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Abstract 

Over 70% of the world’s energy consumption is provided by fossil fuels and with those reserves 

depleting at a fast rate, alternative energy sources or methods are needed to support the world’s 

energy needs. This research was done in an attempt to make it more economically feasible to 

produce fuel products, such as bio-diesel, from the upgrading of bio-oil obtained from the 

pyrolysis of biomass waste material such as sawdust. The high water and oxygenated compound 

content of bio-oil make it undesirable for fuel use; however, two methods involving surface 

modified commercial membranes were utilized in hopes of overcoming these problems: 

electrodialysis and a pressure-driven system. Nafion 117 membrane pores were expanded and 

then the membrane was subjected to bio-oil at pressures up to 700 psi with the goal of removing 

the water. Although the pores were enlarged, removing water through this method was 

unsuccessful. Electrodialysis was used in an effort to remove carboxylic acids from bio-oil, 

which are known to cause storage instability. The membranes used for this separation were 

Neosepta CMX and AMX commercial membranes. Modifications to the AMX membrane 

surface were made by adding crosslinked polyethylenimine groups to the surface of the 

membrane and its performance was compared to that of the unmodified one. A XPS and FTIR 

analysis proved the modified membrane to be more resistant to bio-fouling.   
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I. Introduction 

With depleting fossil fuel reserves, bio-oil is gaining a considerable amount of attention as a 

potential energy source, partly due to the several advantages of using bio-oil over fossil fuels. 

One advantage of using bio-oils is that it is greenhouse gas neutral (1), meaning the overall 

amount of greenhouse gasses: carbon dioxide and carbon monoxide, does not increase in the 

atmosphere upon combustion. In fact, the bio-char byproduct of the production of pyrolysis oil 

may even help with carbon sequestration (2). Other advantages of using bio-oil as an energy 

source is that is does not emit sulfur oxides and also has a lower emission of nitrogen oxides than 

that of fossil fuels (3). This favors bio-oil in that it can aid with the reduction of at least two 

criteria air pollutants the Environmental protection agency is striving to regulate and reduce (4). 

Given that virtually all organic matter can be pyrolyzed (3), and the fact that the 2.3 billion acres 

of United States (US) land are comprised of approximately 52% of agricultural land and 35% of 

grazing area which is mostly grassland pasture and grazed forests (5), there is a potential in 

energy feedstock security as opposed to the present system. Though bio-oil seems to be a 

promising replacement for fossil fuels, its water content and other oxygenated organic 

compounds give it inferior fuel properties and cause, during storage, its degradation over time.   

Bio-oil is a mixture of hundreds of different compounds which, upon separation, can be used in 

many different applications. In ancient times, Egyptians used pyrolysis to make tar for caulking 

boats and as an embalming agent (6); pyrolysis was also used to make charcoal (7). Nowadays, 

not only may it be used as a fuel, but bio-oil components may also and in fact are being used by 

some industries. For example, Red Arrow Inc. produces smoke flavor and browning agents from 

the lightest water-soluble fraction of bio-oil (8). Some of the carboxylic acids in bio-oil may also 

be useful in a variety of different industries, e.g., acetic acid, which is used to make acetates in 
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the food industry (9). Formic acid is used in the textile industry and has been found to have some 

therapeutic uses (9). Propionic acid is used in the plastic and perfume industries and butyric and 

heptanoic acids are used for synthesis of esters for food aromas (9). Ongoing research has been 

targeted at removing the water and other relatively small oxygenated compounds to improve fuel 

and storage properties, and possibly aiding in economic feasibility of the bio-oil upgrading 

process by being able to sell extracted compounds to industries such as those discussed above.   

A. Problem and proposed solution 

The research for this thesis was aimed at finding a solution for decreasing the undesirable 

properties of bio-oil due to the water and oxygenated organic compounds found in it; this was 

done through the use of surface modified commercial membranes. Two different processes were 

used for this research, a pressure-driven system where nanofiltration pore size membranes were 

used and electrodialysis which used anion and cation exchange membranes.  Figure 1 displays 

where the proposed solution would fit in the sawdust to fuel conversion process. 

 

 

Figure 1. Proposed sawdust to fuel process modification. 
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II. Theoretical  

Pyrolysis is the thermochemical decomposition, in the absence of oxygen, of large complex 

hydrocarbons in biomass to smaller simpler molecular products of gas, liquid, and char. 

Pyrolysis involves rapid heating and the temperature range at which it is carried out depends on 

the desired product; 300-650oC is used for liquid, 800-1000oC for gas, and 200-300oC for char 

(2). The initial product is made of condensable gasses, non-condensable gasses, and solid char 

(10). Non-condensable gasses produced are known as syngas and include carbon monoxide, 

carbon dioxide, hydrogen, and other light molecular weight gasses like methane (10). The other 

gasses are condensed to give pyrolysis oil, an oxygenated compound comprised of water and 

water insoluble compounds which is referred to as pyrolytic lignin because it comes from the 

lignin part of the biomass. Bio-oil is a complex mixture of water and hundreds of organic 

compounds belonging to several different categories, such as acids, aldehydes, ketones, alcohols, 

esters, anhydrosugars, furans, phenols, guaiacols, syringols, nitrogen compounds, and large 

molecular oligomers (11).  

The main organic components in biomasses can be classified as cellulose, hemicellulose, and 

lignin. Each component by itself gives a different amount of pyrolysis products. Cellulose 

reactions mainly lead to liquid formation and gives yields greater than 80% (12). Lignin is 

reported to produce mostly char instead of bio-oil while the pyrolysis of hemicellulose gives bio-

oil yields somewhere between the two other components (11). The amount of these components 

differs from one type of biomass to another. Woods, for example, have an average cellulose 

composition of 41-43% and 20-35% hemicellulose (13), while cotton is almost pure α-cellulose 

(14). The components have different, though slightly overlapping, decomposition temperatures 

shown below in table 1. 



 

 

4

Table 1 (15). decomposition temperatures of  Cellulose, Hemicellulose, and Lignin. 

Component  Decomposition Temperature range 

Cellulose 240-350 oC 

Hemicellulose 200-260 oC 

Lignin 280-500 oC 

 

Biomass conversion to bio-oil and bio-oil composition vary with feedstock, feedstock moisture, 

and process conditions such as vapor residence time, temperature, and heating rate (2). Since 

multiple variables affect the bio-oil composition, understanding the amount of reactions and their 

mechanisms have been proven difficult. For this reason, studies on lumped kinetic parameters for 

simplified models are more common than those for bio-oil compound production (16). There are 

several kinetic modeling techniques that describe the generation of pyrolysis products from 

biomasses. Liden et al. (16) classifies three ways to model the pyrolysis reaction, which are listed 

below: 

1. The global kinetic models which are used to determine the decomposition rate of a 

starting biomass by means of measuring weight loss. 

2. The general kinetic model of measuring the kinetic parameters for the formation of 

general products such as tar, gas, and/or char. 

3. The specific product approach traces the formation of a specific compound of interest 

from a starting material of the biomass used. This approach attempts to take into 

consideration secondary reactions that may occur between volatile product intermediates.     

 The first two above have proven to be relatively successful in establishing kinetic parameters 

(16, 17, 18, 19). An example of a lumped parameter model is the one done by Liden et al. (16) 

wherein the pyrolysis of wood feedstocks were assumed to be two first order reactions to give 



 

 

5

products of the liquid tar and char with gas. The tar was then assumed to undergo a secondary 

reaction to produce more gas.  

Model predictions from this lump parameter approach have been proven to yield relatively good 

results. The approach of modeling specific compounds is expected to be a complex network of 

reactions, including but not limited to, a number of simultaneous secondary reactions. Reaction 

parameters for these types of reactions in pyrolysis were not found but proposed reaction 

schemes for cellulose and hemicellulose were published by Shen et al. (13, 20). These reaction 

schemes only describe those of cellulose and hemicellulose; no mechanism has been found 

proposing a mechanism for lignin. Cellulose decomposition was reported to undergo an initial 

activation step before proceeding to one of two reaction pathways, either a ring scission reaction 

or depolymerization (21). Hemicelluloses are reported to be mostly xylans and glucomannans 

and the proposed decomposition mechanism shows the formation scheme for some carboxylic 

acids, reinforcing the idea the acids in bio-oil from fast pyrolysis are mainly produced from the 

degradation of hemicellulose (22). 

A. Bio-oil properties 

Due to high oxygenation of bio-oil, it is insoluble in hydrocarbons and its elemental composition 

of is similar to that of its parent biomass (10). Organic acid formation due to biomass 

degradation gives bio-oil a pH of about 2 to 3 and a typical water content of 15-35%, but it may 

be much higher depending on the initial biomass moisture. In bio-oil, water is dissolved or exists 

as an emulsion (23). A phase separation is known to occur at water levels of 30-45% (10). 

Pyrolysis oil heating values are about half (about 26 MJ/kg) of the heavy fuel oil values of 42-44 

MJ/kg; it also contains less nitrogen, metals, and sulfur than heavy fuel oils (10). Compounds in 
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char can act as catalysts for many reactions that increase water, ester, hydrates, ethers, oligomers 

and resins. Polymerization may also occur, which can increase viscosity and reduce the solubility 

in the bio-oil, thus causing suspended particles, emulsions, or phase separations. Bio-oils with 

lower char contents tend to have lower aging rates (24). Bio-oil contains less than 0.5 wt% solid 

char, typically, with an average particle size of approximately 5 μm when cyclone(s) are used to 

remove char from the hot product during pyrolysis. Fast pyrolysis produces typically about 12 

wt% char as a by-product from bark-free wood (23).    

Blends of bio-oil with other fuel sources such as alcohols have been proven to have improved 

fuel properties compared to the pure bio-oil and are hence more likely to be easier to get it into 

the energy market than its pure form (25). 

Material compatibility of bio-oil is important to determining the appropriate pump, storage tank, 

hoses and gaskets, injectors, and/or valves, depending what will be done with the bio-oil. Plastics 

such as Teflon (polytetrafluoroethylene), PP (polypropylene), polyester resins and HDPE (high 

density polyethylene) are resistant to bio-oil and may serve as storage and transportation 

containers, with Teflon being the most resistant and PP the least (23). Other common materials 

such as Viton, Buna-N, and EPDM (Ethylene Propylene Diene Monomer rubber) undergo 

volume expansions up to 100% (23, 26). This was partly supported by the findings of Naranjo et 

al. (25) who exposed a variety of materials to bio-oil/bio-ethanol blends and measured reduced 

hardness of both Viton and SBR (Styrene Butadiene Rubber) when exposed to the bio-oil blend 

for times greater than 672 hours. The hardness of synthetic plastics such as PP, PE, and PVC was 

not affected but the breaking strength and elongation values were.  
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Several metals have also been tested for compatibility with bio-oil. Fuleki et al. (27) tested brass, 

aluminum, mild and stainless steel by exposing them bio-oil for a duration of 360 hours at 

different temperatures: room temperature, 50oC, and 70oC. It was concluded that the mild 

stainless steel and aluminum were susceptible to a considerable amount of corrosion and hence 

were not compatible with the bio-oil tested, which had a pH of 2.4 and water concentration of 

19% (27). Soltes and Lin also concluded that aluminum and mild steel were incompatible with 

bio-oil, they claimed it corroded both (28).  Although, by the end of the experiment, the brass 

and austenitic stainless steel had experienced negligible weight change, the author warns that 

these were static conditions and there may be some deviance from these results in dynamic fuel 

systems, where the softness of brass may be susceptive to erosion from particulate matter (27). 

Kirk et al. (26) concluded that stainless steels such as the 304L, 316L, 430, and 20M04 are 

suitable to use with bio-oil. It should be noted that some metals showed discrepancies between 

their elevated temperature and room temperature analysis. This can be seen in the low chromium 

alloy steels, which showed good resistance at room temperature but, at the elevated temperatures, 

it showed considerable corrosion (26).  

Due to the nature of bio-oil and its incompatibility with certain materials, research has been done 

testing bio-oil on modified power generators. Bio-oil has been tested with modified gas turbines, 

diesel, co-firing, and Stirling engines, but there is still much work that needs to be done to 

implement bio-oil into industrial power generation. Bio-oil heating values lie between 16 to 26 

MJ/kg (10), while other sources such as gasoline, diesel, crude oil, and methane have values of 

44-46, 45, 42-44, and 50 MJ/kg, respectively. Due to bio-oil complexity and the fact that its 

properties differ drastically with differing variables such as feedstock and process conditions, 

there is a need for standardized tests of the bio-oil fuel properties. This lead to the approval of 
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the ASTM D7544, which covers grades of biofuel produced from biomass intended for use in 

various types of fuel burning equipment operating at different conditions (29). Two different 

grades of biofuel that may be used are listed along with required specifications such as density, 

water content, solids content, and gross heat of combustion. It should be noted that the two 

grades are intended for industrial burners designed for these specifications and not commercial 

residential burners.         

There are several methods known to improve the fuel properties of bio-oil, one of which is 

hydrogenation, which is an established method for petroleum refining that has been adapted for 

use with bio-oil. The problem with this method is that the catalyst used is subject to a significant 

amount of coking, which affects the quality of fuel. Other upgrading processes may require the 

use of expensive equipment and/or solvents to the point where fuel production from bio-oil is not 

economically feasible. Achieving the separation of water and carboxylic acids by the means of a 

membrane may help in reducing the cost of upgrading through the sale of the carboxylic acids 

and less hydrogen consumption in hydrogenation.   

B. Bio-oil production 

Bio-oil for this research was produced by Process Dynamics Inc. in Fayetteville, AR with a pilot 

plant consisting of an auger reactor using stainless steel buck shot as the heat transfer agent. The 

auger reactor consists of two insulated compartments, each with its own auger, 96 inches long 

with a 3-inch pitch. One compartment is used to react the biomass, sawdust in this case, and 

other is used as a shot return. This is a continuous process with a feed rate of 82.9 g/min. The 

reactor is heated by means of a 1 by 120-inch heating tape delivering approximately 1570 W. 

Operating temperatures for bio-oil production ranged from 700oF (371oC) to 1000oF (538oC) and 
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the residence time from 3-4 seconds. The reactor experienced a slight vacuum of 1.5 in H2O and 

the carrier gas was nitrogen.  

Dry sawdust was added to a hopper, which fed the biomass into the reactor; once the biomass 

was pyrolyzed, the gas stream produced, consisting of condensable, non-condensable, and 

biochar as well as nitrogen, was then subjected to a cyclone to remove the biochar from the 

gaseous stream. This stream was then quenched via direct contact with cold kerosene by means 

of sprayers, causing most of the condensable gasses to condense, and the stream was pulled into 

a bio-oil decanting tank which also had a cold kerosene sprayer that further quenched the 

gaseous stream. The resulting gaseous stream was then pulled either to the atmosphere, during 

the beginning of the run, or to a mixer which had kerosene mixing into it which aided in the 

quenching process to condense the more of the condensables. The bio-oil collection tanks were 

designed to exploit the immiscibility of kerosene and bio-oil. The bio-oil would settle at the 

bottom and the kerosene would pour onto a separated section of the vessel once the liquid level 

would get high enough, this section transports the kerosene to a cold trap to get cooled and 

reused again. The bio-oil is periodically collected from the bottom of these tanks and added back 

into the kerosene cooling system. A close representation of the separating mechanism in the bio-

oil collection tank is shown in figure 2 below; it should be noted that neither nitrogen nor the 

small amounts of bio-char that may have not been captured by the cyclone are considered in the 

following figures and tables.    
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Figure 2. Bio-oil condensing and collection tank diagram. 

 

Figure 3 below shows a block flow diagram of the pilot plant used to produce the bio-oil without 

the kerosene lines. Figure 2 above is a representation if blocks B3 and B4 below. Tables 2 and 3 

summarize the block designations and stream components respectively.  
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Figure 3. Pilot plant used to make the bio-oil for this research. 

Table 2. Pilot plant block designations.  

Block Equipment 

B1 Auger reactor 

B2 Cyclone 

B3 Spray condenser 

B4 Vessel 

B5 Stream selector 

B6,B8 Valve 

B7,B12 Pump 

B9 Mixer 

B10 Cyclone 

B11 separating tank 
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Table 3. Pilot plant stream components. 

Stream Components in stream 

S1 dry sawdust 

S2 condensable gas, syngas, and bio-char 

S3 Condensable gas and syngas 

S4 bio-oil, kerosene, condensables and 

syngas 

S15, 

S16 

bio-oil (bottom layer), kerosene (top 

layer) 

S5-S9 syngas and condensables 

S10 syngas, bio-oil, and kerosene 

S11 Bio-oil and kerosene 

S12, 

S13 

Kerosene 

SI14, 

S14 

Syngas  

 

 

In the table above, syngas refers to hydrogen, carbon monoxide, carbon dioxide, methane, and 

other small molecular weight hydrocarbons. Again, there were also trace amounts of bio-char in 

the bio-oil product. Typical conversions were approximately 56% with continuous runs that 

pyrolyzed 4 to 15 kg (approximately 8.8-33 lbs.) of sawdust. Piping and vessels were cleaned 

after each run and new kerosene was occasionally added.  

III.  Safety, storage, and handling 

Due to its low pH and unstable properties, bio-oil has a tendency to corrode most metals so it is 

usually transported and stored in stainless steel containers (10). HDPE containers may be used as 

storage containers (23) but it may still be odorous; for this reason, bio-oil was stored in double 

containers if not under a fume hood. Silver shield gloves, made of polyvinyl alcohol (PVA), 

were used to handle the bio-oil due to their chemical resistance to many carcinogens and 

corrosives known to be present in bio-oil. Safety glasses and closed toe leather shoes as well as 

long pants and other appropriate PPE were worn at all times when dealing with bio-oil, which 



 

 

13

was only handled in a fume hood. A lab coat was always worn when working with bio-oil 

pressurized systems.    

IV.  Experimental  

Two approaches were used in an attempt to remove the water and carboxylic acids: a pressure- 

driven system and electro-dialysis (ED). The aim of this research was not to synthesize a 

membrane for the separation but to modify, if needed, commercial membranes to achieve the 

desired separation. The first step was to find a commercial membrane that was chemically 

resistant to the corrosive nature of bio-oil. After these modifications were done to the membranes 

to improve their characteristics, experiments were carried out using bio-oil with ages between a 

week and 6 months old. The age of the bio-oil is known to affect the water concentration and 

other properties as well, but since the bio-oil production process conditions were variable, bio-oil 

samples collected each experiment were used as reference points for experimental sample 

analysis. Pressure-driven separation experiments were done by placing the membrane in a cell 

and pressurizing it by closing the exit stream valve, creating a pressure difference on both sides 

of the membrane since one side of the membrane would remain at atmospheric pressure. This 

induces permeation through the membrane pores for compounds of the appropriate size if the 

separating mechanism is size-exclusion.  

The ED separation mechanism utilizes charge-induced ion-exchange (IE) membranes. The 

chemical properties of the membrane allow either anions or cations to transport through the 

membranes in the presence of an electric field, which drives the separation of the charged 

species. The anion exchange (AIE) membranes only allow anions through, and the cation-

exchange (CIE) membranes, the cations; therefore, the AIE is placed between the oil and the 
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electrode and the anions from the bio-oil are transported towards the positively charged electrode 

in an electrolytic solution. The CIE membrane is between the bio-oil and the negatively charged 

electrode, which is also in an electrolytic solution. It should be noted that there may be hydrogen 

and chlorine gas formation as a result of an ion species accumulation on a compartment with the 

electrodes; for the purposes of these experiments, these compartments are referred to as the 

concentrate compartments. It should also be noted that ED membranes are known to develop 

material build-up on their surfaces, reversing the electrode polarity every 15 minutes to an hour 

periodically reduces this effect (30). 

A. Membrane modification for pressure-driven separation 

Several commercial membranes were tested for material compatibility with bio-oil. Sepro 

commercial polyamide-piperazine nanofiltration membranes: NF3A, NF3A.1A, XN45, NF2A, 

and NF6, were tested for compatibility by soaking in bio-oil. Within one hour of the test, all the 

Sepro membranes had dissolved. Next, a Sterlitech polytetrafluoroethylene (PTFE) laminated 

membrane with a polypropylene support backing was tested and proved to be chemically 

resistant; however, the problem with this membrane was that the 50 nm pore size did not allow a 

separation. The next membrane tested was a sulfonated teflon membrane Nafion 117. This 

membrane proved to be chemically resistant, but its dense physical characteristics would not 

allow any permeation of even water alone up to 700 psi. Table 4 below summarizes the 

membranes tested for bio-oil compatibility and the problems associated with each. 
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Table 4. Membranes tested for bio-oil compatibility and problems found. 

Membrane  Resistant? Problems 

polyamide-piperazine No Membranes were dissolved within the hour 

Teflon  Yes Pore size too big, no separation  

Nafion Yes No membrane permeation 

 

United States patent 6464880 B1 by R. Datta et al. (31) provides a method for the pore 

expansion of Nafion membranes. This is done by exploding carbon dioxide bubbles on the 

surface of the membrane. The bubbles are produced by reacting propylene carbonate and water 

at an elevated temperature; this reaction is summarized below in figure 4.  

         

 

Figure 4 (31). Nafion pore expansion reaction. 

 

In modifying the Nafion membrane, some alterations were made to the process to avoid the use 

of heat exchangers and sophisticated membrane holders while maintaining the same pre-

modification activation steps. The membrane activation was done by first boiling the membrane 

for 3 hours in DI water, soaking it in a 0.5 N Hydrochloric acid (HCl) solution for 12 hours and 

soaking it for one hour in DI water. Propylene carbonate (PC) was brought to 100oC in a 2.76 L 



 

 

16

Pyrex glass container by means of a hot plate and a stir bar was used for uniform heat 

distribution. The membrane holder for the modification was a bubble diffuser basket with a lid, 

both made from a stainless steel sheet which had 1 mm holes approximately 3 mm apart from 

center to center of the hole. The holder was designed to rest two inches from the bottom of the 

glass container to clear the stir bar, and steel wire in the shape of handles were tied to the lid. The 

basket dimensions were 6 in. by 7.75 in. and the lid configured to be slightly smaller to fit inside 

on top of the membrane to hold it in place. With the exception of the chemicals and membrane, 

Figure 5 displays the materials used to perform this modification, and figures 6 and 7 display the 

setup and a close-up of the setup respectively. 

 

   

Figure 5. Membrane modification materials. 
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Figure 6. Nafion modification set-up. 

 

 

Figure 7. Nafion modification set-up close-up. 

 

Propylene carbonate (PC) was heated to 105oC, then the membrane was placed in the membrane 

holder, and they were placed into the heated PC. Water was then slowly added, bringing the 

solution to a 6:1 PC to water mole ratio. The liquid level was marked immediately after adding 

the membrane modification components; the level was monitored and maintained by periodic DI 



 

 

18

water addition when needed. A condenser, made from a stainless steel pan with water cooled by 

means of a chiller or ice, was placed on top of the Pyrex container. A gasket, placed between the 

Pyrex container and steel pan, was made by sticking the adhesive side of cork material to 

plexiglass after they were both cut to fit around the edges of the glass container. The cork side of 

the gasket faced the glass, and the plexiglass made contact with the steel container. A decent seal 

was achieved with the weight of the water and water only seemed to escape when the 

temperature was checked by means of a thermocouple. The temperature initially dropped when 

the water, membrane, and its holder were added to the PC, but it was brought back to 100oC, the 

optimum reaction temperature, within 10 minutes by slightly adjusting the hot plate setting. The 

membrane was modified between 4 to 12 hours each run. After the modification was done, the 

reaction solution and the membrane, removed from the basket, were cooled to room temperature 

(~23oC) within 10 minutes after the modification. This was done by transferring the reaction 

solution and the membrane into a steel pan cooled by an ice water bath at which point the 

membrane was soaked in DI water for 1 hour followed by rinsing, also with DI water.  

There was an increase in area after the modification and a slight shrinkage after the last DI water 

soak; therefore, the membrane was not cut to the size needed until after DI water rinses 

proceeding the last DI water soak. The temperature was monitored periodically and the hot plate 

setting was adjusted accordingly to keep the modification solution at 100oC. A few runs were 

done before familiarity with the hot plate behavior was established; eventually, the runs were 

done with the temperature ranging from 97oC to 105oC. 
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B. Pressure-driven experiment procedure 

The pressure-driven experiments were performed by using an Osmonics Sepa cell 2 as the 

membrane cell with Sterlitech Teflon-lined gaskets. Figure 8 below shows a picture of the 

assembled Sepa cell used for these experiments. 

 

Figure 8. Assembled Osmonics Sepa cell 2.  

 

Each experimental run required 1 liter of bio-oil and the modified Nafion membranes were used 

with a Teflon membrane for mechanical support. Each experiment was operated at a constant 

pressure and the pressures tested were 200, 300, 400, 500, 600, and 700 psi. Temperatures of the 

samples were to be recorded and then subjected to further analysis. Samples were to be collected 

in a 100ml graduated cylinder for 60 seconds for flux calculations, and 15ml of that were to be 

transferred into a 15ml sample cuvette and the rest returned to the bio-oil holding vessel. The 

following procedure was used to set-up the Sepa cell with the cell fitting connections already 

installed, the Sepa cell manual should be consulted if this is not the case. 
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Sepa Cell 2 set-up 

1. Insert the feed spacer into the center of the cell and the gaskets, if necessary, into the 

appropriate grooves in the bottom half of the cell. 

2. Cut out a membrane whose perimeter fits in between both gaskets which is held by the 

four small columns (roughly 14 X 19 cm).  

3. Place the permeate feed carrier on the center of the top half of the cell and slightly wet 

with a DI water bottle. (This is done so the permeate feed carrier will stay centered when 

combining both halves of the cell.)  

4. Insert the cell all the way into the cage with the osmonics logo facing the front (the user) 

5. Connect the pipes and hoses into the fittings of the connections of the permeate outlet, 

feed inlet and concentrate outlet streams. 

6. Connect the compression pump on the left-hand side of the pump by pressing the pump’s 

brass fitting into the cage connection and press until it locks in place with a click, then 

turn the outer ring 45 degrees to lock into place. 

7. Propel the compression pump until the pressure gauge on the side of the cell cage reads at 

least 30% higher than the operating pressure. 

8.  The cell is now ready to use 

A hydra cell diaphragm pump with Teflon seals was used to transport the bio-oil to the 

membrane. It should be noted that with though these pumps are known for their self-priming 

capabilities, the reduction in head because of the Teflon seals may require priming of the pump 
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before running an experiment. The pump was primed for each experiment. Stainless steel piping 

was used to connect the pump to the Sepa cell and a backpressure gauge was placed at the Sepa 

cell exit stream valve used to control the operating pressure of the cell. A high-density 

polyethylene (HDPE) bucket was used as the bio-oil vessel and the system was operated at full 

recycle with the permeation hose also feeding into the bucket. Figure 9 below shows a schematic 

for the pressure-driven separation set-up as well as the piping material and functional ratings. 

 

 

Figure 9. Pressure-driven separation process schematic.  

 

The following procedure was used to set-up the experimental process displayed above in figure 

9, and to carry out the runs. 

  



 

 

22

Experimental Set-up/procedure for pressure-driven separation 

1. Pump the Sepa cell cage compressing pump to 900 psi.  

2. Connect the cooling coil inlet to the appropriate cooling water source and feed the 

outlet into the appropriate drain. 

3. Pour the 1L of the bio-oil or experimental solution into the bucket and, after taking a 

temperature measurement, close the bucket with its lid and cooling coil. 

4. Make sure the concentrate outlet valve is fully open (turning the knob 

counterclockwise will open it), and that the permeate hose and pump inlet and outlet 

hoses are fed into the bucket (for total recycle). 

5.  Connect the pump into the appropriate electrical socket connection, (if not already 

done so) and press the corresponding ON button.  

6. Examine the lines for any leaks, if any, shutoff the apparatus immediately. If none, 

then close the concentrate outlet valve slowly (turning clockwise) increasing the 

pressure until the operating pressure is reached. This should take approximately 30 

seconds. Inspect the cell during this process, if there are leaks, turn off the pump, 

disassemble and repeat the SEPA 2 cell set-up procedure making sure the gaskets are 

uncompromised.  

7. If there are no leaks, once the operating pressure is stable, start a stop watch. Then 

gather samples from the permeate outlet stream with graduated cylinder at time 

values of 5, 10, 20, 30, and 60 minutes, or as desired.  
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8. After the experiment is over, allow the excess fluids in the lines to drain into the 

bucket, then move the lid with the coils and lines to a separate container and dispose 

of the waste in the appropriate waste container. 

9. Open the concentrate outlet valve and add 500ml (or appropriate amount) of DI water 

and run for 3 minutes to flush the system, twice. Then run again with DI water for 

second flux calculation to see if irreparable damage is done (flux increases more than 

~10%). 

10. Disassemble the SEPA 2 cell and dispose or store the membrane properly.   

11. Reassemble the Sepa cell and rinse with a 500 ml (or appropriate amount) 40% 

ethanol solution (or appropriate cleaning solvent) by pumping it through the system 

then disposing of the solution in to a hazardous waste container by pumping air 

through the system ONLY IF A HYDRACELL PUMP IS BEING USED, otherwise 

there may be damages to the pump. Do this three times, then do three rinses the same 

way with DI water. The rinse solutions should be disposed of properly between each 

rinse.    

12. Disconnect the lines and turn off the cooling water, allowing any excess water to 

drain by elevating the coil and placing both hoses in the drain.  

13. Wash all glassware used by first rinsing with ethanol (or appropriate solvent) and 

then water. The three-rinse method should be used. Then store everything into its 

appropriate storage place. 
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C. Membrane modification for electro-dialysis (ED) 

Commercial Anion exchange (AIE) membrane AMX did not seem to dissolve when soaking in 

bio-oil, but it seemed to develop bio-fouling due to the darkening of its color. Hestekin et al. (32) 

published an AIE membrane modification procedure for grafting polyethyimine groups onto its 

surface to reduce membrane bio-fouling. The membrane modification procedure consisted of the 

three following soaks (32): 

1. 1% sodium alginate for 30 minutes 

2. 1% polyethylenimine for 60 minutes 

3. 2% glutaraldehyde for 60 minutes 

The membranes, modified and unmodified, were soaked in bio-oil for 12 hours and a Fourier 

transform Infrared (FTIR) spectroscopy analysis was performed to test for bio-fouling. The 

analysis proved the modified membrane to have better resistance to fouling than the unmodified 

membrane. The FTIR analysis is shown below in figure 10.     

 

 

Figure 10. FTIR of Bio-oil soaked membranes. 
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The figure above shows the absorbance of the bio-oil soaked membranes after each step of the 

modification soak with the subtraction of the water-soaked membrane samples and the “Oil” line 

represents the bio-oil soaked unmodified membrane absorbance. The figure above shows larger 

peaks for the unmodified bio-oil soaked membrane at points 1, 2, and 3, indicating a larger 

presence of C-O-H at 1050 cm-1, C-O-C at 1200 cm-1, and carbonyl (C=O ) at 1700 cm-1 

respectively, the peaks expected for carboxylic acids. These findings led to the decision to use 

these membranes, the modified and unmodified, for the electro-dialysis (ED) experiments to 

determine if the bio-fouling resistance affected its performance, if any, in the carboxylic acid 

separation.         

D. Electro-dialysis procedure 

The ED experiments were performed with the three-compartment glass ED. Two 2.0 by 2.5 cm 

platinum electrodes powered by a Gwinstek GPS-3030DD dc power supply. Unmodified 

commercial cation exchange (CIE) membranes were used on the side with the negatively 

charged electrode. The bio-oil was in the middle compartment and a 0.5 M sodium chloride 

(NaCl) solution was used for the concentrate (outer) compartments.  

Glass cell set-up 

All experiments were carried out with the glass cell on a glass pan in case of a leak or a spill. 

Figure 11 below shows the glass cell compartments described in the set-up procedure.  
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   Figure 11. ED glass cell compartments. 

 

Teflon ED gaskets 4.2 cm in diameter were used on both sides of each membrane, which were 

cut to the same size. The gaskets and membranes were centered as well as possible and the glass 

cell was kept from leaking by ensuring the metal bracket bottom were parallel to the gaskets, as 

shown in figure 12 below where the glass cell is seen to be upside down. 
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Figure 12. Correct glass cell bracket installed. 

 

The nuts on both sides were simultaneously tightened by hand, with an AIE and CIE membrane 

placed in between compartments 2 and 3, and compartments 3 and 4 respectively. Rubber 

stoppers were placed on compartments 2 and 4 to prevent fluid from entering them. The two 

concentrate compartments, 1 and 5, were filled with approximately 65 mL of a 0.5 NaCl solution 

and an electrode was placed on each side. Para-film was wrapped around the glass openings of 

the electrode holders and the two electrodes were made to face each other. Approximately 45 mL 

of bio-oil was poured into compartment 3 and para-film was used to seal the top of that 

compartment. Then the power source was connected to the electrodes as shown in figure #13; the 

positively charged electrode was connected to the side contacting the AIE membrane, 

compartment 1 and the negatively charged electrode was placed on the compartment that was in 

contact with CIE membrane, compartment 5. Figure 13 below shows the ED glass cell set-up and 

ready for experimentation. 
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Figure 13. ED glass cell set-up. 

 

ED experimental procedure 

The power source was turned on with the constant voltage of 5V and varying current. Current 

and conductivity were monitored with time and samples were taken periodically from 

compartments 1, 3, and 5. The compartments were filled as needed and experimental runs were 

carried on for 24 to 109 hours. After every use, the glass cell was cleaned with acetone and 

water, then washed with soap and water.        
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V. Analysis 

No samples were taken from the pressure-driven separation experiments system runs due to a 

lack of permeation. The Nafion 117 membranes were modified up to 12 hours and though there 

was a considerable change in area, as a result of pore expansion, bio-oil would not permeate 

through the membrane at pressures up to 700 psi. Membranes were run for a minimum of an 

hour under pressure before discontinuing the experiment. The pore size of the 12-hour modified 

Nafion membrane was analyzed for pore size. 

ED experimental samples were taken from the bio-oil and two concentrate compartments and 

were then analyzed for water concentration, the bio-oil and acidic species composition, the 

concentrate compartment samples. The membranes were also analyzed with regard to bio-fouling 

and separation performance. Table 5 below summarizes the labels given to the experiments done. 

Table 5. ED summary of experiments. 

Experiment membrane type refills(hr.) Concentrate solution 

P1 Modified 6 0.5M NaCl 

P3 Unmodified 6,24 0.5M NaCl 

P5 Modified 3,22(C)/22(B) 0.5M NaCl 

P7 Unmodified 7.5, 26 

(C)/26(B) 

0.5M NaCl 

P15 Modified 3,22(C)/22(B) 0.5M NaCl 

 

Experiments that used bio-oil from the same batch were P1 and P3, as well as P5 and P7. 

Experiment P15 used bio-oil from a different batch. Differences in bio-oil initial conductivity 
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values may be due to a lack of thorough homogenization before experimentation. The refills 

column in the table above states the hour of the experiment at which the compartments were 

filled. The (C) next to the refill hour on some entries signifies the refilling of the concentrate 

compartments, the (B) stands for the bio-oil compartment. ED concentrate compartment samples 

were analyzed by HPLC using a Waters IC-Ion Exclusion column with a refractive index 

detector. The samples were tested for formic, acetic, propionic, and butyric acids but the 

retention times did not match those from the samples. These results may be found in Appendix 

D. Approximately 4 months after the samples were taken, the concentrate compartment samples 

were observed through a microscope to test the orange color for salt precipitates.     

A. Membrane pore size analysis    

Jamie et al. (33) reported that modifications on the Nafion 112 membrane gave nanofiltration 

pore size membranes, for this modified set-up, modification time deviations were expected. 

Though a separation was not achieved for the pressure-driven experiments, the pore size 

distribution of membranes tested is important for future bio-oil experiments with porous 

membranes. Evapoporometry (EP) was used to determine the pore size distribution (PSD) of the 

modified membranes from the vapor pressure depression that occurs for a volatile wetting liquid 

in small pores. Since vapor pressure depression increases as the pore diameter decreases, 

evaporation of the volatile wetting liquid with uniform saturation over its surface will progress in 

time from the largest pores to the smaller ones (34). By means of a gravimetric analysis and the 

help of the Kelvin equation, rates of evaporation can be related to pore diameters, which can be 

used to determine the PSD of a membrane. Takei et al. (35) showed the Kelvin equation to be 

accurate down to 4 nm pores and the equations used for the analysis may be found in Appendix 

C. 
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Method 

FTIR scans were taken of the modified Nafion membrane and compared to the unmodified one 

to confirm the change the membrane experienced was strictly physical. For the EP analysis, the 

membrane was placed in a holding cell with a round opening where the membrane is exposed 

and where it is also filled with the wetting fluid, in this case, isopropyl alcohol (IPA). A Mettler 

Toledo MS104S micro balance was tared with the membrane holder and membrane in place. At 

that point, the sample cell was filled with IPA and the initial weight and decreasing weights, due 

to evaporation, were automatically recorded every 5 seconds. A small beaker with activated 

carbon was also placed nearby the cell in case of contaminants and though the balance had a 

stock casing to isolate the balance, a cardboard box was set in place to minimize any effects the 

balance may feel from the air flow of in the room. Figure 14 below shows a picture of the 

membrane sample cell used in the EP analysis and figure 15 shows the balance set-up with the 

membrane cell and activated carbon. 

 

 Figure 14. EP membrane sample holding cell.  
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Figure 15. EP set-up with the scale, membrane sample cell, and activated carbon. 

 

Results 

Figure 16 below shows the FTIR scans taken for a commercial unmodified membrane and a 4-

hour modified membrane.  
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(a)  

(b)  

Figure 16. FTIR Absorbances for (a) commercial Nafion 117 and (b) 4-hour modified Nafion 

117. 
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The two Absorbance graphs above are identical, confirming the reaction does not compromise 

the chemical nature of the membrane. The modified Nafion membranes experienced an increase 

in size with the pore expansion modification. A membrane with an initial size of 12 by 17 cm 

expanded to approximately 14 by 20 cm after a 6-hour modification; however, the membrane 

was difficult to measure due to the wrinkles that resulted from the modification. Evapoporometry 

of the Nafion membranes also proved the pore expansion procedure to be successful; this is seen 

in figure 17 below exhibiting the PSD for the initial and modified Nafion membranes. 
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(b)  

Figure 17. Pore size distribution for (a) Commercial Nafion 117 and (b) 12-hour modified 

Nafion 117 membrane. 

 

  

B. Water concentration determination  

Water concentration in bio-oil is an important factor when considering using it for fuel. A 

volumetric Karl Fischer titration for water determination has been suggested by several literature 

sources (23, 36, 37); unfortunately, very little information of analysis parameters was found with 

the exception of the type of titrant and solvent used for the analysis. Boucher et al. (36) 

determined the water concentration in bio-oil by using a Hydranal composite 5 reagent and a 

50/50 dichloromethane solvent. Oasmaa et al. (23) used a solvent of 3:1 methanol to chloroform 

and a KF reagent containing 2-methoxy ethanol with reactive components of the anion of the 

alkyl sulphurous acid, iodine and base. They claimed that the endpoint was easier to detect when 

chloroform was present. Mohammed et al. (37) used the CombiSolvent Keto and CombiTitrant 5 

Keto as the solvent and titrant respectively, and also used a soldium hydroxide (NaOH) buffer 

solution to control the pH. The bio-oil water determinations follow the general procedure 
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presented by ASTM E 203-01 (38).  ASTM E 203-01 states that certain precautions need to be 

taken in determining the water concentrations of acidic and aldehyde and ketone containing 

samples. Ketones and aldehydes tend to form acetals and ketals with methanol which yield water 

as a reaction product, giving false measurements of water in the samples (23,39), and acidic 

samples lower the pH value of the solvent below the optimum pH range of 5 to 8 for accurate 

water determination (37, 39). Bio-oil is known to fit into both categories. Hydranal K reagents 

for aldehydes and ketones may be used as a solution for the aldehyde and ketone problem, and an 

imidazole buffer is recommended to maintain the appropriate pH of the titration of acidic 

samples (39). It should be noted that methanol free solvents are required for Hydranal K reagents 

(40).   

Method 

Water determination for sample analysis was done by using a Mettler Toledo DL31 Karl Fischer 

volumetric titrator. Aquastar Combititrant 5 Keto and Hydranal Working medium K were used 

as the reagent and solvent respectively. The parameters had to be adjusted to achieve lower 

titration times and accurate results; the parameters are summarized below in table 6. 
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Table 6. DL31 Karl Fischer titration parameters. 

Parameter Value 

Ipol (μV) 20 

E.P. (mV) 175 

Stir speed 

(%) 

30-35 

ΔVmin (μL) 0.5 

ΔVmax (μL) 4 

Rel. Drift 

(mg/min) 

50 

 

In the table above, Ipol is the polarization current; E.P. is the end point titration; and ΔVmin and 

ΔVmax are the minimum and maximum limits of titrant that may be added at a time. For more 

information on the DL31 Karl Fischer titrator or how the parameters work, a standard operating 

procedure (SOP) on it may be found in Appendix E. These parameter values gave average 

approximate titration times of 2 minutes 20 seconds, but titration times sometimes went as high 

as 5 minutes. Pre-titration times were anywhere from less than a minute up to 10 minutes. The 

accuracy of the bio-oil sample results was verified using Hydranal Water Standard 10.0 samples 

in between bio-oil samples to see if the standard result was accurate, with an error of less than 

5% being accepted before the titration solvent was replaced. Experimentation showed that the 

titration solvent was acceptable for up to 5 bio-oil samples. 
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Results 

Results for the Karl Fischer analysis are summarized below in figure 18. 
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(c)  

(d)  

Figure 18. Karl Fischer analysis of Bio-oil ED runs (a) P1, (b) P3, (c) P5, (d) P7. 

 

Water concentration increased for all experiments and reached 38%. Each sample was analyzed 

twice and analysis results can be found in tabular form for each run in Appendix A.   
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C. Conductivity and pH 

Bio-oil is known to have carboxylic acids and a considerable amount of water. Measuring 

conductivities and pH’s of the compartments is a simple way of noting changes in acidic species. 

Water concentration affects the dissociation of the acids and, consequently, also the conductivity 

of the sample being measured. 

Method 

A VWR Traceable conductivity meter was calibrated and used to take the conductivity 

measurements of the bio-oil and the two concentrate compartments. An Orion model 330 pH 

meter with an Ag/AgCl Orion 9156DJWP pH probe was used to measure the pH of the 

concentrate samples.    

Results 

Conductivities of the concentrate and bio-oil compartments are summarized below in figure 19. 
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(b)  

(c)  
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(e)  

(f)  
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(g)  

(h)  
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(j)  

Figure 19. Conductivities of each experiment concentrate compartment and their corresponding 

bio-oil compartments.  

 

As can be seen in Figure 19, the concentrate samples for P5 and P7 remained relatively linear 

throughout the experiments and P1 and P3 seem to show a resemblance. For all experiments, the 

concentrate conductivities remained between 40-50 mS, with the exception of a few outlier 

points. Bio-oil conductivities for all experiments increased overall, whether the modified or 

unmodified AIE membrane was used. This increase may be attributed to the increase of the water 

content in the bio-oil, allowing more dissociation of the acidic species to occur and remain in the 

bio-oil compartment due to potential concentrate acid saturation or a clogged membrane. Figure 

20 below shows the pH of the concentrate compartments throughout the experiment.  
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(c)  

(d)  
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(e)  

Figure 20. Concentrate sample pH measurements for experiments (a) P1, (b) P3, (c) P5, (d) P7, 

(e) P15. 

 

The pH measurements appear to be more consistent from run to run, with both concentrate 

compartments reaching a pH between 3 and 4. Also, in all the experiments but one, P3, the AMX 

compartment samples were measured to be slightly more acidic than the CMX samples. No 

significant difference in concentrate compartment pH seems to take place in relation to the 

membrane used.   
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were general compounds listed as components of the membranes; this is important to analyzing 

the membranes for bio-fouling to see what components were already there and which ones were 

a result of the experiment. Poly(vinyl chloride) is reported to be used as the support layer for the 

ion exchange membranes (41, 42), and the CIE Neosepta CMX membrane is reported to contain 

a 45-65% sulfonated styrene-divinylbenzene randomly cross-linked copolymer and 45-55% of 

polyvinylchloride (PVC) manufactured by the paste method. The commercial AIE Neosepta 

AMX membranes are also reported to be made of the same styrene-divinylbenzene polymer and 

filler PVC as the CMX membranes (41).              

Method 

The modified anion membrane was analyzed in several ways. First, a XPS analysis of a modified 

AMX membrane soaked in bio-oil for one week was compared to that a modified membrane 

soaked in water. This was done to note the change of the membrane surface when exposed to 

bio-oil.  

Results 

For the modified membrane comparison of the one soaked in bio-oil to the one soaked in water, 

afterward the membranes were rinsed with water and stored in a 0.5M NaCl solution for 

approximately 3 days. The membranes were thoroughly washed with DI water 24 hours before 

the analysis and then dried by means of a dessicant. Table 7 summarizes the elemental 

composition for both membranes: the AMX-M bio which was soaked in bio-oil, and the AMX-

M which was the control membrane soaked in water.   
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Table 7. AMX-M surface elemental composition.  

Elements AMX-M (%) AMX-M Bio (%) 

C (1s) 87.59 92.62 

N (1s) 5.86 2.33 

O (1s) 4.05 2.87 

S (2p) 0.2 0 

Si (2p) 0.72 0.71 

Cl (2p) 1.58 1.47 

total (%) 100 100 

 

The AMX-M membranes compositions were measured after one minute of 2 keV argon 

sputtering. Elemental peak shifts for carbon are seen in figures 21-23. 
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Figure 21. Carbon 1s [1/1] peak shift.  

 

Figure 22. Carbon 1s [2/1] peak shift. 
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Figure 23. Carbon 1s [3/1] peak shift. 

 

From the figures above, peak [1/1] seems to shift approximately 1.3 eV and the increased 

intensity points to an increased presence of hydrocarbon hydrogens, which are known to have a 

binding energy around 284.8 (43). The fact that the binding energies of the carbon peaks shifted 

to a higher binding energy after being soaked in bio-oil indicates the presence of a more electron 

withdrawing, oxidative, environment. Extended delocalized electrons in a sample results in low 

intensity peaks at higher binding energies (44), which is the case for peaks [2/1] and [3/1]. The 

increase of the carbon is also supported by the oxygen peaks shown in figure 24, and the nitrogen 

peaks shown in figures 25 and 26 shown below. 
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Figure 24. Oxygen 1s peak shift. 

 

 

Figure 25. Nitrogen 1s [1/1] peak shift. 
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Figure 26. Nitrogen 1s [2/1] peak shift. 

 

The slight oxygen binding energy decrease of the bio-oil soaked membrane is due to the 

increased electron donating carbon content. The same is the case for the nitrogen [2/2] peak, and 

the lower intensity of nitrogen is due to the layer of carbon on the surface of the membrane from 

the bio-oil. Sulfur peaks were only found on the controlled membrane, reinforcing the fact that 

there was significant build-up on the surface of the membrane due to the bio-oil.    

VI. Conclusion 

Though the Nafion pore expansion was successful, the membrane with the Teflon-lined 

polypropylene support proved to be ineffective at removing the water from bio-oil. Future work 

in this area should incorporate the use of other hydrophilic membranes, such as MEEK or PVDF 

membranes, for Nafion support. Longer modification times may be appropriate but a careful 
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balance should be kept since the mechanical strength of the Nafion membrane decreases with the 

increase of modification time.  

Electrodialysis was successful in removing a portion of the acidic species from the bio-oil but 

not the water. Although the modified AMX membrane proved to experience less bio-fouling than 

the unmodified commercial membrane, it still experienced some. Future work in this area should 

include either more hydrophobic membranes to keep the water the same, or membrane 

modifications, if not synthesis, to remove water with the carboxylic acids as well.     
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X. Appendix  

 

A. Karl Fischer Raw data 

 

Table A1. P1 KF results 

 Time 

(hrs.) 

Sample 

1 

Sample 

2 

Average 

 0 22.6891 22.4677 22.5784 

 0.5 22.0135 22.1409 22.0772 

 1 24.8027 24.714 24.75835 

 2 25.2324 25.1483 25.19035 

 3 23.8243 23.6153 23.7198 

 6 25.2896 25.6104 25.45 

refill 6 22.059 23.419 22.739 

 21 30.785 31.9528 31.3689 

 24 29.2395 30.2065 29.723 

 27 29.1787 29.208 29.19335 

 43 34.5834 34.2522 34.4178 

 45 33.6061 33.1114 33.35875 

 46 34.8079 34.6 34.70395 

 47 36.3792 37.32 36.8496 

 48 19.8021 19.6086 19.70535 

 

Table A2. P3 KF results 

 Time Sample 

1 

Sample 

2 

Average 

 0 22.3319 22.0505 22.1912 

 1 23.8237 23.743 23.78335 

 2 23.4808 23.6342 23.5575 

 3 24.0983 23.1729 23.6356 

R 6 26.6423 27.1349 26.8886 

 17 30.91 29.8655 30.38775 

 19 29.1678 29.096 29.1319 

 21 29.5174 30.3763 29.94685 

 24 32.1077 33.2672 32.68745 

R 24 30.8786 30.4605 30.66955 

 50 38.107 38.2591 38.18305 
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Table A3. P5 KF results 

Time 

(hr.) 

Sample 

1 

Sample 

2 

Average 

0 21.5133 20.5252 21.01925 

1 21.235 21.3996 21.3173 

2 22.5304 21.5818 22.0561 

3 20.8325 19.2297 20.0311 

6 22.3789 21.7104 22.04465 

20 31.258 32.4832 31.8706 

22 32.2844 33.6052 32.9448 

22 33.6806 32.003 32.8418 

24 25.6654 23.3952 24.5303 

42 35.2534 35.2928 35.2731 

48 36.0325 35.3323 35.6824 

 

Table A4. P7 KF results 

Time 

(hr.) 

Sample 

1 

Sample 

2 

Average 

0 23.6027 22.5606 23.08165 

1 22.2519 22.2582 22.25505 

2 23.5946 22.553 23.0738 

3 23.1923 23.8325 23.5124 

6 25.8572 24.1813 25.01925 

22 33.5011 34.4342 33.96765 

24 34.548 32.3519 33.44995 

25 33.7458 35.7715 34.75865 

26 30.7671 33.4718 32.11945 
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B. Evapoporometry equations 

These are the equations used for the determination of the membrane pore distribution published 

by Krantz et al. (45). This analysis assumes a round pore surface and that the molar flux is small; 

these assumptions were justified in the published work and were shown to contribute up to 1% to 

the measured pore diameter error. Table B1 shown below defines the equation parameters. 

 

Table B1 (45). Equation parameters 

 

 

The following form of the Kelvin equation was used to determine the membrane pore diameter: 
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Mass transfer kx
o with respect to the molar average velocity is described by the following 

equation 
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The mass transfer coefficient is related to the mass transfer coefficient with small mass transfer 

flux by the following film theory equation:  
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Combining equations (2) and (3) the following equation is obtained: 
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Rearranging equation (4) and solving for   
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This approximation by using the Taylor series allows the measureable rate of evaporation to be 

related to pore diameter.    
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C. Bio-oil GC/MS 

 

Table C1.  Distillate Organic phase 

 

RT MW compound Area % total

4.886 92.14 toluene 1.78E+07 0.3

6.972 116.16 4-hydroxy-4-methyl-2-pentanone 4.39E+07 0.6

7.885 106.16 p-xylene 5.77E+07 0.8

8.615 106.16 o-xylene 3.07E+07 0.4

8.821 128.2 nonane 6.71E+07 0.9

9.919 142.28 3-methyl nonane 3.32E+07 0.5

10.1 142.28 3-ethyl-2-methyl heptane 2.70E+07 0.4

10.78 140.27  2,6-dimethyl octene 3.68E+07 0.5

10.84 128.26  3-ethyl heptane 4.33E+07 0.6

10.88 120.19 1-ethyl-2-methyl benzene 5.98E+07 0.8

10.95 142.28 2-methyl nonane 9.26E+07 1.3

11.16 120.19 trimethyl benzene 1.09E+08 1.5

11.98 120.2  trimethyl benzene 1.88E+08 2.6

12.14 142.28 decane 3.94E+08 5.5

12.83 184.36  trimethyl decane 2.05E+08 2.9

14.06 156.31 4-methyl decane 1.56E+08 2.2

14.2 156.31  2-methyl decane 1.10E+08 1.5

15.35 156.31 undecane 6.89E+08 9.7

16.96 134.22 1,2,3,4-tetramethylbenzene 1.29E+08 1.8

17 170.33 2,6-dimethyl decane 9.22E+07 1.3

17.29 170.34 2-methyl undecane 2.09E+08 2.9

18.14 138.16 2-methoxy-4-methyl phenol 1.15E+08 1.6

18.37 170.33 dodecane 6.06E+08 8.5

18.72 184.36 2,6-dimethyl undecane 1.68E+08 2.3

20.18 338.65 2-methyl tricosane 7.46E+07 1

20.38 170.34 2,6-dimethyldecane 1.60E+08 2.2

20.58 152.19 4-ethyl-2-methoxy phenol 6.46E+07 0.9

21.2 184.36 tridecane 2.78E+08 3.9

22.74 164.2 eugenol 3.36E+07 0.5

22.91 1.80E+07 0.3

23.2 212.41 trimethyl dodecane 2.82E+07 0.4

23.86 198.39  tetradecane 7.63E+07 1.1

25.24 164.2  isoeugenol 5.61E+06 0.1

26.38 212.41 pentadecane 1.25E+07 0.2

26.6 206.32 2,4-di-t-butylphenol 1.49E+07 0.2

28.59 224.43 hexadecene 9.63E+06 0.1
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Table C2. Distillate Aqueous phase  

 

 

 

 

 

 

 

 

 

 

 



 

 

66

Table C3. Pyrolysis oil light phase 

 

 

 

 

 

 

Pyrolysis oil lights (in acetone)

MW RT Compound  Area  % of Total

92.12 4.897  toluene 1.16E+07 1.3

90.12 5.37 butanedial 1.39E+07 1.6

116.16 6.983 4-hydroxy-4-methyl-2-pentanone 5.06E+07 5.7

106.17 7.609 ethylbenzene 5.19E+07 5.9

106.16 7.896 p-xylene 8.61E+06 1

118.17 9.004 2-butoxy ethanol 1.86E+07 2.1

94.11 11.572 phenol 1.52E+07 1.7

142.29 12.134 decane 8.45E+06 1

112.13 12.966 2-hydroxy-3-methyl-2-cyclopenten-1-one 1.35E+07 1.5

108.14 13.949  3-methyl phenol 7.80E+06 0.9

108.14 14.646 4-methyl phenol 1.59E+07 1.8

124.14 14.987 2-methoxy phenol 1.75E+07 2

138.16 18.14 creosol 2.16E+07 2.4

110.11 18.258 1,2-benzenediol 4.48E+07 5.1

144.13 18.905 1,4:3,6-dianhydro-a-D-glucopyranose 9.85E+06 1.1

124.14 20.941 4-methyl-1,2-benzenediol 5.31E+07 6

164.2 22.73 eugenol 1.27E+07 1.4

23.06 5.46E+06 0.6

138.16 23.451 4-ethyl-1,3-benzenediol 3.02E+07 3.4

200.37 23.657 1-tridecanol 1.68E+06 0.2

152.15 23.945 vanillin 2.17E+07 2.5

164.2 25.236 2-methoxy-4-(1-propenyl) phenol 6.12E+06 0.7

166.17 26.133 1-(4-hydroxy-3-methoxyphenyl)-ethanone 1.17E+07 1.3

162.14 26.603 levoglucosan 1.94E+08 21.9

162.14 26.665 levoglucosan 2.52E+07 2.8

162.14 26.692 levoglucosan 1.11E+08 12.5

180.2 27.124 1-(4-hydroxy-3-methoxyphenyl)-2-propanone 8.11E+06 0.9

180.2 28.248 4-(3-hydroxy-1-propenyl)-2-methoxy phenol 5.95E+06 0.7

224.43 28.583 hexadecene 9.47E+06 1.1

182.17 29.945 4-hydroxy-3-methoxy benzeneacetic acid 1.15E+07 1.1

178.18 31.92 4-hydroxy-2-methoxycinnamaldehyde 1.05E+07 1
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Table C4. Pyrolysis Oil Heavy phase 

 

 

  

Pyrolysis Oil Heavy phase

Mw RT Compound area %total

92.12 4.889  toluene 8.37E+06 0.3

96.09 6.765 furfural 5.93E+07 2.1

116.16 6.982 4-hydroxy-4-methyl-2-pentanone 6.24E+07 2.2

106.17 7.608 ethylbenzene 1.91E+07 0.7

94.11 11.560 phenol 5.90E+07 2.1

112.13 12.979 2-hydroxy-3-methyl-2-cyclopenten-1-one 6.16E+07 2.2

108.14 13.942 3-methyl phenol 4.54E+07 1.6

108.14 14.640 4-methyl phenol 1.05E+08 3.7

124.14 14.985 2-methoxy phenol 7.35E+07 2.6

122.16 16.884 2,4-dimethyl phenol 2.77E+07 1.0

138.16 18.142 2-methoxy-4-methyl phenol 1.07E+08 3.8

110.11 18.266 1,2-benzenediol 2.47E+08 8.7

124.14 20.101 4-methyl-1,2-benzenediol 9.04E+07 3.2

152.19 20.577 4-ethyl-2-methoxy phenol 4.65E+07 1.6

124.14 20.958 4-methyl-1,2-benzenediol 3.00E+08 10.6

164.2 22.730 eugenol 5.32E+07 1.9

138.16 23.468 4-ethylcatechol 2.09E+08 7.4

152.15 23.971 vanill in 1.68E+08 5.9

164.2 24.105 2-methoxy-4-(1-propenyl) phenol 6.17E+07 2.2

164.2 25.236 2-methoxy-4-(1-propenyl) phenol 1.68E+08 5.9

166.22 25.411 2-methoxy-4-propyl phenol 3.19E+07 1.1

152.19 25.815 4-propyl-1,3-benzediol 1.05E+08 3.7

166.17 26.149 1-(4-hydroxy-3-methoxyphenyl)    ethanone 1.06E+08 3.7

162.14 27.137 levoglucosan 1.76E+08 6.2

150.17 28.089 4-chromanol 8.34E+07 2.9

180.2 28.256 4-(3-hydroxy-1-propenyl)-2-methoxy    phenol 4.54E+07 1.6

182.17 29.962 4-hydroxy-3-methoxyphenylacetic acid 1.04E+08 3.7

178.18 31.937 3-methoxycinnamic acid 1.81E+08 6.4
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D. HPLC Results 

 

 

Figure D1. 100 ppm standard 

 

 Table D1. Standard retention times 

Chemical  Average Retention Time 

(min.) 

Formic acid 4.38 

Acetic acid 4.9 

Propionic acid 5.6 

Butyric acid 6.8 

 

 

Figure D2. 97 hour AMX sample peaks  
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Figure D3. 97 hour CMX sample peaks   
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E. Sample Microscopics 

 

 

Figure E1. Initial sample slide (4x magnification) 

 

 

Figure E2. P5 CMX sample slide (40x magnification) 
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Figure E3. P5 AMX sample slide (4x magnification) 

 

 

Figure E4. P7 AMX sample slide (10x magnification) 
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Figure E5. P7 CMX sample slide (4x magnification)   
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F. Karl FischerStandard Operating Procedure (SOP) 

This standard operating procedure (SOP) is for water content determination of liquid samples by 

means of a Mettler Toledo DL31 Karl Fischer titrator. This SOP is divided into three sections. 

The first gives general information about the titrator such as the reaction and terminology. The 

second gives a general function and overview of the buttons on the titrator, and the third section 

gives a general operation procedure and maintenance of the instrument. The titrant used in these 

examples is a one-component reagent. This SOP assumes the titrator is already assembled, if this 

is not the case the manual should be reviewed. The combititrant 5 one component reagent used 

for this measurement contains the following compounds: imidazole, iodine, sulfur dioxide, and 

diethylene glycol monoethyl ether. 

General information 

Operating principle 

Water concentration of a sample is determined by the titrator when it detects a decrease in 

voltage below a set point called the end point. The current is held constant, but the resistance of 

the solution in the vessel changes with the changing water content as the titration proceeds.  The 

general titration reaction for the Karl Fischer reaction is shown in Scheme 1 below.  

 

Scheme 1. Titration reaction 

The alcohol used is methanol and the base is imidazole. The iodine reacts with the water 

introduced with the sample and as long as there is water present, iodine will be absent, assuming 

adequate mixing. The resistance will increase compared to the iodine containing solution and so 

will the voltage required to maintain the specified polarization current at the electrode. Once all 

the water has reacted with iodine, there will be free iodine present which causes ionic 

conduction. Iodine molecule are attracted to the negatively charged electrode where it picks up 

two electrons, turning into iodide (2I-), and carries them to the positive electrode. The ionic 

conduction reduces the resistance of the solution; therefore, the voltage is also reduced in order 

to keep the polarization current constant. Once the voltage drops below the specified endpoint, 

the titration is terminated and the moisture is determined based on the amount of titrant used. 

Polarization current 

The polarization current, end point, and the electrode size and type are all related. For a double 

platinum pin electrode with a 1 mm diameter and 3-4 mm length, the recommended end points 

related to polarization currents are shown below in table a. As a general rule of thumb, the larger 

the platinum electrode surface area, the smaller the potential jump.  
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Table a. End points related to polarization currents 

 

Generally, as the polarization current is increased, the shorter the titration time, but the electrode 

also gets contaminated quicker which results in the need to be cleaned. The best time saving 

opportunities are by switching from 5 μA to 20 μA, after that, contamination increases and the 

titration time is not significantly improved.  

 

Stirring speed and dispersion of titrant 

For the titrator to produce accurate results adequate mixing is required for homogenization of the 

sample/solvent mixture. Generally, the optimum stirring speed is achieved when a small vortex 

is visible. If the speed is too high, bubbles may form which cause fluctuations in the resistance of 

the medium the current is passed through leading to inaccurate results. On the other hand, a stir 

speed that is too slow may also may give false results due to overtitration. The titrant feed tube 

should also be placed at the maximum spot of turbulence; this is shown in figure 1 along with a 

vortex picture to indicate appropriate mixing speed.  

 

Figure 1. Appropriate mixing for titration 

 

NOTE: Stirring speed may be adjusted in between samples while on standby mode. Click the 

‘stirrer’ button and change to desired speed, then click ‘OK’. 

Learn Titration option 

This option may be accessed by the pressing the red “i” button while on the home screen. This 

may be used to determine the optimum titration parameters for a sample type. This requires only 

four inputs: method number (which the parameters will be saved in), type of sample, result unit, 

and titrant type. Once the titration takes place, the following results are given: sample water 
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content, optimum ΔVmax, ΔVmin, ΔVmax factor, and relative drift stop, and limits for amount 

of sample to titrate. If no endpoint is detected, the titration is terminated after two full burettes of 

titrant are used. 

NOTE: Only one user defined method may be saved in the DL31 titrator  

Termination parameters 

Generally, the relative drift stop should be chosen as a termination parameter since it is 

independent of titrant concentration and initial drift. The first parameter considered to terminate 

the titration is the end point. Once the endpoint is reached, the termination drift conditions must 

be satisfied for the duration of the delay time specified to terminate the titration. If absolute drift 

is chosen as a termination parameter the drift detected by the titrator must reach the value 

specified (30 μg/min recommended) for the duration of the delay time. A disadvantage of using 

the absolute drift stop is that the drift stop value must be higher than the initial drift since it must 

come back to or below the absolute drift stop value. If this is not the case the titration termination 

will not be reached and instead another parameter such as a safety parameter, such as max 

volume or max time, will be used for termination. For the relative drift termination parameter, 

the drift must at most reach the addition of the drift value detected when the titration started and 

the value specified. For the one-component reagent, a relative drift stop of 10 to 15 μg/min is 

optimum for achieving reproducibility, any higher there is risk in obtaining high error 

measurements.  The relation between drift and reproducibility/accuracy of results are that the 

lower the drift the better the reproducibility but the longer the titration. The higher the drift the 

lower the reproducibility but the titration proceeds faster.  
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Terminology 

A summary of terms and definitions used by the titrator is displayed below in table b.  

Table b. Summary of terms and definitions 

Ipol Polarization current is the current supplied to the electrodes 

ΔVmin Smallest addition increment of titrant in μL per 0.1 seconds. It must 

be large enough to compensate for the drift. 

ΔVmax Largest addition increment of titrant in μL per 0.1 seconds 

ΔVmax 

factor 

used for 2-component titrants to avoid overtitation. Should be set to 

100% for one-component reagents. 

Drift The total ingress if water into the titration stand during a defined 

period of time (μg H2O/min).   

Abs. drift The value of the abs drift must be larger than the pre-defined drift. 

Typical absolute drift stop value = 30 μg/min. 

Rel. drift The typical relative drift stop value = 20 μg/min 

Start: 

Cautious 

This starts titration by adding smallest amount set (Vmin) and then 

increasing linearly to maximum amount (Vmax) in about 20 seconds 

if needed. This is recommended for samples with water less than 100 

μg, but may be used with any sample though it may increase titration 

time. 

Delay time Time in which the voltage remains below an endpoint defined value. 

This is used as a termination parameter sometimes. (typical value of 

15 seconds) 
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Buttons 

Table c below summarizes the general function of the buttons found on the panel of a DL31 Karl 

Fischer titrator. 

Table c. Button and function summary 

Key Function 

 

 
 

Provides access to the value of the current solvent capacity, last drift 

determination, "Hello" Karl Fischer tutorial, and menu for testing 

titrator hardware.    

 

 

You can switch the stirrer on and off and change the stirrer speed 

when the titrator is on standby mode 

 

 
 

This button is used to either siphon off solvent or add it by pressing 

the blue rubber button with the same logo whole the pump is running   

 

 

This button is used to rinse the burette, rinse the tip of the dispensing 

tube, and also add a specified amount of titrant to the reaction vessel 

if need be.  

 

 

Resources required for titration such as the titrants and standards are 

stored in the setup menu and can be changed 

 

 

Results are determined by the use of a method (a set of operating 

parameters used by the titrator). All the methods can be accessed by 

this button and can be changed. The resources defined in the setup 

menu are available for these methods 

 

 

This button is used to perform a titration. The method called 

determines the analysis sequence 

 

 

The results list of samples analyzed may be viewed by pressing this 

button. One may also perform recalculations, and print out additional 

reports (if printer is available) 

 

Changes in the current menu or submenu are discarded and the 

original values/names remain in force. This key always effects a 

return to the previous display 

 

Used to terminate analyses or other actions. Data that are not stored 

are lost 
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General procedure 

The following notes should be considered while performing the reaction in order to obtain 

accurate results. 

• Ensure the titrant dispensing hose tip has an anti-diffusing tip in it before starting the 

titration. 

• Concentration of titrant (especially for one-component reagents) must be determined 

every day a titration is done. 

•  Volumetric Karl Fischer titrators (DL31/38) have a 50 ppm detection limit. 

• The Maximum speed of the Karl Fischer reaction is reached in the pH range of 5.5 to 8. 

• If acidic or basic samples are analyzed, buffering agents must be added to the solvent to 

ensure the titration is quick and without side reactions. Imidazole for acidic samples and 

salicylic or benzoic acid for basic samples.  

• 30-70% of burette volume of titrant should be used per sample to obtain most accurate 

results (Aim for 50%). The optimum amount of water in a sample is 10 mg. 

• Stirring speed must be just right to obtain accurate results. If bubbles form it is too fast 

and if no vortex is seen then the speed is too slow. 

• Titration may be terminated other parameters such as max time or max amount of titrant 

dispensed, these are set by the user. 

• Normal stable drift values for this titrator is less than 5 μg H2O/min. This may be 

obtained by shaking the titration vessel periodically while in pre-titration step, and 

making sure the vessel is airtight. 

• Desiccants have a limited life and are exhausted after 2-4 weeks. The silica gel can be 

regenerated at 150oC and the molecular sieve up to 300oC.   

• Titrant concentration has proven to change by 0.1 mg/mL per week, for this reason 

weekly concentration determinations are stated to be sufficient by the manual, but daily 

determinations are better.   

• Solvent should be changed when the standard concentration determination is 5% or 

greater than the printed value on the test certificate. 

• Titration may be affected by temperature, consult manual if titration is performed in 

temperatures above 30oC.  

• Aldehydes and ketones are a special case and may give false readings when used with 

methanol containing reagents, the manual should be consulted for reagent modification.  

• **See application brochure 26 page 27 for notes on sugar samples.  

 

Procedure 

The general procedure assumes that the standard and samples are already prepared into the 

appropriate syringe with a needle. The standard chosen for this procedure is the Hydranal 10.0, 

though other standards may be used with slight modifications to the procedure. It is also assumed 
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that the moisture content is determined by weight difference. This means that the titrator will ask 

for amount of sample introduced into the vessel as a weight value; therefore, both the standard 

and sample syringes must be tared on a mg range analytical scale and the difference in weight is 

the value that will be entered for the weight of the sample.  

1. Turn on titrator by the ON switch located on the behind the instrument on the lower left 

hand corner (facing the titrator keypad)   

2. To make a method (set of parameters for titration) press method and input the desired 

parameters. General parameters for different titrants are shown below in table b. 

 

Table b. General parameter values for different titrants 

 
 

**The learn titration option may also be used to obtain optimum parameter values for a 

specific sample. This is accessed by pressing the <i> button and clicking the learn 

titration option. 

 

3. To rinse the burette, disconnect the titrant delivery tube from the vessel and place in the 

waste container. Press the <burette> button and make sure the 100% dispense number is 

displaying. Then click start with a function key and allow the titrant to be disposed into 

the waste container, do this three times. Then reconnect the titrant delivery line to the 

titration vessel. DO NOT RINSE BURETTE IN TITRATION VESSEL. 

4. Make sure the waste suction tube is lifted to the top of the vessel, then click the <Pump> 

button, then ‘start’ with a function key. The pump motor should start, then press on the 

rubber blue button perpendicular to the ground in front of the titration vessel to deliver 

solvent into the vessel. If no solvent (methanol) is being delivered into the vessel, make 

sure the solvent bottle is not empty, then check the fittings and connections to ensure all 

lines are sealed. The vessel should be filled to the 40 mL mark on the vessel.   

5. If method is already created, then press the <Run> button and go through the options 

adjusting any values if needed. Upon clicking ‘OK’ for the last option then the pre-

titration will start. To aid in the pre-titration (depletion of water in vessel) the vessel 

should be shaken periodically.  

6. Once the pre-titration has stabilized at a value lower than 5 μg/min (or with a � arrow on 

the screen), the ‘CONC’ option should be clicked with a function key to determine the 

concentration of the titrant. Select 0 for the mixing time and the weight of the sample 

should be left blank until the end of the titration, click ‘OK’. When the screen prompts to 
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enter a certain amount of sample, insert approximately 1 mL of standard into the vessel 

through the syringe opening and click OK.  

NOTE: The time the vessel is opened to the atmosphere should be minimized.  

7. Once the titration is done the titrator will ask for the weight of sample, enter the weight in 

grams using the number keypad, then select ‘enter’ with a function key.  

8.  The titrator will now go back to standby mode, wait for the drift to be stable and as low 

as possible. (< 5 μg/min) 

9. Tare the scale while the syringe with the standard is on it. Then press “sample” on the 

titrator with the appropriate function key. 

10. Knowing the relative concentration of the sample will facilitate the titration and possibly 

speed it up. If known enter it on the “H2O exp.” row. Then enter 0 for the weight of the 

sample (sample weight should be entered after titration). No guess is required. 

11. The screen will then prompt to enter an amount determined using the guess value.  

12. Remove the stopper and inject the sample into the vessel pressing the “enter” button and 

using the putting the stopper back on. The amount of time the stopper is removed should 

be minimized. 

13. Place the syringe back on the scale to obtain the weight of the sample injected, wait for 

the end of the titration. Titration should consume ~50% of the burette volume. If more 

than this then lower sample amount next time, if lower than this then increase the amount 

of sample on the next sample run. 

14. Once the titration is done the weight of the sample will be required. If the % result option 

was chosen from the parameters then the concentration will be displayed in % by weight. 

If not then other units may be used such as ppm etc. 

15. The value should not have a deviation greater than 5% than the value printed on the test 

certificate.  

16. To analyze samples repeat steps 9-14 using the syringe with the sample instead of the 

standard. 

17. The amounts of samples should be recorded to optimize the amount titrant used and 

minimize sample determination redo. 

18. Solvent saturation differs from sample to sample; therefore, the standard should be used 

to test the solvent by subjecting ~1 mL of standard to titration after every few sample 

titrations. If the value given by the analysis is within 5% from the value given in the test 

certificate the solvent may be used (though one may have to adjust the mixing speed as 

the volume increases). If the value has an error of 5% or greater, then the solvent must be 

changed in order to keep obtaining accurate measurements. 

19. The titration vessel should be rinsed with the solvent (methanol) a couple of times in 

between changing the solvent. 

20. Once the titration is done the vessel should be rinsed with methanol and the electrode 

should be wiped with a non-lint leaving paper towel wet with methanol being careful not 

to bend the electrodes. 

21. Press the <reset> button and turn off the titrator using the button on its back side. 
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Maintenance 

The following are tips to prolong the life and reliability of the Karl Fischer titrator as an 

analytical instrument. 

• In the case of clogging, the instrument should be disassembled and the hoses should be 

rinsed with methanol, water, and then air dried with dry air or another inert gas.  

• The gaskets should be replaced periodically; meaning every couple of years or when 

needed.    

• The anti-diffusion tip should be replaced when/if clogged. 

• Clean the vessel and electrode after every use. 
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