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Abstract 

 Synthetic membranes have been frequently used for many fields, such as, the food and 

beverage, biopharmaceutical, and biofuel industries. In the beer industry, microfiltration 

frequently suffers from fouling due to the interaction between different species. It is shown that 

polyphenols can form cross-links with protein molecules, forming insoluble aggregates. 

However, by adding an optimal amount of polysaccharides these aggregates can be disrupted 

thus reducing fouling by the aggregates. Confocal laser scanning microscopy (CLSM) is a 

powerful technique to locate the foulants inside the wet membrane in order to understand more 

about the behavior of fouling in microfiltration.  

 Membrane surface modification is used to impart desirable membrane surface properties. 

Here membrane surface modification is used to develop membrane adsorbers for protein 

purification.  Hydrophobic interaction membrane chromatography (HIMC) has gained interest 

due to its excellent performance in purification humanized monoclonal antibodies. HIMC affords 

all the advantages of membrane adsorbers, which is dynamic capacities that are independent of 

flow rate, higher throughput and easy to scale up.  Unique inverse colloidal crystal (ICC) 

membranes were developed with highly periodic structures, high porosity, and fully 

interconnected pores. ICC membranes offer a very high binding capacity for IgG4. On the other 

hand, salt responsive membranes were developed by grafting responsive ligand, poly 

vinylcaprolactam (PVCL), from the surface of the membrane by atom transfer radical 

polymerization (ATRP). The nanostructure can vary its conformation and hydrophobicity when 

the temperature changes. After modification, membrane is able to provide a very high recovery 

and yield.  



 
 

 Membrane modification is also well applied for biofuel industry. Duel nanostructures, 

poly styrene sulfonic acid (PSSA) and poly ionic liquid (PIL) were grafted separately and 

neighborly from the surface of ceramic membrane substrate by control ATRP and UV initiated 

radical polymerization. Modified membrane substrates were challenged with cellulose and corn-

stovers biomass hydrolysis in pure ionic liquid (IL) and mixture of IL and co-solvent. High yield 

in total reducing sugar (TRS), 95% and 60% for cellulose and corn-stovers biomass respectively, 

indicates strong activity of polymeric solid acid catalysts.   
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Chapter 1 

Introduction 

1.0 Introduction 

Synthetic membranes, usually made of polymeric or ceramic materials, are routinely used 

for separations.  The phases to be separated are placed on either side of the membrane.  The 

membrane controls the rate of mass transfer between the phases.  Typically, the two phases 

consist of a liquid or gas.  The membrane itself can be dense and homogeneous or heterogeneous 

with fluid filled pores. Different technique or materials in synthesis will make the membrane 

more homogenous or heterogeneous 1. Indeed, membrane can be made from various materials. 

They are separated into two groups, organic and inorganic. Numerous polymers such as 

polytetrafluoroethylene, polyester, polyether sulfone, poly (ethylene terephthalate), regenerated 

cellulose etc. are used for commercial polymeric membranes.   Inorganic membranes comprise in 

materials that do not contain carbon atom in their main chains. It could be metallic (copper, 

silver, gold, nickel, palladium), ceramic (aluminum, titanium or silica oxide), or zeolite 

membranes (zeolite X & Y; zeolite ZSM-5 or silicalite-1; zeolite ZSM-12 and zeolite Theta-1 or 

ZSM-22) 2–7 .  Membranes are used in a wide variety of fields ranging from biomedical devices, 

bioseparations, water treatment recovery and use, gas separations and the production of biofuels 

and chemicals 8. 

Membrane based separations are commercially attractive for a number of reasons.  Often 

they are cheaper to operate than competing technologies.  Perhaps the best example is reverse 

osmosis for desalination of sea water which is significantly cheaper than competing 

technologies. Three of the basic categories of water purification technologies that are used for 

desalination are membrane technologies, distillation process (thermal technologies), and 
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chemical approaches, where membrane process is the most common technique for desalination 

application nowadays, especially reverse osmosis (RO). This physical process uses a hydrostatic 

pressure to drive water through the membrane. It is an effective technique to remove total 

dissolved solid (TDS) which concentrated up to 45000 mg/L. RO only needs the energy to 

operate the pumps that realize the pressure applied to feedwater depending on its TDS 

concentration 8,9.   

In the biopharmaceutical industry, the easy scale up of membrane processes compared to 

packed beds has led to the development of membrane absorbers. Column chromatography is an 

exciting technology in biotechnology industry for the separation and purification of proteins and 

pharmaceuticals. Packed bed is a traditional method for chromatography. A packed bed is 

normally a hollow tube pipe, column, or other vessel that is filled with packing materials which 

are small objects like raschig rings, beads, or even catalyst particles and zeolite pellets. However, 

packed bed chromatography suffers from many limitations.  

Membrane adsorber is a subset of much larger group of membrane based separation 

devices known as membrane contactors. Common examples include non-dispersive gas-liquid 

and liquid-liquid contactors. Membrane adsorber represent liquid-solid contactor 10-11. It is a 

microporous membranes with functional ligand grafted from the surface and pore wall. 

Membrane adsorber has been used commonly for removing contaminants 12–15. The study of 

membrane adsorber with attached ligand from surface of the membrane pore was presented by 

Brandt et al 16.   

For applications such as treatment of wastewaters, membrane processes are more 

environmentally benign, especially if addition of coagulants is minimized. Coagulation in water 

treatment is the process that combines small particles into larger aggregates for better stability. 
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Adding coagulant prior the filtration helps not only reduce membrane fouling but also remove 

the organic matters. However, the conditions need to be optimized in order to obtain the best 

result 9,17.   

Use of a catalytic membrane can lead to significant process intensification.  Here the 

membrane catalyzes a reaction and separates the reaction products in one step. A platinum-

impergnated Vycor glass membrane was designed and operated in such a way as to have 

catalytic reaction of cyclohexene dehydrogenation in the membrane itself. The research 

demonstrated the possibility of achieving conversion above the original equilibrium conversion 

based on the feed conditions by combining the selective separation effect of membrane and 

catalytic function of transition metals 7.   

Finally membranes processes fill many niche applications where competing technologies 

are unsuitable such as blood oxygenation and kidney dialysis. First attempts of oxygenating 

blood outside the body were made in 19th century indicate a development of technology for 

oxygenation of blood. Membrane oxygenators in current use utilize microporous, silicon or 

polypropylene membranes. They can be grouped into 3 principle types, plate oxygenators, spiral 

oxygenators and hollow fiber oxygenators. Recent biomaterials that was used as inert structural 

materials sometime has an interaction with tissues and organs. Suitable bioactive materials 

should be able to show the biocompatibility, blood compatibility, and biodegradability18,19. Many 

materials had been investigated and used for kidney dialysis membranes, artificial organs, drug 

delivery matrices, and tissue engineering scaffolds. Murugesan20 mentioned a special way to 

improve the blood compatible and preventing the blood clots. Heparin is well-known as an 

anticoagulant, blood thinner, that prevent the formation of blood clots in veins, arteries, or 

lungs21.  
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Since it is the membrane surface that contacts the two fluid phases, membrane surface 

properties are critical for optimizing performance of the membrane. Membrane surface 

properties can be tuned to minimize fouling, maximize adsorption/desorption in chromatographic 

applications and to impart catalytic activity.  This thesis, which focuses on advanced membrane 

for engineering applications discusses these aspects of solute membrane surface interactions.  

The thesis is divided into three parts. 

 

PART 1 Direct observation and suppression of membrane fouling 

 This section is based on the following published manuscripts.  

 

Location and quantification of biological foulants in a wet membrane structure by cross-

sectional confocal laser scanning microscopy  

Milagro Marroquina, Anh Vub, Terri Brucec, S. Ranil Wickramasingheb, Scott M. Hussona,* 

 

aDepartment of Chemical and Biomolecular Engineering and Center for Advanced Engineering 

Fibers and Films, Clemson University, Clemson, SC 29634, USA 

bRalph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 

72701 USA 

cDepartment of Biological Sciences, Clemson University, Clemson, SC 29634, USA 

 

*In this paper, my work is analyzing the particles size, conducting all filtration experiments, and 

then generating blocking models based on the results. And then finally, the membranes were sent 

to Clemson University to analyze with Confocal Laser Scanning Microscopy.  
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Evaluation of fouling mechanisms in asymmetric microfiltration membranes using 

advanced imaging 

      Milagro Marroquina, Anh Vub, Terri Brucec, S. Ranil Wickramasingheb, Lixin Zhaoa,‡, Scott 

M. Hussona,* 

 

aDepartment of Chemical and Biomolecular Engineering and Center for Advanced Engineering 

Fibers and Films, Clemson University, Clemson, SC 29634, USA 

bRalph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 

72701 USA 

cDepartment of Biological Sciences, Clemson University, Clemson, SC 29634, USA 

‡Current address: College of Mechanical Science and Engineering, Northeast Petroleum 

University, Daqing, 163318, China 

 

*In this paper, my work is analyzing the particles size, conducting all filtration experiments, and 

then generating blocking models based on the results. And then finally, the membranes were sent 

to Clemson University to analyze with Confocal Laser Scanning Microscopy.  

 

Fouling of microfiltration membranes by biopolymers 

Anh Vua, Siavash Darvishmanesha, Milagro Marroquinb, Scott M. Hussonb, S. Ranil 

Wickramasinghea,*  

 

aRalph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 

72701, USA 
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bDepartment of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 

29634, USA 

 

*In this paper, all experimental works were conducted by me.   

 

PART 2 Membrane adsorbers for hydrophobic interaction chromatography 

 This section is based on the following published manuscripts 

 

Inverse colloidal crystal membranes for hydrophobic interaction membrane 

chromatography  

Anh T. Vu.1, Xingying Wang2, S. Ranil Wickramasinghe1, Hua Yuan3, Hailin Cong3, Yongli 

Luo3, and Jianguo Tang3. 

 

1Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 

72703, USA 

2Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, 

CO 80523, USA 

3Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key 

Laboratory, College of Chemical Engineering, Qingdao University, Qingdao, 266071, China 

 

*In this paper, my work is making membranes and testing water flux filtration and protein 

binding capacity. 
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Responsive membrane for hydrophobic interaction chromatography 

Anh Vu1, Xianghong Qian2, S. Ranil Wickramasinghe1 

 

1Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 

72701, USA;  

2Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA 

 

*All experimental work was conducted by me. 

 

PART 3 Catalytic membranes for biomass hydrolysis 

This section focuses on the development of catalytic membranes for lignocellulosic 

biomass hydrolysis. Lignocellulosic biomass represents an abundant source of renewable energy; 

however, it is highly recalcitrant. This is a great need to develop efficient unit operations for 

hydrolysis as well as recovery and purification of biofuels and chemicals. Here the potential of 

significant process intensification by development of a catalytic membrane is explored. 

 

1.1 Direct observation and suppression of membrane fouling 

In pharmaceutical, food, and especially beverage industry, prior to the operation of 

ultrafiltration, reverse osmosis or crystallization, microfiltration (MF) is a general and typical 

filtration process which is used and applied for clarification, sterilization, stabilization and pre-

treatment 22. Interest in microfiltration is increase among multiple types of beverage processing, 

milk, tea, soft drinks, alcohol, fruit juices. MF has been applied to sterilize and remove yeast 

cells, chill and permanent haze flocs in beer industry. Additionally, MF is also an effective 
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technique in separating or removing fats, bacteria, proteins in dairy product industry. However, 

filtration of these streams suffers from permeate flux decline caused by membrane fouling 23.  

Membrane fouling is the a phenomenon where the solution or particle compounds deposit 

on the membrane surface or in the pores which cause negative effects on the performance of the 

membrane and increases the operating cost by requiring frequent membrane 

cleaning/replacement. Additionally, membrane fouling can compromise the properties of the 

final product, for example percentage of yield and selectivity. In general, fouling can be caused 

by particulate matter with a size equal to or larger than the nominal pore size of the MF 

membrane that completely or partially block the pores. However, many of the components which 

have much smaller size compared to the pore size, like proteins, polysaccharides and 

polyphenols that are presented in the feed solutions can foul MF membrane by absorbing to 

membrane surfaces and pore walls 24. On the other hand, the interactions between proteins, 

polysaccharides and polyphenols also cause the membrane fouling 25,26. 

In previous work, it has been shown that polyphenols forms a crosslinks with protein 

molecules, forming insoluble aggregates due to hydrophobic and/or hydrogen bonding 

interactions. However, the appearance of polysaccharides are able to break and disrupt the 

binding of polyphenols to proteins by molecular association between the polysaccharides and 

polyphenols or by forming complexes among protein, polyphenol and polysaccharide molecules 

26–28. In addition, protein and carbohydrates are able to interact to each other to form plugging 

agents 29. Membrane-solute interactions may also affect the fouling of the membrane. For 

example, Ulbricht at al30 reported that dextran and myoglobin significantly fouled 

polyethyersulfone (PES) membrane compare to cellulose membrane. 
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Understanding how fouling occurs is the first step toward developing fouling mitigation 

strategies for microfiltration of biological streams. Characterization of membrane fouling by 

proteins, polysaccharides and/or polyphenols is necessary 26,30,31. Those studies were investigated 

observing the reduction in relative flux profiles. Moreover, the fouled membranes were then 

characterized with infrared (IR) spectroscopy, contact angle, and zeta potential to quantify the 

degree of fouling at the surface of the membranes. In addition, atomic force microscopy (AFM) 

and scanning electron microscopy (SEM) have been used to visualize the fouled membrane 

surface 30,31. However, these techniques require precisely preparation protocols, and they are not 

able to distinguish components that fouled the membranes.  

In order to overcome the limitations of characterization techniques mentioned above, 

confocal laser scanning microscopy (CLSM) is a recent technology that has become an important 

new tool for studying membranes. Briefly, CLSM is able to characterize by focusing light into a 

small spot on a single plane at a selected depth within the membrane structure. Images are 

recorded at different depths by changing the position of the focal plane. With CLSM application, 

foulants can be located individually within the membrane at specific depth of penetration. In 

addition, cross-sectional CLSM imaging method provides images throughout the entire thickness 

of the membrane, which can help to locate biological foulants in a wet membrane structure post-

filtration 32,33.    

The objectives of this project were to determine interaction of protein, polyphenol, and 

polysaccharide in single component feed mode or in mixture of two or three components. 

Finally, investigate the type of fouling or location of foulants on wet microfiltration membrane 

by using CLSM. Indeed, first important aim here is quantifying the amount of foulants at 

different depths within the membrane as a function of volume processed by using CLSM. 
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Secondly, the combination results of flux decline and CLSM images of membranes at different 

degrees of fouling can provide insights on the reasons for observed fouling of membrane 

performance. Finally, interaction between fluorescently labeled protein-polysaccharide 

investigations can also be studied for searching of evidence of fluorescence resonance energy 

transfer (FRET). In this study, casein and dextran were used as the model protein and 

polysaccharide respectively, where polyphenols are either tannic acid or catechin.  

1.2 Membrane absorber for hydrophobic interaction chromatography 

A traditional packed bed is normally a hollow tube pipe, column, or other vessel that is 

filled with packing materials which are small objects like raschig rings, beads, or even catalyst 

particles and zeolite pellets.  
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Figure 1.1: Packed bed column 

 

However, packed bed chromatography suffers from many limitations. High pressure-drop 

across the column due to media deformation is one of the examples of the limitations of packed 

bed chromatography. The back pressure is normally much lower through a macroporous 

membrane compared to a packed bed/bead column due to the larger pores and open structure. 

Thus faster flow rates can be utilized without, due to convective impurity transport to all binding 

sites, any loss in binding capacity which leads to decreased processing time during 

manufacturing which results in substantial cost saving. 
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Another limitation that packed beds suffer from is slow pore diffusion through the 

internal pores of porous particles, which leads to early breakthrough and incomplete usage of the 

packed bed. Membrane absorbers overcome the disadvantages of packed bed and are alternative 

to traditional packed columns. Membrane adsorber is a subset of much larger group of 

membrane based separation devices known as membrane contactors. Common examples include 

non-dispersive gas-liquid and liquid-liquid contactors 34. Membrane adsorber represents liquid-

solid contactor. It is a microporous membranes with functional ligand grafted from the surface 

and pore wall. Membrane adsorber has been used commonly for removing contamination 13,34-35. 

First study of membrane adsorber with attached ligand from surface of macro-porous membrane 

was presented by Brandt et al 16.  

 

Figure 1.2: Existing transport phenomena in conventional beads and Membrane Adsorbers 36 

 

The large pore diameter allows convective transport of all impurity species to all binding 

ligands on both the external and internal pore surfaces. Ideally binding is limited by binding 

kinetics only. Therefore binding capacity is theoretically independent of flow rate in 

convectively-driven binding processes like within membrane adsorber, at least at flow rates 
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useful to protein purification. Figure 1.3 provides a visual illustration of this point showing 

electron micrographs of both a porous bead and membrane adsorber with icons show transport of 

impurities to binding sites 36. 

Hydrophobic interaction chromatography-Inversed colloidal crystal membrane (ICC)  

An inverse colloidal crystal (ICC) substrate is a macro-porous material that has a three 

dimensional ordered pore structure. After the first report in 1990’s, making ICC material using 

colloidal crystal as template has been broadly investigated in many different fields. Because of 

its special structures, including its highly periodical structure, high volume pores and uniform 

pore size, ICC has been used for many applications, especially membrane.  

 Membrane adsorbers are investigated here based on advantages of ICC membranes as 

they have high porosity and highly interconnected and uniform pore structure will lead to low 

pressure drop and uniform flow through the membrane. Both of those two advantages are perfect 

designs for membrane adsorbers. Moreover, the surface area of ICC membrane is very high and 

controllable which helps for solute binding capacity. In this study, the membrane can be used as 

microfiltration or ultrafiltration where the solute is monoclonal antibody, IgG4. Binding 

mechanism is simply based on hydrophobic interaction membrane chromatography which is the 

same as resin based hydrophobic interaction chromatography.  

Hydrophobic interaction chromatography- Responsive membrane for hydrophobic interaction 

chromatography (HIC-HIMC) 

Based on bind and elute operation, membrane adsorber can be used for hydrophobic 

interaction chromatography (HIC). This powerful technique was initially described by Shepard 

and Tiselius (1949) using the term “salting-out chromatography 37,38.” Later 1973, Hjerten 

successfully represented the HIC technique as “hydrophobic interaction chromatography” by 
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retaining proteins on weakly hydrophobic matrices in the presence of salt 39. Traditional HIC is 

based on the reversible interactions between hydrophobic surface patches on proteins and 

hydrophobic ligands attached to chromatographic resin particles 40. During the process, proteins 

are normally bound at high salt concentration and eluted with decreasing salt concentration 

buffers. Depending on the structure and hydrophobicity of the each protein, binding capacity and 

recovery yield will be different 41.  

Protein binding depends on the media. Hydrophobic media is mostly used in HIC where 

the driving force is typically salt concentration 42,43. And many proteins “salt out” of solution 

below the optimal binding salt concentration. As a result, the binding capacity is much lower 

than in ion-exchange media, which is about 50 g/L. The other limitation lies in desorption of 

bound protein from the hydrophobic media. Elution of proteins from HIC media is accomplished 

either through decreased salt concentration and/or introduction of chemicals, such as organics or 

chaotropes, which disrupt hydrophobic interactions 44. However, some proteins do not fully 

desorb from salt media which lead to lower recovery. Therefore, using low or no salt media, or 

hydrophobic ligands that become more hydrophilic in lower salt solution will increase the 

recovery yield 45. The method is used commonly in downstream process as an industrial scale for 

protein separation and purification. 

 

 



15 
 

 

 

Figure 1.3:  Hydrophobic interaction chromatography outline 10. 

 

  Over the years, HIC has been developed and improved in order to fulfill the needs of 

different purification applications. Membrane based HIC, hydrophobic interaction membrane 

chromatography (HIMC), affords all the advantages of the membrane adsorber, which are 

dynamic capacities that are independent of flow rate, higher throughput and easy to scale up. In 

this study, we focus on the use of stimuli-responsive membranes for HIC. One of the most 

interesting characteristics of the stimuli-responsive membranes is that they can change the 

physiochemical properties due to change in environmental conditions, such as pH, temperature, 

ionic strength, etc, then, they could promote separation during elution.  

 



16 
 

1.3 Catalytic membrane for biomass hydrolysis  

Here we explore the use of surface modification to develop an advanced membrane 

which is grafted with novel polymeric solid acid catalysts for lignocellulosic biomass hydrolysis 

and dehyration. Lignocellulose or cellulosic biomass is an abundant leading biomass resource for 

renewable energy and replacement for fossil-based transportation fuel. In general, Cellulose 

contains 38-50%, and hemicellulose covers 23-32% where lignin holds 15-25% of biomass. 

Cellulose is a polymer of β (1, 4)-linked cellubiose residues. It is a very complex 

substrate with amorphous, semi-crystalline and crystalline structures which contains strong and 

extensive hydrogen bonding networks. Qian et al 46,47 clearly stated that cooperativity of 

hydrogen bonding interaction in crystalline structure amplified the hydrogen bonding interaction 

energy to 50% compared to non-cooperative hydrogen bonding energy in other polysaccharide. 

And that is the reason made cellulosic biomass become a recalcitrant substrate to depolymerize. 

 Many pretreatment methods have been studied. However, each method still suffers with 

its own disadvantages. For example, method of pretreatment with dilute sulfuric acid, 

hydrochloric acid, and nitric acid has been the leading and famous technology because this 

technique has ability to improve the release of lignin from hemicellulose and decrystallization of 

the cellulose. This technique is normally conducted at hash condition, for example 140-200°C, 4-

15psi, and the residue time is around 5-30mins. It could perform in batch with presoaking period, 

or employ a continuous flow acid over the biomass (ionic liquid pretreatment...IL recycle).  On 

the other hand, the cost of this reagent is normally high and it is hard to recover and recycle. 

Moreover, sulfuric acid is not an environmental favorite because of its highly hazardous. 

Moreover, not only having ability to open up the biomass structure, thermos-chemical 

pretreatment of biomass also has been recognized as a critical step to produce cellulose with 
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satisfactory enzymatic digestibility.   

As discussed above, cellulose is a complex substrate, and in fact, it is insoluble in 

conventional solvents, such as water because of its intermolecular hydrogen bond. In her paper, 

Qi et al 48 reported that there are four types of solvents that can be used as reaction media, such 

as, water, organic solvents, organic-water mixtures, ionic liquid and biphasic water/organic 

system. Ionic liquid (IL) is discovered as an effective solvent for dissolving cellulose. Basically, 

the inter- and intra-molecular hydrogen bonds of cellulose are disrupted by replacing the 

hydrogen bonding between the IL anion and the carbohydrate hydroxyls.  

Some of the IL anions that have been used commonly are chloride, acetate, formate, or 

alkyl phosphonate which are shown the most promise since they have ability to create hydrogen 

bonds with cellulose. For example, among those IL anions, chloride-containing IL can dissolve 

pulp cellulose up to 25% by weight even though this process requires high temperature and 

exhibit high viscosities. Ionic liquid is called “green” solvent for its specific properties, such as 

negligible vapor pressure, non-flammability, high thermal, low toxicity and chemical stability, 

and adjustable solvent power for organic and inorganic substances49. It has been shown that pure 

1-ethyl-3-methylimidazolium chloride ([EMIM]Cl]) with small amounts of water (equivalent to 

4 glucose units) can hydrolyze cellulose with total reducing sugar (TRS) and glucose yield 

reaching 97% and 19% respectively in the absence of any acid catalyst. However, appearance of 

impurities in IL can prevent and severe the yield of hydrolysis reaction; therefore, extensive 

purification of IL is high required and recommended50,51. 

Solvent was mostly believed as the energy barriers for Brønster acid catalyzed hydrolysis 

and sugar degradation reactions, for example of water molecule’s high affinity for proton. 

Indeed, this dehydration phenomenon will reduce the activation barrier and facilitate the 
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hydrolysis reaction, similar to the microenvironment in the catalytic tunnel of cellulose enzymes. 

Based on this concept, polymeric solid acid catalysts immobilized on a supporting substrate 

could potentially create a partially dehydrated microenvironment that is inductive for the 

hydrolysis reaction. In this study, dual functional nanostructures are synthesized to help 

solubilize cellulose and catalyze its hydrolysis reaction. Poly (styrene sulfonic acid) (PSSA) 

chains are immobilized on surfaces of ceramic membrane substrates and used to catalyze 

biomass hydrolysis. Its neighboring poly (vinyl Imidazolium chloride) ionic liquid (PIL) chains 

are grafted from the surface to help solubilize lignocellulosic biomass and enhance the catalytic 

activity. 

Atom transfer radical polymerization (ATRP) was used to immobilize the acidic PSSA 

polymer chains. On the other hand, its neighbor, PIL, was synthesized via UV-initiated radical 

polymerization. Each method of polymerization will control the grafting of one specific polymer 

only. The two chains were grafted randomly from the surface of ceramic membrane substrates. 

Those two nanostructure polymer chains can be tuned independently the ratio as well as the 

chain length and chain density in order to obtain the best hydrolysis reaction results with 

optimize catalytic activity.   
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PART 1 Direct observation and suppression of membrane fouling 

Chapter 2 

Location and Quantification of Biological Foulants in a Wet Membrane Structure by 

Cross-sectional Confocal Laser Scanning Microscopy1 

 

Summary 

Microfiltration of solutions containing proteins and polysaccharides suffers from permeate flux 

decline caused by membrane fouling, despite the small size of these species relative to the 

nominal membrane pore size. To develop fouling mitigation strategies for microfiltration of 

biological streams, it is important to understand the mechanisms that lead to fouling.  In this 

contribution, we discuss the use of confocal laser scanning microscopy (CLSM) to determine 

where proteins and polysaccharides deposit inside polymeric microfiltration membranes when a 

fluid containing these materials is filtered. By using fluorescently labeled probes, CLSM 

permitted evaluation of the location and extent of fouling by individual components (protein: 

casein and polysaccharide: dextran) within wet, asymmetric polyethersulfone microfiltration 

membranes. By labeling the protein and polysaccharide with different fluorophores, we were 

able to locate each component separately and to visualize co-localization within the membrane. 

In addition, flux profiles and cross-sectional CLSM images were obtained for membranes that 

processed single-component solutions and mixtures to better understand the role of each on 

membrane fouling and to see how component interactions impact the fouling profiles. Analysis 

of the CLSM images at different levels of fouling for single-component solutions and mixtures 

                                                 
1 Marroquin, M., Vu, A., Bruce, T., Wickramasinghe, S. R., Husson, S. M. Location and 
Quantification of Biological Foulants in a Wet Membrane Structure by Cross-sectional Confocal 
Laser Scanning Microscopy. Journal of Membrane Science. 453, 282-291 (2014) 
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provided concentration profiles versus depth for each individual component present in the feed 

solution. Using a new cross-sectional imaging protocol that we developed in a previous 

investigation, we were able to visualize fouling profiles throughout the entire thickness of the 

membrane, overcoming limitations of depth of penetration observed in previous CLSM work. 

2.1 Introduction 

Microfiltration (MF) is used in the food and beverage industry on a large scale for 

clarification, sterilization (bacteria/microorganism removal), stabilization and pre-treatment prior 

to unit operations such as ultrafiltration, reverse osmosis or crystallization (to ensure high quality 

of crystals) 1. Processing of milk, beer, soft drinks, whisky, fruit juices, edible oils and vinegar 

are a few examples where MF is applied. In beer production, MF is used for sterilization and for 

removal of any remaining yeast cells, chill and permanent haze flocs (protein-polyphenol 

aggregates), and other components that prevent its final crisp clarity. In the dairy product 

industry, MF is used to separate fats, remove bacteria and maintain protein levels in the milk year 

round for automated cheese making 2. However, filtration of these streams suffers from permeate 

flux decline caused by membrane fouling.  

Fouling negatively affects the performance of the membrane and increases the operating 

by requiring frequent membrane cleaning/replacement and consequently higher energy 

consumption. Further, membrane fouling can compromise the properties of the final product. For 

example, in the dairy product industry, fouling can influence the rejection of caseins and whey 

proteins, altering the quality of the final product. Fouling can be caused by particulate matter 

with a size equal to or larger than the nominal pore size of the MF membrane (e.g., cellular 

components, microorganisms, fat globules, etc.) that completely or partially block the pores. In 

addition, components like proteins, polysaccharides and polyphenols that are present in the feed 
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solutions can foul microfiltration membranes despite having a much smaller size relative to the 

nominal pore diameter of the membranes 3. These components tend to adsorb to the pore walls 

constricting it over time. During MF, the extent of fouling depends on a number of factors that 

include operating conditions, feed and membrane properties 4. In addition to these factors, solute-

solute interactions among components commonly found in the feed (e.g. proteins, 

polysaccharides and polyphenols) have been shown to affect filtration performance significantly. 

Polyphenols are thought to behave like physical crosslinkers among protein molecules, forming 

insoluble aggregates due to hydrophobic and/or hydrogen bonding interactions 5. These 

interactions are altered by the presence of polysaccharides, which can disrupt the binding of 

polyphenols to proteins by molecular association between the polysaccharides and polyphenols 

or by forming complexes among protein, polyphenol and polysaccharide molecules 6, 7, 8. Also, 

protein and carbohydrates may interact to form plugging agents 9. Membrane-solute interactions 

may also affect the fouling of the membrane. For example, Ulbricht and co-workers 10 reported 

that dextran and myoglobin significantly fouled porous membranes and non-porous films of 

polyethersulfone (PES) simply by contacting the PES with the polysaccharide or protein 

solutions under static conditions.  They found that the degree of fouling was less on cellulose 

membranes by the same components using the same conditions.  

Understanding how fouling occurs is the first step toward developing fouling mitigation 

strategies for microfiltration of biological streams. Previous researchers have characterized 

membrane fouling by proteins, polysaccharides and/or polyphenols 5, 10, 11. In these studies, 

relative flux reductions and flux profiles of the fouled membranes were reported to characterize 

how the fouling occurs and quantify its impact on performance. Infrared (IR) spectroscopy has 

been used for indirect evaluation of the ‘degree’ of fouling by quantifying the increase in IR band 
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area of distinct peaks corresponding to the foulants deposited on the membrane surface 10 or the 

decrease (or disappearance) in IR band area of the peaks that correspond to the clean base 

membrane 12. Changes in contact angle and zeta potential have been quantified to characterize 

how the foulants affect the surface properties of the polymeric membrane material. Atomic force 

microscopy (AFM) and scanning electron microscopy (SEM) have been used to visualize the 

fouled membrane surface 10, 11. Although AFM and SEM allow the observation of surface fouling 

of membranes by proteins, polysaccharides and/or polyphenols, it is not possible to conclude 

from the images how (i.e., by what mechanism) the fouling occurs when there is more than one 

component involved, since it is not possible to distinguish individual components. An additional 

disadvantage is that AFM and SEM only provide superficial information of the sample. 

Although, it is possible to use SEM to visual the internal structure of the membrane post 

filtration, doing so requires sectioning of the sample. This step introduces surface artifacts that 

compromise the reliability of the information obtained from the imaging. Another requirement to 

study samples with conventional SEM is that the sample must be dehydrated, preventing the 

study of samples in the wet state, a disadvantage for samples prone to alteration of morphology 

due to drying. Even though ESEM allows imaging of sample in a wet state and under a moderate 

vacuum, obtaining clear images is difficult due the low electron density of the components in the 

fouling layer (i.e. proteins, polysaccharide and polyphenols). Finally, while collecting images, 

beam is damaged due to local heating and structural is collapsed due to vacuum can occur.  

There is much interest to explore alternative characterization methods that may overcome 

the limitations that have been mentioned above.  Particularly, confocal laser scanning 

microscopy (CLSM) is a recent technology that has become an important new tool for studying 

membranes.  Briefly, CLSM works by focusing light into a small spot on a single plane at a 
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selected depth within the membrane structure. Images are recorded at different depths by 

changing the position of the focal plane 13. Thus, CLSM performs an ‘optical sectioning’ to 

collect images from the membrane interior. Stacking the images from adjacent planes can create 

three-dimensional volume elements. Recent studies by Zator and coworkers reported the use of 

CLSM in the fluorescent mode for studying fouling of microfiltration of mixed protein-

polysaccharide 14 and protein-polysaccharide-polyphenol solutions 5. These studies were limited 

to polycarbonate and polyester membranes using BSA as model protein. Confocal images were 

collected after processing a fixed volume of solution, and depth of imaging was 3 micron. By 

using CLSM, they were able to locate the foulants individually within the cake and within the 

first 3 microns of the membrane by using foulants labeled with fluorescent dyes.  Zator et al. 5 

worked with foulants labeled with different dyes, and they collected images showing the location 

of each foulant, represented by a different color, at different depths within the membrane. In their 

conclusions, they suggest that, even though they did not find significant pore blockage by 

protein, dextran and polyphenols within a depth of 3 micron from the surface of the membranes 

after enzymatic cleaning, aggregates of these components may have been blocking the pores at 

depths not reachable by their confocal analysis. They hypothesize that such aggregates were the 

reason why the enzymatic cleaning process did not restore the water fluxes of the membranes 

after cleaning. This hypothesis could not be tested due to the CLSM depth of penetration limit, 

beyond which images become degraded as the emitted light (photons) originating at the focal 

plane are lost due to scattering or absorption by the membrane material. In a previous publication 

13, we explained the causes and consequences of the depth of penetration limit for membrane 

imaging, and we developed a cross-sectional CLSM imaging method that overcomes this 

limitation and provides images throughout the entire thickness of the membrane. This method 
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was used in this study to locate biological foulants in a wet membrane structure post-filtration.    

 The objectives of this research were to determine where proteins and polysaccharides 

deposit inside a polymeric microfiltration membrane when a fluid containing these materials is 

being filtered and to better understand the role of each component on membrane fouling.  Using 

mixed-component feeds, we sought to determine whether proteins and polysaccharides deposit 

inside the membrane in the same manner or location within the wet membrane structure when 

they are present together in a mixture as they do when present individually, and to investigate 

how they affect one another in fouling a membrane. Our ultimate goals were (1) to use the 

intensity information provided by the cross-sectional CLSM images of the fouled membranes to 

quantify the amount of foulant at different depths within the membrane as a function of volume 

processed; (2) to compare flux decline measurements of single-component and mixed solutions 

against CLSM images of membranes at different degrees of fouling to gain insights on the 

reasons for observed loss of performance; and (3) to search for evidence of fluorescence 

resonance energy transfer (FRET) between fluorescently labeled protein and polysaccharide in 

membranes that processed mixed solutions of these components, as a marker for protein-

polysaccharide interactions. In this contribution, we used casein and dextran as the model protein 

and polysaccharide respectively. We used our newly developed CLSM protocol to conduct cross-

sectional imaging of membranes following filtration, overcoming limitations of depth of 

penetration observed in previous CLSM work 15-18. The extension of our cross-sectional CLSM 

imaging method offered in this work should be useful to researchers who wish to use CLSM to 

study internal fouling within wet membrane structures. Also, the knowledge acquired in this 

study will contribute to better understanding of the mechanisms that lead to fouling, as is needed 

to develop more effective fouling mitigation strategies for microfiltration of biological streams.  
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2.2 Experimental materials and methods 

2.2.1 Materials  

Asymmetric polyethersulfone (PES) membranes (Pall Corporation) were used for 

filtration experiments. The Supor® PES membranes that were used have effective pore diameter 

of 0.65 µm and thickness of 114–175 µm.  

Fluorescently labeled probes used in these experiments were fluorescein isothiocyanate 

(FITC) labeled casein from bovine milk (Sigma-Aldrich, C-0403) and Alexa Fluor® 594 labeled 

dextran, 10 kDa molecular weight, anionic-fixable (Life Technologies, D-22913);. Non-labeled 

compounds used in the filtration experiments were casein from bovine milk (Sigma Aldrich, 

C6554) and dextran from Leuconostoc mesenteroides, 9 -11 kDa molecular weight, (Sigma 

Aldrich, D9260).  

For filtration experiments, sodium phosphate buffered solutions were prepared using 

sodium phosphate monobasic (anhydrous, ≥99%, Sigma Aldrich, S0751), sodium phosphate 

dibasic (anhydrous, ≥99%, Sigma Aldrich, S9763), and deionized (DI) Milli-Q system (EMD 

Millipore) water.  

Dow Filmtec™ NF90 membranes were used to prepare the calibration plots of intensity 

versus areal protein or polysaccharide mass. The NF90 membranes were pre-treated to enhance 

the permeability of the membranes while maintaining their rejection properties [19]. Pre-

treatment was done by soaking the membranes for 2 days in a 1:10:9 (by volume) mixture of 

absolute ethanol (≥99.5%, Sigma Aldrich, 459836), sulfuric acid (ACS reagent, 95-98%, Sigma 

Aldrich, 258105), and DI water.  

For membrane cryosectioning, the embedding medium was Tissue-Tek O.C.T. 

Compound 4583 (VWR, 25608-930). Tissue-Tek 15×15×5 mm Intermediate Cryomolds 4566 
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were used (Fisher Scientific, NC9542860). The high-profile cutting blades were 76.2×1.4×0.03 

mm (Fisher Scientific, 12-634-4). Superfrost® Plus Micro Slides (VWR, 48311-703) were used 

to collect and mount cryosections. Samples for XY lateral CLSM scans were mounted on 

microscope slides (Fisherbrand, 12-550-A3). All samples were mounted using 

VECTASHIELD® aqueous mounting medium (glycerol-based aqueous sample mounting 

medium and anti-fading agent for the fluorescent probe) and covered with micro cover glasses 

(VWR, 48393 092) before imaging. The immersion oil Type A (Nikon) specified for the 

objective lens was used with the optical system. 

2.2.2 Filtration experiments  

A direct-flow filtration cell, Amicon 8050 from EMD Millipore, was used at a constant 

pressure of 14.5 kPa. The Amicon 8050 cell has an effective filtration area of 13.4 cm2. 

Sodium phosphate buffer solutions were prepared with an ionic strength of 0.125 M and 

pH of 6.8. A stock solution of casein (25 g/L) was prepared by mixing the casein powder from 

bovine milk in a 0.04 M sodium hydroxide solution. Stirring at 250 rpm for 4 hours was applied 

to facilitate the casein dissolution. A stock solution of dextran (9-11 kDa, 25 g/L) was prepared 

by mixing the dextran powder in DI water.  

Single component protein and polysaccharide solutions were prepared with a final 

concentration of 25 mg/L or 12.5 mg/L in phosphate buffer solution. Binary component solutions 

were prepared with a final mixture concentration of 25 mg/L comprising 50:50 (w/w) protein-

polysaccharide in phosphate buffer solution. These solutions were prepared by adding the 

appropriate volume of stock solution(s) to a volumetric flask and adding phosphate buffer to 

achieve the desired volume. To allow confocal visualization of the protein (casein) and 

polysaccharide (dextran), fluorescently labeled casein and dextran were added to the solutions in 
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a ratio of 1:20 fluorescently labeled to non-labeled component.  

PES membranes were pre-wetted before each filtration experiment by soaking them in a 

25% (by volume) aqueous ethanol solution for 10 minutes. Then the membranes were soaked in 

DI water for 10 minutes. Membranes were kept in DI water until use. Each filtration experiment 

was done at constant pressure until 1 L of permeate was collected. The membrane was placed 

with the more open surface facing the feed, and filtration was done in direct flow mode with 

constant stirring speed of 250 rpm.  Flux versus permeate volume data were recorded during 

each experiment.  

After filtration, 5 mL of a solution of non-labeled component(s) at the concentration(s) 

used in the filtration run was filtered with the purpose of emptying out the pores of unbound 

fluorescently labeled probes. This step was taken as a precaution to ensure that the confocal 

microscope visualized only fluorescently labeled probes that were physisorbed to the membrane. 

Membranes were used just once and sacrificed to collect samples for confocal visualization.  

2.2.3 Calibration curve preparation 

A pressure of 380 kPa was used to filter solutions containing different masses of 

fluorescently labeled probes through pre-treated Dow Filmtec™ NF90 membranes. Post 

filtration, the samples were collected for confocal microscopy visualization. Confocal lateral XY 

scans were performed on the surface of NF90 membranes to determine the average intensity and 

relate it to the mass per area of fluorescently labeled probe retained on the surface. This 

information was used to generate calibration plots as average intensity versus mass per area of 

fluorescently labeled probe retained on the surface. We followed a procedure described by 

Marroquin et al. 13 to mount the NF90 calibration curve membranes for lateral XY CLSM 

imaging.   
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2.2.4 Sectioning and mounting of samples for cross-sectional CLSM imaging 

Cross-sections of the membranes used in the filtration experiments were obtained and 

prepared for confocal imaging following the procedure described by Marroquin et al. 13. Figure 

2.1 is a schematic for the sectioning process to access the sample cross-sections.  

2.2.5 Optical system and imaging 

A Nikon Eclipse Ti confocal laser scanning microscope system was used in fluorescence 

mode with a Nikon 60X oil immersion objective with a numerical aperture of 1.49. This CLSM 

system was used to visualize fluorescently labeled probes bound throughout the entire thickness 

of the PES membranes or on the surface of the NF90 membranes. Images were stored as 12-bit 

scan with a resolution of 512 × 512 pixels, which represented an area of 212 × 212 micron. The 

excitation light source was a helium-neon laser (594 nm excitation wavelength for Alexa Fluor® 

594 and 488 nm wavelength for FITC). Each image is the result of averaging the 

signal/information collected from four scans, which reduces noise, producing better resolved 

images. 

2.2.6 Image analysis 

Images collected by the confocal microscope were processed using NIS-Elements 3.2 

Software Package.  

2.2.7 Dynamic Light Scattering (DLS) measurements 

DLS measurements were conducted using a Malvern Zetasizer Nano ZS instrument 

(Malvern Instruments Ltd., Malvern, UK) at a wavelength of 633 nm from a 4.0 mW, solid-state 

He-Ne laser at a scattering angle of 170°. Intensity average, volume average, and number 

average diameters were calculated from the autocorrelation function using Malvern Zetasizer 

Nano 5.1 software utilizing a version of the CONTIN algorithm.  
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Figure 2.1: Schematic for sample sectioning and cross-sectional CLSM images 

 

2.3 Results and discussion 

2.3.1 Flux measurements 

Flux experiments were done with casein, dextran, and casein-dextran mixtures and the 

asymmetric PES membrane. Figure 2.2 shows direct-flow flux data for solutions of the 

individual components, as well as data for the casein-dextran mixture.  It was observed that the 

mixed feed (casein and dextran) showed a less severe flux decline than dextran alone. One 

difference between these two solutions is that the concentration of dextran in the mixed solution 

was lower than the concentration in the single component solution (12.5 mg/L versus 25 mg/L). 

To determine if the difference in fouling behavior was due to a difference in dextran 

concentration, we prepared a dextran solution at 12.5 mg/L and measured the flux versus 

permeate volume for this single component solution. As shown in Figure 2.2, even at this lower 

concentration, the dextran solution yielded a more severe flux decline than the mixture.  To 
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understand what might be the cause of this difference, we carried out DLS measurements of the 

solutions. Figure 2.3 shows the DLS data for casein and casein-dextran feed solutions. The 

apparent size of 215 nm and broad peak size for the casein feed are consistent with the findings 

of Gebhardt et al. 20 and indicate the presence of casein micelles. Figure 2.3 also shows the size 

distribution of the micelles after addition of dextran to the solution. The apparent size of the 

micelles increases to 290 nm after addition of dextran. We hypothesized that the increase in size 

after dextran addition may be due to some form of association between the casein micelles and 

dextran. Association of the dextran with casein may be the reason that the casein-dextran mixture 

is less fouling than dextran alone.  
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Figure 2.2: Permeate flux evolution for casein (25 mg/L) single component (●), dextran (25 
mg/L) single component (○), casein-dextran binary component (12.5 mg/L each) (▼), dextran 
(12.5 mg/L) single component (Δ). 
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Figure 2.3: DLS data for 12.5 mg/L casein single component solution (TOP) and a 50:50 (w/w) 
mixture of casein and dextran at 25 mg/L (BOTTOM). 
 

 2.3.2 Sample preparation for CLSM imaging 

Samples were collected at 5, 10, and 15% flux decline and they were prepared for cross-

sectional CLSM imaging according to the protocol followed by Marroquin et al. 13. During 

sample preparation, it was necessary to flush the pores to remove unbound fluorescent probe 

molecules, and also it was necessary to remove the embedding medium used for cross-sectioning 

by immersing the sample in phosphate buffered saline for 20 minutes at 35 °C. Control 

experiments were done to verify that sample preparation removed unbound probe and did not 

lead to foulant migration or leaching and a change of the bound probe intensity profile. In the 

first experiment, a membrane was challenged with 500 mL of 25mg/L casein-FITC/casein (1:20) 

in buffer solution and then rinsed twice to remove fluid in the pores. The second rinse solution 

was analyzed, and there was no detected fluorescence. In a second experiment, membranes were 

loaded with 12.5 mg/L of dextran (10kDa)- dextran (9-11 kDa)-Alexa Fluor® 594 (1:20) until 

the flux declined by 15%. Three samples were prepared for cross-sectional CLSM using our 

standard protocol. Sample 1 was washed once, sample 2 was washed twice, and sample 3 was 
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washed three times with PBS buffer for 20 minutes at 35 °C. Figure 2.4 gives the CLSM images 

of the three samples. Intensity measurements showed that, within the standard error, the degree 

of washing has no measureable effect on CLSM image intensity (Figure 2.5), consistent with the 

first control experiment.  

 

Figure 2.4: Cross-sectional CLSM images of dextran-Alexa Fluor® 594 binding within an 
asymmetric 0.65 μm PES membrane at a depth of 4 μm. Images are for samples taken after 15% 
flux decline. The dense surface of the membrane is on the left of all images. Images are for 
samples washed once (LEFT), twice (MIDDLE), and  thrice (RIGHT). The scale indicator is 10 
μm in diameter 
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Figure 2.5: Intensity profile for CLSM images presented in figure 2.4. Profiles are for samples 
washed once (●), twice (○), and thrice (▼). 
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2.3.3 Determining the location of foulants by CLSM: single and binary component 

solutions 

Using cross-sectional CLSM imaging, we were able to image foulant at all depths within 

the membrane structure, overcoming previous depth of penetration limitations for such studies 13. 

Figures 2.6−8 show the cross-sectional CLSM images (at a depth of 4 μm) of the asymmetric 

0.65 μm PES membranes that processed single and binary component solutions of casein and 

dextran. We imaged just below the surface to avoid concerns about surface defects caused by 

sample preparation.  

Figure 2.6 shows the fouling profile within membranes after filtering a casein solution. 

Protein accumulates throughout the membrane structure and is not concentrated at the feed 

surface (right side of each image). The intensity of the green color (emission by FITC) increases 

towards the dense surface, demonstrating that the membrane acts as a depth filter. Fouling of the 

PES membranes by casein is due to hydrophobic interactions between the protein and the 

membrane material as other authors have stated 10, 21, 22.  

Figure 2.7 shows the fouling profile of dextran at different degrees of fouling. In this 

case, we observed some accumulation of dextran at the feed surface, consistent with the more 

severe flux decline in this system (see Figure 2.2). PES fouling by dextran at static and dynamic 

conditions has been reported by Susanto et al. 10, 23. They propose that attractive forces between 

dextran and PES are due to van der Waals interactions and hydrogen bonding between hydroxyl 

groups of dextran (donor) and the oxygen atoms in the SO2 group of PES (acceptor). It also is 

proposed that the displacement of water molecules from the hydrophobic surface by the 

adsorbing polysaccharide results increases system entropy, favoring the adsorption process. 

According to Mochizuki et al. 24, under some conditions dextran can deposit on the surface of the 
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membrane and form a ‘gel layer’. In this study, it is believed that interactions between dextran 

and the PES membrane might be causing pore narrowing on the surface facing the feed. The 

significant flux decline shown in Figure 2.2 is counter-intuitive since the hydrodynamic radius of 

dextran (10 kDa) is approximately 2.2-3.6 nm 25. Another explanation for this unexpected flux 

decline behavior may be related to the findings that neutral polysaccharides (like dextran) have a 

low solubility due to the presence of a large number of hydrogen bonds that stabilize intra- and 

inter-chain interactions 26, 27. Thus, the severe flux decline observed for the dextran solution 

might be due to dextran aggregates that are not well solubilized in solution. Indeed, when high 

intensity sonication was applied to the dextran stock solution, the solution was less fouling (data 

shown in Supplementary Materials) compared to the results presented in Figure 2.2.  

Figure 2.8 presents the CLSM cross-sectional images that show where casein and dextran 

deposit within the PES membranes post-filtration of the casein-dextran mixture. Shown are the 

fouling profiles for casein and dextran individually, as well as the overlaid profiles. Interestingly, 

there appears to be no accumulation of dextran at the feed surface when casein also is present in 

the feed. Also, the fouling profiles follow the same trend; the color intensity increases toward the 

dense layer. The CLSM images agree with the flux decline data, which show that the mixed feed 

has a less severe flux decline than dextran alone. It is apparent that the presence of casein in 

solution is changing the fouling behavior of dextran. Interactions between dextran (molecular 

weight 10 kDa) and a protein (myoglobin) were observed by Susanto et al. 28. They observed 

higher degrees of fouling in dextran-myoglobin mixtures compared to the single solute feeds and 

explained this behavior is a possible interpenetration of both biopolymers to form a network 

structure stabilized by multiple hydrogen bonds. According to the work by Dickinson 29, 

polysaccharides and proteins are capable of interacting favorably through hydrogen bonding or 
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electrostatic interactions. Also, weak complexation between proteins and neutral polysaccharides 

can occur due to secondary, non-Coulombic interactions at low ionic strength conditions 30. To 

gain a better understanding of the effect of pH and ionic strength on the interactions occurring 

between casein and dextran, additional flux measurements were done for the binary mixture at 

two ionic strength conditions (0.125 and 0.25) and three pH values (7, 6.25 and 5.5). The flux 

profiles showed no change over the range of pH and ionic strength that was studied, suggesting 

that electrostatic interactions between casein and dextran are not predominant at the conditions 

tested (see Supplementary Materials for the full set of flux data for all conditions studied).  

Motivated by the observations that dextran (used in some medical applications to lower 

blood viscosity and to prevent platelet aggregation) is capable of coating platelets, red and white 

cells, Ponder et al. 31 found, through electrophoretic methods, that a complex between the protein 

albumin and dextran was formed and that this complex comprises one molecule of albumin for 

every four dextran molecules. Based on the results of that study, together with the flux and DLS 

data and CLSM imaging, we hypothesized that the co-localization of casein and dextran shown 

in Figure 2.8 is due to association between casein and dextran, and that this association helps to 

solubilize/disperse dextran and prevent its accumulation at the membrane feed surface. The 

observed increase in the apparent casein micelle size given by the DLS measurements supports 

our hypothesis about the association between casein micelles and dextran, likely due to van der 

Waals and hydrogen bonding interactions.  

Fluorescence resonance energy transfer (FRET) and immunoassay experiments were 

done to further support our hypothesis that a complex forms between casein and dextran. Details 

on these experiments are available in Supplementary Materials. Results for both experiments 

were inconclusive. FRET was not observed, likely due to low extent of labeling by FITC and 
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TRITC on casein and dextran, respectively. To observe FRET, the distance between the donor 

(FITC) and the acceptor (TRITC) should be 2-7 nm 32. Even if there is a complex formed 

between casein and dextran, FRET will not be observed if the distance between their fluorescent 

tags is too long. With a low extent of labeling on these macromolecules, the distance between 

FITC and TRITC may be greater than 7 nm within the complex. The immunoassay experiments 

showed that dextran tends to adsorb to immunoassay beads that have casein bound on their 

surface. However, binding was not specific to casein. Dextran also bound to the base 

immunoassay beads containing sheep anti-rabbit IgG. Since the manufacturer of the beads does 

not supply plain beads (with no sheep anti-rabbit IgG covalently bound to the surface), we 

cannot conclude that the adsorption of dextran to the beads depends on the presence of a protein 

such as casein.  

2.3.4 Image analysis and quantification of foulants 

Cross-sectional CLSM images presented in Figures 2.6−8 give qualitative information 

about the fouling occurring within PES membranes by casein and dextran.  

 

Figure 2.6: Cross-sectional CLSM images of casein and casein-FITC binding within an 
asymmetric 0.65 μm PES membrane at a depth of 4 μm. Feed was 25 mg/L casein (1: 20 
fluorescent probe to non-tagged compound). The dense surface is on the LEFT of all images. 
Images are for samples taken after 5% flux decline (LEFT), 10% flux decline (MIDDLE), and 
15% flux decline (RIGHT). The scale indicator is 10 μm in diameter. 
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The quantitative intensity data for fluorescent probes covalently bound to casein and 

dextran (FITC and Alexa Fluor® 594, respectively) within the PES membranes at different 

degrees of fouling was obtained from Figures 2.6−8 by measuring the average color intensity at 

locations throughout the entire thickness of the cross-sections. Figure 2.9−12 show average color 

intensity versus depth plots for the cross-sectional CLSM images of the PES that processed 

solutions of casein/casein-FITC (Figure 2.9), dextran/dextran-Alexa Fluor® 594 (Figure 2.10), 

and casein/casein-FITC/dextran/dextran-Alexa Fluor® 594 (Figures 2.11 and 2.12) at three 

levels of fouling (5, 10, and 15% flux decline). 

 

Figure 2.7: Cross-sectional CLSM images of dextran and dextran-Alexa Fluor® 594 binding 
within an asymmetric 0.65 μm PES membrane at a depth of 4 μm. Feed was 25 mg/L dextran 
(1:20 fluorescent probe to non-tagged compound). The dense surface is on the LEFT of all 
images. Images are for samples taken after 5% flux decline (LEFT), 10% flux decline 
(MIDDLE), and 15% flux decline (RIGHT). The scale indicator is 10 μm in diameter. 
  

Figure 2.9, for the fouling profile of casein single-component solution shows that the 

average intensity increases with depth and also with degree of fouling. Since the FITC is bound 

covalently to casein, the intensity of the green color is proportional to the mass of casein. The 

intensity profile shows that the membrane behaves like a depth filter, where the maximum 

adsorption occurs near the dense surface. Figure 2.10 for the fouling profile of dextran single-

component solution shows that, at 5% and 10% flux decline, the intensity is higher near the 
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surface facing the feed and then it plateaus. At 15% flux decline, the intensity profile presents a 

“U” shape where the intensity near the surface facing the feed and the dense surface (permeate 

side) have the highest values. It was explained in section 3.3 that dextran aggregates may have 

accumulated on the membrane surface leading to high intensity values close to the surface facing 

the feed.  

 

 

 

Figure 2.8: Cross-sectional CLSM images of a 50:50 (w/w) casein-dextran mixture binding 
within an asymmetric 0.65 μm PES membrane at a depth of 4 μm. Feed was 25 mg/L (1:20 
fluorescent probe to non-tagged compound). The dense surface is on the LEFT of all images. 
TOP row images are for samples taken after 5% flux decline: casein (LEFT), dextran 
(MIDDLE), superimposed image of casein and dextran (RIGHT). SECOND row images are for 
samples taken after 10% flux decline. BOTTOM row images are for samples taken after 15% 
flux decline. The scale indicator is 10 μm in diameter. 
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The intensity profiles for samples that filtered the casein-dextran mixture, Figures 2.11 

and 12, show that mass of protein and polysaccharide both increase with depth and with degree 

of fouling. The CLSM images and intensity profiles show that dextran no longer accumulates 

near the top surface. It was explained in section 3.3 that the presence of casein and its 

interactions with dextran are the reasons why dextran no longer accumulates at the feed surface.   
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Figure 2.9: Intensity profiles for the cross-sectional CLSM images of casein-FITC binding 
(Figure 2.6) within an asymmetric 0.65 μm PES membrane at a depth of 4 μm, after filtering a 
single-component solution. Profiles are for samples taken after 5% flux decline (●), 10% flux 
decline (○), and 15% flux decline (▼). 
 

The intensity values for casein within membranes that filtered casein-dextran mixtures 

are roughly 2-3 times higher than the respective intensity profiles for membranes that filtered 

single-component casein solutions. In contrast, the intensity values of dextran show about a 30% 

decrease for membranes that processed the binary mixture compared to those that processed the 

single-component dextran solution. This behavior can be explained by the association between 
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casein and dextran, which increases the casein micelle size (Figure 2.2) and improves the 

solubility of dextran. The increase in micelle size leads to a higher sieving coefficient for casein 

within the membrane structure. The improved solubility of dextran lessens the degree to which it 

adsorbs to the membrane surface. 
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Figure 2.10: Intensity profiles for the cross-sectional CLSM images of dextran-Alexa Fluor® 
594 binding (Figure 2.7) within an asymmetric 0.65 μm PES membrane at a depth of 4 μm, after 
filtering a single-component solution. Profiles are for samples taken after 5% flux decline (●), 
10% flux decline (○), and 15% flux decline (▼). 
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Figure 2.11: Intensity profiles for the cross-sectional CLSM images of casein-FITC binding 
(Figure 2.8) within an asymmetric 0.65 μm PES membrane at a depth of 4 μm, after filtering a 
binary component (casein-dextran) solution. Profiles are for samples taken after 5% flux decline 
(●), 10% flux decline (○), and 15% flux decline (▼). 

 

Intensity is a measure of the mass of protein or polysaccharide deposited at different 

depths within the membrane. It is directly proportional to the mass of labeled protein or 

polysaccharide. We developed calibration curves that relate intensity to the mass of fluorescent 

probe per membrane area for casein-FITC and dextran-Alexa Fluor® 594 by filtering known 

masses of fluorescently labeled casein (and separately dextran) through Dow NF90 ultrafiltration 

membranes that reject the protein and polysaccharide completely. The small pore size of the 

membrane compared to the hydrodynamic size of the protein (or dextran) allowed us to retain it 

all on the membrane surface. CLSM images of the NF90 membrane surfaces were obtained at 

the same optical conditions used to obtain the CLSM images of the PES membranes at different  
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Figure 2.12: Intensity profiles for the cross-sectional CLSM images of dextran-Alexa Fluor® 
594 binding (Figure 2.9) within an asymmetric 0.65 μm PES membrane at a depth of 4 μm, after 
filtering a binary component (casein-dextran) solution. Profiles are for samples taken after 5% 
flux decline (●), 10% flux decline (○), and 15% flux decline (▼). 

 

degrees of fouling. The calibration curves (included in Supplementary Materials) for casein and 

dextran were prepared by measuring the mean intensity of the fluorescently labeled protein or 

polysaccharide deposited on the surface of the NF90 membrane and plotting it versus the 

quotient of the known mass of fluorescent labeled protein or polysaccharide and the effective 

filtration area of the membrane. By knowing the ratio of fluorescently labeled to non-labeled 

protein or polysaccharide (1:20), we estimated the mass/area of casein and/or dextran at different 

depths from the intensity profiles presented in Figures 2.9−12.  Results are presented on 

secondary y-axes of Figures 2.9−12 for the areal mass of casein and dextran found at different 
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depth for PES membranes that filtered single component casein and dextran solutions and binary 

component casein-dextran solutions. Values also are tabulated in Supplementary Materials.  

2.3.5 Fouling mechanisms  

Filtration data were analyzed with the Hermia model for constant pressure filtrations 

(Equation 1) to obtain more information about the fouling mechanisms. A more detailed 

discussion of the underlying assumptions and mathematical development of equation 1 was 

provided by Hermia 33. 

∂2t
∂V2

= k �∂t
∂V
�
n
           (1) 

In equation 1, t and V are the filtration time (s) and cumulative permeate volume (m3), 

respectively. ∂t/∂V is the reciprocal of the permeate flow rate; ∂2t/∂V2 is defined as the resistance 

coefficient or the rate of change of the instantaneous resistance to filtration with respect to 

permeate volume; and k and n are two model parameters, where n depends on the fouling model 

or mechanism (n = 0 for cake filtration, n = 1 for intermediate blocking, n = 2 for complete 

blocking, and n = 1.5 for standard blocking). Plotting on a logarithmic scale ∂2t/∂V2 versus ∂t/∂V 

should give a straight line with slope equal to the n parameter 34.  

Filtration data presented in Figure 2.2 were analyzed with the Hermia model (equation 1) 

and the n parameter from equation 1 was obtained for each case. For single-component solutions 

of casein and dextran, steep slopes (n>2) were observed in early stages of filtration, and the slope 

values decreased throughout the filtration. This phenomenon has been observed by other 

researchers, and it has been attributed to the fact that particle deposition is unable to block or seal 

pores since fluid can flow under and around any blocked surface when there is a highly 

interconnected membrane pore structure 35, 36. Thus, the Hermia model, which does not account 

for interconnected pores, fails to describe fouling behavior during the early stages of filtration of 
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casein and dextran single-component solutions. Half way through the filtration of single-

component solutions of dextran, the slope value converged to n=1, indicating an intermediate 

pore blocking fouling mechanism, where dextran aggregates partially block the pores on the 

surface of the PES membrane. Figure 2.7 supports this result, where we can visualize the 

deposition of dextran on the surface of the membrane partially blocking the pores. According to 

Starbard 9, soft (deformable) particles like carbohydrates typically plug a filter through a pore 

blockage model. For single-component solutions of casein, the slope values were greater than 2 

for the whole filtration data set, making it impossible to conclude by flux measurements alone 

what fouling mechanism dominates throughout the filtration experiment. In this case, CLSM 

images provide a visual description of how fouling occurs by depth filtration. 

For the binary mixture of casein and dextran, we obtained a slope value of n = 0.4 for the 

entire filtration data set. As mentioned earlier, a zero slope indicates that that the main fouling 

mechanism is cake filtration. One might be tempted to argue that a slope value of n=0.4 is close 

to zero and that cake filtration is the mechanism for fouling in this system. Cake filtration 

generally is interpreted as an accumulation layer formed at the surface of the membrane facing 

the feed. Yet, CLSM images in Figure 2.8 clearly show that the accumulation of foulants occurs 

on the dense side of the membrane. Then, based on the CLSM images presented in Figure 2.8, 

we can interpret the results from analysis of flux decline data using the Hermia model as ‘cake’ 

formation on the dense surface of the PES membrane opposite to the feed side of the membrane. 

According to Bhattacharyya and Butterfield 35, governing filtration equations have been derived 

for different values of the n parameter ranging between 0 and 2 (i.e. n=1/4, 1/3,1/2, 2/3, 5/4, 4/3); 

however, no physical interpretation has been provided for these model equations, It is important 

to note that fouling visualization by cross-sectional CLSM imaging can provide information that 
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can be used to give us this physical interpretation that is lacking in the model equation.  

 

2.4 Conclusions  

This research provides a methodology for direct visual observation of membrane fouling 

within a wet, asymmetric membrane structure. The application of a protocol developed 

previously by our research group for cross-sectional CLSM imaging allowed the location and 

quantification of protein and polysaccharide foulants within the full thickness of a PES 

asymmetric microfiltration membrane, something, to our knowledge, no one has reported 

previously. Flux experiments provided information on the fouling behavior of casein and dextran 

when they were alone in solution and when they were mixed. Cross-sectional CLSM images and 

calibration images provided quantitative information about the location and mass/area of the 

fluorescently labeled foulants throughout the wet membrane structure. Comparing quantitative 

analysis of the CLSM images with flux decline data analysis using the Hermia model allowed a 

better understanding about how fouling occurs. Also, information provided by CLSm inmaging 

can be used to infer the fouling mechanism(s) when fouling models that are based on assumed 

membrane structure, such as the Hermia model, do not apply, fail to provide physically 

meaningful information or do not lead us the right conclusion.  

Hydrophobic and hydrogen bonding interactions are believed to be responsible for casein 

and dextran adsorption onto the PES membrane material. The presence of casein in solution 

prevented surface fouling by dextran likely due to association between these components that 

facilitates dissolution and prevents aggregation of dextran in solution. This association between 

casein and dextran in the binary solution explains why the fouling profiles of both components 

are similar. The knowledge generated in this study is relevant to industry and membrane 
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manufacturers since proteins and polysaccharides are present in beverages and play a role in the 

fouling of membranes during microfiltration processes. The results from this investigation will 

enable future investigations on membrane fouling by multicomponent solutions and the 

elucidation of the roles that membrane structure and material of construction play on foulant 

deposition/accumulation on and within the membrane. Such knowledge may aid in the design of 

new membranes with tailored structure or surface chemistry that prevents the deposition of the 

foulants in “prone to foul” regions.    
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Chapter 3 

Evaluation of Fouling Mechanisms in Asymmetric Microfiltration Membranes Using 

Advanced Imaging2 

 

Summary 

This contribution details the use of advanced microscopy to study the fouling of asymmetric 

polyethersulfone membranes during the microfiltration of protein (casein), polyphenol (tannic 

acid), and polysaccharide (β-cyclodextrin) mixtures to better understand the solute-solute and 

solute-membrane interactions leading to fouling. Fluorescently labeled probes were used to 

visualize the fouling profiles of individual components within the wet membrane structure with 

confocal laser scanning microscopy (CLSM). Cross-sectional CLSM imaging provided 

information on the location and extent of fouling throughout the entire thickness of the PES 

membrane, overcoming the depth of penetration limit observed by researchers in previous 

studies. Quantitative analysis of the cross-sectional CLSM images provided a measurement of 

the masses of foulants deposited throughout the membrane. Moreover, flux decline data were 

collected for different mixtures of casein, tannic acid and β-cyclodextrin and were analyzed with 

standard fouling models to determine the fouling mechanisms at play when processing different 

combinations of foulants. Results from model analysis of flux data were compared with the 

quantitative visual analysis of the correspondent CLSM images. This approach, which couples 

visual and performance measurements, is expected to provide a better understanding of the 

causes of fouling that, in turn, is expected to aid in the design of new membranes with tailored 

                                                 
2 Marroquin, M., Vu, A., Bruce, T., Wickramasinghe, S. R., Zhao, L., Husson, S. M. Evaluation 
of fouling mechanisms in asymmetric microfiltration membranes using advanced imaging. 
Journal of Membrane Scicence, 465: 1-13 (2014) 
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structure or surface chemistries that prevent the deposition of the foulants in “prone to foul” 

regions. 

3.1 Introduction 

Microfiltration (MF) is a key process in the beverage industry that is used to remove bacteria, 

yeast, colloidal particles and even other filtration media such as diatomaceous earth, to ensure 

final product quality and/or consumer safety. For instance, in beer production, microfiltration is 

used to remove chill haze flocs and microorganisms that can spoil the final product 1. A major 

problem for MF membranes is fouling, which decreases service life and increases change-out 

costs compared to other filtration materials 2. In beverage processing, fouling of MF membranes 

occurs not only due to the presence of microorganisms or suspended particles, but also by the 

presence of low molecular weight components in solution. Furthermore, interactions among 

these components can exacerbate fouling of the membrane.  

Common constituents found in beer, wine, juices and tea are polyphenols, proteins and 

polysaccharides.  Polyphenols are responsible for the astringency sensation when drinking these 

beverages, which is believed to be caused by the precipitation of salivary proteins by 

polyphenols on oral surfaces, preventing palate lubrication and inducing the drying, puckering 

and roughing sensation in the buccal cavity 3. To some degree, astringency is perceived as a 

positive quality factor in certain beverages; for instance, it is one of the most important 

organoleptic sensations perceived when drinking wine or tea 3. In addition, polyphenols have 

antioxidant, antimutagenic and anticarcinogenic properties, among other health benefits 4,5.   

Polyphenols behave like cross-linkers between protein molecules, and the complexation 

between proteins and polyphenols in solution has been well documented 4, 6-9. It has been 

reported that polyphenols bind to proteins (especially to proline-rich proteins) and form soluble 
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or insoluble complexes through hydrogen bonding and hydrophobic interactions 10, 11. The 

protein-polyphenol interaction is affected by parameters that include ionic strength, pH, 

concentration ratio of polyphenol to protein, solvent composition, and the presence of certain 

components in solution like polysaccharides 12, 13.  

Polysaccharides are capable of disrupting the protein-polyphenol interaction possibly due to 

hydrophobic interactions and/or hydrogen bonding between oxygen atoms of the polysaccharide 

and the phenolic hydroxyl group of the polyphenols 3, 6, 10. An everyday example of the 

disruption of protein-polyphenol interactions by polysaccharides is the loss of astringency during 

the ripening process of many edible fruits because of the increase of soluble pectins during 

maturation 3, 14. There are two possible mechanisms by which polysaccharides disrupt 

interactions between proteins and polyphenols: (1) Polysaccharides form a ternary complex with 

proteins and polyphenols that enhances the solubility in solution. (2) There is a molecular 

association between polysaccharides and polyphenols that disrupts protein-polyphenol 

aggregation. It has been proposed that some polysaccharides, like xanthan gum and 

cyclodextrins, develop structures in solution that provide hydrophobic pockets to encapsulate 

polyphenols preventing further interaction with proteins 3, 6, 12, 14-16.     

The understanding of solute-solute and solute-membrane interactions that lead to fouling 

during the microfiltration of beverages is important to develop fouling mitigation strategies and 

decrease costs of processing. To characterize membrane fouling, techniques like electron 

microscopy (EM), atomic force microscopy (AFM) and confocal microscopy have been 

implemented to visualize foulant accumulation 12, 17-21. Confocal Laser Scanning Microscopy 

(CLSM) is a light microscopy technique that gradually has gained popularity in membrane 

studies, and it has been used by our group and others to characterize fouling (internal and 
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external) 12, 22-24, morphology 25-27, performance 28, 29 and surface chemistry 30. Price et al. 31 

provide a comprehensive overview of CLSM fundamentals. Briefly, CLSM in fluorescent mode 

focuses a laser on a plane at a selected depth within the sample. The laser excites the fluorescent 

molecules in the sample (present in the sample originally or added deliberately), and the emitted 

light is collected by the microscope detector to produce an image. By changing the position of 

the focal plane, it is possible to collect images of different depths within the sample (i.e., optical 

sectioning).  

Advantages that CLSM offers over EM and AFM are non-invasive depth imaging (optical 

sectioning), wet state imaging capability, and, by using fluorescently labeled probes, ability to 

locate and identify foulants within the sample. Several authors have identified a limit of depth of 

penetration (LDP) for CLSM 12, 26, 28, 32. Beyond the LDP, excitation and emitted light is lost 

significantly, which prevents the construction of images. The LDP is not the same for every 

sample or microscope; rather, it depends on parameters that include sample material, light 

wavelength, optical instrument, immersion-mounting media refractive index match, among 

others 26. To overcome LDP, we have developed a cross-sectional CLSM imaging protocol that 

produces defect-free images throughout the full thickness of membranes 26.  

The main goal of this study was to gain a better understanding of the solute-solute and solute-

membrane interactions and their impact on fouling of asymmetric microfiltration membranes. 

Flux data were collected for single-component and binary and ternary component mixtures of 

protein, polyphenol, and polysaccharide. Cross-sectional CLSM imaging was used for direct 

visual observation of the fouling profiles of fluorescently labeled protein (casein) and 

polysaccharide (β-cyclodextrin) within the membranes, as well as visualization of how these 

fouling profiles changed when a polyphenol (tannic acid) was present in solution. The mass of 
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foulants accumulated within the membrane was estimated based on the light emission intensity 

captured in the CLSM images using calibration curves developed in this study. Finally, flux data 

obtained in this study were analyzed using standard fouling models to determine the apparent 

mechanisms of fouling occurring within the PES membrane when processing different 

combinations of foulants. The consistency of these results was discussed based on the results of 

the quantitative and visual analysis of their correspondent CLSM images. 

The knowledge generated in this research is relevant to industry users of MF and membrane 

manufacturers. Our hope is that it will aid in the design of new membranes with tailored 

structure or surface chemistry that prevents the deposition of the foulants in “prone to foul” 

regions, as well as the development of improved cleaning procedures.  

3.2 Experimental materials and methods 

3.2.1 Materials  

Asymmetric polyethersulfone (PES) membranes (Pall Corporation) were used for filtration 

experiments. The Supor® PES membranes that were used have manufacturer reported effective 

pore diameter of 0.65 µm and thickness of 114–175 µm.  

Non-labeled compounds used in the filtration experiments were casein from bovine milk 

(Sigma Aldrich, C6554), β-cyclodextrin (Sigma Aldrich, C4767), tannic acid (Sigma Aldrich, 

403040), (+)-catechin hydrate (Sigma Aldrich, C1251), xanthan gum (Sigma Aldrich, G1253) 

and pectin (Sigma Aldrich, P9135). 

Fluorescently labeled probes used in filtration experiments were fluorescein isothiocyanate 

(FITC) labeled casein from bovine milk (Sigma-Aldrich, C-0403) and rhodamine B 

isothiocyanate (RITC) labeled β-cyclodextrin. RITC (Sigma Aldrich, 283924) was bound 

covalently to β-cyclodextrin by a slight modification of the method of Belder and Granath 33 in 
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which β-cyclodextrin was substituted for dextran and RITC for FITC. Briefly, pyridine (0.3 mL) 

(Sigma Aldrich, 360570), dibutyltin dilaurate (20 µL) (Sigma Aldrich, 291234) and β-

cyclodextrin (1 g) were added to anhydrous dimethyl sulfoxide (10 mL) (Sigma Aldrich, 

276855) in a screw-top scintillation vial, and the mixture was placed in a water bath at 95°C until 

β-cyclodextrin was dissolved completely. Then, RITC (100 mg) was added to the mixture and 

the vial was incubated at 95°C for 2 h with continuous magnetic stirring (250 rpm). At the end of 

the reaction, the mixture was divided evenly into three screw-top tubes, and 25 mL of ethanol 

(Sigma Aldrich, 459836) were added to each one. Precipitation of labeled β-cyclodextrin was 

observed after vortexing for 2 min, and the tubes were centrifuged at 8000 g for 10 min to 

separate precipitate from the supernatant containing free dye. The supernatant was collected and 

divided evenly into three tubes. Ethanol (25 mL) was added to each tube to precipitate remaining 

labeled β-cyclodextrin from solution, and then the tubes were centrifuged at the same conditions 

specified earlier. After discarding supernatant, the precipitated β-cyclodextrin was washed by 

resuspending in 10 mL of ethanol and centrifuging the tubes. Resuspension-centrifugation cycles 

were repeated (5-6 times) until no dye was visible in the supernatant. Finally, RITC-labeled β-

cyclodextrin was dried overnight at 45 °C.            

For filtration experiments, sodium phosphate buffered solutions were prepared using sodium 

phosphate monobasic (anhydrous, ≥99%, Sigma Aldrich, S0751), sodium phosphate dibasic 

(anhydrous, ≥99%, Sigma Aldrich, S9763), and deionized (DI) Milli-Q system (EMD Millipore) 

water.  

Dow Filmtec™ NF90 membranes were used to prepare the calibration plots of intensity 

versus areal protein or polysaccharide mass. Before using the NF90 membranes, they were pre-

treated according to the procedure explained in Marroquin et al. 24 to enhance the permeability of 
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the membranes while maintaining their rejection properties.  

3.2.2 Filtration experiments  

A direct-flow filtration cell, Amicon 8050 from EMD Millipore, was used at a constant 

pressure of 14.5 kPa. The Amicon 8050 cell has an effective filtration area of 13.4 cm2. 

Sodium phosphate buffer solutions were prepared with an ionic strength of 0.125 M and pH 

of 6.8. A stock solution of casein (25 g/L) was prepared by mixing the casein powder from 

bovine milk in a 0.04 M sodium hydroxide solution. Stirring was applied at 250 rpm for 4 h to 

facilitate the casein dissolution.  

Single, binary and ternary solutions containing protein, polyphenol and/or polysaccharide 

were prepared. The concentrations of the protein (casein) and polyphenol (tannic acid or 

catechin) were 25 mg/L and 150 mg/L, respectively, in phosphate buffer solution. Solutions 

containing polysaccharide were prepared with a final concentration of 200, 50 or 25 mg/L in 

phosphate buffer solution. These solutions were prepared by adding the appropriate volume of 

casein stock solution, mass of polysaccharide and/or mass of polyphenol to a volumetric flask 

and adding phosphate buffer to achieve the desired volume. The polysaccharide and polyphenol 

were sonicated in 20 mL of DI water before addition to the volumetric flask. To allow confocal 

visualization of the protein (casein) and polysaccharide, fluorescently labeled casein and 

polysaccharide were added to the solutions in a ratio of 1:20 fluorescently labeled to non-labeled 

component.  

PES membranes were pre-wetted before each filtration experiment by soaking them in a 25% 

(v/v) aqueous ethanol solution for 10 min. Then the membranes were soaked in DI water for 10 

min. Membranes were kept in DI water until use. Each filtration experiment was done at constant 

pressure until 1 L of permeate was collected. The membrane was positioned with the more open 
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surface facing the feed, and filtration was done in direct-flow mode with a constant stirring speed 

of 250 rpm.  Flux versus permeate volume data were recorded during each experiment.  

After filtration, 5 mL of a solution of non-labeled component(s) at the concentration(s) used 

in the filtration experiment was filtered to displace solution containing unbound fluorescently 

labeled compounds from the membrane pores. Using solutions of non-labeled component(s) at 

the same concentration(s) was done to minimize desorption of physisorbed components from the 

membrane. Membranes were used once and sacrificed to collect samples for confocal 

visualization.  

3.2.3 Calibration curve preparation 

The procedure described by Marroquin et al. 24 was used to develop the calibration curve 

relating fluorescence emission intensity to mass of fluorescently labeled polysaccharide per area. 

The corresponding calibration plot for casein-FITC was developed previously 24.    

3.2.4 Sectioning and mounting of samples for cross-sectional CLSM imaging 

Cross-sections of the membranes used in the filtration experiments were obtained and 

prepared for confocal imaging following the procedure described by Marroquin et al. 26.  

3.2.5 Optical system and imaging 

A Nikon Eclipse Ti confocal laser scanning microscope system was used in fluorescence 

mode with a Nikon 60X oil immersion objective with a numerical aperture of 1.49. This CLSM 

system was used to visualize fluorescently labeled probes bound throughout the entire thickness 

of the PES membranes or on the surface of the NF90 membranes. Images were stored as 12-bit 

scan with a resolution of 512 × 512 pixels, which represented an area of 212 × 212 micron. The 

excitation light source was a helium-neon laser (561 nm excitation wavelength for RITC and 488 

nm wavelength for FITC). Each image is the result of averaging the signal/information collected 
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from four scans, which reduces noise, producing better resolved images. 

3.2.6 Image analysis 

To compare information from CLSM images, special care was taken to keep the confocal 

microscope settings the same for each sample (laser intensity, gain, pinhole size, pixel dwell 

time, resolution, field zoom, averaging number) while imaging. Images collected by the confocal 

microscope were processed using NIS-Elements 3.2 Software Package.  

3.2.7 Dynamic Light Scattering (DLS) measurements 

DLS measurements were conducted using a Malvern Zetasizer Nano ZS instrument (Malvern 

Instruments Ltd., Malvern, UK) at a wavelength of 633 nm from a 4.0 mW, solid-state He-Ne 

laser at a scattering angle of 173°. Number average diameters were calculated from the 

autocorrelation function using Malvern Zetasizer Nano 7.01 software utilizing a version of the 

CONTIN algorithm.   

3.3 Results and discussion 

3.3.1 Selection of study system  

The first polyphenol tested in this study was (+)-catechin. We observed no significant fouling 

when filtering casein-catechin mixtures (data presented in Supplementary Materials). This 

observed result was counterintuitive based on the well-documented complexation (physical 

crosslinking) that occurs between polyphenols and proline-rich proteins such as casein 7, 8, 11, 13. 

Since complexation between proteins and polyphenols commonly results in larger aggregates in 

solution, we expected to observe a decline in the flux due to fouling by the newly formed 

aggregates.  According to Mateus et al. 16, the size of the polyphenol plays an important role in 

the crosslinking of proteins. Small polyphenols are not capable of crosslinking several proteins 

since the number of sites able to associate or interact with the proteins is proportional to the 
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molecular weight of the polyphenol 34. Shukla et al. 8 described in their studies that small 

polyphenols, like epigallocatechin gallate (main polyphenol in green tea), incorporate within 

casein micelles, increasing the density of the micelle without modifying its apparent size.  Since 

casein and epigallocatechin gallate both have low molecular weights (290 g/mol and 458 g/mol, 

respectively), we submit that catechin behaves similarly to epigallocatechin gallate and is 

incorporated within the casein micelles. Due to its small size, it not capable of associating with 

several proteins and forming aggregates large enough to significantly foul the MF membranes at 

the conditions and permeate volume collected during this study. Therefore, we adopted a 

polyphenol with higher molecular weight for our study system. We selected tannic acid (1,700 

g/mol), which can cross-link casein proteins and form aggregates without significantly fouling 

the membrane on its own.  

Anionic polysaccharides, like xanthan gum and pectin, have been reported to be effective in 

preventing the formation of insoluble aggregates between proteins and polyphenols 6. Initially, 

we tested xanthan gum and pectin as model polysaccharides for this study; however, the fouling 

was more severe when these polysaccharides were in solution with the protein and polyphenol 

and even when they were alone in solution (see Supplementary Materials). Interestingly, the flux 

declined faster when filtering the pectin ternary mixture (with casein and tannic acid) compared 

to the pectin single-component solution. This phenomenon is attributed to the tendency of pectin 

to form ternary complexes with proteins and polyphenols, as other researchers have reported 3. 

Single-component xanthan gum solution and its ternary mixture showed similar flux profiles. 

According to Freitas et al. 6, xanthan gum is believed to form gel-like networks in solution (by 

lateral association of ordered chain sequences) that might be able to encapsulate the polyphenols. 

While this gel-like network prevents polyphenols from interacting with proteins, it also increases 
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the fouling of the filtration membrane by plugging the pores at the membrane surface. Because 

the xanthan gum gel-like network is being retained at the surface of the membrane, single-

component and ternary mixtures of xanthan gum present similar flux profiles 16. Thus, we 

decided to test the lower molecular weight polysaccharide β-cyclodextrin, which, according to 

the literature, associates strongly with polyphenols 14. β -cyclodextrin is a cyclic (doughnut-

shape) oligosaccharide with hydrophilic residues on the exterior and a structural interior that is 

more hydrophobic than the exterior. Consequently, the mechanism that β-cyclodextrin follows to 

prevent the association of proteins and polyphenols is believed to be the encapsulation of the 

polyphenol in the hydrophobic pocket 3.  

3.3.2 Flux measurements 

Flux versus volume data were collected for casein, casein/tannic acid binary mixtures, and 

casein/tannic acid/β-cyclodextrin ternary mixtures. Figure 3.1 presents the set of data collected at 

constant pH (6.8) and ionic strength (0.125). It is observed that the mixture of casein (25 mg/L) 

and tannic acid (150 mg/L) shows a severe flux decline compared to the single component 

solutions of casein, tannic acid, and β-cyclodextrin, which do not foul the membrane 

significantly. This result suggests that protein aggregation is caused by the presence of tannic 

acid, and that these aggregates cause significant pore blockage.  
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Table 3.1: Concentration of protein, polyphenol and polysaccharide in the mixtures tested for 
flux versus volume experiments (pH 6.8, ionic strength 0.125 M) 
 

Mixture Component concentration (mg/L) 

Casein Tannic acid β-cyclodextrin 

Protein 25 0 0 
Polyphenol 0 150 0 
Polysaccharide 0 0 200 
Protein-polyphenol binary 25 150 0 
Protein-polyphenol-polysaccharide 25 150 200 
Protein-polyphenol-polysaccharide 25 150 50 
Protein-polyphenol-polysaccharide 25 150 25 
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Figure 3.1: Permeate flux evolution for casein (25 mg/L) single component (□), tannic acid 
(150 mg/L) single component (●), β-cyclodextrin (200 mg/L) single component (◊), casein-
tannic acid binary component (25 mg/L and 150 mg/L, respectively ) (▲), casein–tannic acid–β-
cyclodextrin (25 mg/L, 150 mg/L, 200 mg/L, respectively) ternary component (♦), casein–tannic 
acid–β-cyclodextrin (25 mg/L, 150 mg/L, 50 mg/L, respectively) ternary component (○), casein–
tannic acid–β-cyclodextrin (25 mg/L, 150 mg/L, 25 mg/L, respectively) ternary component (Δ). 
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To test for protein-polyphenol association, DLS data were collected for single component 

solutions of casein (25 mg/L) and tannic acid (150 mg/L) and for the casein-tannic acid binary 

mixture (25 mg/L and 150 mg/L, respectively). DLS results presented in Figure 3.2a show that 

the apparent diameter of the aggregates present in the casein solution are approximately 220 nm, 

which is an indication of the presence of casein micelles 35. Figure 3.2b shows that the majority 

of aggregates present in the tannic acid solution are approximately 5−6 nm in diameter. 

Unexpectedly, Figure 3.2c shows that the majority of aggregates in the casein-tannic acid 

mixture are 26 nm in diameter. Casein micelles are still present in solution, as seen in Figure 3.2d 

(size distribution based on intensity) and their size has increased from 220 nm to 241 nm. Figure 

3.2d also shows a small number of aggregates with a 5.4 µm size that probably are casein 

micelles that have been aggregated by tannic acid. The 241 nm and 5.4 µm aggregates are 

outnumbered by the new 26 nm aggregates and that is the reason why these peaks do not show 

up in the DLS size distribution based on number.  We submit that the abundant 26 nm aggregates 

in solution are responsible for the fouling of the MF membrane observed when filtering the 

casein-tannic acid mixture. Model-based analysis of the flux data (vide infra) suggest fouling by 

pore blocking.  

These nanosized clusters probably derive from the association of free casein in solution (in 

equilibrium with the casein micelle) and tannic acid 4. From these results we conclude that tannic 

acid is not large enough to effectively cause micelle-micelle aggregation (as  there were very few 

5.4 µm aggregates seen in Figures 3.2c and 3.2d), but it is capable of binding multiple free casein 

proteins in solution and form the observed 26 nm aggregates.  Also, the lack of a significant 

number of micelles at 220 nm in Figure 3.2c suggests that the tannic acid breaks up many of the 

casein micelles by forming more stable 26 nm clusters. As tannic acid scavenges free casein in 
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solution, a thermodynamic driving force exists for dissolution of the micelles into free protein. 

Put another way, tannic acid acts like a chemical pump to pull casein from the micelles and form 

a more thermodynamically stable, small association complex. 

 

 

Figure 3.2: DLS data for (a) casein (25 mg/L) single component, (b) tannic acid (150 mg/L) 
single component, (c) casein–tannic acid binary component (25 mg/L and 150 mg/L, 
respectively) and (d) casein–tannic acid binary component (25 mg/L and 150 mg/L, respectively) 
size distribution by intensity. 

 

Next, we tested the effect of the polysaccharide on the fouling behavior of a solution 

containing the protein and the polyphenol. The concentration of protein and polyphenol were 

kept constant, and the concentration of polysaccharide was varied. Three different molar ratios of 

polyphenol to polysaccharide were tested (1:2, 2:1, 4:1). Adding 50 mg/L β-cyclodextrin (ratio 

2:1 polyphenol to polysaccharide) to the mixture yielded some improvement to the flux 

compared to the protein-polyphenol system (Figure 3.1). Unexpectedly, a higher concentration of 

200 mg/L β-cyclodextrin (ratio 1:2 polyphenol to polysaccharide) yielded a more severe flux 

decline than for the system protein-polyphenol (i.e., there was no benefit to adding more 

polysaccharide). From these results, it is apparent that higher concentrations of β-cyclodextrin 

(a) (b) 

(c) (d) 
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(>50 mg/L) hinder the beneficial effect of the polysaccharide. Our explanation to this observed 

phenomenon is that at 200 mg/L ternary complexes might be formed among casein/tannic acid/β-

cyclodextrin. As mentioned in Section 3.1, there are two possible mechanisms by which the 

polysaccharide disrupts protein/polyphenol interactions: (1) by the association of polyphenols 

and polysaccharides (i.e. physical encapsulation) and (2) by the formation of a ternary complex 

(protein/polyphenol/polysaccharide). It appears that at 50 mg/L of β-cyclodextrin, mechanism (1) 

is most important; whereas, at the higher concentration β-cyclodextrin, mechanism (2) becomes 

important as more polyphenol is available to form these ternary complexes. A concentration of 

25 mg/L of β-cyclodextrin (ratio 4:1 polyphenol to polysaccharide) showed a fouling behavior 

that was similar to the initial mixture with no polysaccharide present in solution. This result may 

be attributed to the low concentration of polysaccharide that is insufficient to effectively prevent 

the protein-polyphenol association.  

Based on the fouling behavior of the solutions tested in Figure 3.1, we found that the ‘sweet 

spot’ ratio (2:1) proved to be an appropriate concentration of polysaccharide to limit the protein-

polyphenol association in our system. These findings suggest that, when feasible, addition of 

aggregate disrupting sugars at low concentrations may be an effective approach to limit fouling 

during the microfiltration of beverages. DLS data obtained from the ternary mixtures was 

inconclusive regarding the mechanisms by which the polysaccharide at different concentrations 

disrupts protein/polyphenol interactions. Resolution of our DLS instrument was high enough to 

quantify the differences in aggregate size distributions corresponding to the aggregates formed at 

the different polysaccharide concentrations. 
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3.3.3 Cross-sectional CLSM imaging  

Flux measurements presented in section 3.2 provided indirect evidence for the cause of 

fouling. Thus, CLSM was used to visualize protein and polysaccharide binding within the wet 

membrane structures for the samples corresponding to the flux experiments presented in Figure 

3.1. As mentioned earlier, to allow confocal visualization of the protein (casein) and 

polysaccharide (β-cyclodextrin), fluorescently labeled casein-FITC and β-cyclodextrin-RITC 

were added to the solutions in a ratio of 1:20 fluorescently labeled to non-labeled component. In 

this section, the cross-sectional CLSM images are shown for three degrees of fouling 

(corresponding to membranes collected after processing 125, 250 and 500 mL permeate volume). 

All images correspond to the asymmetric 0.65 µm PES membranes used for the flux experiments 

in Figure 3.1. Using cross-sectional imaging 26, we were able to image all depths and overcome 

previous depth of penetration limitations for such studies. Images were taken at a depth of 4 μm 

below the cross-section surface to avoid concerns about surface defects caused by sample 

preparation.  

For membranes that processed casein single component solution, Figure 3.3 shows that 

protein accumulates throughout the membrane structure and is not concentrated at the feed 

surface. It appears that the membrane functions as a depth filter. Fouling of the PES membranes 

by casein is attributed to hydrophobic interactions between the protein and the membrane 

material, as other authors have stated 17.  
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Figure 3.3: Cross-sectional CLSM images of casein/casein–FITC binding within an asymmetric 
0.65 μm PES membrane measured 4 μm below the surface of the cross-section. Feed was 
25 mg/L casein (1:20 fluorescently labeled to non-labeled protein). The dense surface is on the 
LEFT of all images. Images are for samples taken after processing 125 mL permeate volume 
(LEFT), 250 mL permeate volume (MIDDLE), and 500 mL permeate volume (RIGHT). The 
scale indicator is 10 μm in diameter. 

 

The bright spots on Figure 3.3 are attributed to accumulation of protein aggregates in ‘blind 

pores’. To quantify the mass of casein observed in the CLSM images, we used a calibration 

curve developed in a previous publication that relates intensity to the mass of fluorescent dye per 

membrane area for casein-FITC 24. The left-hand ordinate in Figure 3.4 presents the average 

intensity versus depth corresponding to images in Figure 3.3, while the right-hand ordinate 

presents the mass of casein foulant per area obtained based on the calibration curve. Casein tends 

to accumulate more towards the dense side of the membrane, and the mass of casein within the 

membrane increases with increasing volume of permeate that is collected.  However, the 

apparent increases are not statistically significant based on measurement uncertainties at these 

low intensity values.  

Figure 3.5 shows the CLSM images of membranes post filtration of single component β-

cyclodextrin solutions. The adsorption of β-cyclodextrin to the PES membrane occurs through 

van der Waals interactions and hydrogen bonding between hydroxyl groups of dextran (donor) 

and the oxygen atoms in the SO2 group of PES (acceptor) 17, 36. To quantify the mass of 
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Figure 3.4: Intensity profiles for the cross-sectional CLSM images of casein/casein–FITC 
binding (Figure 3.3) within an asymmetric 0.65 μm PES membrane measured 4 μm below the 
surface of the cross-section, after filtering a single-component solution. Profiles are for samples 
taken after processing 125 mL permeate volume (●), 250 mL permeate volume (○), and 500 mL 
permeate volume (▼). Please note that the y-axis range in this figure is different from that used 
for mixed-component systems in Figure 3.8 and Figure 3.12. Error bars represent the standard 
deviation of the measurements. 

 

polysaccharide within the membrane, we developed a calibration curve for β-cyclodextrin-RITC 

to relate intensity captured in CLSM images to the mass of β-cyclodextrin-RITC per area 

(calibration curve is included in the Supplementary Materials). Consequently, by knowing the 

ratio of fluorescently labeled to non-labeled component, we can determine the mass of foulant 

within the membrane. The development of the β-cyclodextrin-RITC calibration curve was done 

following the procedure explained by Marroquin et al. 24. Figure 3.6 presents the average 

intensity versus depth and the mass of β-cyclodextrin per area at different depths within the 

membranes corresponding to images in Figure 3.5. A slight accumulation of the polysaccharide 
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is observed on the surface of the membrane facing the feed and also on the dense surface. 

Accumulation of β-cyclodextrin on the surface facing the feed is attributed to the presence of 

aggregates in solution. Interchain and intrachain interactions in neutral polysaccharides like β-

cyclodextrin are stabilized by a large number of hydrogen bonds, causing a relatively low 

solubility for this kind of polysaccharide 37. Accumulation of a neutral polysaccharide also was 

observed during the microfiltration of dextran solutions with PES asymmetric membranes (same 

membrane orientation) in a previous study 24.  

 

 

Figure 3.5: Cross-sectional CLSM images of β-cyclodextrin/β-cyclodextrin–RITC binding 
within an asymmetric 0.65 μm PES membrane measured 4 μm below the surface of the cross-
section. Feed was (a) 50 mg/L β-cyclodextrin (1:20 fluorescently labeled to non-labeled 
polysaccharide), and (b) 200 mg/L β-cyclodextrin (1:20). The dense surface is on the Left of all 
images. Images are for samples taken after processing 125 mL permeate volume (Left), 250 mL 
permeate volume (Middle), and 500 mL permeate volume (Right). The scale indicator is 10 μm 
in diameter. 
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Figure 3.6: Intensity profiles for the cross-sectional CLSM images of β-cyclodextrin/β-
cyclodextrin–RITC binding (Figure 3.5) within an asymmetric 0.65 μm PES membrane 
measured 4 μm below the surface of the cross-section, after filtering (a) 50 mg/L and (b) 
200 mg/L single-component solutions. Profiles are for samples taken after processing 125 mL 
permeate volume (●), 250 mL permeate volume (○), and 500 mL permeate volume (▼). Error 
bars represent the standard deviation of the measurements. 

 

Figure 3.7 shows the CLSM images of the PES membranes that processed the mixture of 

casein and tannic acid (25 and 150 mg/L respectively). The casein and tannic acid mixture 

significantly fouls the PES membrane compared to the minimal fouling observed during 

filtration of the casein and tannic acid single component solutions. We can explain this result 

based on the combination of solute-membrane interactions (i.e., hydrophobic adsorption of 

casein to PES membrane) and perhaps more significantly solute-solute interactions (i.e., casein 

and tannic acid association by hydrophobic interactions and hydrogen bonding) contributing to 

severe flux decline. After collecting 125 mL of permeate, protein accumulated mostly on the 

dense side of the membrane and the top surface facing the feed. After collecting 250 mL of 

permeate, protein fouling on the dense side of the membrane and the surface facing the feed has 

increased (perceived by a more intense green color in Figure 3.7). After collecting 500 mL of 
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permeate, protein fouling within the membrane has increased, and the highly fouled region close 

to the dense side of the membrane is thicker. Additionally, in Figure 3.7, we did not observe the 

bright spots seen in Figure 3.3. It appears that casein aggregates now are bound together by 

tannic acid and are retained by size-based sieving on the membrane surface facing the feed. 

Figure 3.8 shows the corresponding average intensity versus depth and the mass of casein per 

area at different depths within the membranes corresponding to Figure 3.7. The intensity of the 

green color is higher at the surface facing the feed compared to the bulk of the membrane and 

increases again towards the dense surface. The high intensity on the feed side denotes 

accumulation of protein aggregates caused by the presence of tannic acid.  

 

 

Figure 3.7: Cross-sectional CLSM images of casein/casein-FITC binding within an asymmetric 
0.65 μm PES membrane measured 4 μm below the surface of the cross-section. Feed comprised 
25 mg/L casein (1:20 fluorescently labeled to non-labeled protein) and 150 mg/L tannic acid. The 
dense surface is on the Left of all images. Images are for samples taken after processing 125 mL 
permeate volume (Left), 250 mL permeate volume (Middle), and 500 mL permeate volume 
(Right). The scale indicator is 10 μm in diameter. (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.) 
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Figure 3.8: Intensity profiles for the cross-sectional CLSM images of casein/casein–FITC 
binding (Figure 3.7) within an asymmetric 0.65 μm PES membrane measured 4 μm below the 
surface of the cross-section, after filtering a solution comprising 25 mg/L casein and 150 mg/L 
tannic acid. Profiles are for samples taken after processing 125 mL permeate volume (●), 250 mL 
permeate volume (○), and 500 mL permeate volume (▼). Error bars represent the standard 
deviation of the measurements 

 

Figure 3.9 shows the CLSM images of the PES membranes that processed the mixture of 

casein (25 mg/L), tannic acid (150 mg/L), and β-cyclodextrin (50 mg/L). After collecting 250 mL 

of permeate, little protein has accumulated on the surface facing the feed compared to the case of 

the casein-tannic acid binary mixture.  Only after 500 mL of permeate has been collected do we 

see significant accumulation of casein on the surface. It appears that 50 mg/L of β-cyclodextrin 

in solution is an appropriate amount of polysaccharide to minimize the aggregation of protein by 

polyphenol.   
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Figure 3.9: Cross-sectional CLSM images of casein/casein–FITC and β-cyclodextrin/β-
cyclodextrin–RITC binding within an asymmetric 0.65 μm PES membrane measured 4 μm 
below the surface of the cross-section. Feed comprised 25 mg/L casein (1:20 fluorescently 
labeled to non-labeled protein), 150 mg/L tannic acid, and 50 mg/L β-cyclodextrin (1:20 
fluorescently labeled to non-labeled polysaccharide). The dense surface is on the Left of all 
images. TOP row images are for samples taken after processing 125 mL permeate volume: casein 
(Left), β-cyclodextrin (Middle), superimposed image of casein and β-cyclodextrin (Right). 
Second row images are for samples taken after processing 250 mL permeate volume. Bottom 
row images are for samples taken after processing 500 mL permeate volume. The scale indicator 
is 10 μm in diameter. 
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Figure 3.10 shows the CLSM images of the PES membranes that processed the ternary 

mixture of casein (25 mg/L), tannic acid (150 mg/L), and β-cyclodextrin (200 mg/L). Shown are 

the individual and overlaid fouling profiles for casein and β-cyclodextrin at different levels of 

fouling. Our expectation was that a higher concentration of the polysaccharide would disrupt the 

interactions between casein and tannic acid more effectively than the 50 mg/L concentration of 

polysaccharide. Rather, higher levels of casein and β-cyclodextrin accumulated within the 

membrane when using the polysaccharide at a higher concentration. This result was consistent 

with the observed acceleration in flux decline, and may be attributed to the excess of β-

cyclodextrin (relative to what is needed to bind tannic acid), along with formation of a larger 

complex, that may be attributed to ternary casein-β-cyclodextrin-tannic acid aggregates. Thus, 

adding more polysaccharide to a casein-tannic acid mixture to disrupt their interactions is 

counterproductive.  

Figure 3.11 shows the CLSM images of the PES membranes that processed the mixture of 

casein (25 mg/L), tannic acid (150 mg/L), and β-cyclodextrin (25 mg/L). There is an increase in 

the color intensity compared to the previous case using 50 mg/L β-cyclodextrin, indicating a 

higher amount of casein-FITC and β-cyclodextrin-RITC within the membrane. Also, 

accumulation of casein on the membrane surface facing the feed is observed even at early stages 

of the filtration (125 mL permeate volume).  
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Figure 3.10: Cross-sectional CLSM images of casein/casein–FITC and β-cyclodextrin/β-
cyclodextrin–RITC binding within an asymmetric 0.65 μm PES membrane measured 4 μm 
below the surface of the cross-section. Feed comprised 25 mg/L casein (1:20 fluorescently 
labeled to non-labeled protein), 150 mg/L tannic acid, and 200 mg/L β-cyclodextrin (1:20 
fluorescently labeled to non-labeled polysaccharide). The dense surface is on the Left of all 
images. Top row images are for samples taken after processing 125 mL permeate volume: casein 
(Left), β-cyclodextrin (Middle), superimposed image of casein and β-cyclodextrin (Right). 
Second row images are for samples taken after processing 250 mL permeate volume. Bottom 
row images are for samples taken after processing 500 mL permeate volume. The scale indicator 
is 10 μm in diameter. 
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Figure 3.11: Cross-sectional CLSM images of casein/casein–FITC and β-cyclodextrin/β-
cyclodextrin–RITC binding within an asymmetric 0.65 μm PES membrane measured 4 μm 
below the surface of the cross-section. Feed comprised 25 mg/L casein (1:20 fluorescently 
labeled to non-labeled protein), 150 mg/L tannic acid, and 25 mg/L β-cyclodextrin (1:20 
fluorescently labeled to non-labeled polysaccharide). The dense surface is on the Left of all 
images. TOP row images are for samples taken after processing 125 mL permeate volume: casein 
(Left), β-cyclodextrin (Middle), superimposed image of casein and β-cyclodextrin (Right). 
Second row images are for samples taken after processing 250 mL permeate volume. Bottom 
row images are for samples taken after processing 500 mL permeate volume. The scale indicator 
is 10 μm in diameter. 
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From these observations, 25 mg/L of β-cyclodextrin (4:1 polyphenol/polysaccharide) in 

solution appears to be insufficient to sequester all or the majority of tannic acid in solution, and 

there is still significant protein-polyphenol aggregation. This conclusion is supported by DLS 

measurements, which show a large number of aggregates in the mixture containing 25 mg/L of β-

cyclodextrin that are larger in size than those present in the ternary mixture containing 50 mg/L 

polysaccharide. Also, there were more 26 nm aggregates present, which have been attributed to 

protein-polyphenol aggregates (Figure 3.2).  

Figure 3.12 shows the comparison of intensity and concentration profiles for Figure 3.9−11. 

As expected, the intensity and the mass of foulants within the membranes increase with permeate 

volume. Also, as expected from the flux data and visual inspection of the CLSM images, the 

lowest intensity and therefore mass of foulants corresponds to the case for 50 mg/L β-

cyclodextrin. In most cases, the intensity and mass of foulants were similar for 200 mg/L or 25 

mg/L of β-cyclodextrin in solution; although, in some cases, the intensity of the former was 

higher.  
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Figure 3.12: Intensity profiles for the cross-sectional CLSM images of casein/casein–FITC and 
β-cyclodextrin/β-cyclodextrin–RITC binding (figure 3.9, figure 3.10, and figure 3.11) within 
asymmetric 0.65 μm PES membranes measured 4 μm below the surface of the cross-section, 
after filtering these solutions: (○) 25 mg/L casein (1:20 fluorescently labeled to non-labeled 
protein), 150 mg/L tannic acid, 50 mg/L β-cyclodextrin (1:20 fluorescently labeled to non-
labeled polysaccharide); (●) 25 mg/L casein (1:20), 150 mg/L tannic acid, 25 mg/L β-
cyclodextrin (1:20); and (▼) 25 mg/L casein (1:20), 150 mg/L tannic acid, 200 mg/L β-
cyclodextrin (1:20). Top row images are fouling profiles corresponding to casein. Bottom row 
images are fouling profiles corresponding to β-cyclodextrin. Samples taken after processing 
125 mL permeate volume (Left), 250 mL (Middle), 500 mL (Right). Error bars represent the 
standard deviation of the measurements. 
 

3.3.4 Fouling mechanisms  

CLSM images presented in section 3.3 show us where the foulants tend to accumulate within 

the membrane and help us to better understand or justify the trends observed in the flux 

measurement results. It is also our interest to understand the fouling mechanisms that lead to the 

results observed in the CLSM images and flux plots. We begin by analyzing the flux data 

presented in Figure 3.1 with the Hermia model for constant pressure filtration (Equation 1). 
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∂2t
∂V2

= k �∂t
∂V
�
n
           (1) 

In Equation 1, t and V are the filtration time and cumulative permeate volume (m3), 

respectively. ∂t/∂V is the reciprocal of the permeate volumetric flow rate; ∂2t/∂V2 is defined as 

the resistance coefficient, or the rate of change of the instantaneous resistance to filtration with 

respect to permeate volume; and k and n are two model parameters, where n depends on the 

fouling model or mechanism (n = 0 for cake filtration, n = 1 for intermediate blocking, n = 2 for 

complete blocking, and n = 1.5 for standard blocking). For the detailed discussion of the 

underlying assumptions and mathematical development of Equation 1, please refer to the 

publication by Hermia 38. The fouling mechanism occurring during a filtration (n parameter) is 

obtained from the Hermia model equation by plotting on a logarithmic scale ∂2t/∂V2 versus 

∂t/∂V.  

By analyzing the flux data from Figure 3.1 with the Hermia model, we observed values for 

the n parameter greater than 2 (the maximum value for the Hermia model) during early stages of 

filtration of the binary and ternary mixtures (permeate volume less than 125 mL). Other 

researchers have observed n > 2 during studies on the fouling of microfiltration membranes with 

interconnected pores 19, 39. Based on these earlier studies, we attribute the steep initial slope in 

the log(∂2t/∂V2) versus log (∂t/∂V) plots to the fact that liquid can flow under and around any 

blocked pore due to highly interconnected pore structure of the PES membranes used in this 

study. Also, it was observed that the slope decreased throughout the course of the filtration, and, 

at the end of the experiment, the n parameter was close to 1 for casein/tannic acid, casein/tannic 

acid/β-cyclodextrin (200 mg/L) and casein/tannic acid/β-cyclodextrin (25 mg/L) mixtures, 

indicating intermediate pore blocking as the fouling mechanism. Towards the end of the filtration 

of the casein/tannic acid/β-cyclodextrin (50 mg/L) mixture, the n parameter was close to 1.5, 
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indicating that the mechanism of fouling is standard blocking. The results from the Hermia 

model analysis are coherent with the observations in CLSM image analysis and flux 

measurements. The 50 mg/L concentration of β-cyclodextrin (2:1 polyphenol to polysaccharide) 

in the casein-tannic acid mixtures is capable of decreasing or preventing the protein-polyphenol 

aggregation and thereby changing the fouling mechanism from intermediate pore blocking to 

standard pore blocking, where the smaller aggregates present in this mixture adsorb on the 

surface of the pore walls leading to pore constriction over time. While in the case of the binary 

casein-tannic acid mixture, the larger aggregates are capable of blocking the pores, consistent 

with the definition of intermediate blocking.              

3.4 Conclusions 

CLSM has proved to be a useful tool for visualizing the fouling within asymmetric 

membranes when filtering casein, tannic acid and β-cyclodextrin mixtures. By using our cross-

sectional CLSM imaging protocol, we have overcome the limit of depth of penetration and 

obtained quantitative information on the masses of protein and polysaccharide deposited 

throughout the entire thickness of asymmetric microfiltration membranes at different degrees of 

fouling.  

Evidence of association between the protein casein and the polyphenol tannic acid was 

obtained from flux and DLS data, as well as CLSM images. The effect of adding the 

polysaccharide β-cyclodextrin to the casein-tannic acid mixture was studied. Polysaccharides are 

known to disrupt protein-polyphenol interactions, and a 2:1 polyphenol to polysaccharide ratio 

was most effective for limiting flux decline associated with casein-tannic acid aggregates. Ratios 

below or above this ‘sweet spot’ were less effective at preventing severe, rapid flux decline. 

Information on the fouling mechanisms occurring during microfiltration was obtained by 
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analyzing flux data with the Hermia model, and it was found that, at the end of the filtration 

experiments, the dominant fouling mechanism was intermediate pore blocking for the cases 

where significant fouling was observed (casein/tannic acid, casein/tannic acid/β-cyclodextrin 200 

mg/L, and casein/tannic acid/β-cyclodextrin 25 mg/L); whereas, standard pore blocking was 

observed for the mixture containing a 2:1 polyphenol to polysaccharide ratio (casein/tannic 

acid/β-cyclodextrin 50 mg/L). The results from the Hermia model analysis are coherent with the 

qualitative and quantitative CLSM image analysis of the CLSM images.  

Lastly, CLSM allows the direct visualization, location and quantification of foulants 

(individually) within microfiltration membranes. Additionally, CLSM imaging of the fouled 

membranes, along with the flux decline plots and analysis of the flux data with fouling models, 

helps in the description and understanding of the root cause(s) of fouling.  Another advantage of 

using CLSM imaging in the study of MF membrane fouling is that it provides direct visual 

information on how individual foulants deposit within the membranes. This information can be 

used to infer the fouling mechanism(s) when fouling models that are based on assumed 

membrane structure, such as the Hermia model, do not apply or fail to provide physically 

meaningful information (e.g., during the early stages of filtration in this study).    
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Chapter 4 

Fouling of microfiltration membranes by biopolymers3 
 

Summary 

Suppression of fouling due to biopolymers of relevance to the brewing industry has been 

investigated.  The effects of three model biopolymers: casein (protein); catechin (polyphenol) 

and dextran (polysaccharide) on fouling of asymmetric 0.65 µm polyethersulfone membranes 

during direct-flow filtration have been studied. While dextran is successful in disrupting 

interactions between casein and catechin, the associated reduction in aggregate size does not 

always result in reduced fouling.  Solution conditions such as pH and ionic strength modulate the 

tendency of the aggregates to adsorb onto the membrane surface. Thus optimizing solution 

conditions to suppress adsorption of aggregates is essential for increasing the membrane 

filtration capacity. 

4.1 Introduction 

Microfiltration is frequently used commercially for removal of insoluble particulate matter in 

the size range 0.02–10 μm 1-3. In these applications, fouling negatively affects membrane 

performance, decreases filtration capacity, and shortens membrane life. Predicting the effect of 

fouling on membrane performance is complicated. The degree of fouling and its effects on 

performance depend on the interplay among three main groups of variables: membrane 

properties, feed properties and operating conditions. In earlier work using model feed streams 

consisting of single proteins (bovine serum albumin or hemoglobin), we showed the importance 

of the interplay among these groups of variables on the degree of flux decline 4. Direct-flow 

                                                 
3 Vu, A., Darvishmanesh, S., Marroquin, M., Husson, S. M., Wickramasinghe, S. R. Fouling of 
microfiltration membranes by biopolymers. Separation Science and Technology. 51(8), 1370-
1379, 2016. 
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filtration experiments were conducted using membranes with nominal pore diameters ranging 

from 0.45 to 0.6 µm. Even though the proteins were over an order of magnitude smaller than the 

nominal pore size of the membranes, significant flux decline was frequently observed. 

In this contribution, we focus on feed streams of relevance to the food and beverage industry, 

where microfiltration is used for water treatment and wine and beer clarification 5-7. Of particular 

interest is beer filtration, in which the feed stream is a complex mixture consisting of 

carbohydrates such as pentosans and β-glucans, proteins and polyphenols. Formation of protein-

polyphenol complexes (haze formation) is of particular importance as they are known to be 

responsible for membrane fouling 8.  

Tangential flow microfiltration has been investigated in the brewing industry since the 

1980s6. However unlike the dairy, fruit juice and wine industries, severe flux decline as well as 

protein and aroma retention have made commercial implementation much slower. Previous 

investigators 9, 10 have observed that when using 0.5 µm and 0.22 µm pore size membranes for 

solids removal, the permeate lacks dissolved species essential for bitterness, aroma and foam 

retention. Since the membrane pores are much larger than the dissolved species, rejection is due 

to membrane fouling. Blanpain-Avet et al. 11 investigated fouling of 0.22 µm polycarbonate 

membranes. They concluded that permeate flux decline occurred in two stages. Initially there 

was internal pore fouling followed by external surface fouling. Retention of soluble species 

depended on the degree of fouling. Initially there was little retention. During internal pore 

fouling they observed low but constant retention. Eventual formation of a gel layer on the 

membrane surface led to significant retention of dissolved species.  

Our earlier studies focused on location and quantification of biological foulants during 

microfiltration 12, 13. Model single-component feed streams consisting of protein (casein), 
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polyphenol (tannic acid) and polysaccharide (β-cyclodextran) were investigated. To study the 

effect of solute-solute interactions, feed streams consisting of a binary mixture of protein and 

polyphenol were investigated. In addition, ternary-component feed streams consisting of protein, 

polyphenol and polysaccharide were studied. The results indicated that for complex feed streams 

of relevance to the brewing industry, interactions among these different solute types have a 

significant effect on membrane fouling and consequently performance. In particular, association 

between the protein and polyphenol leads to the formation of large aggregates that contribute to 

significant flux decline and membrane fouling. Polysaccharides can disrupt the protein-

polyphenol interactions, limiting flux decline and increasing membrane filtration capacity. 

Here we extend this previous work by evaluating the roles of solution pH and ionic strength 

on flux decline in these systems. Our hypothesis was that changes in solute-solute interactions 

due to different feed conditions will lead to the formation of different sized aggregates and, 

hence, different rates and levels of flux decline. Single-component feed streams consisting of 

casein (protein), catechin (polyphenol) and dextran (polysaccharide); binary-component feed 

streams consisting of casein and catechin; as well as ternary-component feed streams consisting 

of casein, catechin and dextran were tested using an asymmetric 0.65 µm polyethersulfone 

membrane. Direct-flow filtration measurements were conducted over a range of pH values and 

ionic strength. By investigating model feed streams we have been able to conduct experiments 

under controlled conditions where we have eliminated the natural variability that arises from real 

feed streams. Our results highlight the importance of feed conditions on microfiltration 

performance for complex mixtures of biopolymers that are relevant to the beer industry.  
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4.2 Experimental materials and methods 

4.2.1 Chemicals 

Casein from bovine milk (Product code C6554), (+)-catechin hydrate (C1251) and dextran 

from Leuconostoc mesenteroides (MW 9-11kDa, D9260), were purchased from Sigma Aldrich 

(St. Louis, MO).  Table 4.1 gives further details of the three feed components. Phosphate buffer 

solutions were prepared using anhydrous dibasic sodium phosphate, >99% (71640) and 

anhydrous monobasic sodium phosphate, >98% (S3139) from Sigma Aldrich and deionized (DI) 

Milli-Q system (EMD Millipore, Billerica, MA) water. Buffer ionic strengths of 0.125 M and 

0.250 M were prepared at pH values of 5.50, 6.25 and 7.00.  

A stock solution of casein (2.5 mg/ml) was prepared by mixing the casein powder in a 

0.04 M sodium hydroxide solution (0583) purchased from VWR and stirring at 250 rpm for 4 h 

facilitated casein dissolution. A stock solution of (+)-catechin hydrate (25 mg/ml) was prepared 

by mixing the (+)-catechin hydrate powder in DI water for 1 h. A stock solution of dextran (25 

mg/ml) was prepared by mixing the dextran powder in DI water for 1 h. Single component 

casein, (+)-catechin and dextran solutions were prepared with a final concentration of 25 mg/L in 

phosphate buffer solution. Binary component solutions were prepared with a final concentration 

of 25 mg/L comprising 50:50 (w/w) protein–polyphenol in phosphate buffer solution. Ternary 

component solutions were prepared with a final concentration of 25 mg/L comprising 8.3 mg/mL 

of each component.  
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Table 4.1: Molecular structure of foulants used in this study along with important properties. 

Chemical 
name casein (+)-catechin dextran 

structure 

 

 

 
 
 

 

Molecular 
weight 22000-23000 g/mol 290.26 g/mol 9000-11000 g/mol 

comments IEP=4.6 pKa=8.64 
Branched dextran 
consisting of α-1,6 and 
α-1,3 linkages 

 
 

4.2.2 Membrane filtration 

Asymmetric polyethersulfone (PES) microfiltration membranes (Pall Corporation, NY) were 

used for the filtration experiments. The Supor® PES membranes had a thickness of 114–175 μm 

and nominal pore size of 0.65 μm. Membranes were pretreated before each measurement by 

soaking them in a 25 vol% aqueous ethanol solution for 30 min and then DI water for 30 min.  

An Amicon 8050 stirred cell from EMD Millipore was used for direct-flow filtration 

experiments. The more open side of the asymmetric membranes was placed towards the feed 

(opposite to conventional operation of these membranes). The effective membrane area was 

13.4 cm2. Filtration experiments were carried out at constant pressure of 14 kPa and a constant 

stirring speed of 250 rpm. The flux was recorded continuously as shown in Figure 4.1, and 

filtration was stopped after 400 mL of permeate solution had been collected.    
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Figure 4.1: Microfiltration set-up 

 
4.2.3 Scanning electron microscopy 

SEM was used to characterize the surface morphology of the membrane. The images were 

obtained using a FEI Nova Nanolab 200 Duo-Beam Workstation (Hillsboro, OR). Samples were 

coated with 10 nm layer of gold and scanned using a 15 kV electron beam.  In order to prevent 

collapse of pores, critical point drying was conducted.  The method involved soaking the samples 

sequentially in ethanol/water solutions containing increasing amounts of ethanol.  Finally the 

samples were soaked in absolute ethanol. Next, the samples were placed inside a high pressure 

stainless steel container. The container was flushed with supercritical CO2 at 37 °C and 8500 kPa 

(85 bar), 3–5 times in order to replace all the ethanol in the membrane pores. 

4.2.4 Dynamic light scattering measurements 

Dynamic light scattering (DLS) was conducted to determine the level of aggregation of 

dissolved component species in the feed streams using a DelsaNano HC particle analyzer 

instrument (Beckman Coulter, Miami , FL) with a solid-state He–Ne laser at a scattering angle of 

165°. Number average diameters were calculated from the autocorrelation function using Delsa 

Nano HC particle size analyzer from Beckman Coulter with Delsa Nano program version 3.73 of 

More open side up 

Membrane cross section 

Pressure supplied 
by nitrogen cylinder 

 
 
Pressure 
vessel 
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the CONTIN algorithm.  

4.3 Theory  

Constant-pressure filtration may be described in terms of four models: standard blocking, 

complete blocking, intermediate blocking and cake filtration 14, 15, 16. These blocking models are 

based on Darcy’s law;   

 𝐽 = 𝑄
𝐴

= 1
𝐴
𝑑𝑑
𝑑𝑑

= 1
𝐴

∆𝑃
𝜇(𝑅𝑚+𝑅𝑐)        (Eq. 1) 

where J is the permeate flux, Q the permeate flow rate, A the membrane surface area, V the 

filtrate volume, ∆P the pressure drop across the membrane, μ the viscosity of the feed stream, 

and Rm and Rc the resistance of the membrane and cake layer. If one assumes the flow through 

the membrane pores may be described by the Hagen Poiseuille law, then  

𝐽 =  𝑄
𝐴

= 𝑁𝑁𝑑4∆𝑃
128𝜇𝜇

         (Eq. 2) 

where N is the number of pores, d is the diameter and l the length of the pores. The four blocking 

models assume the membrane contains uniform straight pores that are perpendicular to the 

membrane surface. Table 4.2 summarizes the blocking models. All four models assume that the 

resistance to filtrate flow increases only with increasing filtrate volume. Hermia 15 defined a 

resistance coefficient, R, for constant pressure filtration as the rate of change of the instantaneous 

resistance to filtration with respect to the filtrate volume, which is given as the reciprocal of the 

filtrate flow rate. Thus, 

𝑅 = 𝑑
𝑑𝑑
�𝜇 𝑅𝑀+𝑅𝐶

∆𝑃
� = 𝜅 𝑑

𝑑𝑑
[𝑓(𝑄)]       (Eq. 3) 

where 𝜅 is a constant that includes µ and ∆P. The resistance depends on permeate volume and 

hence permeate flowrate. Hermia 15 indicates that all four blocking models can be written as 

𝑑2𝑑
𝑑𝑑2

= 𝛼 �𝑑𝑑
𝑑𝑑
�
𝛽

          (Eq. 4) 
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where α and β are constants.  

Table 4.2: Summary of four blocking models  

Model Assumptions β  value Pictorial representation 

Standard 
blocking 

Solutes decrease 
the pore diameter 
by depositing on 
the pore walls, 
number of pores 
per unit area 
remains constant. 
 

1.5 

 

Complete 
blocking 

Solutes completely 
block pores. 
 

2 

 
 

Intermediate 
blocking 

Solutes partially 
block pores with a 
certain probability. 

1 

 

Cake 
filtration 

Solute forms a 
cake layer on the 
membrane surface. 
 

0 

 
 

 
 
4.4 Results and discussion 

Figure 4.2 gives SEM images of the more open support surface, cross section and tighter barrier 

layer surface of the PES membrane. The nominal pore size of around 0.65 μm reported by the 

manufacturer corresponds to the barrier layer.  The cross-sectional image is oriented such that the 

barrier layer is at the bottom and the top of the image is the membrane support structure. The 

cross sectional image clearly indicates the asymmetric structure of the membrane. 



96 
 

 
a) support layer  
facing feed 
in this study 
magnification: 3500 X 

 
b) membrane cross-section  
magnification: 500 X 
 

 
c) barrier layer 
away from feed 
in this study 
magnification: 3500 X 

Figure 4.2: SEM image of PES membrane: a) support layer facing the feed in this study 
(magnification: 3500 X); b) membrane cross-section (magnification: 500 X); c) barrier layer 
facing away from the feed in this study (magnification: 3500 X) 
 

In our previous work 12, 13 we conducted constant-pressure, direct-flow filtration 

experiments with the more open membrane surface facing the feed stream and used confocal 

laser scanning microscopy to observe and quantify where biological foulants and their aggregates 

accumulated within the membrane structure. This orientation of the membrane is used in depth 

filtration applications to increase filtration capacity. Our aim here was to determine how different 

100µm 

10µm 

10µm 
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feed conditions affect aggregate formation and hence fouling while membrane properties and 

operating conditions are kept constant. Here we again use constant-pressure, direct-flow 

filtration with the more open side of the membrane facing the feed stream. Changes in solute-

solute interactions due to different feed conditions will lead to the formation of different sized 

aggregates. This in turn will lead to different rates and levels of flux decline. 

Figure 4.3 gives the variations of permeate flux with permeate volume for the various 

experimental conditions. Figures 4.3(a-c) give results at pH 5.50, 6.25 and 7.00 respectively for 

an ionic strength of 0.125 M. Figures 4.3(d-e) are analogous for an ionic strength of 0.250 M. 

Results are given for single-component casein, catechin and dextran feed streams, as well as 

mixtures of casein and catechin and casein, catechin and dextran.  

Figure 4.3 indicates that severe fouling occurs for casein feed streams. Change of pH or ionic 

strength has no significant effect on the degree of fouling. Thus, hydrophobic interactions appear 

to be more important than coulombic interactions under the study conditions. Casein contains a 

high number of proline residues and no disulfide bridges. As a result, it has relatively little 

tertiary structure and is relatively hydrophobic. Casein readily forms micelles in solution that are 

known to be highly fouling 17,18. Jimenez-Lopez et.al 19 studied microfiltration of skimmed milk 

at various ionic strengths to understand the formation of casein micelle deposits. They concluded 

that with increasing ionic strength, the global charge of the casein micelles is reduced, which 

lead to a decrease in repulsive interactions between micelles. Accordingly the hydrophobic 

interactions between micelles increased. As a result, the micelles can associate and adsorb onto 

hydrophobic membrane surfaces.  

 

http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Disulfide_bridge
http://en.wikipedia.org/wiki/Tertiary_structure
http://en.wikipedia.org/wiki/Hydrophobic
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Figure 4.3: Variation of permeate flux with permeate volume for experimental conditions tested. 
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Table 4.3 gives the number average size of particles in the casein feed streams at the two 

different ionic strengths and three pH values. In all cases the measured diameter is around 

210±20 nm indicating significant micelle formation in agreement with the 220 nm casein micelle 

size reported by Marroquin et al. 12. These aggregates in solution are known to foul the 

membrane due to hydrophobic interactions as we observed here12, 19. 

The flux data presented in Figure 4.3 for casein were analyzed by the Hermia model 20 

and the β values are given in Table 4.4. For all six feed conditions, the value of β is close to 2, 

indicating complete pore blocking (see Table 4.2). Further evidence of this fouling mechanism is 

provided by Marroquin et al. 12, 13. Using the same 0.65 µm PES membranes and fluorescently 

labeled casein, they studied casein deposition with confocal laser scanning microscopy. The 

more open side of the membrane was placed in contact with the feed stream as we do here. 

Deposition of casein micelles was observed to develop from the inside surface of the barrier 

layer of the membrane and then progress through the more open membrane support structure. 

Taken together these results indicate that given the predominance of hydrophobic interactions, 

suppression of these interactions and disrupting casein micelle formation will be essential to 

minimize fouling by casein containing feed streams. 

Figure 3 indicates that for catechin feed streams, pH and ionic strength affect the degree 

of flux decline and hence fouling observed. For the lower pH values, there is much more severe 

flux decline at higher ionic strength. However at pH 7, the degree of flux decline is independent 

of ionic strength. Table 4.3 indicates that the average size of the polyphenol aggregates is slightly 

smaller at higher ionic strength. This means that the differences in size-based sieving of catechin 

aggregates at different conditions (pH and ionic strength) alone cannot explain the differences in 

observed fouling. Thus fouling depends also on hydrophobic interactions and/or coulombic 
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interactions between the aggregates and the membrane.  

Table 4.3:  Particle size (nm) using dynamic light scattering for single- and multi-components 
solutions of casein, catechin, and dextran at different pH and ionic strengths.  Average values 
plus a three standard deviation range is given.  
 Ionic strength, 

M  
pH=5.50 pH=6.25 pH=7.00 

casein I=0.250  192 ±20 203 ±20 210 ±18 
I=0.125 197 ±19 211 ±22 226 ±24 

catechin I=0.250 160 ±20 129 ±18 118 ±16 
I=0.125 206 ±19 171 ±20 169 ±25 

dextran I=0.250 3 ±1 5 ±2 6 ±2 
I=0.125 4 ±1.5 3 ±2 5 ±2 

casein-
catechin 

I=0.250 126 ±17 151 ±17 140 ±17 
I=0.125 166 ±16 235 ±27 265 ±27 

casein-
catechin-
dextran 

I=0.250 65 ±11 34 ±13.6 41 ±12 
I=0.125 37 ±12 79 ±11 79 ±10 

 
Catechin is an amphipathic molecule, with hydrophobic aromatic rings and hydrophilic 

hydroxyl groups that can form hydrogen bonds. Increasing solution ionic strength will tend to 

promote hydrophobic interactions between hydrophobic regions of the catechin molecule and the 

membrane surface. Hu et al. 21 show the effect of hydrophobic and coulombic interactions on 

adsorption of dyes on negatively and positively charged resin. They conclude that the 

hydrophobic adsorption increases with increasing ionic strength while coulombic interaction 

decreases. Figure 4.3 tends to support this observation; greater flux decline occurs for the higher 

ionic strength feed streams. However for a high ionic strength feed stream at pH 7.00, a much 

lower flux decline is observed even though the size of the aggregates is similar to those at pH 

5.50 and 6.25 and high ionic strength (Table 4.3). 

Catechin has a pKa1 of 8.64. Thus at the lower pH values tested, catechin will be neutral. 

At pH 7, 2.2% of catechin molecules will be charged negatively. The PES membranes have been 

reported to have a negative zeta potential 22-24. Thus at all pH values investigated here the 

membrane will be negatively charged. Our results indicate that while hydrophobic interactions 

http://www.sciencedirect.com/science/article/pii/S1385894713006293
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are favored at higher ionic strength, the degree of fouling that occurs depends not just on 

hydrophobic interactions but also coulombic interactions. It appears that at pH 7, adsorption of 

catechin aggregates on the membrane surface is suppressed by the presence of a low percentage 

of negatively charged catechin molecules within the aggregates25.  

The results for catechin and casein indicate the importance of the interplay between 

hydrophobic and coulombic interactions. Table 4.3 indicates that based on the number average 

particle size, in the absence of attractive interactions (hydrophobic or coulombic) between the 

aggregates and the membrane, aggregates can pass through the membrane without causing 

severe fouling.  Further, the degree of fouling depends greatly on the strength of these 

interactions, as observed by the severe fouling by casein (strong hydrophobic interactions at all 

conditions) and pH/ionic strength dependent fouling by catechin (less hydrophobic). 

Figure 4.3 indicates that at low ionic strength dextran containing feed streams pass 

through the membrane pores relatively unhindered and little flux decline is observed. At high 

ionic strength, the same observation holds except at pH 5.50 where noticeable flux decline is 

observed during filtration. Table 4.3 indicates that little aggregation of dextran is observed. The 

branched dextran used here is not expected to aggregate.  

Dextran adsorption on PES membranes has been observed by others. Susanto et al. 26 

conducted experiments using porous and nonporous PES membranes and confirmed that dextran 

adsorbed to the PES surface. A similar result was observed by Marroquin et al. 12. Susanto et al. 

26 explained the PES-dextran interaction by considering multivalent hydrogen bonding between 

dextran and the membranes and water structure and reactivity at solid surfaces. Water is bound 

weakly to the hydrophobic PES surface and therefore can be replaced by dextran molecules in a 

process known as surface dehydration. For higher ionic strength solutions, surface dehydration is 
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more likely. Figure 4.3 indicates that at low pH when the membrane surface charge is lowest and 

at high ionic strength when surface dehydration is more likely, dextran adsorption onto the 

surface of the membrane occurs more substantially, leading to a decrease in permeate flux.  

However Table 4.4 indicates that even though greater flux decline was observed at low pH and 

high charge density, β values could not be calculated due to the low fouling by dextran under all 

conditions tested.   

Table 4.4: β values (see Equation 4) for the various experimental conditions tested. 
 Ionic strength, 

M 
pH=5.50 pH=6.25 pH=7.00 

casein I=0.250 2.04 1.94 2.05 
I=0.125 2.07 1.99 2.22 

catechin I=0.250 1.95 1.82 Not applicable* 
I=0.125 1.92 Not applicable Not applicable 

dextran I=0.250 Not applicable Not applicable Not applicable 
I=0.125 Not applicable Not applicable Not applicable 

casein-
catechin 

I=0.250 1.90 1.95 2.00 
I=0.125 2.00 1.85 2.10 

casein-
catechin-
dextran 

I=0.250 1.97 Not applicable Not applicable 
I=0.125 Not applicable Not applicable Not applicable 

*Not applicable due to minimal fouling 
 
 

Membrane fouling depends on (i) feed properties such as composition, pH, ionic strength, 

the concentration of the large and major components7, etc.; (ii) membrane properties like surface 

structure, morphology, porosity, pore size distribution, hydrophobicity and surface charge2; and 

(iii) system properties like temperature, operating mode (direct-flow; cross flow), module design 

(frame and plate, hollow fiber, spiral wound), and hydrodynamic conditions (e.g., cross flow 

velocity)2. Of course, membrane material properties, solute properties, and operating parameters 

can interact with each other and give rise to quite different effects in combination than if these 

factors were studied individually or with model systems.  

Any parameter that may influence the chemistry of the feed solution might change the 
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overall membrane performance and fouling phenomena. Understanding how solutes interact in 

solution or with the membrane can help to elucidate fouling mechanisms16. Introducing an 

additional compound to the feed solution that interferes with the interaction between existing 

species or with the membrane can affect the filtration performance by decreasing or increasing 

the rate and degree of fouling. For example, polyphenols may act as a cross-linking agent to bind 

protein molecules and form protein-polyphenol aggregates 27. The interaction between 

polyphenols and proteins to form insoluble complexes is widely acknowledged in the brewing 

industry 26.  

Marroquin12 studied the microfiltration of protein (casein) and polyphenol (tannic acid) 

individually as well as their combination. It was observed that by introducing polyphenol with 

large molecular weight to the protein solution the membrane flux declined, which was correlated 

with pore blocking due to aggregation. Dynamic light scattering measurements revealed that 

aggregates were formed with a diameter of 26 nm, smaller than the protein micelles (220 nm) 

and larger than the polyphenol (5-6 nm). They suggested that these nanosized clusters probably 

derive from the association of free casein in solution (in equilibrium with the casein micelle) and 

tannic acid. Tannic acid also appeared to break up many of the casein micelles by forming more 

stable 26 nm clusters. They concluded that the large abundance of the 26 nm aggregates was 

mainly responsible for fouling and flux decline in binary mixtures of casein-tannic acid.   

In our work with the binary mixture of casein-catechin, fouling was observed for all 

solution conditions. Table 4.4 reports the β values calculated for this set of measurements. Table 

4.3 reports the average size of the casein-catechin aggregates. Unlike the results reported by 

Marroquin et al. for the casein-tannic acid system, the average size of the aggregates in the 

casein-catechin system is similar to that observed for single-component solutions of catechin and 
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casein. In contrast to tannic acid, catechin is a low molecular weight polyphenol that is not able 

to be linked with several proteins 28. Thus addition of catechin to the casein solution changes the 

average aggregate size only slightly. A similar conclusion was achieved by Eagles et al. 9. They 

conducted experiments on a model feed solution of casein and catechin during microfiltration 

with a 0.2 μm cellulose nitrate membrane. They concluded that protein-polyphenol interactions 

are specific for each individual type of polyphenol and protein. Large polyphenols are able to 

crosslink several proteins, because the number of potential sites capable of interacting with the 

protein is higher. In general the number of sites is proportional to the molecular weight of 

polyphenols 29. Proteins may encircle low molecular weight polyphenols and consequently 

decrease the possibility of aggregate formation. These interactions might also be influenced by 

presence of other solutes like polysaccharides in solution 28, 30-32.  

Flux decline data for mixtures of casein and catechin display more complicated behavior. 

At pH 5.50 and 6.25 and low ionic strength, the rate of flux decline is intermediate to the single-

component solutions. It appears that protein-membrane interactions cause fouling in this case, 

and the lower concentration of protein (12.5 mg/L) relative to the single-component protein case 

(25 mg/L) leads to a lower rate of flux decline compared solutions of protein alone. At pH 5.50 

and 6.25 and high ionic strength, the rate of flux decline for the mixture is lower than either 

single-component solution. It appears that protein-polyphenol interactions are important here and 

that association through hydrophobic regions of the molecules leads to aggregates with surfaces 

that are more hydrophilic on average than the single-component systems. Finally, at pH 7.00 

protein-membrane interactions appear to be the primary cause of the flux decline. However, at 

this pH, there is no effect of ionic strength. Protein-polyphenol association appears to be 

suppressed by coulombic repulsion caused by the presence of a low percentage of negatively 
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charged catechin molecules within the aggregates, as discussed earlier. 

Addition of polysaccharides such as dextran to the solution might influence the aggregate 

formation through two mechanisms: (i) molecular association between polysaccharides and 

polyphenols can disrupt the binding between proteins and polyphenols; (ii) polysaccharides can 

form ternary complexes with proteins and polyphenols in solution. Addition of polysaccharides 

with suitable physicochemical characteristics to the solution can eliminate or decrease the 

amount of protein-polyphenols aggregation. Suitable polysaccharides must have right shape, size 

and flexible structure with specific ionic character, to form complexes with polyphenols 28, 33, 34. 

Polysaccharides may also form secondary structures in solution 35 that are able to encapsulate the 

polyphenols in hydrophobic micro/nanocapsules.  

Zator et al. 36 investigated the effect of polysaccharides addition on membrane fouling 

while keeping the concentrations of protein and polyphenol unchanged. Their system consisted 

of dextran (70 kDa) as the model polysaccharide, BSA as the model protein and tannic acid as 

the model polyphenol. Dextran was added at three different concentrations to the 

protein/polyphenol solution, corresponding to molar ratios of 1:2, 2:1, 4:1 

polyphenol/polysaccharide. These investigators observed that addition of the polyphenol to 

protein and protein polysaccharide feed streams significantly lowered the permeate flux 

irrespective of the polyphenol concentration. Dextran is known to have the weakest ability to 

disrupt BSA tannic acid interactions and can lead to increased aggregation due to adsorption of 

dextran into the BSA tannic acid complex.  33, 34.  In contrast, Marroquin et al. 12 observed a slight 

improvement in flux when adding β-cyclodextrin to casein-tannic acid solutions. They also 

found that a 2:1 polyphenol to polysaccharide ratio was most effective for limiting flux decline 

associated with casein-tannic acid aggregates. These prior results indicate that the effect of a 
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polysaccharide on a binary protein-polyphenol system depends on the specific components 

present. Furthermore, the mechanisms by which the polysaccharide disrupts protein-polyphenol 

interactions may depend on the solution composition. 

Figure 4.3 presents flux versus permeate volume data collected for ternary mixtures of 

casein-catechin-dextran. Fouling was decreased significantly by adding dextran for all tested 

conditions except for the experiment run at pH 5.50 and solution ionic strength of 0.250 M. For 

this solution, severe fouling was observed. The β value calculated from the Hermia model for 

this solution was 1.97, which indicates internal fouling of the pores.  Table 4.3 indicates that 

there is no significant difference in the size of aggregation under these conditions. The aggregate 

sizes are much smaller than for binary protein polyphenol feed streams suggesting dextran is 

successful in disrupting these complexes.  We note that a single component dextran feed stream 

exhibits the greatest degree of fouling under these conditions.   Thus the much higher degree of 

fouling for the three-component system could be due to the increased level of dextran fouling. 

4.5 Conclusion 

The results of this work add to the general body of knowledge on fouling of microfiltration 

membranes by multicomponent protein, polyphenol, polysaccharide systems. The results 

highlight the importance of solution conditions. While hydrophobic interactions tend to 

dominate, solution pH and ionic strength can enhance the effect of coulombic interactions.  

While polysaccharides often disrupt interactions between proteins and polyphenols leading to 

smaller aggregate sizes, this does not always lead to a decrease in fouling. The tendency of the 

aggregates to adsorb to the membrane surface irrespective of their size is modulated by solution 

conditions. Thus it is essential to optimize solution conditions to minimize membrane fouling 

during microfiltration of multicomponent protein, polyphenol, polysaccharide systems. 
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PART 2 Membrane adsorbers for hydrophobic interaction chromatography 

Chapter 5 

Inverse colloidal crystal membranes for hydrophobic interaction membrane 

chromatography4 

 

Summary 

Hydrophobic interaction membrane chromatography (HIMC) has gained interest due to 

its excellent performance in the purification humanized monoclonal antibodies. The membrane 

material used in HIMC has typically been commercially available PVDF. In this contribution, 

newly developed inverse colloidal crystal (ICC) membranes which have uniform pores, high 

porosity and therefore surface area for protein binding are used as HIMC membranes for 

humanized monoclonal antibody IgG purification. The capacity of the ICC membranes 

developed here is up to 10 times greater than commercially available PVDF membranes with a 

similar pore size. This work highlights the importance of developing uniform pore size high 

porosity membranes in order to maximize the capacity of HIMC. 

5.1 Introduction 

Chromatography has been widely used in the purification and analysis of proteins 1–4. 

Conventional pack-bed chromatography columns suffer from several drawbacks, such as high 

pressure drop across the bed which may increase due to media deformation or pore blockage, 

low flow rates and slow transport of solute to the binding sites due to slow pore diffusion. 

Microfiltration membranes used as chromatographic support materials, overcome the 

                                                 
4 Vu, T. A., Wang, X., Wickramasinghe, S. R., Yu, B., Yuan, H., Cong, H.,∗Luo, Y., and Tang, J. 
Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography. 
Journal Separation Science. 38 (16), 2819-2825, 2015. 
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disadvantages of traditional packed columns 5–7. Brandt et al. first described the use of 

membranes adsorbers where microfiltration membranes are used as chromatographic support 

materials 8.  

Membrane absorbers are operated at much lower pressure drop and are easy to scale up 

compared to packed beds. Further since the feed is pumped through the membrane pores, 

transport of the target compound to the binding sites occurs by fast convective flow. 

Consequently the dynamic capacity is shown to be independent of flow rate over a larger range 

of flow rates 9, 10. Nevertheless, a major disadvantage of microfiltration membranes used as 

chromatographic support materials is that the ligand density is generally lower than porous resin 

particles. Consequently there is a need to develop uniform pore size, highly porous 

microfiltration membrane support materials for use as membrane adsorbers that display higher 

capacities than currently available membranes 11-13. 

Inverse colloidal crystal (ICC) structures have received extensive attention due to their highly 

periodic structures, high porosity and fully interconnected pores. Inverse colloidal crystals or 

inverse opals are produced from colloidal crystals which are long range ordered lattices 

assembled from polymeric or inorganic colloids. Generally, the ICC formation steps include 

infiltration with a reactive monomer solution, polymerization, and removal of the colloidal 

particles by thermal processing, solvent extraction or chemical etching. The resulting ICC 

structure gives ordered, high volume and interconnected pores which are left behind after 

removal of original particles. ICC materials have generated considerable interest due to their 

potential applications in photonic crystals and optical devices 14–18, sensors 19–22, catalysts 23, 24, 

magnetic materials 25, 26, electrodes and batteries 27, and bioactive materials 28. Recently the 

benefits of the uniform pore size high porosity ICC structure as filtration membranes has been 
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described 29–32. 

Here we have investigated the use of ICC membranes as membrane adsorbers. In particular 

their high porosity as well as their highly interconnected and uniform pore structure will lead to 

low pressure drop and uniform flow through the membrane, both of which are highly desirable 

for membrane adsorbers. In addition, the presence of high membrane porosity results in a high 

surface area for solute binding. We have developed a new ICC membrane formation method, the 

vertical cell assembly method 33, for making ICC membranes. We have used this method to make 

ICC microfiltration 31 and ultrafiltration 32 membranes in the past.  

Here we investigate binding of a monoclonal antibody, IgG4. Hydrophobic interaction 

membrane chromatography (HIMC) has gained interest for protein 34–36 and DNA purification 37 

due to the relatively efficient and gentle nature of the process. The binding mechanism for HIMC 

is the same as resin based hydrophobic interaction chromatography 38,39. Many recent studies 

further highlight the benefits of HIMC over resin based hydrophobic interaction chromatography 

40–42. However these studies typically use commercially available membranes such as PVDF 

microfiltration membranes. Here we highlight the benefits of using a carefully structured high 

porosity membrane. 

5.2 Materials and methods 

5.2.1 Chemicals and Reagents 

The following chemicals were obtained from Sigma Aldrich (St Louis, MO): sodium phosphate 

monobasic (99.5%) and dibasic (99.2%); ammonium sulfate, ethylene glycol dimethacrylate 

(EGDMA, 98%); hydroxybutyl methacrylate, mixture of isomers (HBMA, 94%); 2-hydroxyethyl 

methacrylate (HEMA, 97%); benzoin isobutyl ether (BIE, 90%); hydrofluoric acid (HF, 40%); 

tetraethylorthosilicate (TEOS, 99%); hydrogen peroxide (30%); sulfuric acid (95–98%) and 
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ammonium hydroxide (28–30%).  EGDMA, HBMA and HEMA were passed through a neutral 

Al2O3 column to remove polymerization inhibitors prior to use. TEOS was vacuum distilled prior 

to use. BIE and HF were used as received. Ethanol (200 proof) was obtained from Pharmaco 

Products (Brookfield, CT) and used as received. Microscope cover glasses (24×50×0.1 mm) 

were obtained from VWR International (West Chester, PA) and cleaned using a mixture of 1:3 

hydrogen peroxide-sulfuric acid before use. Polyvinylidene fluoride (PVDF) microfiltration 

membranes (0.45 μm, Millipore, MA), polyethersulfone microfiltration membranes (pore size 

0.22 μm, thickness 100 μm, Pall Corp., NY).  Humanized IgG monoclonal antibody with size of 

155 kDa was used.  

5.2.2 Preparation of monodisperse silica particles 

Monodisperse silica particles were prepared based on the method by Stöber-Fink-Bohn 43. 

Ethanol (210 mL) was added to a 500 mL flask. HPLC water (17 mL), ammonium hydroxide 

solution (11 mL), and TEOS (11 mL) were added sequentially. The reaction was conducted at 

room temperature for 4 hours with agitation. The contents of the flask were centrifuged at 5,000 

rpm for 10 min. The solvent was then decanted, and a 50:50 (v/v) mixture of ethanol-water was 

added to resuspend the particles. The suspension was centrifuged at 5,000 rpm for 10 min. The 

solvent was decanted and the particles again resuspended in a 50:50 (v/v) mixture of ethanol-

water and centrifuged as before. This procedure was repeated three times to wash the particles. 

Laser diffraction light scattering (Beckman Coulter LS 230, Fullerton, CA), was used to 

determine the particle size distribution. The resulting mean particle diameters were found to be 

300–500 nm. Though there is batch-to-batch variation in the mean particle diameter, for a given 

batch, the standard deviation of the particle size distribution was less than 5% of the mean 

diameter. 
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Larger particles were prepared by following the method described above, except that an 

additional 11 ml TEOS and 10 ml water were added to the beaker after the initial 4 hr reaction 

time. The contents of the flask were again agitated for 4 hours to allow further reaction. This 

procedure was repeated until the desired particle size was obtained. After washing as described 

above, the particle dispersions were diluted to 1–5 wt% with absolute ethanol. 

5.2.3 Self-assembly of colloidal crystal template and fabrication of ICC membrane  

Self-assembly of colloidal crystal templates was conducted in the ‘membrane casting’ cell. The 

method developed here involved the use of two microscope cover glasses cut into 24×30 mm 

rectangles separated by two strips of either Mylar film or microfiltration membrane at the top 

and bottom. The casting cell was placed vertically in the beaker containing the colloidal 

dispersion. This ‘vertical cell’ assembly of colloidal crystal films has been described in detail in 

our earlier publication 33. Briefly, silica particles are transported to the lower surface of the upper 

spacer by capillary forces. As the solvent (ethanol) evaporates, the particles self-assemble into a 

close-packed structure. In this work, both Mylar and microfiltration membranes have been used 

as spacers. The later yielded a more rapid self-assembly of the colloidal crystal template due to 

faster ethanol evaporation through the microfiltration membrane. 

The colloidal crystal template formed in 1 day, depending on the concentration of silica 

particles in the dispersion. The thickness of the template and, therefore, the corresponding 

membrane depends on the thickness of the spacer. After formation of the colloidal crystal 

template, the template was dried at room temperature for 12 hours and infiltrated with the 

monomer solution.  

The following monomer solution was used to cast membranes: 0.5 g HEMA, 1.5 g HBMA, 

0.2 g EGDMA and 0.03 g BIE. The monomer solution within the colloidal crystal template was 
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polymerized using a UV lamp (30 W with wavelength 254 nm) by irradiating for 15 min. 

Following polymerization, the casting cell was immersed in 10 wt% HF solution to etch away 

the template and the microscope cover glasses. Membranes were characterized by field emission 

scanning electron microscopy (FESEM, Model JSM-6500F, JOEL, Japan) using a method 

described previously 44. 

5.2.4 Antibody purification using HIMC  

The antibody used for purification tests was IgG4 with molecule weight of 155 kDa. ICC 

membranes made from 375, 440 nm particles and 835 nm particles were used as chromatography 

media. For comparison, commercially available PVDF microfiltration membrane with nominal 

pore size of 0.45 �m (450 nm) was also tested. The experiments were conducted using an ÄKTA 

FPLC system (GE Healthcare Bio-Sciences Corp, Piscataway, NJ). Two buffer solutions were 

used. The low salt concentration buffer consisted of 20 mM sodium phosphate at pH 7.0. The 

high salt concentration buffer was prepared by adding 2M ammonium sulfate to the low salt 

concentration buffer. The feed solute consisted of 1g/L IgG in the high salt concentration buffer. 

All the solutions were passed through a 0.22 um pore size microfiltration membrane to remove 

any particulates. The membrane support was fixed in the support chamber and then equilibrated 

with buffer with high concentration salt buffer for 30 minutes at a flow rate of 1mL/min. Next 

further 2.5 mL of high salt concentration buffer was pumped at 1 mL/min followed by 10 mL of 

the IgG feed solution at 1 mL/min. The flow rate during the washing (7.5 mL high salt 

concentration buffer) and elution was maintained at 1 mL/min. 

5.3 Results and discussion 

In the first step, the ‘vertical cell’ method was used to fabricate the colloidal crystal 

template as illustrated in Figure 5.1 (A) and (B). Two strips of thin polymer spacer were used to 
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form colloidal crystal template and the thickness of the colloidal crystal template depended on 

the thicknesses of polymer spacers (shown in Figure 5.1 (A)). The lower edge of the glass sheet 

is placed in the beaker, which contains a dispersion of SiO2 microspheres in ethanol. The 

particles are transported from the bottom of the glass sheet to the top by capillary force and self-

assemble into the colloidal crystal  

 

Figure 5.1: Schematic illustration of the fabrication process for the colloidal crystal template and 
SEM image of silica particles and template (using the 375 nm silica particles): (A) Vertical cell 
used to fabricate colloidal crystal template by self-assembly; (B) Colloidal crystal template after 
solvent evaporation; (C) TEM image of 375 nm silica particles; (D) FESEM image of 375 nm 
colloidal crystal template. 
 

template after the solvent evaporates. Figure 5.1 (C) and (D) give a TEM image of 375 nm silica 

particles synthesized by the Stöber method and FESEM image of 375 nm colloidal crystal 

templates assembled in the vertical cell, respectively. Relatively monodispersed particles with a 
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spherical shape were observed from Figure 5.1 (C). This result confirms that these colloidal 

particles can be used for self-assembly as template model for preparation of porous structures. 

From Figure 5.1 (D), the template used for membrane fabrication shows domains of face 

centered close packing.  

A schematic representation of the fabrication process for ICC membranes is shown in Figure 

5.2. Figure 2 (A) illustrates filling the colloidal crystal template with monomer (HBMA, 

EGDMA and BIE) followed by polymerization using a UV lamp. A composite film is shown in 

Figure 5.2 (C). The ICC membrane was obtained, once the silica was etched out with HF 

solution (Figure 5.2 (B) and (D)). This shows the pore structure is interconnected throughout the 

membrane in three dimensions. A uniform membrane structure forms with few blocked pores. 

 

Figure 5.2: Schematic illustration of the fabrication process of ICC membranes (using the 375 
nm colloidal crystal template): (A) Filling colloidal crystal template with monomer and 
photopolymerization; (B) Etching away the microspheres and formation of the membrane; (C) 
FESEM image of 375 nm colloidal crystal template filled with monomer after 
photopolymerization; (D) FESEM image of 375 nm ICC membrane obtained by the templating 
method. 
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Figure 5.3 gives FESEM images of several of the membranes tested here. Figure 5.3(A and 

B) give the surface and cross section of an ICC membrane made with 440 nm silica particles. 

Figure 5.3(C and D) give analogous images for an ICC membrane made with 835 nm silica 

particles. Figures 5.3(A and C) indicate the existence of a very regular structure. Cross sectional 

images, Figures 5.3(B and D), indicate a highly porous material with interconnected pores. 

Figure 5.3(E and F) are surface and cross sectional images of commercially available 0.45 µm 

PVDF membrane. This membrane is similar to ones used in the past for HIMC 36, 40–42. While the 

membrane exhibits a high porosity, a large pore distribution is shown to exist. The images     

 

Figure 5.3: FESEM images of ICC membranes made from 440 nm silica particles (A) top view 
(B) cross-section; 835 nm silica particles (C) top view (D) cross-section; commercially available 
PVDF membrane (E) top view (F) cross-section. 
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also indicate that the ICC membranes made with the smaller 440 nm particles has a greater 

density of pores per volume as expected. The BET surface area for the ICC membrane made 

from 440 nm particles was found to be 27.77 m2/g while that for the PVDF membrane with a 

nominal pore size of 0.45 µm was only 2.21 m2/g 45. The highly regular structure of the ICC 

membrane leads to very high surface area for solute binding. The permeability of three ICC 

membranes and the commercially available PVDF membrane are given in Table 5.1. As expected 

as the membrane pore size increases the permeability increases (but the internal pore surface are 

decreases). 

Table 5.1: Permeability of ICC and commercially available PVDF membranes 

Membrane 
Permeability 

(L·m-2·h-1·kPa-1) 
Made from 375 nm particles 5.0 
Made from 440 nm particles 7.0 
Made from 835 nm particles 13.0 
Commercial PVDF 10.3 

 

Figure 5.4 gives the variation of UV absorption versus flow through volume during loading, 

washing and elution. Results are given for the same membranes shown in Figure 5.3 (membranes 

made from 440, and 835 nm silica particles as well as 0.45 µm commercially available PVDF 

membrane). Figure 5.4 may be divided into four steps. The first step consisted of pumping 2.5 

mL of high salt concentration buffer for membrane equilibration. Next loading consisted of 

pumping 10 mL of the IgG in high salt concentration buffer followed by 7.5 mL of high salt 

concentration buffer without IgG to wash any unbound IgG. Finally low salt concentration buffer 

was pumped for IgG elution. 
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Figure 5.4: Variation of UV absorption versus flow through volume for: ICC membranes made 
from (A) 440 nm silica particles and (B) 835 nm silica particles; (C) commercially available 
PVDF membrane. 
 
 

As can be seen the breakthrough peak moves to higher flow through volumes in order: 

commercially available PVDF membrane, membrane made with 835 nm silica particles and 

membrane made with 440 nm silica particles. Thus as the internal pore surface area of the 

membrane increases, the amount of IgG bound to the membrane also increases. Figure 5.4 

indicates a sharp elution peak for all three membranes. This suggests the absence of slow pore 

diffusion 46. It can also be seen that the elution peaks decrease in order: membrane made with 

440 nm silica particles membrane made with 835 nm silica particles and the commercially 

available PVDF membrane. Thus in agreement, with the breakthrough curves, the greater the 

internal pore surface area of the membrane the greater the binding capacity of the membrane. 

Table 5.2 gives the calculated binding capacity of the four membranes given in Table 5.1. 
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Table 5.2: IgG saturation binding capacity for PVDF membrane and ICC membrane made from 
375nm, 440nm, and 835 nm silica particles 
 
Nominal pore size 

(nm) 

Binding capacity  

(mg/mL) 

375 25.5 

440 19 

835 9.5 

PVDF (0.45 μm) 2.5 

 

Our results indicate the importance of maximizing the internal pore surface area in order to 

maximize membrane adsorber binding capacity. In general the smaller the pore size the greater 

the internal membrane surface area for a fixed porosity. However, the smaller the pore size the 

greater the pressure drop for a given throughput. Optimized adsorber designs will maximize the 

membrane pore surface area but also minimize the pressure drop for flow through the membrane. 

In the work conducted here the pressure drop was always less than 40 kPa as is the case for 

microfiltration. Designing high porosity membranes with uniform, highly interconnected pores 

achieves both of these aims.  

The focus of this work was the development of uniform pore size, high porosity membranes 

which have a high surface area for hydrophobic interaction chromatography. However by 

modifying the surface of the membrane one can impart specific functionality such as ion 

exchange groups for ion exchange chromatography. In earlier work 29, we have shown the 

feasibility of grafting polymer chains from the surface of the membrane in order to tune the 

membrane pore size. Thus the membranes developed here represent a platform from which many 

different membranes can be developed for chromatographic applications. 

Our results indicate the tremendous advantages the ICC membrane structure has over 
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commercially available membranes which exhibit a range of pore sizes. The ICC structure could 

be ideally suited for development of high capacity membrane adsorbers. While the use of 

membranes as chromatographic support structures overcomes the disadvantages of resin based 

chromatography, a major limitation has been the fact that the capacity of membrane adsorbers is 

less than packed beds. By designing uniform pore size, high porosity membranes we maximize 

the surface area present thus leading to much higher capacity membrane adsorbers. 

5.4 Conclusion 

We have developed ICC membranes for HIMC. The ICC structure results in a high porosity 

membrane with uniform and highly interconnected pores. This structure maximizes the internal 

pore surface area available for protein binding thus maximizing capacity. The uniform pore size 

and interconnected pore structure minimizes the pressure drop for flow through the membrane. 

The results obtained here indicate that the ICC structure is superior to commercially available 

membranes for HIMC. 
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Chapter 6 

Membrane Based Hydrophobic Interaction Chromatography5 

 

Summary 

Hydrophobic interaction membrane adsorbers have been prepared using poly N-

vinylcaprolactam as the binding ligand. The ligands were grafted using atom transfer radical 

polymerization. Binding and elution of lysozyme, bovine serum albumin and IgG4 was 

investigated.  At high ionic strength during loading, the ligand is above its lower critical solution 

temperature and adopts a dehydrated conformation. During elution in low ionic strength buffer, 

the ligand is below its lower critical solution temperature and adopts a hydrated conformation.  

Use of a responsive ligand could lead to improved performance. The importance of tailoring the 

three dimensional structure of the ligands is shown. 

6.1 Introduction 

Significant increases in product titers during cell culture means that development of 

purification processes that can efficiently recover and purify high titer feed streams is a major 

challenge in the biopharmaceutical industry1. On the other hand, introduction of new unit 

operations is complicated by the significant cost involved in meeting the regulatory requirements 

for validation and approval of a new unit operation2.  Recently the development of bio-similars 

or clones of products for which patent protection has expired, has provided an added competitive 

incentive for the development of low cost, high efficiency purification processes. 

Traditional hydrophobic interaction chromatography (HIC) depends on reversible 

interactions between the hydrophobic surface patches on proteins and hydrophobic ligands on 

                                                 
5 Vu, A., Qian, X., Wickramasinghe, S. R. Membrane based hydrophobic Interaction 
Chromatography. Separation Science and Technology. 52 (2), 287-298. 2016. 



128 
 

chromatographic resin particles3. Proteins are typically loaded at high salt concentration (ionic 

strength) and eluted with decreasing salt concentration4. Due to differences in the interactions 

between the hydrophobic ligand and proteins, the salt concentrations needed for adsorption can 

vary leading to the possibility of protein fractionation5–7. HIC is an important method for large-

scale purification of therapeutic proteins8–12. Currently the most frequent application of HIC is 

for removal of aggregates (dimers and higher MW aggregates of the product protein)13–16.  

There are many major limitations with traditional resin-based HIC. The pressure drop 

across the packed bed is usually high. Most of the binding sites are located on the inside surface 

of the porous resin particles. Slow pore diffusion can lead to low dynamic binding capacities 

especially for removal of larger aggregates. This limits process flow rates17. Longer processing 

times increase the risk of protein denaturation due to prolonged contact with the hydrophobic 

ligand and the presence of a high concentration of lyotropic salts18.  The use of HIC in bind and 

elute mode has been limited due to relatively low binding capacities and low process throughputs 

which are particularly problematic for purification of monoclonal antibodies (mAbs) as titers 

during cell culture have increased13. Further the strong hydrophobicity of some ligands can lead 

to protein denaturation and consequently low product yields18–21.  

Membrane adsorbers have been proposed as an alternative to packed columns that 

contain resin particles22,23. Here a macroporous membrane is used as the chromatographic 

support material and the ligands are attached to the surface of the membrane pores.  Since feed is 

pumped through the membrane pores, pore diffusional resistances are eliminated. The pressure 

drop is much lower compared to a packed bed as the flow path is much shorter.  In addition scale 

up of membrane modules is much easier than packed beds24. Today anion exchange membrane 

adsorbers are used routinely in the biopharmaceutical industry in flow through polishing steps.  
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The use of HIC membrane adsorbers, generally in flow through mode, however is less 

widespread. 

Antibody manufacturers typically use a three column platform for product purification.  

Protein A affinity chromatography is used for product capture. Typically anion exchange 

chromatography in flow through mode is used to remove negatively charged impurities followed 

by cation exchange chromatography or hydrophobic interaction chromatography in bind and 

elute mode to remove positively charged impurities and aggregates25. Given the advantages of 

membrane adsorbers over resin based chromatography for large molecules (over 200 Da) as well 

as removal of most contaminants, development of membrane based HIC for flow through as well 

as bind and elute operations is of significant commercial interest.  

Ghosh and Wang26 purified a humanized mAb from a CHO cell culture using a PVDF 

based HIC membrane adsorber in bind and elute mode. Fraud et al.27 investigated the purification 

of a human mAb using a phenyl based HIC membrane adsorber. The membrane adsorber 

displayed product recoveries of over 94% with up to 50% reduction of aggregates in the elution 

pool in flow through mode. In bind and elute mode, up to 99% reduction in aggregates was 

observed. Kuczewski et al.28 showed that the same membrane adsorber displayed dynamic 

binding capacities in the range of 20 mg-mAb/cm3 membrane. Fan et al.29 used the same phenyl 

based HIC membrane adsorbers in flow through mode for purification of α1-antitrypsin from 

human plasma fraction IV.  They showed that using an HIC membrane adsorber permitted much 

faster processing compared to resin based HIC.  In a more recent publication Fan et al.30 used a 

HIC membrane adsorber containing dodecyl mercaptan as the ligand to fractionate IgG from 

human serum albumin (HSA) in bind and elute mode.  The purity of IgG in the elution pool was 

above 94%.   
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Recently a few studies have considered the use of stimuli-responsive ligands for 

membrane based HIC24,31,32. These ligands change their conformation in response to changes in 

environmental conditions33–35. Of interest here are thermo-responsive polymers that change their 

conformation in response to changes in temperature; in particular, they exhibit a lower critical 

temperature (LCST).  The LCST is the temperature below which the polymer or constituent 

monomers are miscible at all compositions.  Above the LCST they phase separate.  Here we have 

used poly N-vinylcaprolactam (PVCL) as the binding ligand for HIC.  PVCL exhibits a LCST 

around 32°C in DI water 36.  When grafted from a membrane surface, the nanostructure will 

swell and collapse below and above the LCST37. The LCST decreases with increasing ionic 

strength.  Here we make use of this dependence of LCST on ionic strength.  The actual decrease 

depends on the ionic species present as well as the polymer in solution38,39. Maeda et al.36 

indicate that the LCST of PVCL decreases below 20°C in the presence of 1.0 M KCl. In addition 

the LCST depends on the degree of polymerization of N-vinylcaprolactam40. Consequently, 

when conducting HIC at room temperature (approximately 25°C) at high salt concentration, 

above its LCST PVCL will adopt a collapsed conformation that will promote protein adsorption.  

At low salt concentration, the LCST remains above room temperature.  This will lead to a more 

swollen conformation which will promote desorption of the adsorbed protein at room 

temperature.    

   Yu et al.31 considered the use of polyethylene glycol (PEG) as a responsive binding 

ligand for HIC for purification of the monoclonal antibody hIgG1-CD4 from simulated cell 

culture supernatant in bind and elute mode. In a subsequent study, Mah and Ghosh32 investigated 

the use of PVCL to purify human immunoglobulin (hIgG) in bind and elute mode.  In our earlier 

work 24 we used atom transfer radical polymerization (ATRP) to graft PVCL from the surface of 
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regenerated cellulose (RC) membranes. We showed that the use of a controlled polymerization 

method lead to lower polydispersity of the grafted chains compared to a less controlled 

polymerization method. Since the LCST depends slightly on chain molecular weight40, obtaining 

a more uniform molecular weight distribution will lead to a sharper transition between the 

collapsed and swollen conformation at the LCST which should lead to better performance. 

Here we extend our previous work.  ATRP allows us to independently vary grafted chain 

density and length. We show the importance of optimizing chain density and length in order to 

maximize capacity and recovery. In addition, we show that protein fractionation is possible.  

Finally, we highlight the importance of careful three dimensional design of the ligand in order to 

maximize capacity. 

6.2 Materials and Methods 

6.2.1 Chemicals 

DI water (0.06 μS/cm) was obtained Barnstead Smart2Pure 12 UV/UF Thermo Scientific 

(Waltham, MA, USA).  All chemicals were 97+% purity unless otherwise noted.  Triethylamine 

(TEA), and 4-N,N-dimethylaminopyridine (DMAP) were obtained from Fluka (Munich, 

Germany); ethanol (pure), methanol, acetonitrile; α-bromoisobutyrlbromide (BiB), N-

vinylcaprolactam (VCL), CuCl, CuCl2, CuBr2, and N,N,N′,N′,N′′-pentamethyldiethylenetriamine 

(PMDETA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Sodium phosphate 

monobasic, sodium phosphate dibasic, ammonium sulfate and bovine serum albumin (BSA) 

were obtained from J. T. Baker (Center Valley, PA).  The following buffer solutions were 

prepared (all at pH 7): Buffer A, 20 mM sodium phosphate; Buffer B, 20 mM sodium phosphate 

containing 2 M ammonium phosphate, Buffer C, 20 mM sodium phosphate 1 M sodium sulfate 

and 3 M ammonium sulfate.  Regenerated cellulose (RC) membranes (RC 55, REF# 10410212, 
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LOT# D013110, 0.45 μm effective pore diameter) were purchased from Whatman (GE 

Healthcare Life Sciences, Pittsburgh, MA, USA) as 47 mm diameter discs.  Lysozyme was 

purchased from EMD Millipore (Billerica, MA, USA), IgG4 was provided by Eli Lilly 

(Indianapolis, IN, USA). A stainless steel flow cell (Mustang coin unit, MSTG18H16) was 

purchased from Pall Corporation (Port Washington, NY, USA) and used in this work. 

6.2.2 Membrane Modification 

Initiator Immobilization 

Figure 6.1 gives the overall reaction scheme. The as-received membranes were first rinsed with 

methanol overnight then dried overnight in in a vacuum oven at 30°C. Initiator immobilization 

was conducted by adding 61 mg DMAP and 1387 μL TEA into 100 mL distilled acetonitrile. A 

small amount of this solution was added to a jar containing a membrane disc. 10 μL BiB/mL 

solution was added to the jar and then quickly sealed. The reaction proceeded at room 

temperature for 2 and 3 hours. The membrane discs were removed from the jar, rinsed twice with 

acetonitrile next DI water and then placed overnight in excess DI water on a shaker table. The 

membranes were then dried overnight at 40°C in a vacuum oven. 
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Figure 6.1:  Reaction scheme 

 

Surface Initiated Atom Transfer Radical Polymerization (SI-ATRP) 

 VCL monomer, CuCl, CuCl2, and PMDETA were dissolved in equal parts (v/v) water and 

methanol. The molar ratios of the final solution were 100:1:0.5:0.1 VCL:PMDETA:CuCl:CuCl2.  

First, VCL and PMDETA were added to the solvent with stirring and the solution was degassed 

for 15 minutes.  CuCl and CuCl2 were then added sequentially to the solution with further 

stirring and degassing for 15 minutes. Membrane discs were placed in the flasks and evacuated 

three times under vacuum and then filled with argon gas. Immediately after preparation, 20 mL 

of the reaction solution was cannulated into each of the sealed flasks containing a membrane 

disc.  The reaction occurred at room temperature for 1, 2, 3, and 4 hours. Following the reaction, 

the membranes were placed in a quenching solution consisting of 500 mg CuBr2 and 1250 μL 
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PMDETA in 100 ml of equal parts methanol/water (v/v) to stop the polymerization.  After 10 

minutes in the quenching solution the membranes were rinsed with 50:50 methanol/water (v/v) 

twice, then with DI water for 2 minutes, washed with ethanol for 1 minute, and placed in excess 

DI water on a shaker table overnight. The membranes were then dried overnight in a vacuum 

oven at 40°C.   

6.2.3 Membrane characterization  

Grafting degree 

Grafting degree is a basic and simple method to measure the amount of polymer which is grafted 

from the surface of the membrane. The base membrane was rinsed and dried overnight in a 

vacuum oven at 40°C. The dried weight of the unmodified membrane was recorded. After 

modification, the membrane was washed in DI water and then dried overnight in a vacuum oven 

at 40°C. The membrane was then weighted again.  The grafting degree, GD is given by 

𝐷𝐷 =
𝑊𝑓 −𝑊𝑖

𝑆
 

where Wf, Wi and S are the membrane mass after and before modification and the membrane 

surface area respectively. 

 Since regenerated cellulose membranes are hygroscopic, it is critical to standardize mass 

measurements. After the membrane was removed from the oven, it was allowed to rest at 

atmospheric conditions for 30 minutes before the mass was recorded. 

Contact angle 

 The contact angle is the angle, conventionally measured through the liquid, where a 

liquid interface meets a solid surface. It quantifies the wettability of a solid flat and homogenous 

surface by a liquid via Young’s equation41 

𝛾𝑠𝑠 = 𝛾𝑠𝜇 + 𝛾𝜇𝑠𝑐𝑐𝑐𝑐 , 
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where θ is the contact angle and γsv γsl and γlv are the solid surface energy, the solid/liquid 

interfacial free energy and the liquid surface energy respectively. 

 Static contact angles for all membranes were measured using the sessile drop method at 

room temperature and pressure (OCA 20, Future Digital Scientific Corp., Garden City, NY, 

USA). Membranes were cut into small pieces and pasted on a glass chip with double sided tape.  

A liquid drop (2 μL) was placed on the membrane surface and the image was recorded by a 

camera.  The liquid drop consisted of buffer A and mixture of 1:9 buffer A : buffer B.  Using the 

circle fitting method, the angle made between the water drop and the membrane surface was 

measured every 0.1 second.  Data were collected for the first 3 seconds.  Each condition was 

tested at 5 different locations.  Average contact angles of these 150 measurements yield the final 

result. 

Field Emission Scanning Electron Microscopy (FESEM) 

 FESEM was used to image the membrane surface before and after modification.  Samples 

were first dried in a vacuum oven at 40°C and then coated with 10 nm layer of gold prior to 

FESEM imaging using Phillip/FEI XL30 ESEM instrument (Hillsboro, OR, USA). 

Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR) 

ATR-FTIR spectroscopy provides qualitative information about functional groups at the 

top, approximately 2000 nm of the membrane.  Data were obtained using an IR Affinity 

instrument (Shimadzu, Columbia, MD, USA) with a horizontal ZnSe accessary.  ATR-FTIR 

spectra were averaged over 100 scans covering a range of 1500-4000 cm-1. Prior to analysis, 

membranes were dried overnight in vacuum oven at 40°C. 

X-ray Photoelectron Spectroscopy (XPS) 

Compared to ATR-FTIR, XPS is far more surface sensitive. It is possible for XPS to have 
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ppm level detection, and the spatial resolution can reach about 10 nm. XPS can provide 

information on the elemental composition presented on membrane surfaces. A VersaProbe station 

from Physical Electronics (PHI) (Chanhassen, MN, USA) was used in this study. For each 

sample, at first, survey scans over the range of binding energy from 0 to 600 eV with a resolution 

of 1 eV step-change were obtained.  Additionally, 50 scans with 3 repetitions at high resolution 

of 0.1 eV step-change, focusing on the C, O and N regions were averaged to characterize small 

changes in the surface chemistry upon grafting. 

6.2.4 Chromatographic testing 

Chromatography runs were performed on an ÄKTA FPLC from GE Healthcare Bio-

Sciences Corp. (Piscataway, NJ, USA) with FRAC-950 fraction collector using the associated 

Unicorn software version 5.31. A stack of four membranes were loaded into the stainless steel 

flow cell. Flow distributers (disperser and diffuser) were placed at the inlet/outlet of the flow cell 

to ensure the flow was uniform across the entire membrane cross-sectional area.  All flow rates 

were 1 mL/min unless otherwise indicated.  All experiments were conducted in triplicate. 

  Protein recovery studies were conducted by preparing a BSA feed solution containing 1.8 

M ammonium sulfate by dissolving 10 mg of BSA in 10 mL of buffer A and diluting with 90 mL 

of buffer B. The membrane stack was loaded into the flow cell and wet with Buffer A in the 

reverse flow configuration for 5 minutes.  During this time, the flow rate was increased from 0.2 

mL/min to 1.0 mL/min in 0.2 mL/min increments. The membranes were then equilibrated in the 

forward flow configuration in the feed buffer 1.8 M ammonium sulfate in 20 mM sodium 

phosphate obtained by combining on line 10% buffer A and 90% buffer B. 

The feed solution was pumped for 10 minutes. The membrane stack was then washed 

with the feed buffer for 10 minutes. Finally, the membranes were eluted with buffer A until the 
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UV absorbance was constant. The washing fraction and elution fraction were collected and the 

volume determined. Protein concentrations in the sample solution, washing fraction, and elution 

fraction were calculated via UV absorbance at a wavelength of 280 nm. 

Fractionation of lysozyme and IgG4 was investigated by preparing a feed solution 

consisting of 0.066 mg lysozyme and 0.301 mg of IgG4 in buffer C.  In addition, single protein 

solutions consisting of lysozyme and IgG4 at the same individual concentrations as in the mixed 

feed solution were also prepared and tested.  The membrane stack was loaded and wet as 

described for the protein recovery studies. The membranes were then equilibrated in the forward 

flow configuration as described for protein recovery studies using buffer C.  The feed solution 

was loaded onto the membrane stack for 10 minutes. The membrane stack was then washed with 

the feed buffer for 10 minutes at 1 mL/min.  

 Initially gradient elution was used to obtain two distinct elution peaks corresponding to 

lysozyme and IgG4. The elution commenced with the feed buffer (buffer C) and switched to 

100 % buffer A over 30 minutes. The conductivity at which two distinct peaks (lysozyme and 

IgG4) appeared was noted.  In order to quantify the amount of protein that is eluted, a second 

experiment was run using a step change elution method.  Elution commenced using 65% buffer 

C and 35% buffer A giving a conductivity of 162.6 mS/cm for 15 minutes after which 100% 

buffer A was used for another 15 minutes.  Protein concentrations were calculated via UV 

absorbance at a wavelength of 280 nm.  Recovery was calculated from the equation  

% Recovery =
Protein in elution peak

Bound protein
∗ 100 

6.3 Results and Discussion  

 Figure 2 gives the grafting degree as a function of polymerization time.  Approximately 

linear growth is observed over the period 1-4 hours suggesting a well-controlled process.  
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Results are given for 2 and 3 hour initiator immobilization times.  Longer initiator 

immobilization times will lead to a higher chain density.  The higher grafting degrees observed 

for the same polymerization time at higher initiator immobilization times suggests that we are 

able to relatively independently control chain length and density.  Interestingly much faster 

growth is observed in the first hour of polymerization suggesting that reaction of VCL with BIB 

is much faster than reaction of VCL monomer with the growing polymer chain. 

In our earlier work24 we obtained similar grafting degrees but for 12 hour polymerization 

times.  Further we showed that for a 12 hour polymerization time, increasing the initiator 

immobilization time up to about 5 hours yielded a higher grafting degree.  Beyond 5 hours no 

appreciable increase in grafting degree was observed suggesting that all accessible reactive sites 

on the membrane surface had been used for polymerization.  

 

Figure 6.2: Variation of grafting degree with polymerization time 
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The much shorter polymerization times used here indicate a much faster reaction yet 

Figure 6.2 indicates that a significant level of control is maintained over the polymerization.  The 

initiator immobilization conditions are identical.  The main difference is that here PMDETA 

rather than 2,2'-Bipyridine (BPY) is used as the ligand. Tang et al.42 indicate that ATRP 

equilibrium constants depend strongly on the initiator and ligand structures.  PMDETA displays 

around an order of magnitude higher ATRP equilibrium constant explaining the faster reaction 

observed here. These results indicate the importance of optimizing polymerization conditions in 

order to increase the rate of polymerization while maintaining controlled growth.    

Figure 6.3 gives ATR-FTIR spectra for the base membrane as well as membranes 

modified with lowest and highest grafting degrees. All spectra were averaged over 100 scans.  

The largest peak at about 3335 cm-1 corresponds to stretching of C-OH bonds. Increasing the 

grafting degree leads to a decrease in this peak as PVCL does not contain any C-OH bonds.  

Though an amide I peak is expected at 1650-1670 cm-1 no clearly discernable peak is evident.  

This suggests that the grafted nanostructure is relatively thin. Consequently, the amide I peak is 

swamped by the signal from the base membrane.   
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Figure 6.3: ATR-FTIR spectra for unmodified and modified membranes (2 hour initiator 
immobilization, 1 hour polymerization and 3 hours initiator immobilization, 4 hours 
polymerization)  
 
 

Figure 6.4 provides XPS spectra for the base membrane and membranes modified for 2 

hour initiator immobilization and 1 and 4 hour polymerization.  Figure 6.4(a) is a high resolution 

spectrum of the carbon region. The largest peak at 286.3 eV corresponds to alcohol and ether 

groups present in the regenerated cellulose membrane but not the PVCL. The peak decreases 

with increasing grafting degree of the PVCL nanostructure. A shoulder at 288 eV representing 

carbonyl groups in PVCL, appears in the modified membranes.  
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Figure 6.4: XPS spectra for the (A) carbon, (B) oxygen, and (C) nitrogen. Spectra are given for 
unmodified and modified membranes (2 hours immobilization, 1 and 4 hours polymerization 
times)  
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Figure 6.4 (Cont.) 

Figure 6.4(b) is a high resolution spectrum of the oxygen region.  For the modified 

membranes the peak decreases due to less oxygen being present in the grafted PVCL 

nanostructure. Further as the grafting degrees increases the peak height decreases indicating 

growth of a thick PVCL layer. The oxygen peak for the modified membrane is shifted slightly 

towards lower energy with increasing grafting degree due to the carbonyl oxygen present in the 

PVCL layer representing a greater percent of the oxygen. 

Finally Figure 6.4(c) is a high resolution spectrum of the nitrogen region. No nitrogen is 

present in the base regenerated cellulose membrane.  A peak appears as PVCL is grafted from the 

membrane surface. Taken together, Figures 2-4 indicate that we successfully graft PVCL from 

the surface of the regenerated cellulose membrane. Further as the grafting degrees increases, the 

thickness of the grafted layer increases. 

Figure 6.5 give the variation of contact angle with polymerization conditions. For the 

unmodified membrane, the contact angle is the same for buffers A and B (0 and 1.8 M 
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ammonium sulfate in 20 mM sodium phosphate). However, for all modified membrane the 

contact angle is significantly higher for buffer B compared to buffer A. Thus, the membrane is 

much more hydrophobic in the presence of 1.8 M ammonium phosphate.  At high ionic strength, 

the PVCL chains collapse and dehydrate leading to a more hydrophobic surface.  All testing was 

conducted at 25 °C. Thus, the LCST in a 1.8 M ammonium sulfate solution is below 25 °C.  

Maeda et al36 observed that the LCST of PVCL decreased to below 20 °C in the presence of 1.0 

M KCl. 

 
 
Figure 6.5: Average contact angle as a function of polymerization time for 20 mM sodium 
phosphate buffer containing 0 and 1.8 M ammonium sulfate. 
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Figure 6.6 gives FESEM images of an unmodified membrane and a membrane modified 

with the maximum grafting degrees (3 hour initiator immobilization and 4 hour polymerization).   

Surface modification appears to have little effect on the membrane morphology. However, a 

slight decrease in DI water permeability is observed. At a flow rate of 1 mL/min the permeability 

for the base membrane was 0.79 L m-2 hr-1 Pa-1 while that for the membrane with the highest 

grafting degree was 0.65 L m-2 hr-1 Pa-1. The decrease in permeability increased with grafting 

degree. 

                                      (A)                                                                              (B) 

Figure 6.6: FESEM images for (A) unmodified membrane, (B) membrane modified with 3 hour 
initiator immobilization, 4 hour polymerization 
 

Chromatographic testing 

Figure 6.7 shows a chromatogram for a modified membrane where the initiator 

immobilization time was 2 hours and the polymerization time 4 hours. The result is analogous to 

our previous observations24. The figure clearly indicates that breakthrough occurs after 5 minutes 

as the UV absorbance rises rapidly. After 10 minutes washing commenced and the absorbance 

drops to zero. The elution buffer was introduced after 20 minutes of operation. During the 
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gradient elution step the conductivity decreases linearly. However, the UV absorbance drops 

below zero at the end of the elution step.  The UV absorbance was zeroed with the feed buffer 

(buffer B) which contains 1.8 M ammonium sulfate. At the end the gradient elution step, pure 

buffer A (10 mM sodium phosphate with no ammonium sulfate) is used. The difference in the 

salts present in buffers B and A result in the observed negative absorbance at the end of the 

elution step. A sharp elution peak indicates no pore diffusional resistance. In fact, additional 

experiments at flow rates between 0.1 and 10 mL min-1 indicated no effect on the dynamic 

capacity.  

Based on analogous chromatograms, BSA dynamic binding capacity and recovery at 

10 % and 90 % beak through were determined. The results are given in Table 1.  As can be seen 

within experimental error increasing the initiator immobilization time appears to lead to an 

increase in capacity especially at 90 % breakthrough. However, increasing the polymerization 

time seems to have little effect on capacity. Our earlier results24 indicated that for initiator 

immobilization times up to 5 hours the dynamic binding capacity increased with increasing 

initiator immobilization time. However, for initiator immobilization times of more than 5 hours 

little increase in capacity was observed indicating that all the chain attachment site on the 

membrane surface have been used.  
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Figure 6.7:  Typical chromatogram for BSA.  The membrane was modified with a 2 hours 
initiator immobilization time and 4 hours polymerization time.  Flow rate was constant at 1 
mL/min, and the loading protein concentration was 0.1 mg BSA/mL 
 

Table 6.1: Binding capacity and recovery for BSA 
Immobilization 
time (h) 

ATRP time 
(h) 

Binding Capacity at 
10% breakthrough 
(mg/mL) 

Binding Capacity at 
90% breakthrough 
(mg/mL) 

Recovery  
at 90% 
breakthrough 
(%) 

2 1 2.1±0.1 3.7 ±0.1 92.4 ±2.5 
2 2 2.2±0.2 3.4 ±0.3 95.3 ±2.1 
2 3 2.0±0.3 3.6 ±0.3 90.7 ±3.4 
2 4 2.3±0.1 4.0 ±0.4 95.0 ±1.8 
 
Immobilization 
time (h) 

ATRP time 
(h) 

Binding Capacity at 
10% breakthrough 
(mg/mL) 

Binding Capacity at 
90% breakthrough 
(mg/mL) 

Recovery (%) 
at 90% 
breakthrough 
(%) 

3 1 2.2±0.1 4.3 ±0.2 94.2 ±1.4 
3 2 2.2±0.1 4.3 ±0.4 98.1 ±1.5 
3 3 2.4±0.2 4.6 ±0.3 99.4 ±1.1 
3 4 2.5±0.3 5.1 ±0.3 99.9 ±1.2 
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Our results suggest that increasing the chain length does not lead to an increase in 

capacity. Since protein binding occurs when the PVCL chains are in a collapsed conformation, it 

is likely that only the ends of the chains are available for protein binding.  Consequently, no 

increase in capacity is seen with increasing polymerization time.  The results suggest that 

increased capacity could be obtained by designing comb like43 or short highly branched polymer 

chains.  Maximizing the number of short polymer chains per pore volume will ensure most 

ligands remain accessible even in the collapsed conformation. Further it will minimize the 

possibility of interaction between polymer chains in the collapsed conformation, thus 

maximizing the capacity for protein binding. 

 Typical elution chromatograms of single component feeds consisting lysozyme, and IgG4 

as well as a mixed feed consisting of lysozyme and IgG4 are given in Figures 6.8 and 6.9.  Figure 

6.8 shows results for gradient elution while Figure 6.9 gives results for a step elution process 

based on the gradient elution results.  As can be seen the elution times for the single components 

feed streams correspond very well to the elution times for the feed stream containing both 

lysozyme and IgG4. Thus there is little interaction between lysozyme and IgG4. Similar results 

have been observed by previous researchers for model feed streams26,32. Lysozyme being less 

hydrophobic elutes first. As noted for the BSA chromatogram, Figure 6.7, negative absorbance 

values are due to the fact that the UV absorbance is zeroed based on the feed buffer. For 

lysozyme and IgG4 binding, the feed buffer consisted of buffer C (20 mM sodium phosphate 1 M 

sodium sulfate and 3 M ammonium sulfate). Figure 6.9 indicates the feasibility of developing a 

step-change elution protocol for rapidly fractionating proteins with large differences in 

hydrophobicity. Table 6.2 gives capacity and recovery data.  As can be seen we obtain recoveries 

in excess of 90% except for the mixed feed. Our data suggest the viability of very effective 
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protein fractionation using membrane based HIC.  However, from a practical perspective it will 

be essential to increase membrane capacity.  

 
Figure 6.8: Elution peaks for fractionation of lysozyme and IgG4 using gradient elution for 
membrane modified with 3 hour immobilization 4 hour polymerization.  Flow rate was constant 
at 1 mL/min, and the loading protein concentration was 0.066 mg lysozyme/mL and 0.301 mg 
IgG4 /mL. 
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Figure 6.9: Elution peaks for fractionation of lysozyme and IgG4 using step-change elution for 
membrane modified with 3 hour immobilization 4 hour polymerization. Flow rate was constant 
at 1 mL/min, and the loading protein concentration was 0.066 mg lysozyme/mL and 0.301 mg 
IgG4 /mL. 
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Table 6.2: Fractionation of lysozyme and IgG4 using membrane modified with 3 hours initiator 
immobilization 4 hour polymerization 
 Feed proteins in 

10 mL of solution 
(mg) 

Binding capacity 
(10% breakthrough) 
(mg/mL) 

Recovery (10% 
breakthrough) 
(mg/mL) 

IgG4 (single component) 0.602 4.68±0.05 94.5±1.8 
Lysozyme (single component) 0.132 0.97±0.03 93.9±2.5 
IgG4 (mixture) 0.301 2.89±0.12 85.1±1.1 
Lysozyme (mixture) 0.066 0.63±0.06 81.2±2.3 
 

Previous investigators have suggested that membrane based HIC could be used to 

separate IgG from other proteins. Kuczewski et al.28 indicate binding capacities for a non-

responsive phenyl ligand based membrane adsorber of 20 mg Mab/cm3 membrane. Ghosh and 

Wang26 indicate binding capacities of a humanized mAb ranging from 13 to 33 mg/cm3 

membrane for base PVDF membranes while Yu et al.31 obtained capacities of 9 mg/cm3 using a 

PEG ligands from a simulated mammalian cell culture supernatant. Finally Mah and Ghosh32 

obtained capacities of close to 12 mg/cm3 for human IgG using a PVCL hydrogel coated on filter 

paper. While the dynamic binding capacity for all of these studies is higher than the capacities 

obtained here, the observed capacity depends on the operating conditions.   

In general, previous studies have used higher feed protein concentrations which led to 

higher capacities. Further optimizing the ionic strength of the feed solution is also important.  

The feed ionic strength during loading will affect capacity and recovery. Our results indicate very 

good recovery of the three proteins investigated here. A major impediment to the widespread use 

of membrane based HIC has been poor protein recovery. Our future work will focus on 

optimizing the three-dimensional structure of the binding ligand to increase membrane capacity.    
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6.4 Conclusions 

Increasing titers during cell culture operations has resulted in a need to develop 

downstream purification processes that can efficiently handle these high titer feed streams.   

Since obtaining approval for new unit operations is time consuming and costly, there is 

tremendous interest in improving the efficiency of existing unit operations. Here we show that 

the use of responsive ligands for membrane based HIC could lead to much more efficient HIC 

operations.  In particular membrane based HIC could be used for bind and elute operations. 

 The results obtained here indicate the importance of carefully designing the three-

dimensional structure of the ligands to maximize capacity and recovery. Use of a controlled 

polymerization process, such as atom transfer radical polymerization, will be essential.  

Maximizing the capacity will require growing short highly branched polymer chains from the 

membrane surface.    

 

HIMC offers all the advantages of membrane adsorbers compared to traditional packed 

bed chromatography. Both ICC and responsive membrane based HIMC are operated at lower 

pressure drop and are easy to scale up. In the case of ICC membranes, the membrane surface 

area is maximized by developing uniform three-dimensional microporous structures.  In the case 

of responsive ligands, the aim is to develop a ligand that responds to environmental changes.  

The results obtained here indicate that both approaches could lead to commercially viable HIMC.   

HIMC could be run in flow through mode for removal of contaminants.  In this case, it is 

essential to ensure efficient clearance of contaminants such as host cell proteins, DNA and 

viruses while maximizing product recovery. ICC membranes may well be suited for such 
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applications. In the case of bind and elute chromatography, efficient recovery of the bound 

protein is essential. Responsive membranes may be well suited for such applications. 

The capacity and recovery of ICC membranes is highly protein specific. Results for BSA 

and IgG4 cannot be compared directly due to the different molecular weight, structure, 

hydrophobicity etc. of the molecules. The results obtained here indicate that HIMC could be an 

enable process to overcome the purification bottleneck that exists today. However more detailed 

studies that focus on specific classes or proteins will be necessary in order to optimize either ICC 

or responsive membranes. 
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PART 3 Catalytic membranes for biomass hydrolysis 

Chapter 7 

Novel polymeric solid acid catalysts for cellulose and Biomass hydrolysis 

 

7.1 Introduction 

As a part of membrane technology, surface modification on commercially available 

membranes has been widely adopted to render membranes with additional functionalities such as 

antifouling, responsiveness and affinity. For example, undesirable molecules or particles easily 

lead to fouling which degrades the performance of the membranes. Himstedt et al. proposed a 

method of grafting poly(2-hydroxymethyl methacrylate) with superparamagnetic iron oxide 

(Fe3O4) at the polymer chain ends grafted on the surface of polyamide composite nanofiltration 

membrane in order to inducing mixing thereby reducing the concentration polarization and 

colloidal fouling 1. Membrane surface modification has received much attention. By 1996, 

Zeman and Zydney reported that 50 percent of microfiltration (MF) and ultrafiltration (UF) 

membranes in the market were surface modified 2. 

 Membrane modification by grafting responsive polymeric ligands has played an 

important role due to its switchable physicochemical properties. Indeed, it is an inspiration from 

nature to develop stimuli-responsive membranes with environmental conditions, such as 

temperature, pH, solution ionic strength, light, electric and magnetic fields, and chemical cues. 

The functional group or responsive polymer in the membrane bulk or grafted on its surface will 

change its conformation, polarity, or reactivity as the environment changes. Depending on the 

characteristics of the membranes, for example porous or non-porous, responsiveness can be built 

in by grafting specific responsive polymer layers from the membrane external surface or inside 
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pore walls 3.   

Here we explore the use of surface modification to develop advanced membranes 

immobilized with novel polymeric acid catalysts for lignocellulosic biomass hydrolysis. 

Lignocelluloses or cellulosic biomass is an abundant leading biomass resource for 

producing renewable energy to replace fossil-based transportation fuels 4,5. In general, 

lignocellulosic biomass contains 38-50% cellulose, and 23-32% hemicelluloses and 15-25% 

lignin. The structures of cellulose, hemicellulose and lignin are shown in Figure 7.1.1. 
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Figure 7.1.1: Structures of cellulose, hemicellulose and lignin  from lignocellulosic biomass 6,7 
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Cellulose is β-(1, 4)-linked glucose polymer. It is a complex substrate consisting of 

amorphous, semi-crystalline and crystalline regions which contain strong and extensive 

hydrogen bonding networks. Qian clearly stated that cooperativity of hydrogen bonding 

interaction, where the –OH group is both a donor and acceptor of a hydrogen bond, in crystalline 

cellulose enhanced the hydrogen bonding energy by as much as 50% compared to non-

cooperative ones in other polysaccharides. And that is why cellulosic biomass is so recalcitrant to 

depolymerization 8,9. 

O

O

O

O

O

O

O

O

O

OH O

O

O

HO OH

O

O

HO

O

O

O

OOH

O

O

HO

OO

O

O

HO OH

HO

HO

OH

OH

OH

OH

OH

O

O

O

HO

HO

O

O

O

HO

H

H

H

H

H

H

H

H

H

Intra chain Inter chain  

Figure 7.1.2: Schematic of cellulose  with inter-and intra-hydrogen bonds 10. 

 

 Many pretreatment methods have been investigated. However, each method still suffers 

from its own disadvantage. For example, dilute sulfuric acid pretreatment has been the leading 
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pretreatment technology to dislocate lignin and decrystallize cellulose. This technique is 

normally conducted at hash condition, for example 140-200°C and 4-15psi with 5-30 min 

residence time. It can be operated in the batch and continuous modes.  On the other hand, the 

cost of pretreatment is high particularly the equipment cost due to the corrosive nature of the 

feed. Moreover, sulfuric acid is not environmentally friendly and difficult to recycle and recover.  

As discussing above, cellulose is a complex substrate, and in fact, insoluble in most of the 

conventional solvents, due to its extensive hydrogen bonding network. Ionic liquid (IL) is 

discovered as an effective solvent for dissolving cellulose11–15. Basically, the inter- and intra-

molecular hydrogen bonds of cellulose are disrupted by replacing the hydrogen bonds between 

the IL anions and the hydroxyl groups on the cellulose substrate. Some of the commonly used IL 

anions are chloride, acetate, formate, and alkylphosphonate due to their ability to form hydrogen 

bonds with cellulose. For example, chloride-containing IL can dissolve pulp cellulose up to 25% 

by weight at high temperature. Moreover, Fukaya et al., Zhang et al., and Zhu et al. also listed 

more than twenty ILs that have ability to dissolve cellulose (ref in ionic liquid pretreatment...IL 

recycle)13,16–18. They are “green” solvents with negligible vapor pressure, non-flammability, high 

thermal, low toxicity and chemical stability, and tunable 19. One recent study shows that pure 1-

ethyl-3-methylimidazolium chloride ([EMIM]Cl]) with small amounts of water (equivalent to 4 

glucose units) can hydrolyze cellulose with total reducing sugar (TRS) and glucose yield 

reaching 97% and 19% respectively in the absence of any acid catalyst. However, impurities in 

IL can reduce the yield of hydrolysis reaction.  As a result, extensive purification of IL is 

required 20. 

The reaction barrier for Brønste acid catalyzed cellulose hydrolysis and sugar 

dehydration/degradation reactions is largely due to the solvent, for example, due to water 
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molecule’s high affinity for proton21–28. Indeed, limiting the degree of cellulose hydration will 

reduce the activation barrier and facilitate the hydrolysis reaction, similar to the 

microenvironment in a catalytic tunnel of cellulose enzymes. Based on this concept, polymeric 

solid acid catalysts immobilized on a supporting substrate could potentially create a partially 

dehydrated microenvironment that is inductive for the hydrolysis reaction. In this study, dual 

functional nanostructures are synthesized to help solubilize cellulose and catalyze its hydrolysis 

reaction. Poly (styrene sulfonic acid) (PSSA) chains are immobilized on surfaces of ceramic 

membrane substrates and used to catalyze biomass hydrolysis. Its neighboring poly (vinyl 

Imidazolium chloride) ionic liquid (PIL) chains are grafted from the surface to help solubilize 

lignocellulosic biomass and enhance the catalytic activity. 

Atom transfer radical polymerization (ATRP) was used to immobilize the acidic PSSA 

polymer chains. The PIL chains were grafted via UV-initiated radical polymerization. Each 

method of polymerization will control the grafting of one specific polymer only. The two chains 

were grafted randomly from the surface of ceramic membrane substrates. These two 

nanostructured polymer chains can be tuned independently including the chain length and chain 

density as well as the ratio of the polymer chains.  An optimal condition for biomass hydrolysis 

can be achieved by tuning these parameters29,30.    

7.2 Materials and reagents 

 All purified water (0.06 µS/cm) was obtained from a combination Water Pro/RO reverse 

osmosis and Pro Plus deionization purification system from Labconco Corp. (Kansas City m 

MO). Benzoin ethyl ether (BEE, 97%), 1-butyl-3-methyl-imidazolium chloride ([BMIM]Cl, 

99%), 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl, 95%), 3-aminopropyltriethoxysilane 

(APTES, 99%), ethyl acetate (EtOAc, anhydrous, 99.8%), 2,2’-bipyridine (BPY, 99%), copper(I) 
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chloride (Cu(I)Cl, anhydrous, beads, ≥ 99.99% trace metal basis), copper(II) chloride, (Cu(II)Cl, 

anhydrous, beads, ≥ 99.99% trace metal basis), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

Hydrochloric acid (EDC.HCl, ≥ 98%), 2-bromo-2-methylpropionyl bromide (or α-

bromoisobutyrylbromide) (BiB, 98%), and sodium 4-styrenesulfonate (NaStS, technical, ≥90%), 

boric anhydride (99.99% trace metal basis), bovine serum albumin (BSA) (>99%, product 

#I4506), Dimethyl sulfoxide (DMSO), trimethylamine (TEA, ≥ 99%)  were purchased from 

Millipore Sigma (Saint Louis, MO). Acetonitrile (ACN, reagent, HPLC grade) and hydrochloric 

acid (12N), Ethanol (EtOH, pure, 200 proof, from KOPTEC), and sodium hydroxide (ACS 

grade) were purchased from VWR (West Chester, PA). Potassium hydroxide (KCl, 98% extra 

pure), flakes), tetrahydrofuran (THF, 99.9%, stablized) and sodium hydroxide were purchased 

from Acros Organics (Fisher Science Education, Hanover Park, IL). Acetic acid (glacial, ACS 

grade) was purchased from EMD Millipore, Germany. N-Vinyl imidazole (VI, 99%) wase 

purchased from Alfa Aesar (Tewsbury, MA). All chemicals were used without further 

purification.  

 α-cellulose (white powder) and D-glucose (ACS reagent) were purchased from Sigma 

Aldrich. Real corn biomass was obtained from Walmart food market, then dried and grinded in 

the lab. Pretreated corn-stovers samples with acid (CH131104 PCS), base (PSI150310-17) or 

steam were obtained from NREL.  

Ceramic membranes were purchased or obtained Whatman (Maidstone, England), 

(Anopore (Anodisc), 0.2 µm pore diameter, 47 mm diameter disc aluminum oxide), T3 scientific 

company from Minnesota (small cylinder tube 0.15cm ID), and ATECH German company (silica 

oxide with variation in shapes, small cylinder tube 0.15cm ID; larger cylinder tube 0.6cm ID, 

1cm OD; 152 cm diameter, 7 nm pore side disc membrane). 
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7.3 Synthesis and modification 

7.3.1 UV initiator Synthesis 

 UV initiator was synthesized before starting the modification. The basic reaction 

mechanism is following scheme 7.3.1 as described in our earlier publication.  

 

Scheme 7.3.1: Synthesis of UV initiator (BEE-COOH) 

 

 20 g of Benzoin ethyl ether (BEE) was dissolved in 40 mL dimethyl sulfoxide (DMSO) 

solvent. The solution was degassed with argon during mixing. Then 1.6 mL of 4 M potassium 

hydroxide (KOH) was added into the main solution and degassed with argon for 30 minutes. The 

color of solution changed from light yellow to dark orange, and then to dark green. Thereafter, 

10 mL of ethyl acrylate was also added. The color of the solution changed back to orange. BEE 

reacted with ethyl acrylate for 4 hours under argon gas at room temperature. The color of each 

solution in each step was indicated in appendix. When mixing BEE in DMSO, the color of 

solution is light green. After adding KOH solution, the solution changed to dark orange at first, 

then turning to dark green after ten minutes. Finally, adding ethyl acrylate into the solution will 

make the solution turn back to orange.  

Afterward, 95% of DMSO was removed under vacuum evaporation at 80°C. The brown 

and gel-like residue product was then dissolved with 100 mL of 1 M sodium hydroxide (NaOH) 

solution containing 6% methanol. Base catalyzed hydrolysis reaction was conducted for 24 hours 
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at room temperature in order to obtain the final product BEE-COOH in liquid form. However, 

the pH of the solution is around 11. Because there was NaOH left over after the hydrolysis 

reaction, and it can also easily react with BEE-COOH to form a salt-form BEE-COONa. 

Therefore, the solution was then neutralized with 0.1 M hydrochloric acid till it can reach pH 6. 

Vacuum evaporation was used to remove the solvent, and BEE-COOH would become a yellow 

powder. The images of the products and H-NMR spectra for BEE-COOH during the synthesis 

steps were listed in the Appendix. 
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Scheme 7.3.2: Overall reactions for grafting PSSA and PIL chains from a glass substrate. 
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Main modification started with forming a SAM layer with an amino end group on the 

surface of the glass substrate or ceramic membrane substrates. UV and ATRP initiators were 

subsequently immobilized on the SAM layer by reacting with the amino groups. Sodium 4-

styrenesulfonate was grafted via ATRP. UV initiated polymerization of N-vinyl imidazole (VI) 

to form PIL. Overall reactions are described in scheme 7.3.2. 

7.3.2 Grafting of SAM layer 

Glass or membrane substrates obtained commercially from VWR were rinsed with 

ethanol then Milli-Q water. The substrate was then submerged into a plastic jar which had 10 mL 

1:1 (v:v) mixture of ethanol and Milli-Q water containing 40 μL 3-aminopropyl-triethoxysilane 

and 5 μL glacial acetic acid. The reaction took place at room temperature with slow agitation by 

a shaker. After 1 hour, the silane layer on substrate surface was cured in an oven at 115°C for 30 

minutes. Finally, the substrates were ultrasonicated in ethanol for 1 min, and further dried first 

with nitrogen then in a vacuum oven at 40°C. 

7.3.3 UV initiator immobilization 

The substrate with amino functionalized SAM layer was placed in a container which had 

10 mL water, 10 mg EDC-HCl and 150 mg BEE-COOH to immobilize the UV initiator. The 

container was sealed and agitated on a shaker. The reaction was run for a specified amount of 

time. The length of the time determines the chain density of the grafted PIL chains. After the 

reaction, the substrate was taken out and washed with water then dried in vacuum oven 

overnight. 

7.3.4 ATRP initiator immobilization 

In order to immobilize the ATRP initiator, the substrate with amino functionalized SAM 

layer was placed in a flask containing 10 mL dry THF, 200μL TEA, and 200 μL 2-bromo-2-
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methylpropionyl bromide. The reaction was conducted at 0°C by using ice bath in 8 hours. At 

the end of the reaction, the membrane substrate was taken out and rinsed with THF 3 times and 

then placed in DI water overnight. Finally, the substrate was dried in vacuum oven at 40°C 

overnight. 

7.3.5 PSSA nanostructure synthesis via ATRP 

 Following initiator immobilization, ATRP of sodium 4-styrenesulfonate was carried out. 

The substrate was placed in the flask, and then evacuated and backfilled with argon at least three 

times. The main solution was then prepared. 4.89 g of NaStS was dissolved in 40 mL 

water/methanol mixture (1:1, v/v) and then purged with argon and agitated for at least 30 

minutes until a white precipitate appeared. Subsequently, 148 mg of bpy ligand and 47 mg of 

cooper(I) chloride (CuCl) were added into the solution under argon stream with continuous 

stirring. After degasing with argon for another 30 minutes, the reaction solution was cannulated 

into a sealed argon filled flask which contained the glass substrate. Reaction flask had to be 

sealed carefully in order to prevent the occurring of oxidization during reaction. The reaction 

was incubated at room temperature for 24 hours. Thereafter, the glass substrate was removed 

from the flask, then thoroughly washed with water, methanol, ethanol, then dried in vacuum 

oven at 40°C overnight. Sulfonic acid groups on PSSA chain were generated after grafting PIL 

by immersing the substrate in a 12 N hydrochloric acid (HCl) solution for 24 hours.  

7.3.6 PIL nanostructure synthesis via UV initiated polymerization 

After synthesizing PSSA nanostructures via ATRP, poly vinyl imidazole was grafted 

from the surface of the glass substrate by UV-initiated radical polymerization. The main solution 

was first prepared by mixing 1 mL of N-vinyl imidazole in 10 mL of water and degasing for 

more than 30 minutes before reaction of polymerization. Glass substrate was fixed between 2 
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filter papers (Whatman, No 1) then immersed into the main solution in petri disc. UV radiation 

was carried out in a UV reactor box for 15 minutes. After reaction, the substrate was washed 

with water then dried in vacuum oven. The PIL was formed by reacting poly vinyl imidazole 

with 12 N HCl solution for 24 hours. 

7.3.7 Lignocellulosic Biomass Preprocessing  

Real corn purchased from the supermarket was separated into 3 specific components 

including cob, husk and kernel.  It was then dried in oven at 60°C for 1-2 days. Dried corn cob, 

husk, and kernel were then grinded with a coffee-grinder and separated with 100 sieve mesh (150 

µm) 

The pretreated NREL corn-stovers was received in a wet-state. They were dried and the 

weights of the dried samples were measured to get an estimate of the biomass content. Table 

7.3.1 shows the biomass contents of acid, base and steam pretreated NREL biomass samples. 

Pictures of these NREL pretreated corn-stovers during preprocessing steps are shown in the 

Appendix.  

 
Table 7.3.1: Table of percentage of dried NREL biomass compared to wet biomass 
 

Biomass 
(NREL) 

Dried/Wet  
(without grinding) 

Dried/Wet  
(with grinding) 

Acid pretreatment 39.25% 39.7% 

Base pretreatment 34.48% 34.8% 

Steam pretreatment 32.63% 38.7% 

 

At some cases, NREL biomass samples were first pretreated with a mixture of 

[EMIM]Cl/H2O before hydrolysis. For example, 0.1 g of biomass was added into the reactor 
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with 10 mL of mixed IL/water solvent at different ratios. The mixture was then stirred at 60°C 

for specified amount of time before hydrolysis.  

7.3.8 Cellulose hydrolysis 

0.1g of cellulose was dissolved with 10 mL [EMIM]Cl or a mixture of [EMIM]Cl and co-

solvent in a batch reactor. Glass/membrane substrate was then also submerged into the solution. 

The batch reactor was tightly sealed and placed into a sand bath.Reaction was conducted at 

specified temperature and for specified amount of time. After that, the reactor was cooled down 

to room temperature and diluted with 10 times amount of water. The precipitated cellulose was 

filtered, dried under vacuum oven. The total reducing sugar (TRS) was determined by DNS 

reagent.  

Calculation for TRS yield of cellulose hydrolysis in pure ILand IL/GVL mixture 

 After hydrolysis, 10 mL of hydrolysate solution will be diluted into 100 mL with DI 

water. The solution will be filtered with PES membrane, 0.22 μm pore size, to remove unreacted 

cellulose and undissolved solid in hydrolysate solution. Filter and remained solids were dried in 

vacuum oven at 40°C for overnight. The weight of remained solids was measured. Total reducing 

sugar (TRS) yield in hydrolysate was measured with 3,5-Dinitrosalicylic acid (DNS) solution.  

  DNS assay was conducted to quantitatively analyze TRS yield in hydrolysate. DNS 

solution, which was prepared following the procedure of Miller, 0.63% dinitrosalicylic acid, 

18.2% Rochelle salts, 0.5% phenol, 0.5% sodium bisulfite, and 2.14% sodium hydroxide. A 

mixture with 0.5 mL of DNS reagent and 1 mL of a reaction sample was heated in a boiling 

water bath for 5 min, cooled to room temperature. The color intensity of the resulting mixture 

was measured using a UV-visible spectrometer at 540 nm. The concentration of TRS was 

calculated based on a standard curve obtained with glucose in figure 7.3.8. 
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 Mass balance was calculated based one below formula:  

Mass balance= 𝑀𝑀𝑠𝑠 𝑇𝑅𝑇 + 𝑀𝑀𝑠𝑠 𝑠𝑠𝜇𝑖𝑑𝑠
𝑀𝑀𝑠𝑠 𝐶𝐶𝜇𝜇𝐶𝜇𝑠𝑠𝐶

*100 

Figure 7.3.8: Calibration curve for TRS yield of cellulose hydrolysis in pure [EMIM]Cl  

 

Since the appearance of GVL will affect the activity of DNS solution. Mass balance was 

used to estimate the amount of TRS in hydrolysate. In general, after the reaction, the products 

were diluted 10 times then filtered with 0.2μm filter membrane. The solids remain were then 

dried and weighed. 

 

TRS for cellulose hydrolysis in mixture of GVL and IL: 

After the hydrolysis reaction, , after the reaction, there are appearances of HMF/furfural, 

where they are measured by using UV spectrometer at 280nm wavelength. The solids after 
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reaction are just unreacted cellulose. Therefore, the amount of TRS yield is estimated by this 

formula 

MassTRS = Masscellulose – Massunreacted solid- MassHMF/Furfural 

 

3.3.9 Membrane regeneration 

After repeated usage, membranes became degraded and were covered with dark brown 

humins. These membranes were then regenerated by soaking in different types of solvents to 

remove the humins. These solvents include 2 M NaOH, Gamma-Valerolactone (GVL), and 

Dimethylacetamide (DMA). Thereafter, the membranes were again soaked in 12 N HCl to 

regenerate the PSSA group.  

7.4 Membrane surface characterization 

The synthesized catalysts were characterized by x-ray photoelectron spectroscopy (XPS). 

Figure 7.4showed the XPS of the unmodified glass substrate, and the substrate modified with a 

SAM layer,  PSSA and PIL modified substrate with 1 hr UV initiator immobilization, 8 hr ATRP 

initiator immobilization followed by a total of 24 hr ATRP and 15 mins UV polymerization. The 

XPS spectra were recorded before immersing the modified substrates in 12 N HCl to generate 

the acid groups and generating PIL chains with Cl- anion. For the unmodified glass substrate, the 

Si 2s and 2p peaks are clear and distinctive. However, after grafting SAM layer on the surface of 

glass substrate, a strong peak of N 1s appears. Moreover, after modification with PSSA and PIL, 

the N 1s peak becomes even stronger. The ratio between C 1s and O 1s peak heights increases 

for the modified substrate compared to unmodified and SAM layer modified substrates 

indicating successful modification of the polymer chains. Appearance of S 2s and 2p confirms 

the success of ATRP modification.  
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Figure 7.4: XPS of unmodified glass substrate, SAM layer modified substrate and PIL and 
PSSA modified substrate synthesized with 1 hr UV initiator immobilization, 8 hr ATRP initiator 
immobilization, 24 hr ATRP, and 15 mins UV polymerization 
 

7.5 Results and discussion 

7.5.1 Glass substrate – Cellulose hydrolysis 

7.5.1.1 [EMIM]Cl vs [BMIM]Cl 

As shown in Figure 7.5.1, cellulose hydrolysis was conducted in ionic liquid [BMIM]Cl 

at 130°C. The glass substrate was modified at the following condition: 1 hour UV 

immobilization, 8 hours ATRP immobilization, 24 hours ATRP, and 15 minutes UV 

polymerization. At this condition, the highest TRS yield obtained was 89.7% for 7 hr hydrolysis 

reaction. With the catalyst modified at the same condition, a 96.4% TRS yield was obtained 

when the reaction was conducted in [EMIM]Cl. However, on the other hand, if glass substrate 
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was only grafted with PSSA chains without PIL, a maximum TRS yield of about 69.4% was 

obtained in [EMIM]Cl. It demonstrates that PIL chains are necessary to help dissolve the 

cellulose and enhance the catalytic activity.  Even though hydrolysis with [EMIM]Cl took longer 

time to reach the maximum TRS yield, it achieved higher TRS yield than in the corresponding 

[BMIM]Cl.   

 

Figure 7.5.1: TRS yields for cellulose hydrolysis using PSSA and PIL modified glass substrate 
in [BMIM]Cl and [EMIM]Cl solvents.  
 
 
Table 7.5.1: Mass blance for cellulose hydrolysis using PSSA and PIL modified glass substrate 
in [BMIM]Cl (top) and [EMIM]Cl (bottom) solvents 

Time (h) 6 7 7.5 8 8.5 9 
Measured TRS 

(%) 
71.1 85.5 90.1 96.4 92.9 84.3 

Solids (%) 24.5 8.9 7.1 1.1 0.8 2.2 
Mass balance (%) 95.6 94.4 97.2 98.1 93.7 86.5 

 

Time (h) 6 7 7.5 8 
Measured TRS (%) 41.9 74.2 89.7 87.9 

Solids (%) 47.0 17.0 5.9 9.2 
Mass balance (%) 88.9 91.2 95.6 97.1 
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Table 7.5.1 shows the mass balances for hydrolysis experiments that were conducted in 

[BMIM]Cl and [EMIM]Cl solvents with the immobilized catalysts.  Mass balance was calculated 

by adding the mass of the TRS and solids after reaction as no or very little HMF was detected.  

In both ILs and up to 8.5 h of reaction time, mass balances of over 90% were achieved.  At the 

beginning, the amount of solid is high because cellulose was not hydrolyzed yet. When the TRS 

yield reached to the maximum value, the amount of solid was also close to zero. For example, 

after 8.5 hours of hydrolysis in [BMIM]Cl, TRS reached to 92.9% and solid amount is only 

0.9%. However, after obtaining a maximum amount TRS yield, the amount of solids increased 

when the reaction continued. At this time, humins from glucose degradation start to form and the 

amount of solids start to increase. Mass balance reduces to less than 90% due to the formation of 

degradation productions such as HMF and furfural.   

7.5.1.2 Catalytic stability 

Cellulose hydrolysis was conducted using the PSSA and PIL modified glass substrate at 

the same condition with 8 hours of hydrolysis at 130°C in [EMIM]Cl for a total of  12 repeated 

runs, figure 7.5.2. At the end of each run, the glass substrate was quickly rinsed with DI water 

and stored in a petridish in a dry condition for the next run. The TRS yields for these repeated 

runs were all above 90% except the last run. The glucose yields are around 20%  with glucose 

assay.  
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Figure 7.5.2: Catalyst stability was tested on modified glass substrate at 130°C in [EMIM]Cl 
 
 
Table 7.5.2 Mass balance for repeated runs at 130°C in [EMIM]Cl 
 

Repeated 
time 

1 2 3 4 5 6 7 8 9 10 11 12 

Measured 
TRS (%) 

92.2 96.4 95.6 96.4 97.9 95.2 94.1 93.7 93.2 93.9 90.6 90 

Measured 
glucose (%) 

 16.7 22.3 18.9      25.8 21.2 22.24 

Solids (%) 2.0 0.7 0.3 0.9 1.7 0.2 2.1 4.0 3.7 4.3 0.6 3.2 
Mass 

balance (%) 
94.2 97.1 95.9 97.3 99.6 95.4 96.2 97.7 96.9 98.2 91.2 93.2 

 
 The catalytic activity of the immobilized catalysts were tested by performing hydrolysis 

reaction repeatedly for a total of 12 times. The TRS, some of the glucose yields as well as the 

mass balance achieved were shown in Table 7.5.2. After 8 hours of hydrolysis, not only the TRS 

yields maintained at over 90%, but also the amount of solids remain at 0.6-4.3% during  the 12 

repeated runs. A mass balance of above 91 were achieved for all the runs. Our results indicate 

that the catalyst is stable and could be reused. Moreover, it is possible to use mass balance as a 

simple estimate for the TRS yield during hydrolysis reactions when DNS measurement is not 
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possible in IL/GVL solvent mixtures.  

7.5.2 Silica membrane substrate - Cellulose hydrolysis 

7.5.2.1 Cellulose hydrolysis in different solvent and solvent mixtures  

 As shown above, ionic liquids are effective for cellulose hydrolysis with high TRS yield 

achieved. The catalysts are stable and can be used multiple times without losing its catalytic 

effectiveness. Though green and environmentally friendly, ILs are generally expensive and the 

process is not economically viable. In order to reduce the cost, other organic solvents are 

explored to replace partially the amount of IL used.  Moreover, earlier experimental results show 

that GVL can reduce the production of humin and speed up the reaction process31. Figure 7.5.3 

below is the TRS yields of cellulose hydrolysis in the mixture of IL with other cosolvents. 

 

Figure 7.5.3: TRS yields of 1% cellulose hydrolysis in a mixture of 70:30 a) 
[EMIM]Cl/acetonitrile (ACN), b) [EMIM]Cl/dimethylacetamide (DMAc), and c) [EMIM]Cl/γ-
valerolactone (GVL) with membrane substrate (T3 scientific) at 130°C. 
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Figure 7.5.3 (Cont.) 
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Table 7.5.3: TRS yields of 1% cellulose hydrolysis in a mixture of 70:30 (A) [EMIM]Cl/ACN, 
(B) [EMIM]Cl/DMA, and (C) [EMIM]Cl/GVL with immobilized catalysts on membrane 
substrate (T3 scientific) at 130°C. 
(A)Mixture of 70:30 [EMIM]Cl/ACN 

Time (h) 2 4 6 7 8 10 
Measured TRS (%) 35.9 50.7 95.7 83.2 70.1 58.9 

Measured glucose (%) 20.9 28.1 30.7 29.5 25.8 10.9 
Measure HMF/Furfural (%) 0 0 0 3.9 10.2 15.6 

Solids (%) 55.9 46.6 1.4 6.7 14.6 19.5 
Mass balance (%) 91.8 97.3 97.1 93.8 94.9 94.0 

(B)Mixture of 70:30 [EMIM]Cl/ Dimethylacetamide 

Time (h) 2 3 5 7 9 11 
Measured TRS (%) 55.5 77.6 63.1 45.8 40.0 37.7 

Measured glucose (%) 15.1 21.3 20.2 16.7 15.4  
Measured HMF/Furfural (%) 0 1.5 4.4 8.9 16.2 19.1 

Solids (%) 42.7 19.3 25.3 35.1 35.3 36.7 
Mass balance (%) 98.2 98.4 92.8 89.8 91.5 93.5 

(C)Mixture of 70:30 [EMIM]Cl/ γ-Valerolactone 

Time (h) 2 3 4 5 
Calculated TRS (%) 35.2 68.5 96.7 81.4 

Measured glucose (%) 3.4 15.7 29.1 27.9 
Measured HMF/Furfural (%) 0 0 0 3.8 

Solids (%) 64.8 31.5 3.3 14.8 
 

After replacing 30% of IL by acetonitrile (ACN), dimethylacetamide (DMAc), and γ-

valerolactone (GVL), cellulose was hydrolyzed at 130°C with the same reaction condition. The 

optimal TRS and glucose yields in 70:30 IL/ACN solvent mixture can reach 95.7% and 30.7% 

respectively after 6 hr of hydrolysis reaction. However, in 70:30 IL/DMAc, the best yields 

obtained were 77.6% and 21.3% of TRS and glucose respectively after 3 hr of reaction. In 70:30 

IL:GVL solvent, the TRS and glucose yields of 96.7% and 29.1% respectively were achieved 

after 4 hr of reaction. Once the maximum yields are reached, longer reaction time leads to the 

degradation of the sugar and formation of humin as seen from Table 7.5.3.  
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In these cases, since the amount of HMF/furfural produced were included in the 

calculated mass balance, over 90% mass balance was achieved for both IL mixed with ACN and 

DMAc solvents similar to the mass balance in pure IL as shown in Table 7.5.1 above. The 

consistent high mass balance obtained indicate that it is possible to determine the TRS yield in 

IL/GVL solvent mixtures using mass balance as a simple estimate.  

 

Figure 7.5.4: TRS yield from hydrolysis of 1% cellulose feedstock in a mixture of 50:50 
[EMIM]Cl/GVL with catalysts immobilized on membrane substrate (T3 scientific) at 130°C. 
 

Table 7.5.4: Mass balance for hydrolysis of 1% cellulose feedstock in a mixture of 50:50 
[EMIM]Cl/GVL with catalysts immobilized on membrane substrate (T3 scientific) at 130°C. 

Time (h) 1 2 2.5 3 
Calculated TRS (%) 59.6 84.8 95.6 85.1 

Measured glucose (%) 15.2 28.9 32.3 24.6 
Measured HMF/Furfural (%) 0 0 0 2.1 

Solids (%) 40.4 15.2 4.4 12.8 
 

 Along with acetonitrile and dimethylacetamide, γ-Valerolactone (GVL) can provide not 

only a higher TRS yields but also a faster conversion rate. It is also a better choice for several 

reasons. First of all, it is an organic compound generated during biomass processing. GVL is also 
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a green solvent and a potential fuel. GVL is relatively inexpensive to produce, and each year, this 

biofuel was produced at a price between 2-3 US$/gallon. GVL has gained popularity as a legal 

substitute for γ-hydroxybutyric acid, which is controlled in many parts of the world as a drug 

product as γ-hydroxyvaleric acid.  

Due to the many advantages of GVL, cellulose hydrolysis in different ratios of IL/GVL 

ranging from 90:10 to 10:90 IL/GVL was conducted. The best condition is the solvent mixture 

with 50:50 IL/GVL where 95.6% and 32.3% of TRS and glucose yields were obtained after only 

2.5 h of reaction at 130°C. The results were listed in figure and table 7.5.4. 

7.5.2.2 Hydrolysis of cellulose at 5% cellulose loading  

In order to evaluate the catalytic activity of polymeric acid catalysts synthesized, 

hydrolysis of cellulose at higher cellulose loading of 5% in IL and its mixtures with GVL was 

conducted. Results of TRS yield of cellulose hydrolysis with 5% feedstock load were mentioned 

in Figure 7.5.5 below.   
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Figure 7.5.5: Hydrolysis of 5% cellulose in a) [EMIM]Cl and its mixture with GVL at b) 50:50 
and c) 20:80 ratios using catalysts immobilized on membrane substrate (T3 scientific) at 130°C. 
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Figure 7.5.5 (Cont.) 

Table 7.5.5: Mass balance of hydrolysis of 5% cellulose in (A) [EMIM]Cl and its mixture with 
GVL at  (B) 50:50 and (C) 20:80 ratios using membrane substrate (T3 scientific) at 130°C. 
(A)Pure [EMIM]Cl 

Time (h) 1 2 3 4 5 6 
Measured TRS (%) 20.1 34.6 50.4 69.8 84.7 78.3 

Measured glucose (%) 4.6 7.8 18.7 25.4 29.9 25.2 
Measured 

HMF/Furfural (%) 
0 0 0 1.2 2.5 5.9 

Solids (%) 78.1 62.3 48 26.1 10.6 14.5 
Mass balance (%) 98.2 96.9 98.4 97.1 97.8 98.7 

(B) 50:50 [EMIM]Cl/GVL 

Time (h) 1 2 3 4 5 6 
Calculated TRS (%) 35.6 50.7 68.9 85.6 92.7 78.3 

Measured glucose (%) 8.1 17.2 23.3 27.5 32.2 24.9 
Measured HMF/Furfural 

(%) 
0 0 0 0 0.9 4.5 

Solids (%) 64.4 49.3 31.1 14.4 6.4 17.2 
(B) 20:80 [EMIM]Cl/GVL 

Time (h) 1 2 3 4 5 6 7 
Calculated TRS (%) 19.8 35.9 59.1 72.9 80.3 94.5 85.1 

Measured glucose (%) 3.3 8.3 19.2 23.5 25.1 30.2 27.7 
Measured 

HMF/Furfural (%) 
0 0 0 0 0 0 3.2 

Solids (%) 80.2 64.1 41.9 27.1 19.7 5.5 11.7 
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 The hydrolysis of cellulose at 5% loading was conducted at the same reaction condition 

as before. The highest TRS and glucose yields are only 84.7% and 29.9% respectively in pure 

[EMIM]Cl after 5 h of reaction. Further increase in the reaction time leads to the formation of 

HMF and humin. Both the TRS and glucose yields start to decrease after 5 h of reaction.  

However, in the IL/GVL mixture, the formation of HMF and humin was suppressed. For 

example, in the case of 50:50 IL/GVL, the highest TRS yield reached 92.7% with 32.2% glucose 

after 5 h of reaction. In the 20:80 IL/GVL, the TRS yield reached 94.5% with 30.2% glucose 

after 6 h of reaction. In both cases, the appearance of HMF was delayed leading to an enhanced 

TRS yield. Indeed, this phenomenon shows that γ-valerolactone is a green and inexpensive 

solvent which can be used to replace majority of the IL during biomass processing. Moreover, 

GVL appears to speed up the hydrolysis reaction and reduce the degradation of glucose. For 

example, based on Table 7.5.5, after reaching the maxima TRS yields, HMF yields were only 

5.9% and 4.5% for reactions in the pure IL and 50:50 IL/GVL solvents. HMF yield was only 

3.2% in 20:80 IL/GVL after 7 h of reaction which is 1 h after reaching the maxima TRS yield. 

Moreover, the amount of solids including unreacted cellulose and humins also decreased. The 

solid contents are 14.5%, 17.2% and 11.7% in pure IL, 50:50 IL/GVL, and 20:80 IL/GVL 

mixtures respectively.  

7.5.3 Silica membrane substrate - Real biomass (prepared in lab) hydrolysis 

Taking advantage of the high TRS yield during cellulose hydrolysis, dual polymeric acid 

catalysts immobilized on ceramic membrane substrate were used to evaluate its catalytic activity 

with actual biomass feedstock using corn purchased from the supermarket. Corn cob, kernel and 

husk were dried and grinded and were subsequently used for hydrolysis at different conditions. 

Figure 7.5.6 and Table 7.5.6 below are results of hydrolysis and their mass balance of dried and 
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grinded corn components at different temperature in various solvents.  

 

 

Figure 7.5.6: Hydrolysis of dried and grinded corn components at: a) 130°C in pure IL, b) 
100°C in 50:50 IL:GVL, c) 125°C in 50:50 IL:GVL 
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Figure 7.5.6 (Cont.) 
 

Table 7.5.6: Hydrolysis of dried and grinded corn components at: (A) 130°C in pure IL, (B) 
100°C in 50:50 IL:GVL, (C) 125°C in 50:50 IL:GVL 
 
(A) 130°C in Pure IL 

Components Cob Kernel Husk 
Time (h) 1.5 3 1.5 3 1.5 3 

Measured TRS (%) 39.6 57.6 42.3 34.6 60.2 53.5 
Solids (%) 55.6 38.5 49.2 58.8 26.8 39.1 

Mass balance (%) 95.2 96.1 91.5 93.4 97.0 92.6 
(B) 100°C in 50:50 IL:GVL 

Components Cob Kernel Husk 
Time (h) 1 2 3 1 2 3 1 2 3 

Calculated TRS 
(%) 

38.5 42.3 23.3 38.2 43.2 21.3 37.1 45.1 22.6 

Measured 
HMF/Furfural (%) 

0 0 3.5 0 0 4.6 0 0 4.1 

Solids (%) 61.5 57.7 73.2 61.8 56.8 74.1 62.9 54.9 73.3 
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Table 7.5.6 (Cont.) 

(C) 125°C in 50:50 IL:GVL 

Components Cob Kernel Husk 
Time (h) 0.5 1 2 0.5 1 2 0.5 1 2 

Calculated TRS (%) 29.3 18.9 12.3 32.8 19.0 13.5 23.8 15.2 17.3 
Measured 

HMF/Furfural (%) 
0 0.7 2.3 0 1.2 4.5 0 1.0 4.4 

Solids (%) 70.7 80.4 85.4 67.2 79.8 82.0 76.2 84.8 78.3 
 

In pure [EMIM]Cl, cob, kernel and husk were separately hydrolyzed at 130°C. At 1.5 h 

of reaction for cob and 3 h of reaction for husk, the measured TRS yield reached around 57.6% 

and 60.2% for cob and husk respectively. The TRS yield for kernel reduced from  42.3% at 1.5 h 

of reaction to 34.6% at 3 h of reaction. It is likely that higher TRS yield could be obtained for 

even shorter a reaction time. When hydrolysis was conducted at 125°C in 50:50 IL:GVL, TRS 

yields obtained were lower  than those obtained in pure IL and 130oC. GVL as a co-solvent could 

mitigate the degradation reaction, it also reduces the solubility of corn biomass leading to a 

reduced TRS yield. As was observed before, the presence of GVL increases the reaction rate as 

the TRS yields started to decrease only after 30 minutes of hydrolysis reaction at 125oC as seen 

from 7.5.6 (b). The subsequent experiments were performed in 50:50 IL:GVL at 100°C. At this 

condition, the reduced temperature slows down the reaction, but the TRS yields for all three 

biomass components reached over 40% after 2 h of reaction.   

All of these cases, the amount of solids are dominated, table 7.5.6. One of the reason is 

the corn-stovers prepared in lab did not passing through pretreatment to remove lignin. And 

lignin is a complex organic polymer which causes a major problem of preventing biomass 

hydrolysis. Another important reason that cause the amount of solids increased is appearance of 

humins when increase temperature, or reaction rate. For example, in the case of 2 h of kenel 
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hydrolysis, TRS yield reached 43.2 compared to 19.0, while solid increase from 56.8 to 79.8 

while temperature increased from 100°C to 125°C. 

Kenel with different ratio of mixture IL:GVL 

 

 

Figure 7.5.7: Hydrolysis of dried and grinded kernel corn at: a) 95°C in 50:50 IL:GVL, b) 95°C 
in 80:20 IL:GVL, c) 95°C in 100% IL 
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Figure 7.5.7 (Cont.) 
 

Table 7.5.7: Hydrolysis of dried and grinded kernel corn at: A) 95°C in 50:50 IL:GVL, B) 95°C 
in 80:20 IL:GVL, C) 95°C in 100% IL 
(A)50:50 IL/GVL 

Time (h) Calculated TRS (%) HMF (%) Furfural (%) Solid (%) 
2 40.6 6.5 1.1 51.8 
3 31.5 13.2 3.9 51.4 

(B)80:20 IL/GVL 

Time (h) Calculated TRS (%) HMF (%) Furfural (%) Solid (%) 
2 39.5 3.5 0.8 56.2 
3 46.9 6.4 1.7 45.0 

(C)Pure IL/GVL 

Time (h) Measured TRS 
(%) 

HMF 
(%) 

Furfural 
(%) 

Solid 
 (%) 

Mass balance  
(%) 

2 45.2 4.9 0.6 44.4 95.1 
3 65.3 6.4 1.7 21.5 94.9 
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Of the three corn components, kernel gave the lowest TRS yields at the same 

experimental conditions. As a result, additional conditions were explored for kernel hydrolysis  

with reduced temperature and different solvent compositions. Temperature was further decreased 

to 95°C for kernel hydrolysis in 50:50 IL:GVL mixed solvent. The TRS yield of over 40% was 

obtained after 2 h of reaction similar to the reaction conducted at 100oC as shown in Figure 7.5.6. 

Kernel hydrolysis was also conducted in 80:20 IL/GVL and in pure IL at 95oC.  The increase in 

IL ratio improves the TRS yield. The optimal TRS yields are 46% and 65.3% respectively in 

80:20 IL/GVL and pure IL solvents. The reason is likely due to the increased solubility of corn 

biomass in IL leading to a higher TRS yield. Indeed for raw corn-stovers, the maximum amount 

of carbohydrate is 60.8% 32 which similar to average of maximum of three components of raw 

corn-stovers that prepare in lab. 

7.5.4 Silica membrane substrate -  Real biomass (NREL) hydrolysis 

 7.5.4.1 Temperature at 95°C 

Mixture of IL:GVL 
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Figure 7.5.8: Hydrolysis of pretreated NREL biomass at: a) 95°C in 100% IL, b) 95°C in 80:20 
IL:GVL, c) 95°C in 50:50 IL:GVL 
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Figure 7.5.8 (Cont.) 
 
 
Table 7.5.8: Hydrolysis of pretreated NREL biomass at 95oC in: a) 100% IL, b) 50:50 IL:GVL, 
c) 80:20 IL:GVL 
(a)100% IL 

Components Acid pretreated Base pretreated Steam pretreated 
Time (h) 2 3 2 3 2 3 

Measured TRS (%) 55.3 77.8 42.8 55.9 56.6 76 
Measured HMF/Furfural (%) 0 0.8 0 1.5 0 1.2 

Solids (%) 38.5 18.3 54.7 35.9 41.7 18.7 
Mass balance (%) 93.8 95.3 97.5 90.3 98.3 93.5 

(b)80:20 IL/GVL 

Components Acid pretreated Base pretreated Steam pretreated 
Time (h) 2 3 2 3 2 3 

Calculated TRS (%) 52.1 72.6 48.9 52.8 38.2 67.9 
Measured HMF/Furfural (%) 0 0.7 0 1.3 0 1.7 

Solids (%) 47.9 26.7 51.1 45.9 61.8 30.4 
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Table 7.5.8 (Cont.) 

(c)50:50 IL/GVL 

Components Acid pretreated Base pretreated Steam pretreated 
Time (h) 2 3 2 3 2 3 
Calculated TRS (%) 52.1 70.3 48.9 62.5 38.2 52.9 
Solids (%) 47.9 29.7 51.1 37.5 61.8 47.1 
 

Pretreated corn-stovers from NREL was obtained and hydrolysis reaction was conducted 

in order to evaluate our synthesized catalysts. All three pretreated biomass, acid, base and steam 

pretreated corn-stovers samples were hydrolyzed at 95°C in [EMIM]Cl for 2 and 3 h 

respectively. The TRS yields were much higher compared to the un-pretreated corn tested 

previously. The TRS yields for all three samples reached 50-70% at 95°C as seen in Figure7.5.8 

also with the minimum amount of solids of 20-30% which made mass balance close to 100% as 

shown in Table 7.5.8. Moreover, very little HMF/furfural was observed. The TRS yields were 

calculated based on the weights of dry biomass samples. For acid pretreated sample, a TRS yield 

of 77.8% was obtained after 3 h of reaction. Less than 1% of degradation products HMF and 

furfural were detected. For base pretreated sample, a TRS yield of 55.9% was obtained after 3 

hours of reaction. About 1.5% of the degradation products were detected. For steam pretreated 

sample, a TRS yield of 76% was obtained after 3 h of hydrolysis reaction. Since acid and steam 

pretreated corn-stovers samples contain 20-30% lignin, TRS yields of over 75% are really good. 

For base pretreated sample, the relative lower TRS yields could result from the compositional 

change during base pretreatment. If significant amount of hemicelluloses and cellulose have been 

removed, a lower TRS yield is expected. Under these reaction conditions, very little HMF and 

furfural were detected indicating the catalysts are selective for the hydrolysis reaction.  

Besides 100% IL, hydrolysis reactions were also performed in IL/GVL solvent mixtures. 
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The TRS yields are in the range of 50-70% when the IL:GVL ratio varies from 80:20 to 50:50.  

 

Different cosolvent 

 

Figure 7.5.9: Hydrolysis of pretreated NREL biomass at 95°C in: a) 80:20 IL:GVL b) 80:20 

IL:water, c) 70:30 IL:water 
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Figure 7.5.9 (Cont.) 
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Table 7.5.9: Hydrolysis of pretreated NREL biomass at 95°C in: a) 80:20 IL:GVL b) 80:20 
IL:water, c) 70:30 IL:water 
 
(a) 80:20 IL:GVL 

Components Time (h) 2 3 4 5 6 7 8 9 10 
Acid pretreated Calculated TRS 

(%) 
26.7 42.1 63.5 55.1 43.2 31.6 18.3 11.3 6.9 

Measured HMF 
(%) 

0 0 2.1 6.2 15.5 20.7 28.2 25.9 20.1 

Measured 
Furfural (%) 

0 0 0.6 3.9 10.1 13.5 21.1 18.1 16.3 

Solids (%) 73.3 57.9 33.8 34.8 31.2 34.2 32.4 44.7 56.7 
Base pretreated 

 
Calculated TRS 

(%) 
19.8 28.7 50.2 70.6 55.3 43.9 33.4 21.7 14.5 

Measured HMF 
(%) 

0 0 0 1.1 8.7 15.9 20.9 29.3 23.7 

Measured 
Furfural (%) 

0 0 0 0.6 3.9 11.0 18.8 24.3 19.8 

Solids (%) 80.2 71.3 49.8 27.7 32.1 29.2 26.9 24.7 42.0 
Steam pretreated Calculated TRS 

(%) 
23.7 35.1 55.9 47.2 34.1 28.9 21.3 14.4 11.3 

Measured HMF 
(%) 

0 0 0.8 6.8 11.3 18.7 22.2 27.6 25.1 

Measured 
Furfural (%) 

0 0 0.3 3.2 5.9 8.5 12.3 16.5 14.2 

Solids (%) 76.3 64.9 43.0 42.8 48.7 43.9 44.2 41.5 49.4 
 

 (b)80:20 IL/Water 

Components Time (h) 2 3 4 5 6 7 7.5 8 
Acid 

pretreated 
Measured TRS (%) 28.9 36.8 43.9 55.6 59.3 65.2 62.5 61.2 
Measured HMF (%) 0 0 0 0.5 0.9 2.1 2.1 3.2 

Measured Furfural (%) 0 0 0 0.2 0.5 1.1 1.2 1.8 
Solids (%) 65.9 60.1 57.2 40.1 36.9 35.2 31.1 29.2 

Base 
pretreated 

 

Measured TRS (%) 33.5 40.4 49.2 57.8 65.9 72.6 70.2 69.1 
Measured HMF (%) 0 0 0 0 0.8 1.5 1.7 2.6 

Measured Furfural (%) 0 0 0 0 0.2 0.6 0.8 1.2 
Solids (%) 62.5 55.7 49.2 38.2 30.2 21.4 24.9 22.8 

Steam 
pretreated 

Measured TRS (%) 29.2 35.1 40.5 49.2 52.3 56.1 53.9 52.3 
Measured HMF (%) 0 0 0 0 0 0.7 0.9 1.7 

Measured Furfural (%) 0 0 0 0 0 0.3 0.6 0.9 
Solids (%) 65.9 62.3 55.7 47.9 42.9 38.8 39.6 41.5 
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Table 7.5.9 (Cont.) 

(C)70:30 IL/Water 

Components Time (h) 7 8 9 10 15 17 19 
Acid 
pretreated 

Measured TRS (%) 21.1 27.9 31.2 35.7 58.2 60.1 57.2 
Measured HMF (%) 0 0 0 0 0.8 1.2 2.3 
Measured Furfural (%) 0 0 0 0 0.2 0.6 1.2 
Solids (%) 72.9 73.6 63.5 60.1 35.8 34.5 33.9 

Base 
pretreated 
 

Measured TRS (%) 19.9 26.1 32.5 37.5 62.6 69.1 65.8 
Measured HMF (%) 0 0 0 0 0.3 1.8 2.9 
Measured Furfural (%) 0 0 0 0 0 0.4 0.9 
Solids (%) 76.9 69.2 65.2 60.0 34.4 25.7 28.8 

Steam  
pretreated 

Measured TRS (%) 20.6 24.4 28.3 33.1 46.2 54.4 50.9 
Measured HMF (%) 0 0 0 0 0 0.8 1.9 
Measured Furfural (%) 0 0 0 0 0 0.2 1.1 
Solids (%) 68.9 72.5 68.2 63.5 50.0 42.1 43.2 

 

When hydrolysis reaction was taken place in the mixture of IL:GVL, the TRS yield 

decreases slightly where the time takes to reach the maximum TRS yield becomes slightly 

longer. In Figure 7.5.8, the TRS yield for acid treated biomass in pure IL was 77.8% after 3 h of 

reaction. While the TRS yield decrease to 63.5% when 20% of IL was replaced by GVL after 4 h 

of reaction. Even though GVL can help reduce the humins and the production of HMF/Furfural, 

replacing IL with GVL also decreases the solubility of biomass in the solvent. This leads to a 

somewhat lower TRS yield than in 100% IL and longer reaction time. When water was used as a 

co-solvent, the reaction time becomes much longer. A reasonable TRS yield (50-70%) can still be 

obtained even when 30% of IL was replaced by water even though the reaction time increases to 

17 h to reach the maximum yield. For example, in Figure and Table 7.5.9, the maximum TRS 

yields of base pretreatment biomass were 70.6%, 72.6%, 69.1% in 80:20 IL:GVL, 80:20 IL:H2O, 

70:30 IL:H2O after 5, 7 and 17 h of reaction respectively. 

Indeed, replace part of IL with co-solvents may reduce the hydrolysis reaction rate. 

However, since the reaction rate is also controlled by temperature, NREL biomass in different 
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mixture of co-solvents at 100°C and 105°C have been investigated  

7.5.4.2 Temperature at 100°C 

Cosolvent comparison: GVL vs. Water and increase in concentration of cosovlent 

 

Figure 7.5.10: Hydrolysis of pretreated NREL biomass at 100°C in: a) 80:20 IL:GVL and  b) 
IL:water, c) 70:30 IL:GVL d)  70:30 IL:water, e) 60:40 IL:GVL f) 50:50 IL:GVL 
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Figure 7.5.10 (Cont.) 

0

10

20

30

40

50

60

70

2 3 4 5 6 7

Y
ie

ld
 (%

) 

Reaction time (h) 

TRS yield for  dissolved NREL biomass in 80:20 IL:Water at 
100°C 

Atech silica disc membrane 
acid pretreated steam pretreated base pretreated

0

10

20

30

40

50

60

70

2 3 4 5 6 7

Y
ie

ld
 (%

) 

Reaction time (h) 

TRS yield for  dissolved NREL biomass in 70:30 IL:GVL at 
100°C 

Atech silica disc membrane 
acid pretreated steam pretreated base pretreated



197 
 

 

 

Figure 7.5.10 (Cont.) 
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Figure 7.5.10 (Cont.) 
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Table 7.5.10: Hydrolysis of pretreated NREL biomass at 100°C in: a) 80:20 IL:GVL and  b) 
IL:H2O, c) 70:30 IL:GVL d)  70:30 IL:H2O, e) 60:40 IL:GVL f) 50:50 IL:GVL 
(a) 80:20 IL:GVL 

Components Time (h) 2 3 4 5 6 
Acid pretreated Calculated TRS (%) 30.7 55.6 74.9 62.1 55.4 

Measured HMF (%) 0 0 1.2 7.6 13.2 
Measured Furfural (%) 0 0 0.9 3.9 6.5 
Solids (%) 69.3 44.4 23.0 26.4 24.9 

Base pretreated 
 

Calculated TRS (%) 20.9 45.7 62.5 71.1 62.3 
Measured HMF (%) 0 0 0.7 1.1 4.2 
Measured Furfural (%) 0 0 0.3 0.6 1.6 
Solids (%) 79.1 54.3 36.5 27.2 31.9 

Steam pretreated Calculated TRS (%) 15.7 30.5 43.1 56.7 44.2 
Measured HMF (%) 0 0 0 0.9 2.1 
Measured Furfural (%) 0 0 0 0.3 1.0 
Solids (%) 84.3 69.5 56.9 42.1 52.7 

(b)80:20 IL:H2O 

Components Time (h) 2 3 4 5 6 7 
Acid 
pretreated 

Measured TRS (%) 20.1 32.4 40.1 51.5 63.2 56.7 
Measured HMF (%) 0 0 0 0 1.3 4.7 
Measured Furfural (%) 0 0 0 0 0.6 2.1 
Solids (%) 76.8 65.2 59.9 44.5 30.2 34.5 

Base 
pretreated 
 

Measured TRS (%) 15.6 28.2 39.0 50.1 64.9 57.2 
Measured HMF (%) 0 0 0 0 2.1 6.7 
Measured Furfural (%) 0 0 0 0 0.9 3.2 
Solids (%) 80.9 70.0 60.2 47.3 30.1 29.9 

Steam 
pretreated 

Measured TRS (%) 11.2 21.7 29.4 39.5 53.1 46.7 
Measured HMF (%) 0 0 0 0 0.7 2.6 
Measured Furfural (%) 0 0 0 0 0.3 1.0 
Solids (%) 85.5 76.1 68.2 59.9 43.1 47.4 

 

 

 

 

 

 

 



200 
 

Table 7.5.10 (Cont.) 

(c) 70:30 IL:GVL 

Components Time (h) 2 3 4 5 6 7 
Acid treated Calculated TRS (%) 26.1 33.9 41.5 52.7 65.0 59.6 

Measured HMF (%) 0 0 0 0 0.9 3.6 
Measured Furfural (%) 0 0 0 0 0.2 1.5 
Solids (%) 73.9 66.1 58.5 47.3 33.9 35.3 

Base treated 
 

Calculated TRS (%) 22.2 29.7 36.8 49.5 62.4 58.1 
Measured HMF (%) 0 0 0 0 1.8 3.0 
Measured Furfural (%) 0 0 0 0 0.5 1.8 
Solids (%) 77.8 70.3 63.2 50.5 35.3 37.1 

Steam treated Calculated TRS (%) 15.1 23.6 31.2 39.5 50.7 47.2 
Measured HMF (%) 0 0 0 0 0.8 2.1 
Measured Furfural (%) 0 0 0 0 0.4 0.9 
Solids (%) 84.9 76.4 68.8 60.5 48.1 49.8 

(D) 70:30 IL:H2O 

Components Time (h) 6 8 10 12 13 14 15 16 
Acid treated Measured TRS (%) 28.2 33.3 40.9 48.2 55.1 63.6 60.0 56.4 

Measured HMF (%) 0 0 0 0 0 0.2 1.2 3.5 
Measured Furfural (%) 0 0 0 0 0 0.6 2.4 4.8 
Solids (%) 68.8 62.3 57.1 45.0 40.2 31.5 32.3 31.1 

Base treated 
 

Measured TRS (%) 27.1 34.2 41.4 46.1 53.7 60.2 58.3 55.6 
Measured HMF (%) 0 0 0 0 0 0.6 2.1 3.6 
Measured Furfural (%) 0 0 0 0 0 0.5 1.8 3.1 
Solids (%) 70.1 62.3 55.1 50.2 44.1 32.8 31.0 32.5 

Steam 
treated 

Measured TRS (%) 11.5 17.1 24.6 31.2 37.9 45.5 41.7 38.1 
Measured HMF (%) 0 0 0 0 0 0.3 1.6 2.9 
Measured Furfural (%) 0 0 0 0 0 0.6 1.5 2.3 
Solids (%) 81.5 79.2 71.5 65.8 58.9 49.0 50.1 51.3 
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Table 7.5.10 (Cont.) 

(e) 60:40 IL:GVL 

Components Time (h) 2 3 4 5 6 7 
Acid treated Calculated TRS (%) 24.3 31.1 37.5 48.6 62.9 58.3 

Measured HMF (%) 0 0 0 0 0.7 2.8 
Measured Furfural (%) 0 0 0 0 0.3 1.2 
Solids (%) 75.7 68.9 62.5 51.4 36.1 37.7 

Base treated 
 

Calculated TRS (%) 21.1 28.2 35.4 48.9 62.5 57.8 
Measured HMF (%) 0 0 0 0 1.6 2.8 
Measured Furfural (%) 0 0 0 0 0.5 1.5 
Solids (%) 78.9 71.8 64.6 51.1 35.4 37.9 

Steam 
treated 

Calculated TRS (%) 13.4 22.1 30.0 37.6 48.7 45.9 
Measured HMF (%) 0 0 0 0 0.7 1.8 
Measured Furfural (%) 0 0 0 0 0.3 0.7 
Solids (%) 86.6 77.9 70.0 62.4 50.3 51.6 

(f) 50:50 IL:GVL 

Components Time (h) 2 3 4 5 6 7 8 
Acid treated Calculated TRS (%) 22.5 27.1 34.2 43.2 52.9 62.5 59.5 

Measured HMF (%) 0 0 0 0 0 1.8 3.6 
Measured Furfural (%) 0 0 0 0 0 0.7 1.9 
Solids (%) 77.5 72.9 65.8 56.8 47.1 34.0 35.0 

Base treated 
 

Calculated TRS (%) 18.9 25.6 32.7 40.2 49.5 59.0 57.2 
Measured HMF (%) 0 0 0 0 0 2.3 3.9 
Measured Furfural (%) 0 0 0 0 0 1.2 1.8 
Solids (%) 81.1 74.4 67.3 59.8 50.5 37.5 37.1 

Steam treated Calculated TRS (%) 12.6 18.2 25.9 33.1 40.8 47.9 44.2 
Measured HMF (%) 0 0 0 0 0 1.8 2.9 
Measured Furfural (%) 0 0 0 0 0 2.9 1.3 
Solids (%) 87.4 81.8 74.1 66.9 59.2 49.6 51.6 

 

At 95°C as seen in Figure 7.5.9, higher TRS yields comparable to 90oC can be reached 

However, the reaction time to reach maximum TRS yields remains long though shorter than the 

corresponding time at 90oC. Therefore, temperature was further increased to 100°C to speed up 

the reaction. At the condition of 80:20 IL/GVL, if TRS yield for base treated NREL biomass was 

70.6% after 6 hours at 95oC, the TRS yield was 71.1% after only 5 hour of hydrolysis at 100oC, 

as shown in Figure and Table 7.5.10. In addition, in mixture of IL:GVL, when the ratio of GVL  
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to IL increases, for example, 80:20, 70:30, 60:40, and 50:50, the TRS yields becomes lower with 

longer reaction time to reach maximum yield. For example, in the case of acid treated biomass, 

the TRS yield is 74.9% in 80:20 IL:GVL after  4 h of reaction, 65.0% in 70:30 IL:GVL after  6 h 

of hydrolysis, 62.9% in 60:40 IL:GVL after 6 h of reaction, and 62.5% in 50:50 IL:GVL after 7 h 

of hydrolysis. Increasing the amount of GVL slows down the reaction and reduces the TRS yield. 

Moreover, even though GVL is a green and bio-compatible solvent, it is not the most 

favorable compare to water. Since the reaction time is long, the temperature was raised to 100°C 

in order to obtain good TRS yield with shorter time. Similar to the case of 80:20 IL/Water. if 

TRS yield for base treated NREL biomass was 72.6% after 7 hours, the TRS yield was 64.9% 

after only 6 hour of hydrolysis And with those conditions, mixture of 70:30 IL:Water, the 

maximum TRS yield for those NREL pretreated biomass could be reached at 14 h compared to 

17 h when temperature was 95°C. Again, the base and acid pretreated biomass can give higher 

TRS yield compare to steam pretreated sample since the lignin contained was lower in acid and 

base pretreated samples. Moreover, as mentioned above, hydrolysis yield and reaction time in 

mixture of IL:GVL is higher and shorter than in IL:H2O. 

7.5.4.3 Temperature at 105°C 

Cosolvent comparison: GVL vs. Water  and increase in concentration of water 
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Figure 7.5.11: Hydrolysis of pretreated NREL biomass at 105°C in: a) 80:20 IL:GVL and  b) 
80:20 IL:water, c) 70:30  IL:water 
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Figure 7.5.11 (Cont.) 
 

Table 7.5.11: Hydrolysis of pretreated NREL biomass at 105°C in: a) 80:20 IL:GVL and  b) 
80:20 IL:water, c) 70:30  IL:water 
(a) 80:20 IL:GVL 

Components Time (h) 2 3 4 5 6 7 8 9 10 
Acid treated Calculated TRS (%) 62.6 51.2 35.9 27.2 19.3 16.3 12.1 9.6 5.8 

Measured HMF (%) 1.2 7.9 17.2 22.9 25.1 26.7 20.1 17.3 14.8 
Measured Furfural 
(%) 

0.7 6.0 12.1 17.3 20.5 19.2 15.6 13.3 10.2 

Solids (%) 35.5 34.9 34.8 32.6 33.5 39.4 52.2 59.8 69.2 
Base treated 
 

Calculated TRS (%) 65.7 60.3 51.1 35.7 24.9 17.3 15.1 13.2 10.4 
Measured HMF (%) 0.8 5.9 11.9 19.2 23.9 27.8 29.3 24.9 20.1 
Measured Furfural 
(%) 

0.4 4.1 7.3 15.2 19.7 24.3 24.3 21.1 17.2 

Solids (%) 33.1 29.7 29.7 29.9 31.5 30.6 31.3 40.8 52.3 
Steam 
treated 

Calculated TRS (%) 20.9 32.7 40.1 33.2 27.5 20.7 16.8 14.1 10.5 
Measured HMF (%) 0 0 2.1 5.4 8.1 10.5 13.5 15.9 14.2 
Measured Furfural 
(%) 

0 0 0.9 3.2 4.9 7.7 9.3 11.8 8.9 

Solids (%) 79.1 67.3 56.9 58.2 59.5 61.1 60.4 58.2 66.4 
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Table 7.5.11 (Cont.) 

(b) 80:20 IL:H2O 

Components Time (h) 5 6 7 8 9 10 11 13 14 15 16 
Acid treated Measured TRS 

(%) 
42.8 50.1 66.2 62.6 55.3 44.5 35.1 26.1 15.6 9.9 5.2 

Measured HMF 
(%) 

0 0 0.3 2.1 4.3 7.9 15.1 21.2 23.6 26.7 28.1 

Measured 
Furfural (%) 

0 0 2.4 7.2 8.9 11.7 16.5 20.3 25.6 19.1 32.5 

Solids (%) 53.8 47.2 29.1 26.2 29.5 31.4 30.3 29.2 31.9 32.1 33.3 
Base treated 
 

Measured TRS 
(%) 

39.2 44.1 56.7 55.2 48.2 40.1 37.1 30.2 24.4 18.7 10.5 

Measured HMF 
(%) 

0 0 0 1.6 2.5 4.3 8.1 12.5 16.7 19.2 22.8 

Measured 
Furfural (%) 

0 0 1.2 5.9 8.9 12.0 14.6 18.1 22.2 25.7 28.5 

Solids (%) 57.1 51.2 39.3 34.7 37.4 40.4 36.5 35.9 32.1 31.0 34.6 
Steam 
treated 

Measured TRS 
(%) 

25.5 33.1 40.6 48.7 43.2 39.4 32.5 27.5 25.4 21.1 17.5 

Measured HMF 
(%) 

0 0 0 0.4 1.2 2.3 5.2 7.0 8.9 10.5 13.1 

Measured 
Furfural (%) 

0 0 0 2.2 3.8 5.1 7.9 10.8 12.7 15.6 18.9 

Solids (%) 70.5 61.0 52.4 40.1 45.9 49.2 50.8 51.7 49.1 48.5 45.6 
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Table 7.5.11 (Cont.) 

(c) 70:30  ILH2O 

Components Time (h) 7 8 9 10 11 13 14 15 16 17 
Acid treated Measured 

TRS (%) 
42.1 53.4 65.2 51.2 45.5 18.2 18.5 17.1 15.6 9.3 

Measured 
HMF (%) 

0 0 2.3 7.9 12.2 18.8 19.2 20.2 10.9 22.2 

Measured 
Furfural (%) 

0 0 1.4 4.1 6.7 31.1 29.5 34.5 36.6 39.3 

Solids (%) 55.9 44.2 29.1 31.5 30.6 27.3 28.9 25.4 22.3 25.6 
Base treated 
 

Measured 
TRS (%) 

43.4 55.2 66.9 53.3 46.1 22.6 19.5 18.5 14.2 9.7 

Measured 
HMF (%) 

0 0 3.1 8.2 13.9 19.9 22.2 24.1 26.1 27.2 

Measured 
Furfural (%) 

0 0 1.1 5.3 7.8 27.3 29.5 29.9 33.8 35.7 

Solids (%) 53.3 41.4 27.6 30.2 29.3 27.1 24.5 22.9 21.0 23.7 
Steam 
treated 

Measured 
TRS (%) 

32.1 37.6 46.2 41.9 34.1 25.1 22.6 19.9 14.9 11.2 

Measured 
HMF (%) 

0 0 1.7 4.4 9.2 11.2 10.9 15.1 15.2 17.9 

Measured 
Furfural (%) 

0 0 0.6 2.3 4.9 12.7 13.1 16.9 17.7 19.5 

Solids (%) 65.9 59.1 47.2 46.3 42.1 45.6 48.9 45.5 47.1 48.2 
 

In Figure and Table 7.5.11, temperature was then again increased to 105°C in order to 

shorten the reaction time. In the case of 80:20 IL:GVL, the hydrolysis time was only 2 h to reach 

the maximum TRS yield for base pretreated NREL biomass.  For example, TRS reached 71.1% 

after 5 h of hydrolysis in base treated biomass at 100oC, whereas at 105°C, the maximum TRS 

yield reach was 65.7% only after 2 h of hydrolysis. However, since the reaction was too fast, the 

TRS yield quickly reached maximum and then started to reduce due to the formation of HFM, 

levulinic acid or other degradation products. In the condition of 80:20 and 70:30 IL:H2O as 

shown in Figures 7.5.9, and 7.5.11, for 95°C, after 7h (80:20 IL:Water) and 17h (70:30 

IL:Water), the TRS yields range are about 69-72%. However, where the temperature is 10°C 
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higher, the TRS yields range are about 65-66% after 7h (80:20 IL:Water) and 9h (70:30 

IL:Water). 

7.5.5 Hydrolysis result comparison as changing in temperature 

 

 

Figure 7.5.12: Temperature effect on hydrolysis of acid pretreated NREL biomass at 95°C, 
100°C, and 105°C in: a) 80:20 IL:water, b) 70:30  IL:water 
 

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18

T
R

S 
yi

el
d 

(%
) 

Reaction time (h) 

TRS yield for NREL acid treated biomass in 80:20 IL:Water 
Atech silica disc membrane 95°C

100°C

105°C

0

10

20

30

40

50

60

70

0 5 10 15 20

T
R

S 
yi

el
d 

(%
) 

Reaction time (h) 

TRS yield for NREL acid treated biomass in 70:30 IL:Water 
Atech silica disc membrane 95°C

100°C

105°C



208 
 

 Temperature effect was then proven with hydrolysis of NREL acid treated biomass in 

mixture of 80:20 and 70:30 IL:Water. If in 80:20 IL:Water, the effect of temperature between 

95°C to 105°C is not a great deal. Then in 70:30 IL:Water, the effect is more visible. For 

example, when the temperature increased from 95°C to 105°C, the yield was increased from 60 

to 65%. Reaction time in order to reach maximum TRS yield was decreased from 17 h to 9 h.   

When water was used as co-solvent with IL as a ratio 70:30 IL:Water, the NREL 

pretreated biomass was then hydrolyzed at 95°C in order to obtain the best TRS yield. After 17h 

of hydrolysis, the base pretreated sample could give almost 70%, where acid pretreated and 

steam pretreated samples gave lower yield in TRS, 60% and 54%. Since the reaction time is 

long, the temperature was raised to 105°C to the hope of obtain good TRS yield with shorter 

time.  And with those conditions, the maximum TRS yield for those NREL pretreated biomass 

could be reached at 9h compared to 17h when temperature was 95°C. Again, the base and acid 

pretreated biomass can give higher TRS yield compare to steam pretreated sample since the 

lignin contained was lower in acid and base pretreated samples. 

7.6 Conclusion 

Dual polymeric solid acid catalysts for cellulose or biomass hydrolysis were successfully 

synthesized. Catalysts are consisted with PSSA and PIL which grafted randomly from the surface 

of membrane substrates. PSSA chains are immobilized on surfaces of membrane substrates in 

order to catalyze biomass hydrolysis. PIL chains are neighborly grafted from the surface to help 

solubilize lignocellulosic biomass and enhance the catalytic activity. Those two nanostructure 

polymer chains can be tuned independently the ratio as well as the chain length and chain density 

in order to obtain the best hydrolysis reaction results with optimize catalytic activity. It has been 

proven that the hydrolysis of cellulose can be reached to 96.4% TRS yield. Moreover, the 
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activity of the catalyst was stable during twelve times of repetition where the TRS yield was still 

able to reach more equal or more than 90%.  In additional, co-solvents are used to replace part of 

expensive IL for economic purpose. Among Acetonitrile, Dimethylacetamide, and Gamma-

valerolactone, GVL not only is a green solvent, but also is able to give a high TRS yield, 96.7%. 

Amount of GVL can be increased till 50% of total volume of the solution and still be able to 

obtain high TRS yield, over 95%. Higher concentration of cellulose feedstock loaded was 

applied and also give a high yield TRS, 90%. Corn-stovers, which prepared in lab and obtained 

from NREL, were used as feedstock. The highest TRS yield can be reached from 60-70% even 

though water was used as cosolvent.  Temperature effect was proven with hydrolysis of NREL 

acid treated biomass in mixture of IL:Water. The higher temperature will shorter the time of 

hydrolysis also higher in max TRS yield since the activity of the catalyst will decrease in water 

when time increases.  
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Chapter 8 

Conclusions and future work 

Indeed, improvements and advances in membrane technology over the past few decades 

have been proven by the expanding of their application in various industrial fields, for example, 

water treatment and recovery, production of chemicals and biofuels, food and beverage industry, 

biopharmaceutical.  Membrane with specific properties, such as materials, morphology, porosity, 

will be synthesized depending on of demand or application. For example, inversed colloidal 

crystal membrane has been casted in order to apply for biopharmaceutical use base on its special 

properties. Overcome the limitation of packed bed, adsorptive membrane can be used for 

removing contaminants. Membrane based HIC afford all the advantages of membrane 

adsorption, for example, dynamic capacity is independent of flow rate, higher throughput and 

easy to scale up. ICC membrane substrate adopts a macro porous material with high porosity and 

highly interconnected, periodical and uniform pore structure, which improve a pressure drop and 

constant flow through the membrane. Moreover, the surface area of ICC membrane is very high 

and controllable which is helpful for solute binding capacity. Base on binding and elute 

mechanism, same as resin based hydrophobic interaction chromatography, ICC membrane is 

able to reach high protein binding capacity and recovery compared to other commercial 

membrane, PVDF, with the same pore size.  

 Moreover, membrane properties and its applications are able to improved and expanded 

by surface modification. Microporous regenerated cellulose membrane has been grafted with 

vinylcaprolactam from the surface of the membrane to become a responsive membrane, which is 

able to change its physiochemical properties due to the environmental conditions. Poly 

vinylcaprolactam is an environmental temperature responsive polymer. It is a bio-compatible and 
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has lower critical solution temperature in DI water around 32°C. Above the LCST, the poly-VCL 

will dehydrate, contract and collapse promoting proteins adsorption. On the other hand, it will 

hydrate, expand and swell promotes proteins desorption when the temperature is below the 

LCST. Controllable of polymer chain length and density polymerization technique, ATRP, is 

used to graft poly-VLC from the surface of the membrane. Also base on bind and elute mode, 

this membrane adsorption is able to obtain good binding capacity and very high yield of 

recovery, which is every useful for proteins purification and separation in biopharmaceutical.  

 Additionally, taking advantages from the limitation of common catalyst, expensive and 

slow activity of enzyme and corrosion of mineral acid, duel polymeric solid acid catalyst are 

grafted from the surface of ceramic membrane substrate for biofuels and chemicals production. 

Poly sulfonic acid is grafted from the surface of the membrane by using ATRP polymerization in 

order to hydrolyze the biomass where poly ionic liquid is grafted neighborly with PSSA group 

by UV initiated polymerization to help to solubilize the catalyst and enhance the catalyst activity. 

Those two catalysts are grafted independently to help to control polymer chain density and chain 

length of each polymer. Ionic liquid is called a green solvent and effective solvent for dissolving 

biomass since it has ability to break the hydrogen bonds of biomass. However it is expensive; 

therefore, gamma-valerolactone is used as co-solvent in order to replace part of ionic liquid. 

Modified catalyst membrane is stalely obtain more than 90% of total reducing sugar yield for 

cellulose after twelve time of repetition.  Not just stop at hydrolyzing cellulose, catalyst is also 

active for real biomass, corn-stovers. For example, for without pretreatment corn-storvers, TRS 

yield can be reach to 60% where it will be 70% for pretreatment corn-stovers biomass.  

 Even though, membrane is very useful for separation and filtration, it still suffers from 

permeate flux decline caused by membrane fouling. Membrane fouling causes negative effects 
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on the performance of the membrane when the solution or particle compounds deposit on the 

membrane surface or in the pores. Indeed, in beverage industry, beer industry, microfiltration 

membrane has been used commonly for filtration. Appearance of polyphenol which creates a 

crosslink with protein molecules, insoluble aggregates due to hydrophobic and hydrogen boning 

interaction, can bind and foul the membrane.  However, polysaccharides are able to break and 

disrupt the binding of polyphenols to proteins by molecular association between the 

polysaccharides and polyphenols. Amount of polysaccharides is very important because it can 

help the flux less severe or bring back fouling situation. Confocal laser scanning microscopy is a 

recent technology that has become an important new tool for localize the fouling in the 

membrane.  

 Future work 

After successfully modified a responsive membrane or grafted and ICC membrane for 

hydrophobic interaction for protein separation and purification with bovine serum albumin 

(BSA), lysozyme, and immunoglobulin G (IgG4), different proteins or additional number of 

proteins for separation and purification can be worth to investigate. Sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS page) can be used to qualify the purity of the protein 

and make sure there are no other proteins eluting at the same time. Binding capacity and 

recovery can be calculated after that. Hydrophobic interaction not only depends on type of ligand 

but also on type of binding salts solution. Since the LCST of the ligand is influenced by salt type 

and concentration, ligand could play an important role on salt effect studies. Thus exploring 

ligand effects which strongly depends on salt type and concentration is also very important. 

LCST change of responsive polymer on surface as the polymer brush is very interesting to 

explore.  
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ICC membrane originally has a very high binding capacity; however, the recovery is not 

high compare to responsive membrane. Casting the membrane with responsive ligand, PVCL, 

with ICC technique will be very interesting to explore for HIC. Responsive membrane has a 

good start-up when its binding and recovery yield is high. Even though the binding capacity is 

not much higher than other commercial membrane but the results could be modified. One of the 

reasons that it does not have a high binding capacity is its low porosity. If the membrane base 

can be changed to different materials, for example nano fiber membrane, the yield will be 

greater. The design of membrane holder is also important. It needs to be well designed so the 

solution is able to pass through the total membrane surface but not part of the membrane.  

For catalytic membrane, the modification conditions can be more optimized in the future. 

Since the previous method was developed for cellulose hydrolysis with glass substrate and 

Titanium oxide disc membranes. Depending on our purpose, cellulose hydrolysis or dehydration, 

or different type of membrane surface, we can have a different optimization condition for 

modification. Modification condition here can be varied since we have two nanostructures of 

grafted polymer, PSSA and PIL. The ratio between chain density and chain length for each 

component or both components can give different results for cellulose hydrolysis and 

dehydration. Therefore, optimization of conditions for specific membrane substrate and purpose 

of use is very important and necessary. Generally, one of the traditional technique for changing 

polymer chain density and chain length is varying time and monomer solution concentration. 

However, chemistry can also be changed if it’s necessary in order to obtain better results. 

 After grafting the catalyst from the surface of the membrane, it can be used for membrane 

reactor application. Basically, when a mixture of cellulose in IL/Water is added into the reactor, 

cellulose will be hydrolyzed and dehydrated by the catalyst. Then sugars, water and other 
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products will permeate through the membrane where IL and solvents will be rejected inside the 

reactor to continue the reaction. On the other hand, IL can be purified and recycled for the next 

runs of hydrolysis and dehydration.   

  5-HMF is an intermediate product for biofuel. HMF was mostly made from fructose or 

glucose, and the feedstock is costly if processing this way. Multiple studies have been reported 

for making HMF with different types of catalysts, liquid acids, solid acids, or metals. However, 

liquid acids give low yield. In the other hand, metal catalyst could be able to give very high yield 

but it costly and not environmental friendly. Indeed, the solid catalyst has a potential for HMF 

production study because it is active and environmental friendly compared to those previous 

catalysts. And the aim for this study is to reach the HMF production yield close to the yield from 

metals catalysts. Moreover, IL is very expensive. Market price is approximately $1/1gr. Recycled 

IL after hydrolysis is also economically helpful.  

 In the HMF production process, higher temperature compared to hydrolysis condition is 

recommended in order to speed up the reaction rate. On the other hand, applying high 

temperature also increases the appearance of humins during the process. Therefore, beside IL, 

co-solvents will be used not only suppressed the appearance of humins but also economic 

purpose. Acetonitrile, Dimethylacetamide (DMA), and Gamma-Valerolactone (GVL) were 

investigated as an effective solvent to decrease the appearance of humins. Mixtures of three 

different solvents are also worth to investigate. Temperature will be kept the same at 135°C 

where the concentration of co-solvent in IL will be varied. HMF yield will be measured by UV 

spectrometer, high performance liquid chromatography (HPLC), and Mass Spectrometry (MS). 
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