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ABSTRACT 

Chemical sensing is a key component in modern society, especially in engineering 

applications.  Because of their widespread impact, improvements to chemical sensors are a 

significant area of research.  One class of sensors, plasmonic sensors, is being heavily researched 

because of their ability to detect low levels of analyte in near real time without destroying the 

analyte.  This work studies a new class of plasmonic sensor that utilizes diffractive coupling to 

improve sensor performance.  Specifically, this work outlines the first study of diffractive 

coupling sensors with typical nanoparticle shapes.  Sensitivity of this new class of sensor is 

directly compared to typical localized surface plasmon resonance sensors.  Spectral peak location 

sensitivity was found to be equal to or greater than typical plasmonic sensors.  These results were 

corroborated with numerical simulation with and without nanoparticle interaction to demonstrate 

the power of harnessing diffractive coupling in nanoparticle sensors. 

The sensing results were then extended to analyze ordered arrays of nanorings.  

Nanorings were chosen because they have the highest reported sensitivity of any plasmonic 

shape (880 nm/RIU) in the literature and have a high surface area to volume ratio, which is a key 

parameter for plasmonic sensors.  Theoretical simulations of diffractive coupling nanorings 

indicate that sensitivity is comparable to non-coupling nanorings in the literature (890 nm/RIU 

vs. 880 nm/RIU, respectively).  Another metric of sensor performance, the figure of merit, was 

much higher (34) than the non-coupling ring (2).  Ordered nanoring arrays which exhibit 

diffractive coupling improve upon current refractive index based plasmonic sensors.  Further 

improvements to nanoring sensors’ figure of merit are possible based on simulation results for 

nanosphere arrays. 
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CHAPTER 1  

PLASMONIC SENSORS 

1.1 MOTIVATION FOR PLASMONIC CHEMICAL SENSORS 

Chemical sensing is a key component in modern society, especially in engineering 

applications.  Chemical sensors are used to control and monitor emissions, improve product 

purity, ensure safe working conditions, and diagnose disease.8,9  Because of their widespread 

impact, improvements to chemical sensors are a significant area of research.  A specific example 

where improved sensors could be beneficial is in blood glucose level testing.  Diabetes is a 

condition that affects 25.8 million people in the United States.10  Current methods for testing 

blood glucose levels require a blood sample to be placed on a chemical sensor.  This process is 

both invasive and painful.  Recent research has shown a correlation between blood glucose levels 

and acetone in exhaled breath.11  Detection for this research utilized a gas chromatograph to 

detect the acetone levels in parts per million, which is not a feasible solution for in-home 

detection because of costs, lack of portability, and time between sample collection and results.  

Localized surface plasmon resonance (LSPR) based sensors are a potential solution to allow 

monitoring blood glucose levels in a non-invasive and cost effective method.  Current LSPR 

sensors have demonstrated sensing of specific materials on the zeptomolar scale when 

immobilizing the analyte molecules in question to the nanoparticle (NP) surface.12  However, 

these methods require that the analyte adsorb to the NP surface.  The number of molecules 

detected in the cited study is ~60,000.  Improvements need to be made to allow the detection of 

acetone from breath, since reported concentrations would only have 50-1000 acetone particles in 

the sensing volume of a 90 nm spherical NP. 
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Chemical sensors exist in a wide variety of formats, but can be grouped into several key 

groups based on their method of detection.13,14  Electrical sensors take advantage of differences 

in resistance, current, or voltage for a sensor material when exposed to an analyte.  Each class of 

electrical sensor has its own benefits and drawbacks, but in general electrical sensors have a high 

sensitivity and a wide range of operating conditions, age quickly, are non-selective, and suffer 

from hysteresis.  Spectroscopic sensors utilize interactions between the analyte and 

electromagnetic (EM) waves.  Spectral sensors are capable of detecting a specific analyte 

without isolation, but require the analyte to be spectrally active and can potentially be affected by 

ambient lighting.  A subclass of spectroscopic sensors is plasmonic sensors, which utilize 

plasmonic properties of certain materials to detect an analyte based on its refractive index (RI) 

relative to its surroundings.  Plasmonic sensors are sensitive, portable, and low cost but need to 

be functionalized for specificity. 

Significant research is being done with plasmonic sensors because of their ability to 

detect analyte in real time with high sensitivity without destroying the sample.  Some examples 

of plasmonic sensors in the literature are the detection of brain cell activity,15 in vivo blood 

glucose level monitoring,16 lung cancer detection,17 and microfluidics.18  The research outlined in 

this dissertation will aid in the development of better plasmonic sensors and can expand the 

applications where plasmonic sensors are used.  For the purposes of this work, improvements in 

plasmonic sensors will be determined with respect to sensitivity and figure of merit (FOM).  

Sensitivity is defined as the peak location shift resulting from a change in RI and has units of nm 

per refractive index unit (nm/RIU).  FOM is the ratio of sensitivity to full width at half max of 

the peak used for sensing.  Mathematical formulas for each of these measures are presented in 

Chapter 2. 
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The benefits of this research, however, are not limited to sensing.  NPs and NP arrays are 

also being extensively researched for their use in energy production, including solar cell 

enhancements,19–21 butanol pervaporation,22 and improvements in heat transfer for steam 

powered turbines.23  Nanoring arrays are especially interesting for photovoltaics because of their 

small geometric cross section. 

1.2 SURFACE PLASMON RESONANCE 

A surface plasmon is an oscillation of surface conduction electrons confined to a metal–

dielectric interface excited by incident electromagnetic waves.9,24–27  This oscillation, called 

surface plasmon resonance, exists for planar films and random or ordered nanoparticles.  

In planar films, this orthogonally-oscillating waveform travels parallel to the metal–

dielectric interface and is called a surface plasmon polariton (SPP).  In NPs, the electrons’ 

oscillations are confined by the particle–dielectric interface, resulting in a localized surface 

plasmon resonance (LSPR).27  Light of a suitable frequency will excite the surface plasmon by 

transferring energy into the resonant mode.  As a result of these interactions with incident light, 

both forms of surface plasmon resonance are observed spectrally as a peak shaped response for 

the film or NP.28  This oscillation of electrons also results in resonant frequency sensitivity to the 

RI adjacent to the metal-dielectric interface.29–31  RI sensitivity is the basis for most plasmonic 

sensors. 

SPP and LSPR sensors can detect analytes within a small region in the near field.  This 

region is ~200-300 nm for SPP sensors and ~5-15 nm for LSPR sensors.32,33  This limitation 

exists because plasmon modes decay exponentially as a function of distance from the surface.  

Many current LSPR sensors do not take advantage of effects of order in NP configuration.  It has 

been suggested that diffractive coupling based sensors which rely on constructive interference 
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between NPs in ordered arrays have advantages over current SPP or LSPR sensor 

configurations.32  Ordered NP arrays which exhibit this diffractive coupling have been theorized 

to have a more intense spectral response with a narrower peak width than current LSPR sensors.  

An additional benefit of diffractive coupling sensors is related to their far field diffractive 

coupling.  It is believed that this diffractive coupling allows analyte detection in the region 

beyond the typical LSPR detection limit while still maintaining the detection limit of current 

LSPR sensors.  This dissertation will examine experimental and simulated arrays of NPs with 

various shapes and compare them to current sensing technologies. 

1.3 SPP SENSORS 

SPP sensors, such as the commercially available BIACore, have been studied extensively 

since the groundwork of Otto and Kretchman.34,35  Their work provided two methods for 

requisite momentum matching with the metallic thin film using a prism.36  Sensors based on SPP 

have a typical bulk RI sensitivity of ~2 x 106 nm/RIU.32,33  Since their inception, SPP sensors 

have be utilized to perform medical diagnostics, characterize pharmaceuticals, and monitor food 

and environmental safety.9,37–39  Several important limitations exist with SPP sensors.  One is the 

requirement of phase matching with a laser that corresponds to the SPP wavelength.  This makes 

customizing SPP sensors for different commercial applications more difficult.  The second 

limitation is related to the propagation length of the plasmon away from the sensing surface.  The 

sensing signal is an average of the response to analyte in this entire region, which means that for 

low analyte concentrations the signal from the analyte matrix is contributing a significant portion 

to the overall plasmonic response.  LSPR based sensors do not require a specific wavelength 

laser and have a much shorter propagation length, overcoming these limitations of SPP sensors. 
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1.4 LOCALIZED SURFACE PLASMON RESONANCE 

LSPR sensors confine the plasmonic feature to a fixed NP geometry, resulting in the short 

decay length reported above.  LSPR sensors are sensitive to the properties of the NP, namely 

size,2,39–41 shape,2,25,39,42 and elemental composition,43–46.  LSPR sensors are typically produced 

with gold or silver NPs, but can and have been produced with many other plasmonic 

materials.45,47,48  Silver NPs are more sensitive to RI changes but readily oxidize in sensing 

environments.46  Gold, on the other hand, has a good biocompatibility for sensors located in vivo 

and resist chemical oxidation.2  In addition to LSPR sensor sensitivity to NP characteristics, NP 

arrangement and inter-particle separation are also important design factors for LSPR 

sensors.32,40,49–52.  Chapter 2 discusses many of the fabrication technologies that are used for 

creating LSPR sensors, with a focus on ordered NP array.  Other methods that will not be 

discussed in detail include colloidal growth followed by deposition33,53 and colloidal 

lithography.54 

1.5 ORDERED NP ARRAYS 

An extension of LSPR sensors utilize advanced fabrication techniques to create ordered 

arrays of NPs.  Two main categories of ordered NP arrays exist: near field and far field.  Near 

field sensors locate the NPs very close together to create a very intense, but small, EM field 

enhancement.55  When inter-particle spacing of NPs is less than a few hundred nanometers, near 

field coupling occurs between adjacent NPs.40,49,50,55  As inter-particle spacing decreases for these 

sensors, the EM field intensity dramatically increases.  A key application of this local field 

enhancement is surface enhanced Raman scattering (SERS).56,57  Significant amounts of the 

literature on ordered NP arrays focus on this near field enhancement to achieve very low 

detection limits, even single molecules.58  Precise control of near field NP spacing allows 
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reproducible SERS enhancements to be achieved.24,39  The other category of ordered LSPR 

sensor is those with inter-particle separations that are near or above the wavelength of incident 

light.32,59  Ordered sensors can be designed such that coupling can take place for the light that is 

scattered between individual NPs in the array.  Coupling between NPs in these arrays is a result 

of diffraction. 

1.6 DIFFRACTIVE COUPLING 

Diffractive coupling in NP arrays was first reported in 2005.59  Diffractive coupling 

occurs as in phase scattered light from other NPs in the ordered array interfere constructively.  

This constructive interference results in an EM field enhancement for NPs in the array which is 

directly related to the incident EM field plus the EM field from constructively interfering 

scattered waves from other NPs in the ordered array.  It should be noted that coupling effects are 

not limited to ordered arrays.  However, for random NP configurations, the net far field coupling 

effect is zero due to constructive and destructive interference.  Diffractive coupling is observed 

spectrally as a narrow, intense spectral extinction peak that is mainly dependent on the inter-

particle distance.  This diffractive coupling occurs simultaneously with the typical plasmonic 

response of the NPs in the array, but is a distinct feature from the LSPR feature.60,61  Work by 

DeJarnette et al. facilitated design of diffractive coupling sensors by providing a rapid semi-

analytic model to determine optimal array parameters to optimize diffractive coupling for 

nanospheres.62  When the research for this dissertation was started, diffractive coupling had been 

observed, but no characterization of diffractive coupling sensors had been performed. 

1.7 HYPOTHESIS 

This work was guided by the hypothesis that gold nanorings arranged in ordered arrays with 

inter-particle spacings between 500-1000 nm exhibit far-field diffractive coupling.  The basis 
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of this hypothesis was numerical results obtained for arrays of spherical nanoparticles.  An 

equally important part of the hypothesis is that the sensitivity of diffractive nanoring sensors 

would be higher than current LSPR sensors.  Nanorings were chosen for two reasons.  First, 

as is shown in Table 1.1, nanoring sensors that do not exhibit diffractive coupling have the 

highest reported sensitivity of current LSPR sensors.63  Second, the surface area to volume 

ratio of nanorings, as discussed in Chapter 5, is larger than other typical geometries 

examined.  Nanorings arranged for diffractive coupling will result in a large, narrow 

extinction peak with an exceptional figure of merit based on numerical simulations. 

1.8 ADVANCES IN PLASMONIC SENSING 

The research that is discussed in this dissertation includes several key advances in the 

field of plasmonic sensors, including: 

1. The first reported diffractive coupling plasmon sensor was created.  This sensor was then 

directly compared to typical LSPR sensors with random NPs, showing that sensitivity of 

the diffractive coupling peak is equal to or greater than the sensitivity of random NP 

sensors. 

2. The NP plasmon peak in ordered arrays was observed to have an increased sensitivity for 

ordered arrays that exhibit diffractive coupling. 

3. Refractive index sensitivity normalized to the percent surface coverage by NPs in 

diffractive coupling ordered arrays was shown to be higher than LSPR sensors with the 

same shape. 

4. Nanoring simulations demonstrated diffractive coupling occurs in ordered arrays of 

nanorings for all particle sizes and inter-particle spacings simulated. 



8 

5. Simulations for ordered arrays of nanorings showed a 15.9 % increase for the diffractive 

coupling peak over the plasmon peak sensitivity.  These sensitivity values were in good 

agreement with sensitivities reported in the literature for non-interacting nanorings. 

Chapters 2 and 3 will establish the experimental and theoretical framework required to 

accomplish this work.  Chapter 4 will outline the advances with ordered nanoparticle arrays 

which exhibit diffractive coupling.  Chapter 5 will report on simulations of ordered arrays of 

nanorings.  Chapter 6 will summarize significant results and discuss ongoing and future 

applications. 
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TABLE 1.1: Plasmonic sensor sensitivities reported in the literature for different shape 
nanoparticles.  A more extensive list of nanoparticle shapes are available in Mayer et 
al.64 

Shape Material 
 

FOM Reference Sensitivity 
nm/RIU 

Sphere Au 76.4 0.66 Nath
53 

Cube Ag 118 5.4 Sherry
65 

Triangle Ag 160 2.2 Mayer
64 

Rod Au 170 1.3 Mayer
64 

Disc Au 200 1.7 Dmitriev
66 

Bipyramid Au 540 4.5 Chen
67 

Stars Au 665 5.4 Nehl
68 

Ring Au 880 2 Larsson
63 
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CHAPTER 2  

NANOFABRICATION AND CHARACTERIZATION 

2.1 NANOPARTICLE ARRAY FABRICATION TECHNOLOGIES 

The wide range of potential applications for NP arrays has led to a large number of 

fabrication methods.  While some researchers use the term NP array to refer to random 

assemblies of NPs, the focus herein will be for NP arrays with long range order which exhibit 

diffractive coupling.  The methods for producing these ordered NP arrays include biotemplating, 

block-copolymer lithography, dip pen nanolithography (DPN), electron beam lithography (EBL), 

extreme ultraviolet (EUV) lithography, focused ion beam (FIB) lithography, laser interference 

lithography (LIL), nanosphere lithography (NSL), nanoimprint lithography (NIL), and X-ray 

lithography.  Each method has its inherent benefits and limitations.  A comparison of several 

main fabrication methods is found in Table 2.1. 

EBL allows precise control of NP shape, size and inter-particle separation, but requires a 

conductive substrate and is slow and costly.  NIL uses a master pattern to create a polymeric 

duplicate which can then be used to create multiple copies of the original master in an imprint 

resist, but requires a master produced by one of the other fabrication techniques.  While this 

method is promising for producing many copies of an optimized pattern, it does not by itself 

allow control over all of the key parameters in LSPR devices.  Dip pen nanolithography provides 

a method to manipulate on the atomic scale, but is time consuming and limited in the materials 

that can be deposited or manipulated.  NSL has been used to produce large arrays of 

nanospheres, nanodisks, and nanotriangles,69,70 in ordered patterns, but it does not allow arbitrary 
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shapes to be created and is difficult to eliminate defects in the resulting nanosphere templates.  

EBL has been used for this work due to its precise control over important fabrication parameters 

and equipment availability, but any of the templating methods can be used in conjunction with 

electroless gold plating to produce patterned features. Gold deposition and polymer liftoff is 

required to produce the final device. 

2.2 ELECTRON BEAM LITHOGRAPHY 

EBL relies on the sensitivity of a polymeric resist to exposure to electrons.71  This resist 

is referred to as an electron resist.  EBL is usually performed with a dedicated EBL machine or a 

retrofitted scanning electron microscope (SEM).  The use of electrons to generate a pattern is 

desirable because of the short wavelength of electrons.  Determination of electron wavelengths 

for accelerating voltages used in EBL is based on the relativistic de Broglie wavelength.  For 

electrons at 30 kV, the wavelength is 6.98 pm.  The ultimate resolution of EBL is influenced by 

several factors in addition to the electron wavelength.  The actual area that is exposed to 

electrons from the electron source is larger than the wavelength of an individual electron due, in 

part, to the tip emission spot size, current strength of the lenses, the aperture, beam energy 

distribution, and shape defects in the lenses.  The actual area of the electron beam ranges from 

0.4 to 40.9 nm for FEI instruments like the ones used in this work, varying with spot size and 

accelerating voltage. 

The selectivity of the developer to exposed areas versus non-exposed areas is important.  

The more selective the developer, the closer the feature will be to the exposed region size.  As an 

electron enters the electron resist and substrate, there is a chance that the electron will collide 

with a molecule or atom, resulting in scattering.  The higher the accelerating voltage, the less the 

electron beam will disperse as collisions occur.  Monte Carlo simulations are available to model 
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the electron dispersion within the electron resist and substrate.  Thickness of the electron resist 

will affect the minimum size of feature that is possible. 

This research utilized two SEMs each equipped with a Nano Pattern Generation System 

(NPGS, JC Nabity Lithography Systems, Bozeman, MT).  This system interfaces with each SEM 

and allows control of the electron beam to generate patterns that are created in a computer aided 

drafting program.  The NPGS system then controls the location of the electron beam on the 

electron resist coated substrate to generate the pattern based on the programmed parameters.  

Electron resists, similar to photoresists, come in positive (exposed resist is removed) and 

negative (exposed resist remains).  Common electron resists include poly(methyl methacrylate) 

(PMMA, positive), ZEP-520A, and hydrogen silsesquioxane (HSQ).  

Electrons from the electron beam transfer their energy to the electron resist, resulting in a 

change in the polymer chain.  For positive electron resists, this transfer of energy results in a 

chain scission event.  The result of these chain scissions in the electron resist is increased 

solubility in the developer.  When the electron resist is exposed to the developer, if the applied 

dose was sufficient, the patterned features will appear.  This patterned area is then ready for 

metal deposition to form NPs. 

2.3 NANOPARTICLE FORMATION  

LSPR sensors can be fabricated with a number of metals.  Gold and silver are the most 

commonly used metals for LSPR sensors.  Silver NPs exhibit a higher sensitivity, but oxidize 

readily and are more reactive.46,64  Silver oxidation changes the environment of the surface 

conduction electrons, resulting in a LSPR wavelength shift.  In contrast to silver, gold NPs resist 

chemical oxidation.  Methods of creating NPs for LSPR sensors include colloidal growth 
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followed by deposition,33,53 colloidal lithography,54 sputtering or evaporation,72 electroplating,73 

and electroless plating (EL).74–77  In typical EBL fabrication, the metal, commonly gold or silver, 

is evaporated or sputtered onto the patterned resist, creating cylindrical NPs.  Previous 

experiments have shown some difficulty in converting these nanocylinders to nanospheres when 

formed with evaporation and sputtering.76  Electroless gold plating has been shown to easily 

transform into gold NPs when thermally annealed.74  Other plating methods do not allow the 

facile formation of nanorings from a pattern of holes.  Evaporation techniques can be modified to 

allow for ring formation by angled deposition, but this method does not allow independent 

control over ring thickness and height.78  Electroplating methods would result in structures 

similar to those produced with substrate selective EL plating, i.e. cylindrical or spheroidal. 

As discussed in Chapter 3, numerical simulations for nanoparticle systems are simplest 

for spherical NPs.  For this purpose, nanospheres were fabricated first followed by nanorings.  

Nanocylinders were also fabricated to compare results to other experimental data available in the 

literature.  Nanoring fabrication is simplified by the use of electroless plating.  Despite the 

advantages in patterning time for electroless plating, liftoff is still a difficult procedure.  All of 

the fabricated nanoring arrays for conditions examined in Chapter 5 were destroyed during metal 

liftoff.  This problem is not specific to EL plating, but process improvements are required for 

consistent sensor generation. 

2.3.1 ELECTROLESS GOLD PLATING 

Electroless gold plating is a versatile multistep process that can be used to create 

nanocylinders, nanorings, and spherical nanoparticles with the same EBL pattern.75,76  The first 

step in electroless gold plating is the formation of a thin tin sensitization layer by immersion in a 

solution of tin (Sn2+) for 3 min.  This tin layer is then exposed to ammoniacal AgNO3 for 2 min, 
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which results in silver reduction onto the tin layer.  Finally, the silver is galvanically displaced by 

immersion in sodium gold sulfite (Na3[Au(SO3)2]) and a reducing solution for 10 min to form the 

desired gold features.  A key difference in EL plating and typical evaporation or sputtering is that 

EL plating is not specific to the substrate and is omni-directional.  Figure 2.1(A) demonstrates 

that when EL plating is performed on surfaces templated by EBL, Au is deposited in an 

interconnected sheet both on the surface of the electron resist as well as the substrate.  To achieve 

spherical nanoparticles without thermal annealing, a modified EL plating procedure was 

developed.75  Figure 2.1(B-D) illustrates the different structures that are possible from the same 

type of lithography pattern: B) typical EL plating yields nanorings, C) Tin pre-sensitized EL 

plating yields cylindrical particles, and D) thermal annealing results in spheroid NPs.  A scheme 

of EL gold plating with EBL patterned substrates is shown in Figure 2.2.  First, the electron resist 

is spin coated onto an indium tin oxide (ITO) coated glass substrate to a desired thickness (~220 

nm for this work).  The electron resist is then exposed to the electron beam according to a 

predetermined pattern.  Development of the electron resist exposes the substrate in the patterned 

regions, which are then tin sensitized, silver activated, and gold plated.  Depending on the feature 

size and conditions of gold plating, the resulting structures are spheroids or nanorings.  

Nanorings have been shown to thermally transform into spheroid NPs when placed in an oven at 

800 °C for several minutes.76 

While many benefits exist for using EL plating for nanoring formation, several 

difficulties arise that are not present for more typical deposition methods.  First, aqueous 

solutions are used for EL plating.  While this is beneficial in terms of introducing the gold to the 

surface, several of the electron resists are slightly permeable to water.  The result is a thin layer 

of surface deposited gold around the patterned feature.  This film is observable in Figure 2.1 (B).  
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This film is undesirable because the gold will affect the plasmon modes of NPs on or near it.  

Samples that have this gold film in the background were unable to be spectrally characterized by 

the microscope spectrometer discussed in 2.4.2. 

Second, because EL plating is non-directional, gold is plated on all exposed surfaces.  

This is different than evaporation or sputtering, which are directional and form distinct films on 

the resist and substrate surface.  The result is evident in Figure 2.1 (A), an interconnected sheet 

of gold which is attached to the patterned elements.  This results in patterned NP being sheared 

from the surface during liftoff.  EL gold plating can be made selective for the substrate surface 

by moving the tin sensitization step of electroless plating before the electron resist deposition.  

The resulting particles have an increased circularity and form spheroid NP without thermal 

annealing.75  Additional experimentation is being performed to use selective gold etching to 

detach the gold film on top of the electron resist from the patterned surface or block gold 

formation on the surface of the electron resist. 

2.4 NANOPARTICLE CHARACTERIZATION 

Characterization of fabricated NP sensors is a critical component of evaluating their 

sensing capabilities.  First, because of the strong dependence of NP response to size, shape, and 

spacing, a thorough characterization of physical properties is required.  Additionally, the sensor 

performance will be evaluated spectrally. 

2.4.1 PHYSICAL CHARACTERIZATION 

Plasmonic sensors are strongly influenced by NP size, shape, and inter-particle spacing.  

It is therefore important that size and shape parameters be accurately determined to compare 

sensor performance to other sensors in the literature and to theoretical simulations.  Several 

sensors were fabricated for evaluation of diffractive coupling sensors.  Detailed analysis of the 
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sensors fabricated for this work is found in Chapter 4.  In addition to the diffractive sensors, 

random NP sensors were also fabricated using a thermal transformation of an EL plated gold film 

to random NP arrays.74  Two different random NP sizes and densities were evaluated in 

comparison to the diffractive coupling sensors. 

Sensors were imaged with a SEM to accurately determine the NP metrology.  These SEM 

images were then analyzed using a semi-automated Matlab (Mathworks Inc, Natick, MA) 

program.  Source for the Matlab program is included in Appendix A.1.  NP symmetry is 

important in correlating experimental data with simulated results.  Small variations in particle 

shape have been shown to affect EM response of NPs and NP arrays, especially for nanoring 

simulations.79  The spherical nature of Au NPs fabricated were calculated using standard 

measures of particle diameter, circularity, and elongation.80  Particle diameter was determined by 

the built in Matlab function, regionprops, according to the formula 
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where P is the NP perimeter.  Circularity approaches 1 for circular objects.  Elongation is 

calculated by 
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Elongation approaches 0 for circular objects.  The value of elongation can be transformed 

to approach 1 for circular objects by subtracting elongation measured in EQ 2-3 from unity to 

obtain ‘1-elongation’.  This transformation is performed to improve visual comparisons between 

circularity and elongation in data analysis by selecting a common basis where a perfect circle is 

1. 

2.4.2 SPECTRAL CHARACTERIZATION 

Spectral characterization of NP systems is an important step in characterizing a NP 

sensor.  As previously mentioned, SPR features are observed in the measured spectral response 

from a sample.  These spectral data are then analyzed to determine the peak positions in different 

RI environments to calculate sensitivity..  For this work, two custom spectral systems were 

developed for sample characterization.  The first spectrometer system consisted of a 6V tungsten 

microscope light source, a series of lenses for collimating and focusing, a polarization crystal 

(GT5, ThorLabs, Newton, NJ) mounted in a rotation mount (10 arcmin. resolution), a 3-axis 

micropositioner (25.4 µm resolution) for flow cell alignment, a 100X microscope objective 

(NA=0.70), additional focusing lenses, a beam splitter for visual sample positioning, and a fiber 

optic collimator to collect the light with a fiber optic spectrometer (AvaSpec 2048, Avantes Inc. 

CO).  The illuminated area for this system was ~20 mm2.  Figure 2.3 shows a schematic 

representation of the spectrometer setup. 

Effects of RI changes on the spectral characteristics of a sample are determined by 

exposing the sample to different liquid RI environments.  Two sample holders were used for 

evaluation of the RI response of a sample, a 1 cm path length cuvette and a custom flow cell.  A 

thin film of polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, Midland, MI) was 
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placed between the ordered samples and the quartz cuvette to keep the samples from shifting and 

provide RI matching between the substrate and quartz cuvette.  When this was not done, 

sinusoidal interference was observed in the spectral response which is attributable to a gap 

between the substrate and the cuvette.81  The custom flow cell was fabricated from two polished 

glass slides cut into one inch squares.  The upper glass slide was fitted with two NanoPorts 

(Upchurch Scientific, Oak Harbor, WA) which allowed for analyte introduction with minimal 

disruption to the flow cell. These ports were placed at opposite diagonal corners to leave a large, 

unobstructed region where light could be introduced to the sample and to ensure uniform 

distribution of analyte over the sensor surface.  PDMS was used to fabricate a gasket to separate 

the two glass slides and provide a flow channel.  The gasket was fabricated with a thickness of 

0.75 mm, or 0.05 mm thicker than the sensing substrate to create the sampling chamber.  Flow 

channels were manually cut into the PDMS to connect the ports and direct the analyte over the 

sensor being evaluated.  A schematic of the custom flow cell is shown in Figure 2.4.  Adhesive 

tape was used to maintain a slight pressure on the PDMS gasket to maintain a good seal when 

liquid was introduced.  Up to seven different values of RI were used to evaluate sensor 

performance: air (1.00), methanol (1.328), water (1.333), acetone (1.359), ethanol (1.361), 

isopropanol (1.3772), and toluene (1.479).82  Samples secured with PDMS were not tested with 

toluene because it is known to cause swelling in PDMS.83  Between spectral measurements for 

each fluid, the cuvette was emptied of the fluid, rinsed with acetone, and air dried.  Passive 

drying proved insufficient to fully remove the previous fluid or rinse acetone so samples were 

dried with breathing quality air from a compressed cylinder. Air references were taken before 

and after each measurement to confirm complete drying.  This procedure was repeated three 

times for each sampling location and fluid.  The data collection process was duplicated for the 
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ordered sample to ensure that three samples accurately represented the system.  Peak positions 

and sensitivities for this additional data corresponded well to the initial data set.  The side of the 

samples with the NPs was positioned ~2.3 mm from the microscope objective.  The illuminated 

spot size was ~1.6 mm in diameter.  The light was horizontally polarized for all the samples 

analyzed.  Results obtained with the two sample holders were identical. 

It is clear that this system results in the response for a large area on the sample.  For 

systems of interacting NPs this results in a large number of interacting NPs, increasing the 

chance of observing inter-particle effects.  Recent publications have demonstrated that as the 

spectral field of view is reduced to a small subset of NPs or even a single NP, the limit of 

detection is also reduced, which could lead to very small sample volumes.84  The second spectral 

system is a reflection/transmission optical microscope (Nikon LV-100DU) equipped with a 

multi-grating spectrometer (Andor Shamrock 303I with Du-420A-OE detector).  This system 

included a variable slit to reduce the number of NPs in the spectral field of view.  The 

illuminated field of view is also variable down to ~3.0 x 10-2 mm2.  This system allows analysis 

of how defects and particle distributions affect the spectral signal, but is currently limited to 

spectral analysis of samples in air because of the short focal length between the sample and the 

microscope objective.  This microscope spectrometer will be useful in future work to identify the 

influence of missing NP in ordered NP sensors and allow characterization of NP arrays on non-

transparent substrates. 

Sensor performance is commonly evaluated in terms of a given spectral response to RI 

change: peak magnitude, peak wavelength, and full width at half max (FWHM).  Spectral 

features were identified using Matlab.  Two programs were used to determine peak locations: 

peakdet and iSignal, both of which are available on Matlab file exchange.  A Matlab script was 
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written to automate the peak location process with the peakdet program.  Spectral responses, in 

particular peak wavelength and FWHM, are used widely to indicate sensor sensitivity.  A 

common method of reporting sensitivity based on spectral response to RI changes is  

 

mRI

RU
S

∆
∆= , EQ 2-4 

 

where ∆RU is the change in spectral response and ∆RIm is the change in RI of the surrounding 

dielectric medium.  Response units can be signal intensity at a given wavelength, wavelength of 

the spectral feature, or even phase information.85,86  The analysis herein will focus on wavelength 

changes for the spectral feature, but as device fabrication results in samples which better match 

the intense diffractive peaks observed in simulation, intensity at a fixed wavelength may result in 

increased sensitivity.  Sensitivity is expected to be linear with respect to RI.87  However, many 

publications only cite sensitivity in the range of 1.3 to 1.5.1,67,88,89  This work will report 

sensitivity including the air point as air based sensitivity and excluding the air data point as 

methanol based sensitivity.  This form of sensitivity is based upon the aggregate spectral 

response of all NPs of the sensor to a change in RI for a given spectroscopic field of view (FOV).  

This form of sensitivity does not directly give information about the limit of detection, the 

number of particles involved in the detection, or the impact of intrinsic instrument sensitivity. 

An alternate measure of sensitivity has been introduced which, in addition to spectral 

response per change in RI, also accounts for intrinsic instrument sensitivity, active plasmon area, 

and spectroscopic FOV.32  Sensitivity measurements performed on the same sensing platform 

allow the intrinsic sensitivity and spectroscopic FOV to be fixed.  When these conditions are 

met, the sensitivity defined in EQ 2-4 can be adjusted to account for the amount of active 
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plasmonic area involved in the sensing.  This modified sensitivity provides a consistent basis to 

compare sensitivity of different LSPR sensors and gives a better comparison between SPP and 

LSPR sensors.  This modified sensitivity for sensors with equal intrinsic sensitivities and FOV 

values, reduces to:90 
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where A is the area excited by the incident wave, AXC is the cross-sectional area of an individual 

NP, and NNP is the total number of NP in the area A.  This figure of merit, referred to as 

nanoparticle sensitivity, SNP, has the same units as S, but is normalized to the fraction of the 

surface covered with nanoparticles. 

Sensitivity by itself does not fully characterize the performance of plasmonic sensors.  

Other factors, such as FWHM and intensity, affect how accurately peak position can be 

determined as well as the minimum spectral shift that can be detected.  If the spectral feature is 

broad, it is difficult to accurately determine the peak wavelength.  Low intensity makes it 

difficult to distinguish the sensor signal from background noise.  A figure of merit (FOM) has 

been proposed and utilized in the literature which accounts for the effect of FWHM on the 

overall sensor performance.65 
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The sensors in this work will be directly compared to each other on the basis of 

sensitivity and FOM.  These results will also be compared to reported sensor performance from 

the literature. 
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2.5 CONCLUSIONS 

Nanoparticle arrays have been fabricated using EBL and EL plating to produce regular 

arrays of nanospheroids, nanocylinders, and nanorings.  Two methods were demonstrated to 

produce spheroid NPs with EL plating, a thermal annealing method and a selective plating 

process using tin presensitization.  The new selective EL plating method was shown to reduce 

deviations in particle size and circularity.  A custom spectrometer system was fabricated to allow 

precise positioning of a sensor with micropositioning control over x, y, and z-axes as well as 

polarization and incident angle.  A methodology for characterizing sensor performance based on 

RI sensitivity and a FWHM figure of merit was outlined. 

 



 

 

TABLE 2.1: A COMPARISON OF NANO-FABRICATION TECHNOLOGIES. 

Technology Description Benefits Limitations 

•No mask required •Equipment cost
•Complex patterns •Low throughput
•Well characterized •Proximity effects 
•Can directly write metal rings •Ion mixing

•Implanted dopants 
•Altered optical properties 
•Substrate dependent “ink”
•Low throughput

•Can produce large area patterns •Line and pin defects

•Inexpensive
•Limited lattice configurations 
(hex, square) 

•Widely used •Diffraction limited 
•High aspect ratios possible  •Exotic optic materials  

•Expensive source 
•Complex mask 
•Mask gap changes resolution

•Rapid •Stamp deformation 
•One master produces multiple 
samples  

•Highly sensitive to surface 
irregularities  
•Complex Equipment 
•Height/width are not independent  

EL-EBL  
Electroless plating on EBL 
patterned holes  

•Produces rings without directly 
patterning 

•Liftoff is difficult 

Direct

Indirect
(Require a mask or pattern from another lithography method)

EBL  
Patterning of nanorings with 
electron beam directly in resist.  
Used for mask generation. 

FIB  
Ions etch material away to 
produce nanoring pattern 

DPN  AFM tip deposits “ink” 

Angle Resolved
EBL  

Angle  resolved evaporation on 
EBL patterned holes  

•Produces rings without directly 
patterning 

•Less long range scattering than 
electrons

EUV  
Extreme UV light (λ~10 nm) used 
similar to photolithography  

X-ray  
X-rays (λ~1 nm) used to expose 
resist  

•Linewidth independent of 
substrate  

NIL  
Master pattern is duplicated in 
resist via contact  

•Complex patterns

NSL  
Microspheres are used as a mask 
for evaporation followed by ion 
etching 
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FIGURE 2.1:  Structures fabricated with electroless gold plating and electron 
beam lithography: A) interconnected film, B) nanoring, C) nanocylinder, and 
D) nanosphere. 



 

25 
 

Sn

Ag

Au

Substrate

Spin Coating

EBL

Development Au

Liftoff

Nano rings

Nanospheres

Particle FormationPatterning

Electron Resist

Thermal anneal

a)

b)

c)

d)

e)

f)

g)

h)

i)

 

 

  

FIGURE 2.2:  Scheme of EL plating with EBL to produce ordered arrays of nanorings and 
nanospheres. 
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FIGURE 2.3:  Illustration of primary spectroscopy system. 
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FIGURE 2.4:  Schematic of custom flow cell used in the spectrometer setup shown in 
Figure 2.3.  Top left) fully assembled view.  Bottom left) showing separate layers. 
Right) orientation relative to light source. 
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CHAPTER 3  

NANOPARTICLE SENSOR SIMULATION 

3.1 INTRODUCTION 

Nanoparticle based sensors are governed by electromagnetic (EM) interactions with light.  

Interactions of EM with matter are described by Maxwell’s equations.  While Maxwell’s 

equations fully describe these interactions, the solution to Maxwell’s equations is not always 

possible analytically, especially for complex shapes.  Because of this, many different numerical 

methods of solving Maxwell’s equations have been developed.  Some of these methods are 

nominally exact methods, where the numerical results converge on the exact answer, while 

others make assumptions to simplify the calculations or find exact solutions for special cases.  

This chapter outlines some of the most common simulation methods used for evaluating 

nanoparticle sensors. 

3.2 SUMMARY OF METHODS 

A comprehensive review of different numerical methods used for NP analysis was 

recently published which compared the most common simulation methods.91 Of particular 

interest for applications with nanorings are the finite difference time domain (FDTD) method, 

the discrete dipole approximation (DDA), the coupled dipole approximation (CDA), and Mie 

theory.  Other methods exist (T-matrix, method of moments, finite element, etc.) but were not 

considered because of similarities to considered methods, lack of availability, or lack of periodic 

boundary condition capabilities.  Of the methods considered, Mie theory and the CDA both 

assume spherical nanoparticles in the form used.  Details on the specific implementations used 

for each of the considered simulation methods will be provided in the detailed description of that 

method in this chapter.  When simulations are compared to experimental data, simulations use 
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the particle characteristics determined using the methods in 2.4.1.  Simulations reported herein 

neglected the effects of the substrate, which consists of a multilayer environment of analyte–NP–

ITO–glass for ordered arrays or analyte–NP–glass for random NPs.  Instead, simulations 

assumed the nanoparticles were in a uniform RI environment.  When appropriate, an effective RI 

was used to account for the change in local RI due to the multilayer environment.  This effective 

RI was calculated using a weighting factor of 0.82 for the medium and 0.18 for the substrate RI, 

based on a uniform sensing volume shell, generating a weighted average of the medium and 

substrate RI.92  A multilayer environment will red shift the LSPR and diffractive coupling 

frequencies, however, relative shifts in frequency due to changes RI of the medium are 

preserved.93  CDA results reported in Chapter 4 utilize an experimentally determined weighting 

factor to better represent the effects of the substrate.  A brief description of each of the simulation 

methods used for this work follows. 

3.3 MIE THEORY 

Gustav Mie determined that for spherical particles that do not interact, an exact solution 

to Maxwell’s equations could be reached analytically.94  This analytical solution as derived is 

only valid for spherical particles that do not interact.  However, for random NP systems, the net 

interaction between particles is zero and Mie theory provides good correlation with experimental 

data.  Mie theory was implemented in Fortran by Bohren and Hoffman, which is the basis of 

many of the existing Mie simulation packages.95  A customized Matlab version of the Mie theory 

code developed by Maetzler was used for simulations reported herein.96  The modified code is 

available in Appendix A.2.  Results of the modified code were in good agreement with those 

produced by MiePlot (v. 4.2.03, Philip Laven), a freely available implementation of the code by 

Bohren and Hoffman with a graphical user interface.  However, the modified code used was 
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faster for computations with particle distributions and returned the spectra for each of the NP 

sizes in the distribution. 

3.4 FINITE DIFFERENCE TIME DOMAIN 

FDTD is, as the name implies, a method of solving Maxwell’s equations in the time 

domain.  The target of the model is discretized in space with a desired spatial discretization 1/10th 

the smallest wavelength or feature size.  A benefit of FDTD is that since it is a time domain 

method, multiple frequencies of EM waves can be simulated simultaneously.  Foundational work 

by Yee established an algorithm where each discretized spatial volume is solved for the electric 

field on the edges of the discretized volume, then stepped to the face centers of the volume to 

solve for the magnetic field.97  Time discretization is strongly related to the spatial discretization 

volume.  The simulation steps forward in time until convergence is achieved.  FDTD methods 

can provide very accurate results, but are time and computing resource intensive.  FDTD results 

for cylindrical particles were performed by B. Harbin.  Conditions and results of this simulation 

can be found in our previously published work.90 

3.5 DIPOLE APPROXIMATION METHODS 

Several methods exist where Maxwell’s equations are simplified by assuming that the 

EM field is a collection of dipoles.  This approximation simplifies the integration of the electric 

field which results in a significant reduction in simulation times for simulated geometries where 

this approximation is valid.  This section will discuss two similar dipole approximation methods: 

CDA and DDA.  Although these two methods are sometimes considered the same, the difference 

is that CDA generally represents individual NPs as point dipoles whereas DDA typically 

represents a NP as a collection of individual dipoles. 
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3.5.1 COUPLED DIPOLE APPROXIMATION 

The CDA model assumes a square array of polarizable scattering objects whose spatial 

dimensions are small relative to the incident wavelength such that their induced EM field can be 

approximated as dipolar.  In addition to the dipole assumption, the CDA calculations performed 

for this work assume an infinite array of dipole scatterers with a uniform polarizability for each 

dipole in the array.  The local electric field experienced by a NP i due to contributions from all 

other NPs j in this dipole approximation is: 
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where Pi is the polarization vector of particle i, rij is the distance between particles i and j, αi is 

the scalar polarizability of particle i, k is the wave vector of the incident EM wave, λπ /2 n , n is 

the local RI, λ is the wavelength of incident EM radiation, and krE i
oe  is the incident EM field.98  

For a symmetric, infinite array, Pi and Pj are equal.  It is important to note the angle dependence 

that exists between the vectors k, rij and P.  One can expand EQ 3-1 to Cartesian coordinates 

where each vector has components in the x, y, and z directions.  By performing this 

transformation, it can be seen that the local EM field will be influenced by the angle of the 

incident light to the substrate, the polarization angle of the incident light, and whether the 

interacting particles are on the same plane as the induced dipole.  This requires care in 

positioning of experimental samples when the spectral response will be compared to theoretical 

simulations. 
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Work by DeJarnette, Taylor, and Roper has resulted in a rapid, semi-analytical solution 

for the coupled dipole approximation (rsa-CDA).32,62  The rsa-CDA implementation greatly 

reduces the required computation time for periodic arrays of spherical NPs.  This allows the 

evaluation of thousands of different NP sizes and inter-particle spacings within a few hours.  

Optimal parameters for NP spacing for spherical NPs were determined with the rsa-CDA and 

were used as the basis for simulation parameters for nanoring arrays. 

3.5.2 DISCRETE DIPOLE APPROXIMATION 

The DDA is a frequency domain method that approximates the induced polarization in an 

arbitrarily shaped NP by calculating the EM response of polarizable dipoles on a rectangular 

lattice.91  DDA development is attributed to Purcell and Pennypacker in their study of interstellar 

grains.99  Further development of the model, including the production of a freely distributed 

DDA program, known as DDSCAT, were performed by Draine and Flatau.100–102  The ability to 

simulate periodic NP structures was recently added as well as support for new data visualization 

software.  The ability to perform periodic array calculations for arbitrary NP shapes while still 

retaining some of the computational time benefits of the dipole approximation were reasons that 

DDSCAT was used for this work.  DDSCAT v7.1 and v7.2.2 were both used for simulations 

reported herein. 

3.6 COMPARISON OF SIMULATION METHODS 

It is not the objective of this research to compare the numerical results of one method to 

another.  Several simulation methods have been used to illustrate the effects of underlying 

assumptions as they relate to this work, especially the interaction between particles which is 

absent in Mie theory simulations.  However, for those who are interested in a detailed 



 

33 
 

comparison of different simulation methods, several have been performed and published in the 

literature.36,91,103 
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CHAPTER 4  

DIFFRACTIVE COUPLING: SENSING APPLICATIONS 

4.1 MOTIVATIONS FOR DIFFRACTIVE COUPLING SENSORS 

LSPR sensor characteristics depend on NP size and shape,25,39–42,67 elemental 

composition,43–46 spatial NP arrangement,49,104 and inter-particle separation.32,40,50–52  NPs in 

LSPR sensors benefit from large optical cross sections coupled with geometric confinement of 

absorbed EM, resulting in significant local field enhancements within 5-15 nm of the metal–

dielectric interface.33  Current LSPR sensors rely solely upon this near field enhancement since 

plasmon modes decay exponentially away from the NP surface.  As NPs approach each other, 

these fields interact, resulting in an enhanced EM field.55  These order of magnitude field 

enhancements form the basis for surface enhanced Raman scattering (SERS).24,39,105  These near 

field enhancements have been heavily studied for their sensing capabilities.26,106–109  A key 

limitation of common LSPR and SPP sensors, including SERS sensors, is that they are limited to 

detection within the decay length region of the surface plasmon from the metal–dielectric 

interface.  This decay length is 200-300 nm for SPP sensors and 5-15 nm for LSPR devices.32 

Detection limitations resulting from the near field range limitations can be augmented by 

far field coupling between NPs in ordered arrays.  Far field coupling occurs at inter-particle 

spacings approaching the LSPR wavelength.32  Far field coupling is dependent on EM 

interactions resulting from waves scattered from adjacent NPs with inter-particle spacings at or 

near the wavelength of interest.  When the phase of the scattered EM waves coincides, coupling 

occurs.32,110  This coupling is not unique to ordered NP arrays.  However, for random structures, 

the constructive interference is negated by destructive interference caused by scattered EM 

waves that are out of phase.  The result of this constructive interference can result in an increase 
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in the local EM field incident on a NP due to the contributions from the constructive interference 

from other NPs in the array in addition to the EM field due to incident light.62,90  This 

contribution is calculated for CDA methods using EQ 3-1.  Because the nature of this coupling 

relies on the interactions of incident EM with other NPs, this constructive interference between 

particles is considered diffractive coupling.  Diffractive coupling results in a narrow, high 

intensity extinction peak in the NP system’s spectra.  Diffractive coupling peaks differ from 

typical plasmon peaks because their position is predominately determined by the structural 

configuration of the sensor and its interactions with properties of the incident EM field (e.g. 

polarization, wavelength) not the NP size and shape. 

Diffractive coupling in NP arrays is best observed by arranging similarly-sized, LSPR 

active NPs into regular, periodic arrays which have been designed to maximize the constructive 

interference between NPs at a desired wavelength.  This phenomenon was first reported in NP 

arrays in 2005.59  An important observation with diffractive coupling is that this coupling and its 

associated spectral response are distinct from the local field enhancements seen in typical LSPR 

devices.60,61,111  The spectral response associated with this coupling will still be affected by 

changes in the local dielectric around individual NPs since it is dependent upon interactions of 

EM waves scattered from adjacent NPs.  Potential advantages of diffractive coupling based 

sensors relative to current LSPR sensors include improvements in sensitivity, multi-spectral 

analysis, far field analyte interrogation, and reduced peak broadening from inhomogeneity in 

NPs.  Multi-spectral analysis is possible because the diffractive peak occurs separately from the 

LSPR peak, allowing detection even if one of the spectral features is obfuscated by the analyte. 

Diffractive sensors inherently probe the region between NPs, decreasing the diffusive resistance 

of the analyte to the sensing region.32  Research has shown that this coupling spectral feature is 
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less affected by deviations in NP shape and size than the LSPR spectral feature.112  This increases 

the robustness of the resulting sensor to defects resulting from fabrication. 

This chapter outlines experimental sensing results for two different diffractive coupling 

sensors and compares the sensitivity of these sensors to random NP sensors.  A single sensing 

system, described in 2.4.2, was used to directly compare random and ordered NP sensors while 

mitigating effects of external factors on sensitivity including spectrometer spot size, sample 

orientation, and focal length.  In addition to demonstrating diffractive coupled sensing, an 

increased sensitivity of the LSPR peak in ordered arrays was also observed.  These experimental 

results are then compared to theoretical results. 

4.2 DIFFRACTIVE COUPLING SENSOR 

Diffractive coupling sensors were fabricated as outlined in 2.3.1.  Fabrication parameters 

were selected based on numerical modeling (CDA) for spherical arrays of interacting NPs.  Two 

specific diffractive coupling sensors will be reported on this chapter.  The first consists of 

cylindrical disk shaped gold NPs created with typical fabrication methods, i.e. sputtering.  The 

second consists of spheroidal gold NPs created with EL plating combined with thermal 

annealing.  Sensing characteristics were evaluated at ambient conditions.  Diffractive coupling 

sensor performance was directly compared to sensing performance of random NPs fabricated 

using EL plating and thermal annealing. 

4.2.1 PHYSICAL CHARACTERIZATION 

Plasmonic based sensors are strongly affected by NP size,2,39–41 shape,2,25,39,42 

arrangement,49 and inter-particle separation.32,40,50–52  These dependencies require a careful 

analysis of fabricated sensor parameters to establish good correlation between experimental 



 

37 
 

observations and theoretical simulations.  Four specific sensing arrangements were tested: larger, 

less dense random NPs (Random Spot 1); smaller, higher density random NPs (Random Spot 2); 

a cylindrical disk sputtered NP array (Sputtered Ordered), and a spheroidal EL plated ordered NP 

array (EL Ordered).  The Sputtered Ordered sensor consisted of a 5 x 5 array of 100.5 µm x 

100.5 µm square arrays of filled circles with a target horizontal and vertical spacing of 670 nm 

(total size 502.5 µm x 502.5 µm). The EL Ordered sensor consisted of a 1x10 array of the same 

100.5 µm x 100.5 µm square arrays with the same target spacing.  Physical characterization of 

the plated sensors was performed with SEM images analyzed with Matlab, as described in 2.4.1.  

Representative SEM images for each sensor are shown in Figure 4.1.  Random Spot 1 (Figure 

4.1 A) had a broad particle diameter distribution of 50. ± 21 nm and an average particle density 

of 8.04 x 109 NP/cm2 based on measurements from 909 NPs.  Random Spot 2 (Figure 4.1 B) 

consisted of NPs with a particle diameter distribution of 39. ± 14 nm with an average particle 

density of 1.90 x 1010 NP/cm2 (N= 2096 NPs).  The Sputtered Ordered sensor particle diameter 

distribution was 208 ± 10 nm (N=20 NPs) with an average particle density of 2.37 x 108 NP/cm2 

(N=104 NPs).  The EL Ordered sensor particle diameter distribution was 161. ± 6 nm with an 

average particle density of 2.52 x 108 NP/cm2 (N=226).  Particle density for the random sensors 

was calculated from the area of the SEM image analyzed.  Ordered sensors utilized the average 

inter-particle spacing to calculate the particle density based on a unit cell of the array.  Average 

inter-particle spacings for the random sensors were determined from the particle density 

assuming the particles were on a square lattice.  Inter-particle spacings for ordered arrays were 

calculated based on the distances to adjacent NPs in cardinal directions.  Average inter-particle 

spacings were 111, 72, 649, and 630 nm for Random Spot 1, Random Spot 2, Sputtered Ordered, 

and EL Ordered, respectively.  Comparison of the two ordered arrays shows a particle diameter 
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decrease of 22% for the EL Ordered sensor and an inter-particle spacing decrease of 2.9%.  

These values will be important when comparing the spectral response of the diffractive coupling 

spectral features. 

4.2.2 SPECTRAL CHARACTERIZATION 

Spectral measurements for sensitivity analysis were performed using the spectrometer 

setup shown in Figure 2.3.  The spectral response of Random Spot 1 and the EL Ordered sensor 

in air were also recorded using the microscope spectrometer with a 200 µm slit width and full 

vertical binning.  This results in spectral collection from an area of ~1 x 60 µm.  A change in the 

spectral collection area affects the number of NP whose components combine to produce the 

observed spectra.  Local variations in NP size distribution for the random sample result in shifts 

in the spectra.  Spectral results for both sensors, shown in Figure 4.2, are slightly different in 

peak location than those from the first micro-spectrometer because the spectra represent a much 

smaller area of the sample.  The illuminated spot size for the microscope spectrometer system is 

much smaller (0.0625 mm2), which affects the number of NP involved in diffractive coupling.  

The random NP sample has a large variation across the surface in particle density and size.  

Without a micropositioner on the microscope, it is very difficult to take spectra from the same 

region as Random Spot 1 on the random sample, because the NPs are too small to be observed in 

the optical microscope.  Additionally, the same effect caused by the reduced spectral collection 

area will be apparent in the random spectra.  Sensor sensitivity was evaluated using the micro-

spectrometer with micropositioner, as previously mentioned. 

Maximum peak intensity between the four sensors is quite different.  This intensity 

difference in the measured extinction spectra is easily related to the NP number density.  
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Dependence of the experimental extinction on NP number density can be clearly illustrated by 

examining the experimental and Mie theory simulation results for Random Spots 1 and 2.  Mie 

theory simulations for Random Spot 1 resulted in peak extinction efficiency 42% larger than 

Random Spot 2.  This difference is easily attributed to the larger scattering cross section for NPs 

in Random Spot 1.  Experimentally, however, the peak extinction was 54% lower for Random 

Spot 1 than Random Spot 2.  When NP number density is taken into account in the Mie theory 

results, the peak extinction is 66% lower.  This dependence on NP number density is expected 

since experimental data is the result of all of the NPs in the spectral FOV whereas Mie theory is 

based on a single NP.  

Random NP sensors exhibit a single peak that is characteristic of the LSPR response of 

gold.  Multiple peaks are apparent in the ordered arrays.  The Sputtered Ordered sample does not 

have a discernible LSPR peak.  This sensor had small gold NPs (~15 nm) in the background of 

the NP array (see Figure 4.1 D).  The reference spectrum was taken from a region containing 

these much smaller particles far away from the array which removed the spectral response of 

these small particles.  This removal, combined with noise from the system, made the LSPR peak 

indistinguishable.  The EL Ordered sample does exhibit a peak in this wavelength range (400-

600  nm).  In addition to this peak in the LSPR range, ordered NP arrays exhibit peaks in the 

region from 650-900 nm.  These peaks are related to diffractive coupling.  The first of these 

peaks is approximately at a wavelength equal to the inter-particle spacing.  Currently, the source 

of other peaks in this region is not known.  Several reports of additional peaks in diffractive 

coupling arrays exist which attribute the multiple peaks to waveguide modes in the ITO 

layer.110,113  Unfortunately, these modes are not supported in air for an ITO thickness of less than 
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50 nm.114  However, several observations have been made that should aid future researchers to 

determine the source of these peaks. 

First, peaks show a strong dependence on the incident angle.  Figure 4.3 shows the 

change in peak location for the EL Ordered sample in air as the sample is tilted from the plane 

orthogonal to the direction of light propagation.  Tilting the sample in this fashion changes the 

phase of light that is incident on each NP along the tilted sensor, which in turn changes the 

wavelength where constructive interference will occur.  Analysis of the peaks’ shift with the 

change in angle indicates that the peaks are shifting symmetrically about a specific wavelength.  

Similar peak shifts are observed in the Sputtered Ordered sensor. 

Second, strong polarization dependence is observed for ordered sensors.  This 

polarization dependence is expected for diffractive coupling because the EM field excited around 

a particle is orthogonal to the linear polarization direction.  For square arrays, when the 

polarization is parallel with a lattice direction, the EM field between particles will be orthogonal 

to the polarization.  Figure 4.4 shows the change in the first (top) and second (blue circles, 

bottom) peaks in the diffractive coupling region for the Sputtered Ordered sample.  For the first 

diffractive peak, polarization changes appear to change peak position in a sinusoidal fashion, but 

the peak shift for the main diffractive peak is larger at 230° than near 0° and the apparent 

maximum and minimum wavelengths do not appear to have a single period.  Figure 4.4 also 

shows how the first two peaks in the diffractive coupling region vary with respect to each other.  

The second peak appears to be more sensitive to polarization changes in terms of both peak shift 

amplitude and frequency.  The same polarization experiment was performed on a random NP 

sensor, but no polarization dependence was observed.  The random arrangement of the NPs in a 
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random sensor results in both constructive and destructive interference as the polarization 

changes, resulting in no net change in the spectral signal.  Polarization dependence has been 

previously observed in ordered nanoparticle arrays, but is normally attributed to particle shape 

non-uniformity.115  However, the trend observed for the Sputtered Ordered sensor has been 

observed in several other diffractive coupling sensors with very different NP shapes (cylindrical 

disks, spheroids, and hemispheres).  One parameter that is consistent between arrays that exhibit 

this polarization dependence is that the inter-particle distance in the horizontal direction is 

slightly larger than in the vertical direction.  These differences in spacing in the vertical and 

horizontal grating direction have been shown to cause multiple peaks in diffractive coupling 

arrays.110,113  For the Sputtered Ordered sensor, the horizontal inter-particle spacing is 658 nm 

while the vertical inter-particle spacing is only 634 nm, a difference of 3% from the horizontal 

spacing.  This is compared to average peak locations of 721 and 701 nm, a difference of 3%.  

While there appears to be correlation, additional research is needed to determine the exact source 

of the multiple peaks.  Another possible explanation is that one of the peaks is the result of 

coupling of non-axial particles.  The nature of diffractive coupling would predict these peak 

locations to be located at some harmonic of the inter-particle spacing.  A comparison of the 

harmonics for the five closest NPs did not match the experimental peak positions.  Further work 

is needed to determine if interactions between coupling axial and non-axial NPs exist. 

Finally, a broad peak is seen for both ordered sensors in the near infrared (NIR) range of 

800-900 nm.  The source of this peak is believed to be related to the ITO layer on the sensor 

substrate surface.  For all of the experimental data reported here, the intensity of the light source 

in this region is low, resulting in a large amount of noise.  This noise made it difficult to perform 

a sensitivity analysis of sensing performance for this peak.  Further work is necessary to 
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correctly identify the source(s) of these peaks, although from this preliminary analysis they 

appear to be related to the diffraction phenomenon and not particle size as similar peaks are 

observed for both ordered sensors. 

Spectral analysis of experimental data relied on a modified smoothing algorithm to 

remove noise from the signal.  Smoothed and original spectra were compared after peak finding 

to verify accuracy.  Average peak wavelengths in air for Random Spot 1, Random Spot 2, 

Sputtered Ordered, and EL Ordered are: 527.6 nm; 528.5 nm; 700.6 and 860.9 nm; and 525.2, 

665.7, 752.8, and 785.6 nm, respectively. The Sputtered Ordered sensor did show a peak in some 

spectra during sensing experiments at ~730 nm, but the peak was not discernible in spectra for 

all RI fluids.  Standard deviations for sensor response in each RI environment are based on at 

least three repetitions of the experiment. 

4.3 EVALUATION OF SENSOR PERFORMANCE 

Sensor performance for Random Spot 1, Random Spot 2, Sputtered Ordered, and EL 

Ordered sensors were evaluated in response to a range of RI fluids.  Seven different values of RI 

were used to evaluate sensor performance: air (1.00), methanol (1.328), water (1.333), acetone 

(1.359), ethanol (1.361), isopropanol (1.3772), and toluene (1.479).82  Figure 4.6 shows each of 

the sensors’ experimental spectral response for the change from air (blue) to water (green).  Peak 

wavelengths for each spectra were identified with the aforementioned Matlab programs.  Each 

peak location is based on the average of peak position recorded over at least 3 experimental runs.  

Peak locations in each of the RI fluids are reported in Table 4.1. 

NP characteristics determined in 4.2.1 were used to perform simulations based on Mie 

theory and rsa-CDA.  Mie theory simulations used an effective RI based on the published 
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effective dielectric ratio reported in 3.2.  The experimentally determined weighting factors were 

used for rsa-CDA simulations.  Mie theory simulations for Random Spots 1 and 2 predict a 

dipole mode near 520 nm.  Experimental results for Random Spots 1 and 2 were slightly red 

shifted in air and showed a lower sensitivity to changes in RI relative to Mie theory simulations.  

This difference could be partially a result of the weighting factor used to approximate the 

effective RI, since when the experimentally determined weighting value used with rsa-CDA 

simulations is applied, simulated peak positions are red-shifted. 

In ordered samples with larger NPs, dipoles red shift and broaden, and a quadrupole 

mode appears for the Sputtered Ordered sensor.  For the EL Ordered sensor, only a dipole mode 

is predicted in air; however, a quadrupole mode appears as RI transitions to larger simulated 

values.  Because Mie theory only predicts the response of individual NPs, Mie simulation results 

for the EL Ordered and Sputtered Ordered sensors should be compared to the plasmon peak and 

not the diffractive peaks.  Ordered arrays of nanospheres, as mentioned in Chapter 3 are not 

accurately modeled by Mie theory because it neglects particle interactions.  These interactions 

are accounted for in the CDA, DDA, and FDTD methods.  Simulations with rsa-CDA assumed 

an effective RI in air that was a weighted average of the air and substrate, with 55% of the 

effective RI being from the substrate/ITO and 45% from the medium RI.  These weighing factors 

were determined by fitting the peak position determined experimentally for Random Spot 1 in 

air.  The same weighting values were used for all of the CDA simulations for each sensor.  DDA 

and FDTD results were also performed on the ordered cylinder sample to compare the different 

simulation methods.  Figure 4.5(A-C) compare simulation data from Mie theory, DDA, and 

FDTD for the Sputtered Ordered array.  CDA simulations (not shown) result in comparable 

medium wavelength shifts as predicted by DDA.  FDTD simulations were performed with 



 

44 
 

vacuum wavelengths.  FDTD simulations for medium wavelength would be desirable for 

comparison, but were not available as the person who did the FDTD simulations was no longer 

available.  A detailed analysis of this sensor comparing the sensitivity of these simulation 

methods is available in the literature.90  Random Spots 1 and 2 show good correlation between 

experimental spectra and Mie theory simulations.  Experimental peaks are red shifted and peak 

broadening is apparent relative to the corresponding Mie theory.  Similar effects have been 

attributed to deviations from spherical NP shape, substrate effects, and near field NP-NP 

interactions which are not included in Mie analysis.93,116 

The Sputtered Ordered sensor spectra do not show a discernible plasmon peak.  Figure 

4.1 D shows a film of small gold NPs in the background, which was present on the entire sensor 

substrate and was subtracted from the spectral signal as part of the reference spectra.  This 

removal appears to have affected the detection of the NP plasmon peak for the larger particles.  

However, a plasmon peak is observed for the EL Ordered sensor.  Comparison between the 

experimental plasmon peaks in Table 4.1 to peak locations predicted by Mie theory show the 

experimental data blue shifted relative to Mie simulation results.  This result is unusual if Mie 

theory accurately represents the data because common sources of variation between simulation 

and experiment, such as substrate effects, typically result in red shifts.  Models that allow the 

NPs to interact have shown plasmon blue shifts when the array exhibits diffractive coupling.  

The LSPR blue-shift can be attributed in part to far field NP-NP interactions and is observed in 

simulations which account for coupling.90  Organizing NPs into arrays results in phase 

interference between NPs, as quantified in the retarded dipole sum.62  Inter-particle distances 

larger than the resonance wavelength exhibit constructive interference at wavelengths near the 
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lattice constant, but destructively interfere at the plasmon frequency.  When this interference is 

destructive, the restoring force is enhanced, causing a blue-shift in the plasmon frequency. 

Results from rsa-CDA show excellent agreement with the experimental plasmon peak 

location when no weighting factor is applied.  Figure 4.7 directly compares experimental spectra 

(solid) and rsa-CDA (dashed) in air (blue) and water (green).  The good correlation between 

plasmon wavelengths is easily observed when the spectra are vertically shifted and scaled to 

coincide (inset).  Both the dipole and quadrupole modes that are expected for NPs of this size 

appear to be in agreement.  The diffractive coupling peak is red shifted, broadened, and less 

intense than predicted by rsa-CDA.  These differences from simulation to experimental data are 

consistent with those caused by NP size and shape variations as well as the previously mentioned 

variations measured for inter-particle spacing.  When the experimental weighting factor is 

applied, the diffractive peak representing the air data coincides with experiment, but the 

predicted shift is smaller than observed in experiments. 

Experimental sensitivities were determined for each sensor and compared to simulation 

sensitivities calculated from Mie theory and rsa-CDA simulations and are available in Table 4.2.  

Theoretical sensitivities for CDA and Mie theory are calculated from the RI change in air, 

methanol, water, acetone, ethanol, isopropanol, and toluene.  Sensitivity response of plasmonic 

sensors has been shown to be linear which suggests that these different RI ranges for the 

different simulations should be directly comparable.67  However, Mie theory simulations 

performed as part of this work show an increased sensitivity when the peak position in air is not 

included in the sensitivity calculation.  Values for plasmon sensitivities in air between rsa-CDA 

and experimental data show better correlation than those predicted by Mie theory.  rsa-CDA 
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sensitivities have less change in sensitivity between air based and methanol based sensitivities.  

Since the experimental data do not follow this trend, further work is needed to determine the 

linear range of RI sensitivity for diffractive sensors. 

Figure 4.8 shows Mie theory (hollow) and experimental (filled) sensitivities for peaks 

observed in Figure 4.6 for Random Spot 1 (filled blue diamond, 536 nm), Random Spot 2 (filled 

green circle, 535 nm), EL Ordered (filled red triangles, 541,681,766 nm), and Sputtered Ordered 

(filled cyan square, 709 nm).  Peak wavelength in methanol is listed next to each respective point 

as an identifier.  Pointers correspond to those found in Figure 4.6 to aid in identification of peak–

sensitivity correspondence.  Sensitivity of the dipole peak for Random Spot 1 (536 nm) and 

Random Spot 2 (535 nm) are slightly lower than predicted, which is attributable to deviations 

from NP shape ideality in the experimental sample.  On the other hand, sensitivity of the 

plasmon peak (541 nm) from the EL ordered array is 41% higher (198.6 nm RIU-1) than 

predicted by Mie theory for a similar wavelength plasmon peak(140.7 nm RIU-1, 544 nm).  

Diffractive coupling in the array resulted in a blue-shift of the LSPR due to a decreased effective 

polarizability.  A change in the RI surrounding the array results in a non-linear change in the 

retarded dipole sum for a particular particle size.  This non-linearity results in higher plasmon 

sensitivity in diffractive coupling arrays. 

Experimental results indicate that diffractive coupling sensitivity is higher than LSPR 

sensitivity when sensitivity is calculated with respect to air.  For the EL Ordered sensor, rsa-CDA 

predicts that the plasmon will be more sensitive than a single NP plasmon of the same 

wavelength.  Experimental values of sensitivity for diffractive coupling sensors are in fair 

agreement with theoretical simulations.  The Sputtered Ordered sample was also simulated with 
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DDA and resulted in a similar sensitivity (41 nm/RIU vs. 38 nm/RIU experimentally).90  These 

simulations were performed with the wavelength in the RI of the analyte .  Results from FDTD 

were performed with vacuum wavelengths yielded a sensitivity for the Sputtered Ordered sensor 

of 276 nm/RIU.90  Work is ongoing to methodically determine what values of particle size 

(dipole vs. quadrupole), shape (rounded cylinders versus spheres), substrate, and pattern 

alignment between 100.5µm x100.5 µm array elements will yield experimental sensitivities 

similar to those predicted by FDTD. 

An important aspect of chemical sensors, especially those made of precious metals, is the 

amount of material required for sensing.  Sensitivities which have been adjusted to account for 

the fractional area of the sensor surface that is covered with NPs are determined with EQ 2-5.  

Experimental values for methanol based NP sensitivity for Random Spot 1, Random Spot 2, EL 

Ordered, and Sputtered Ordered samples are 393, 274, 3511, and 1088 nm/RIU, respectively.  

These values for diffractive sensors are ~10 times those of random NP sensors.  Further work is 

needed to determine if this increase in sensitivity is solely due to the increase in particle size or if 

it is related to the diffractive coupling in the array. 

FOM values for the diffractive peak with methanol sensitivities are 2.1, 0.9, 2.3, and 1.7 

for EL Ordered experimental, Sputtered Ordered experimental, EL Ordered rsa-CDA, and 

Sputtered Ordered rsa-CDA, respectively.  Theoretical work on diffractive coupling suggests 

ideal samples would exhibit a diffractive coupled feature with a very narrow FWHM (as shown 

in Figure 4.5 D).62,90  These narrow FWHM values have recently been confirmed experimentally 

for cylindrical NPs.117  A narrow FWHM is important for low concentration chemical sensing 

where minute RI changes occur because it is difficult to determine the exact peak location for 
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broad features, such as those predicted by Mie theory for large particles, without sophisticated 

data analysis algorithms and higher resolution spectrometers.118 

4.4 SENSOR RELIABILITY 

Ordered nanoparticle arrays fabricated with EL plating demonstrated a uniform response 

with no hysteresis for all of the experimental runs performed.  Several hundred RI sensing 

experiments were performed, resulting in consistent peak shifts.  The spheroid sample was tested 

in water shortly after fabrication.  The average response to water two years later was identical.  It 

should be noted that gold NPs are degraded in certain sensing environments (e.g. hydrogen 

sulfide) due to chemical reactions with the gold NP.14  The effect of these reactions on sensor 

lifetime is unclear since detection of an analyte is based on the difference of the sensor in the 

presence and absence of analyte, thus accounting for the initial state of the NPs.  The sensors are, 

however, prone to physical damage.  The gold NPs are easily damaged by inadvertent contact 

with handling devices such as tweezers.  In a commercial sensor design, the sensor could be 

easily protected against physical damage of this kind. 

4.5 CONCLUSIONS 

Diffractive sensing was demonstrated for the first time with sensors consisting of 

nanocylinders and nanospheres.  Aggregate sensitivity was comparable to sensitivity values for 

current random LSPR sensors with spherical NPs both in the same experimental system and 

reported in the literature.  When the area and number of NPs are factored into the sensitivity, 

diffractive based sensors have a significant advantage over similarly shaped NPs in random 

configurations.  FOM values were comparable between experimental and rsa-CDA simulations 

for the sensors evaluated.  Theoretical simulations with improved diffractive coupling peak 
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intensity and narrower FWHM than for the fabricated sensors were demonstrated for 150 nm 

diameter particles with and inter-particle spacing of 670 nm. 
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TABLE 4.1: Experimental and Mie theory peak locations for changes in refractive index.  Gray regions represent where no 
data is available 



 

 

TABLE 4.2:  Experimental and simulated values for sensitivity.  Mie theory and rsa-CDA use different effective medium 
values. 

 

Experimental   Air based Sensitivity Methanol based sensitivity Average particle size 
Spot 1 33.3 ± 5.0 62.1 ± 6.2 50 ± 21 
Spot 2 33.9 ± 4.6 59.2 ± 7.3 38 ± 14 

          

EL ordered 
LSPR 69.0 ± 12.8 198.6 ± 87.9 

161 ± 6 Peak 1 73.1 ± 9.8 180.1 ± 63.3 
Peak 2 58.6 ± 1.0 58.6 ± 7.5 

Sputtered ordered Peak 1 37.7 ± 3.8 88.5 ± 5.2 209 ±  5 

Mie Theory   Air based Sensitivity Methanol based sensitivity Average particle size 

Spot 1 71.6 ± 3.9 95.4 ± 2.4 50 ± 21 

Spot 2 62.7 ± 2.6 78.8 ± 1.6 38 ± 14 
         

EL ordered 
Quadrupole N/A 140.7 ± 4.3 

161 ± 6 
Dipole 348.5 ± 11.3 417.6 ± 7.9 

Sputtered ordered 
Quadrupole 167.1 ± 7.1 211.2 ± 0.9 

209 ±  5 
Dipole 571.6 ± 4.1 597.1 ± 2.4 

rsa-CDA Air based Sensitivity Methanol based sensitivity Average particle size 
Spot 1 53.8 ± 4.8 78.2 ± 6.1 50.0 ± 21.0 
Spot 2 78.3 ± 8.1 115.4 ± 13.8 38.0 ± 14.0 

        

EL ordered 
Plasmon 60.9 ± 2.6 52.0 ± 6.2 

161.0 ± 6.0 
Peak 1 48.0 ± 2.0 48.0 ± 6.0 

Sputtered ordered Peak 1 56.1 ± 1.2 62.5 ± 1.3 209.0 ±  5.0 
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FIGURE 4.1:  Representative SEM images of gold nanoparticles for typical LSPR and 
diffractive coupling sensors.  A) Random Spot 1, B) Random Spot 2, C) EL Ordered 
array, D) Sputtered Ordered array.  Main scale bar is 500 nm.  Inset scale bar is 100 nm. 
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FIGURE 4.2:  Spectral measurements taken with microscope spectrometer system.  These 
spectra can be directly compared to spectra B and D in Figure 4.6.  Extinction values on 
the left correspond to the green spectra while values on the right correspond to the red 
spectra.  
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Figure 4.3: Peak shifts caused by changes in the sensor angle relative to incident light 
for the Sputtered Ordered sensor in air.  Angles are reported as the change in angle from 
an initial position where the sensor is perpendicular to the light source.  Bottom plot 
shows peak locations from above as a function of tilt angle. 
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Figure 4.4: Sputtered Ordered sample diffractive coupling peak position as a function of 
polarization angle relative to the horizontal axis.  Top) Squares and circles represent 
separate measurements of polarization angle dependence on the same sample.  Dotted 
lines are to guide the eye.  Bottom) Comparison of amplitude and phase for first two 
diffractive peaks: 701 (green circles) and 728 (blue circles). 
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FIGURE 4.5:  Spectral simulations for Sputtered Ordered NP array in air (solid green) 
and water (dashed red) using A) Mie theory, B) DDA, and C) FDTD (vacuum 
wavelength).  Mie theory does not account for inter-particle interactions and does not 
predict coupling while DDA and FDTD predict a shift of the coupled feature.  D) CDA 
simulations for 150 nm diameter particles with an inter-particle spacing of 670 nm show 
that for optimized array parameters the extinction efficiency can be significantly 
increased while reducing the FWHM of the diffractive coupling feature. 
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FIGURE 4.6:  Experimental UV-Vis spectra in air (blue) and water (green) for A) Random 
Spot 1, B) Random Spot 2, C) EL Ordered, and D) Sputtered Ordered sensors.  Each 
spectra has been normalized to the main peak used for sensing. 



 

58 
 

400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Wavelength, nm

N
o

rm
al

iz
e

d
 E

xt
in

ct
io

n

500 600
0

0.2

0.4

0.6

 

 

 

  

FIGURE 4.7:  Normalized experimental (solid) and simulated (dashed), based on CDA) 
spectral response for EL Ordered sensor exposed to air (blue) and water (green).  Inset 
shows good agreement for the prediction of the plasmon peak features when the CDA 
model is vertically shifted and scaled to match the plasmon region. 



 

59 
 

10 20 3038 50 161 209

0

100

200

300

400

500

600

Particle Diameter, nm

S
en

si
tiv

ity
, 

n
m

/R
IU

 

 

 

  

Figure 4.8: Particle size effects on experimental (solid) and Mie theory (hollow) 
sensitivities based on shifts from methanol peak locations (listed next to each sensitivity): 
Random Spot 1 (blue diamonds), Random Spot 2 (green circles), Sputtered Ordered 
(cyan squares), and EL Ordered (red triangles).  Diffractive peaks observed in Figure 4.6
are identified with side markers: Peak 1 (hollow pointer) and Peak 2 (striated pointer).  
Sensitivity values for EL ordered sample have been shifted from measured particle size to 
allow error bars to be clearly seen.  Dotted lines are to guide the eye for trends in 
simulated sensitivity as a function of particle size.  Small light green points represent 
experimental results from the literature for spherical gold NPs.33,82,114–118 
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CHAPTER 5  

NANORING DIFFRACTIVE SENSORS 

5.1 NANORING MOTIVATION 

Spherical nanoparticles have one of the lowest shape sensitivities of any NP sensors.  

Now that diffractive coupling has been demonstrated as a sensor, it can be extended to different 

NP shapes.  LSPR sensors work by detecting the change in RI close to the surface of the NP.  If 

the surface area is increased, the sensor should be more sensitive to local RI changes.  A quick 

comparison of different geometric shapes (spheres, cylinders, rods (3:1 length to width), 

tetrahedrons, a 20 nm thick ring, and a 10 nm thick ring) surface area to volume shows that 

nanorings have the highest surface area to volume of the shapes considered.  Each geometric 

shape has its volume set equal to the volume of a 50 nm radius nanosphere and the height fixed 

at 50 nm, except the tetrahedron which assumed equal side length on all sides (but still equal to 

the volume of the 50 nm radius sphere).  The ratios of surface area to volume for each shape are 

0.060, 0.075, 0.085, 0.089, 0.140, and 0.240, respectively.  Based on this analysis, rings with a 

wall thickness of 10 nm have four times the surface area of an equivalent volume sphere. 

Increased surface area is not the only motivation for nanoring selection.  Plasmonic 

sensors with different shapes have different sensitivities.  Table 1.1 illustrates that spheres have 

the lowest shape sensitivity of several different NP geometries. Previous experiments with 

nanorings that do not couple have been shown to have one of the highest RI sensitivities reported 

for plasmonic sensors at 880 nm/RIU.63  This high sensitivity has the potential to be augmented 

even further by configuring the nanorings into ordered arrays that support diffractive coupling.  

Another motivating factor for nanoring research is the wavelength of the produced LSPR feature.  
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Researchers have reported nanoring LSPR wavelengths between 620 and 1545 nm.63,79,119–125  

These wavelengths represent the near infrared region of the EM spectrum.  This region is 

significant in the development of sensors for biological systems and is known as the diagnostic 

window.  In the visible range, light does not penetrate deep into living tissue due to interactions 

with components such as hemoglobin, water, and lipids.126  However, in the diagnostic window, 

these interactions are minimized which makes sensing in this region desirable for biological 

applications. 

This chapter outlines numerical simulations on ordered arrays of nanorings to determine 

their potential for sensing.  Numerical simulation results are compared to existing nanoring 

properties in the literature and trends useful in sensor design are identified. 

5.2 NANORING SIMULATIONS 

Nanoring characteristics were simulated using the program DDSCAT for the following 

range of parameters: inner radius from 25 to 80 nm (25, 30, 35, 40, 45, 50, 60, 70, 75, and 80 

nm), ring wall thickness of 10 and 20 nm, and inter-particle spacings from 500 to 1000 nm (500, 

600, 670, 700, 800, 900, and 1000).  Figure 5.1 identifies nanoring parameters, including inner 

radius, r in, thickness, t, height, h, and inter-particle spacing, dx and dy.  Extinction, scattering, and 

absorption efficiencies were calculated for the wavelength range from 400 to 1400 nm with a 1 

nm resolution.  Nanorings were simulated as individual particles as well as square arrays with the 

afore-mentioned inter-particle spacings.  A total of 112 nanoring simulations were performed. 

Matlab was used to generate nanoring dipole locations for DDSCAT.  Rings were 

generated by discretization of two concentric circles using an implementation of a Bresenham 

algorithm written by John Kennedy.127  The controlled parameters for target generation were the 
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desired nanoring internal radius, wall thickness, and inter-particle spacing.  The program used, 

included in Appendix A.3, compared these parameters to find the largest dipole discretization 

value that would allow all of the input parameters to be matched in the created nanoring 

structure.  This resulted in various numbers of dipoles for the different nanoring dimensions.  

The number of dipoles varied between 5175 and 13200 and between 400 and 1050 for ring 

thickness of 10 and 20 nm, respectively.  The number of dipoles was decreased for the 20 nm 

thick rings to reduce computation time.  Computational time was approximately 291 days for the 

10 nm thick nanoring simulations with each simulation requiring between 1-10 days on an 8 core 

processor node.  The reduction in the number of dipoles tends to blue shift the plasmon 

frequency; however, the trends between the plasmon peak and the diffractive coupling peak 

positions and magnitudes are still consistent with simulations with more dipoles. 

Simulation accuracy can be improved by increasing the number of dipoles in the 

simulation, but this accuracy comes at a cost of increased computational time.  This increased 

computational time is not always warranted.  For the present study, the goal is to determine 

general trends that exist for diffractive coupling in nanoring arrays over a wide range of 

conditions.  It is important to know what tradeoffs exist in terms of accuracy and computational 

time to pick appropriate simulation conditions.  DDA simulations were previously performed in 

which 10 and 100 nm spheres were both modeled with a diameter consisting of 32 and 128 

dipoles.128  The peak position error relative to Mie theory ranged from 5.8 nm for the 10 nm 

sphere with 32 dipoles across to 1.0 nm for the 100 nm sphere with 128 dipoles across.  Multiple 

simulations of the same nanoring were performed only changing the number of dipoles in the 

nanoring to determine the change in peak position for nanorings with an increasing number of 

dipoles.  Figure 5.2 shows these simulations for 675 (blue), 5250 (green), and 17625 (red) 
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dipoles for a nanoring with r in = 50 nm, t = 20 nm, and h = 50 nm and compares the peak 

locations to experimental data for a comparable nanoring reported by Huang et al.123  Because 

the thickness (t = 15 nm) of the experimental nanoring is between those simulated in this work, 

Figure 5.2 also shows a nanoring with the same radius and height but with t = 10 nm (orange 

dotted).  The experimental peak location is between the simulated peak locations as expected, 

indicating good correlation with experiment when a sufficient number of dipoles are included in 

the numerical simulations.  When the number of dipoles is very small, the shape of the peak 

changes, showing multiple peaks when only one is predicted with a larger number of dipoles.  

Table 5.2 shows the number of dipoles used in each simulation. 

Peak locations in the extinction spectra were identified using a peak detection algorithm 

(peakdet) freely available through Matlab exchange.  Single nanoring spectra are shown in 

Figure 5.3.  Nanorings for t = 10 and 20 nm with .  Two spectral features were observed in some 

of the simulations at 564 and 1265 nm.  These features appear when the gold RI data reported by 

Palik129 are used but are not seen when using the data of Johnson and Christy130 (Figure 5.4).  

Both sets of data are used regularly in the literature.  Ungureanu et al. compared these RI data for 

nanospheres and nanorods and showed that for spheres there was a shift in plasmon peak 

position between these two data while suggesting that Palik data show excellent correlation with 

experimental data.131  Despite this feature related to the choice of gold RI, this study is interested 

in how plasmon and diffractive coupling features change in relation to each other in the 

simulations.  It is important to note for studies requiring more accurate peak wavelengths, 

correlation with experimental results will be necessary to determine the appropriate gold RI data. 
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5.2.1 GENERAL OBSERVATIONS FOR NANORING SIMULATIONS 

Extinction spectra for nanorings with a 10 nm thickness follow a similar pattern to other 

nanoparticle shapes as size increases; as the size increases, so does the wavelength of the 

maximum extinction peak.  This shift results from phase retardation due to the increase in 

particle size.  As the nanoring increases in size, higher order modes of electron oscillation occur.  

Interactions between existing oscillation modes results in phase retardation which is observed as 

a red shift in the plasmon wavelength.132  Nanorings with a 20 nm thickness in general follow 

this trend, but multiple peaks begin to appear as the particle size reaches 50 nm.  As previously 

mentioned, the multiple peaks in these simulations result from the small number of dipoles 

utilized for these nanoring simulations.  This suggests for accurate prediction of peak positions 

for these nanorings, more dipoles would be required.  Draine and Flatau performed an analysis of 

DDSCAT accuracy for spheres with a changing number of dipoles.  They reported an error in the 

absorption efficiency of ~6% for a sphere consisting of 304 dipoles.100  Unfortunately, it appears 

nanorings are more sensitive to the number of dipoles, potentially because of EM interactions 

between the inner and outer walls.  Nanoring simulations that show multiple peaks due to a 

limited number of dipoles should not be considered representative of nanorings of that size.  

However, trends in diffracting coupling peak position and shifts seem consistent for these 

simulations and those simulations with more dipoles.  It is important to remember that the peak 

positions that were calculated for the thicker nanorings cannot be directly compared to those 

from the thinner rings because of the discrepancy in the number of dipoles. 

The observed red shift in plasmon peak location is accompanied by a broadening of the 

plasmon peak with increasing nanoring inner radius.  The full width at half maximum for single 

10 nm thick nanorings are 46, 73, 58, 75, 116, 102, and 134 nm for increasing r in from 25, 35, 



 

65 
 

45, 50, 60, 70, to 75 nm, respectively (Figure 5.3 A)).  Observations with nanospheres attribute 

this plasmon peak broadening to retardation effects and/or interaction between different modes’ 

(dipole, quadrupole, etc.) electrons, reducing phase coherence.132  These observations can be 

extended to nanorings because coupling between the inner and outer nanoring surface occurs, 

similar to that observed in a small NP.125 

Diffractive coupling is observed in the simulations when the nanorings are modeled as 

periodic square arrays.  Figure 5.5 shows how the diffractive coupling peak changes as inter-

particle spacing increases for a nanoring with r in = 50 nm, t = 10 nm, and h = 50 nm.  The 

diffractive peak intensity is largest when the coupling takes place at wavelengths slightly longer 

than the plasmon peak wavelength.  Inspection of nanoring array simulations where the inter-

particle spacing is less than the plasmon wavelength shows a diffractive peak at double the inter-

particle spacing.  The plasmon peak wavelength follows an interesting trend for a given nanoring 

size at different inter-particle spacing values.  For most simulations, the nanoring plasmon peak 

for ordered arrays ‘traces’ the plasmon spectra.  An illustration of this is shown in Figure 5.6.  

Here, nanorings with an r in = 50 nm, t = 10 nm are shown for a single particle (solid blue) and 

inter-particle spacings of 500 nm (dash red), 600 nm (dash dot green) and 700 nm(dot orange).  

As the spacing increases, the diffractive coupling has less effect on the plasmon peak and it 

returns toward its single nanoring intensity and peak wavelength.  This trend has also been 

observed in simulations with rsa-CDA.  Work is underway to determine if this is the result of 

isometric polarizability values which are favorable for plasmonic resonance or a different 

phenomenon. 
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Extinction, scattering, and absorbance efficiencies were calculated for each of the 

nanoring arrays.  Typically diffractive coupling has been attributed to coherent interactions 

between EM waves scattered between NPs in an array.  Analysis of the contributions of 

scattering and absorption for diffractive coupling indicates that absorbance has a significant 

contribution to the diffractive coupling peak, especially when the diffractive peak is close to the 

plasmon peak.  For a r in = 60 nm, t = 10 nm nanoring with an inter-particle spacing of 900 nm, 

the diffractive peak in extinction spectra is the result of 50.5% absorption and 49.5% scattering, 

determined from the calculated absorption and scattering cross sections shown in Figure 5.7.  

This observation is useful in the application of nanoring arrays to plasmonic heating.  Device 

parameters could be tuned to give a strong absorption component of the diffractive coupling peak 

to amplify the amount of heat generated. 

Near field spectra calculations were performed for a r in = 50 nm, t = 20 nm, and inter-

particle spacing of 500 nm nanoring.  Two wavelengths were examined: the plasmon wavelength 

of 771 nm and the diffractive coupling region at 1004 nm.  Irregular field patterns lacking 

expected symmetry were observed in both simulations.  These irregularities occurred within the 

nanoring structure but also influenced the field outside the nanoring.  The number of dipoles 

included for the near field simulation was increased from 675 to 80,000 to determine if the 

number of dipoles was the source of the irregularities.  Increasing the number of dipoles resulted 

in a more uniform field outside the nanoparticle and reduced the irregularities inside the nanoring 

structure, but areas of high field intensity without the expected symmetry were still observed 

(Figure 5.8).  In a previous manuscript performing DDA calculations for a gold nanoring, the 

field inside the nanoring structure was set to zero.63  It is unclear whether the field pattern outside 

the particle is accurate in this case since other reported simulations include the field information 
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inside the nanoring structure.123,125,133  Despite these irregularities in the field information, the 

extinction spectra are comparable to experimental data, as shown in Figure 5.2. 

5.2.2 COMPARISON TO NANORINGS IN LITERATURE 

Nanoring simulations in this work are comparable to previously reported single nanoring 

spectral response.  Table 5.1 lists nanoring results from the literature for nanorings with an inner 

diameter in the range of 45-50 nm with a wall thickness range of 10-20 nm.  These reported 

values were chosen because of their dimensional similarity to the simulations reported in this 

chapter.  Even for the small size range in the table, the LSPR peak wavelength ranges from ~800 

to 1360 nm.  All of the nanorings reported were supported with experimental data and 

simulation.  This wide range suggests that nanorings are very sensitive to small changes in their 

dimensional properties.  Aizpurua et al. reported a wavelength change of -190 nm when the 

thickness was reduced by 1 nm.125  However, results by Huang et al. for the same size nanoring 

with a thickness increase of 5 nm compared to Aizpurua et al.’s 10 nm thick ring show a change 

of +372 nm.123  Shifting the comparison to r in = 45 nm nanorings, the original trend is observed, 

with a shift of -354 nm.  These discrepancies in reported peak locations make it difficult to 

confirm the accuracy of the simulation data reported in this chapter, even when the data is 

supported by experimental results.  The results reported in this chapter are similar in peak shape 

and wavelength (shown in Figure 5.2) to those reported by Huang et al.123 

Despite the wide range of peak locations for similar nanorings in the literature, several 

trends can be observed from the reported values.  First, the LSPR peak tends to blue shift as the 

nanoring thickness is reduced.  This has been attributed to coupling between the inner and outer 

nanoring surface, resulting in a mode splitting polarization scheme.134  As the thickness of a 
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nanoring increases, the mode produced by this coupling converges to that of a planar surface 

plasmon mode.  An alternative way of understanding this phenomenon is to consider what 

happens to the conduction electrons as the ring thickness decreases.  Remembering that LSPR is 

an oscillation of conduction electrons, the mean free path for these electrons (50 nm in gold) 

becomes important as NP size decreases below this length.135  When the NP size is less than this 

bulk mean free path, electron collisions with the surface of the NP result in a reduction of the 

mean free path and in turn a blue shift and peak broadening.136  This blue shift was not observed 

in the simulations reported in this chapter at different ring thicknesses, which has already been 

proscribed to the reduction of dipoles in the thicker nanoring simulations. Second, the LSPR 

wavelength for nanorings with similar wall thickness increases with increasing nanoring inner 

diameter.  The simulation data presented in this chapter corresponds well with this observed 

trend.  Trends relating to nanoring height are not as easily discernible from the reported 

literature.  Red shifts with increasing height have been reported, but the supporting data was not 

provided.125  The rationale for this trend is similar to that of the wall thickness, that a mode 

splitting polarization scheme is established between the top and bottom surface of the nanoring. 

5.3 DIFFRACTIVE COUPLING IN NANORING ARRAYS 

Several notable differences exist in the coupling in ordered nanoring arrays and ordered 

spherical NP arrays.  First, a coupling peak exists when the inter-particle spacing is less than the 

plasmon frequency.  For all of the simulated spectra, the plasmon frequency was higher than 600 

nm, but coupling was observed for both 500 and 600 nm spacings, albeit at double the inter-

particle spacing, 1000 and 1200 nm, respectively.  Figure 5.9 illustrates this trend for the 500 nm 

spacing with 10 nm wall thickness.  This constructive interference occurs at a harmonic of the 

inter-particle spacing. This double wavelength coupling was also observed for the 670 nm inter-
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particle spacing.  Second, for nearly all the cases simulated, the diffractive coupling peak is 

smaller than the single particle plasmon frequency.  Spherical NPs exhibit diffractive coupling 

peaks that are much larger than the single particle case.  This is probably related to the low 

number of dipoles in the current study as well as the relatively few nanoring sizes and inter-

particle spacings simulated.  Additional simulations near the strongest diffractive coupling 

observed in these simulations will aid in the determination of higher extinction efficiency regions 

for the diffractive peak.  Unfortunately, the computation time required for nanorings in periodic 

arrays did not allow for a more in depth analysis in this work.  Work is underway to determine if 

an effective polarizability can be calculated for the nanorings which could then be used with the 

more rapid rsa-CDA approach. 

The diffractive coupling peak increases as the nanoring radius increases.  Figure 5.10 

shows how the simulated diffractive peak extinction efficiency changes as a function of particle 

size for each nanoring inner radius at t = 10 nm and d = 1000 nm.  This is similar to the trend 

observed for the plasmon peak for single nanorings.  The largest magnitude diffractive coupling 

feature observed for 10 nm thick rings is for r in = 75 nm.  However, this peak magnitude was less 

than the single particle case (shown in Figure 5.3 A).  The only 10 nm thick nanoring in the 

present study to have a larger extinction efficiency for the diffractive coupled feature when 

compared to the plasmon peak was at r in = 60 nm at 900 nm inter-particle spacing.  Figure 5.11 

shows these two nanorings with the maximum diffractive coupling peak and with the single 

nanoring for each case.  The overall extinction efficiency of the diffractive coupling peak for the 

r in = 75 nm nanoring is larger, but does not exceed the single particle plasmon. 
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Another interesting observation is that for all inter-particle spacings and nanoring 

parameters simulated, there is evidence of diffractive coupling.  When the same inter-particle 

spacing values are simulated (with CDA) for spheres equal to the radius values used in 

nanorings, the window where coupling is observed is much narrower. This might indicate that 

the nanoring structure is more tolerant to differences in fabrication conditions than spherical 

NPs, but further work is required to verify this result. 

A very interesting feature was discovered related to diffractive coupling in nanorings at 

80% of the diffractive coupling peak.  This feature is apparent in Figure 5.10 at a wavelength of 

~800 nm.  This peak occurs in all of the nanoring simulations, independent of size, number of 

dipoles, thickness, or inter-particle spacing.  Initially, it was believed that this peak was due to 

constructive interference between NPs not along the principle diffraction axis.  These off-axial, 

off-diagonal particles are known to contribute significantly in arrays of nanospheres.62  Further 

work is needed to verify the exact source of this feature. 

Interactions between the nanoring plasmon peak and the diffractive coupling peak in 

simulations suggest that the plasmon FWHM can be significantly reduced by destructive 

interference when the diffractive coupling peak coincides with the plasmon peak.  Figure 5.12 

shows this peak narrowing for a r in = 25 nm, t = 20 nm nanoring with a single particle (blue) and 

inter-particle spacings of 670 nm (red) and 700 nm (green).   When the plasmon and inter-

particle spacings are farther apart, the plasmon peak broadens and red shifts.  The plasmon peak 

narrows as the inter-particle spacing approaches the plasmon wavelength.  This ability to reduce 

the FWHM could be coupled with diffractive coupling to increase sensor performance more than 

with diffractive coupling alone.  
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5.4 SENSITIVITY OF DIFFRACTIVE COUPLING NANORING ARRAY 

A sensitivity analysis to changes in RI from vacuum to water was performed for the 

simulation that had a diffractive coupling peak that was larger than the plasmon peak of the 

single nanoring.  This occurred for the r in =  60 nm, t = 10 nm nanoring with an inter-particle 

spacing of 900 nm whose spectra are shown in Figure 5.13.  The plasmon peak wavelength for 

the array in air was at 839 nm.  This peak shifted to 1096 nm in a water environment.  Using EQ 

2-4, the sensitivity of the plasmon peak is 773 nm/RIU.  This value is comparable to nanoring 

sensitivities of 740 and 880 nm/RIU reported for nanorings with inner diameters of 45 and 60 

nm, respectively, and a ring thickness of ~15 nm.63  The diffractive coupling peak was also 

analyzed for its sensing characteristics.  The observed diffractive coupling peak shifted from 917 

nm to 1216 nm for simulations in air and water, respectively.  The sensitivity of the diffractive 

coupling peak is therefore 896 nm/RIU, or an increase of 15.9% relative to the plasmon peak.  

This simulation indicates that the RI sensitivity for ordered arrays of nanorings which exhibit 

diffractive coupling is comparable to the highest reported nanoring plasmon sensitivity.  Further 

increases in the diffractive coupling magnitude and FWHM should be possible by determining 

appropriate nanoring array conditions to promote diffractive coupling. 

While the bulk sensitivity shows a modest increase relative to current nanoring sensors, 

the figure of merit far exceeds any known figure of merit for plasmonic sensors.  The figure of 

merit is the ratio of the sensitivity to the full width at half maximum, as defined in EQ 2-6.  The 

FWHM for the diffractive coupling peak of this simulated sensor is 26 nm, with a corresponding 

figure of merit of 34.  A recent analysis of diffractive coupling sensors indicates that the figure of 

merit for the diffractive coupling feature in arrays of spheroidal NPs is solely a function of the 

frequency difference between the plasmonic peak and the diffractive coupling peak.117  This is 
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important because it indicates that the figure of merit can be maximized for any nanoparticle 

shape or, composition allowing sensors to be designed for specific applications without a costly 

trial and error approach.  A comparison of FOM values for non-diffractive sensors and diffractive 

sensors shows a significant increase for diffractive coupling sensors (see Table 5.3). 

5.5 CONCLUSIONS 

Ordered arrays of nanorings were characterized for their ability to support diffractive 

coupling over a wide range of nanoring sizes and inter-particle spacings.  Numerical simulations 

indicated that nanorings with an internal radius of 60 nm and a wall thickness of 10 nm with a 

spacing of 900 nm have a diffractive coupling peak that exceeds the magnitude of the single 

particle plasmon peak.  The sensitivity of this nanoring array to changes in RI was 896 nm/RIU 

for the diffractive coupling peak, which is an increase over current plasmonic sensor sensitivities.  

The figure of merit for this simulated nanoring sensor evaluated for the diffractive coupling peak 

was 34, which is the highest known figure of merit for plasmonic sensors.  Further simulation 

work will help identify diffractive coupling nanoring sensors that exceed even these values. 
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TABLE 5.1: Nanoring characteristics as reported in the literature for randomly arranged, 
45-55 nm inner radius nanorings. 

rin, nm  t, nm  h, nm  LSPR Peak, nm  Simulation  Reference  

45 15‡ 60‡ 1354† DDA Larsson137 

46 14 40 1000 Boundary Element Aizpurua125 

48.5 11.5 60 1030† Finite Element Tseng138 

50 10 40 1170 Boundary Element Aizpurua125 

50 15 — 798 FDTD Huang123 

51 9 40 1360 Boundary Element Aizpurua125 

55 20‡ 50‡ 1223† DDA Larsson137 

† Peak wavelength in refractive index of water 
‡ Dimension approximated from SEM images 
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TABLE 5.2: Number of dipoles in each nanoring simulation. 

t = 10 nm t = 20 nm 

rin, nm  Number of Dipoles  rin, nm  Number of Dipoles  

25 5175 30 400 

35 6375 40 575 

45 7650 50 675 

50 8700 60 625 

60 10425 70 875 

70 11775 80 1050 

75 13200 
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TABLE 5.3: Figure of Merit comparison for non-diffractive and diffractive coupling 
sensors. 

Shape Material 
 

FOM Reference Sensitivity 
nm/RIU 

Sphere Au 76.4 0.66 Nath
53 

Cube Ag 118 5.4 Sherry
65 

Triangle Ag 160 2.2 Mayer
64 

Rod Au 170 1.3 Mayer
64 

Disc Au 200 1.7 Dmitriev
66 

Bipyramid Au 540 4.5 Chen
67 

Stars Au 665 5.4 Nehl
68 

Ring Au 880 2 Larsson
63 

     
EL 

Ordered 
Au 

180 2.1 (Experimental) 
48 2.3 (CDA) 

Sputtered 

Ordered 
Au 

88 0.9 (Experimental) 
62 1.7 (CDA) 

Diffractive 
Cylinder 

Au N/A 25 Offermans
117 

Diffractive 
Ring 

Au 896 34 (DDA) 
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FIGURE 5.1:  Depiction of nanoring dimensions for ordered arrays of nanorings: r in is the 
inner radius, t is the wall thickness, dx and dy are the interparticle spacings in x and y, 
respectively, and h is nanoring height. 
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FIGURE 5.2:  Nanoring simulations for increasing number of dipoles for a nanoring with 
r in = 50 nm and h = 50 nm.  As the number of dipoles increases from 675 to 17625 for 
the 20 nm thick nanoring, the peak redshifts and the amount of shift decreases with each 
increment in the number of dipoles.  Experimental peak location data from Huang et al.
for nanorings with r in = 50 nm and t = 15 nm is marked with the dashed black line.  This 
peak location is in between those simulated for t = 10 nm (orange dotted) and t = 20 nm  
rings. 
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FIGURE 5.3:  Single nanoring simulation extinction spectra for A) t = 10 nm and B) 20 
nm with r in = 25 – 80 nm and h = 50 nm. 



 

79 
 

400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

Wavelength, nm

E
xt

in
ct

io
n

 E
ff

ic
ie

n
cy

Palik

Johnson and Christy

 

   

FIGURE 5.4:  Comparison of Simulated spectra using gold RI values from Johnson and 
Christy (blue) and Palik (green) for a nanoring with r in = 50 nm, t = 20 nm, and h = 50 
nm.  General peak features are similar, but the Palik simulation has a shoulder at 564 
nm and is narrowed relative to the Johnson and Christy simulation. 
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FIGURE 5.5:  Diffractive coupling peaks as inter-particle spacing, d is increased from 
500 to 1000 nm for r in = 50 nm, t = 10 nm, and h = 50 nm.  Diffractive coupling 
features are marked with a pointer.  Simulated spectra are vertically shifted for clarity. 



 

81 
 

600 700 800 900 1000 1100 1200
0

5

10

15

20

25

Wavelength, nm

E
xt

in
ct

io
n

 E
ffi

ci
en

cy

Increasing
inter-particle 
spacing

 

 

  

FIGURE 5.6:  Plasmon peak tracing observed for nanorings with r in = 50 nm, t = 10 nm
and a varied from a single particle (solid blue) to inter-particle spacings of 500 nm 
(dash red), 600 nm (dash dot green) and 700 nm(dot orange).  A diffractive coupling 
peak is visible for the 500 nm inter-particle spacing at 1000 nm. 
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FIGURE 5.7:  Scattering, absorption, and extinction simulated spectra for a nanoring with 
r in = 60 nm, t = 10 nm, h = 50 nm, and d = 900 nm.  The diffractive extinction peak at 
917 nm is 50.5% absorption and 49.5% scattering. 
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FIGURE 5.8:  Near field simulations for a nanoring with r in = 50 nm, t = 20 nm, and h = 
50 nm at 771 nm.  Field information is taken at a height of Z = 38 nm from the nanoring 
base.  Red lines represent the nanoring cross-section.  Irregular regions exist inside and 
outside the 675 dipole nanoring, while the irregularities appear to be restricted to  
inside the 80,000 dipole nanoring.  Field is polarized along the X axis in both cases. 
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FIGURE 5.9: Illustration of diffractive coupling when inter-particle spacing is less than 
the plasmon frequency.  Inter-particle spacing is 500 nm and t = 10 nm.  Spectra are 
labeled according to r in. 
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FIGURE 5.10:  Increase in diffractive coupling peak extinction efficiency with increasing 
nanoring inner radius at t = 10 nm, d = 1000 nm, and h = 50 nm. 
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FIGURE 5.11:  Comparison of diffractive peaks and single nanoring plasmons for r in = 60 
and 75 nm.  The 60 nm nanoring with an interparticle spacing of 900 nm has a 
diffractive peak that is larger than the single nanoring case but it has a lower extinction 
efficiency than the 75 nm diffractive peak at an inter-particle spacing of 1000 nm. 
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FIGURE 5.12:  Destructive peak interference resulting in narrowed plasmon peak 
FWHM.  Spectra represent (from left to right) single (blue), 670 nm (red), and 700 nm 
(green) inter-particle spacing for a r in = 25 nm, t = 10 nm nanoring.  Lines have been 
drawn in at the inter-particle spacing to guide the eye. 
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FIGURE 5.13:  Simulated spectral response for a nanoring array to a refractive index 
change from 1 (vacuum) to 1.33 (water).  Nanoring properties: r in = 60 nm, t = 10 nm, 
and an inter-particle spacing of 900 nm. 
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CHAPTER 6   

CONCLUDING REMARKS 

6.1 IMPORTANCE OF WORK 

Chemical sensing is a key component in modern society, especially in engineering 

applications.  Because of their widespread impact, improvements to chemical sensors are a 

significant area of research.  This work has demonstrated improved performance for refractive 

index nanoparticle sensors by arranging nanorings in periodic arrays to produce diffractive 

coupling sensors.  The greatly improved figure of merit represents an advance in NP sensing 

technology that can be directly implemented in improving chemical sensors. 

6.2 KEY FINDINGS 

RI chemical sensing was achieved using ordered arrays of gold nanoparticles with 

cylindrical and spherical NP arrays.  Sensitivity of these experimental sensors based on shifts 

from a methanol baseline was 88.5 and 198.6 nm/RIU, respectively.  These sensitivity values 

were then directly compared to random NP LSPR sensors and were shown to have comparable or 

higher sensitivities than the representative LSPR sensors.  The plasmon peak was also found to 

be enhanced in diffractive coupling sensors. 

Nanorings were simulated based on their having the highest reported sensitivity and the 

increase in surface area.  Simulations of rectangular arrays of nanorings for the inter-particle 

range from 500-1000 nm exhibited diffractive coupling for all nanoring sizes in this study.  The 

diffractive peak was maximized relative to the single nanoring plasmon extinction for a nanoring 

with r in = 60 nm, t = 10 nm, and an inter-particle spacing of 900 nm. 
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Sensing characteristics for this nanoring showed the diffractive coupling peak had a 

15.9% higher sensitivity than the plasmon peak and comparable to the highest sensitivity 

reported in the literature for non-coupling nanorings.  The figure of merit for this simulated 

nanoring sensor is the highest reported for plasmonic sensors at 34. 

6.3 ONGOING AND FUTURE WORK 

6.3.1 IMPROVEMENTS IN NANORING FABRICATION 

Fabrication of NPs that closely match conditions in numerical simulations is important to 

identify the source of additional peaks observed in experimental diffractive coupling sensors.   

Liftoff is an ongoing problem in the fabrication of patterned nanostructures.  All metal 

deposition methods are known to have these problems.  Current work is underway to make the 

surface of the electron resist resistant to EL plating using a chemical blocker.  The hypothesis is 

that if the resist surface can be blocked before the pattern is developed, the EL plated gold will 

only form nanorings and not a film on top of the electron resist.  This would eliminate the need 

for lift-off, leaving only the electron resist to be dissolved. 

Work is also being done to characterize how chemical etching of the gold film might be 

used to improve lift-off.  Initial experimental results suggest that gold on the surface of the 

electron resist is faster than etching of the NP.  From these initial experiments it is also clear that 

etch rates for gold in non-patterned areas is faster than gold in patterned regions.  If this method 

can be optimized, it could result in elimination of the gold liftoff step.  Gold etching could also 

be tuned to achieve a desired nanoring thickness.  A final benefit of this method could be in the 

removal of excess gold that penetrates through the electron resist near patterned features.  As 

mentioned in 2.3.1. 
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6.3.2 RAPID ARRAY SIMULATION 

Recent work by DeJarnette et al. suggests that the rsa-CDA could be modified with an 

effective polarizability for different shape factors to determine the optimal spacing for diffractive 

coupling in arrays of arbitrarily shaped NPs.  Work is underway to create a polarizability model 

for nanorings based on polarizabilities calculated for the individual dipoles in nanorings 

simulated with DDSCAT.  The dipole polarizabilities are not normally returned to the user in a 

useable format, but modifications to the program which allow these values to be output to a file 

have been implemented.  It is believed this could be extended to any NP shape and composition, 

greatly improving the computation speed for NP arrays with square periodicity in the substrate 

plane. 

6.3.3 NON-SENSING APPLICATIONS 

Results for the larger nanorings showed that diffractive coupling can cause a broadband 

response in the near infrared region.  This could be used to expand the effective window for 

energy conversion in photovoltaics past the band gap of silicon.  Further work is required to 

determine what the optimal parameters are for generating this broadband feature.  The reduced 

cross section of nanorings will allow most of the incident light to interact with the solar cell 

while absorbing NIR light and transferring the absorbed energy into the solar cell. 
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APPENDIX A  

MATLAB PROGRAMS 

A.1 SEM NANOPARTICLE ANALYSIS CODE 

function [measure] =measureaunp1(pic,px,lsb) 
%%%%%%%% 
%   pic is the file path and file name or a previously imported image 
%   px is the number of pixels in the scalebar 
%   lsb is the length of the scale bar in nm 
%   Acceptable input formats: 
%      measure=measureaunp1(pic) 
%           where pic is either a path and filename or a previously imported image variable 
%       measure=measureaunp1(pic,h) 
%           where pic is a previously imported image and  
%                       h is the tiff header info retrieved by h=imfinfo('filepath\filename') 
%       measure=measureaunp(pic,px,lsb) 
% 
%   Output is saved in a structure format 
 
format compact 
 
switch nargin 
    case 1 
        %  check to see if the picture is a path or a variable 
        if ischar(pic)  
            h=imfinfo(pic);   
            pic=imread(pic); 
        else 
            h=[]; 
        end 
        pic=px_square(pic,h); 
         
    case 2 
        h=px; 
        clear px; 
    case 3 
        if ischar(pic) 
            h=imfinfo(pic); 
            pic=imread(pic); 
        else 
            h=[]; 
        end 
    otherwise 
        error('Incorrect input') 
end 
 
if ~exist('px','var')||~exist('lsb','var') 
    [ppnm lsb px]=wantscale(pic); 
end 
% check to see in pixels per nanometer has been calculated yet 
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if ~exist('ppnm','var') 
    ppnm=px/lsb; %%number of pixels per nanometer 
end 
 
cutoff=findaunp(pic,50,250); 
close all; 
pic2=edgeaunp(pic,cutoff); 
close all; 
picd=size(pic2); 
pic1=pic(1:picd(1),1:picd(2),1); 
[L,npar]=bwlabel(pic2); 
a=size(pic2); 
% B=bwboundaries(pic2,'noholes'); 
% need to fix....%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
area=a(1)*a(2); %%area in nm^2 
pdens=npar/area; %particles per nm^2 
 
auprops=regionprops(L,'EquivDiameter','centroid','Area','Perimeter','ConvexImage','MajorAxisLength','MinorAxisL
ength'); 
perimeter=cat(1,auprops.Perimeter)'; 
measure.perimeter=perimeter; 
auprops2=regionprops(bwperim(L),'PixelList'); 
for j=1:npar 
    ri=zeros(npar,1); 
for i=1:length(auprops2(j).PixelList) 
    ri(i)=sqrt((auprops2(j).PixelList(i,1)-auprops(j).Centroid(1)).^2+(auprops2(j).PixelList(i,2)-
auprops(j).Centroid(2)).^2); 
end 
% measure.ri(j)=ri; 
ri; 
rm=sum(ri)/length(ri); 
vr=sum(abs(ri-rm)./rm*100)/length(ri); 
measure.Vr(j)=vr; 
vp=abs(2*pi*rm-perimeter(j))./(2*pi*rm)*100; 
measure.Vp(j)=vp; 
end 
% for i=1:length(B) 
%     boundary=B{i}; 
%     delta_sq=diff(boundary).^2; 
%     perimeter(i)=sum(sqrt(sum(delta_sq,2))); 
% end 
 
auArea=cat(1,auprops.Area)'; 
measure.area=auArea; 
circularity=4*pi*auArea./(perimeter).^2; 
 
convex=auprops.ConvexImage; 
for i=1:length(auprops) 
    convex=auprops(i).ConvexImage; 
    c3=regionprops(convex,'Perimeter')'; 
    convperim(i)=c3.Perimeter'; 
end 
convexity=convperim./perimeter; 
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Maxis=cat(1,auprops.MajorAxisLength)'; 
maxis=cat(1,auprops.MinorAxisLength)'; 
elongation=(1-maxis./Maxis); 
 
measure.circularity=circularity; 
measure.convexity=convexity; 
measure.elongation=elongation; 
 
 
pdia=cat(1,auprops.EquivDiameter)'; 
pdist=cat(1,auprops.Centroid); 
 
overlay1 = imoverlay(pic1,pic2,[.3 .3 1]); 
 
pic4=uint8(zeros(size(pic2))); 
 
% scrsz = get(0,'ScreenSize'); 
% figure('Position',[1 1 scrsz(3) scrsz(4)]) 
% imshow(pic4) 
dist=zeros(npar); 
for k=1:size(pdist,1) 
        x0=pdist(k,1); 
        y0=pdist(k,2); 
        pic4(round(y0)-1:round(y0)+1,round(x0)-1:round(x0)+1)=254; 
%         rectangle('Position',[round(x0),round(y0),1,1],'Curvature',[1 1],'EdgeColor',[.2,1,.2],'Linewidth',1) 
        radius=pdia(k)/2; 
        xpos=round(x0-radius); 
        ypos=round(y0-radius); 
        x0=x0./ppnm; 
        y0=y0./ppnm; 
%         rectangle('Position',[xpos,ypos,2*radius,2*radius],'Curvature',[1 1],'EdgeColor',[1,1,1],'Linewidth',1) 
%         pause(.1) 
    for j=1:size(pdist,1) 
        if k~=j 
        x1=pdist(j,1)./ppnm; 
        y1=pdist(j,2)./ppnm; 
%         line([y0 y1],[x0 x1]) 
%         pause(.01) 
        dist(k,j)=sqrt((x0-x1).^2+(y0-y1).^2); 
 
        else dist(k,j)=0; 
        end 
    end 
end 
 
% pic5=getframe; 
% clf 
% pic5=imresize(im2bw(pic5.cdata),size(pic4)); 
% pic5(1,:)=0; pic5(:,1)=0; pic5(:,size(pic5,2))=0; pic5(size(pic5,1),:)=0; 
overlay1 = imoverlay(overlay1,logical(pic4),[.9 .3 .3]); 
% overlay1=imoverlay(overlay1,logical(pic5),[.2,.9,.2]); 
subplot(2,2,1) 
imshow(overlay1) 
%%% plots circle equivalent diameters around centroids 
f=figure(2); 
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imshow(overlay1) 
scrsz = get(0,'ScreenSize'); 
set(f,'Position',[1 1 scrsz(3) scrsz(4)]) 
for k=1:size(pdist,1) 
    x0=pdist(k,1); 
    y0=pdist(k,2); 
    radius=pdia(k)/2; 
    xpos=round(x0-radius); 
    ypos=round(y0-radius); 
    x0=x0./ppnm; 
    y0=y0./ppnm; 
    rectangle('Position',[xpos,ypos,2*radius,2*radius],'Curvature',[1 1],'EdgeColor',[.2,.9,.2],'Linewidth',2) 
end 
 
pic5=getframe; 
% imwrite(pic5.cdata,'test1.png'); 
close(f) 
figure(1) 
pdia=pdia./ppnm; 
pdist=dist; 
 
%for non-regular arrays 
% % % dist=mean(min(pdist>0)); 
 
%for square arrays with ~670 spacing 
i=0; 
clear dist; 
%loop to avoid counting same distance twice for std dev 
for j=1:npar 
    for k=j:npar 
        if (pdist(j,k) > 500) && (pdist(j,k) < 800) 
            i=i+1; 
            dist(i)=pdist(j,k); 
        end 
    end 
end 
if npar>1 
distdev=std(dist); 
dist=mean(dist); 
else distdev=0; dist=0; 
end 
 
pdiaav=mean(pdia); 
pdev=std(pdia); 
if pdev<1/ppnm 
    pdev=1/ppnm; 
end 
display((sprintf('Mean particle size %4.2f ± %2.2f nm', pdiaav,pdev))); 
display((sprintf('Number of particles %d',npar))); 
display((sprintf('%G particles/nm^2',pdens))); 
% display(num2str(sprintf('%4.3f x-Pixels per nanometer\t%.3f y-Pixels per nanometer',xppnm, yppnm)));   
display((sprintf('%4.3f Pixels per nanometer\tnanometers per pixel %.2f',ppnm,1/ppnm)));   
display((sprintf('Average particle distance (center to center) %.2f ± %.2f nm',dist,distdev))); 
% fprintf('Average eccentricity (0 is circle, 1 is straight line): %.2f ± %.2f\n',mean(eccent),std(eccent)); 
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subplot(2,2,2) 
vislabels(L); 
measure.labels=L; 
subplot(2,2,3:4) 
 
bins=(max(pdia)-min(pdia))/std(pdia)*2; 
hist(pdia,npar) 
% [n xout]=hist(pdia,linspace(min(pdia)+bins/2,max(pdia)-bins/2,bins),round(bins)); 
% bar(xout,n,'r','barwidth',.95) 
axis tight 
% set(gca,'XTick',round([min(pdia) linspace(min(pdia)+bins,max(pdia)-bins,bins) max(pdia)]),'YTick',[0:max(n)]) 
measure.particleDensity=pdens; 
measure.numParticle=npar; 
measure.particleDistance=pdist; 
measure.meandist=dist; 
measure.particledistdev=distdev; 
measure.overlay=overlay1; 
measure.pixelpernm=ppnm; 
measure.particlediameter=pdia; 
measure.meanpdia=pdiaav; 
measure.pdiadev=pdev; 
measure.nmperpixel=1/ppnm; 
measure.lsb=lsb; 
measure.lsb_pixels=px; 
end 
 
 
function [ppnm lsb px]=findscale(pic) 
% Calculates the scale bar length for SEM images  
% with user input on the location of the scale bar 
% pic is a picture imported into matlab 
% lsb is the length of the scale bar in nm 
% px is the number of pixels in the scale bar 
% ppnm is the number of pixels per nanometer 
 
% Display the image and ask for user to select top left and bottom right points 
% to form a box around the scale bar 
subplot(6,2,1:10) 
imshow(pic) 
title('Select 2 points at opposite corners around the scale bar') 
again='y'; 
while again~='n' 
    [x y]=ginput(2); 
    scalebar=pic(floor(min(y):max(y)),floor(min(x):max(x))); 
    % Display the selection 
    subplot(6,2,11) 
    imshow(scalebar) 
    again=input('Do you want to re-select the scale bar?(y/n) ','s'); 
    switch again 
        case {'n' 'N' 'No' 'no'} 
            again='n'; 
        otherwise 
            again='y'; 
    end             
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end 
clear x y again 
% make the scale bar a black/white image 
scalebar=im2bw(scalebar); 
lsb=0; % length of scale bar 
while lsb==0 
lsb=input('What is the length of the scale bar in nm? '); 
if ~isfinite(lsb) 
    lsb=0; 
    display('Invalid input.  Try again') 
end 
end 
 
% find the first column with a white pixel from the left 
lhc=0; 
while lhc==0 
    for c1=1:size(scalebar,2) 
        % if found, break from loop 
        if sum(scalebar(:,c1))>=1 
            lhc=c1; 
            break 
        end 
    end 
    if c1==size(scalebar,2)  % statement to avoid infinite loop 
        lhc=1; 
        display('Scalebar not found') 
    end 
end 
% find the first column with a white pixel from the right 
rhc=0; 
while rhc==0 
    for c2=size(scalebar,2):-1:1 
        % if found, break from loop 
        if sum(scalebar(:,c2))>=1 
            rhc=c2; 
            break 
        end 
    end 
    if c2==1  % statement to avoid infinite loop 
        rhc=size(scalebar,2); 
        display('Scalebar not found') 
    end 
end 
 
scalebar=scalebar(:,lhc:rhc); 
 
% Show the located scale bar 
subplot(6,2,12) 
imshow(scalebar); 
% calculate the length of the scalebar in pixels 
px=abs(rhc-lhc)+1; 
% calculate the number of pixels per nm 
ppnm=px/lsb; 
end 
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function aunppic=edgeaunp(pic,cutoff) 
%%finds and marks the edges of gold np 
 
figure(1) 
 
picd=size(pic); 
pic1=pic(1:(picd(1)-59),1:picd(2),1); 
 
dimg=pic1(:,:,1); 
dimg=double(dimg); 
a_eq=adapthisteq(pic1(:,:,1)); 
dimg2=double(a_eq); 
 
 
bwpic=dimg<cutoff; 
bw2pic=dimg2<cutoff; 
bw=imclearborder(~bwpic); 
bw2=imclearborder(~bw2pic); 
subplot(1,2,1) 
imshow(bw) 
subplot(1,2,2) 
imshow(bw2) 
pick=input('1, 2, or 3 if inverted:  '); 
if pick==1 
   bwa=imfill(bw,'holes'); 
%    bwa=bw; 
end 
if pick==2 
    bwa=imfill(bw2,'holes'); 
%    bwa=bw2; 
end 
if pick==3 
    bw=imclearborder(bwpic); 
    bw2=imclearborder(bw2pic); 
    subplot(1,2,1) 
    imshow(bw) 
    subplot(1,2,2) 
    imshow(bw2) 
    pick=input('1, 2:  '); 
    if pick==1 
       bwa=imfill(bw,'holes'); 
    %    bwa=bw; 
    end 
    if pick==2 
        bwa=imfill(bw2,'holes'); 
    %    bwa=bw2; 
    end 
end 
again='b'; 
j=5; l=40; 
while again~='n' 
 if (again~='b') 
     j=input('Enter circle lim: '); 
    
     l=input('Enter factor: '); 
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 end 
bw3=bwa; 
%bw3=bwmorph(bwa,'clean'); 
%bw3=bwmorph(bw3,'hbreak'); 
%bw3=bwmorph(bw3,'spur'); 
bw3=imfill(bw3,'holes'); 
bw3=bwmorph(bw3,'fill'); 
bwb=imopen(bw3, strel('disk',j)); 
bwc=bwareaopen(bwb,l); 
bwc=bwb; 
bwc_perim=bwperim(bwc); 
overlay1 = imoverlay(pic1,bwc_perim,[.3 .3 1]); 
figure(1) 
pics={pic; bwa; bwb; bwc; bwc_perim; overlay1}; 
picslabel={'pic'; 'bwa'; 'bwb'; 'bwc'; 'bwc\_perim'; 'overlay1'}; 
 
for i=1:6 
subplot(2,3,i) 
ph=pics{i,1}; 
imshow(ph); 
title(sprintf('%s',char(picslabel{i}))); 
end 
again=input('Do you want to try again?(y/n): ','s'); 
end 
aunppic=bwc; 
end 
 
function cutoff=findaunp(pic,cutofflow,cutoffhigh) 
 
picd=size(pic); 
pic1=pic(1:(picd(1)-59),1:picd(2),1); 
dimg=pic1(:,:,1); 
dimg=double(dimg); 
%surf(dimg(:,:,1),'EdgeColor','none') 
%figure(2); 
a_eq=adapthisteq(pic1(:,:,1)); 
dimg2=double(a_eq); 
%surf(dimg2(:,:,1),'EdgeColor','none') 
 
again='b'; 
while again~='n' 
 if (again~='b') 
     cutofflow=input('Enter lower cutoff: '); 
     cutoffhigh=input('Enter higher cutoff: '); 
 end 
 step=(cutoffhigh-cutofflow)/3; 
 
 figure(3) 
 for k=1:4 
  j=cutofflow:step:cutoffhigh;     
  subplot(2,2,k) 
  partk=dimg<j(k); 
  imshow(partk); 
  title(num2str(sprintf('%1.0f. cutoff %3.0f',k,j(k)))) 
 end 
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 figure(4) 
 step=(cutoffhigh-cutofflow)/3; 
 for k=1:4 
  j=cutofflow:step:cutoffhigh;     
  subplot(2,2,k) 
  partk=dimg2<j(k); 
  imshow(partk); 
  title(num2str(sprintf('cutoff %3.0f',j(k)))) 
 end 
 
 again=input('Do you want to try different cutoff values? (y/n)','s'); 
 
end 
selector=input('Which image is best? '); 
cutoff=cutofflow+step*(selector-1); 
end 
 
function out = imoverlay(in, mask, color) 
%IMOVERLAY Create a mask-based image overlay. 
%   OUT = IMOVERLAY(IN, MASK, COLOR) takes an input image, IN, and a binary 
%   image, MASK, and produces an output image whose pixels in the MASK 
%   locations have the specified COLOR. 
 
%   Steven L. Eddins, The MathWorks, Inc. 
%   $Revision: 1.2 $  $Date: 2007/08/15 13:18:08 $ 
 
function vislabels(L) 
%VISLABELS Visualize labels of connected components 
%   VISLABELS is used to visualize the output of BWLABEL. 
% 
%   VISLABELS(L), where L is a label matrix returned by BWLABEL, 
%   displays each object's label number on top of the object itself. 
% 
%   Note: VISLABELS requires the Image Processing Toolbox. 
 
%   Steven L. Eddins 
%   Copyright 2008 The MathWorks, Inc. 
 
function [ppnm lsb px]=wantscale(pic) 
% function to decide how the scale of the image will be determined 
decide1=input('Do you want to automatically measure the scale bar? ','s'); 
        switch decide1 
            case {'y' 'Y' 'Yes' 'Sure' 'yes'} 
                again='n'; 
                while again~='y' 
                [ppnm lsb px]=findscale(pic); 
                sprintf('\tlength of scale bar: %g\n\tpixels in scale bar: %g\n\tpixels per nm: %g\n',lsb,px,ppnm) 
                again=input('Is the scale bar length correct?(y/n) ','s'); 
                    switch again 
                        case {'y' 'yes' 'Y' 'Yes'} 
                            again='y'; 
                        otherwise 
                            again='n'; clf 
                    end 
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                end 
                clear again 
            otherwise 
                px=input('Enter the number of pixels in scale bar: '); 
                lsb=input('\nEnter the length of the scale bar, in nm: '); 
                ppnm=px/lsb; 
        end 
end 
 
function pic1=px_square(pic,h) 
% read the pixel size in x and y for non-square pixels 
if exist('h.XResolution','var') 
    xres=h.XResolution; 
else 
    xres=1; 
end 
if exist('h.YResolution','var') 
    yres=h.YResolution; 
else 
    yres=1; 
end 
% resizes the image to make pixels square 
pic1=imresize(pic,[size(pic,1)/yres*xres size(pic,2)]); 
end 

 

A.2 MIE THEORY CODE 

function results=mie_matlab(wlrange,psize,material_p,material_m,varargin) 
% calculate the extinction efficiency for particles of the size 'psize' over the range 'wlrange' 
% psize is the diameter of the particle 
% material_p is the particle material or refractive index data as follows 
% Refractive index data should be in the form: 
%   col 1   col 2   col 3 
%   wl        n         k 
% material_m is the medium material or refractive index 
% size and wlrange should be in nm 
% 
% Set varargin(1) equal to 1 to run a weighted distribution of particle sizes 
 
% Adapted from C. Mätzler, July 2002. 
 
% Particle distribution code 
varin=size(varargin); 
if varin==1 
    if varargin{1}==1 
    display('calculating distribution') 
    try 
        if ndims(psize)==2 
        diameter=psize(:,1); 
        pdistribution=psize(:,2); 
        % normalize the distribution 
        pdistribution=pdistribution/sum(pdistribution); 
%         pdistribution=pdistribution/max(pdistribution); 
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        psize=diameter; 
        clear diameter 
        else 
            error('incorrect input') 
        end 
    catch ME 
        if strcmp(ME.identifier,'MATLAB:badsubscript') 
        sprintf('particle distribution requires 2 columns\n\tCol 1\t\tCol 2\n\tparticle size\tnumber of particles') 
        else 
        display('incorrect input for distribution.  Treating as particle size list...')     
        end 
    end 
    end 
end 
% end particle distribution code 
     
if ischar(material_p) 
switch lower(material_p) 
    case {'gold','au'} 
        disp('gold') 
        [E,n_material]=goldperm(wlrange); 
    case {'silver', 'ag'} 
        disp('silver') 
        [E,n_material]=silverperm(wlrange); 
    case {'copper', 'cu'} 
        disp('copper') 
        [E,n_material]=copperperm(wlrange); 
    case {'a_Si'} % amorphous silicon 
        disp('amorphous silicon') 
        [E, n_material]=asiliconperm(wlrange); 
    otherwise 
        disp('Material unknown, setting to gold') 
        [E,n_material]=goldperm(wlrange); 
end 
else 
    try 
    [E,n_material]=genperm(wlrange,material_p); 
    catch ME 
        display('invalid RI data\n using gold...') 
        [E,n_material]=goldperm(wlrange); 
    end         
end 
         
l_psize=length(psize); 
if exist('pdistribution','var') 
results.Qsca_total=zeros(size(1,length(wlrange))); 
results.Qabs_total=zeros(size(1,length(wlrange))); 
results.Qext_total=zeros(size(1,length(wlrange))); 
results.pdistribution=pdistribution; 
end 
 
% loop for multiple particle sizes 
for l_counter=1:l_psize 
results.psize(l_counter)=psize(l_counter); 
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x=pi.*psize(l_counter)*real(material_m)./wlrange; % psize is diameter 
xsq=x.*x; 
m=n_material/material_m; 
msq=m.*m; 
%%% 
% results.x=x; 
% results.xsq=xsq; 
% results.m=m; 
% results.msq=msq; 
%%% 
         
nmax=max(round(2+x+4*x.^(1/3))); 
n=(1:nmax)';  
nu = (n+0.5);  
z=m.*x;  
%%% 
% results.nmax=nmax; 
% results.n=n; 
% results.z=z; 
%%% 
 
sqx_1= sqrt(0.5*pi./x);  
sqz_1= sqrt(0.5*pi./z); 
for c1=1:nmax 
    sqx(c1,:)=sqx_1; 
    sqz(c1,:)=sqz_1; 
end 
clear sqx_1 sqz_1 c1 
%%% 
% results.sqx=sqx; 
% results.sqz=sqz; 
%%% 
 
bx = besselj(nu, x).'.*sqx; 
bz = besselj(nu, z).'.*sqz; 
yx = bessely(nu, x).'.*sqx; 
hx = bx+1i.*yx; 
 
b1x=[sin(x)./x;bx(1:(nmax-1),:)]; 
b1z=[sin(z)./z; bz(1:nmax-1,:)]; 
y1x=[-cos(x)./x; yx(1:nmax-1,:)]; 
 
h1x= b1x+1i.*y1x; 
 
 
for c1=1:nmax 
    x1(c1,:)=x; 
    z1(c1,:)=z; 
    m1(c1,:)=m; 
    msq1(c1,:)=msq; 
end 
n1=zeros(length(n),length(x)); 
for c1=1:length(x) 
    n1(:,c1)=n; 
end 
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clear c1 
 
ax = x1.*b1x-n1.*bx; 
az = z1.*b1z-n1.*bz; 
ahx= x1.*h1x-n1.*hx; 
an = (msq1.*bz.*ax-bx.*az)./(msq1.*bz.*ahx-hx.*az); 
bn = (bz.*ax-bx.*az)./(bz.*ahx-hx.*az); 
% cn = (bx.*ahx-hx.*ax)./(bz.*ahx-hx.*az); 
% dn = m1.*(bx.*ahx-hx.*ax)./(msq1.*bz.*ahx-hx.*az);        
 
c_n1=2*n1+1; 
d_n=c_n1.*(real(an)+real(bn)); 
q_ex=sum(d_n); 
 
e_n=c_n1.*(real(an).*real(an)+imag(an).*imag(an)+real(bn).*real(bn)+imag(bn).*imag(bn)); 
q_sca=sum(e_n); 
 
Q_sca=2*q_sca./xsq; 
Q_ext=2*q_ex./xsq; 
Q_abs=Q_ext-Q_sca; 
 
results.wl=wlrange; 
if exist('pdistribution','var') 
    Q_sca=Q_sca; 
    Q_abs=Q_abs; 
    Q_ext=Q_ext; 
    results.Qsca_total=results.Qsca_total+Q_sca*pdistribution(l_counter); 
    results.Qabs_total=results.Qabs_total+Q_abs*pdistribution(l_counter); 
    results.Qext_total=results.Qext_total+Q_ext*pdistribution(l_counter); 
end 
results.Qsca(l_counter,:)=Q_sca; 
results.Qabs(l_counter,:)=Q_abs; 
results.Qext(l_counter,:)=Q_ext; 
 
 
clear Q_abs Q_ext Q_sca ahx an ax az b1x b1z bn bx bz c_n1 d_n e_n h1x hx n n1 nmax... 
            nu  q_ex q_sca sqx sqz x x1 xsq y1x yx z z1 
end 
end 
 
 
 
%begin secondary functions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GOLD PERM 
function [E, n]=goldperm(wavelength) %real and imag components 
format compact 
% Johnson and Christy 
%       wavelength, real,       imaginary component 
Data=[187.854545454545,1.28000000000000,1.18800000000000; 
            … 
            1937.25000000000,0.920000000000000,13.7800000000000;]; 
      
%plot(Data(:,1),Data(:,2),'or'); hold all; 
%plot(Data(:,1),Data(:,3),'ob'); 
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nspline=spline(Data(:,1),Data(:,2),wavelength); 
kspline=spline(Data(:,1),-Data(:,3),wavelength);  
E=(nspline-kspline*1i).^2; 
n=(nspline-kspline*1i); 
end 
 
function [E, n]=genperm(wavelength, Data)  
% Data should be in the form: 
%   col 1   col 2   col 3 
%   wl        n         k 
 
nspline=spline(Data(:,1),Data(:,2),wavelength); 
kspline=spline(Data(:,1),-Data(:,3),wavelength);  
E=(nspline-kspline*1i).^2; 
n=(nspline-kspline*1i); 
end 
 
A.3 NANORING GENERATOR 

function DDAprep(r1,t,h,N_sphere,Px,Py,wlrange,n_materials,n_medium,path_out,varargin) 
 
%   DDAprep prepares the files necessary to evaluate a ring structure with 
%   the discrete dipole approximation code DDSCAT 7.2. 
%    
%   r1 is the inner radius of the ring in nm 
%   t is the thickness of the ring wall in nm 
%   h is the height of the ring in nm 
%   N_sphere is the approximate number of spheres that should represent the 
%       thickness of the ring 
%   Px and Py are the periodic lattice spacing in x and y directions in nm 
%   wlrange is a vector containing the first, last, and number of 
%      wavelengths to simulate: [first last num_wavelengths] 
%   n_materials is the number of dielectric materials in the sample 
%       Currently this is forced to 1, but is available for future use 
%   n_medium is the refractive index of the medium (scalar) 
%   path_out is the path where files created will be written 
%   varargin contains the paths for each dielectric material numbered in 
%      n_materials.  These paths should be entered as strings and should 
%      represent the path in the run environment: '../au_nk.txt' 
%    
 
%   Example DDAprep(60,40,40,5,670,670,[400 1000 601],1,1,'.\rings','..\diel\Au_palik.txt') 
 
 
% Check to make sure number of paths is equal to the number of materials 
n_in=length(varargin); 
if n_in~=n_materials 
    if n_in==0 && n_materials==1 
        n_path='Au_nk.txt'; 
    else 
    error('The number of paths provided must match the number of dielectric materials') 
    end 
else 
    % Assign the paths for the dielectric materials to a cell array 
    n_path=varargin; 
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end 
% initialize the file name for the figure to be saved (see dda_ring_maker 
%   for information on the parameters to plot or not) 
if exist(datestr(now,'yymmdd'),'dir')~=7 
    d_temp=datestr(now,'yymmdd'); 
    eval(sprintf('mkdir %s',d_temp)) 
end 
try 
    filename=[path_out '.\' datestr(now,'yymmdd') '\ring.target' '_' num2str(r1) 'r1_' num2str(t) 't_' num2str(h) 'h_']; 
catch 
    error('Unable to create file') 
end 
 
% Call the ring maker program 
[position d]=dda_ring_maker(r1,t,h,N_sphere,1,filename); 
% Create a vector to enumerate the dipole positions 
dipolenum=1:size(position,1); 
% Append the number of dipoles to the filename to distiguish between same 
%   rings size with more dipoles. 
if exist([filename '.fig'],'file')  
    eval(sprintf('movefile(''%s'',''%s'')',[filename '.fig'],[filename  num2str(length(dipolenum)) 'N' '.fig'])) 
end 
filename=[filename  num2str(length(dipolenum)) 'N']; 
% Create a vector of dipole number; x,y,z location; dielectric number 
%   This line will need to be changed if multiple materials are used... 
places=[dipolenum' position ones(length(dipolenum),3)]; 
 
%% Target file creation 
% position vectors relative to lab frame 
a1=[0 0 1]; % z axis is x-axis 
a2=[1 0 0]; % x axis is y-axis 
 
% Check to see if file already exists.  If it does, it adds a number at the 
% end to represent the file version. 
c1=0; 
while exist(filename,'file') 
    c1=c1+1; 
    filename=[filename num2str(c1)]; 
end 
clear c1; 
fid=fopen(filename, 'at'); 
% header info 
fprintf(fid,... 
    ['---Multisphere ring target---\n'... % Description of target 
       '%i\t=\t Number of dipoles\n' ... % Number of dipoles in target 
       '%f\t%f\t%f\t=\t target vector a1\n'... % x y and z components of a1 in target frame 
       '%f\t%f\t%f\t=\t target vector a2\n'... % x y and z components of a2 in target frame 
       '1\t1\t1\t=\tdx/d\tdy/d\tdz/d\t(normally 1,1,1)\n'... % relative spacing of dipoles in x, y, and z directions 
       '0\t0\t0\t=\tlocation in lattice of target origin\n' ... % target frame co-ordinates corresponding to origin 
       'ID\tx\ty\tz\ticx\ticy\ticz\n'... % comment line 
       ],length(dipolenum),a1,a2); 
fclose(fid); 
dlmwrite(filename,places,'-append','delimiter','\t'); % append dipole locations to file 
 
%%  Parameter file creation 
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% Change Px and Py to dipole spacing basis 
Px=Px/d;    Py=Py/d; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% NOTE: period is in x and y in Matlab, with light on z axis, but DDSCAT 
%   has the light on the x axis.  The tranlsation is hard coded into this 
%   code. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
 
%   pradius:  effective particle radius in nm 
pradius=(3*length(dipolenum)/(4*pi))^(1/3)*d; 
 
% Declare DDSCAT simulation parameters 
%   an example user interface is available in the 
%   DDA_parameter_file_maker.m file, but is currently not included here 
%   since these normally stay the same 
torque1='NOTORQ'; 
solmethod='PBCGS2'; 
% fftmethod='FFTMKL'; 
fftmethod='GPFAFT'; 
polmodel='GKDLDR'; 
binmode='NOTBIN'; 
Memreq=[100 100 100]*2; 
Nfield=0; 
Nfield_size=[0.5 0.5 0.5 0.5 0.5 0.5]; 
maxtol=1e-5; 
maxiter=3000; 
gamma1=5e-3; 
S_index=[11 12 21 22 31 41]; 
NSO=1; %Number of scattering orders 
 
filename1=[path_out '.\' datestr(now,'yymmdd') '\ddscat' '_' num2str(r1) 'r1_' num2str(t) 't_' num2str(h) 'h_' 
num2str(length(dipolenum)) 'N']; 
c1=0; 
% Check to see if file already exists.  If it does, it adds a number at the 
% end to represent the file version. 
while exist([filename1 '.par'],'file') 
    c1=c1+1; 
    filename1=[filename1 num2str(c1)]; 
end 
clear c1; 
fid1=fopen([filename1 '.par'], 'wt'); 
d_temp=datestr(now,'yymmdd'); 
% header info 
% fprintf(fid,'%i\t%f\t%f\n---Multisphere ring target---\na1 vector\na2 
vector\nx\ty\tz\ta\tic1\tic2\tic3\tth\tph\tbe\n',length(dipolenum),0,0); 
fprintf(fid1,''' ========= Parameter file for v7.2; created: %s ===================''\n', d_temp ); 
fprintf(fid1,'''**** Preliminaries ****''\td=%f\n', d); 
fprintf(fid1,'''%s'' = CMTORQ*6 (NOTORQ, DOTORQ) -- either do or skip torque calculations\n',torque1); 
fprintf(fid1,'''%s'' = CMDSOL*6 (PBCGS2, PBCGST, PETRKP) -- select solution method\n',solmethod); 
fprintf(fid1,'''%s'' = CMDFFT*6 (GPFAFT, FFTMKL)\n',fftmethod); 
fprintf(fid1,'''%s'' = CALPHA*6 (GKDLDR, LATTDR)\n',polmodel); 
fprintf(fid1,'''%s'' = CBINFLAG (NOTBIN, ORIBIN, ALLBIN)\n',binmode); 
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fprintf(fid1,'''**** Initial Memory Allocation **** ''\n'); 
fprintf(fid1,'%i\t%i\t%i = dimensioning allowance for target generation\n',Memreq); 
fprintf(fid1,'''**** Target Geometry and Composition ****''\n'); 
fprintf(fid1,'''FRMFILPBC'' = CSHAPE*9 shape directive\n'); 
fprintf(fid1,'%f\t%f\t ''%s'' (quotes must be used)\n',Px,Py,filename); 
% SHPAR1 = Py/d (Py = periodicity in yTF direction) 
% SHPAR2 = Pz/d (Pz = periodicity in zTF direction) 
fprintf(fid1,'%i = NCOMP = number of dielectric materials\n',n_materials); 
for c1=1:n_materials 
    fprintf(fid1,'''%s''\n',n_path{c1}); 
end 
fprintf(fid1,'''**** Additional Near field calculation? ****''\n'); 
fprintf(fid1,'%i = NRFLD (=0 to skip, 1 to calculate nearfield E)\n',Nfield); 
fprintf(fid1,'%f\t%f\t%f\t%f\t%f\t%f\t (fract. extens. of calc. vol. in -x,+x,-y,+y,-z,+z)\n',Nfield_size); 
fprintf(fid1,'''**** Error Tolerance ****''\n'); 
fprintf(fid1,'%f\t= TOL = MAX ALLOWED (NORM OF |G>=AC|E>-ACA|X>)/(NORM OF AC|E>)\n',maxtol); 
fprintf(fid1,'''**** Maximum number of iterations allowed ****''\n'); 
fprintf(fid1,'%i\t= MXITER\n',maxiter); 
fprintf(fid1,'''**** Interaction cutoff parameter for PBC calculations ****''\n'); 
fprintf(fid1,'%f\t= GAMMA (1e-2 is normal, 3e-3 for greater accuracy)\n',gamma1); 
fprintf(fid1,'''**** Angular resolution for calculation of <cos>, etc. ****''\n'); 
fprintf(fid1,'%f\t= ETASCA (number of angles is proportional to [(3+x)/ETASCA]2 )\n',2.0); 
fprintf(fid1,'''**** Vacuum wavelengths (micron) ****''\n'); 
wlrange(1:2)=wlrange(1:2)/1e3; % convert wl to m from nm 
fprintf(fid1,'%f\t%f\t%i\t''%s'' = wavelengths (first,last,how many,how=LIN,INV,LOG)\n',wlrange,'LIN'); 
fprintf(fid1,'''**** Refractive index of ambient medium ****''\n'); 
fprintf(fid1,'%f\t= NAMBIENT\n',n_medium); 
fprintf(fid1,'''**** Effective Radii (micron) ****' '\n'); 
pradius=pradius/1e3; % convert radius to µm from nm 
fprintf(fid1,'%f\t%f\t%i\t''%s'' = eff. radii (first, last, how many, how=LIN,INV,LOG)\n',pradius,pradius,1,'LIN'); 
fprintf(fid1,'''**** Define Incident Polarizations ****''\n'); 
fprintf(fid1,'(0,0) (1.,0.) (0.,0.) = Polarization state e01 (k along x axis)\n'); 
fprintf(fid1,'%i = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state)\n',1); 
fprintf(fid1,'''**** Specify which output files to write ****''\n'); 
fprintf(fid1,'%i = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient.\n',0); 
% fprintf(fid1,'%i = IWRPOL (=0 to suppress, =1 to write ".pol" file for each (BETA,THETA)\n',1); 
fprintf(fid1,'''**** Prescribe Target Rotations ****''\n'); 
fprintf(fid1,'%f\t%f\t%i = BETAMI, BETAMX, NBETA (beta=rotation around a1)\n',0,0,1); 
fprintf(fid1,'%f\t%f\t%i = THETMI, THETMX, NTHETA (theta=angle between a1 and k)\n',0,0,1); 
fprintf(fid1,'%f\t%f\t%i = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)\n',0,0,1); 
fprintf(fid1,'''**** Specify first IWAV, IRAD, IORI  (normally 0 0 0) ****''\n'); 
fprintf(fid1,'%g\t%g\t%g = first IWAV, first IRAD, first IORI (0 0 0 to begin fresh)\n',0,0,0); 
fprintf(fid1,'''**** Select Elements of S_ij Matrix to Print ****''\n'); 
fprintf(fid1,'%i = NSMELTS = number of elements of S_ij to print (not more than 9)\n',length(S_index)); 
%define S_ij indices to print 
fprintf(fid1,'%i\t%i\t%i\t%i\t%i\t%i = indices ij of elements to print\n',S_index); 
fprintf(fid1,'''**** Specify Scattered Directions ****''\n'); 
fprintf(fid1,'''%s'' = CMDFRM (LFRAME, TFRAME for Lab Frame or Target Frame)\n','TFRAME'); 
fprintf(fid1,'%i = number of scattering orders\n',NSO); 
fprintf(fid1,'%i\t%i = M, N (diffraction orders)\n',0,0); 
 
fclose(fid1); 
dlmwrite(filename,places,'-append','delimiter','\t'); 
end 
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%% Internal functions 
function circle_points=pixelator(r_eff) 
% creates a pixelated circle where r_eff is the radius divided by the lattice spacing, d 
% returns the points of the circle edge for the first quadrant 
r=round(r_eff); 
 
% based on code by John Kennedy, "A fast Bresenham type algoritm for drawing circles 
y=0; 
x=r; 
 
xchange=1-2*(r); 
% ychange=2*y+1; 
RE=0; 
c1=0; 
while x>=y 
    c1=c1+1; 
    x_total(c1)=x; 
    y_total(c1)=y; 
    RE=x^2+y^2-r^2; 
    ychange=2*y+1; 
    y=y+1; 
    if (2*(RE+ychange)+xchange)>0 
        xchange=-1-2*x; 
        x=x-1; 
    end 
end 
x=x_total; y=y_total; 
circle_points=[x y(end:-1:2); y x(end:-1:2)]'; 
end 
 
function [position d]=dda_ring_maker(r1,t,h,N_sphere,varargin) 
%   Generate target file to use wil from_file option with DDSCAT 7.1 
%   Target is a ring structure where  
%   r1 is the inner radius 
%   t is the wall thickness 
%   h is the height of the ring structure 
%   N_sphere is the minimum number of spheres in the thickness direction 
%   Set varargin to 1 to plot the resulting ring structure 
%   WARNING:  Plotting structures with large numbers of dipoles can take 
%             very long and be very memory intensive. 
% 
%   position is a matrix containing column vectors for each dipole in 
%   x, y, and z, respectively. 
 
% % % r1=79.4;  N_sphere=1; t=30; h=50; 
%% 
nvarin=length(varargin); 
switch nvarin 
    case 0 
        plotyes=0; 
    case 1 
        if varargin{1}==1 
            plotyes=1; 
        else 
            plotyes=0; 
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        end 
    case 2 
        if varargin{1}==1 
            plotyes=1; 
        else 
            plotyes=0; 
        end 
        if ischar(varargin{2}) 
            filename=varargin{2}; 
        else 
            plotyes=0; 
        end 
    otherwise 
        plotyes=0; 
end 
 
% Define outer radius 
r2=r1+t; 
 
% calculate dipole diameter that gives the best approximation to t and h 
d=t/N_sphere; 
th_ratio=t/h; 
c1=t*h*N_sphere; 
while  (mod(t,d)~=0 || mod(h,d)~=0 || mod(r1,d)~=0) && c1>0 
    c1=c1-1; 
    d=t/floor(th_ratio*100)*c1/100; 
%      [t/d    h/d    r1/d] 
end 
if c1==0 
    d=1; 
end 
clear c1 
% h_offset=d*sin(pi/3); % Trig value for touching spheres on equilateral triangle times 
h_offset=round(h/d); 
% N_layer=round(h/(h_offset)); 
N_layer=h_offset; 
 
cp1=pixelator(r1/d); 
cp2=pixelator(r2/d); 
 
cm=[]; 
% outer circle points 
for c1=1:length(cp2)  
    for c2=1:cp2(c1,1) 
        cm=[cm; [c2 cp2(c1,2)]]; 
    end 
end 
cm1=[]; 
cm3=cm; 
if t>0 
% inner circle points 
    for c1=1:length(cp1) 
        for c2=1:cp1(c1,1) 
            cm1=[cm1; [c2 cp1(c1,2)]]; 
        end 
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    end 
end 
for c1=1:length(cm1) 
   cm3( (cm1(c1,1)==cm(:,1) & cm1(c1,2)==cm(:,2)))=999;  % mark rows to be removed 
end 
cr=[]; % rows to be left 
for c1=1:length(cm3) 
    if cm3(c1,1)~=999 
        cr=[cr c1]; 
    end 
end 
cm4=cm3(cr,:); 
cm5=cm4; 
for c1=pi/2:pi/2:2*pi 
    % co-ordinate transform to create all quadrants 
    cm5=[[cm5(:,1) cm5(:,2)]; [cm4(:,1)*cos(c1)-cm4(:,2)*sin(c1) cm4(:,1)*sin(c1)+cm4(:,2)*cos(c1)]]; 
end 
clear cm cm1 cm3 cm4 cr cp1 cp2 
 
N_dipole_layer=length(cm5); 
cm5(:,3)=ones(N_dipole_layer,1); 
cm=cm5; 
for c_height=2:N_layer 
    cm5=round([cm5; [cm(:,1) cm(:,2) cm(:,3)+(c_height-1)]]); 
end 
clear cm 
N_dipole=length(cm5); 
% define output matrix 
position_temp=cm5; 
position=[position_temp(:,1) position_temp(:,2) position_temp(:,3)]; 
clear position_temp; 
cm5=position; 
%%  Plot sphere locations 
if plotyes 
    %% 
    if ~exist('r2','var') 
        r2=r1+t; 
    end 
    if ~exist('cm5','var') 
        cm5=position; 
    end 
%     [spx spy spz]=sphere(10); 
    figure(10) 
%     set(gcf,'visible','off') 
    clf 
    hold all 
    if t>0 
    % plot input ring size 
    [X1 Y1 Z1]=cylinder(r1); 
    Z1(Z1==1)=h; 
    hcyl1=surf(X1,Y1,Z1,'facecolor','r'); 
    alpha(hcyl1,0.2) 
    [X2 Y2 Z2]=cylinder(r2); 
    Z2(Z2==1)=h; 
    hcyl2=surf(X2,Y2,Z2,'facecolor','g'); 



 

124 
 

    alpha(hcyl2,0.2)     
    end 
    % plot actual ring size 
    cm5(cm5 == 0) = cm5(cm5 == 0) -0.5; 
    cm5(cm5 < -0.5) = cm5(cm5 < -0.5) +0.5; 
    cm5(cm5 > 0) = cm5(cm5 > 0) -0.5; 
    h1=plot3(cm5(:,1)*d,cm5(:,2)*d,cm5(:,3)*d,'o','MarkerFaceColor','b',... 
        'markeredgecolor','k','markersize',12); 
    % generate axis line 
    X=[0 0]; Y=[0 0]; Z=[min(cm5(:,3))*d-d*3,max(cm5(:,3))*d+d*3]; 
    plot3(X,Y,Z,'color','black','linestyle','--','linewidth',6) 
    grid 
    view(gca,[90,0,0]) 
    axis equal 
    hold off 
    try 
    saveas(gcf,[filename '.fig']) 
    close (10) 
    catch ME 
        display('Unable to save image') 
    end 
     
    %% 
end 
end 
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