of the liquid for the membrane surface. However, for a polymeric membrane, 

contact angle results are more complex to interpret. Many other factors will have impacts on 

the contact angle results such as roughness and surface heterogeneity due to the porous 

structure of the membrane. Wenzel’s model (Eq. 1.4) and Cassie’s model (Eq. 1.5) are two 

models that have applied to the membrane surfaces successfully.   

cosθ′ = σcosθ𝑌                   Eq. 1.4 

cosθ′′ = fcosθ𝑌 + f − 1     Eq. 1.5 

𝜎 is the correction factor for the contact length change caused by roughness. f is the fraction 

of area for solid surface. θY is Young’s contact angle for an idea surface. In this dissertation, 

contact angle is used for characterizing the hydrophobicity of a responsive HIC membrane.  

cosθ =
γSG − γSL

γLG
            Eq. 1.3 
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 Sessile drop method and captive bubble method are commonly used for membrane 

surface. For sessile drop method, a liquid drop is placed on the surface exposed in air. In the 

captive bubble method, a membrane is immersed in liquid and an air bubble is attached on 

the membrane surface. Both methods can give results of static or dynamic contact angle.  For 

a dynamic contact angle measurement, advancing and receding angles are obtained by 

expanding and retracting the drop size. When the interface of gas, liquid and solid breaks 

during the size expanding/retracting process monitored by the contact length change, the 

contact angle is recorded as advancing (expanding) and receding (retracting) angle. The 

difference between advancing and receding angle is called hysteresis which indicates the 

surface heterogeneity.  Baek and co-workers have shown that captive bubble method is more 

repeatable than sessile drop method for reverse osmosis (RO) membranes 171. Sessile drop 

method is more sensitive to membrane sample preparation and testing environment such as 

humidity. In addition, since captive bubble method is conducted in liquid, it eliminates the 

difference of results caused by the membrane drying process. Hydrophilic membranes like 

regenerated cellulose membrane are very sensitive to moisture. As a result, based on different 

drying processes, the results given by sessile drop method may be varied in different 

literatures for the same membrane 171.  

1.5.4 Surface Zeta Potential 

The surface charge of polymeric membranes can be described by surface zeta 

potentials. Ions will be attracted to membrane surface with the opposite charge to form a stern 

layer with strong interaction and a diffusion region for less attracted ions. This structure of 
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ion layers is called “electrical double layer”. The surface zeta potential can be measured by 

electrophoretic light scattering. Probing particles are added to the electrical field for 

movement. It is tracked by the frequency shift of a laser light because the frequency shift is 

proportional to the speed of the particles (Laser Doppler Method). The electroosmotic flow is 

generated due to the surface charge of surfaces. Figure 1.18 shows an asymmetric 

electroosmotic profile due to the charge difference between the sample surface and cell 

surface.  

 

Figure 1.15 Zeta potential measurement Device and principle for surface zeta measurement. 

The velocity of electroosmotic flow (W1) at upper (sample) surface is determined by Eq.1.6 

w1 = v0 +
∆v0

2
                        (Eq.1.6) 

v0 is the average of electroosmotic flow at upper and lower surfaces of the cell 

(ν0=(w1+w0)/2), ∆ν0 is the difference of electroosmotic flow between upper (w1) and lower 

surfaces (w0) of the cell (∆ν0=w1+w0). v0 and ∆ν0 are calculated from least square fitting from 

apparent particle mobility measured from different vertical position (z direction). Surface zeta 

potential is then calculated by Smolochowski equation (Eq.1.7): 

Z =
η

ε0εr
 w1                            (Eq.1.7) 

η is the solution viscosity. ε0 and εr are dielectric constants in the vacuum and solvent, 

respectively.  
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 Membrane zeta potential is an important property to provide information on the 

electrostatic interaction between the outside particles and surface. The zeta potential change 

of membrane has been studied frequently since it is closely correlated to the membrane 

performance, such as flux 172, rejection of charged species 173, 174, 175 and tendency of fouling 

176, 177, 178, 179, 180, 181 

1.6 Future Outlooks 

1.6.1 Downstream Process Development 

The advancement of downstream processing is mainly driven by the manufacturing 

cost and timeline. The new disruptive bioprocesses are seeking for more efficient 

manufacturing of therapeutic proteins while maintaining the high quality and consistency of 

products. However, downstream processing is highly regulated and changes are likely to be 

slow due to the high cost of validation. It is important to note that current resin-based 

purification platform is quite mature for mAb purifications. New advances for mAb 

purifications lie mainly in improving the efficiency and understanding of the current 

platform. Continuous bioprocessing and single-use technology are the two most important 

disruptive technologies under development. High-throughput technology based on the design 

of experiment (DoE) has greatly shortened the process development timeline. New advances 

are focusing on scale down instruments such as Robocolumn® for resin high-throughput 

screening. It further reduces the cost of process development by minimizing the usage of 

resin volume and speeding up the process optimization. However, the ability of those mini-

columns to predict a large-scale purification is still under investigation case by case. Besides 
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efficiency improvement, other fundamental studies are focusing on improving the 

understanding of protein/ligand interaction with single molecule microscopy, optimization of 

chromatography performance by mechanistic modeling and fouling studies on resins. In 

particular, fouling mechanism of protein A resin for repeated usage is still being investigated.  

There is also a growing interest in developing new purification platform for non-mAb 

products including vaccines, drug conjugates, gene therapy vectors and antibody fragments. 

CaptoTM L is resin developed by GE Healthcare for purifications of a wide range of antibody 

fragments, such as Fabs, single-chain variable fragments (scFv), domain antibodies (Dabs). 

Protein L is used as the ligand since it has an affinity to the kappa light chain of the antibody. 

Recently, polypeptides have received a lot of attention as affinity ligands for non-mAb 

product purifications. However, more understandings are needed for the rational design and 

screening of the polypeptide-based affinity ligands to achieve high affinity and to find a 

suitable condition to elute. Avitide, Inc. is the first company manufacturing polypeptide-

based affinity resins for non-mAb products purifications. However, the elution and 

regeneration of polypeptide-based affinity resins remain challenging. Another purification 

challenge is the separation of bispecific antibody since protein A chromatography has limited 

resolving power between the original unreacted antibodies and bispecific antibodies. 

Besides ion-exchange and hydrophobic interaction chromatography, multi-modal 

chromatography is currently under intensive investigation due to its superior properties 

including salt-tolerance, high capacity, wide operational window and unique selectivity. 

However, it was studied mainly with the flow-through mode.  The optimal conditions for 
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binding and elution rely on trial and error as well as DoE. A better understanding of MMC is 

necessary in order to design better and more economically viable ligands. Currently applying 

multi-modal chromatography for virus purification is also under intense investigation. 

1.6.2 Membrane Chromatography 

Membrane-based chromatography for protein purifications has tremendous potential 

for improving the efficiency of downstream processing and reducing the cost in terms of 

processing time and buffer consumption. However, it is important to note that most flow-

through polishing steps still use packed bed columns, even though membrane adsorbers offer 

a clear advantage. In recent years, the major breakthrough of membrane chromatography 

comes from its dramatically increased binding capacity which was a limiting factor before. 

Compared to traditional membrane adsorbers, the next generation base matrix of membranes 

renders a higher specific area, higher ligand density as well as optimized 3D binding 

environment. Hydrogel used by Natrix Separations company and nanofibers utilized by 

Puridify company are the two most successful base matrixes for high-capacity membrane 

adsorbers. The capacity of Natrix-HD-Q reaches 270 mg/mL, which surpasses most Q resins 

and traditional Q membrane adsorbers. The emergence of high capacity multi-modal 

membranes provides new opportunities for membrane adsorbers that can compete with 

protein A chromatography in a bind-and-elute mode. In addition, new protein A membranes 

developed by Natrix Separation show promising results for HCP removal. Compared to 

protein A resin, protein A membrane demonstrates higher productivity, comparable but more 

consistent yields for different mAb products. 
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Using membranes for continuous bioprocessing is also attractive because of its high-

throughput and ease of scaling up. Electrospun nanofiber membranes have been developed 

for a continuous simulated moving bed (SMB) process. The high specific area of nanofibers 

(10 m2/g) compared to traditional membrane adsorbers (2 m2/g) increases the capacity while 

maintains the same high-throughput. Other areas of interest for the new adsorptive 

membrane-based process are also currently under investigation including employing 

adsorptive membranes during the clarification step before protein A chromatography, virus 

removal with AEX membrane adsorbers and membrane based large bio-molecule (vaccine, 

drug conjugates etc.) separations. Using membranes to separate non-mAb products remains 

attractive with improved binding capacity and productivity. 

1.6.3 Ligand Design for Downstream Process 

Ligand design is critical to downstream processing because it has a direct impact on 

the performances of various chromatography steps. For affinity ligands used in mAb capture 

step, new ligands are under development. However, they are difficult to compete with protein 

A in terms of selectivity (binding directly from harvest cell culture fluid), capacity (>100 

mg/mL) and effective elution/regeneration (repeated usage at least 80 times without losing 

capacity). Therefore, new advances for affinity ligands are mainly focusing on new 

opportunities with non-mAb products such as vaccines, drug conjugates and antibody 

fragments. Polypeptides are one of promising affinity ligands for providing a platform to 

separate non-mAb products. Theoretically, it can separate any products with an appropriate 

arrangement of amino acids. However, because the affinity interaction is rather complex, the 
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rational design of polypeptides is extremely difficult as the possible amino acid sequences 

increase dramatically when the number of amino acid increases. Another challenge associated 

with polypeptide ligands is the elution as well as their regeneration. It is difficult to find a 

ligand that has a strong affinity yet facile elution/regeneration at the same time.  

Currently, the pharmaceutical industry is in the process of adopting multi-modal 

chromatography. Relying on the high-throughput technology, developing multi-modal 

chromatography has been greatly shortened even though the mechanism is not yet fully 

understood. Besides salt-tolerance and wide operational window, more studies are now 

exploring its unique selectivity for protein separations. Again, a better understanding of the 

binding mechanism will be critical to further optimize the ligands. 

Synthetic polymeric ligands are becoming attractive due to its low manufacturing 

cost, high stability, and the possibility for introducing new functionalities such as salt or pH 

responsiveness. “Grafting from” method based on free radical polymerization is the common 

technique used for functionalizing membranes with synthetic polymeric ligands. Controlled 

radical polymerization represents the future with a much better control over the grafting chain 

density and polymer length. However, it remains challenge to quantify the chain length and 

chain density of the polymeric ligands grafted. Therefore, techniques to cleave those grafted 

polymeric ligands are in high demands. . In addition, it is also attractive to modify the chain-

end functionality through click chemistry which is highly efficient and specific 182. The click 

reaction between azide and alkyne has been widely used as it has a high yield (>95%) and 

moderate temperature (25oC-70oC) 183, 184. Combination of ATRP or reversible addition 
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fragmentation techniques (RAFT) with this type of click reactions has also been reported for 

high-yield grafting of polymers via “Grafting to” method 185, 186, 187. Another important future 

direction for synthetic ligands is to use copolymers instead of homopolymers for better 

performance. Copolymer ligands have been adopted in commercial cation exchanger CaptoTM 

S ImpAct involving random copolymerization of pyrrolidone and monomers containing a 

sulfonate group. Our study also shows that for an affinity ligand, the spacer monomer plays 

an important role in achieving high capacity 31. Recently, we are looking at salt-responsive 

HIC copolymer ligands to improve binding capacity and functionality. Overall, a better 

understanding of the effects of polymer architecture on binding and eluting mechanisms is 

needed in order to improve and optimize the performances of these ligands.  

1.6.4 In Silico Ligand Design and Elucidation of Binding Mechanism  

The significant strides made in both software and hardware technologies enable the 

molecular simulations to play an increasingly important role in designing novel ligands, 

optimizing ligand performance and elucidating the mechanisms for binding interactions. In 

particular, all atomistic molecular dynamics (MD) simulations can be employed to 

understand the structure, conformation and hydration properties of the ligands as well as their 

interactions with proteins or products of interest 31, 188, 189, 190, 191, 192. Earlier 188, 189, 190 classical 

MD simulations have been conducted to investigate the hydrophobic-to-hydrophilic transition 

of thermal and salt responsive ligands PNIPAM and its copolymers in various salt solutions 

and the effects of salt ions on the hydration of the polymers and LCST transition dynamics. 

MD simulations 31 have also been used to elucidate the binding mechanisms of arginine 
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selective affinity ligands with arginine-rich proteins such as lysozyme. Currently significant 

efforts are also being dedicated to design and optimize polypeptide ligands for protein 

binding and purifications. Needless to say, modeling and simulations will play a more 

important role in membrane chromatography development.    
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Chapter 2 Membrane Surface Engineering for Protein Separations: Experiments and 

Simulations 

* This chapter is adapted from a published paper by Liu, Z.; Du, H.; Wickramasinghe, S. R.; 

Qian, X. Membrane Surface Engineering for Protein Separations: Experiments and 

Simulations. Langmuir 2014, 30 (35), 10651-10660. 
 

Abstract 

 

A bisphosphonate derived ligand was successfully synthesized and grafted from the 

surface of regenerated cellulose membrane using atom transfer radical polymerization 

(ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) 

residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide 

(HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further 

improve specific protein adsorption. The polymerization of bisphosphonate derivatives was 

successful for the first time using ATRP. Static and dynamic binding capacities were 

determined for binding and elution of Arg rich lysozyme. The interaction mechanism 

between the copolymer ligand and lysozyme was elucidated using classical molecular 

dynamics (MD) simulations.  

2.1 Introduction 

Biopharmaceuticals, represent an increasingly large fraction of the overall pharmaceutical 

market. Since downstream purification costs can account for up to 80% of the manufacturing 

cost1 there is a tremendous need for new technologies that reduce the overall manufacturing 

cost. In addition, as more efficient upstream process steps lead to higher cell titers, higher 

product protein concentrations are being observed during the purification steps. This is 

leading to new challenges during purification. Membrane chromatography or membrane 

adsorption, where a macroporous membrane is used as a support material and the ligands are 

bound to the pore surface, offers significant advantages over traditional packed bed 
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chromatography2. Membrane chromatography can be run at much lower pressure drops and 

are easy to scale up. Importantly, since the feed is pumped through the membrane pores, 

transport of the solute to the binding sites occurs mainly by fast convective flow. 

Consequently, the dynamic capacity is independent of flow rate over a much larger range of 

flow rates compared to packed beds2, 3. Nevertheless the major perceived disadvantage is that 

the capacity is likely lower than for porous resin particles. Increasing the capacity of 

membrane adsorbers is critical if membrane chromatography is to be widely used 

commercially. 

Specific protein-ligand recognition is critical for developing high affinity chromatography 

for protein purifications. It provides an effective strategy to separate different proteins that 

have similar size and charge but different amino acid residues on surface. Applying this 

molecular recognition strategy to surface modification of membranes is promising to generate 

high performance membrane chromatography for protein purifications. Bisphosphonate and 

its derivative have been studied4, 5 recently as molecular tweezers for specific protein 

separations due to their high affinity for lysine and arginine. One of these synthetic tweezers 

exhibiting high affinity for lysine possesses two anionic phosphonate arms and a rigid non-

polar cavity. The tweezer with m-xylene bisphosphonate recognition motif as shown in 

Figure 2.1(a) was incorporated in the first synthetic receptor for Arg-Gly-Asp (RGD) 

sequence6. However, the binding affinity between the molecular tweezers and these amino 

acids become rather weak in aqueous solution for all the cases investigated. Thus, significant 

efforts5, 7, 8, 9, 10, 11 have been devoted to turning a single relatively weak binding site into 

multivalent binding sites by forming bisphosphonate dendrimers or linear copolymers. The 

dendrimers incorporate the m-xylene bisphosphonate functional group at the branch ends7. 

Binding for Lys and Arg residues on protein surface in aqueous solution is enhanced 
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significantly due to multivalent interactions leading to an increase in binding constant Ka 

from around 10 M-1 to 106 M-1.  

            a  b  c 
 

Figure 2.1 Monomers in the various synthesized copolymer ligands for specific protein 

separations: 5-(methacryloylamino)-m-xylylene bisphosphonic acid tetramethylester (Bis-P, 

a), 5-(methacryloylamino)-m-xylylene monophosphonic acid tetramethylester (Mono-P, b) 

and N-(2-hydroxypropyl) methacrylamide (HPMA, c) 

 

Various linear copolymers incorporating m-xylene bisphosphonate recognition motif 

were synthesized via free radical polymerization under heat8 or UV-initiated radical 

polymerization11 reactions that are difficult to control. Copolymers of bisphosphonate motif 

(neutral or anionic) and another alcohol monomer (methacryloylamino-2-hydroxypropane) 

has also been grafted on poly (ethylene terephthalate) track-etched membrane surfaces using 

UV-initiated radical polymerization9. The neutral copolymer modified membrane has 

selectivity for lysozyme but that modified with anionic copolymer does not. Moreover, 

binding constants for membranes grafted with the neutral bisphosphonate ligands are about 

15 times higher for lysozyme than for cytochrome C. These results confirm that the 

copolymers incorporated with neutral bisphosphonate functional group have a higher binding 

capacity as well as a better selectivity for Arg-rich proteins than those incorporated with 

derivatives of anionic bisphosphonate. Membranes grafted with anionic copolymers exhibit 

similar binding characteristics to conventional ion exchange resins.  

So far none of the radical polymerization processes was conducted in a controllable 

manner, which is important for grafting a uniform layer of bisphosphonate polymers at the 

desirable chain length and chain density on membrane surfaces for optimal protein binding. 
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Recently, Tominey and co-workers10 used reversible addition-fragmentation chain transfer 

(RAFT) polymerization to synthesize copolymers of bisphosphonate in aqueous solution. The 

copolymer of anionic bisphosphonate and N-isopropylacrylamide (PNIPAM) is capable of 

precipitating positively charged histidine (His) rich proteins10. Previous work on 

polymerization from methacrylamide and its derivatives are almost all initiated by UV 12, 13, 

14, 15 or more recently via RAFT polymerization16, 17, 18, 19, 20. Only a few more recent studies21, 

22, 23, 24 have reported successful synthesis of polymers from methacrylamide and its 

derivatives using atom-transfer radical polymerization (ATRP). As far as we are aware, our 

work is the first to copolymerize methacrylamide derivative involving the crucial binding site 

m-xylene bisphosphonate (Bis-P) via ATRP. Slow growth of polymer chain via ATRP is 

common for this type of monomers because of their low reactivity as well as their tendency to 

form complexes with copper catalyst used for ATRP reactions25, 26.  

Since the binding capacity for protein is likely to depend strongly on the chain length 

and chain density of the polymeric layers grafted, the controllable ATRP polymerization 

reaction clearly has an advantage over other polymerization reactions for developing high 

affinity, high capacity polymeric ligands. Unlike UV-initiated polymerization, ATRP 

synthesized polymers generally have low poly-dispersity. Further ATRP allows good control 

of the chain length and chain density of grafted polymer layer. Therefore, optimizing ATRP 

reaction conditions for Bis-P monomer is crucial to have a well-defined polymeric ligand 

layer on membrane surface. Additionally, a well-characterized polymer structure can be 

crucial in elucidating the binding mechanism between protein and ligand.  

Membrane chromatography formed by grafting protein affinity ligands on 

microporous membrane substrates demonstrates several advantages over conventional 

packed-bed column. The large porous structure enables separation to conduct at much lower 

pressure drop. Additionally, unlike resins, protein separation is not limited by diffusion when 
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pumping the feed solution through the membrane pores. The open porous nature of 

membrane chromatography makes it easier for proteins to reach the polymeric ligands grafted 

on membrane surfaces. As a result, the dynamic binding capacity of membrane 

chromatography becomes independent of flow rate over a large range of operating conditions 

leading to much higher productivity than the corresponding resin column27, 28. 

2.2 Materials  

2-Bromo-2-methylpropionyl bromide (BIB, 98%), 4-(dimethylamino) pyridine (≥99%), 

copper (I) chloride (≥99.995%), copper (II) chloride (≥99.995%) and N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA, 99%) were purchased from Sigma Aldrich (St. 

Louis, MO). 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 99%) and 

triethylamine (TEA, ≥99%) were obtained from Alfa Aesar (Ward Hill, MA). Chloroform-d 

(99.9 atom % D) was obtained from Acros Organics (Pittsburgh, PA). Methanol (99.8%) and 

acetonitrile (99.8%) were obtained from EMD Chemicals (Billerica, MA). Boric anhydride 

was purchased from Avantor Performance Materials (Center Valley, PA). Anhydrous 

acetonitrile was obtained by distilling acetonitrile with boric anhydride. N-(2-hydroxypropyl) 

methacrylamide (HPMA) was purchased from Polysciences, Inc (Warrington, PA). Sodium 

hydroxide (98%) was obtained from J. T. Baker (Center Valley, PA). Sodium chloride (99%) 

was bought from Macron™ Chemicals (Center Valley, PA). Lysozyme, from egg white was 

purchased from OmniPur® (Gibbstown, NJ). Regenerated cellulose membranes (0.45μm 

pore size, RC55, 47mm diameter) were purchased from Whatman Ltd (Pittsburgh, PA). 5-

(Methacryloylamino)-m-xylylene bisphosphonic acid tetrame-thylester were synthesized 

following the procedure reported in literature before9.  
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2.3 Experimental 

2.3.1 Synthesis of 5-(methacryloylamino)-m-xylylenebisphosphonic acid 

tetramethylester 

Briefly, synthesis started from the bromination reaction of 5-Nitro-m-xylene. After 

the bromides were added on the methyl groups, trimethylphosphite was used for Arbuzov 

reaction to introduce the phosphonate groups. Then, the nitro-group was reduced to the 

amine-group by hydrogenation reaction. Finally, methacryloyl chloride was conjugated to 

form a methylacrylamide type monomer. The details on its synthesis and characterization are 

included in the appendix 1. 

2.3.2 ATRP Initiator Immobilization 

All new regenerated cellulose (RC) membranes (0.45 μm in pore diameter) were 

washed with methanol overnight before use. Thereafter methanol was removed in vacuum 

oven at 35°C overnight. RC membranes were incubated in anhydrous acetonitrile solution (25 

mL) containing 2-bromoisobutyryl bromide (2-BIB, 40 mM), triethylamine (TEA, 5 mM) 

and 4-dimethylaminopyridine (DMAP, 0.25 mM) for 3 h. After the reaction, the membranes 

were taken out and rinsed with acetonitrile several times and then washed with DI water 

overnight. All the membranes were then dried in vacuum oven at 35°C overnight.  

2.3.3 Polymerization  

The polymerization solution comprised Bis-P monomer or monomer mixture; 

catalyst, copper (I) chloride; copper (II) chloride; ligand N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA); and solvent, methanol/water mixture (4:1,v/v). 

The ratio among monomer: CuCl: CuCl2: PMDETA is 50:1:0.1:1.2. Prior to polymerization 

reaction, flasks were de-oxygenated by vacuum and argon back-filling process three times. 

After the predetermined time of ATRP, membranes were first washed with methanol and 
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water mixture (1:1, v/v) and then DI water. Finally all membranes were dried in vacuum oven 

and weight change before and after ATRP were recorded. The degree of grafting (DG, 

g/cm2) was calculated according to the following equation:  

  (1) 

where W0 is the mass of the membrane after initiator immobilization and W1 is the mass of 

the membrane after ATRP and vacuum drying. Spec represents the specific area of the 

membrane (6.3 m2/g was used in this study based on the recommendation by manufacturer).  

2.3.4 Protein Binding Test 

Static Binding All membranes were first equilibrated with buffer A (25 mM HEPES buffer, 

pH=7.1) for 1 h. Then various concentrations of lysozyme solutions were prepared using 

buffer A. Then the equilibrated membranes were incubated with lysozyme solution for 20 h at 

room temperature with shaking. At the same time, 5 different concentrations of lysozyme 

solutions in buffer A without membranes were prepared in order to generate the standard 

curve. After equilibration, the concentrations of protein solutions were determined with UV 

absorbance at 280 nm. Membranes were regenerated by 2 M sodium chloride overnight. The 

binding capacity of each membrane was determined based on the standard curve generated. 

The binding capacity q in mg/mL for each protein concentration was calculated according to 

the following equation:  

𝒒 =
amount of   protein bound to  membrane (mg)

 membrane volume (mL)
  (2) 
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Dynamic Binding Membranes were soaked in buffer A for 1 h before use. For loading, 

solution containing 0.1 mg /mL lysozyme in buffer A (25 mM HEPES buffer, pH=7.1) was 

used. One membrane (bed volume 0.02 mL) was loaded into a stainless steel flow cell 

(Mustang Coin ® module, Pall Corporation) with two flow distributers to ensure a uniform 

flow across the whole membrane. All runs were conducted using ÄKTA FPLC from GE 

Healthcare Bio-Sciences Corp. (Piscataway, NJ, USA). A procedure described below was 

developed using Unicorn software v. 5.3129 to automate the lysozyme binding and elution 

experiments. First, each membrane was wetted with buffer B (25mM HEPES buffer with 1 M 

NaCl, pH=7.1) in the reverse flow configuration over 5 minutes by increasing the flow rate 

from 0.2 mL/min to 1.0 mL/min in 0.2 mL/min increment. The membrane was then 

equilibrated in the forward flow configuration in the buffer A at 1 mL/min for 10 minutes. 

Afterwards, 0.1 mg/mL lysozyme solution was loaded onto the membrane at a flow rate of 2 

mL/min for 5 minutes. Unbound protein was then washed from the membrane using the feed 

buffer for 10 minutes at 1 mL/min, followed by a step change to run buffer B through the 

membrane at 2 mL/min. The run was complete when the UV absorbance at 280 nm became 

constant. Washing fraction (includes loading fraction) and elution fraction were collected and 

their respective volumes were determined. Protein concentrations in the sample solution, 

washing and elution fractions were determined with UV absorbance at 280 nm. Lysozyme 

dynamic binding capacity and recovery were determined following the same procedure as 

before29. The amount of protein bound was calculated by subtracting the washed out protein 

from the amount loaded. Recovery was calculated by dividing the amount of protein eluted 

by the total amount of protein bound.   
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2.3.5 Surface Analysis   

Scanning Electron Microscopy (SEM) SEM was used to characterize the surface 

morphology of unmodified membrane and Bis-P/Mono-P modified membranes. The images 

were obtained in the FEI Nova Nanolab 200 Duo-Beam Workstation. Samples were coated 

with gold and scanned using a 15 kV electron beam.  

X-ray Photoelectron Spectroscopy (XPS)  Unmodified, initiator immobilized, Bis-P and 

Bis-P-co-HPMA modified membranes with varying ATRP times were analyzed using XPS 

(phi versa probe XPS). The spectra with broad energy range were obtained using a pass 

energy of 112 eV at 1 eV interval. High-resolution scans were conducted using a pass energy 

of 23.5 eV at 0.2 eV interval.  

 

Classical Molecular Dynamics (MD) Simulations Classical molecular dynamics (MD) 

simulation has become a very useful tool for obtaining molecular level insights in many 

chemical and biochemical processes. We have successfully employed MD simulations to 

investigate thermo-responsive polymers in solutions30, 31, 32 as well as separation of sugar 

molecules using nanofiltration membranes33. In order to elucidate the binding mechanism 

between the copolymer ligand Bis-co-HPMA and lysozyme, all-atom molecular dynamics 

(MD) simulations were conducted in aqueous solution containing one lysozyme and one 

copolymer chain. The 8 positive charges on lysozyme surface were balanced with 8 Cl- 

anions in the unit cell to maintain charge neutrality. The copolymer chain contains 14 Bis-P 

and 56 HPMA residues with each Bis-P residue separated by 4 HPMA residues. The protein 

and the copolymer were solvated by 35000 water molecules. The simulations were conducted 

at 300 K for a total of 940 nanoseconds (ns). The highly efficient and well parallelized 

NAMD code34 was used for the simulations. The atomic charges of the Bis-P and HPMA 
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residues were calculated at the HF/6-31G* level using Gaussian0935 according to the RESP 

protocol36. The structures of Bis-P and HPMA linear trimers were optimized in gas phase at 

the B3LYP/6-31G* level for the subsequent charge calculations. The atomic charges of the 

end residues of the trimmers were used for the corresponding end residues in the copolymer. 

The atomic charges of the mid-residues of the trimers were used for the corresponding mid-

residues in the copolymer. The general AMBER force field (GAFF)37 was used for the 

copolymer and AMBER force field ff1038 was used for the lysozyme protein. The initial 

copolymer structures containing Bis-P and HPMA residues were constructed by LEaP 

module in AMBERTOOLS39. This was followed by MD simulations in vacuum for about 

100 picosecond (ps) at 300 K. The copolymer conformation thus obtained was used as the 

starting structure for the subsequent MD simulations in aqueous solution. The atomic 

structure of lysozyme was obtained from the X-ray crystallography HEWL (1DPX) data 

available from RCSB PDB40. The initial separation distance between the mass centers of the 

polymer chain and lysozyme was about 52 Å. The TIP3P41 model was used for the water 

molecules. The force field parameters for Cl- ion compatible with TIP3P water model were 

obtained from Salt Ion version 0842 available in the AMBERTOOLS package39. The 

simulations were conducted under constant temperature and constant pressure (NPT) at 1 atm 

using Langevin-Hoover scheme43, 44. Periodic boundary condition (PBC) was applied. The 

initial unit cell has a dimension of 105 x 105 x 105 Å3. A 12 Å cut off was used for the short-

range electrostatic interaction as well as for the van der Waals interaction. Long-range 

electrostatic interaction was determined using Particle Mesh Ewald (PME) method45, 46. A 2 

femtosecond (fs) time step was used. The rigid bonds of water were constrained using the 

SETTLE algorithm47. The electrostatic and van der Waals interaction energies between the 

copolymer and lysozyme were determined for the systems as a function of simulation time. 

The number of hydrogen bonds formed between the protein and polymer was also 
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determined. A hydrogen bond is formed if the distance between the two heavy atoms A and B 

is less than 3.5 Å and the angle A—H···B is greater than 150o. The pair correlation functions 

between functional groups on the copolymer and surface residues on protein were calculated 

during various simulation periods. 

2.4 Results and Discussion 

2.4.1 Polymer Syntheses and Characterization 

 
Figure 2.2 Degree of grafting (DG) as a function of polymerization time for both poly 

(HPMA) and poly (Bis-P-co-HPMA) grown on regenerated cellulose membranes. 

Figure 2.2 shows the DG value as a function of polymerization time for both poly 

(HPMA) and poly (Bis-P-co-HPMA) grafted on regenerated cellulose membrane substrates. 

Polymerization of HPMA is rather fast and DG value increases almost linearly with ATRP 

time. On the other hand, copolymerization of HPMA and Bis-P appears to be rather complex. 

During the first hour of ATRP reaction, the copolymer DG value increases at the same rate as 

that of homopolymer HPMA.  However, during the subsequent ATRP times, the DG value 

increases only very slightly. This is probably due to the rather slow incorporation of Bis-P 

into the copolymer. Also, regenerated cellulose membranes are very sensitive to the moisture 

level in air due to its rather hydrophilic nature. There is always some uncertainty in weight 
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measurement when the DG value is low as is in this case even though the same procedure 

was used for all the measurements. It can be seen that poly (HPMA) growth is much faster 

than poly (Bis-P-co-HPMA). During the first hour, the DG values are almost the same for 

both polymers indicating that the copolymer is probably dominated by HPMA. The rather 

slow polymerization of Bis-P is due probably to its bulky structure and the stability of 

conjugated-π system. For the subsequent ATRP times, poly (HPMA) continues to grow at the 

same rate as before whereas the growth of poly (Bis-P-co-HPMA) slows down significantly. 

This is probably due to the increased incorporation of the Bis-P monomers in the copolymer 

as the concentration of HPMA decreases. This is confirmed by XPS data as shown in Figure 

2.3 and is reflected in its binding capacity that will be discussed in more detail later.  Since 

the DG values are in the ug/cm2 range, the thicknesses of the grafted polymer layer are likely 

in the nanometer scale and were not determined. The degree of polymerization (DP) values 

were not estimated either. We will characterize the thickness of the grafted polymer layer and 

determine its DP value in our future investigations.     

 

The XPS data are shown in Figure 2.3 for the unmodified and initiator immobilized 

membranes as well as for membranes grafted with poly (Bis-P) homo-polymer, poly (Bis-P-

co-HPMA) copolymer after 1, 3 and 5 h of ATRP reactions. It can be seen that after initiator 

immobilization, small bromide Br3p, Br3d peaks appear at binding energies at around 70 and 

175 eV respectively. The existence of these two peaks indicates that ATRP initiators are 

successfully immobilized on membrane surfaces.  
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Figure 2.3 XPS spectra for the unmodified, initiator immobilized, Bis-P and Bis-P-co-HPMA 

modified membranes. 

After ATRP reaction, new peaks representing N1s (~ 400 eV), P2s (~180 eV) and P2p 

(~125 eV) appear. The N1s peak comes from the amide bond in Bis-P or in HPMA whereas 

both the P2s and P2p peaks come from the phosphonate ester group in Bis-P only. 

Additionally, for the Bis-P-co-HPMA modified membranes, the N1s, P2s and P2p peak 

intensities increase with ATRP reaction time. In particular, the P2s and P2p peaks in the 

copolymer are barely visible for the 1 h ATRP time in agreement with our hypothesis that the 

initial growth of the copolymer is dominated by polymerization of HPMA. After 3 h of 

ATRP, these two peaks become much more prominent indicating increased incorporation of 

Bis-P in the copolymer. Their peak intensities increase significantly from 3 to 5 h ATRP time 

suggesting more copolymerization of Bis-P. These XPS results indicate that the copolymers 

of Bis-P and HPMA are successfully grafted on the membrane surface and that their growth 

and incorporation vary with ATRP time. The SEM images of unmodified, Mono-P-co-
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HPMA and Bis-P-co-HPMA modified membranes are shown in Figure 2.4. Membrane 

modification was conducted using ATRP for 3 h and 5 h under the same conditions as before. 

From Figure 2.4, it can be seen that membrane pore sizes remain more or less the same 

before and after surface modification. This is in agreement with the low DGs after surface 

modification shown in Figure 2.2.  

 

 
 

Figure 2.4 SEM images for unmodified, Mono-P-co-HPMA modified after ATRP 5 h, and 

Bis-P-co-HPMA modified after ATRP 3h and 5 h membranes. 

2.4.2 Static Binding Results    

Based on the Langmuir isotherm 

𝑞 = 𝑞𝑚𝑎𝑥
𝐾𝑐

1+𝐾𝑐
    (3) 

where q and qmax represent the binding capacity and maximum binding capacity respectively, 

K is the equilibrium constant and c is the protein concentration, Figure 2.5a plots the static 

binding capacity q in mg/mL membrane volume as a function of lysozyme concentration Ceq 

in mg/mL solution for HPMA modified as well as 1, 3 and 5 h ATRP modified Bis-P-co-
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HPMA membranes. Figure 2.5b plots c/q vs. c based on the corresponding Langmuir linear 

regression as shown in equation (4) 

𝑐

𝑞
=

𝑐

𝑞𝑚𝑎𝑥
+

1

𝐾𝑞𝑚𝑎𝑥
  (4) 

to obtain the maximum binding capacities qmax and binding constants K for the three Bis-P-

co-HPMA modified membranes. All data points are the average of two runs with ± 0.3 

mg/mL for the error bar. By comparison, at 0.1mg/mL lysozyme concentration, the 

unmodified membrane has a binding capacity of 3.8± 0.4 mg/mL. 

It can be seen from Figure 2.5a that poly (HPMA) modified membrane, which 

represents the control here, has very low binding affinity for lysozyme compared to those of 

copolymer ligand modified membranes. Langmuir model fits well for lysozyme adsorption 

on Bis-P-co-HPMA modified membranes. Table 2.1 shows the maximum binding capacities, 

the binding equilibrium constants and associated free energies for lysozyme binding to 

copolymer modified membrane substrates from Langmuir linear regression shown in Figure 

2.5b.  

 

Figure 2.5 Langmuir isotherm curves (a) for ATRP 1, 3 and 5 h Bis-P-co-HPMA modified 

membranes as well as HPMA modified membrane for comparison. Langmuir linear 

regression (b) for ATRP 1, 3 and 5 h Bis-P-co-HPMA modified membranes. 

The maximum binding capacities obtained are about 9.9, 10.6 and 12.4 mg/mL for 
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ATRP 1, 3 and 5 h Bis-P-co-HPMA modified membranes respectively indicating longer 

polymer chains possessing higher capacity for lysozyme binding. This also agrees with our 

XPS data with higher P2s and P2p peaks observed at longer ATRP times indicating more Bis-P 

residues being incorporated. As a result, the longer copolymer chains synthesized have more 

binding sites for lysozyme thus higher capacity. However, it seems that the difference in 

binding capacities between ATRP 1 and 3 h is smaller than that between ATRP 3 and 5 h. 

This is in agreement with the DG values and XPS peak intensities at various ATRP times. As 

mentioned earlier, this is probably due to that fact that the ratio of Bis-P over HPMA 

monomers increases as a function of ATRP time. The initial polymer growth is likely to be 

dominated by the polymerization of HPMA as Bis-P is more difficult to polymerize11. As 

time goes on, the reduced HPMA concentration leads to more availability of Bis-P for 

polymerization resulting in more incorporation of Bis-P in the polymer towards longer 

polymerization time.  

Table 2.1 The fitting parameters obtained based on Langmuir linear regression for lysozyme 

binding to three different Bis-P-co-HPMA modified membranes. 

 
ATRP-1 h ATRP-3 h ATRP-5 h 

Binding Capacity 

qmax (mg/mL) 
9.9 10.6 12.4 

Binding Constant 

K ( M-1) 
1.3×106 0.8×106 1.3×106 

Binding Free Energy ΔG 

(kJ/mol) 
-35 -34 -35 

 

The binding constants for ATRP 1 h, 3 h and 5 h modified samples are in the order of 

~106 (M-1), similar to previous results9 using UV initiated free radical polymerization 

reaction. This indicates that the binding mechanism for lysozyme interaction with Bis-P-co-

HPMA ligands immobilized on membrane substrate is similar irrespective whether the 

polymer is synthesized via ATRP or UV-initiated polymerization. The binding capacities 
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obtained are in the range between 10-12 mg/mL for the three ATRP times investigated. The 

longer the ATRP time is, the higher the capacity becomes. This seems to indicate that the 

longer polymer ligands which incorporate more Bis-P residues have more binding sites for 

the protein. The binding capacities obtained here are much higher than the ones for the 

copolymer ligands grafted on PET membranes using UV polymerization reaction, which are 

all around 2 mg/mL. This 5-fold increase in binding capacity is significant and can be due to 

several possible reasons. Firstly, the regenerated cellulose MF membranes have a higher 

porosity than the PET membranes. Therefore more surface areas are available for grafting 

copolymer ligands leading to more binding sites for lysozyme protein. However, the 

estimated DG values (~2 ug/cm2) for PET membranes are larger than the corresponding DG 

values (~0.5 ug/cm2) obtained here for poly (Bis-P-co-HPMA) modified membranes. More 

recent work by Schwark and coworkers11, 48  for various Bis-P copolymers grafted on 

regenerated cellulose membranes using UV initiated polymerization indicate that DG values 

are at around 0.2 ug/cm2 only. Their maximum binding capacity is roughly about 2 mg/mL 

similar to their PET membranes. Therefore the significant increase in binding capacity using 

ATRP polymerization is probably not due to the more available surface area in the cellulose 

membranes. This points to another more probable reason that ATRP is more efficient in 

incorporating Bis-P leading to more binding sites available on each copolymer ligand. This 

becomes more evident when comparing the DG values and binding capacities for ATRP and 

UV initiated polymerization reactions on regenerated cellulose membrane substrate. For 

ATRP, DG value of around 0.6 μg/cm2 can be reached at 5 h ATRP time whereas it can only 

reach 0.2 μg/cm2 for poly (Bis-P-co-HPMA) with UV polymerization. Moreover, the 

maximum lysozyme binding capacity reaches 10 mg/mL with ATRP whereas only 2 mg/mL 

was obtained for UV. The superior binding capacity obtained using ATRP is not unexpected 

since ATRP reaction is much slower than UV that allows free radicals requiring higher 
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barriers to create to be incorporated. On the other hand, the fast UV polymerization will favor 

polymerization of lower barrier free radicals. Evidently, ATRP polymerization is a preferred 

scheme to achieve higher binding capacity for grafting poly (Bis-P-co-HPMA) on surfaces 

with potential application as membrane chromatography.  

In addition, we are able to synthesize poly (Bis-P), poly (Mono-P) homopolymers as 

well as poly (Mono-P-co-HPMA) using ATRP at the same condition for synthesizing poly 

(Bis-P-co-HPMA). However, the binding capacity for poly (Bis-P) is extremely low (result 

not shown here) even though there are plenty of binding sites available on the polymer chain. 

The binding capacities for poly (Mono-P) as well as poly (Mono-P-co-HPMA) are also low, 

even though the DG reaches 1.61 ug/cm2 for poly (Mono-P) modified membrane (ATRP 6 h, 

two times higher initiator concentration used) and 0.77 µg/cm2 for poly (Mono-P-co-HPMA) 

(ATRP 4 h, the same initiator concentration used as before).   

Our results indicate that the presence of HPMA residue (or potentially other residues 

as well) is necessary for the effective binding between lysozyme and polymer ligand. This is 

probably due to the fact that Bis-P has a conjugated ring structure thus more rigid making it 

difficult to topologically fit the protein surface without the more flexible spacer monomer. 

The incorporation of HPMA makes the copolymer more flexible and binds more effectively 

with the protein surfaces. In addition, it seems that both phosphonate groups on the Bis-P 

monomer are also needed in order to have strong affinity with lysozyme. Our classical MD 

simulation results indicate that H-bonds are formed not only between the amino acids on 

lysozyme surface and Bis-P, but also between amino acids and HPMA residues indicating the 

important role HPMA plays in protein-ligand interaction here. Our MD simulations further 

demonstrate that H-bonds form and break at ps time scale. The presence of both phosphonate 

arms enables the formation of at least one H-bond between Bis-P and Arg or some other 
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amino acid residues on lysozyme surface at all times. More on binding mechanism will be 

discussed in the MD simulations section.       

2.4.3 Dynamic Binding Results      

Table 2.2 Dynamic binding capacity, recovery and mass balance for unmodified and poly 

(Bis-P-co-HPMA) modified membranes at lysozyme concentration 0.1 mg/mL and flow rate 

2 mg/ml. The mean values and standard deviations are determined with three measurements. 

Membrane Condition 
Binding Capacity 

(mg/mL) 
Recovery Mass Balance 

Unmodified Membrane 1.78±0.08 89.9±2.7% 99.1±0.2% 

Poly (Bis-P-co-HPMA) 

modified at ATRP 1 h 
4.00±0.10 88.8±3.6% 98.9±0.9% 

Poly (Bis-P-co-HPMA) 

modified at ATRP 3 h 
3.32±0.06 84.5±4.8% 98.8±0.2% 

Poly (Bis-P-co-HPMA) 

modified at ATRP 5 h 
3.95±0.23 91.9±2.1% 98.1±0.7% 

 

Table 2.2 shows lysozyme dynamic binding data for unmodified and poly (Bis-P-co-

HPMA) modified membranes. In contrast to static binding results, it is interesting to see that 

the dynamic binding capacity of ATRP 1 h modified membrane has a slightly higher binding 

capacity than ATRP 5 h modified membranes at 4.0 mg/mL. Static binding can be considered 

an equilibrium process so that the total number of binding sites correlated to the incorporated 

Bis-P residues in the copolymer ligand determines the maximum binding capacity. However, 

in the dynamic mode, besides the total number of binding sites, the composition and 

conformation of the ligand are also critical. The driving force for the static binding is the 

thermodynamics of the protein-ligand interaction free energy. On the other hand, dynamic 

binding is also strongly affected by the kinetics and the barrier to reach the binding sites. As a 

result, the locations of the binding sites affect significantly the dynamic binding capacity. The 

easily accessible sites will contribute to the binding whereas those less exposed sites will be 
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difficult for lysozyme to reach and not contribute to the dynamic binding capacity.  For the 

ATRP 1 h modified membrane, the Bis-P residues are likely located at or near the surface, 

and therefore they are readily available for lysozyme binding. However, as the ATRP time 

increases, those sites are likely buried deeper and deeper and the barrier becomes higher to 

reach those sites. Besides the location of the binding sites, the composition and flexibility of 

the copolymer ligands may also play an important role in the dynamics binding interactions. 

Interestingly, the ATRP 3 h modified membrane has a slightly lower binding constant than 

the ATRP 1 h and 5 h modified membranes as shown in the static binding results, this 

membrane also shows a slight lower dynamics binding capacity and earlier breakthrough as 

shown in Figure 2.6a. The elution curves are also shown in Figure 2.6b. The breakthrough 

time is very similar for ATRP 1 h and 5 h modified samples but ATRP 3 h modified 

membrane has an early breakthrough. Thus elution peak showing the eluted amount of 

lysozyme follows the order: ATRP 5 h > ATRP 1 h > ATRP 3 h. The recovery of the bound 

lysozyme is around 84%-90%, which indicates that binding interaction is mostly reversible. 

Both the static and dynamic binding results show that ATRP 3 h modified membrane has 

consistent lower binding constant, lower dynamic binding capacity and lower recovery 

compared to the other two membranes. It seems that the monomer composition and 

conformation of the copolymer ligand affects strongly the binding affinity as well as the 

dynamics binding behavior. 
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Figure 2.6 Breakthrough (a) and elution curves (b) at lysozyme loading and elution rate 2 

mL/min for unmodified membranes, poly (Bis-P-co-HPMA) modified membranes at ATRP 

time 1, 3 and 5 h respectively. 

2.4.4 Binding Interactions from Classical MD Simulations 

In order to elucidate the interaction mechanism between lysozyme and poly (Bis-P-co-

HPMA) and further optimize binding capacity, all atom classical MD simulations were 

conducted for one lysozyme interacting with a copolymer ligand consisting of 14 monomers 

of Bis-P and 56 monomers of HPMA. Each Bis-P residue is evenly spaced and separated by 4 

HPMA residues. A total of over 900 ns simulations were conducted at neutral pH and room 

temperature under NPT.  Figure 2.7 shows the interaction energies between lysozyme and the 

copolymer ligand during the simulation period. A dielectric constant of 449 was used to 

determine the electrostatic interaction energy. Earlier studies50, 51 indicate dielectric constant 

is different for different materials and 4 is appropriate for protein interactions in aqueous 

solution. It can be seen that both electrostatic and van der Waals interaction energies become 

more negative as simulation time increases indicating that the interaction becomes stronger as 

time goes on. It can also be seen that both electrostatic and van der Waals interaction 

energies follow the same trend since both are sensitive to the separation distances between 

lysozyme and the copolymer ligand. It is also clear that van der Waals interaction contributes 

critically to the binding energy. This indicates that matching in topology that results in 

maximized van der Waals contact is indeed critically important in protein-ligand interactions.  
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Figure 2.7 The Interaction energies between lysozyme and the copolymer in aqueous 

solution during the 940 ns simulation time. 

 In order to develop an effective membrane chromatography for protein separations, 

specific binding interaction between protein and ligand is necessary. It is known that van der 

Waals and electrostatic interactions are not specific thus not applicable for specific affinity 

separations. In order to achieve specific protein separations, specific binding interactions are 

required. Thus more specific interactions involving cation- and the H-bond interactions are 

necessary. Figure 2.8(a-d) shows the conformational structures of the protein-copolymer 

ligand complex at 4 different simulation times. The light yellow shaded areas indicate H-

bond interaction whereas the gray area in Figure 2.8(a) indicates cation- interaction. Figure 

2.8(a) exhibits the protein-coplymer ligand complex at around 625 ns. H-bonds between Bis-

P and Arg, between Bis-P and Ser as well as between HPMA and Lys were observed. In 

addition, the positively charged Arg residue was found to interact with the aromatic Bis-P via 

cation- interaction. During the simulation period, it was found that the H-bonds form and 

break at ps time scale continuously. Only occasional cation- interaction was observed 

suggesting that it is not the dominant interaction mechanism. Figure 2.8(b-d) shows the 

protein-ligand complex at around 760, 809 and 915 ns respectively demonstrating multiple 

H-bond interactions. At longer simulation time, it appears that more H-bonds are being 
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formed. This agrees with the van der Waals and electrostatic interaction energy results 

suggesting that the protein-copolymer ligand complex is more tightly bound towards the end 

of the simulation time. In addition, it was found that only one of the phosphonate groups on 

Bis-P residue maintains H-bond interaction with one of the Arg residues on lysozyme surface 

persistently. However, our binding studies indicate that poly (Mono-P-co-HPMA) has only 

weak affinity towards lysozyme indicating that both phosphonate groups in Bis-P residues are 

necessary for high affinity binding. This is probably due to the enhanced binding interaction 

when H-bonds are continuously being formed in the case of poly (Bis-P-co-HPMA) ligand 

whereas H-bonds are intermittently formed in poly (Mono-P-co-HPMA) ligand. In addition, 

the presence of both phosphonate groups on Bis-P increases the hydrophilicity of the ligand 

rendering it more effective in binding to the hydrophilic residues on protein surface.     
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Figure 2.8 The protein-copolymer ligand complex at four different simulation times 

demonstrating the topological matching as well as more specific cation-

bonding interactions between lysozyme and copolymer ligand.   

Figure 2.9a shows the average number of H-bonds formed between Bis-P and 

various amino acid residues on protein surface at 580-700 ns, 700-820 ns and 820-940 ns 

simulation period respectively. Different amino acid residues are represented by different 

colors in the legend. The corresponding color in the bar represents the average number of H-

bonds formed between this amino acid type and the Bis-P residues in the copolymer. It can be 

seen that Arg and Asn have persistent H-bond interactions with Bis-P. However, besides Arg 

and Asn, other amino acid residues are also involved in the H-bond interaction with Bis-P 

and the frequency of the H-bond formation varies from time period to time period. At the last 

time period, Arg residues clearly dominate the H-bond interaction with Bis-P. Gln, which 

does not interact strongly with Bis-P during the first two time periods, appears to have 
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increased its interaction with Bis-P during the last simulation period. Nevertheless, it is clear 

that Bis-P selectively binds to positively charge Arg residues via H-bond. It is known that H-

bond is significantly stronger when H donor is positively charged. The pair correlation 

functions between the O atoms in the phosphonate groups on Bis-P and the C atoms in the 

guadnium group on Arg during three simulation periods show that the interaction strength 

between Bis-P and the Arg increases as the simulation time increases.  (See Appendix I)  

 
Figure 2.9 The average number of H-bonds formed between Bis-P residues (a) / HPMA (b) 

and various amino acids on lysozyme during three simulation periods at 580-700, 700-820 

and 820-940 ns respectively. 

 Figure 2.9b shows the average H-bond numbers between HPMA residues on the 

copolymer and various amino acids on lysozyme during the same three simulation periods. It 

seems that both Arg and Asn residues form persistent H-bonds with HPMA similar to Bis-P 

with Asn dominating the interaction. The total number of H-bonds formed is higher with 

HPMA than with Bis-P since 4 times more HPMA residues are present in the copolymer. It 

also seems that HPMA only forms H-bond selectively with Arg and Asn during the first time 

period, but interacts with a number of other amino acids as the copolymer bound more tightly 

to the protein. This appears opposite to Bis-P where it more selectively binds to Arg residues 

largely.    
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2.5 Conclusions 

Our work demonstrates that it is possible to graft synthetic polymeric ligands on UF 

membrane surfaces to selectively bind to the Arg rich proteins. Further we are able to show 

for the first time that these poly (Bis-P-co-HPMA) ligands can be synthesized using 

controlled ATRP reaction varying polymer chain length. Moreover, our results show that the 

more Bis-P monomers incorporated into the copolymer ligands, the higher the static binding 

capacity.  Compared to the ligands previously grafted on PET membranes using UV initiated 

polymerization reactions, the capacity of our affinity membrane reaches 12 mg/mL, 

significantly higher than 2 mg/mL achieved before. Our dynamic binding results indicate that 

over 90% recovery can be achieved. The mechanism for poly (Bis-P-co-HPMA) binding to 

lysozyme protein was elucidated using classical MD simulations. H-bonding, van der Waals, 

electrostatic, as well as cation- interactions all contributed to the specific binding 

interactions between lysozyme and the copolymer ligand. In particular our results show that 

the presence of both phosphonate groups as well HPMA are essential for achieving strong 

binding interactions.  
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Chapter 3 The Effects of Salt Ions on Responsive Hydrophobic Interaction Membrane 

Chromatography 

*This chapter is based on a submitted manuscript: Liu, Z.; Du, H.; Wickramasinghe, S.R.; 

Qian, X. The Effects of Salt Ions on Responsive Hydrophobic Interaction Membrane 

Chromatography. Langmuir, in review, 2016 

 

 

Abstract 

The lower critical solution temperature (LCST) of poly (vinylcaprolactam) (PVCL) is 

dependent on the salt type and salt concentration. PVCL grafted on the regenerated cellulose 

membranes has been used as a responsive hydrophobic interaction membrane (HIC) 

chromatography for protein separations in a bind-and-elute mode. Here systematic 

investigations were conducted to understand the effects of salt on the chromatographic 

behavior of this novel HIC responsive membrane system. Dynamic binding capacities and 

recoveries of two proteins (IgG4 and BSA) were determined at different pH, salt type and salt 

concentration at room temperature. In addition, the cationic effects on static binding were 

investigated with monovalent (Na+, NH4
+), divalent (Zn2+) and trivalent (Al3+) sulfate salt 

solutions. Variation of hydrophobicity for the PVCL modified membrane with Na2SO4 

concentration measured by contact angle correlates well with the binding capacity and the 

performance of HIC. 

3.1 Introduction 

The past decade has seen the rapid development of upstream technology for 

biopharmaceuticals. As a consequence, the concentration of recombinant protein products has 

markedly increased from milligram per liter (mg/L) to grams per liter (g/L)1. At the same 

time, the regulatory agencies demand high purity of products, which greatly heightens the 

need for the dramatic improvement of efficiency in the downstream processing and 



102 

purification. The bottleneck has shifted from bio-processing to downstream purification of 

products1, 2, 3. To date, estimated cost for downstream processing can go as high as 50%-80% 

of the total manufacturing cost2. Therefore, one of the main objectives associated with the 

downstream processing is to reduce its cost while maintaining the high quality of the 

products. 

Packed bed column chromatography has been widely used in downstream processing for 

purification of proteins, DNAs and other pharmaceutical products. However, one major 

drawback of the packed bed column chromatography is the slow pore diffusion which 

severely restricts its efficiency for separation. The diffusion of targeted products to the 

ligands on the chromatography is a slow process leading to the dramatic drop of binding 

capacity as the feed flow rate increases. Besides diffusion limitation, the packed bed 

chromatography also suffers from the requirement of large buffer consumption as well as 

extra packing and testing costs. An alternative is to use adsorptive membrane 

chromatography during downstream processing4, 5. Adsorptive membranes, known as 

membrane adsorbers, are macroporous membranes functionalized by specific ligands 

attached on the membrane pore surface. Membrane adsorbers represent a class of liquid-solid 

membrane contactor and have been used extensively in a flow-through mode6 to remove 

containments such as aggregates7, viruses8, 9 and DNAs9, 10. In recent years, there has been an 

increased interest in using adsorptive membranes in a bind-and-elute mode for protein 

separation11, 12, 13, 14, 15, 16, 17. In contrast to column-based chromatography, the convective flow 

dominates the transport of targeted products to the ligands due to the open pore structure of 

the membranes. Consequently, studies show that the membrane binding capacity is 

independent of a wide range of flow rate16, 17, 18. Moreover, the operation can be performed at 

relatively low pressure, which reduces protein denaturation and aggregation. Finally, the 



103 

membrane system is easier to scale up and the cost of packing and testing is subsequently 

reduced significantly.  

Hydrophobic interaction chromatography (HIC) plays an import role in downstream 

processing. The targeted proteins bind to hydrophobic ligands under high salt concentration 

buffers and elute at low salt concentration buffers. At high salt concentrations, aqueous 

surface tension increases leading to the more favorable hydrophobic interaction. Moreover, 

enhanced charge screening at high salt concentration leads to the reduced electrostatic 

interaction further promoting hydrophobic interaction. On the contrary, low salt concentration 

reduces surface tension thus weakens hydrophobic interaction leading to the dissociation of 

the protein and ligand. This unique high-salt binding and low-salt elution enables HIC to be 

used in the intermediate purification steps, following salt-precipitation, ion-exchange or 

affinity-based adsorption purification steps. N-alkyl (C1-C8) and aryl (phenyl) are the two 

most common ligand types for HIC. Compared to reverse phase chromatography, HIC 

ligands are considered to be mildly hydrophobic, which ensures the eluted proteins to be 

biologically active. The factors that affect HIC behavior have been extensively studied with 

different salt buffer type and concentration19, 20, 21, 22, 23, 24. Hofmeister series refers to the 

specific ion interactions with proteins and polymer25, 26, 27, 28. Theoretical models based on 

solvophobic theory or preferential interaction theory were developed to quantitatively explain 

and predict the salt concentration effects on the chromatographic behaviors29, 30, 31, 32, 33, 34, 35, 

36. Ion specificity remains to be a theoretical challenge in understanding the interactions 

between the salt ions and proteins or polymers. However, these models were used to explain 

the effects of salt on conventional hydrophobic interactions. Here our focus is on the effects 

of salt ions on the hydrophobic interaction based on thermo-responsive polymeric ligands.  

Thermo-responsive polymer exhibits a lower critical solution temperature (LCST), above 

which the polymer adopts a collapsed hydrophobic conformation. However, at a temperature 
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below its LCST, the polymer adopts an extended coil-like hydrophilic conformation. The 

presence of the salt tends to reduce the transition temperature. The reduction of LCST is 

found to be strongly dependent on the salt type and salt concentration. The higher the 

concentration is, the larger the reduction is. It is also ion specific with cations and anions each 

following a different order depending on the ionic charge and size. Our earlier studies37, 38, 39 

investigating the specific interactions of ions with poly (N-isopropylacrylamide) (PNIPAM) 

show that the cations interact directly with the amide O and anionic interaction the polymer is 

mediated by the cations even though larger size anions form hydrophobic interaction with the 

isopropyl group. The LCST of PNIPAM is about 32oC in water and about 20oC in 1 M NaCl. 

It only depends slightly on the molecular weight of the polymer chain. Besides PNIPAM, 

poly (N-vinylcaprolactam) (PVCL) is also a thermo-responsive polymer. However, the LCST 

of PVCL depends strongly on the polymer molecular weight and concentration. For very 

dilute PVCL concentrations, the LCST of PVCL varies from about 32oC for long polymer 

chains to over 50oC for short chains. Both polymers are biocompatible and are being 

investigated for a variety of biomedical applications e.g. drug delivery.   

Recently there is a growing interest in developing HIC membrane adsorbers for protein 

separations40, 41, 42, 43, 44, 45, 46. These HIC membrane adsorbers possess the advantages of 

membrane chromatography and perform protein purification based on the HIC principles. 

Sartobind® Phenyl membrane adsorbers (Sartorius Stedim Biotech) were the first 

commercialized HIC membrane adsorbers that can be used in the protein capture and 

polishing step to remove denatured protein aggregates. HIC membranes have been also 

developed for protein fractionation41, 47, 48, 49, 50 and preparative protein purification42, 43, 44, 51. 

The disadvantages of traditional HIC membrane chromatography are its low capacity and low 

recovery. The capacity for these HIC ligands is only around 10-15 mg/mL significantly lower 

than the over 100 mg/mL capacity for the ion-exchange based ligands. Conventional 
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hydrophobic ligands tend to denature protein leading to irreversible binding the proteins as 

well as protein aggregation. On the other hand, thermo-responsive polymers possessing both 

hydrophobic and hydrophilic residues are only moderately hydrophobic. The hydrophobic-to-

hydrophilic transition can be switched by reducing the temperature and/or salt concentration. 

Since the binding and elution of the proteins are based on the conformational switching of the 

thermo-responsive ligands, relative high recovery of the proteins is expected. Among these 

HIC membrane adsorbers, high recovery and high resolution for protein purification are 

achieved. 43, 52, 53, 54, 55 In order to further develop responsive HIC membrane chromatography 

for biotechnological applications, maximizing its capacity and investigating the effects of salt 

ions on its binding and elution are crucially important.  

In addition to salt concentration, salt ion type also plays a critical role in HIC. The 

microcalorimetric studies show the binding process involves the dehydration of both protein 

and ligand, structural change of protein and rearrangement of excluded water in the bulk 

solution56. Salt ion type effect on HIC has been studied extensively by protein retention 

experiments19, 20, 21, 22, 23, 24. It has been shown that the effects of different ions on protein 

binding correlate with the Hofmeister series24, 30. Hofmeister series refers to the different 

ability of different ions to denature protein25. Cations and anions have their respective orders. 

The direct Hofmeister series for the anions follows the order PO4
3−> SO4

2−> CH3COO−> 

Cl−> Br−> NO3−> I−> ClO4−> SCN−. For the cations, the order follows NH4
+> K+> Na+> Li+> 

Mg2+> Ca2+ 26, 27, 57. Ions on the left side generally have greater ability to decrease the 

solubility of hydrocarbon (salting-out), promote hydrophobic interaction as well as stabilize 

proteins. However, inverse Hofmeister effects have also been observed58, 59. It was thought 

that the ion order depends on both the surface hydrophobicity and surface polarity60. So far, 

the exact nature of ion specificity on physical and biological phenomena remains unexplained 

and under considerable debate. It is not sure whether it is caused by the changes in the bulk 
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water structure in different salt solutions or by the direct ion-protein interactions. Based on 

the Hofmeister effect, Cramer et.al has successfully modeled the HIC adsorption isotherm22, 

investigated the protein selectivity in HIC61, HIC retention behaviors62, 63 and pH effects in 

HIC64.  

Hofmeister series has been related to the LCST decrease of thermo-responsive polymers 

as well37, 65. As mentioned, our earlier studies37, 38, 39 on the effects of salt ions on PNIPAM 

using classical molecular (MD) simulations demonstrate that the presence of ions and their 

hydration tend to decrease the LCST whereas the direct cation–amide O binding tends to 

increase the LCST. The strength of the cation–amide O interaction is dictated by the 

competition between the electrostatic and the hydration forces. For the singly charged alkali 

cations (Li+, Na+, K+ and Rb+), electrostatic interactions dominate. The larger the cation is, 

the weaker the binding interaction with the amide O. For the doubly charged cations (Mg2+ 

and Ca2+)
, the strong hydration of these divalent ions overcomes the electrostatic attraction 

leading to the very weak binding between the cations and the amide O. Moreover, our 

simulation results show that the LCST transition dynamics and the degree of 

hydration/dehydration are ion specific. Experimentally, responsive HIC membrane 

chromatography using PNIPAM and its copolymers as ligands shows relatively low capacity 

and recovery. The PVCL ligands grafted on the regenerated cellulose membranes using atom-

transfer radical polymerization exhibit both higher capacity and higher recovery than the 

PNIPAM ligands. Our results show effective binding of BSA and IgG4 in the high salt buffer 

(1.8 M (NH4)2SO4) solution. High recovery (over 97%) of BSA was also obtained at an 

appropriate ligand density. In addition, our results show that binding capacity tends to 

increase with the increase of the polymer chain length and chain density as well as the salt 

concentration at binding. Here we investigate the effects of salt type and salt concentration on 

dynamic/static binding capacity and recovery of the responsive membranes grafted with 
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PVCL ligands. Moreover, the effects of pH on binding capacity and recovery are also 

studied.  

3.2 Materials  

N-Vinylcaprolactam (98%), 2-Bromo-2-methylpropionyl bromide (BIB, 98%), 4-

(dimethylamino) pyridine (DMAP, ≥99%), copper (I) chloride (≥99.995%), copper (II) 

chloride (≥99.995%) and N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, 99%) 

were purchased from Sigma Aldrich (St. Louis, MO). Triethylamine (TEA, ≥99%) and 

aluminum sulfate (≥97%) were obtained from Alfa Aesar (Ward Hill, MA). Methanol 

(99.8%) ,acetonitrile (99.8%) and zinc sulfate heptahydrate (≥99.5%) were obtained from 

EMD Chemicals (Billerica, MA). Boric anhydride was purchased from Avantor Performance 

Materials (Center Valley, PA). Anhydrous acetonitrile was obtained by distilling acetonitrile 

with boric anhydride. Sodium chloride (≥99.5%), ammonium sulfate (≥99.0%) and sodium 

sulfate (≥99.0%) were bought from Macron™ Fine Chemicals (Center Valley, PA). 

Regenerated cellulose membranes (0.45 μm pore size, RC55, 47mm diameter) were 

purchased from Whatman Ltd. (Pittsburgh, PA). Bovine serum albumin (BSA) (>99 %, pI 

4.7, 66 kDa) was obtained from Avantor Performance Materials (Center Valley, PA). Purified 

human IgG4 monoclonal antibody (pI 7.1, 146 kDa) was provided by Eli Lilly (Indianapolis, 

IN). 

3.3 Experiments 

3.3.1 Membrane Surface Modification 

Membranes were modified through surface-initiated ATRP as previously reported by 

our earlier studies46, 66, 67, 68. Basically, regenerated cellulose (RC) membranes were first 

immobilized with ATRP initiator 2-bromoisobutyryl bromide (80 mM) in acetonitrile for 3 

hours. Then the monomer, copper (I) chloride, copper (II) chloride, ligand N, N,N′,N′′,N′′-
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pentamethyldiethylenetriamine (PMDETA), and solvent, methanol/water mixture (1:1,v/v) 

were mixed together and degassed with argon for 15-20 min. The ratio among monomer: 

CuCl: CuCl2: PMDETA is 200:1:0.2:2. Prior to polymerization reaction, flasks containing 

initiator immobilized membranes were de-oxygenated by vacuum and argon back-filling 

process three times. At last, the polymerization solution was transferred to the flask by a 

syringe. After 4 h ATRP, membranes were first rinsed with methanol and water mixture (1:1, 

v/v) three times and then washed with DI water for overnight.  The schematic of the 

modification procedure is shown in Figure 3.1. 

 

Figure 3.1 Reaction scheme of ATRP for surface modification of regenerated cellulose 

membranes. 

3.3.2 Characterization  

Turbidity Test The turbidity of solutions containing PVCL was determined using UV/Vis 

Spectrophotometer (Thermo Scientific™ GENESYS 10S) for measuring the transmittance at 

515 nm. The previous protocol for determining the LCST of PVCL with turbidity change was 

used69. The change of solution turbidity indicates the LCST or the hydrophobic-to-

hydrophilic transition of the PVCL polymers. The increase in turbidity indicates the polymers 

become hydrophobic and start to aggregate. All measurements were conducted at room 

temperature. The LCST transition is induced by the addition of various types and 
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concentrations of salt. The onset of the increased turbidity corresponds to the salt 

concentration for each salt type needed to decrease the LCST of PVCL to room temperature 

at which experiments were performed. The results further confirmed that LCST of PVCL 

depends strongly on salt type and salt concentration.  

Contact Angle Measurement Measurements were conducted by the sessile drop method. 

The set up includes an optical angle meter (OCA 20, Future Digital Scientific Corp., NY) and 

a dosing needle. Membranes were cut into small pieces and fixed on a flat glass chip with 

double side tape for measurements. The dosing volume is 2 µL. Each result was reported by 

averaging at least 5 measurements at random locations and the standard deviations were 

shown as error bars. 

3.3.3 Protein Binding Experiments for HIC Membranes  

Static BSA Binding Studies All membranes were first equilibrated with adsorption buffer A 

(contains various high concentrations of salt) for 1 hour. Then, certain concentrations of BSA 

solutions were prepared using buffer A. All equilibrated membranes were incubated with 

BSA solution for 5 hours at room temperature on a shaker. Also, five different concentrations 

of protein solutions prepared with BSA and buffer A were shaken at the same time. The 

equilibrium concentrations of protein solutions were first determined by UV absorbance at 

280nm with the standard curves of protein solutions. For salt like ZnSO4 and Al2(SO4)3, no 

sodium phosphate was added in buffer due to precipitation. Binding capacity and recovery 

were calculated as follow:  

Binding capacity 𝒒 =
Amount of   protein bound to  membrane (mg)

 membrane volume (mL)
 

Recovery =
Amount of   protein Elute (mg)

 Amount of protein bound to membrane (mg)
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Dynamic Binding Studies Bovine serum albumin (BSA) or human serum Immunoglobulin 

(IgG4) stock solutions were prepared by dissolving 100 mg of proteins each into 10 mL 20 

mM phosphate buffer solutions (pH 7, Buffer B), which contained no other salt. Then, the 

stock solutions of protein were added into buffers containing various amount of salt (Buffer 

A) to yield 0.1 mg/mL protein solutions. All the buffer and protein solutions were filtered 

with Whatman 0.22 μm PES membrane before the dynamics binding tests. A set of four 

membranes (total bed volume 0.08 mL) was loaded into a stainless steel flow cell (Mustang 

Coin ® module, Pall Corporation) with two flow distributers to ensure the uniform flow 

across all of the membranes. All runs were conducted by using ÄKTA FPLC from GE 

Healthcare Bio-Sciences Corp. The method was developed with the Unicorn software v. 5.31 

to automate the BSA binding and elution experiments as previously published66. First, the 

membranes stack was wet with buffer B (elution buffer) in the reverse flow configuration 

over 5 minutes by increasing the flow rate from 0.2 mL/min to 1.0 mL/min in 0.2 mL/min 

increment. Next, the membrane stack was equilibrated in the forward flow configuration in 

the buffer A (adsorption buffer) at 1 mL/min for 10 minutes. Then 0.1 mg/mL protein 

solution was loaded onto the membrane stack at a flow rate of 1 mL/min for 10 minutes. 

Unbound protein was subsequently washed from the membranes using the buffer A 

(adsorption buffer) for 10 minutes at 1 mL/min, followed by a step change of running buffer 

B (elution buffer) through the membrane at 1 mL/min. The run ended when the UV 

absorbance at 280 nm becomes stable. The washing fraction (includes loading fraction) and 

elution fraction were collected and the volumes were determined accordingly. Protein 

concentrations in the sample solution, washing fraction, and elution fraction were calculated 

through UV absorbance at the wavelength of 280 nm. 
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3.4 Result and Discussion 

3.4.1 Salt Effects on PVCL ligand 

In order to study the effects of salt ions on the LCST of PVCL solutions, PVCL polymers 

are synthesized using free radical polymerization based on the protocol reported by 

Laukkanen et.al70. The successful polymerization was confirmed by H1NMR (Figure A2.1). 

The hydrodynamic diameters (Dh) of synthesized PVCL in aqueous solution at different 

temperatures were determined using dynamic light scattering (DLS) with a DelsaNano HC 

particle analyzer instrument (Beckman Coulter, Miami , FL) at a fixed scattering angle of 

165°. Results were processed by DelsaNano program (v.3.7) with CONTIN algorithm. 

Similar to the Dh results observed before71, the increase in PVCL Dh is likely caused by the 

aggregation of PVCL when the temperature increases above LCST when it is hydrophobic. 

The LCST of our synthesized PVCL is around 37oC, shown by the DLS results (Figure 

A2.2). Previously reported PVCL synthesized by free radical polymerization has a LCST 

ranging from 30-50 oC, depending on the molecular weight72. 

Turbidity measurements were conducted to further investigate the effects of salt on the 

LCST of our synthesized PVCL in salt solutions. Similar to PNIPAM, earlier studies show 

that the presence of KCl decreases the LCST of PVCL69. Here, systematic studies were 

carried out to investigate the effects of salt type on the LCST of PVCL. Different sulfate salts 

were used for the investigation. Turbidity (transmittance) of PVCL solution was measured in 

monovalent (Na+, NH4
+), divalent (Zn2+) and trivalent (Al3+) sulfate salt solutions at room 

temperature of around 23oC. The impact of cations on the reduction of LCST was plotted as a 

function of the ionic strength (Figure 3.2a) and the activity (Figure 3.2b) of different salt 

solutions. Our results show that the impact of ions on the reduction of PVCL LCST follows: 

Na+ > NH4
+ > Zn2+ > Al3+ based on nominal ionic strength or Al3+ > Zn2+ > Na+ > NH4

+ based 

on the ionic activity. Clearly the results based on activity should be more meaningful than the 
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ones based on nominal ionic strength since higher valence ions have a stronger tendency to 

associate with each other even though they have a higher degree of solvation. Moreover, it 

was observed earlier that Al3+ ion largely exists as Al(OH)4
- in aqueous solution forming a 

polymeric network73, 74. Based on the turbidity as a function of ionic activity as shown in 

Figure 3.2b, a reverse Hofmeister series is observed. This agrees with earlier studies on the 

effects of cations on the LCST of PNIPAM75. It is worthwhile to point out that 

PVCL/PNIPAM and proteins are quite different as proteins generally contain multiple 

charged residues whereas PVCL/PNIPAM do not have net charges. Our earlier studies37, 38, 39 

show that monovalent cations bind directly with the amide O on PNIPAM whereas anions 

interact indirectly with the hydrophobic residues on the polymer. The interaction strength is 

modulated by the competition between the favorable electrostatic interaction and the 

unfavorable dehydration force. Our earlier studies37, 38, 39 further show that divalent ions 

actually do not bind directly or only bind weakly with the amide O. Clearly the unfavorable 

dehydration force is dominant for the higher valence ions as they typically have significant 

hydration free energy. Here the trivalent and to a great extent the divalent ions do not bind 

with the amide O directly. Instead, these ions lead to a higher surface tension due to the 

stronger solvation free energy which in turn stabilizes the hydrophobic conformation of the 

polymer leading to an enhanced reduction in LCST. The NH4
+ and Na+ ions, on the other 

hand, have relatively small hydration free energies. NH4
+ ion has a similar radius to K+. The 

hydration free energy is more negative for Na+ than for NH4
+. As a result, the increase in 

surface tension in Na2SO4 salt solution tends to be slightly higher than in the same 

concentration of (NH4)2SO4 salt solution as shown in Figure A2.3 of the supplementary 

document.  
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Figure 3.2 The variation of transmittance of the synthesized PVCL as a function of ionic 

strength (a) and ionic activity (b) in various sulfate salt solutions at room temperature during 

the turbidity test. Transmittance was measured at 515 nm at 1 mg/mL PVCL concentration. 

Activity coefficients were from literature 76, 77. 
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Compared to a non-responsive ligand where the hydrophobicity does not change with 

salt ion concentration and salt ion type, the hydrophobicity of the thermo-responsive ligand 

will be different for different solution conditions. This is expected to have a strong impact in 

the binding and elution of proteins on these ligands. As a result, the hydrophobicity change 

and reduction in LCST for the grafted PVCL polymers on membrane substrates in different 

salt solutions were investigated by contact angle measurement and previously discussed 

turbidity test. Firstly, the hydrophobicity change was investigated by measuring the static 

contact angle of salt drops on membrane surface. Here only Na2SO4 salt solutions were 

investigated as Na2SO4 salt demonstrates a stronger effect on the capacity for protein binding. 

Two non-responsive surfaces were also tested under the same conditions for comparison 

purposes. As shown in Figure 3.3, the contact angle increases from 60o to 100o when the 

Na2SO4 salt concentration increases from 0.2 to 1.2 M indicating that higher salt 

concentration results in an increase in hydrophobicity. Besides grafted PVCL ligands, surface 

morphology will also affect the hydrophobicity after surface modification. The morphologies 

of modified membranes under salt solutions as well as at temperatures above its LCST up to 

45oC were imaged using atomic force microscopy (AFM). Not obvious change in roughness 

and morphology has been observed at 500 nm and 1 µm scales (results not shown). 

Therefore, the increase in the hydrophobicity of PVCL grafted membrane is likely to due to 

the conformational changes occurring at the molecular level. Additionally, a sudden increase 

in the hydrophobicity of the membrane surface was observed when the salt concentration 

increases to 0.6 M. This corresponds exactly to the earlier PVCL ligand turbidity results 

which show that at least 0.6 M Na2SO4 is needed in order to reduce the LCST from 37oC to 

room temperature. By comparison, no significant contact angle change was observed for the 

glass chip and parafilm under the same salt conditions. This indicates that higher surface 

tension from higher salt concentration does not increase the hydrophobicity of the substrate 
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surface. Enhanced binding between the protein and membrane substrate grafted with non-

responsive ligand at higher salt concentration is likely due to the stronger hydrophobic force 

resulting from the higher salt concentration.    

 

 

Figure 3.3 Salt concentration effects on contact angle of HIC membranes (Na2SO4 solutions 

were tested here for concentrations ranging from 0.2 M to 1.2 M). The average results of five 

different locations were reported here (Figure 3.3a). 

3.4.2 Salt Effects on Protein Binding Studies 

In order to elucidate the binding mechanism and binding energetics, BSA binding 

isotherms were determined by static binding in ionic strength of 3.6 M (NH4)2SO4, Na2SO4, 

Al2(SO4)3 and NaCl salt solutions. Figure 3.4 shows BSA isotherm curves fitted with 

Langmuir model based on equation (1), where q and qmax represent the binding capacity and 

maximum binding capacity, respectively. K is the equilibrium constant and c is the protein 

concentration at equilibrium. The linear regression equations and parameters are shown in 

Table 3.1. The order of static binding follows Na2SO4 > (NH4)2SO4 > NaCl > Al2(SO4)3 in 
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term of capacity, binding constant K and binding free energy ΔG at the same ionic strength of 

3.6 M. These binding results agree with our earlier results on the effects of salt ion and salt 

concentration on the PVCL LCST transition in various sulfate salt solutions from the 

turbidity measurement. As discussed earlier, divalent sulfate salt solutions have a stronger 

effect on the transition temperature than the monovalent chloride salt solutions. This is due to 

the higher surface tension induced by sulfate ions than by the chloride ions at the same ionic 

strength as measured experimentally and shown in Figure A2.3 of the supplementary 

document. The reason that the binding capacity is lower in Al2(SO4)3 solution at the same 

ionic strength of other salt solutions is due to the significantly reduced activity of the Al3+ 

ions resulting from its hydrolysis and subsequent polymerization.  

In contrast to the case in Na2SO4 solution, there is no detectable binding between the 

PVCL ligand and BSA in 3.6 M ionic strength of ZnSO4 solution even though ZnSO4 and 

Na2SO4 have similar increases in surface tension30. This is probably due to the significantly 

reduced activity coefficient in the case of Zn2+ ion than the monovalent ions and that the 

solution at 3.6 M ionic strength does not reduce the LCST to room temperature as the 

experiments were performed. This can be seen from Figure 3.2b that the LCST transition 

occurs only when the ionic strength of the ZnSO4 solution is larger than 5 M. As seen from 

Figure A2.4, binding was observed when the ionic strength increases to 6.8 M. However, 

binding in 3.6 M ionic strength of Al2(SO4)3 salt solution has already been observed as 

shown in Figure 3.4 despite the fact the LCST transition occurs at much higher ionic strength 

in Al2(SO4)3 salt solution as shown in Figure 3.2a. In order to reconcile the discrepancies 

observed in the two salt solutions, the nature of binding and the interaction of salt cations 

with BSA have to be taken into account. Besides a thermo- and ionic strength responsive 

ligand, PVCL is a somewhat hydrophobic ligand that can bind protein at higher salt 

conditions similar to conventional hydrophobic ligand. Thus at 3.6 M Al2(SO4)3 when the 
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PVCL ligand has not gone through the hydrophilic to hydrophobic transition yet, relative low 

binding interaction has already occurred. This accounts for the observed binding shown in 

Figure 3.4. In the case of ZnSO4, some binding at 3.6 M ionic strength should also be 

expected even though the ligand remains more hydrophilic. On the contrary, no binding was 

observed. This is due to the fact that BSA with a pI at 4.6 is negatively charged at the pH 

investigated. The divalent Zn2+ ion tends to have a stronger electrostatic interaction with the 

negatively charged BSA protein. This will lead to the reduction of hydrophobicity of the BSA 

protein as ions have strong hydration tendency. As the pH decreases below the pI of BSA, the 

protein becomes more positively charged leading to the electrostatic repulsion between the 

Zn2+ and the protein. As a result, the hydrophobicity of the BSA is not reduced leading to the 

binding interaction with the PVCL ligand as shown in Figure A2.4. The pH dependency of 

the BSA binding in ZnSO4 is rather clear. On the other hand, due to the strong hydrolysis of 

the Al3+ ion to form Al(OH)4
-, no direct cation interaction with the protein is present leading 

to conventional hydrophobic binding between the protein and ligand.   

𝑐

𝑞
=

𝑐

𝑞𝑚𝑎𝑥
+

1

𝐾∙𝑞𝑚𝑎𝑥
  (1) 
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Figure 3.4 Salt type effect on BSA isotherm curves 

Table 3.1 Langmuir fitting of BSA isotherm under different salt conditions 

 Na2SO4 (NH4)2SO4 NaCl Al2(SO4)3 

Fitting Equation 
c/q = 0.064c + 

0.002 

c/q = 0.080c + 

0.005 

c/q = 0.095c+ 

0.007 

c/q = 

0.105c+ 

0.011 

Fitting Coefficient R2 = 0.994 R2 = 0.996 R² = 0.997 
R² = 

0.992 

qmax (mg/mL) 15.63 12.20 10.53 9.52 

Ionic Strength (M) 3.6 3.6 3.6 3.6 

Activity (M) 0.23 0.22 2.80 0.006 

 

Dynamic binding experiments were performed using BSA and IgG4 as model proteins in 

a bind and elute mode. Binding conditions were varied with respect to the salt type, salt 

concentration and pH, whereas the protein feed concentration and elution conditions were 

kept the same. Chromatograms of protein loading (100% breakthrough), membrane washing 

and membrane eluting steps were shown in Figure 3.5. It can be seen that, for IgG4, the 

higher the salt concentration is, the longer the time it takes for a breakthrough to start. This 

indicates that more IgG4 are bound to the membranes at higher salt concentrations with 
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corresponding higher binding capacities. However, a different salt concentration effect was 

observed for the breakthrough curve of BSA. Comparing the dynamics binding and 

breakthrough curves under the highest and lowest Na2SO4 concentrations, the longest time 

delay for the start of BSA breakthrough is only 0.5 min whereas the corresponding time delay 

is about 9 min for IgG4. This indicates that capacity for IgG binding is higher and that the 

effect of salt concentration on IgG4 binding is stronger than the corresponding BSA. It also 

took significantly longer time for IgG4 to reach 100% breakthrough than BSA due to the 

stronger binding interaction between the IgG4 and the substrate and the subsequent higher 

binding capacity. It is known that IgG is more hydrophobic than BSA resulting in higher 

binding capacity for the IgG protein. Our results appear to indicate that salt concentration 

affects BSA binding kinetics after breakthrough occurred whereas salt concentration affects 

IgG4 mainly on the time for the breakthrough to start. The change in slope in the BSA 

breakthrough curves suggests that probably different kinetics exist for BSA binding at 

different salt concentrations. Earlier results78 show that BSA adsorption onto the hydrophobic 

ligand at relatively low salt concentrations is a two-stage process involving adsorption and 

the subsequently spreading. It is known that BSA is relatively soft with adiabatic 

compressibility of 1.05 x 10-10
 m

2/N. The presence of salt ions and their concentrations will 

affect BSA conformations upon adsorption when the kinetics is relatively slow and binding 

interaction is relatively weak. IgG has a lower adiabatic compressibility around 6×10-11 m2/N, 

which means it is more rigid than BSA79, 80.  In the case of stronger binding interactions, 

more rigid proteins and faster kinetics as shown in the IgG4 chromatogram, the two-step 

adsorption and spreading process is less apparent thus similar breakthrough slopes are 

observed.   
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Figure 3.5 Salt concentration effects on breakthrough curves and elution curves with IgG4 (a) 

and BSA (b). 

Figure 3.6 compares the dynamic binding capacities and recoveries for IgG4 and BSA 

when the binding ionic strength of Na2SO4 varies from 0.6 to 3.6 M. For both proteins, the 
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binding capacity increases with the increase of the ionic strength. However, their behaviors 

are different suggesting that the effects of salt ions on the adsorption of the two proteins are 

different. Overall, the binding capacity for IgG4 is higher than for BSA indicating that IgG4 

has a stronger hydrophobic interaction with PVCL as discussed earlier. In addition, the 

binding capacity for IgG4 improves more rapidly as the salt ionic strength increases. On the 

contrary, the increase in BSA binding capacity becomes less obvious when the ionic strength 

reaches beyond 3 M. These results are consistent with the observed breakthrough curves for 

these two proteins. As IgG is more hydrophobic, the stronger interaction between the protein 

and ligand leads to fast adsorption kinetics. The more hydrophobic the protein is, the higher 

the salt concentration, the stronger the attractive hydrophobic force leading to rapid increase 

in binding capacities for more hydrophobic proteins. On the other hand, the increase in the 

ionic strength of the Na2SO4 solution will lead to the unfolding and denaturation of the more 

flexible BSA protein. As was discussed earlier, Na+ ion has a stronger impact on protein 

denaturation than the NH4
+

 ion.  The unfolded or denatured protein may prefer to aggregate 

rather than adsorb onto the membrane substrate depending on the magnitudes of the relative 

forces involved. As a result, the increase of the dynamic binding capacity slows down at 

higher ionic strength of the salt solution. Comparing the recoveries for the two proteins, it can 

be seen that the recovery of BSA is very high at lower ionic strength reaching over 90%. 

However, the recovery decreases to around 85% when the ionic strength increases to more 

than 2 M. It is known that hydrophobic force increases as the salt concentration increases 

leading to stronger binding of the protein to the membrane substrate. The stronger 

hydrophobic interaction leads to larger deformation or spreading of the protein after 

adsorption resulting in irreversible binding and the reduction in recovery. The recovery of 

IgG4 remains more or less the same at around 80% but is always lower than the 
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corresponding BSA. As mentioned earlier, the stronger hydrophobic force in the IgG 

interaction with PVCL ligand leads to irreversible binding and subsequent reduced recovery.    

 

Figure 3.6 Binding capacity and recovery of IgG4 and BSA under various ionic strength of 

Na2SO4. 

In order to investigate the effects of different salt and their concentrations on the 

dynamic binding capacity and recovery, BSA dynamic binding and recovery tests were 

conducted in monovalent NaCl, divalent (NH4)2SO4, Na2SO4 salt solutions with ionic 

strength varying from 1 to 5.5 M.  Since the solubility of K2SO4 salt, only two low salt ionic 

strengths were tested. As shown in Figure 3.7, in contrast to Na2SO4, BSA recovery remains 

high (>90%) in (NH4)2SO4 and NaCl buffer conditions throughout the different ionic 

strengths. This is consistent with previous discussions that NaCl and (NH4)2SO4 are weaker 

denaturants which lead to more reversible binding even at high ionic strengths. As expected, 

the binding capacity is strongly salt dependent. The higher the ionic strength, the higher the 

binding capacity due to the stronger hydrophobic interactions induced. The divalent 

(NH4)2SO4 and Na2SO4 solutions have larger binding capacities than the corresponding NaCl 
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solution. The binding capacity follows the order: Na2SO4 > (NH4)2SO4 > NaCl. The order is 

in agreement with our turbidity tests for PVCL as well as static binding results. However, 

protein binding is more complex as both ligand and protein are affected by the ionic strength 

and the specific salt ions present.  

 

 

Figure 3.7 Salt type effect on the dynamic binding capacity and recovery of BSA. Since the 

solubility of K2SO4 in water is very low, it reached its solubility limitation on the second data 

point and so only two points were shown here. 

3.4.3. pH Effect on Protein Binding Studies 

The effects of pH on the dynamic binding capacity and recovery of BSA were also 

investigated. As the surface charge on protein is strongly pH dependent, binding of the 

protein to ligands will be affected as charge has a significant impact on the hydration and 

dehydration of proteins and polymers. A recent study shows that for conventional HIC resins, 

when the pH is close to the isoelectric point (pI) of lysozyme, the corresponding dynamic 

binding capacity had an increase of 25% compared to the capacity at neutral pH56. This is 
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relatively easy to understand since the protein surface charge is strongly dictated by the pH. 

As mentioned earlier, the degree of hydration and dehydration is closely related to the charge. 

At protein pI, the surface charge is almost zero which leads to a higher degree of dehydration 

thus higher probability for protein aggregation and adsorption as the nature of hydrophobic 

interaction is to remove structured water to bulk water. Therefore, BSA binding at its pI of 

4.7 was conducted. The binding capacity results as shown in Figure 3.8a demonstrate that at 

low ionic strength of Na2SO4 (< 2.8 M), higher binding capacities were achieved at pH 4.7 

than at pH 7. At pH 7, BSA is negatively charged. The monovalent Na+ ions in the solution 

tend to bind to the negatively charged residues via electrostatic interaction leading to the 

stronger hydration of the BSA protein. However, for binding in (NH4)2SO4 salt solutions as 

shown in Figure 3.8b, BSA binding capacities remain more or less the same at pH 4.7 as at 

pH 7.0. This is probably due to the fact that NH4
+ is not a strong denaturant with relatively 

low hydration free energy. Moreover, NH4
+ ion forms extensive hydrogen bonding network 

with water molecules and less likely to form strong electrostatic interactions with the charged 

residues. Under both salt solutions, the BSA recoveries are not affected by the binding pH 

indicating the denaturation of the BSA protein is not affected by the pH conditions. As 

discussed earlier, a strong pH dependent binding capacity for divalent salt ZnSO4 at ionic 

strength of 6.8 M was observed as shown in Figure A2.4. Higher pH leads to a lower binding 

capacity.  Again this is due to the electrostatic interaction between the Zn2+ ion and the 

negative charges on protein surface resulting in a stronger degree of protein hydration which 

subsequently leads to a lower binding capacity.  
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Figure 3.8 The pH effect on BSA binding capacity and recovery for Na2SO4 (3.8a) and 

(NH4)2SO4 (3.8b). 

a

. 
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3.5 Conclusion 

The specificity of salt ions on binding capacity and recovery was investigated for the 

performance of responsive HIC membranes. Turbidity results show the effects of salt cations 

on the reduction of LCST for PVCL follows the order with Na+ > NH4
+ > Zn2+ > Al3+ at the 

same ionic strength and with Al3+ > Zn2+ > Na+ > NH4
+ at the same activity. The contact angle 

of PVCL grafted membrane surface increases with Na2SO4 concentration indicating the 

corresponding increase in the hydrophobicity. Static binding and dynamic binding study 

show the capacity follows the order of Na+ > NH4
+ > Al3+ > Zn2+ at the same ionic strength. 

The recovery is almost independent of the binding salt concentration for (NH4)2SO4 and 

NaCl. However, for Na2SO4, the recovery decreases when Na2SO4 concentration is above 0.8 

M. In addition, our results show that the binding capacity of IgG is higher than BSA. Some 

pH dependence on BSA binding for Na2SO4 salt solution was observed whereas no binding 

difference was observed for the (NH4)2SO4 salt solution.   

 

Acknowledgement  

Partial financial support from Arkansas Bioscience Institute (ABI) is gratefully 

acknowledged.   

 

References 

1. Cramer, S. M.; Holstein, M. A. Downstream bioprocessing: recent advances and future 

promise. Curr. Opin. Chem. Eng. 2011, 1 (1), 27-37. 

2. Guiochon, G.; Beaver, L. A. Separation science is the key to successful 

biopharmaceuticals. J. Chromatogr. A 2011, 1218 (49), 8836-8858. 

3. Freitag, R. Chromatographic Techniques in the Downstream Processing of Proteins in 

Biotechnology. In Animal Cell Biotechnology, Pörtner, R., Ed.; Humana Press, 2014; Vol. 

1104, pp 419-458. 

4. Roper, D. K.; Lightfoot, E. N. Separation of biomolecules using adsorptive membranes. 

J. Chromatogr. A 1995, 702 (1–2), 3-26. 



127 

5. Ghosh, R. Protein separation using membrane chromatography: opportunities and 

challenges. J. Chromatogr. A 2002, 952 (1-2), 13-27. 

6. Weaver, J.; Husson, S. M.; Murphy, L.; Wickramasinghe, S. R. Anion exchange 

membrane adsorbers for flow-through polishing steps: Part II. Virus, host cell protein, DNA 

clearance, and antibody recovery. Biotechnol. Bioeng. 2013, 110 (2), 500-510. 

7. Yoo, S. M.; Ghosh, R. Simultaneous removal of leached protein-A and aggregates from 

monoclonal antibody using hydrophobic interaction membrane chromatography. J. Membr. 

Sci. 2012, 390, 263-269. 

8. Weaver, J.; Husson, S. M.; Murphy, L.; Wickramasinghe, S. R. Anion exchange 

membrane adsorbers for flow-through polishing steps: Part I. clearance of minute virus of mice. 

Biotechnol. Bioeng. 2013, 110 (2), 491-499. 

9. Phillips, M.; Cormier, J.; Ferrence, J.; Dowd, C.; Kiss, R.; Lutz, H.; Carter, J. 

Performance of a membrane adsorber for trace impurity removal in biotechnology 

manufacturing. Journal of Chromatography A 2005, 1078 (1–2), 74-82. 

10. Bhut, B. V.; Weaver, J.; Carter, A. R.; Wickramasinghe, S. R.; Husson, S. M. The role 

of polymer nanolayer architecture on the separation performance of anion-exchange membrane 

adsorbers: Part II. DNA and virus separations. Biotechnol. Bioeng. 2011, 108 (11), 2654-2660. 

11. Wei, Y.; Ma, J.; Wang, C. Preparation of high-capacity strong cation exchange 

membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J. 

Membr. Sci. 2013, 427 (0), 197-206. 

12. Singh, N.; Wang, J.; Ulbricht, M.; Wickramasinghe, S. R.; Husson, S. M. Surface-

initiated atom transfer radical polymerization: A new method for preparation of polymeric 

membrane adsorbers. J. Membr. Sci. 2008, 309 (1–2), 64-72. 

13. Schwark, S.; Ulbricht, M. Toward protein-selective membrane adsorbers: A novel 

surface-selective photo-grafting method. Eur. Polym. J. 2012, 48 (11), 1914-1922. 

14. Jain, P.; Vyas, M. K.; Geiger, J. H.; Baker, G. L.; Bruening, M. L. Protein Purification 

with Polymeric Affinity Membranes Containing Functionalized Poly(acid) Brushes. 

Biomacromolecules 2010, 11 (4), 1019-1026. 

15. He, D.; Sun, W.; Schrader, T.; Ulbricht, M. Protein adsorbers from surface-grafted 

copolymers with selective binding sites. J. Mater. Chem. 2009, 19 (2), 253-260. 

16. Chenette, H. C. S.; Robinson, J. R.; Hobley, E.; Husson, S. M. Development of high-

productivity, strong cation-exchange adsorbers for protein capture by graft polymerization 

from membranes with different pore sizes. J. Membr. Sci. 2012, 423–424 (0), 43-52. 

17. Bhut, B. V.; Husson, S. M. Dramatic performance improvement of weak anion-

exchange membranes for chromatographic bioseparations. J. Membr. Sci. 2009, 337 (1–2), 

215-223. 

18. Ghosh, R. Separation of proteins using hydrophobic interaction membrane 

chromatography. J. Chromatogr. A 2001, 923 (1–2), 59-64. 



128 

19. Lienqueo, M. E.; Mahn, A.; Salgado, J. C.; Asenjo, J. A. Current insights on protein 

behaviour in hydrophobic interaction chromatography. J. Chromatogr. B 2007, 849 (1-2), 53-

68. 

20. Chen, J.; Sun, Y. Modeling of the salt effects on hydrophobic adsorption equilibrium 

of protein. J. Chromatogr. A 2003, 992 (1–2), 29-40. 

21. Chen, J.; Cramer, S. M. Protein adsorption isotherm behavior in hydrophobic 

interaction chromatography. J. Chromatogr. A 2007, 1165 (1–2), 67-77. 

22. Xia, F.; Nagrath, D.; Cramer, S. M. Modeling of adsorption in hydrophobic interaction 

chromatography systems using a preferential interaction quadratic isotherm. J. Chromatogr. A 

2003, 989 (1), 47-54. 

23. Nagrath, D.; Xia, F.; Cramer, S. M. Characterization and modeling of nonlinear 

hydrophobic interaction chromatographic systems. J. Chromatogr. A 2011, 1218 (9), 1219-

1226. 

24. Nfor, B. K.; Hylkema, N. N.; Wiedhaup, K. R.; Verhaert, P. D. E. M.; van der Wielen, 

L. A. M.; Ottens, M. High-throughput protein precipitation and hydrophobic interaction 

chromatography: Salt effects and thermodynamic interrelation. J. Chromatogr. A 2011, 1218 

(49), 8958-8973. 

25. Hofmeister, F. Zur Lehre von der Wirkung der Salze. Archiv für experimentelle 

Pathologie und Pharmakologie 1888, 24 (4-5), 247-260. 

26. Zhang, Y.; Cremer, P. S. Interactions between macromolecules and ions: the 

Hofmeister series. Curr. Opin. Chem. Biol. 2006, 10 (6), 658-663. 

27. Schwierz, N.; Horinek, D.; Netz, R. R. Anionic and Cationic Hofmeister Effects on 

Hydrophobic and Hydrophilic Surfaces. Langmuir 2013, 29 (8), 2602-2614. 

28. Naini, C. A.; Thomas, M.; Franzka, S.; Frost, S.; Ulbricht, M.; Hartmann, N. 

Hofmeister Effect of Sodium Halides on the Switching Energetics of Thermoresponsive 

Polymer Brushes. Macromol. Rapid Commun. 2013, 34 (5), 417-422. 

29. Melander, W. R.; Corradini, D.; Horváth, C. Salt-mediated retention of proteins in 

hydrophobic-interaction chromatography : Application of solvophobic theory. J. Chromatogr. 

A 1984, 317 (0), 67-85. 

30. Melander, W.; Horváth, C. Salt effects on hydrophobic interactions in precipitation and 

chromatography of proteins: An interpretation of the lyotropic series. Arch. Biochem. Biophys. 

1977, 183 (1), 200-215. 

31. Perkins, T. W.; Mak, D. S.; Root, T. W.; Lightfoot, E. N. Protein retention in 

hydrophobic interaction chromatography: modeling variation with buffer ionic strength and 

column hydrophobicity. J. Chromatogr. A 1997, 766 (1–2), 1-14. 

32. Roettger, B. F.; Myers, J. A.; Ladisch, M. R.; Regnier, F. E. Adsorption Phenomena in 

Hydrophobic Interaction Chromatography. Biotechnol. Progr. 1989, 5 (3), 79-88. 



129 

33. Arakawa, T. Thermodynamic analysis of the effect of concentrated salts on protein 

interaction with hydrophobic and polysaccharide columns. Arch. Biochem. Biophys. 1986, 248 

(1), 101-105. 

34. Tsumoto, K.; Ejima, D.; Senczuk, A. M.; Kita, Y.; Arakawa, T. Effects of salts on 

protein–surface interactions: applications for column chromatography. J. Pharm. Sci. 2007, 96 

(7), 1677-1690. 

35. Müller, E.; Vajda, J.; Josic, D.; Schröder, T.; Dabre, R.; Frey, T. Mixed electrolytes in 

hydrophobic interaction chromatography†. J. Sep. Sci. 2013, 36 (8), 1327-1334. 

36. Müller, E.; Faude, A. Investigation of salt properties with electro-acoustic 

measurements and their effect on dynamic binding capacity in hydrophobic interaction 

chromatography. J. Chromatogr. A 2008, 1177 (2), 215-225. 

37. Du, H.; Wickramasinghe, R.; Qian, X. Effects of Salt on the Lower Critical Solution 

Temperature of Poly (N-Isopropylacrylamide). J. Phys. Chem. B 2010, 114 (49), 16594-16604. 

38. Du, H.; Wickramasinghe, S. R.; Qian, X. Specificity in Cationic Interaction with 

Poly(N-isopropylacrylamide). J. Phys. Chem. B 2013, 117 (17), 5090-5101. 

39. Du, H.; Qian, X. The Interactions between Salt Ions and Thermo-Responsive Poly (N-

Isopropylacrylamide) from Molecular Dynamics Simulations. In Responsive Membranes and 

Materials; John Wiley & Sons, Ltd., 2012, pp 229-242. 

40. Kuczewski, M.; Fraud, N.; Faber, R.; Zarbis-Papastoitsis, G. Development of a 

polishing step using a hydrophobic interaction membrane adsorber with a PER.C6®-derived 

recombinant antibody. Biotechnol. Bioeng. 2010, 105 (2), 296-305. 

41. Saufi, S. M.; Fee, C. J. Mixed matrix membrane chromatography based on hydrophobic 

interaction for whey protein fractionation. J. Membr. Sci. 2013, 444 (0), 157-163. 

42. Puthirasigamany, M.; Wirges, M.; Zeiner, T. Membrane chromatography for the 

purification of laccase from the supernatant of Pleurotus sapidus. Biochem. Eng. J. 2013, 70 

(0), 180-187. 

43. Mah, K. Z.; Ghosh, R. Paper-based composite lyotropic salt-responsive membranes for 

chromatographic separation of proteins. J. Membr. Sci. 2010, 360 (1-2), 149-154. 

44. Kosior, A.; Antošová, M.; Faber, R.; Villain, L.; Polakovič, M. Single-component 

adsorption of proteins on a cellulose membrane with the phenyl ligand for hydrophobic 

interaction chromatography. J. Membr. Sci. 2013, 442 (0), 216-224. 

45. Wu, Q.; Wang, R.; Chen, X.; Ghosh, R. Temperature-responsive membrane for 

hydrophobic interaction based chromatographic separation of proteins in bind-and-elute mode. 

J. Membr. Sci. 2014, 471 (0), 56-64. 

46. Liu, Z.; Du, H.; Wickramasinghe, S. R.; Qian, X. Membrane Surface Engineering for 

Protein Separations: Experiments and Simulations. Langmuir 2014, 30 (35), 10651-10660. 



130 

47. Yu, D. Q.; Shang, X. J.; Ghosh, R. Fractionation of different PEGylated forms of a 

protein by chromatography using environment-responsive membranes. J. Chromatogr. A 2010, 

1217 (35), 5595-5601. 

48. Wang, L.; Ghosh, R. Feasibility Study for the Fractionation of the Major Human 

Immunoglobulin G Subclasses Using Hydrophobic Interaction Membrane Chromatography. 

Anal. Chem. 2010, 82 (1), 452-455. 

49. Ghosh, R. Fractionation of human plasma proteins by hydrophobic interaction 

membrane chromatography. J. Membr. Sci. 2005, 260 (1-2), 112-118. 

50. Wang, L.; Ghosh, R. Fractionation of monoclonal antibody aggregates using membrane 

chromatography. J. Membr. Sci. 2008, 318 (1-2), 311-316. 

51. Ghosh, R.; Wang, L. Purification of humanized monoclonal antibody by hydrophobic 

interaction membrane chromatography. J. Chromatogr. A 2006, 1107 (1-2), 104-109. 

52. Zhang, R.; Yang, G.; Xin, P.; Qi, L.; Chen, Y. Preparation of poly(N-

isopropylacrylamide)-grafted polymer monolith for hydrophobic interaction chromatography 

of proteins. J. Chromatogr. A 2009, 1216 (12), 2404-2411. 

53. Yu, D.; Chen, X.; Pelton, R.; Ghosh, R. Paper-PEG-based membranes for hydrophobic 

interaction chromatography: Purification of monoclonal antibody. Biotechnol. Bioeng. 2008, 

99 (6), 1434-1442. 

54. Huang, R.; Mah, K. Z.; Malta, M.; Kostanski, L. K.; Filipe, C. D. M.; Ghosh, R. 

Chromatographic separation of proteins using hydrophobic membrane shielded with an 

environment-responsive hydrogel. J. Membr. Sci. 2009, 345 (1-2), 177-182. 

55. Huang, R.; Kostanski, L. K.; Filipe, C. D. M.; Ghosh, R. Environment-responsive 

hydrogel-based ultrafiltration membranes for protein bioseparation. J. Membr. Sci. 2009, 336 

(1-2), 42-49. 

56. Baumann, P.; Baumgartner, K.; Hubbuch, J. Influence of binding pH and protein 

solubility on the dynamic binding capacity in hydrophobic interaction chromatography. J. 

Chromatogr. A 2015, 1396, 77-85. 

57. McCue, J. T. Chapter Five - Use and Application of Hydrophobic Interaction 

Chromatography for Protein Purification. In Methods in Enzymology, Jon, L., Ed.; Academic 

Press, 2014; Vol. Volume 541, pp 51-65. 

58. Boström, M.; Parsons, D. F.; Salis, A.; Ninham, B. W.; Monduzzi, M. Possible Origin 

of the Inverse and Direct Hofmeister Series for Lysozyme at Low and High Salt 

Concentrations. Langmuir 2011, 27 (15), 9504-9511. 

59. Paterová, J.; Rembert, K. B.; Heyda, J.; Kurra, Y.; Okur, H. I.; Liu, W. R.; Hilty, C.; 

Cremer, P. S.; Jungwirth, P. Reversal of the Hofmeister Series: Specific Ion Effects on 

Peptides. J. Phys. Chem. B 2013, 117 (27), 8150-8158. 

60. Schwierz, N.; Horinek, D.; Netz, R. R. Reversed Anionic Hofmeister Series: The 

Interplay of Surface Charge and Surface Polarity. Langmuir 2010, 26 (10), 7370-7379. 



131 

61. Xia, F.; Nagrath, D.; Garde, S.; Cramer, S. M. Evaluation of selectivity changes in HIC 

systems using a preferential interaction based analysis. Biotechnol. Bioeng. 2004, 87 (3), 354-

363. 

62. Ladiwala, A.; Xia, F.; Luo, Q.; Breneman, C. M.; Cramer, S. M. Investigation of protein 

retention and selectivity in HIC systems using quantitative structure retention relationship 

models. Biotechnol. Bioeng. 2006, 93 (5), 836-850. 

63. Chen, J.; Yang, T.; Cramer, S. M. Prediction of protein retention times in gradient 

hydrophobic interaction chromatographic systems. J. Chromatogr. A 2008, 1177 (2), 207-214. 

64. Xia, F.; Nagrath, D.; Cramer, S. M. Effect of pH changes on water release values in 

hydrophobic interaction chromatographic systems. J. Chromatogr. A 2005, 1079 (1–2), 229-

235. 

65. Patra, L.; Vidyasagar, A.; Toomey, R. The effect of the Hofmeister series on the 

deswelling isotherms of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide). Soft 

Matter 2011, 7 (13), 6061-6067. 

66. Himstedt, H. H.; Qian, X.; Weaver, J. R.; Wickramasinghe, S. R. Responsive 

membranes for hydrophobic interaction chromatography. J. Membr. Sci. 2013, 447 (0), 335-

344. 

67. Himstedt, H. H.; Yang, Q.; Dasi, L. P.; Qian, X.; Wickramasinghe, S. R.; Ulbricht, M. 

Magnetically Activated Micromixers for Separation Membranes. Langmuir 2011, 27 (9), 5574-

5581. 

68. Qian, X.; Lei, J.; Wickramasinghe, S. R. Novel polymeric solid acid catalysts for 

cellulose hydrolysis. RSC Adv. 2013, 3 (46), 24280-24287. 

69. Maeda, Y.; Nakamura, T.; Ikeda, I. Hydration and Phase Behavior of Poly(N-

vinylcaprolactam) and Poly(N-vinylpyrrolidone) in Water. Macromolecules 2001, 35 (1), 217-

222. 

70. Laukkanen, A.; Valtola, L.; Winnik, F. M.; Tenhu, H. Formation of Colloidally Stable 

Phase Separated Poly(N-vinylcaprolactam) in Water:  A Study by Dynamic Light Scattering, 

Microcalorimetry, and Pressure Perturbation Calorimetry. Macromolecules 2004, 37 (6), 2268-

2274. 

71. Hou, L.; Wu, P. LCST transition of PNIPAM-b-PVCL in water: cooperative 

aggregation of two distinct thermally responsive segments. Soft Matter 2014, 10 (20), 3578-

3586. 

72. Meeussen, F.; Nies, E.; Berghmans, H.; Verbrugghe, S.; Goethals, E.; Du Prez, F. Phase 

behaviour of poly(N-vinyl caprolactam) in water. Polymer 2000, 41 (24), 8597-8602. 

73. Moolenaar, R. J.; Evans, J. C.; McKeever, L. D. Structure of the aluminate ion in 

solutions at high pH. J. Phys. Chem. 1970, 74 (20), 3629-3636. 

74. O'Reilly, D. E. NMR Chemical Shifts of Aluminum: Experimental Data and Variational 

Calculation. J. Chem. Phys 1960, 32 (4). 



132 

75. Fu, H.; Hong, X.; Wan, A.; Batteas, J. D.; Bergbreiter, D. E. Parallel Effects of Cations 

on PNIPAM Graft Wettability and PNIPAM Solubility. ACS Appl. Mat. Interfaces 2010, 2 (2), 

452-458. 

76. Guendouzi, M. E.; Mounir, A.; Dinane, A. Water activity, osmotic and activity 

coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, 

NiSO4, CuSO4, and ZnSO4 at T=298.15 K. J. Chem. Thermodyn. 2003, 35 (2), 209-220. 

77. Lide, D. R. Handbook of Chemistry and Physics; 89th ed.; CRC Press: Boca Raton, FL, 

2008. 

78. Haimer, E.; Tscheliessnig, A.; Hahn, R.; Jungbauer, A. Hydrophobic interaction 

chromatography of proteins IV: Kinetics of protein spreading. J. Chromatogr. A 2007, 1139 

(1), 84-94. 

79. Gavish, B.; Gratton, E.; Hardy, C. J. Adiabatic compressibility of globular proteins. 

PNAS 1983, 80 (3), 750-754. 

80. Thakkar, S. V.; Joshi, S. B.; Jones, M. E.; Sathish, H. A.; Bishop, S. M.; Volkin, D. B.; 

Middaugh, C. R. Excipients differentially influence the conformational stability and 

pretransition dynamics of two IgG1 monoclonal antibodies. J. Pharm. Sci. 2012, 101 (9), 3062-

3077. 

 



133 

 

Chapter 4 The Effects of Polymer Architecture on Responsive Hydrophobic Interaction 

Membrane Chromatography  

Abstract 

In this paper, comb-like salt-responsive copolymers have been successfully grafted on 

regenerated cellulose (RC) membranes (pore size 0.45 µm) as ligands for membrane-based 

hydrophobic interaction chromatography (HIC). Poly (hydroxylethyl methacrylate) (poly 

(HEMA)) primary brushes were grafted directly on RC membrane substrate followed by the 

grafting of secondary responsive HIC ligands, poly (N-vinylcaprolactam) (PVCL). Atom-

transfer radical polymerization (ATRP) was used to control the polymer chain length and 

chain density of both the primary and secondary polymer brushes. Our results show that both 

primary and secondary polymer chain length and chain length as well as the overall 

architecture have a significant impact on protein binding and recovery. Our results 

demonstrate that  bovine serum albumin binding capacity and recovery are highest for 

membranes grafted with short primary poly (HEMA) chains. Long or high density primary 

poly (HEMA) chains exhibit a reduced binding capacity and recovery. BSA isotherm follows 

Freundlich model suggesting a multi-layer adsorption. 

 

4.1 Introduction 

Biopharmaceuticals represent a large and growing market in the pharmaceutical 

industry. The large demand for biopharmaceuticals heightens the need for a more efficient 

and consistent manufacturing process. In the past 20-30 years, the increasing product titer has 

shifted the bottleneck of manufacturing from upstream fermentation to downstream 

purification1, 2, 3. Depending on the processes, the downstream processing cost could 

contribute to up to 80% of the total manufacturing cost4. The efficiency of the downstream 
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processing largely depends on the chromatographic unit operations, which typically includes 

an initial capture step using affinity chromatography followed by 1-2 polishing steps with ion 

exchange, hydrophobic interaction or multi-modal chromatography. Packed bed column 

chromatography has become the workhorse of the chromatographic steps in industry for 

many years. However, resin-based packed bed column system suffers from low operating 

flow rate due to the slow pore diffusion, large buffer consumption and extra packing and 

validation costs. Therefore, significant efforts have been devoted to looking for alternatives to 

packed bed column chromatography. 

Membrane adsorbers or adsorptive membranes are macroporous membranes 

functionalized with ligands on the surface. Membrane adsorbers have been developed to 

replace packed bed columns. In a packed bed column system, the slow pore diffusion, also 

known as channeling effect, is the major bottleneck for increasing the flow rate without 

losing the binding capacity. The macroporous structure of membranes eliminates the slow 

pore diffusion process during protein binding to ligands. Consequently, many studies have 

shown that the dynamic binding capacity of membranes is independent of a wide range of 

flow rate5, 6, 7. As a result, membrane adsorbers can be run at much high flow rates, which 

means higher productivity as well as lower possibility of fouling and product degradation. In 

addition, membranes have many other advantages over packed bed columns, including less 

buffer usage, no extra packing and validation cost, single-use and ease of scale-up. However, 

the main drawback of membrane adsorbers is the low capacity because of its lower surface 

area per volume compared to resins. Commercialized membrane adsorbers have been used 

mainly in a flow-through mode8 after the protein A chromatographic purification step to 

remove low-level containments such as protein aggregates9, viruses10, 11 and DNAs11, 12. More 

recently, high capacity membrane adsorbers have been developed either by increasing the 
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surface area of base membrane matrices13 or using polymeric ionic exchange or multi-modal 

ligands14, 15.  

Hydrophobic interaction chromatography (HIC) has been used extensively in the 

polishing step of downstream chromatographic processes. HIC is considered to be an 

orthogonal unit operation to protein A and ion-exchange chromatography. Protein binds to 

HIC ligands under high salt concentration buffer and elution is conducted under low salt 

concentration buffer. Additives, such as ethanol, detergents and chaotropic salts, are 

commonly used to promote protein elution or ligand regeneration16. Compared to protein A 

or ion-exchange chromatography, the capacity of HIC is generally 2-3 times lower (DBC10% 

< 40 mg/mL)17. Thus, HIC is widely used for aggregates removal in a flow-through mode 

since aggregates are typically more hydrophobic than monomeric antibodies and the total 

impurity level is rather low after protein A affinity step. Previous studies on HIC mainly 

focused on its performance under different conditions, including salt, pH and temperatures1, 

18, 19, 20, 21. There is very little study on HIC ligand effects, such as chain length and chain 

density since most HIC ligands are monomers or polymers grafted with uncontrollable free 

radical polymerization. In addition, most HIC studies were conducted under isocratic elution 

with limited bind-and-elute investigations on ligand effects.  

Previously, we have developed responsive HIC membranes with poly (N-

vinylcaprolactam) (PVCL) as salt responsive ligands22. PVCL is a thermo-responsive 

polymer which has a LCST ranging from 30-50oC depending on its molecular weight and 

concentration23, 24. Our previously developed responsive HIC membranes have demonstrated 

binding capacity and protein recovery specificity to salt ion type and salt ion concentration. 

However, the effects of polymer grafting chain length and chain density on protein binding 

and recovery have not been investigated and optimized. Although our previous work 

investigated the ligand density effect by varying the initiation reaction time, the grafting 
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degree and binding capacity show limited improvement22. In addition, the ligand density 

effect on protein binding and recovery was investigated for PVCL polymers grafted on 

membrane substrate directly. Earlier results suggest that the low binding capacity of HIC is 

due to the low ligand density grafted25. Therefore, there is a need to increase the ligand 

density controllably and systematically. To the best of our knowledge, this is the first work 

on investigating three-dimensional architecture of HIC polymeric ligand on protein binding 

and recovery.  

In the past decades, atom transfer radical polymerization (ATRP) has been widely 

investigated to achieve high capacity6, 26, 27, high selectivity28 and high recovery22 membrane 

adsorbers. ATRP is superior to other uncontrolled radical polymerization methods due to its 

better control on polymer chain length and chain density29, 30. In addition, block polymers 

with various specific structures were synthesized via ATRP. The polymer architecture 

synthesized includes star-shaped, comb-like, cyclic copolymers29. Comb-like polymer is one 

of the emerging polymeric ligands that has been synthesized as affinity ligands for lectin 

binding31, 32, thermo-responsive polymers33, 34, 35, 36, 37, ion-exchange ligands38, colorimetric 

sensors39 and polymers brushes for anti-fouling purposes40. Comb-like polymer architecture 

has been used to increase the number of binding sites leading to an improved capacity for 

protein binding. Ulbricht et.al has shown that dynamic binding capacity increased more than 

3 times using the 3-D comb-like ligands for lectin binding31. Baker et.al incorporated comb-

like copolymers in the multilayer polyelectrolyte films with 2-4 folds of enhancement in 

capacity for protein binding38. Comb-like PNIPAM has been successfully modified by ATRP 

on the macroporous polypropylene membrane35, PTFE membrane36 and beads34. Wang et.al 

developed a comb-like multimodal ligand grafted on regenerated cellulose membranes15. The 

measured ion-exchange capacity of grafted ligands increased 3-4 times compared to that of 

commercialized resin, particularly achieving very high IgG binding capacity. As shown in 
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Figure 4.1, we have also designed comb-like ligands involving both primary and secondary 

polymer chains to increase the ligand density in a more effective and controllable way via 

ATRP. The HIC PVCL ligands are grafted from the primary polymer chains. The polymer 

chain density of PVCL can be controlled by the grafting condition of the more easy to grow 

primary polymer. Recently, Macro et.al has developed dendritic butyl HIC ligands 

immobilized on resins with improved grafting density and capacity25. However, only two 

branching degrees of the dendritic ligands were investigated in their study. As far as we 

know, we are the first to use the comb-like polymers as HIC ligands for membrane adsorbers. 

We are also the first one to use a controlled polymerization method to investigate the effects 

of HIC polymeric ligands with a 3-D architecture on protein binding capacity and recovery. 

 

Figure 4.1 Scheme of comb-like PVCL ligand compared to old PVCL ligand. Backbone 

density (1) and length (2) are varied by HEMA initiator concentration and ATRP time of 

HEMA. The density of PVCL (3) on each backbone is varied by VCL initiator concentration. 

 

The major variables in ATRP modification condition to synthesize these comb-like 

brushes include the concentrations of ATRP initiator BIB (Figure 4.2a), primary monomer 

HEMA (Figure 4.2b) and secondary HIC monomer VCL (Figure 4.2c) as well as various 

reaction time. 2-hydroxyethyl methacrylate (HEMA)31, 32, 35 is used as a primary monomer 

here because it has a reactive hydroxyl group that can be used to initiate the grafting of the 
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secondary polymers. Moreover, grafting poly (HEMA) on membrane substrate has been well 

studied with well-controlled grafting degrees41, 42, 43.  Figure 4.3 represents the reaction 

scheme for grafting comb-like ligands from RC membrane surface. The poly (HEMA) brush 

density and the 2nd PVCL brush density were varied by initiation reaction condition. The 

impacts of the ligand architecture on protein binding, which includes primary chain density 

and chain length of poly (HEMA) as well as the secondary chain density of PVCL, were 

investigated systematically by dynamic protein binding studies. AFM and contact angle 

measurements of modified membranes were used to correlate surface properties with the 

binding results. At last, bovine serum albumin isotherms were fitted with Freundlich model to 

provide some insights on the binding mechanism. 

 

Figure 4.2 Structure of ATRP initiator, BIB (a), primary monomer, HEMA (b) and 

secondary HIC monomer, VCL (c). 

 

4.2 Materials 

N-Vinylcaprolactam (98%), 2-Hydroxyethyl methacrylate (98%), 2-Bromo-2-

methylpropionyl bromide (BIB, 98%), 4-(dimethylamino) pyridine (DMAP, ≥99%), copper 

(I) chloride≥99.995%), copper (II) chloride (≥99.995%) and N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA, 99%) were purchased from Sigma Aldrich (St. 

Louis, MO). Triethylamine (TEA, ≥99%) was obtained from Alfa Aesar (Ward Hill, MA). 

Methanol (99.8%) and acetonitrile (99.8%) were obtained from EMD Chemicals (Billerica, 

MA). Boric anhydride was purchased from Avantor Performance Materials (Center Valley, 

PA). Anhydrous acetonitrile was obtained by distilling acetonitrile with boric anhydride. 
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Ammonium sulfate (≥99.0%) was bought from Macron™ Fine Chemicals (Center Valley, 

PA). Regenerated cellulose membranes (0.45 μm pore size, RC55, 50 mm diameter) were 

purchased from GE Healthcare (Pittsburgh, PA). Bovine serum albumin (BSA) (>99 %, pI 

4.7, 66 kDa) was obtained from Avantor Performance Materials (Center Valley, PA).  

4.3 Experimental 

4.3.1 Membrane Surface Modification 

Atom transfer radical polymerization (ATRP) Membranes were modified through surface-

initiated ATRP as previously reported by our earlier studies22, 28, 41, 44. Regenerated cellulose 

(RC) membranes were first immobilized with ATRP initiator 2-bromoisobutyryl bromide 

(BIB) in acetonitrile for 3 hours. The ATRP for the primary poly (HEMA) chains was 

conducted in the methanol/water solvent mixture with HEMA (monomer, 0.5 M), copper (I) 

chloride, copper (II) chloride, bipyridine (Bpy). The mole ratio among HEMA: CuCl: CuCl2: 

Bpy is 200:1:0.4:3.5. Methanol/water mixture (1:1, v/v) was used as the polymerization 

solvent. ATRP solution was first degassed with argon for 15-20 min before CuCl and CuCl2 

were added. Flasks attached in Schlenk line containing initiator immobilized membranes 

were de-oxygenated by vacuum and back-filled with argon three times. At last, the reaction 

mixture was transferred to the flasks by a syringe. After the predetermined polymerization 

time, membranes were first rinsed with methanol/water mixture (1:1, v/v) three times and 

then washed with DI water overnight. After membranes were dried in vacuum, the second 

initiation for grafting the secondary PVCL polymer was carried out with various 

concentrations of BIB. At last, ATRP of N-vinylcaprolactam (VCL) monomer (1 M) solution 

was conducted for 4 hours in methanol/water mixture (v/v 1:1). ATRP solution was 

comprised of copper (I) chloride, copper (II) chloride, ligand N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA). The mole ratio among VCL: CuCl: CuCl2: 
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PMDETA is 200:1:0.2:2. The schematic of the modification procedure is shown in Figure 

4.3. 

 

Figure 4.3 Modification scheme of comb-like PVCL through ATRP. Except for the 2nd 

ATRP for grafting PVCL, the initiation conditions as well as the 1st ATRP for grafting poly 

(HEMA) were varied accordingly to investigate PVCL chain density effect. 

4.3.2 Membrane Surface Characterization 

Attenuated total reflection- Fourier transform infrared spectroscopy (ATR-FTIR) ATR-

FTIR provides a qualitative characterization of the functional groups on the grafted polymer. 

ATR-FTIR measurements were performed using IRAffinity (Shimadzu, MD) with a 

horizontal ZnSe accessary. Membranes were scanned in the 1000-2000 cm-1 wavenumber 

range for a total of 50 scans with a 8 cm-1 resolution. The data were processed by first 

subtracting the background and being normalized at the same 0-1 scale for comparisons. 

Contact Angle  Membrane surfaces were also characterized by contact angle 

measurements. The instrument has an optical angle meter (OCA 20, Future Digital Scientific 

Corp., NY) and a dosing needle. Membranes were cut into small pieces and pasted on a glass 

chip with a double side tape. Sessile drop method was used for the characterization. A liquid 

drop was placed on the membrane surface and the image of the drop was recorded by camera 

for later analysis. The dosing volume of the solvent is 2 µL. The results for each membrane 

were averaged with at least 3 measurements at random locations. 

Atomic Force Microscopy (AFM)  Surface morphology and roughness of the modified 
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membranes were characterized by AFM (Dimension Icon, Bruker Corporation, MA) with 

Bruker's sharp nitride lever (SNL-10c) probes in liquid. ScanAsyst mode (in liquid) was used 

to image the morphology of membranes at room temperature in water. The scan rate is set at 

1 Hz with a resolution of 256 samples per line. After scanning, the image is processed with a 

third order flatten command with Bruker’s nanoscope analysis program. Roughness was then 

calculated by the nanoscope analysis program after the flatten command. 

4.3.3 Protein Binding Studies 

Dynamic Binding Studies The method of dynamic binding studies was developed with the 

Unicorn software v. 5.31 to automate the BSA binding and elution experiments as previously 

discussed22. The 1 mg/mL bovine serum albumin (BSA) solutions were prepared for dynamic 

binding tests. All the buffer and protein solutions were filtered through 0.22 μm nylon 

membrane before the dynamics binding tests. A set of four membranes (total bed volume 

0.08 mL) was loaded into a stainless steel flow cell (Mustang Coin ® module, Pall 

Corporation) with two flow distributers to ensure a uniform flow across all of the membranes. 

All runs were conducted by using ÄKTA FPLC from GE Healthcare Bio-Sciences Corp. 

More specifically, the membrane stack was first wetted with buffer B (elution buffer, 20 mM 

Na2HPO4) in the reverse flow configuration over 5 minutes by an increasing the flow rate 

from 0.2 mL/min to 1.0 mL/min in 0.2 mL/min increment. Next, the membrane stack was 

equilibrated in the forward flow configuration in the buffer A (adsorption buffer, 1.8 M 

(NH4)2SO4) at 1 mL/min for 10 minutes. Then 1 mg/mL protein solution was loaded onto the 

membrane stack at a flow rate of 1 mL/min for 10 minutes. Unbound proteins were 

subsequently washed from the membranes using the buffer A (adsorption buffer, 1.8 M 

(NH4)2SO4) for 10 minutes at 1 mL/min, followed by a step change of running buffer B 

(elution buffer, 20 mM Na2HPO4) through the membrane at 1 mL/min. The run ended when 

the UV absorbance at 280 nm becomes stable. The washing fraction (includes loading 
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fraction) and elution fraction were collected and their volumes were determined accordingly. 

Protein concentrations in the sample solution, washing fraction, and elution fraction were 

calculated through UV absorbance at the wavelength of 280 nm. 

 

4.4 Results and Discussion 

4.4.1 Comb-like PVCL 

The primary polymer chain poly (HEMA) was first grafted on RC membranes by 

ATRP after initiator BIB immobilization on the membrane substrate. The initiator 

concentration and ATRP polymerization time were varied to control the initiator density and 

polymer chain length. The degree of grafting (DG, g/cm2) was calculated based on the 

following equation:  

(1) 

where W0 and W1 are the weight of the membrane before and after ATRP respectively. Spec 

represents the specific area of the membrane (6.3 m2/g was used in this study based on the 

recommendation by the manufacturer). DG results for poly (HEMA) modified membranes 

are shown in Figure 4.4. HEMA polymerization rate is relatively fast in the first hour and 

then polymer grows at a slower but steady rate leading to a linear DG increase after 1 h. The 

rapid growth of poly (HEMA) at the first hour is probably due to the high monomer and Cu 

(I) concentrations relative to the available initiation sites at the beginning of the ATRP 

reaction. As reported before for ATRP, the polydispersity of the chain is usually higher at 

beginning30. Once the equilibrium between Cu (I) and Cu (II) is established and the 

concentration of monomer is reduced, the polymerization rate is more stable following a 

linear growth period. Overall, membranes modified under high initiator concentration (160 
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mM) have a higher and faster growth of DG than membranes modified under low initiator 

concentration (40 mM). It should be pointed out that the growth rate for high density poly 

(HEMA) is less than twice of that for low density chain even though there is 4 times increase 

in the corresponding initiator concentration. This indicates that the initiator immobilization is 

not 100% effective due to limited availability of initiation sites on membrane substrate and/or 

that there is significant chain termination at the beginning of the polymerization due to the 

proximity of chains at high density case. However, our results show that the primary poly 

(HEMA) chain density and chain length can be effectively controlled by varying the initiator 

concentration and polymerization time respectively.   

 

Figure 4.4 Grafting degree of poly (HEMA) under two initiator concentrations (40 mM and 

160 mM) and four different polymerization times (1-4 h). 

After the primary polymer chain poly (HEMA) was grafted on RC membranes, the 2nd 

initiation for ATRP was conducted using 160 mM BIB initiator concentration. Figure 4.5 

shows the grafting density of immobilized the 2nd initiator under different poly (HEMA) 

chain length and density measured by the increase in weight after and before 2nd initiator 
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immobilization reaction. It can be seen that the 2nd initiator grafting density increases as the 

poly (HEMA) chain density increases even though the increase is somewhat small measured 

by the slope.  This indicates that the 2nd initiators have successfully reacted with the hydroxyl 

groups on poly (HEMA). It also can be seen that membranes with longer poly (HEMA) 

chains (1 h ATRP) have a more steep increase of 2nd BIB grafting degree compared to the 

shorter poly (HEMA) chains (15 min ATRP). This is expected because longer poly (HEMA) 

chain has more hydroxyl groups to react. It is also interesting to note that with even higher 

poly (HEMA) density at 200 mM of the 1st initiator concentration (not shown), the 2nd BIB 

grafting density actually decreased to 2.3 and 5.6 µg/cm2 for 15 min and 1 h ATRP of HEMA 

respectively from the corresponding values at 3.5 and 8 µg/cm2 with 80 mM 1st BIB 

concentration. When poly (HEMA) chain density is too high, the stronger interaction and 

intertwining of the polymers make the initiator hard to reach due to steric hindrance and 

increased reaction barrier. The increase reaction barrier is caused by the formation of strong 

hydrogen bonds between the hydroxyl groups when the density of polymer chains becomes 

high.  
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Figure 4.5 The effects of the primary polymer poly (HEMA) chain density and chain length 

on the grafting density of the 2nd initiation reaction 

 

In order to further quantify the effectiveness of the modification process, conversion 

yields were determined. Conversion yields were calculated by the percentage of the number 

of second initiator immobilized with respect to the number of hydroxyl groups on the 

poly(HEMA) chain. It is plotted in Figure 4.6. The results indicate that the yield is strongly 

dependent on the 2nd initiator concentration. The conversion of the reaction shows a slight 

decrease as the density of the primary polymer poly (HEMA) increases. This is more evident 

in the 200 mM BIB condition for the second initiation process. As was discussed earlier, 

higher poly (HEMA) density actually hinders the initiation reaction due to increased reaction 

barrier and steric hindrance. In addition, as the number of hydroxyl group increases, it is also 

likely the initiation reaction is limited by the availability of initiator. Overall, the yields of the 

2nd initiation reaction are approximately 15%, 45% and 80% at 10 mM, 160 mM and 200 mM 

of second BIB initiator concentrations respectively. The second initiator BIB concentration of 
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200 mM was used for the subsequent studies since it gives the highest yield of conversion. 

Again, these results demonstrate the feasibility of controlling the primary poly(HEMA) chain 

and secondary PVCL chain densities by varying the BIB concentration used in the reaction. 

 

Figure 4. 6 Conversion of hydroxyl group to alkyl bromide in the 2nd initiation reaction. 

Black, red and blue represent 10 mM, 160 mM and 200 mM concentrations of BIB used for 

the secondary initiation reaction. 

 

Once the second initiation was completed, ATRP was conducted for grafting PVCL 

on the primary poly (HEMA) ligands on the RC membranes. The ATRP time was kept at 4 h 

for all investigations here. As shown in Figure 4.7 (a), the DG of PVCL grafted on RC 

membranes increases with the increase of the DG of poly (HEMA) indicating the successful 

grafting of secondary polymer PVCL from the primary poly (HEMA) backbone. It can be 

seen that the low density (LD, 40 mM BIB) poly (HEMA) modified membranes have a more 

rapid PVCL DG growth during 1-4 h of ATRP than that of the high density (HD, 160 mM 

BIB) ones during the same ATRP time. PVCL grafted on the LD primary poly(HEMA) 

polymer chains follows an exponential growth mode indicating a first order reaction with 
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regard to the chain density of poly(HEMA) (~ k1[poly(HEMA)]2+k2[poly(HEMA)]). On the 

other hand, PVCL chains grown on HD poly(HEMA) follow a logarithmic growth mode 

indicating a second order reaction with regard to the density of primary poly(HEMA) 

polymer chains (~ k1[poly(HEMA)] + k2[poly(HEMA)]-1). One of the possible explanations 

for the polymer growth behavior is that chain termination reaction for PVCL is more likely to 

happen when the primary poly (HEMA) chain density is higher. As discussed earlier, high 

primary chain density can lead to steric hindrance for initiator immobilization and an 

increased reaction barrier for the initiation reaction as the strong hydrogen bonding 

interaction between the –OH groups could occur. These results suggest that the density of 

primary poly (HEMA) chains can have a significant impact on the polymerization of the 

secondary PVCL chains.  

The effects of BIB concentration for the second initiation reaction on PVCL 

polymerization were also investigated on a chosen grafted primary poly(HEMA) chains as 

shown in Figure 4.7 (b). ATRP time for all the initiator concentrations was kept constant at 4 

h. The results show the DG of PVCL increases with initiator concentration until it reaches a 

plateau corresponding to possibly a maximum density of PVCL on the chosen primary 

polymer chains. The results indicate again that a higher chain density, the possibility for 

chain termination leads to a slow-down in the polymerization reaction.  Again, the results 

indicate the grafting density can be effectively controlled by varying the concentration of BIB 

initiator. 
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Figure 4.7 Degree of grafting for PVCL as a function of backbone length and density (a) and 

2nd BIB concentration (b) 

 

Figure 4.8 shows ATR-FTIR of unmodified, poly (HEMA) modified and comb-like 

PVCL modified membranes. Compared to unmodified membrane, the poly (HEMA) 

modified membrane exhibits a peak at around 1724 cm-1, which is from the C=O stretch of 
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the ester bond from the grafted poly (HEMA). The presence of this ester peak indicates the 

successful modification of the primary poly (HEMA) polymer on membrane substrate. For 

comb-like PVCL modified membrane, the presence of the amide C=O stretch peak at 1630 

cm-1 indicates the successful grafting of the secondary PVCL polymer on the primary chains.  

In addition, the disappearance of the hydroxyl group at 3000 cm-1 also confirms the grafting 

of PVCL. Overall, our ATR-FTIR spectra further demonstrate our two-step comb-like 

modification is successful. 

 

Figure 4.8 ATR-FTIR spectrum of unmodified RC membrane, poly (HEMA) and poly 

(HEMA)-r-PVCL modified membranes. 

 

Table 4.1 summarizes the dynamic binding capacity and recovery under different 

primary poly(HEMA) modification conditions. For all the studies shown in the table, PVCL 

polymerization time is kept at 4 h with the same initiator immobilization condition (200 mM 

2nd BIB). Binding capacity and recovery are plotted in Figure 4.9 as a function of PVCL 

chain grafting density. It can be seen that DG has been improved 10-50 times compared to 
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the DG value when PVCL chains are directly grafted on membrane substrate. However, the 

improvement for dynamic binding capacity is generally less than 2 times. Instead, a slight 

decrease in DBC has been observed with the increase of DG for membranes grafted with 

comb-like polymer architecture. The results show that unlike polymeric ion-exchange 

ligand45, the relationship between DG of PVCL chains and DBC is not simply linear. 

Moreover, as it can be seen from Figure 4.9b that recovery has clearly shown a decrease 

when DG increases. As schematically shown in Figure 4.10, four different scenarios were 

proposed to illustrate the effects of grafted polymer architecture on DBC. Short poly 

(HEMA) chains (case I, III) give better improvement of capacity at around 12 mg/mL while 

maintaining the recovery close to 80%. On the other hand, long and high density poly 

(HEMA) chains (case IV) have a lower capacity of about 9 mg/mL while protein recovery is 

only at 60-70%. The capacity for low density and long chains (case II) remains at 11-12 

mg/mL whereas recovery reduces to about 70%. Our previous results show that grafting 

degree of PVCL is generally less than 1% when grafted directly on RC membrane substrate. 

Moreover, our earlier data indicate that higher grafting degree results in higher dynamic 

binding capacities. The best performance for DBC is around 7 mg/mL and for recovery is 

over 96% when PVCL DG is about 0.2 g/cm2.  In the case of grating these comb-like block 

copolymers on RC membrane substrates, it is possible to increase the PVCL grafting degree 

to over 10%. BSA binding capacity reaches 12 mg/mL when the grafting degree is around 2 

g/cm2 with a reduced recovery of about 80%. Further increase in DG results in a significant 

reduction in capacity and further reduction in recovery.   These results suggest that significant 

steric hindrance could occur for long primary poly(HEMA) polymer chains. Steric hindrance 

not only affects the binding capacity, but also recovery particularly during dynamic binding 

test when kinetics plays a critical role. In conclusion our results suggest that short and 
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relatively dense primary polymer chains give the best capacity and recovery for dynamic 

binding test of BSA for these comb-like PVCL ligands. 

Table 4.1 Backbone density and length effects on dynamic binding capacity and recovery 

HEMA Initiator 

(mM) 

HEMA 

Polymerization 

Time (h) 
PVCL (µg/cm

2

) DBC (mg/mL) 
Recovery 

(%) 

10 0.25 1.8 11.9±0.4 80±3 

10 1 5.1 11.6±0.6 68±4 

10 4 8.7 9.1±0.9 63±4 

20 1 6.7 10.1±0.7 69±4 

20 4 9.8 10.2±0.5 64±4 

40 1 7.0 10.4±0.6 66±3 

80 0.25 2.1 12.6±0.3 78±3 

80 1 7.9 9.5±0.4 61±3 

Linear PVCL  0.2 6.9±0.3 96±3 
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Figure 4.9 Dynamic binding capacity (a) and recovery (b) as a function of PVCL grafting 

density. 
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Figure 4.10 Backbone density/length effect on capacity and recovery. 

We have characterized primary poly (HEMA) modified membrane surfaces in water 

with AFM at room temperature (Figure 4.11). Compared to the unmodified regenerated 

cellulose membrane, high density (160 mM BIB) or long chain (4 h ATRP) modified 

membranes show much less pore structure. The membrane pores are likely to be covered with 

grafted polymers as shown in Figure 4.11 a-d. The roughness for the membrane surfaces (10 

µm × 10 µm) also shows an evident change of the surface morphology after modification 

(Figure 4.12). The longer the ATRP time of poly(HEMA), the higher the roughness values 

are. The blockage of the pore structure can cause reduced protein binding as well as 

decreased recovery because of the difficulty for protein to reach the bind sites and to elute out 

once they are bound.  
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Figure 4.11 AFM results of unmodified membrane and comb-like PVCL modified 

membranes (a-d, 160mM BIB and 1,2,3 and 4h ATRP of HEMA; e-h, 40 mM BIB and 

1,2,3,4 h ATRP of HEMA). 

 

Figure 4.12 Root mean square roughness (Rq) analysis of the comb-like modified 

membranes. 

Besides investigating the effects of the chain density and chain length of grafted 

primary poly(HEMA) chains, the effects of membrane pore size on protein binding and 
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recovery were also studies.  RC membranes with 1 µm and 0.45 µm pore sizes were modified 

with 15 min ATRP time of HEMA in order to prevent any possible blockage of pores after 

modification. Overall, the DG of poly (HEMA) and PVCL for 1 µm pore size membrane is 

about half of the DG for 0.45 µm pore size at the same initiator immobilization and 

polymerization conditions as shown in Table 4.2. This is probably due to the fact that the 

total surface area of 1 µm membrane is less than 0.45 µm membrane. To our surprise, the 

recovery for 1 µm pore size RC membrane is even lower than that for the 0.45 µm pore size 

membrane. The contact angle of water for these two membranes further confirmed that 1 µm 

pore size membrane is more hydrophobic, which explains the low recovery results. The 

responsiveness of 1 µm pore size membrane to the presence of salt ions, measured by the 

contact angle differences between DI water and 1.8 M (NH4)2SO4 salt solution, is found to be 

less  ( < 2o) than that (~ 6o) of the 0.45 um pore size membrane at the same conditions. 

Moreover, the contact angles in both DI water and salt solution for the 1 m modified RC 

membrane are much higher than the corresponding ones for the 0.45 m modified RC 

membrane.  As is known, that the LCST of PVCL is strongly dependent on the molecular 

weight of the polymer chains23. Higher molecular weight chains tend to have a reduced 

LCST. Since it is easier for molecules to diffuse through larger pores and that there is less 

crowding effect in larger pores, it is likely that the molecular weight of the PVCL chains 

grafted on 1 m RC membrane is higher than the corresponding 0.45 m one even though the 

grafting degree is lower.  As a result, the PVCL chains are more hydrophobic when grafted 

on the 1 m pore size membrane.  
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Table 4.2 Membrane pore size effects on binding capacity and recovery. Grafting degrees are 

normalized by the weight of unmodified membranes. 

Pore 

size 

HEMA 

ATRP 

[HEMA 

BIB] 

DG 

HEMA 

(g/g) 

DG 

BIB 

(g/g) 

DG 

PVCL 

(g/g) 

DBC 

(mg/mL) 

Recovery 

(%) 

Contact Angle 

Water 

1.8M 

(NH4)2SO4 

1 µm 15 min 

10 mM 6.6 6.6 10.8 7.4 27% 109.0o 110.4 o 

80 mM 7.5 8.1 13.6 7.5 13% 114.3 o 116.2 o 

0.45 

µm 

15 min 

10 mM 11.3 11.6 19.6 11.9 80% 98.2 o 104.6 o 

80 mM 13.2 13.5 23.7 12.6 78% 96.2 o 102.2 o 

 

In addition, the effects of grafted secondary PVCL chain density on protein binding 

and recovery were also investigated. As shown in Table 4.3, the 2nd initiator concentration for 

grafting PVCL varies from 10 mM to 160 mM while the primary polymer chain grafting 

conditions (10 mM BIB and 0.25 h ATRP for grafting poly (HEMA)) were kept the same. 

The corresponding DG value of grafted PVCL increases from 1.14 to 2.21 m/cm2. Dynamic 

binding capacity also increases as the DG of PVCL increases, while the recovery shows a 

slight decline from 96% to 80%. From the contact angle measurement results under 1.8 M 

(NH4)2SO4 solution, it shows that the higher the density of PVCL, the higher the contact 

angle indicating the surface is more hydrophobic at higher density leading to a higher binding 

capacity. This study shows that there is likely a trade-off between the dynamic capacity and 

recovery. Similar results have also been observed in our previous work for linear PVCL 

grafted RC membranes22. It is likely that when PVCL density is high, steric hindrance limits 

the mobility of the proteins leading to a lower recovery during dynamic binding tests. Based 

on our results, the initiator concentration for grafting PVCL needs to be kept below 80 mM if 

the required recovery is above 90%. 
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Table 4.3 PVCL polymer chain density effect on binding capacity and recovery at the same 

the grafting conditions (10 mM BIB and 0.25 h ATRP for grafting poly (HEMA)) for the 

primary poly(HEMA) chains on 0.45 m pore size RC membranes   

VCL initiator 

(mM) 

DG PVCL 

(µg/cm2) 
DBC (mg/mL) Recovery (%) 

Contact Angle 

(1.8 M 

(NH4)2SO4) 

10 1.14 8.4 96 101.6 ± 1.0 

20 1.37 8.8 96 104.0 ± 0.6 

40 1.83 9.0 93 104.4 ± 1.7 

80 2.05 9.1 84 105.5 ± 0.8 

160 2.11 11.7 80 108.0 ± 0.3 

 

In order to further explore the binding mechanism of our comb-like responsive PVCL 

ligands, the BSA binding isotherms were determined based on static protein adsorption 

studies. The results were fitted with the Freundlich adsorption model (Eq 2), where qe is the 

binding capacity at the protein equilibrium concentration Ce. KF and 1/n are fitting 

parameters for a given adsorbant. 

log qe =log KF +1/nlogCe                 (2) 

Unlike the linear PVCL which fits well with the Langmuir model, Freundlich model fits 

much better here for the comb-like PVCL ligands binding isotherm. Freundlich model has 

been widely applied to the highly interactive species adsorbed on the activated carbon or 

molecular sieves46, 47, 48. It is also known as an empirical model applied to the multi-layer 

adsorption with a heterogeneous surface46, whereas Langmuir model assumes monolayer 

adsorption. Therefore, the multi-layer adsorption is very likely to happen for our comb-like 

ligands, although not all the sites are available for BSA binding. As shown in Table 4.4, the 

slope of the fitting line (1/n) indicates the heterogeneity of the binding sites probably due to 

the steric hindrance effect. The PVCL ligands located on the out-layer of the poly(HEMA) 

chains are more accessible to protein. The denser the backbone is, the harder it becomes for 

protein to reach to the inner binding sites. As the results shown in Figure 4.13, the slope is 
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lower in a high-density poly(HEMA) condition, which means the binding sites are more 

heterogeneous when backbone chains become denser. 

 

Figure 4.13 Freundlich linear fitting of BSA isotherm for comb-like HIC membranes. Two 

backbone densities were tested here with 40 mM and 160 mM BIB used in the first initiation 

step. 

 

Table 4.4 Fitting parameters of Freundlich model for comb-like PVCL modified membranes 

with a high/low density of poly (HEMA) backbones.  

 Fitting Equation 1/n KF 

HD poly (HEMA) 

backbone 
y=0.85x+2.95 0.85 891.25 

LD poly (HEMA) 

backbone 
y=1.36x+3.08 1.36 1202.26 

 

4.5 Conclusions 

We have successfully increased the grafting degree of PVCL on RC membranes by 

10-40 times by introducing a primary poly (HEMA) brushes as backbones to grow the 

secondary PVCL brushes forming comb-like ligands. The effects of both primary and 
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secondary polymer chain length and chain density on protein binding and recovery were 

systematically studied by varying the ATRP initiation and polymerization conditions. Based 

on the results of BSA capacity and recovery, the optimal DG of PVCL has been found to be 

1-2 µg/cm2, where the capacity has improved from 7 to 12 mg/mL, for the linear PVCL 

homopolymer brushes grafted directly on the membrane substrate while the recovery is 

maintained above 80%. Our results show that introducing long primary poly (HEMA) chains 

decreases the protein recovery dramatically with a limited improvement in binding capacity. 

Further increase in primary poly (HEMA) chain length decreases the BSA binding capacity. 

AFM measurements show that the pore could be blocked at high DG of PVCL.  This can 

partly explain the low recovery results at long primary polymer chains. The self-interaction of 

collapsed brushes, which buried most of the binding ligands and made proteins difficult to 

approach to the ligands, is likely the reason for the limited improvement in binding capacity. 

Larger 1 µm pore size RC membranes showed a worse binding capacity and recovery than 

the 0.45 µm pore size membranes. The effects of PVCL chain density on protein binding and 

recovery demonstrate a trade-off between the two. The higher the PVCL DG value, the 

higher the contact angle of the membrane surface, and the higher the binding capacity. In 

contrast, the recovery decreases at higher PVCL DG value. Finally, BSA isotherm shows that  

it is likely to be a multi-layer adsorption model for the comb-like ligands grafted rather than 

the mono-layer adsorption model for the linear PVCL ligands. Based on the parameters 

obtained from Freundlich model, it was found that the heterogeneity of the binding sites 

increases as the primary poly (HEMA) chain density increases. 
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Chapter 5 The Effects of Copolymerization on Responsive Hydrophobic Interaction 

Membrane Chromatography  

Abstract 

In this chapter, the focus is on developing copolymeric responsive HIC ligands for 

protein separations. Vinyl caprolactam (VCL) monomer was copolymerized with various 

monomers with varying hydrophobicity. Copolymeric ligands were mainly grafted from PES 

membrane substrates via UV initiated polymerization. The effects of copolymer composition 

on binding capacity and recovery were investigated. It was found that protein binding 

capacity decreases with the increase of hydrophilic monomers incorporated. Additionally, a 

pH-responsive monomer (4-vinyl pyridine, 4-VP) was successfully copolymerized with VCL, 

which renders a pH/salt responsive membrane adsorber. The percentage of 4-VP incorporated 

affects binding capacity as well as recovery due to the change in copolymer hydrophobicity. 

In addition, the copolymer is sensitive to pH due to its effects on the net charge of 4-VP and 

subsequently the electrostatic interactions with BSA. Overall, this chapter provides some 

preliminary studies on the copolymeric responsive HIC ligands. The pH effect was studied by 

static and dynamic binding tests using BSA and lysozyme as model proteins. The pH/salt 

responsive HIC membranes are promising as a next generation smart chromatographic 

materials with a facile elution advantage. 
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5.1 Introduction 

Over the years, monomers of the thermo-responsive polymers, such as N-

isopropylacrylamide (NIPAM), have been copolymerized with various other functional 

monomers for cell separations1, hydrophilic analyte separations2 and biomolecular 

separations3, 4, 5, 6. Both hydrophilic and hydrophobic monomers have been incorporated to 

form copolymers of PNIPAM. As shown in Figure 5.1, monomers such as butyl methacrylate 

(BMA)1, 2, 5, 7, 8 and butyl acrylate (BA)6, 9 have been widely copolymerized with NIPAM. In 

general, incorporating hydrophilic monomers tend to increase the LCST of the copolymer 

whereas incorporating hydrophobic monomers tend to decrease the LCST. Hydrophilic 

charged monomers such as 2-(dimethylamino)ethylmethacrylate3, 2-acrylamido-2-

methylpropanesulfonate10 and acrylic acid4 have also been copolymerized with NIPAM via 

ATRP for bioseparations. Based on the results1, 2, BMA and NIPAM seem to have very 

similar ATRP polymerization rates. Copolymerizing 5% BMA into PNIPAM, the LCST has 

decreased to 16-19 oC from 32oC in water1, 2. However, other PNIPAM-co-BMA copolymer 

with free radical polymerization exhibits a LCST at 25-26  oC 7, 8 when 5% BMA was 

incorporated. When NIPAM was copolymerized with (dimethylamino) ethylmethacrylate, the 

LCST increases to 60 oC3. Kenichi Nagase et.al copolymerized three monomer acrylic acid, 

PNIPAM and butylacrylamide in solution. Their results show that by incorporating the 

hydrophobic monomer butylacrylamide and with an appropriate mole fraction of acrylic acid 

(3-11%), it is possible to control the LCST to reach somewhere between 26-35 oC4. Wu et. al 

copolymerized VCL with NIPAM to form block copolymers by reversible 

addition−fragmentation chain-transfer polymerization (RAFT)11. Their results show that only 

one LCST transition can be observed for the copolymer. The transition temperature shifts 

between the LCST of PNIPAM (32 oC) and PVCL (42 oC) based on the mole ratio between 

these two. Interestingly, the differential scanning calorimetry (DSC) curve shows that the 

https://en.wikipedia.org/wiki/Reversible_addition%E2%88%92fragmentation_chain-transfer_polymerization
https://en.wikipedia.org/wiki/Reversible_addition%E2%88%92fragmentation_chain-transfer_polymerization
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block copolymer combines the sharp change of PNIPAM as well as the gradual change of 

PVCL.  

For HIC studies, Qu et.al developed a HIC giga-porous  polystyrene  (PS)  

microspheres  with PNIPAM-co-PBMA as the responsive ligand5. The binding kinetics show 

improvement and three model proteins (Trypsin, BSA and acid phosphatase) have been 

fractionated by temperature gradient elution. Binding capacity is around 25 mg BSA/g dry 

microsphere, which is close to the highest binding capacity of our PVCL-ATRP (4 h) 

membrane (21 mg BSA/ dry membrane) under 1.2 M Na2SO4. Also, the polystyrene substrate 

may have impacts on BSA binding since the unmodified microsphere showed the highest 

binding capacity (close to 90 mg BSA/g unmodified microsphere).  In addition, there is no 

recovery data of the microsphere for the BSA binding test. Ghosh et.al designed a comb-like 

HIC ligand grafted on RC membrane by UV-initiated polymerization6. The comb-like ligand 

contains a PNIPAM backbone and branches of PNIPAM-co-poly (butyl acrylate) (PBA) 

copolymer. This ligand showed a two-step phase transition behavior due to the backbone 

PNIPAM LCST (32 oC) and branches of PNIPAM-co-PBA LCST (21oC). Monoclonal 

antibody hIgG1-CD4 was purified from simulated CHO cell culture supernatant. However, 

the binding capacity is still low. Moreover, run-to-run differences were observed since the 

experimental temperature control is not precise enough.  

Poly 4-vinylpyridine (P4VP) has been widely used to form pH-responsive polymers 

for biomedical and environmental applications12. Di-block copolymer P4VP (quaternized)-

co-poly (acrylic acid) has been synthesized by Aryers et.al. Its pH-responsive behavior is 

found to be dependent on the copolymer composition13. pH-responsive membranes or films 

were also synthesized with P4VP or its derivatives 14, 15, 16, 17. Protein separations were 

achieved with PS-co-P4VP membranes based on the charge-based mechanism under different 

pH conditions18, 19. Here, our main goal is to control the LCST of PNIPAM-co-P4VP by 
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varying the pH of the solution. At low pH, the pyridine group is protonated and therefore the 

LCST increases dramatically, which promotes the elution. On the other hand, when pH is 

high, the pyridine group is almost neutral and LCST should be unaffected. This could provide 

some advantages for multi-modal chromatography (MMC) to be used in a bind-and-elute 

mode because the elution is always complicated for MMC. Based on the property of the 

product (pI, hydrophobicity etc.), the operation window for binding and elution should be 

easier to determine with the pH responsive MMC. In this chapter, we still focus on HIC and 

provide some proofs that protein’s binding and elution are affected by pH.  

 

Figure 5.1 Reported monomers incorporated with NIPAM and pH responsive monomer 4-

vinyl pyridine (4-VP). 

 

Compared to the more expensive and tedious ATRP reaction, UV-induced polymerization 

has many advantages, although it has less control on the polydispersity of the grafted 
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polymers. First, the polymerization rate is much faster than ATRP. Here, we use 

polyethersulfone (PES) membranes as the substrate. Initiation is not necessary for PES 

membranes since the backbone of the membrane is UV sensitive (Figure 5.2). Unlike ATRP, 

it is a cleaner process since there is no copper catalyst used in the monomer solution. The 

mechanism of the initiation mechanism of PES membrane is shown in Figure 5.2 as reported 

earlier20. The C-S bond at the sulfone linkage is cleaved under the UV-irradiation. Two 

radical sites were generated and polymerization can happen at either site. In this chapter, UV-

induced polymerization is conducted to investigate the effect of copolymerization. Different 

monomers were copolymerized with VCL and the dynamic binding capacity as well as 

recovery were tested.  

 

 

Figure 5.2 UV-induced polymerization for PES membranes: UV initiation mechanism and 

polymerization process. 

5.2 Materials 

N-Vinylcaprolactam (98%), 2-Hydroxyethyl methacrylate (98%), 2-Bromo-2-

methylpropionyl bromide (BIB, 98%), 4-(dimethylamino) pyridine (≥99%), copper (I) 
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chloride ≥99.995%), copper (II) chloride (≥99.995%) and N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA, 99%) were purchased from Sigma Aldrich (St. 

Louis, MO). Triethylamine (TEA, ≥99%), 4-Vinylpyridine (96%) and aluminum sulfate (≥

97%) were obtained from Alfa Aesar (Ward Hill, MA). Methanol (99.8%) and acetonitrile 

(99.8%) were obtained from EMD Chemicals (Billerica, MA). Boric anhydride was 

purchased from Avantor Performance Materials (Center Valley, PA). Anhydrous acetonitrile 

was obtained by distilling acetonitrile with boric anhydride. Ammonium sulfate (≥99.0%) 

was bought from Macron™ Fine Chemicals (Center Valley, PA). Regenerated cellulose 

membranes (0.45 μm pore size, RC55, 47 mm diameter) were purchased from GE Healthcare 

(Pittsburgh, PA). Bovine serum albumin (BSA) (>99 %, pI 4.7, 66 kDa) was obtained from 

Avantor Performance Materials (Center Valley, PA). N-(2-hydroxypropyl) methacrylamide 

(HPMA) was purchased from Polysciences, Inc (Warrington, PA). 

5.3 Experimental 

5.3.1 Membrane Surface Modification 

UV-induced Polymerization PES membranes were first washed with methanol for 10 min. 

Then, membranes were dried in a vacuum oven. Monomer solutions were prepared with 

different ratios between VCL and other monomers. The total monomer concentration is kept 

at 1 M with methanol/water (v/v=1:1) mixture as solvent. UV-induced polymerization was 

followed by procedures published before21. PES membranes were immersed into the 

monomer solution in a petri dish. Then, a glass cover was put on the top of the membrane. 

UV-irradiation was conducted in a UV reactor (HONLE UV AMERICA, Inc) with standard 

operational procedures. UV irradiation time was also varied. 
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5.3.2 Membrane Surface Characterization 

ATR-FTIR ATR-FTIR provides a qualitative characterization for the membrane surface 

modification. The spectrum is taken by IRAffinity (Shimadzu, MD) with a horizontal ZnSe 

accessary. A piece of membrane was loaded on the crystal and scanned from 1000-2000 cm-1 

wavenumber with a 8 cm-1 resolution. The results were processed with a baseline correction 

and normalized into the same scale (0-1) for comparison. 

Contact Angle Membrane surface property is characterized by contact angle measurements. 

The instrument has an optical angle meter (OCA 20, Future Digital Scientific Corp., NY) and 

a dosing needle. Membranes were cut into small pieces and pasted on a glass chip with 

double side tape. Sessile drop method was used for characterization. A liquid drop was placed 

on the membrane surface and the imagine is recorded by a camera for later analysis. The 

dosing volume of the solvent is 2 µL. The results for each membrane were averaged with at 

least 3 measurements at random locations. 

AFM  Surface morphology and roughness of the modified membranes were characterized by 

AFM (Dimension Icon, Bruker Corporation, MA) with Bruker's sharp nitride lever (SNL-

10c) probes. ScanAsyst mode (in liquid) was used to image the morphology of membranes at 

room temperature in water. The scan rate is set at 1 Hz with a resolution of 256 samples per 

line. After scanning, the image is first processed with a third order flatten with Bruker’s 

nanoscope analysis program. Roughness is calculated by the nanoscope analysis program 

after flatten. 

5.3.3 Protein Binding Studies 

Dynamic Binding Studies All the buffer and protein solutions were filtered with 0.22 μm 

nylon membrane before the dynamics binding tests. 0.1 mg/mL bovine serum albumin (BSA) 

solutions were used for dynamic binding. Four layers of membranes (total bed volume 0.08 

mL) were loaded into a stainless steel flow cell (Mustang Coin ® module, Pall Corporation) 
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Membrane stack was placed between two flow distributers to ensure a uniform flow 

distribution. Dynamic binding is conducted with ÄKTA FPLC from GE Healthcare. Running 

method was using Unicorn software v. 5.31 to automate the BSA binding and elution 

experiments as published before22. Briefly, the membrane stack was wet with buffer B 

(elution buffer, 20 mM Na2HPO4) over 5 minutes by gradient flow rate from 0.2 mL/min to 1 

mL/min with a 0.2 mL/min increment. Next, buffer A (adsorption buffer, 1.8 M (NH4)2SO4) 

was used for equilibrium at 1 mL/min for 10 minutes. Then 0.1 mg/mL protein solution was 

loaded onto the membrane holder at a flow rate of 1 mL/min for 10 minutes. Unbound 

protein was subsequently washed from the membranes using the buffer A (adsorption buffer, 

1.8 M (NH4)2SO4) for 10 minutes at 1 mL/min, followed by a step change of running buffer 

B at 1 mL/min for elution. The run ended when UV absorbance 280 nm and conductivity 

reached baseline. The washing fraction (includes loading fraction) and elution fraction were 

collected respectively. The total protein amount of these two fractions were determined by 

volumes and UV absorbance at 280 nm. The overall mass balance is over 90%. 

Static Binding Studies  After extensive washing of modified membranes with water, 

membranes were first immersed in high-salt concentration buffer for equilibrium. Then, 

membranes were taken out and wiped with the filter paper to remove the buffer on the 

surface. Membranes were soaked in the protein solution for 20 h. The concentration of 

protein was determined by UV absorbance at 280 nm with standard curves. 

5.4 Results and Discussion 

5.4.1 UV-induced polymerization 

UV-induced polymerization was first optimized by varying the VCL concentration 

and UV irradiation time. Figure 5.3 shows that DG of PVCL increases exponentially at 1M 

and 0.25 M. It also shows that the polymerization rate is independent of concentration when 
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UV-irradiation time is less than 15 min. This result indicates that the monomer concentration 

is not a limiting factor here within the first 20 min for grafting PVCL. DG of PVCL reaches a 

plateau at 25 min under 2 M VCL condition. Interestingly, we have repeated the 

polymerization twice sequentially for 20 min and membrane with a very high DG was 

obtained. The results suggest that for longer UV irradiation time, not only PVCL has a longer 

chain, but also the grafting density is likely to be higher. Yamagishi et.al 20studied the 

irradiation time effect on the grafting depth of PES membrane. It was found that the 

modification depth of PES membrane increases with the UV time.  

 

Figure 5.3 DG of PVCL under different UV polymerization time. 

Figure 5.4 shows the ATR-FTIR spectra of PVCL modified PES membranes under 

different UV irradiation times. The peak at 1700 cm-1 corresponds to the amide group (C=O 

vibration). All the spectra have been normalized to the same scale for comparison. It can be 

seen that the intensity of the peak increases with UV time, suggesting that a higher grafting 

degree of PVCL can be obtained as UV irradiation time increases. 
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Figure 5.4 ATR-FTIR of PVCL modified PES membranes under different UV irradiation 

time. 

Figure 5.5 shows the effect of UV polymerization time on the contact angle of 

modified membrane in 1.8 M (NH4)2SO4 salt solution. The contact angle increases with UV 

polymerization time indicating that the membrane surface becomes more hydrophobic at 

longer UV irradiation time. These results correlate well with the dynamic binding results as 

shown in Figure 5.6. The higher the DG of PVCL is, the larger contact angle results, the 

higher the binding capacity will be. As discussed earlier, higher grafting degree with longer 

UV time results in a more hydrophobic surface. Besides the grafting density effect, it is also 

possible that the grafted PVCL chain is longer under longer UV irradiation time. The longer 

chains of PVCL are likely to have a lower LCST and a larger binding area for protein 

interaction. The density effect and chain length effect are hard to de-couple due to the well-

known disadvantage of non-controllable UV-initiated radical polymerization.  
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Figure 5.5 Contact angle of 1.8 M (NH4)2SO4 for PVCL modified PES membranes with 

different DG.  

 

Figure 5.6 (a) shows the effect of UV time on the dynamic binding capacity and 

recovery. The capacity shows a linear increase with UV time. The monomer concentration 

seems to have a minor effect on the binding capacity. The recovery is very high for all the 

conditions. As Figure 5.6 (b) shown, the breakthrough curves have a lower UV absorbance 

for longer UV time modified membranes. The elution peak area also increases accordingly 

with UV polymerization time. Overall, the binding capacity reaches about 4 mg/mL, which is 

close to what we obtained before for regenerated cellulose membrane with ATRP. The 

difference is likely due to the different total surface area for these two membrane substrates. 

Regenerated cellulose membranes are likely to have a higher total surface area because it has 

a smaller average pore size (0.45 µm) compared to PES membranes (0.65 µm). 
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Figure 5.6 Dynamic binding capacity (a) and chromatogram (b) of PVCL modified PES 

membranes under different UV irradiation time and different monomer concentrations (0.25 

M and 1 M VCL). 

5.4.2 Linear copolymerization 

In order to further understand the LCST effect of PVCL on protein binding, we have 

copolymerized VCL with monomers with different properties. Based on the optimized UV 

condition that has the highest binding capacity, all the UV irradiation time was kept for 20 

min and the total monomer concentration is kept at 1 M. As shown in Figure 5.7, monomer a 

and b are hydrophilic. Monomer c and d are relatively more hydrophobic, and after 

polymerization, c and d form thermo-responsive and pH responsive polymers, respectively.  
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Figure 5.7 Copolymers with VCL by ATRP or UV-initiated polymerization. 

Based on the binding results, copolymerization of the first three monomers (a-c) 

renders  the static binding capacity 2-3 times less than the corresponding homopolymer 

PVCL. This is likely due to the fact that the copolymers become more hydrophilic after 

copolymerizing with hydrophilic monomers. In other words, the LCST increases after 

copolymerizing with a hydrophilic monomer. It is also interesting to note that PNIPMA has a 

relatively low binding capacity compared to PVCL, even though its DG is much higher. 4-

vinyl pyridine (4-VP) is a pH responsive monomer. Its conjugated acid form has a pKa at 

around 5. When the solution pH is 5 and above, the deprotonated form of 4-VP is more 

stable. The protonated 4-VP becomes more stable when pH is below 5. The distribution of 

the neutral and protonated form of 4-VP is simulated by Marvinsketch 16.2  as shown in 

Figure 5.8. We have varied the monomer ratio between VCL and 4-VP for UV-induced 

copolymerization. Figure 5.9 shows the DG values for VCL and 4-VP individually under 

different UV irradiation times. It can be seen that 4-VP seems to have a more linear DG 

growth over time. We used 25 min UV irradiation time for all the subsequent 
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copolymerization studies. The total monomer concentration was kept at 1 M with varying the 

mole ratio between 4-VP and VCL. Dynamic binding studies with 0.1 mg/mL BSA were 

conducted under 1.8 M (NH4)2SO4 for binding and 20 mM NaOAc buffer for elution. The pH 

of the binding buffer was varied from 6.0 to 8.5 and the elution pH was tested under 4.0 and 

7.0.  

 

Figure 5.8 Simulated 4-VP species distribution curve under various pHs. 

 

Figure 5.9 DG of 4-VP and VCL under different UV irradiation time. 
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Figure 5.10 shows the contact angles of modified PES membranes as a function of the 

pH of the aqueous buffer solution. The contact angles of both poly(4-VP) and poly (4-VP)-

co-PVCL modified membranes exhibit a sudden decrease between pH value 4 and 6, which is 

close to the pKa of monomeric protonated 4-VP at 5.  Our earlier studies23, 24, 25 show that the 

pKa of polymeric acid or conjugate base could be different from its monomer value. 

Typically, the pKa of polymeric acid will shift to a higher value due to the different dielectric 

and electrostatic environment between the monomer and polymer. When 4-pyridine is 

protonated, membrane surface becomes very hydrophilic due to the strong hydration of the 

cationic residues leading to a decrease in contact angle. It is important to note that with a 1:1 

ratio of VCL:4-VP in the monomer solution, the poly(4-VP)-co-PVCL modified membrane 

still retains some pH responsiveness.  

 

Figure 5.10 Contact angle under different pHs for PVCL modified membranes (100% VCL 

in monomer solution), poly(4-VP)-co-PVCL modified membranes (VCL:4-VP=1:1 in 

monomer solution) and poly(4-VP) modified membranes.  

 

Figure 5.11 shows the dynamic binding capacity and recovery at various modification 

conditions and at different binding and elution pH values. Overall, the binding capacity 

decreases at the ratio of 4-VP/VCL increases at neutral pH 7. However, the binding capacity 
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is highest when there is about 5% 4-VP in the monomer composition at other pH conditions 

at 6, 8 and 8.5. Further increase in monomer ratio of 4-VP to VCL appears to decrease the 

binding capacity. This is probably due to the increase of LCST for the copolymer when more 

4-VP is incorporated. An increase in LCST will lead to the reduction in the binding capacity.  

 

Figure 5.11 Dynamic binding capacity (a) and recovery (b) of poly(4-VP)-co-PVCL 

modified membranes. 

 

Our dynamic binding tests using 20 mM NaOAc adsorption buffer at pH 7 further 

confirmed the existence of electrostatic interactions between 4-VP and BSA at the neutral pH 

as shown in Figure 5.12. Binding capacity is higher at pH 8.0 and 8.5 compared to pH 7.0 for 

the copolymer modified membranes. When pH is at 6.0, binding capacity is also higher 

because BSA tends to aggregate. At pH 6.0 and 5.0, the elution peaks exhibit a shoulder 

indicating the formation of aggregates (results not shown). These binding results indicate that 

pH condition not only affects the hydrophobicity of the copolymer ligand but also affects the 

charge and conformational state of the protein. For recovery, Figure 5.11 (b) shows that 

recovery at pH 7 is generally lower than at pH 4. At pH 4, both protein and ligand are 

positively charged leading to the electrostatic repulsion and strong hydration of the charges 

residues. This eventually leads to an enhanced recovery for proteins.  On the other hand, the 

lower recovery at pH 7 for the elution condition is likely due to the attractive electrostatic 

interaction between the positively charged 4-VP and the negatively charged BSA. The 
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gradual decrease of the recovery over the 4-VP/VCL ratio is also in agreement with the 

electrostatic interaction between 4-VP and BSA.  

 

Figure 5.12 Bind and elute chromatogram of poly(4-VP)-co-PVCL modified membranes 

under 20mM NaOAc condition for binding at pH 7 and elution at pH 4. 

 

We have also conducted static binding studies at different pH with lysozyme. Unlike 

BSA with a pI at 4.7, lysozyme has a pI at 11.35, which is far away from the pka of 4-VP at 

around 5. The results show that at pH 3, the capacity decreases as the percentage of 4-VP 

monomer in solution increases as shown in Figure 5.13. At pH 3, both lysozyme and 4VP are 

positively charged so that the electrostatic repulsion leads to a reduction in binding capacity 

when more 4-VP monomers are incorporated into the ligand. It also can be seen at pH 11 

which is close to the pI of lysozyme, the binding capacity increases due to the resulting 

weaker electrostatic interaction and stronger hydrophobic interaction.  
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Figure 5.13 Static binding studies of P4VP-co-PVCL modified membranes under different 

pHs. The binding is conducted at 1.8 M NaCl using lysozyme as the model protein. 

 

5.5 Conclusions 

In this chapter, we have developed a quick, simple and clean UV-induced 

polymerization process for grafting PVCL on PES membrane. The modification condition is 

optimized by varying the VCL concentration and polymerization time. Higher VCL condition 

only shows higher DG when UV time is longer than 20 min. High binding capacity (4-5 

mg/mL) is achieved with longer UV irradiation time, which is comparable to what we 

obtained with PVCL modified RC membranes with ATRP. Dynamic binding capacity 

increases with DG of PVCL and contact angle. Recovery is high (> 90%) for all the PVCL 

modified PES membranes.  

Various monomers were copolymerized with VCL. Very hydrophilic monomer like 

HPMA, HEA and NIPAM cause the decrease of binding capacity. 4-VP was copolymerized 

with VCL to introduce pH responsiveness. Our preliminary results show the hydrophobicity 
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changes around pH 5.0 for poly(4-VP) modified membranes. Poly(4-VP)-co-PVCL modified 

membrane has retained the pH responsiveness at pH 5.0. Binding results show capacity is 

higher at pH 8.0 and 8.5 compared to pH 7.0. At pH 7.0, there are likely to have some 

electrostatic interactions between protonated 4-vinylpyridine and BSA, rendering a low 

recovery. The recovery is evidently higher at pH 4.0 due to the repulsion between protonated 

4-vinylpyridine and BSA. In sum, this copolymer ligand shows promising results for 

developing salt-and-pH dual responsive HIC membranes for bioseparations. 
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Chapter 6: Conclusions and Future Direction 

6.1 Conclusions 

Overall, we have shown that ATRP is an effective method for developing membrane 

chromatography with different polymeric ligand architectures. Our work further shows that 

copolymeric ligands have many potentials for achieving high performance bioseparations, 

which includes being developed as high affinity ligands and stimuli-responsive ligands. 

Major conclusions for developing affinity membranes work and responsive HIC membranes 

are summarized below. 

Our work shows how the composition of the copolymer affects the protein binding 

capacity and recovery. The property of copolymer changes with different copolymerization 

condition, either by varying the copolymerization time or the ratio between two monomers. 

For the affinity membrane work, we have shown that with longer ATRP copolymerization 

time, more affinity monomers were incorporated into the copolymer, which provides more 

binding sites and leads to higher binding capacity. As for the HIC membrane work, we found 

that the hydrophobicity of the incorporated monomer plays an important role in binding 

capacity. With hydrophilic monomers copolymerized with VCL, the binding capacity 

decreases with more hydrophilic monomer incorporated. The copolymerization with pH 

responsive monomer (4-VP) also shows that with higher pH (8 and 8.5) when 4-VP is less 

protonated, binding capacity is higher compared to the condition at pH 7. Our result also 

shows that at pH 7, the protonated 4-VP interacts strongly with the negative charges on BSA 

and leading to decrease of recovery. The decrease of recovery is more evident when more 4-

VP monomers were incorporated in the copolymer chains. Static binding results with 

lysozyme as the model protein also show the repulsion between positively charged ligand and 

lysozyme reduces the binding capacity. 
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Our work also shows how the structure of copolymer has an impact on the protein 

binding capacity and recovery. For the affinity membrane work, our work highlights the 

importance of incorporating the hydrophilic spacer monomers. The spacer monomer is likely 

to increase the flexibility of the copolymer as the affinity monomer has a rigid and bulky 

structure. Our simulation results also show the spacer monomer actively interacts with 

lysozyme through hydrogen bonding interaction. Another copolymer structure effect we have 

investigated is the HIC membrane work. The comb-like branched copolymer HIC ligand has 

been designed to improve the grafting degree of PVCL. PVCL has been modified from the 

backbones of the polymers grafted from the membrane surface with ATRP. The backbone 

density and length as well as the PVCL density on each backbone have been successfully 

varied by adjusting initiator concentration and polymerization time. Overall, the binding 

studies show that long and high density of backbone structure is not preferred for HIC due to 

the low recovery and its limited improvement in capacity. Unlike other ion exchange 

polymeric ligands, the binding capacity does not simply increase with grafting degree of HIC 

ligands linearly. The 3D structure of the ligand has a large impact on the protein recovery.  

In addition to the studies on property and structure of copolymer ligands, we have also 

investigated how the responsive PVCL ligands perform under different salt, pH and protein 

conditions. Sulfate salts were studied and the binding capacity follows: Na+>NH4
+>Al3+>Zn2+ 

(compared in the same ionic strength). Our turbidity studies on the reduction of LCST PVCL 

ligands also show the same order for Na+ and NH4
+ at the same ionic strength. Moreover, we 

have shown the contact angle of PVCL grafted membrane increases with the increase of 

Na2SO4 concentration, indicating an evident change of ligand hydrophobicity under different 

salt concentrations. Overall, our results may suggest that ligand hydrophobicity can be 

modulated by the salt ion concentration and salt type and that it plays a critical role in the 

binding capacity. 
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6.2 Future Direction and Suggestion 

6.2.1 Ligand Characterization 

 It is important to analyze the molecular weight and grafting density of the grafted 

ligands. Traditionally, the characterization for thickness is usually estimated by grafting 

ligands on a different surface, such as silicon wafer or gold. The polymerization kinetics 

could be quite different between a small flat surface and a porous membrane. Other methods 

like performing solution ATRP under the same condition may also suffer from the 

uncertainty of polymerization kinetics for brushes.  Therefore, it would be useful to develop a 

method to analyze the polymer ligands grafted on the membranes directly. Appendix III 

shows a promising case study of cleaving PNIPAM from the regenerated cellulose membrane 

after ATRP. The cleavage condition and yield were investigated and the cleaved PNIPAM is 

confirmed by turbidity tests, H1NMR and GPC. Future work is to look at the yield of the 

whole cleavage process and compare with results measured with other techniques. 

6.2.2 Controlled Polymerization of PVCL 

 PVCL chain length effect with our current ATRP condition is still unknown due to the 

low grafting degree (DG) of PVCL and the interference of moisture on the weight of RC 

membranes. It would be interesting to look at how the ATRP time would affect the DG of 

PVCL in the comb-like studies since the overall DG has been increased 10-40 times. It might 

be also helpful to use another ATRP ligand (CuBr/Me6(Cyclam)1) for higher polymerization 

rate. Recent polymerization progress has also shown that reversible addition–fragmentation 

chain transfer (RAFT) with xanthates as chain transfer agents allow for well-controlled 

polymerization of non-conjugated N-vinyl monomers2. 
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6.2.3 Decouple LCST Effect on Protein Binding 

 Due to the complexity of protein binding and elution process, it is still difficult to 

decouple the ligand LCST effect from the protein effect under different salt conditions. It 

might be helpful if a model compound (such as polystyrene) that has a small hydrophobicity 

change can be used for isocratic tests under different salt conditions. In addition, a non-

responsive polymer with similar structure of PVCL can be studied as a control for proving 

the hypothesis that elution is enhanced by the hydrophilic state of PVCL.  

6.2.4 Developing High Capacity Responsive Ligand with a Facile Elution Advantage 

Our current binding capacity (DBC10%) of PVCL modified membrane is about 3 times 

less than commercialized HIC membranes (Sartobind Phenyl HIC). Appendix IV shows the 

comparison studies between our HIC PVCL and HIC phenyl membranes. It is important to 

note that our membrane holder is not designed very effectively compared to the one for 

Sartobind phenyl membranes. As earlier studies suggest, traditional membrane holder has a 

larger radial diameter than the axial diameter, rendering a possible early breakthrough and 

low capacity3, 4.  Besides that, the ligand density maybe another reason why our capacity is 

lower. High binding capacity may be achieved through the improvement of specific area of 

the membranes. High capacity ion-exchange membranes with electrospun fibers or hydrogels 

have been commercialized. As far as we know, so far there is no report on high capacity HIC 

membranes with improved membrane matrix. 

 In addition to the capacity, the large usage of salt is another drawback for HIC 

process. Therefore, increasing the hydrophobicity of ligand would lower the required salt 

concentration for binding. It has been shown that for flow-through HIC studies, no-salt 

condition has similar performance as conventional HIC with high salt conditions5. For our 

copolymerization work with VCL monomer, it would be worthwhile to incorporate 

hydrophobic monomers for lowering the LCST.  



189 

In recent years, multi-modal chromatography has shown high binding capacity and 

salt-tolerance. However, the problem with multi-modal chromatograpy to be used in the bind-

and-elute study is the expected low recovery due to the conflicted mechanisms between the 

hydrophobic interaction and electrostatic interaction. The operation window is normally 

determined by Design of Experiments (DoE). With the pH responsive monomer work we 

have shown in chapter 5, it is promising to provide a facile elution strategy for the multi-

modal chromatography, which can shorten the process development time and cost. 
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Appendix I  

DEVELOPMENT OF HIGH PERFORMANCE AFFINITY MEMBRANE 

ADSORBERS GRAFTING SYNTHETIC COPOLYMERIC LIGAND* 

* This section is adapted from a published paper by Liu, Z.; Du, H.; Wickramasinghe, S. R.; 

Qian, X. Membrane Surface Engineering for Protein Separations: Experiments and 

Simulations. Langmuir 2014, 30 (35), 10651-10660. 

1. Synthesis of ATRP monomer 5-(methacryloylamino)-m-xylyenebisphosphonic acid 

tetramethylester (Bis-P) 

Materials Carbon tetrachloride (≥99.9%), 2,2′-azobis (2-methylpropionitrile) (98%) and 

4-(dimethylamino) pyridine (≥99%) were obtained from Sigma Aldrich (St. Louis, MO). 5-

Nitro-m-xylene (99%), N-bromosuuccinimide (99%), trimethylphosphite (99%), palladium 

on carbon (wet, 10%), filter aid, Celite Hyflo Super-cel®, methacryloylchloride (97%), and 

triethylamine (TEA, ≥99%) were obtained from Alfa Aesar (Ward Hill, MA). Chloroform-d 

(99.9 atom %D) was obtained from Acros Organics (Pittsburgh, PA). Silica gel 60 (high 

purity) was obtained from VWR (West Chester, PA). Dicholormethane (99.8%) was obtained 

from EMD Chemicals (Billerica, MA).  

5-Nitro-xylylene bisphosphonic acid tetramethylester The procedure for the synthesis was 

shown in Figure A1.1. 5-Nitro-m-xylene (9.52 g, 63 mmol, 1.0 eq) was added to 

tetrachloromethane (CCl4, 150 mL, solvent) to form a yellow solution. N-bromosuuccinimide 

(NBS, 33.84 g, 189 mmol, 3 eq) and azobisisobutyronitrile (AIBN, 0.2 g) were mixed 

together and grounded to ensure complete mixing before they were added in CCl4. The 

mixture was refluxed for 13 hours at 76 ºC. After filtering off the insoluble succinimide, the 

solvent was evaporated and the remaining oil was dissolved in excessive amount of 

trimethylphosphite (9.99 g, 80.5 mmol). The trimethylphosphite solution was heated with 

stirring for 5 hours at 100 ºC. Subsequently, the volatile components were removed by the 
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Evaporator and the final product was purified using column chromatography by silica gel 60. 

A total of 3 g yellowish solid was obtained corresponding to a yield of 13% over 2 steps. 

Some modification on the original monomer synthesis procedure1, 2 was made. We found that 

the NBS bromination reaction was not complete under the condition provided in the 

literature. Thus, we increased the mole amount of NBS to 3 eq. Moreover, we found that it 

was difficult to recrystallize 3,5-bis (bromomethyl) nitrobenzene after NBS bromination. As 

suggested by the authors who first reported this monomer1, the oily product from reaction (1) 

was used directly without recrystallization. The mixture products in reaction (2) were purified 

with silica gel eluting with dichloromethane/methanol (gradient v/v 25:1, 18:1, 15:1, 

Rf=0.33). 1H-NMR (CDCl3; 400 MHz; Figure A1.2): δ (ppm) = 3.26 (d, 2 JH, P=22.0 Hz, 4 

H); 3.74 (d, 3 JH, P=11.0 Hz, 12 H); 7.61 (s, 1 H); 8.06 (s, 2 H).   

  

 

Figure A1.1 Two-step synthesis of 5-nitro-xylylene bisphosphonic acid tetramethylester. 
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Figure A1.2 1H NMR (CDCl3; 400Hz) of the product 5-nitro-xylylene bisphosphonic acid 

tetramethylester. 

5-Amino-m-xylene bisphosphonic acid tetramethylester 5-Nitro-m-xylylene 

bisphosphonic acid tetramethylester (3 g) was dissolved in methanol. The reaction mixture 

was first degassed with nitrogen for 15 min. Palladium on carbon (0.7g, 10% Pd) was added 

to the solution. The reaction was conducted under a hydrogen atmosphere for 24 h. The 

product was concentrated by evaporation after removing the catalyst by filtration over celite. 

A yield of 85% with a total of 2.3 g slightly yellow solid was obtained. 1H-NMR (CDCl3; 400 

MHz; Figure A1.3): δ (ppm) = 3.06 (d, 2 JH, P = 20.4 Hz, 4 H); 3.66 (d, 3 JH, P = 10.9 Hz, 

12 H); 6.63 (s, 1 H); 6.55 (s, 2 H). 
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Figure A1.3 1H NMR (CDCl3; 400Hz) of the product 5-amino-m-xylene bisphosphonic acid 

tetramethylester. 

5-(Methacryloylamino)-m-xylylenebisphosphonic acid tetramethylester 

5-Amino-m-xylene bisphosphonic acid tetramethylester (1.36 g) was first dissolved in 44.8 

mL dicholormethane. Triethylamine (0.66 mL) and catalytic amount of 4-(N,N-

dimethylamino)-pyridine were added into the solution.  Methacryloyl chloride (0.59 mL) 

dissolved in 12 mL dicholormethane was added drop-wise at 0°C within 1 hour. Reaction 

solution was kept stirring for 5 h at room temperature. The reaction was conducted under the 
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protection of nitrogen all the time. The crude product was washed with sodium hydroxide 

(100 mL, 0.6 N) twice. The final product was purified with silica gel chromatography 

(dichloromethane/methanol, 14:1 v/v) to remove triethylamine and reactant. A yield of 74% 

and a total of 1.2 g purified final product were obtained. 1H-NMR (CDCl3; 400 MHz; Figure 

A1.4): δ (ppm) = 2.06 (dd, 3 H); 3.15 (d, 2 JH, P= 22.0 Hz, 4 H); 3.70 (d, 3 JH, P= 10.8 Hz, 

12 H); 5.48 (qd, 1 H); 5.80 (qd, 1 H); 7.00 (s, 1 H); 7.43-7.47 (d, 2 H); 7.58 (sb, 1 H). 
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Figure A1.4 1H NMR (CDCl3; 400Hz) of the final product 5-(methacryloylamino)-m-

xylylenebisphosphonic acid tetramethylester. 
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2. MD Simulations 

 

Figure A1.5 The pair correlation function between the oxygen atoms (OP) in the phosphate 

groups of Bis-P and the carbon atoms (CZ) in the Arg residues of lysozyme during three 

simulation periods at 580-700, 700-820 and 820-940 ns. 
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Appendix II  

DEVELOPMENT OF NOVEL RESPONSIVE MEMBRANES FOR HYDROPHOBIC 

INTERACTION CHROMATOGRAPHY PART I. SALT EFFECTS STUDY 

 

Figure A2.1 1HNMR of synthesized poly (vinylcaprolactam) (PVCL) by solution free radical 

polymerization. 

 

Figure A2.2 Size measurement of synthesized PVCL under different temperature by dynamic 

light scattering. 
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Figure A2.3  Excess surface tension of (NH4)2SO4, Na2SO4 and NaCl at various 

concentrations (water surface tension is 73.54±0.16 mN/m). All data were averaged by five 

measurements. 

 

 

Figure A2.4 The pH effects of BSA binding under various ionic strength of ZnSO4. All 

results are averaged by two membranes’ results conducted under the same binding condition. 

Initial BSA concentration was kept at 0.09 mg/mL. 
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Appendix III  

CLEAVAGE STUDIES FOR PNIPAM GRAFTED RC MEMBRANES 

1. PNIPAM Cleavage Protocol 

a. 4-5 mg membranes were cut and immersed (grafted 1-3 mg PNIPAM, DG 40%-80%) 

in 0.5-1 mL NaOH or ethylenediamine solution for a predetermined time. 

b. After hydrolysis, the solution contained cleaved polymer was filtrated through a 

nanofiltration process (NF 270 membrane). Then, 1-2 mL DI-water was used for 

filtration again to wash the remaining NaOH. Here, a dead-end nanofiltration process 

was used to reject the cleaved polymer.  

c. NF 270 Membrane that has rejected polymers on the surface was first dried in oven 

and then dissolve in solvent for NMR or GPC. 

 

Figure A3.1 A general cleavage procedure for grafted PNIPAM ligands, including 

hydrolysis, filtration, drying and re-dissolving 4 steps. 
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2. GPC Protocol 

Table A3.1 GPC column information  

Column Supplier Column Material 
Particle 

size (um) 

Column size 

(I.D.*length) 

Separation 

range 

Shodex 

SB-806M 

HQ  

Shodex Polymethyacrlate 
13 (1.5 um 

pore size) 
8mm×300mm 102-107 Da 

 

2.1 Start the run (water as eluent) 

1. Load method “Zizhao Start up”: RID 35oC or set flow rate to 0.2 mL/min 

2. Connect small tubing on the column out flow side to remove the  sodium azide (column 

storage solution)  

3. Connect guard column inlet slowly with the flow on (0.2 ml/min) to exclude any air 

bubble (before connecting, make sure both column ends are off) 

4. Secure the column with the two metal plates and check if there is any leaking 

5. Start collect sodium azide in a beaker  

6. Set gradient flow rate:0.2-0.5 mL/min in 15min to wash out sodium azide (0.5 ml/min) 

for 50 ml. 

7. Connect the column outlet to the system and make RID detector  ready by equilibrium 

for 3-4 hrs 

8. Double check shut down method (solvent and speed)!!!!!! 

9. Name the sample and start the run 

 2.2 Removing the column 

1. Change the flow rate to 0.2 ml/min 

2. Disconnect column outlet from the system  

3. Connect small tubing on the column out flow side to collect the  sodium azide 
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4. Put the tubing for pump A in 0.2% sodium azide solution 

5. Set gradient flow rate :0.2-0.5 mL/min in 10 min and run for 30 min to load  sodium 

azide (0.5 ml/min) in the column 

6. Set minimum pressure to 10 bar (to stop the flow when column disconnected) 

7. Disconnect the guard column+ column and cap both ends.  

8. Change the flow rate to 0.2 ml/min and restart the pump 

9. Add HPLC water to a centrifuge tube and put the pump A tubing in that tube  

10. Set gradient flow rate :0.2-0.5 mL/min in 5 min and run for 15 min 

11. Change the flow rate to 0.2 ml/min 

12. Change the water in centrifuge tube again and set gradient flow rate :0.2-0.5 mL/min in 

5 min and run for 5 min 

13. Change the flow rate to 0.2 ml/min 

14. Change the water in centrifuge tube the 3rd time and  set gradient flow rate :0.2-0.5 

mL/min in 5 min and run for 5 min 

15. Change the flow rate to 0.2 ml/min 

16. Put the pump A tubing to the bottle and connect the capillary tube 
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3. Investigation on Cleavage Conditions (temperature & time effect):  

 

Figure A3.2 Cleavage temperature and time effect on the cleavage yield (measured by 

weight decrease of membrane). Weight decrease %=(w0-w1)/wgrafted PNIPAM 

 

4. Characterization of Cleaved PNIPAM  

 

Figure A3.3 1HNMR for cleaved PNIPAM (hydrolyzed in ethylenediamine). 
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Figure A3.4 Turbidity change of cleaved PNIPAM re-dissolved in D2O. Solution (left) 

obtained from unmodified membrane was used as a control from the same cleavage 

condition. 

 

5. GPC (0.5 mL/min, water, 40oC) 

 

Figure A3.5 GPC chromatogram of cleaved PNIPMA polymers dissolved in water. 
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Figure A3.6 Relation between GPC elution times of cleaved PNIPAM and DG/ATRP time 

 

5. Investigation on GPC Characterization of Synthesized PVCL 

 

Figure A3.7 Procedure of the investigation of wash effect in the cleavage process 

 

Figure A3.8 Standard curve of PVCL and wash effect on the total yield of the process 
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Appendix IV  

Comparison Study: HIC Phenyl pico and HIC PVCL membranes 

1. FPLC Set-up  

                                                            

   A                                                             B 

Figure A4.1 FPLC set-up and testing protocols for HIC Phenyl membranes (A) and HIC 

PVCL membranes (B, Mustang Coin ® Membrane Holder (Pall Corporation)). 

   

2. Operating Pressure and Flow Rate  

 

Figure A4.2 Operating pressure and flow rate relationship for HIC phenyl and HIC PVCL. 

Tests were conducted in 20 mM sodium phosphate buffer at room temperature. 

 

 

 

HIC Phenyl 

Membrane 

Holder for 

HIC PVCL 
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3. Dead Volume Measurement 

  

Figure A4.3 FPLC dead volume measurement for HIC PVCL and HIC Phenyl under 

1mL/min. Measurements were conducted with BSA dissolved in the 20 mM sodium 

phosphate buffer with membranes in the module or holder. 

 

4. Dynamic Binding Test (BSA) 

4.1 DBC Measurement Protocol 

 

Figure A4.4 DBC measurement protocols for old HIC binding test (A) and new test protocol 

(B) with a shorter running cycle time (reduced from 1h to 30min). 
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Table A4.1 Dynamic binding capacity (DBC) comparison between HIC Phenyl pico and HIC 

PVCL.  

 
Bed volume 

(mL) 

Bed height 

(mm) 

DBC 10% 

(mg/mL) 

Recovery 

(%) 

HIC PVCL 

run1 (old) 
0.22 0.8 2.4 95 

HIC PVCL 

(old) 
0.08 0.3 2.4 96 

HIC PVCL 

(new) run1 
0.08 0.3 3.4 90 

HIC PVCL 

(new) run10 
0.08 0.3 2.7 95 

HIC Phenyl 

run1 
0.08 4 8.1 100 

HIC Phenyl 

run10 
0.08 4 7.9 103 

* The DBC10% is calculated according to DBC10%= (V10%-V0)×C0/Vm. V10% and V0 are the 

volume for 10% breakthrough and system dead volume, respectively. C0 is the initial loading 

BSA concentration. Vm is the volume of membrane stacks. Recovery is calculated based on 

the 10% breakthrough. 
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Figure A4.5 Breakthrough curves of 10 consecutive runs at 1.8 M (NH4)2SO4 for 0.1 mg/mL 

BSA. Loading volume is determined by the program that it stops when 10% breakthrough (3 

mAu in this case) reaches. 
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Figure A4.6 Dynamic binding capacity (DBC10%) of HIC phenyl and PVCL membranes in 

10 consecutive runs. 

 

Figure A4.7 Recovery of DBC10% of HIC phenyl membranes in 10 consecutive runs. The 

results are based on the mass balance. 
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Figure A4.8 Static binding results of HIC PVCL and HIC Phenyl membranes. Binding tests 

were conducted at 1.8 M (NH4)2SO4, 0.1 mg/mL BSA. 

 

5. FPLC Method code: 

5.1 Dead Volume Measurement: 

Main method:      

 (Main)       

  0.00  Base 

Volume       

  0.00  BufferValveA  A1      

  0.00  Gradient  100 (% B) 0.00 {base}      

  0.00  Flow  0.2 {ml/min}      

 0.00  Block  Equilibration     

    (Equilibration)      

    0.00  Base  Volume      

    0.00  Valve7  1       

    0.00  Set_Mark  "Equil"      

    0.00  Gradient  100 (% B)  0.00 {base}     

    0.00  Flow  1 {ml/min}      

    0.00  ColumnPosition  Position2     

    5.00 

AutozeroUV        

    6.00  

End_Block        
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 0.00  Block  

Load      

    (Load)       

    0.00  Base  

Time       

    0.00  Flow  0.00 {ml/min}      

    0.00  InjectionValve  Inject      

    0.00  OutletValve  F2      

    0.01  SampleFlow_960  1 {ml/min}     

    0.01  Set_Mark  "Load"      

    0.01  Hold_Until  UV Greater_Than 3.0000 {mAU} INFINITE {base}  

    0.02  SampleFlow_960  0.0 {ml/min}     

    0.02  

End_Block        

 

5.2 Old HIC protocol and new protocol based on DBC10% 

Old HIC Protocol (based on 10mL loading) 

Main method:     

 (Main)      

  0.00  Base  Volume      

 0.00  Block  

Sample_Pump    

    (Sample_Pump)     

    0.00  Base  Time      

    0.00  SampleFlow_960  1 {ml/min}    

    0.2  SampleFlow_960  0.0 {ml/min}    

    0.20  End_Block       

  0.00  BufferValveA  A1     

  0.00  Gradient  0 (% B) 0.00 {base}    

  0.00  Flow  0.2 {ml/min}     

  0.00  Block  Wetting    

    (Wetting)     

    0.00  Base  Volume     

    0.00  ColumnPosition  (Position2)#Column_Position  

    0.00  Valve7  2      

    0.00  OutletValve  F1     

    0.00  Alarm_Pressure  Enabled 3 {MPa} 0.000 {MPa}  

    0.00  Gradient  0 (% B)  0.00 {base}    

    0.01  Flow  0.2 {ml/min}     

    0.21  Flow  0.4 {ml/min}     

    0.61  Flow  0.6 {ml/min}     

    1.21  Flow  0.8 {ml/min}     

    2.51  Flow  1.0 {ml/min}     

    5.00  End_Block       

  0.00  Block  

Equilibration    
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    (Equilibration)     

    0.00  Base  Volume     

    0.00  Valve7  1      

    0.00  Set_Mark  "Equil"     

    0.00  Gradient  100 (% B) 0.00 

{base}    

    0.00  Flow  1 {ml/min}     

    8.00  AutozeroUV       

    10.00  End_Block       

  0.00  Block 

Load     

    (Load)      

    0.00  Base  Time      

    0.00  Flow  0.00 {ml/min}     

    0.00  InjectionValve  

Inject     

    0.00  OutletValve  F2     

    0.01  SampleFlow_960  1 {ml/min}    

    0.01  Set_Mark  "Load"     

    (10.00)#Load_Volume  SampleFlow_960  0 {ml/min}  

    10.10  InjectionValve  

Load     

    10.10  End_Block       

 0.00  Block  

Wash     

    (Wash)      

    0.00  Base  Volume     

    0.00  InjectionValve  

Load     

    0.00  Gradient  100 (% B) 0.00 

{base}    

    0.00  Set_Mark  "Wash to Base"    

    0.00  Flow  1 {ml/min}     

    25.00  End_Block       

 0.00  Block  Elution    

    (Elution)     

    0.00  Base  Volume     

    0.00  Set_Mark  "Elution"     

    0.00  Gradient  0 (% B) 0 {base}    

    0.00  Flow  1 {ml/min}     

    0.01  Hold_Until  UV Greater_Than 1.5 {mAU} 10 

{base}  

    0.05  OutletValve  F3     

    0.15  Hold_Until  Cond Less_Than 1 {mS/cm} 15 

{base}  

    0.20  End_Block       

 

New HIC Protocol (based on DBC10%) 
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Main method:     

 (Main)      

  0.00  Base  Volume      

  0.00  BufferValveA  A1     

  0.00  Gradient  0 (% B) 0.00 {base}    

  0.00  Flow  0.2 {ml/min}     

 0.00  Block  Equilibration    

    (Equilibration)     

    0.00  Base  Volume     

    0.00  Valve7  1      

    0.00  Set_Mark  "Equil"     

    0.00  Gradient  100 (% B) 0.00 {base}    

    0.00  Flow  2 {ml/min}     

    0.00  ColumnPosition  Position2    

    4.00  AutozeroUV       

    5.00  End_Block       

 0.00  Block  Load     

    (Load)      

    0.00  Base  Time      

    0.00  Flow  0.00 {ml/min}     

    0.00  InjectionValve  Inject     

    0.00  OutletValve  F2     

    0.01  SampleFlow_960  1 {ml/min}    

    0.01  Set_Mark  "Load"     

    0.01  Hold_Until  UV Greater_Than 3.0000 {mAU} INFINITE {base}  

    0.02  SampleFlow_960  0.0 {ml/min}    

    0.02  End_Block       

 0.00  Block  Wash     

    (Wash)      

    0.00  Base  Volume     

    0.00  InjectionValve  Load     

    0.00  Gradient  100 (% B) 0.00 {base}    

    0.00  Set_Mark  "Wash to Base"    

    0.00  Flow  2 {ml/min}     

    0.01  Hold_Until  UV Less_Than 1 {mAU} 15.00 {base}  

    0.02  End_Block       

 0.00  Block  Elution    

    (Elution)     

    0.00  Base  Volume     

    0.00  Set_Mark  "Elution"     

    0.00  Gradient  0 (% B) 0 {base}    

    0.00  Flow  2 {ml/min}     

    0.01  Hold_Until  UV Greater_Than 1.5 {mAU} 10 {base}  

    0.05  OutletValve  F3     

    0.15  Hold_Until  Cond Less_Than 3.4 {mS/cm} 15 {base}  

    0.20  End_Block       

 0.00  Block  Regen     

    (Regen)      
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    0.00  Base  Volume     

    0.00  OutletValve  F3     

    0.00  Set_Mark  "Regeneration"    

    0.00  Gradient  0 (% B) 0.00 {base}    

    0.00  Flow  2.0 {ml/min}     

    10.00  End_Block       
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