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ABSTRACT 

Climate change and population growth demand long-term solutions for clean water and energy. 

Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient 

chemical separation and light harvesting schemes. Two material platforms featuring highly 

absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon 

conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced 

internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing 

AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods 

developed to characterize heat dissipation following plasmonic absorption was extended beyond 

conventional optical and heat transfer descriptions, where good agreement was obtained between 

measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ 

reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two 

current material limitations for efficient light harvesting: low monolayer content and lack of 

optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced 

broadband optical extinction, and energetic electron injection were probed using a combination of 

spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering 

these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and 

electronic energy supports design and implementation into several emerging sustainable water and 

energy applications.  
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1.  INTRODUCTION 

1.1 Motivation 

The accelerated pace of human development necessitates major advancement in sustainable 

water and energy technologies. Projections place half of the world’s population and grain 

production at serious risk from water scarcity by 2050.1 Membrane separations, like reverse 

osmosis or pervaporation, are an emerging alternative for efficient water purification.2 

Concomitantly, global warming and reliance on fossil fuels necessitate a shift towards clean, 

renewable energy. Advancements in solar and other renewable energy technologies have 

diminished fossil fuel dependence by 10% in recent years; however, significant work remains to 

meet policies aiming for 160 gigaton carbon dioxide emission reduction by 2035.3 Thus, continued 

development of solar energy harvesting and storage schemes is of increasing importance. Herein, 

two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are 

developed to facilitate photon conversion into thermal or electronic energy for potential use in 

alternative chemical separation or light harvesting applications. 

1.2 Key Advances 

Plasmon resonant nanostructures offer an extraordinary ability to concentrate electromagnetic 

fields and confine light to sub-wavelength dimensions. However, resistive losses in plasmonic 

noble metal systems have traditionally hampered device performance.4 Popular approaches to 

minimize losses include development of new plasmonic materials with low interband losses and 

high carrier mobility4 or use of coupled lattice resonances in ordered arrays of traditional noble 

metal structures.5,6 Alternatively, the work herein seeks to maximize femto- to picosecond 
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dissipation of plasmon energy into phonons in condensed matter dispersions or energetic electrons 

in adjacent two-dimensional (2D) semiconductors. Intense localized plasmonic heating has drawn 

considerable interest in biomedicine,7–10 catalysis,11,12 and chemical separations.13–15 Electron 

injection from resonantly excited NPs into adjacent 2D semiconductors16 could serve as an 

independent source of carriers in photocatalytic devices17 and field-effect transistors.18  

This work advanced three key elements of plasmonic energy conversion in systems containing 

small, highly absorptive AuNPs with negligible scattering cross-sections: 

1. Diffraction-enhanced optical extinction in 3D polymer dispersions 

2. Comprehensive characterization of plasmonic heat dissipation in 3D polymer dispersions  

3. Bulk processing and functionalization of 2D semiconductors by in situ AuNP reduction 

Diffraction-induced internal reflection at interparticle separations approaching the resonant 

wavelength, reported herein, enhanced optical extinction up to 1.5-fold in ca. 1 mm thick three-

dimensional (3D) polymer films. This phenomenon does not appear in analogous 3D fluid 

dispersions and had been reported previously only in systems containing larger, scattering AuNPs 

arranged in regular lattices. Concurrently, heat dissipation following plasmonic absorption was 

extensively characterized for these 3D polymer dispersions. Excellent agreement was obtained 

between measured and theoretical descriptions extending beyond conventional optics and one-

dimensional heat transfer. Finally, fabrication and processing of low-dimensional tungsten 

disulfide (WS2) nanosheets were improved by in situ reduction of AuNPs, where monolayer 

content and resulting optoelectronic properties were enhanced beyond prior benchmarks. 

Improved Au-WS2 broadband optical extinction and plasmonic dissipation into hot electrons was 

probed using a combination of far-field optical spectroscopy, numeric discrete dipole 

approximation, and near-field electron energy loss spectroscopy. Together, this study could offer 
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a new paradigm for engineering these hybrid plasmon-mediated nanomaterials containing highly 

absorptive plasmonic NPs for use in a variety of applications.  

1.3 Organization 

Chapters 2 through 4 broadly cover approaches and key results pertaining to the three key advances 

outlined above. Chapter 2 studies plasmonic optical extinction in AuNP-polymer nanocomposite 

films. Chapter 3 characterizes thermal dissipation of plasmon energy in AuNP-polymer 

nanocomposite films. Chapter 4 describes Au-decoration of low-dimensional WS2 nanosheets and 

optoelectronic properties of resulting heterostructures. Chapter 5 presents prospective applications 

for both AuNP-polymer films and Au-WS2 heterostructures. Chapter 6 summarizes work and 

outlines future research opportunities. 
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2.  OPTICAL EXTINCTION IN GOLD NANOPARTICLE-POLYMER FILMS  

The optical properties of gold nanoparticles (AuNPs) dispersed in transparent polymer have 

received significant interest for improved photovoltaics,19 photonic circuitry,20,21 membrane 

separations,22 and sensing.23,24 The optical response of plasmonic nanostructures, typically noble 

metals, are determined by the interaction between their conduction electrons and the electric field 

associated with incident light. Plasmons are the quantization of electron density oscillations in 

response to this external electric field. Surface plasmons propagate at the interface between a 

normal dielectric, i.e. air, and a material with a negative real dielectric function, i.e. Au. A localized 

surface plasmon resonance (LSPR) occurs at the light frequency that matches these plasma 

oscillations acting against the positive nuclei restoring force; LSPR is dependent on NP size,25 

material composition,26 geometry,5,27 and host environment.28 Plasmon-photon interactions can 

enhance light trapping,29,30 induce intense near-field effects,5,6,28 and permit broadband coupled 

lattice resonances at dielectric interfaces.5,6  

Absorption, scattering, and diffraction by particles smaller than the wavelength of light give 

distinct signatures in photonic systems.31 Mie theory indicates the scattering contribution to LSPR 

extinction is ca. 1% for the AuNPs used primarily herein less than 20 nm in diameter; this 

effectively eliminates extinction due to multiple scattering effects present for 3D films containing 

larger, highly scattering AuNPs.30,32 Optical extinction by NPs with negligible scattering cross-

sections in the Rayleigh size regime results from resonant absorption33 and is described by Beer-

Lambert law for isolated particles34 and colloidal35 dispersions in homogeneous dielectric 

environments. Optical extinction resulting from interaction between these sub-wavelength 

particles and their local environment is often characterized using Maxwell Garnett effective 
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medium theory (EMT) for random dispersions or dipole approximations36,37 for well-defined NP 

distributions. Wavelength-scale interference of transmitted, i.e. forward scattered, light due to an 

obstacle,38 interface,39  or applied field40 may result in diffraction that contributes to total optical 

extinction. As examples, refraction in media containing sub-wavelength inclusions is describable 

by Snell’s law,41 while Kirchoff’s equation defines diffraction from well-described obstacles like 

a single slit, grating, or circular aperture.41 Characterizing interparticle interactions in 

nanocomposites with thicknesses and interparticle separations above and below the LSPR 

wavelength, λLSPR, could distinguish contributions to optical extinction arising from isolated 

AuNPs, interparticle interactions, and dielectric heterogeneity. 

This chapter compares measured optical extinction spectra with theoretical predictions from 

Mie theory, CDA, and Maxwell Garnett EMT for AuNP-containing polydimethylsiloxane 

(PDMS) and polyvinylpyrrolidone (PVP) films. Optical response was studied across two AuNP 

sizes (negligible vs. highly scattering), two film thickness regimes (super- and sub-wavelength), 

and at order of magnitude differences in AuNP concentration (x 109 to 1015 NPs/cm3). Most 

critically, resonant extinction per NP increased up to 1.5-fold as particle separation decreased 

below λLSPR in super-wavelength polydimethylsiloxane (PDMS) films after following Mie and 

EMT trends at particle separations greater than or equal to λLSPR. This optical extinction 

enhancement appeared attributable to diffraction-induced internal reflection. This comprehensive 

study of optical extinction in AuNP-polymer dispersions supports robust design of resonant 

plasmon optics in a variety of emerging flexible photonic devices.42 
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2.1 Interfacial reflection enhanced optical extinction in AuNP-PDMS films 

In this section, AuNPs were dispersed in polydimethylsiloxane (PDMS) due to unique 

chemical, physical, and optical properties that support study of plasmonic optical activity and 

implementation into optoelectronic and biochemical applications.43 For example, the optical 

transparency across visible wavelengths allows facile study of AuNP optical excitation and 

thermal dissipation.44 PDMS crosslinks as it cures and silicon hydride groups in the crosslinking 

agent are available to reduce gold (III) chloride (AuCl3) into AuNPs within the polymer matrix.45,46 

This in situ reduction has produced films with superior optothermal characteristics.22 However, 

uncertainty in resulting AuNP sizes and concentrations inhibits fundamental characterization of 

plasmonic effects, thereby necessitating development and focused study of well-defined 

homogeneous dispersions of solution-synthesized AuNPs. 

2.1.1 Initial evidence of extinction enhancements due to internal reflection 

First-generation AuNP-PDMS films containing random dispersion of solution-synthesized 

AuNPs provided the first evidence of enhanced optical extinction as due to internal reflection. In 

the initial study, optically extinguished power, with possible contributions from scattering and 

diffraction, was distinguished from resonant power absorbed by comparing measured spectral 

extinction and independently obtained estimates of Mie absorption based on Beer-Lambert law. 

Internal reflection due to diffraction and/or scattering was distinguished from absorption and 

external reflection by geometric optical measures. AuNP-PDMS extinguished power based on 

measured spectral extinction (filled purple squares), ideal Beer-Lambert absorbable power based 

on AuNP concentration (red dashed line), and extinguished power after correction for internal 

reflection (hollow purple squares) are plotted in Figure 1a. All values are taken near resonance at 
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532 nm and are based on 100 mW of total power; these values represent the excitation wavelength 

and incident power used in subsequent thermal characterization discussed in Chapter 3. Mass-

percent Au, taken as the mass of Au divided by total film mass, ranged from 0.002 to 0.005 mass-

percent. Multiplying Au concentration of each film in nanomoles (nmol) by its measured 

thickness resulted in comparable planar Au densities in units of nmol Au per square centimeter: 

5.31, 6.97, 10.2, and 13.4 nmol/cm2. This was done to normalize extinguished power for films 

with variations in thickness. Equivalent AuNP concentrations ranged from 0.469 to 1. 17 x 1012 

NPs/cm3. Unmagnified images and measured UV-vis extinction spectra of each first-generation 

AuNP-PDMS film are shown in Figure 1a and 1b, respectively. 

Figure 1: First-generation AuNP-PDMS film: a) total spectral extinguished power (filled), Beer-

Lambert estimated absorbed power (dashed line), and extinguished power corrected for internal 

reflection (hollow), b) measured spectral extinction. 
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Refractive index (RI) matching experiments were performed to elucidate the source of 

enhanced spectral extinguished power. According to Snell’s Law, light obliquely incident on an 

interface with a lower RI medium, i.e., PDMS to air, will be directed away from the normal.38 This 

characteristic behavior remains valid for media containing nanoscale inclusions.47 Transparent 

PDMS scatters little of normal incident irradiation, but dispersion of AuNPs in PDMS could result 

in obliquely trajected light. Without RI-matching between PDMS and the detector, this light is 

internally reflected. AuNP absorption, scattering, and diffraction are illustrated schematically in 

Figure 2a along with internal reflection and/or transmission of light at the PDMS-air interface. 

This internal reflectance would diminish transmitted power, thereby increasing measured spectral 

extinction. With an RI-matching fluid, this obliquely re-directed light may instead refract and be 

recorded as transmitted power since the glycerol-water solution reduces interfacial reflection 

between PDMS and the adjacent lens that focused light into the detector. 

 

 Figure 2: a) Schematic illustrating optical absorption, scattering, diffraction, and internal 

reflection, b) transmitted power with and without RI-matching fluid at PDMS-air interface.  
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The difference between transmitted power with and without the RI-matching fluid provides an 

estimate of the light internally reflected within the AuNP-PDMS. Figure 2b plots transmitted 

powers in PDMS films containing 0, 5.31, 6.97, 10.2, and 13.4 nmol/cm2 AuNPs with RI-matching 

(upward triangles) and without RI-matching (downward triangles) based on 100 mW of incident 

532 nm laser excitation. RI-matched transmitted power decreased with increasing AuNP 

concentration, from 94.3 mW in Au-free PDMS to 68.3 mW at 13.4 nmol/cm2 AuNPs. Au-free 

PDMS transmitted only 1.4 mW more power with the RI-matching fluid. Upon inclusion of 

AuNPs, transmitted power increased by an average of 6.2 mW with the RI-matching fluid. This 

transmitted power difference increased with AuNP content up to a maximum of 9.1 mW at the 

second highest AuNP concentration, 10.2 nmol/cm2. Actual power absorbed by the dispersed 

AuNPs was estimated by subtracting measured transmitted power with RI-matching from the total 

incident power (100 mW). The resulting AuNP-PDMS power absorbed corrected for internal 

reflection is represented in Figure 1a by hollow squares. This corrected maximum power absorbed 

is less than ideal absorbed power from Mie absorption and Beer-Lambert law for all but the highest 

AuNP concentration. This suggested AuNP optical absorption is predictable once this additional 

contribution from diffraction-induced internal reflection is considered. 

2.1.2 Optical extinction enhancements as a function of interparticle separation 

A subsequent study30 developed a new generation of AuNP-PDMS films to distinguish relative 

contributions of optical absorption and internal reflection, arising from diffraction or Mie 

scattering, to measured optical extinction. Both 16 and 76 nm AuNPs were dispersed in PDMS 

films and fluid isopropanol (IPA) at identical concentrations ranging from 0.001 to 0.015 mass-

percent; this represented a 3-fold increase in obtainable AuNP concentration via an optimized 
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fabrication protocol outlined in Section 2.4.1. PDMS films containing 16 nm AuNPs with 

negligible resonant Mie scattering cross-sections and Wigner-Seitz radii (rw-s), an estimate of 

interparticle separation, of ca. 410-1000 nm were compared to films containing 76 nm AuNPs with 

large scattering cross-sections at much greater rw-s of ca. 2-4 µm. This comparison allowed 

differences between diffraction in the former and scattering in the latter to be observed. Methods 

to differentiate light trapping from diffraction and scattering from simple plasmonic absorption 

could offer insights for design of flexible photonic devices with optothermal interactions.42 

Optical extinction per NP was used as the primary metric for comparing measured and 

predicted optical extinction as a function of AuNP concentration. Measured extinction per NP was 

calculated as A/cnl, where A was extinction amplitude in absorbance units (AU), c was AuNP 

concentration in NP/cm3, n was the spectrum-averaged RI of PDMS (n = 1.42), and l was film 

thickness (cm). EMT extinction per NP was calculated as A/cnl where A=-log
10

T and T is 

fractional transmission predicted by geometric optics at resonance (542 nm). For comparison with 

measured results, optical response of NP-containing media may be estimated by multiplying the 

number of particles by the single particle Mie extinction cross-section.48 Mie-derived extinction 

was estimated as A/cnl using Beer-Lambert absorbance,48 A=cσl(log
10

e), yielding 

extinction/NP=σ(log
10

e)/n  where σ was the Mie theory extinction cross-section in cm2 and log
10

e 

was a conversion factor between log-bases. 

CDA-derived extinction per NP was calculated assuming a square lattice of AuNPs with a 

lattice spacing given as double the rw-s. The rw-s, based on the mean spherical volume of medium 

per particle, is used in condensed matter physics to define the density of a system,49 and has been 

leveraged previously to estimate distance between NP in 3D dispersions.50 As an example 

calculation, Wigner-Seitz radius is defined as rw-s = rp(ρAu/x)1/3 = (3V/4πN)1/3, where rp is the 
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particle radius, ρAu is the density of gold (19.3 g/cm3), x is gold mass per cubic centimeter of 

PDMS, V is the media volume, and N is the number of particles. For rp = 8 nm, AuNP concentrated 

to 2.34 x 1011 NPs/cm3 (N/V) equivalent to x = 9.7 x 10-6 grams Au per cubic cm: 8 nm x (19.3 

g/cm3/9.7 x 10-6 g/cm3)1/3 = (3/(4π x 2.34x1011 NPs/cm3))1/3 = 1006 nm. Decreasing rw-s from 1006 

nm to 408 nm, is shown on the upper axis in Figure 3b. CDA results yield extinction efficiency, 

which was converted to optical extinction cross-section by multiplying it by NP geometric cross-

section, i.e. πrp
2. Extinction values in Figure 3 were calculated by difference from extinction 

measured off-resonance at 800 nm. More detailed explanation of measured spectral 

characterization and theoretical descriptions are given in Section 2.4. 

Figure 3: a) Measured and estimated extinction coefficient spectra for 1.17 and 1.76 x1012 

NP/cm3 films containing 16 nm AuNPs, b) measured, Mie, EMT, and CDA-derived resonant 

extinction per NP for each AuNP dispersion, Wigner-Seitz radii shown on upper axis. 
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Resonant extinction per NP in super-wavelength PDMS films containing 16 nm AuNPs was 

constant, consistent with theoretical predictions, at interparticle separations greater than the 

resonant wavelength, rw-s, > λLSPR, but increased up to 1.5-fold at rw-s < λLSPR. Figure 3a compares 

measured (solid), EMT (long dash) and Mie (short dash) spectra from 16 nm AuNP-PDMS films 

at concentrations with rw-s just above (1.17 x1012 NP/cm3; 0.005 mass-percent AuNP; blue) and 

just below (1.76 x1012 NP/cm3; 0.0075 mass-percent AuNP; red) LSPR ~ 540 nm. Spectra are 

represented as extinction coefficient (AU/mm) baseline corrected off-resonance (800 nm). At 1.17 

x1012 NP/cm3 (blue), the maximum extinction per thickness in PDMS for measured, EMT, and 

Mie values were 0.121, 0.139, and 0.140, respectively. Above rw-s ~  LSPR at 1.76 x1012 NP/cm3, 

the maximum measured extinction per thickness was 0.241 – 14% above an estimate of 0.211 

obtained from both Mie and EMT. This 2-fold increase in measured extinction per thickness upon 

a 1.5-fold increase in NP concentration was not explainable by descriptions of increasing 

complexity: Beer-Lambert law, Mie theory, CDA or EMT.  

Measured extinction per NP remained near estimates from Mie, CDA, and EMT in 0.7 – 1.4 

mm thick AuNP-PDMS films at AuNP concentrations for which rw-s was above  LSPR ~ 540 nm, 

but increased at higher concentrations. Figure 3b compares resonant measured extinction per NP 

for 16 nm AuNP dispersed in PDMS (blue squares) or isopropanol (green circles) with estimates 

using Mie theory in isopropanol (green dotted line) and PDMS (red dashed line), Maxwell Garnett 

EMT in PDMS (purple diamonds), and CDA in PDMS (gray hollow circles). Equivalent AuNP 

inclusion volume fractions used in EMT were 5.02 x10-7, 1.00 x10-6, 2.51 x10-6, 3.77 x10-6, 5.02 

x10-6, and 7.53 x10-6 at increasing AuNP concentration. Values were plotted as function of AuNP 

concentration, not area density as in Section 2.1.1, because it more clearly elucidated observed 

trends. 
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At the lowest AuNP content, 0.234 x1012 NP/cm3, measured resonant extinction per NP in 

PDMS, 7.77 x10-13 cm2/NP, was below estimates of 8.43 and 9.09 x10-13 cm2/NP from Mie and 

EMT, respectively. Results were similar at AuNP concentrations of 0.469 and 1.17 x1012 NP/cm3, 

where corresponding rw-s of 1006, 799 and 588 nm remained above measured LSPR wavelengths 

between 542 and 537 nm.  At 1.76 x1012 NP/cm3, where rw-s (514 nm) <  LSPR, measured extinction 

per NP surpassed equivalent Mie and EMT estimates (8.91 vs. 8.45 x10-13 cm2/NP). As AuNP 

content increased, measured values diverged further from theoretical estimates, reaching values 

1.5-fold above predictions at 3.52 x1012 NP/cm3. In contrast, measured extinction per NP for 

AuNPs suspended in IPA (green circles) was consistent with Mie estimates (green dotted line); it 

remained relatively flat across this range of AuNP concentrations. Mie estimates in Figure 3b are 

less for IPA relative to PDMS due to lower medium RI, 1.38 vs. 1.42 in PDMS. It is proposed that 

Brownian fluctuation of suspended AuNPs in fluid precludes cumulative optical interference.50 

Increased extinction per NP in PDMS containing minimally scattering 16 nm AuNP at 

concentrations where rw-s <  LSPR, differed from results estimated using Mie, CDA and EMT. This 

is likely because these descriptions do not account for geometric optical reflection at the PDMS/air 

interface or for optical interference, i.e. diffraction, of incident radiation accumulated from 

adjacent resonant plasmonic extinction cross-sections. Mie theory calculates optical absorption 

and scattering from only isolated particles. Mie theory has been expanded to incorporate particle-

to-particle near-field interactions or for NPs dispersed in a highly absorbing dielectric medium, 

but comparatively low AuNP concentrations dispersed in PDMS herein preclude such 

effects.29,51,52 CDA calculates particle polarizability by summing contributions from neighboring 

particles, but only in a two-dimensional lattice with angularly definable incident irradiation. EMT 

treatment of optical extinction is independent of separation-dependent interparticle interactions. 



  

14 

 

Multiple scattering extensions for Maxwell Garnett EMT and Mie theory have been developed to 

characterize optical responses of opaque media.31 EMT has been expanded to include both effects 

of multiple scattering and anisotropy.53,54 However, prediction of bulk geometric optics in these 

systems remains difficult.55 Before attribution of increased optical extinction in AuNP-PDMS 

films, possible effects arising from scattering NPs,31 particle-particle interactions,38 or optical 

interference via dielectric heterogeneity41 should be considered.   

Increased measured extinction does not appear attributable to multiple scattering in super- 

AuNP-PDMS films for which rw-s is below LSPR. Multiple scattering is the phenomenon where 

photons are re-scattered by neighboring particles, with appreciable scattering cross-sections, 

numerous times as they propagate through the dielectric medium. Both the original and scattered 

wave must be considered in multiple scattering descriptions. Optical response of these systems are 

modeled most simply using diffusion or radiative transport theories, which are accurate at the limit 

that no light is transmitted ballistically.32,56 In contrast, the AuNP-PDMS films in this work are 

largely transparent and contain 16 nm AuNPs with Mie scattering cross-sections only ca. 1% of 

total extinction. Furthermore, extinction per NP values in Figure 3b consistent with Mie and CDA 

estimates at rw-s >LSPR indicate scattering effects are unlikely to play a large role in PDMS films 

containing 16 nm AuNPs. Control experiments using 76 nm AuNPs, discussed in Section 2.1.3, 

with large scattering cross-sections verified that divergence of optical rays by multiple scattering 

increased extinction per NP relative to Mie-calculated values for rw-s >> LSPR.30 However, in 

contrast to dispersions of 16 nm AuNPs in PDMS, extinction per NP in 76 nm AuNP-PDMS was 

higher than Mie estimates even at low concentrations. Thus, multiple scattering in 16 nm AuNP 

films for rw-s < LSPR alone appears unlikely.   
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AuNP aggregation at elevated AuNP concentrations seems unlikely to result in observable 

enhancement in extinction per NP. A ca. 10 nm thick coating of polyvinylpyrrolidone (PVP) 

surrounding each AuNP diminishes the likelihood of aggregation. In fact, sub-wavelength PVP 

films containing AuNP at 103 higher content, discussed further in section 2.2, exhibited no 

evidence of aggregation upon examination using scanning electron microscopy (SEM). Moreover, 

random occurrence of aggregation would not be anticipated to produce the observed, reproducible 

divergence in extinction per NP. The off-resonance (800 nm) spectral baseline adjustment used to 

calculate measured extinction per NP would likely eliminate effects from non-resonant scattering 

centers within the AuNP-PDMS matrix. While AuNP aggregation would increase resonant 

scattering cross-sections, it would increase LSPR bandwidth, diminish LSPR peak intensity, and 

red-shift LSPR peaks. LSPR peaks in this study actually blue-shifted from 542 to 532 nm with 

increasing AuNP content. Absence of AuNPs with large scattering cross-sections or indications of 

anomalous scattering events suggests multiple scattering is unlikely to yield the noteworthy 

extinction increases observed at rw-s < LSPR in AuNP-PDMS.  

The difference between measured and predicted optical extinction at higher concentrations of 

AuNP-PDMS films is likely attributable to a geometric optical effect resulting from the dielectric 

interface between PDMS and air. It is possible that oblique reorientation of incident orthogonal 

irradiation via diffractive interference from neighboring resonant AuNP optical cross-sections 

becomes significant at rw-s <  LSPR. This results in internal reflection at the air-polymer interface 

due to Snell’s law, as discussed in Section 2.1.1, which remains valid for media containing sub-

wavelength inclusions.38 Investigations studying diffraction in liquids due to an applied electric 

field help illustrate contributions of diffractive interactions between particles. Enhanced light 
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trapping could benefit waveguides in organic photovoltaics,57 absorption and fluorescence in 

quantum dots,58 and development of polymeric ultra-high refractive index materials.59 

2.1.3 Mie scattering enhanced extinction per nanoparticle  

Highly scattering 76 nm AuNPs dispersed in PDMS enhanced extinction per NP up to 1.3-fold 

with increasing AuNP content. These films containing scattering AuNPs provided a positive 

control for effects of internal reflection on optical extinction at concentrations with rw-s 4-fold 

larger than the LSPR wavelength. Mie scattering efficiency of 76 nm AuNPs is about 10,000 times 

greater than in 16 nm AuNPs, accounting for about half of resonant optical extinction. Figure 4 

illustrates how resonant extinction per NP for 76 nm AuNPs dispersed in PDMS films (red 

diamonds) increased with AuNP content in comparison to fluid IPA suspensions (green circles). 

Resonant extinction per NP improved from 5.73 x10-11 cm2/NP at 4.37 x109 NPs/cm3 to 6.39 x10-

11 cm2/NP at the second highest concentration of 21.9 x109 NPs/cm3, a 31% increase in extinction 

per NP. The inset of Figure 4 shows an enhanced dark-field image (scale = 10 µm) of the AuNP-

PDMS film containing 21.9 x109 NP/cm3. The lower number of 76 nm AuNPs dispersed in PDMS, 

two orders-of-magnitude less than the 16 nm AuNPs in PDMS, likely precluded diffraction. The 

upper axis in Figure 4 gives rw-s in these sample ranging from 1938 to 3793 nm. Peak LSPR 

wavelengths decreased from 569 to 563 nm as AuNP concentration increased.  

Adding more scatters into PDMS increased probability incident light was re-directed obliquely 

thereby enhancing total optical extinction via internal reflection or multiple scattering. Extinction 

per NP of 76 nm AuNPs in PDMS was 5.73, 6.07, 6.31, 6.39, and 6.02 x10-11 cm2/NP as AuNP 

concentrations increased from 4.37 to 32.8 x 109 NPs/cm3. A tangent baseline approximation was 

used for measured resonant extinction amplitudes, a technique commonly applied to spectra with 
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an unknown or shifting baseline.60 The line was drawn tangent to the spectral feature on both left 

(~450 nm) and right hand (~650 nm) sides of the LSPR (~565 nm), with extracted magnitudes 

reported as the difference between LSPR and tangent baseline extinction value at the peak 

wavelength. Multiple scattering likely contributes to enhanced optical extinction by providing a 

larger effective optical path length. The optimal particle diameter to maximize multi-scattering 

extinction was discovered to be smaller than that maximizing single-particle Mie extinction cross-

section.61 Prior description of Mie scattering revealed that resonant extinction cross-sections are 

enhanced when re-radiation prevails over dissipative losses.62  

 

Figure 4:  Resonant extinction per NP for 76 nm AuNP dispersions, inset dark-field image of 

21.9 x109 NP/cm3 film, Wigner-Seitz radii shown on upper axis. 

 

Suppressed extinction per NP at the highest AuNP concentration could indicate increased 

forward scattering at higher particle densities or enhanced broadband scattering. Either of these 

phenomena could decrease extinction per NP relative to the tangent baseline approximation used 
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to calculate measured extinction per NP values. Blue-shifting of the LSPR peak from 569 to 562 

nm with increasing AuNP concentration does not support likelihood of aggregation. Extinction per 

NP was not boosted by Mie scattering in fluid IPA dispersions of 76 nm AuNPs. Extinction per 

NP in IPA was 5.22, 5.07, 5.05, 4.92, and 4.91 x10 x10-11 cm2/NP as AuNP concentration 

increased. Although strictly valid only for non-scattering media, these results did not deviate 

appreciably from Beer-Lambert law.31 Diffusive theory and radiative transport are frequently 

employed to model highly scattering AuNPs in opaque nanocomposite materials where little or no 

light is transmitted ballistically.32,56 The films analyzed in the current work fall between these two 

idealities, but an approach coupling radiative transport theory with conventional Fresnel optics is 

a subject of ongoing discussion.32 

Hyperspectral analysis revealed a resonant scattering peak at about 580 nm for the second 

highest AuNP concentration, which agrees well with a prediction of 572 nm given by Mie theory. 

Enhanced dark-field images such as shown in Figure 4 inset further indicate aggregation is likely 

not prevalent at concentrations below the highest AuNP concentration. This work represents the 

first instance when individual AuNPs have been imaged in situ in PDMS without destructive 

transmission electron microscopy (TEM).22 The highly insulating PDMS host does not permit 

SEM of dispersed AuNPs. The small size and accompanying lack of resonant scattering precluded 

similar hyperspectral dark-field analysis of 16 nm AuNPs in PDMS. However, any aggregate 

scattering in the 16 nm AuNP-PDMS films would have likely been visible, further evidence of a 

lack of AuNP aggregation.  
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2.2 Characterization of optical extinction in AuNP-PVP thin films 

High concentration of AuNPs dispersed in ca. 70 nm thickness polyvinylpyrrolidone (PVP), 

on the order of 1015 NPs/cm3, provided a scenario in which both film thickness and interparticle 

separation were extended to << λLSPR. Resonant extinction per NP in these AuNP-PVP films, the 

thinnest, most concentrated films analyzed to-date, was observed to trend downward as particle 

separation decreased, consistent with a priori estimates from EMT, Mie theory, and CDA.63 Figure 

5a shows measured UV-vis extinction spectra for the five fabricated AuNP-PVP films. AuNP 

concentration increased from 1.01 x1015 NP/cm3 (green) to 5.06 x1015 NP/cm3 (blue), while 

accompanying LSPR extinction magnitudes increased from 0.036 to 0.069 AU across this range. 

Extinction at 5.06 x1015 NP/cm3, 0.069, is equivalent to approximately 80% transmission. 

Resonant extinction of 20% is noteworthy for films only ca. 70 nm thick. Figure 5a inset shows an 

atomic force microscopy (AFM) surface plot scanned over a scratch made in the 5.06 x1015 NP/cm3 

sample. Previously, optic extinction of 130 nm thick polymer dispersions, including PVP, 

containing reduced AuNPs were examined at concentrations also on the order of 1015 NP/cm3, as 

estimated based on reported LSPR magnitudes.64 

Measured extinction per NP (blue squares) decreased asymptotically from 1.01 to 5.06 x1015 

NP/cm3 as interparticle distance, i.e. double the Wigner-Seitz radius, decreased from 130 to 76 

nm, as shown in Figure 5b. Extinction per NP were calculated in the same manner as outlined in 

section 2.1.2 for 16 nm AuNP-PDMS films. Measured values were ca. 3 to 5 x10-13 cm2/NP below 

EMT estimates for AuNP-PVP films; however, the decrease in extinction per NP as AuNP 

concentration increased was similar in both. EMT has been used prior to accurately predict optical 

properties of composite media at NP fill fractions of more than 0.1,65 more than 10 times greater 

than those depicted in Figure 5. Measured extinction per NP values dropped below Mie estimates 
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(red dashed line) at AuNP concentration greater than 1.69 x1015 NP/cm3. Both the 10 nm PVP 

shell surrounding dispersed AuNPs and SEM images precluded aggregation as a likely culprit for 

the observed decrease in measured extinction per NP; Figure 5b inset shows a SEM image of the 

3.37 x 1015 NPs/cm3. 

Figure 5: a) AuNP-PVP spectral extinction and AFM surface plot, b) extinction per NP from 

measurement, Mie theory, EMT and CDA, inset SEM image of AuNP-PVP film. 

 

Comparable to EMT results but with smaller amplitudes, CDA-derived extinction per NP 

decreased from 9.62 to 9.51 cm2/NP as interparticle separation dropped from 130 to 76 nm. This 

decrease relative to constant Mie values apparently results from an increase in interparticle 

coupling that decreases resonant NP polarizability and resulting optical extinction. At lattice 

spacing equivalent to 2 x rw-s, CDA-derived extinction per NP was suppressed relative to Mie 

values due to resonant coupling between the LSPR and far-field diffraction from the ordered 
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particle lattice. The CDA solves Maxwell’s equations by treating each nanostructure within the 

lattice as a single, polarizable dipole.36,37 Scattering contributions from adjacent nanostructures are 

incorporated into a retarded dipole sum. Far-field lattice diffraction dominates this retarded dipole 

sum when interparticle separation is on the order of incident wavelengths.66 This occurs for ordered 

dipoles arranged in square, hexagonal, and other configurations.26,66–68 Treating randomly 

dispersed AuNPs in PVP films as a two-dimensional ordered assembly in CDA could increase far-

field optical extinction effects relative to measured values. 

Lower measured extinction per NP values relative to theoretical predictions could be 

attributable to a lower effective RI of the interrogated medium or film thickness uncertainty. 

Measured and estimated LSPR energies indicated the effective RI of the AuNP-PVP film on a 

glass substrate was less than that of pure PVP and/or glass. Relative to λLSPR estimated by Mie 

(540 nm) or EMT (542 nm) for AuNPs in PVP (n = 1.53), average measured λLSPR for films 

deposited on glass was 538 nm. As AuNP content increased from 1.01 to 5.06 x1015 NP/cm3, 

measured LSPR wavelength increased slightly for the five films: 535 nm, 537 nm, 538 nm, 541 

nm, and 538 nm, respectively. Mie-estimated λLSPR decreased from 540 nm to 525 nm when using 

an effective RI of 1.3 for a 530 nm thick medium (e.g., one wavelength thick) consisting of 70 nm 

of PVP, 230 nm of air (n = 1.00), and 230 nm of glass (n = 1.52). Resonant Mie extinction per NP 

in this effective dielectric medium decreased from 10.3x10-13 cm2/NP (as shown in Figure 5b) to 

5.63x10-13 cm2/NP, just below measured extinction per NP. This comparison shows the sensitivity 

of extinction estimates on dielectric environment. Alternatively, films thinner than measured (70 

nm) would result in larger extinction per NP values, since it is calculated as absorbance divided 

by concentration, thickness, and RI. AFM measured thicknesses varied from 60 to 80 nm with a 

mean of 70 nm. Corresponding measurements via surface profilometry, which is less precise at 
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nanometer scales, were 40-80 nm. Thicknesses estimated from a Beer-Lambert law extinction 

coefficient derived from 16 nm AuNPs dispersed in fluid IPA were 10-90 nm.   

Reversing AuNP-PVP film orientation relative to incident light, i.e., incident on the PVP layer 

first rather than glass, changed neither λLSPR nor amplitude. This is unsurprising since RI for PVP 

and glass are almost identical. Previously, measured λLSPR of AuNPs deposited on glass red-shifted 

when light was incident on the glass substrate as opposed to the AuNPs, which were effectively in 

air due to wavelength contraction.69 Blue-shifted λLSPR relative to Mie predictions were observed 

previously in two-dimensional, square lattices of AuNPs exhibiting lattice resonance coupling 

between a broad plasmon mode and narrow diffractive mode.28 Decreasing extinction per NP from 

EMT is partly the result of optical dispersion in PVP. Extinction in AU of Au-free PVP film 

decreases from ca. 0.04 at the LSPR (542 nm) to 0.038 at 800 nm. This minute difference increases 

extinction per NP at lower concentrations when calculated relative to extinction at 800 nm, but its 

effect diminishes with increasing concentration.  Relative to Au-free PVP at the LSPR (542 nm), 

EMT-derived extinction per NP actually increased slightly because the nanocomposite n increased 

from 1.52 to 1.55 with increasing AuNP content. 

Measured and predicted optical extinction in sub-wavelength AuNP-PVP films exhibited 

comparable trends and magnitudes despite limitations in the compact theoretical approaches 

used.63 Mie extinction was based on a single AuNP cross-section, with cumulative response 

predicted via Beer-Lambert law, i.e. absorbance increases linearly with concentration. This 

approximation is valid only for non-scattering and non-interacting NPs.33,50 Strong deviations are 

known to occur when interparticle decreases sufficiently to support particle-particle interactions, 

i.e., for rw-s, ca. 38-65 nm.51,52  An approach coupling Mie theory and EMT to predict multipole 

plasmon modes is not needed for dipolar 16 nm AuNPs, but could be useful for samples containing 
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more complex plasmonic nanostructures.70 Furthermore, the validity of geometric optics relations 

for calculation of optical extinction in sub-wavelength films is somewhat limited.71 However, 

CDA-estimates of interparticle effects on resonant extinction for random dispersions of AuNPs in 

polymer films does provide insight. Similarly, finite difference time domain (FDTD) simulations 

describe dependence of optical extinction on NP size, NP morphology, and incident light direction 

and polarization.72 The ca. 70 nm thickness in AuNP-PVP films suggests the dispersed AuNPs 

approach a nearly two-dimensional distribution. This distribution, along with negligible scattering 

of the 16 nm AuNPs, prohibited multiple scattering effects on optical extinction, for which the 

EMT formulation has been extended.54  

Overall, comparison between measured and estimated extinction per NP values in sub-

wavelength AuNP-PVP films suggest minimal light trapping occurs across the high range of AuNP 

concentrations studied. Measured, EMT, and CDA results showed a decrease in extinction per NP 

of various magnitudes as AuNP concentration increased. This was in stark contrast to enhanced 

extinction in super-wavelength AuNP-PDMS films, discussed in Section 2.1, at AuNP 

concentrations 103 lower and accompanying rw-s just below LSPR. This divergence in measured  

optical extinction is likely attributable to geometric optical effects at dielectric interfaces between 

air, polymer, and glass71 that disappears at film thickness < LSPR.
38 

2.3 Geometric optics of multi-component AuNP-polymer thin film systems 

Algebraic calculation of geometric optics, i.e. transmission and reflection, in AuNP-PDMS 

films systems provides a compact alternative to computational approaches, EMT, or simple fits to 

experimental results.69 Numerical methods may probe optical properties of complex NP 

configurations, but requires precise characterization of NP arrangement and are difficult to 
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implement at system boundaries.73 Effective medium approaches could be useful for asymmetric, 

polydisperse dispersions of quasistatic reduced AuNPs (rAuNPs), but accurate description of 

rAuNP fill fraction remains difficult.74 Purely experimental approaches afford some insights, but 

extrapolation beyond measured ranges remains difficult.  

This section studies geometric optical transmission (T), reflection (R), and resulting 

attenuation (A), i.e. extinction, in PDMS films containing both asymmetric and uniform 

distributions of rAuNPs along with uniform distributions of 5 and 20 nm solution-synthesized 

AuNPs.75 Optical attenuation (A) is given as one minus the sum of fractional measured 

transmission and reflection, i.e. A = 1 – (T + R). Attenuation in polydisperse rAuNP-PDMS films 

increased with order-of-magnitude increases in Au content, while monodisperse AuNP-PDMS 

attenuation was proportional to Au content. Asymmetric distribution of rAuNPs attenuated light 

more efficiently than uniform distributions. Linear algebraic estimation of both uniform and 

polydisperse AuNP-PDMS films with an adjacent back-reflector, along with AuNP-PDMS film 

pairs, were within 0.04 units of measured attenuation on average. Facile estimation of optical 

attenuation in multi-component nanocomposites could support light trapping in photovoltaics and 

membrane separations using AuNP-PDMS and an adjacent mechanical support like the stainless 

steel mesh used herein.22,76 

The ternary diagram in Figure 6 shows fractional values of R, T, and A for individual AuNP-

PDMS films (solid circles). External reflection was measured by attaching each sample to the 

exterior of an integrating sphere and irradiating it from the opposite side with the 532 nm laser. 

Dense distribution of rAuNPs attenuated light most efficiently, scaling AuNP area density, rather 

than total Au content. For example, the 0.6 mass-percent film (darkest blue; 130 μm thick) has 2.5-

fold more Au than the 1.2 mass-percent laminar film (yellow; 25 μm Au-containing layer, 65 μm 
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thick), but almost identical optical attenuation. Attenuation from monodisperse 5 nm AuNP-

PDMS films was higher than uniform rAuNP-PDMS films of equivalent thickness, as the 0.1 

mass-percent oAuNP film attenuated 0.36 fractional units compared to 0.14 for the analogous 

rAuNP-PDMS film. Heterogeneity of in situ reduced AuNPs results in broadened optical 

extinction spectra, thereby suppressing attenuation at the single probe wavelength (532 nm).77 

 
Figure 6: Measured and predicted geometric optical transmission (T), reflection (R), and 

resulting attenuation (A) for various AuNP-PDMS systems distinguishable by color, shape, and 

hatching, inset illustrates linear algebraic description of optical attenuation. 
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First-generation AuNP-PDMS containing 20 nm AuNPs were more efficient light attenuators 

due to cumulative scattering and/or diffractive effects. Enhanced reflection in these 20 nm AuNP-

PDMS compared with 5 nm AuNP-PDMS lacking apparent internal reflection-enhanced optical 

extinction could result from internal reflection escaping from the opposite film-air interface. It is 

believed that very small resonant extinction cross-sections of 5 nm AuNPs dispersed in PDMS 

precluded enhanced optical extinction relative to fluid dispersions that would arise from 

cumulative scattering and/or diffraction. Uncertainty in AuNP size and distribution in rAuNP-

PDMS precluded accurate description of optical attenuation relative to fluid analogues. 

Linear superposition of geometric optics, considering multiple light passes, allowed prediction 

of cumulative transmission and reflection using linearly compounding fractions of each individual 

component’s measured optical response.75 Inserting a second optical component to each irradiated 

system induced multiple light passes (𝑚) within the system, thereby enhancing attenuation in two-

component systems. Figure 6 inset shows optical attenuation resulting from multiple light passes 

as a function of constituent optical properties of each component.69 For example, additional 

attenuation results from light reflected by the second component, either a stainless steel mesh used 

for mechanically support of AuNP-PDMS films under vacuum in pervaporation14 or a second 

AuNP-PDMS film analogous to multi-layer photovoltaic applications.  

The linear algebraic geometric optical description permits calculation of the summative optical 

responses of an assembly without requiring individual components to be physically distinct. The 

algebraic sums predicted T, R, and A values of both asymmetric AuNP-PDMS thin film-back 

reflector pairs and pairs of uniform AuNP and rAuNP-PDMS films.69 Algebraic estimates (small 

dots) for each two-component system are connected to corresponding measured values. Estimated 

and measured attenuation for AuNP-PDMS film-back reflector pairs were within 0.04 absolute 
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units on average. Measured attenuation exceeded predictions for asymmetric film-back reflector 

pairs, consistent with a previous study of uniform rAuNP dispersions with a range of back-

reflector.69 Superimposable geometric optics of adjacent plasmon resonant and standard optical 

components was reported for silver NPs deposited on silicon nanopillar arrays.78 

Measured AuNP-PDMS film pair attenuation was higher than algebraic estimates, suggesting 

the film-film interface may further enhance light trapping. This is counterintuitive since the film-

film interface would be expected to dampen internal reflection as geometric reflection and 

transmission values for individual films were measured in air. However, agreement between 

measured and predicted magnitudes are within 0.04 units, indicating this approach remains a valid 

first approximation of cumulative optical attenuation. Alternatively, attenuation of asymmetric 

AuNP-containing layers was estimated via re-arrangement of the m = 1 term in the linear algebraic 

sum. Predicted attenuation values were 0.90, 0.53, and 0.089 for the 0.5, 0.05, and 0.005 mass-

percent asymmetric films, respectively. Estimated attenuation for the 1.2 mass-percent laminar 

film was 0.52. Low values of reflection in AuNP-PDMS justified use of the single light pass, as 

effects from multiple light passes are likely negligible.  

2.4 Experimental & theoretical approaches 

2.4.1 Uniform AuNP-PDMS film fabrication 

Dispersion of readily definable solution-synthesized AuNPs into PDMS supports study of 

underlying optothermal phenomenon, but careful consideration of solubility parameters and AuNP 

surface functionalization is critical for maximizing AuNP concentration and minimizing 

aggregation.30 First-generation uniform AuNP-PDMS dispersions were fabricated as follows.29,77  
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PDMS (Sylgard® 184 silicone elastomer kit #4019862, Dow Corning, Midland, MI, USA) was 

prepared with a 10:1 monomer-to-crosslinker ratio, then degassed. AuNPs were suspended in 

ethanol with a stock solution concentration of 1013 NPs/ml. Appropriate volumes of this stock 

solution were mixed with PDMS, yielding concentrations ranging from 0.0020 to 0.0050 mass-

percent. AuNP mass-percent was considered the total AuNP divided by the mass of the entire 

AuNP-PDMS film. After mixing the AuNP solutions into PDMS, the uncured mixture was placed 

on a ceramic curing surface. Films were cured for 10 minutes at 150 °C then cut into 5 mm x 5 

mm samples.  

Second-generation AuNP-PDMS with higher AuNP content and improved dispersion were 

fabricated as follows.30 PDMS was prepared with a 10:1 monomer-to-crosslinker ratio, then 

degassed for two hours. Polyvinylpyrrolidone (PVP)-coated, dried AuNPs (Nanocomposix, San 

Diego, CA, USA) were dispersed at a concentration of 1 mg/ml AuNPs (5.06 x 1015 NPs/cm3) in 

isopropanol (IPA). Commercially available AuNPs larger than 5 nm in diameter are usually capped 

with polar compounds like PVP, which severely inhibits mixing into nonpolar PDMS. IPA was 

chosen as it balanced AuNP-PVP solubility in the solvent with solvent solubility in PDMS better 

than water, ethanol, or acetone. Allotted volumes of the 1 mg/ml PVP-coated AuNP solution were 

then mixed into PDMS. Resulting concentrations in PDMS ranged from 0.001 to 0.015 mass-

percent and 0.002 to 0.015 mass-percent for 16 nm AuNPs and 76 nm AuNPs, respectively. These 

AuNP-PDMS mixtures were degassed again for 24 hours, after which 1.5 g was poured into a 25 

mm x 25 mm x 1 mm in polystyrene sample box. The samples boxes were then wrapped in foil to 

protect from photo-induced effects and cured in an oven for 24 hours at 60 °C. Longer curing times 

at lower temperatures helped outgas evaporating solvent with minimal formation of observable air 

bubbles or defects.  
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2.4.2 Asymmetric AuNP-PDMS film fabrication 

This work also developed a method to facilitate rapid reduction of gold(III) chloride (HAuCl4; 

TCA) into partially-cured PDMS.22 Diffusion times and pre-curing was optimized over three 

order-of-magnitude of TCA concentration. PDMS crosslinking is facilitated chemically by 

reaction between the monomer vinyl groups and silicon hydride groups in the curing agent. 

Residual silicon hydride is thought responsible for TCA reduction into AuNPs.79 Utilization of a 

partial cure prior to TCA introduction left more crosslinker available for Au reduction. A multitude 

of TCA dilution concentrations, curing conditions, monomer-to-crosslinker ratios, and diffusion 

times assessed led to less optimal outcomes.22 Prior work within the group suggested that 

concentrations beyond 0.75 mass-percent TCA prevented curing of PDMS. In this work, fully 

crosslinked Au-free PDMS gave physical support to higher concentrations with somewhat tacky 

surfaces at maximum Au concentration. 

TCA obtained from the manufacturer (Sigma Aldrich, St. Louis, MO, USA) was dispersed in 

distilled, deionized (DD) water at 25 mass-percent TCA, calculated as the mass of pure TCA 

divided by the mass of the dilution. This aqueous solution was diluted further to reach the TCA 

concentrations used. Au-free PDMS, with a 10:1 monomer-to-cross-linker ratio, was spincoated 

on a 1 in x 1 in x 0.04 inch glass substrate at 1000 RPM for 90 seconds. Each film was cured at 24 

hours, and weighed approximately 30 mg. This partially-cured PDMS was then exposed to TCA 

solutions ranging from 0.005 mass-percent (0.00015 M) to 0.5 mass-percent (0.15 M) for 24 hours 

in a sample box (25 mm x 25 mm x 1 mm) wrapped in parafilm to mitigate evaporation. 2 ml of 

the dilute TCA solutions were used to ensure the PDMS surface was completely submerged. 

Following exposure, the film was rinsed, then fully cured on a hot plate for 15 minutes at 180 °C.  

Au-free PDMS controls were fabricated using distilled, deionized water in lieu of aqueous TCA. 
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2.4.3 AuNP-PVP thin film fabrication 

Isopropanol (IPA) dispersions containing AuNP and polyvinylpyrrolidone (PVP) were 

spincoated to create sub-wavelength AuNP-PVP thin films on ultra-smooth BK-7 glass.63 PVP-

coated, dried AuNPs (Nanocomposix, San Diego, CA, USA) were dispersed at a concentration of 

1 mg/ml AuNPs in IPA; this solution also contained 5.67 mg/ml of PVP. Following solvent 

evaporation, the ratio of 1 mg AuNPs per 5.67 mg PVP corresponded to the highest AuNP 

concentration in residual PVP of 5.06 x 1015 NP/cm3. This stock solution was diluted further with 

5.67 mg/ml PVP in IPA matching the molecular weight of the initial PVP (40 kDa). Polished BK-

7 glass was pretreated in Piranha solution (3:1 concentrated sulfuric acid to hydrogen peroxide) to 

facilitate removal of organic impurities and hydroxylate the surface for improved solvent 

wettability. Approximately 40 μL of each AuNP-PVP solution was dropped on ca. 10 x 10 x 0.5 

mm Piranha-treated BK-7 glass pieces and spincoated at 4000 rpm for 30 seconds. These ultra-

thin AuNP-PVP films remained on the transparent substrate for all subsequent optical analyses.  

2.4.4 Optical and physical characterization 

Spectral extinction of both AuNP-PDMS and AuNP-PVP films were measured with an 

integrated light microscope (Eclipse LV100, Nikon Instruments, Melville, NY, USA) and 

spectrometer (Shamrock 303, Andor Technology, Belfast, UK).  Maximum magnification for the 

light microscope’s objective is 100x. The spectrometer’s slit size is 200 μm. Calculated spectral 

extinguished power for AuNP-PDMS films was given by I (1-10-A), where I is the incident laser 

power, (100 mW) and A is the measured spectral extinction in absorbance units.  

Geometric optics (i.e., transmission and reflection) of first-generation AuNP-PDMS films 

were independently measured at 532 nm using an integrating sphere apparatus described 
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previously.69 External reflection could be measured by affixing each sample to the exterior of an 

integrating sphere (IS200-4, Thorlabs, Newton, NJ, USA) and irradiating it from the opposite side 

of the sphere with a 532 nm diode laser (MXL-H-532, CNI, Changchun, China). For transmission, 

the films were next to a lens focusing transmitted light into the detector. A small gap between the 

sample and lens was occupied by air for normal transmission measurement (without RI-matching) 

and water-glycerol for RI matching with PDMS (RI = 1.42). Transmission, i.e., forward scattering, 

was captured using a power meter (PM100D, Thorlabs, Newton, NJ, USA), while a spectrometer 

(AvaSpec-2048, Avantes, Broomfield, CO, USA) captured external reflection, i.e. backscattering, 

coupled by the integrating sphere. Internally reflected power is given as the change in transmission 

in presence and absence of the RI-matching fluid. 

Both surface and cross-sectional images of asymmetric AuNP-PDMS were taken using a 

digital camera (Infinity 1-5, Lumenera Corporation, Ottawa, CN) integrated with the light 

microscope in bright-field reflection mode. Cross-sectional images were obtained by cutting of 

small sections of the AuNP-PDMS film, and sandwiching it between a pair of glass slides. Thin 

film dimensions were characterized using image analysis software (Infinity Analyze, Lumenera 

Corporation, Ottawa, CN) which was calibrated using TEM grids with known grid spacings. 

2.4.5 Maxwell Garnett effective medium theory 

Prediction of bulk optical properties of dielectric media containing nanoscale inclusions 

supports design and implementation of these systems.69,74,80 Maxwell Garnett EMT is applied 

broadly to describe optical response of inclusions within a homogeneous dielectric material. 

EMT’s primary output is an effective bulk dielectric function of the composite media.81 EMT is 

particularly beneficial for estimation of composite dielectric functions at inclusion fill fractions of 
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up to 30%, where inclusion fraction is large enough that a Beer-Lambert treatment is insufficient 

to accurately describe the optical properties of the system.81,82 By definition, the optical extinction 

of a distinct unit cell is identical to a material with the effective medium’s dielectric permittivity. 

EMT calculates the electrostatic field induced within the host media by an individual spherical 

inclusion and approximates its distortion due to interaction between inclusions.82   

If the scattering amplitude of inclusions in the direction of incident irradiation is zero, use of 

Fresnel equations (geometric transmission and reflection) to predict optical response is 

permitted.82  In this “small sphere” limit, description of inclusions with large scattering amplitudes, 

e.g., AuNP greater than 50 nm in diameter, and subsequent use of Fresnel relations would be 

inaccurate.82 Conversely, the point at which an inclusion-containing medium can no longer be 

described by its bulk dielectric function (approximately 5 nm for AuNP) sets the lower bound for 

inclusion size.83 More rigorous applications of EMT has been developed to characterize multiple 

scattering events,54 anisotropic inclusions,53 and finite-sized conglomerates.65 EMT has even been 

used to calculate effective thermal conductivities in composite solids with strong interfacial 

thermal resistances – a method generalized to any fundamental transport property describable via 

Laplace’s equation.84 

The following procedure outlines the calculation of geometric optical properties of AuNP-PVP 

and AuNP-PDMS films using EMT. The Clausius–Mossotti relation correlates the number of 

inclusions per unit volume, Nj, in material j, each of which have a uniform, electric polarizability 

αj, to a complex dielectric function Ɛeff of an isotropic, microscopic effective medium85 

Ɛeff - 1

Ɛeff + 2
=

4π

3
∑Njαj

j

 (2.1) 
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where Ɛeff = Ɛ1,eff + iƐ2,eff. The electric polarizability, or tendency of a materials conduction 

electrons to be perturbed by an external electric field, of a spherical inclusion i of radius 𝑟 may be 

defined classically in terms of its material-specific complex dielectric function, Ɛi, as86  

α = (
Ɛi - 1

Ɛi + 2
) r3 (2.2) 

For an individual material comprised of uniform spherical inclusions, substitution of Equation 2.2 

into Equation 2.1 and introduction of a spherical inclusion volume fraction, 𝛿𝑖 = Ni
4

3
πr3, yields 

Ɛeff - 1

Ɛeff + 2
 = δi (

Ɛi - 1

Ɛi + 2
) (2.3) 

Accounting for the complex dielectric constant of the host material, Ɛm, reforms Equation 2.3 to85 

Ɛeff - Ɛm

Ɛeff + 2Ɛm

 = δi (
Ɛi - Ɛm

Ɛi + 2Ɛm

) (2.4) 

Considering only spherical inclusions in vacuum, Ɛm = 1, Equation 4 simplifies to Equation 3.  

Solving Equation 2.4 for Ɛeff  yields the familiar Maxwell Garnett effective dielectric constant 

equation82 

Ɛeff = Ɛm (
2δi(Ɛi

 - Ɛm) + Ɛi + 2Ɛm

2Ɛm + Ɛi + δi(Ɛm
 - Ɛi)

) (2.5) 

Taking the real Ɛ1 and imaginary Ɛ2 components of Equation 2.5, the real part of the refractive 

index, neff, and the absorption coefficient, keff, may be calculated as87 

                 neff =
1

√2
(Ɛ1,eff + (Ɛ1,eff

2
 + Ɛ2,eff

2)
1/2

)
1/2

 
(2.6a) 

                 keff =
1

√2
(-Ɛ1,eff + (Ɛ1,eff

2
 + Ɛ2,eff

2)
1/2

)
1/2

 
(2.6b) 
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From this complex refractive index (RI), geometric optical transmission, T, and reflection, R, 

may be calculated for effective mediums of finite thickness, l, on which light of vacuum 

wavelength λ is incident using Equation 2.687  

 
R =

(neff - 1)
2 + keff

2

(neff + 1)2 + keff
2
 

(2.7) 

 
T =

(1 - R)
2
e-4πkl/λ

1 - (R2e-8πkl/λ)
 

(2.8) 

Via Equation 2.8, optical extinction in absorbance units is calculated as A = -log
10

T.  Complex 

dielectric functions for Au88 and PVP89 used in Equation 2.5, were -4.856+2.123i and 

2.342+0.007i at 542 nm, respectively. PDMS refractive index was given as 1.42.90 

2.4.6 Mie theory 

The Mie solution to Maxwell’s equations, often referred to as Mie theory, describes the 

scattering and absorption of an electromagnetic plane wave by a single spherical sub-wavelength 

structures.47  Mie solutions give scattering and absorption cross-sections, efficiencies, and intensity 

distributions. Variation in particle geometry, composition, and dielectric environment determine 

resulting optical response. For comparison with measured results, optical response of bulk 

nanoparticle-containing media may be estimated by multiplying the number of particles by the 

single particle Mie extinction cross-section.48 This is approach is useful in systems where Beer-

Lambert law is valid, i.e., optical absorbance is linearly proportional to concentration.33,50 Like 

Maxwell Garnett EMT, this simplification is inaccurate for systems with highly scattering 

particles, since measured optical response is dominated by multiple scattering events. Deviations 

from ideal Beer-Lambert law behavior have been observed when interparticle separation decreased 
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sufficiently to support particle-to-particle interactions or when particles were dispersed in a highly 

absorbing, non-transparent media.52 Extinction per NP for both AuNP-PDMS and AuNP-PVP 

films were estimated from Mie theory as AU/cnl using Beer-Lambert absorbance, A=cσl(log
10

e),48 

yielding extinction/NP=σ(log
10

e)/n  where σ is Mie theory extinction cross-section in cm2 and 

log
10

e is a log-base conversion factor. From this calculation it is apparent that Mie-estimated 

extinction per NP from Mie theory is independent of AuNP concentration. 

2.4.7 Coupled Dipole Approximation 

The coupled dipole approximation, CDA, is an extension of Mie theory that includes the effect 

of interaction with adjacent particles on particle polarizability. In the CDA,22,23,  each NP in an 

array52,53 is defined as a single point dipole with electric polarization (P) proportional to local 

electromagnetic field, Einc,6 

 
P =

αEinc

1-αS
 

(2.9) 

where α is the frequency-dependent particle polarizability constant and S is the retarded dipole 

sum that accounts for far- and near-field dipole radiation from adjacent nanostructures 

encompassing the lattice.66 Particle polarizabilities are definable using analytic descriptions,68 but 

approximations for higher order modes26 and more complex nanostructures require numerical 

methods.6,92 At lattice spacing comparable to excitation wavelength, far-field lattice diffraction 

dominates S.  Optical extinction from orthogonal incidence wavevector, 𝑘, arises from the extent 

polarization of the lattice is out of phase with the incident field (i.e., P/Eo) and is expressed by 

 σext = 4πk 𝐼𝑚 (
1

1 α⁄ -S
) (2.10) 
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where σext is extinction cross-section and Im represents the imaginary component of the quantity.  

The CDA uses matrix inversion to solve Maxwell’s equations at NP in a user-specified array.66,93 

For a given number of dipoles, the polarization vector at each dipole is calculated using 

superposition, with various angles of incident radiation able to be analyzed.58 Simulations in this 

work studied 16 nm diameter spheres in PDMS (n = 1.42) or PVP (n = 1.53) RIs. A square 150 x 

150 NP lattice grid was used (90,601 dipoles) at a lattice constant equal to double the Wigner-

Seitz radius, rw-s = rp(ρAu/x)1/3 = (3V/4πN)1/3, where rp is the particle radius, ρAu is the density of 

gold (19.3 g/cm3), x is gold mass per cubic centimeter of PDMS, V is the media volume, and N is 

the number of particles. 



  

37 

 

3.  THERMAL DISSIPATION IN GOLD NANOPARTICLE-POLYMER FILMS 

Thermal dissipation of plasmon energy from gold nanoparticles (AuNPs) dispersed in dense, 

transparent polymers has extensive value in biotherapeutics,95,96 photovoltaics,19,97 optical 

interconnects,20,98 sensors,23,24 and  chemical separations.22 Surface plasmon energy decays into 

phonons, which results in an intense thermal response dictated by NP composition and 

morphology, incident intensity, and host media.99–102 To-date, assessment of interconnected optical 

and thermal effects in plasmon-active nanocomposites has relied heavily on interpretation of 

experimental results and continuum analytic description based on direct photon-plasmon-phonon 

processes. This chapter comprehensively characterizes thermal dissipation following optical 

absorption in 3D polymer dispersions. Description of interrelated optical absorption and thermal 

dissipation was extended beyond conventional optical and one-dimensional heat transfer 

descriptions to include both finite-element analysis (FEA) and the coupled dipole approximation 

(CDA). Determination of new plasmon decay pathways and heat dissipated per unit optical 

extinguished power using compact, multi-scale descriptions of these systems can advance 

understanding and design of flexible plasmon-active devices.  

While direct determination of heat dissipated per unit optical extinction is rare, heating by 

absorptive nanoparticles has been widely studied. Optical and thermal properties of AuNPs 

dispersed in liquids or deposited on ceramic substrates have been examined under both pulsed and 

continuous laser irradiation. Dissipated power from isolated AuNPs is modest, but simultaneous 

AuNP ensemble irradiation generates local temperatures sufficient to reshape NPs103 or bulk 

heating effects able to melt (evaporate) surrounding solids (liquids).104–106 A one-dimensional 

analytical optoplasmonic heating description was validated for resonantly irradiated AuNPs 
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suspended in liquid or deposited on ceramic substrates.50,101,107 Extension of this analytic 

description accurately defined evaporation from silica cells and capillaries coated with AuNPs 

filled with air, water, and butanol.108,109 These compact analytic descriptions are valuable to intuit 

thermal dissipation and dynamics using geometric and thermodynamic parameters for effectively 

one-dimensional dissipation.110 However, numerical methods remain essential for systems with 

multidimensional optical absorption and subsequent thermal dissipation.  

The work developed herein correlates resonant absorption estimates from measurement, 

single-particle Mie theory, and multi-particle CDA to measured and FEA-estimated heat 

dissipation in AuNP-polydimethylsiloxane (PDMS) and AuNP-polyvinylpyrrolidone (PVP) films. 

First-generation AuNP-PDMS films with uniform dispersion of solution-synthesized AuNPs 

exhibited measured heat dissipation values 1.4-fold higher than theoretical estimates, potentially 

attributable to observed diffraction and/or scattering-induced internal reflection. Second-

generation AuNP-PDMS films exhibited improved overall agreement with theoretical FEA 

prediction. These results suggested some, but not all of diffractive-enhanced optical extinction was 

dissipated as heat as interparticle separation dropped below resonant wavelengths. Asymmetric 

AuNP-PDMS films containing in situ reduced AuNPs exhibited impressive thermal response, but 

uncertainty in AuNP distribution limited utility of theoretical descriptions employed. Finally, 

thermal dissipation from sub-wavelength AuNP-PVP films followed measured and theoretical 

trends in optical extinction per NP, but overall magnitudes appeared suppressed based on FEA 

characterization. Comparison of measured results with the compact FEA description of plasmonic 

heat dissipation developed herein represents an important advance in the understanding of photon-

to-heat conversion in emerging polymer nanocomposite films. 
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3.1 AuNP-PDMS thermal dissipation 

3.1.1 Measured thermal dissipation exceeds estimates due to internal reflection 

An initial investigation compared independent spectroscopic and thermal measures of first-

generation AuNP-PDMS films with theoretical estimates of plasmonic heating.29 Equilibrium 

thermal dissipation from AuNP-PDMS was computed using FEA by incorporating Mie absorption 

and traditional convective, conduction, and radiative heat transfer relations. As discussed in 

Section 2.1, measured spectral extinction from AuNP-PDMS films exceeded estimates from 

plasmonic absorption alone, attributable to diffraction and/or scattering-induced internal 

reflection. Effects of this internal reflection, quantified using RI-matching to distinguish it from 

external reflection and Mie absorption, on AuNP-PDMS thermal dissipation is of significant 

interest for a multitude of applications. 

Measured thermal dissipation from first-generation AuNP-PDMS films exceeded computed 

estimates that neglected thermoplasmonic contributions from internal reflection. Measured power 

emitted from single AuNP-PDMS film surfaces, estimated from equilibrium infrared camera 

images, ranged from 0.64 to 1.23 W, or about 40% greater than maximum absorbable power 

estimated from fluid dispersions for the 5.31–10.2 nmol/cm2 Au first-generation films. Figure 7a 

shows the power radiated and convected for each AuNP-PDMS film based on both measured (red 

diamonds) and FEA model estimated (blue squares) film temperatures using spectral extinguished 

power corrected for internal reflection as the FEA heat source. Thermal emission based on 

measured temperatures from a single surface of the 5.31, 6.97, 10.2, and 13.4 nmol/cm2 films was 

calculated as 2.50, 2.83, 4.03, and 4.27 mW, respectively.   
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Figure 7: a) Steady-state power radiated and convected and b) radial temperature profiles from 

first-generation AuNP-PDMS based on measured and FEA simulation results. 

 

Measured estimates of convective and radiated power emitted from the film surface were 

calculated at each individual pixel’s temperature value and summed across the film. Common 

relationships used to estimate radiation and convection are discussed in more detail in section 

3.3.2. Approximately two-thirds of emitted power results from natural convection. For example, 

the 6.97 nmol/cm2 AuNP-PDMS film had emitted powers of 1.96 mW from convection versus 

0.87 mW due to radiation. Emitted powers based on spectral extinguished power corrected for 

internal reflection were 1.83, 2.19, 2.80, and 5.18 mW, respectively, for the 5.31, 6.97, 10.2, and 

13.4 nmol/cm2 films. Enhanced measured emitted power could suggest a source of power beyond 

typical Mie absorption of resonant irradiation, such as diffraction and/or scattering-induced 

internal reflection not accounted for in the FEA approach. The increase in measured surface power 

emitted from both faces, estimated by doubling the power from the measured face, for three 
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samples with increasing AuNP content was equivalent to 40%, 20%, and 27%, respectively, of 

this internally reflected power for the 5.31, 6.97, and 10.2 nmol/cm2 films.   

Enhanced thermoplasmonic dissipation, attributed at least in part to internal reflection, resulted 

in thermal profiles inconsistent with theoretical prediction. Measured (red diamonds) and 

simulated (blue line) radial temperature distribution through an axial slice of the 6.97 nmol/cm2 

film are shown in Figure 7b. The incident resonant irradiation source, a 532 nm diode laser, was 

determined experimentally to have a radially decaying power profile. This profile was 

approximated in the FEA model by even distribution of absorbable power between a 0.25 mm 

radius cylinder and seven concentric rings with thicknesses of 0.25 mm radiating outward from 

the center cylinder. Broadening of this incident profile could result from an outward net radial flux 

of light obliquely re-directed by the AuNPs and internally reflected at the dielectric interface that 

improves radial heat dissipation. However, more rigorous characterization of incident beam power 

distribution and mechanism of thermal imaging is needed to attribute this apparent broadening to 

any anomalous optical effects.  

PDMS thermal conductivity enhancement from dispersed AuNPs is not expected to contribute 

to this broadened thermal profile. Inserting mass-averaged AuNP-PDMS thermal conductivities 

into the finite element model, which are considered an upper limit for composite conductivities, 

did little to broaden simulated profiles relative to measured ones. Mass-averages are considered 

an upper-limit thermal conductivity estimate as they implicitly assume perfect contact between 

adjacent dopants throughout the material.111 In fact, thermal conductivities approaching 0.8 

W/mK, 5-fold higher than Au-free PDMS, were needed to match measured profiles. Prior work 

suggested thermal transport in nanocomposites are consistent with the bulk polymer when 

conductive inclusions are well dispersed and at relatively low concentrations.111 Significantly 
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enhanced thermal conductivity has been demonstrated most often at high fill fractions of long 

particle chains or nanotubes that allow for unperturbed electron transport through the conducting 

inclusions.49 The effects of inclusion concentration, aggregation, and interfacial thermal 

resistances on colloidal nanofluid and nanocomposite thermal conductivity has been examined.112 

Edge effects confound precise description of thermoplasmonic effects. The convective heat 

transfer coefficients used may be inaccurate for prediction of heat transfer from the film’s narrow 

vertical surfaces (~5 mm x ~1 mm) at relatively low Rayleigh (Ra) numbers. This results from 

unaccounted for inward fluid flow near the plate edge that has been shown to increase heat transfer 

rates up to double for similar narrow, vertical surfaces.113 As a result, measured and simulated 

temperature values diverged at film edges. Ra (~70-200) and plate height-to-width ratio (0.14) 

herein were not within the validated range of this empirical relation, but do suggest edge effects 

become increasingly influential with decreasing Ra and plate height-to-width ratio. 

Thermal dynamic response of first-generation AuNP-PDMS films was similarly enhanced 

relative to a simple analytic description developed within the group.110 Thermal dissipation 

dynamics in plasmonic materials may be described using a simple analytic heuristic combining 

micro-scale internal and macro-scale external dissipation rates. This approach accurately 

characterized dynamic thermal response and overall dissipations rates of conductive and insulating 

materials resonantly heated by plasmonic AuNPs. Dynamic thermal response is calculable using 

independent thermodynamic and geometric metrics for particular material systems. External 

dissipation varies with sample composition and geometry as well as environment. Internal 

dissipation is determined by material composition and geometry. Overall correspondence between 

a priori estimates and measured total dissipation was good across a broad ranges of sample 

dimensions, morphologies, and thermal diffusivities. However, measured values for total 
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dissipation rate for first-generation AuNP-PDMS were, on average, 19% larger than estimates. 

The difference in measured dissipation rate relative to estimated rate was comparable in magnitude 

with corresponding differences in measured surface power emission relative to estimated emission 

as discussed earlier in this section.50 

3.1.2 Heat dissipation as interparticle separation approaches resonant wavelength 

Thermoplasmonic dissipation in second-generation AuNP-PDMS films was also assessed 

using the FEA approach that analyzed relations for plasmonic Mie absorption, heat conduction, 

natural convection, and radiation.114 Agreement of thermal dissipation estimates with measured 

thermal profiles was improved by introducing an initial Gaussian spatial power density for the 

volumetric heat source approximating plasmonic heating. This heat source power and Gaussian 

profile, mimicking resonant absorbed power, was varied until resulting steady-state temperatures 

inside the laser spot matched minimum and maximum measured temperatures within 0.1 °C inside 

the 1.5 mm diameter laser spot. The matching heat source power required for each AuNP 

concentration ranged from 0.9 to 11.5 mW as shown on the x-axis of Figure 8. Measured and 

CDA-predicted optically extinguished powers (E, y-axis) were calculated as E = I(1-10-A) where 

A is spectral extinction at 532 nm in absorbance units and I was incident power of 532 nm 

irradiation (19-24 mW) for each AuNP-PDMS film. Resonant spectral extinction was estimated 

from the CDA extinction efficiency using Beer-Lambert law48 as reported in section 2.1.2.  

FEA-fitted heat dissipated power matching measured thermal response corresponded well with 

CDA-predicted optically extinguished power for second-generation AuNP-PDMS films. Figure 8 

plots optically extinguished power (y-axis) vs. FEA-derived thermal power dissipated (x-axis) 

based on both a priori CDA predictions (hollow green triangles) and measured optically 
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extinguished power (filled blue circles). The dashed red line designates one-to-one correspondence 

between both axes. Agreement between CDA- and FEA-derived powers at Wigner-Seitz radius is 

less than resonant wavelength (rw-s > LSPR), i.e., ≤ 1.17 x1012 NP/cm3, was consistent with ~98% 

agreement between CDA and measured optical extinction per NP in Figure 3b. Single-particle Mie 

theory results were excluded from Figure 8 since consideration of particle-particle interactions via 

CDA improved agreement with measured optical responses as discussed in Section 2.1.2. 

 

Figure 8:  Measured and CDA optical extinguished powers and FEA-fitted thermal dissipated 

power from second-generation AuNP-PDMS, inset plots extinguished versus incident power. 

 

For AuNP-PDMS films for which rw-s < LSPR, FEA-derived heat dissipated power trails 

measured optical extinguished power. In other words, thermal dissipated powers do not increase 

monotonically with enhanced measured optical extinction at these particle separations. 
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Meanwhile, optically extinguished power increased linearly with increasing incident power up to 

25 mW for the 3.52 x1012 NPs/cm3 AuNP-PDMS film, as shown in the Figure 8 inset. This 

suggested that temperature-dependent effects on the AuNPs or host PDMS do not alter measured 

optical extinction relative to values obtained spectroscopically at low powers across the range of 

power and resulting temperatures examined. It was important to exclude these possible 

temperature-dependent effects on observed trends. 

The ratio of FEA-fitted heat dissipated power to CDA-predicted optically extinguished power 

appears enhanced as rw-s drops below LSPR. Figure 9 illustrates FEA-fitted heat dissipated per unit 

CDA extinguished power for each AuNP-PDMS film. This ratio is given as the x-axis divided by 

the y-axis for the CDA-derived data (hollow green triangles). This ratio increased from 0.71 at 

0.234 x1012 NPs/cm3 to 1.05 at 2.34 x1012 NPs/cm3, as rw-s (upper axis Figure 8) dropped from 799 

to 467 nm. This apparent increase represents a 1.5-fold improvement in heat dissipated per unit 

CDA extinguished power as rw-s approached resonant wavelengths. Heat dissipated per unit Mie 

extinguished power for all but the lowest AuNP concentration surpassed reported photothermal 

efficiencies of 0.73-0.78 for aqueous dispersion of ca. 15-20 nm AuNPs irradiated at 532 nm.115 

Increased heat dissipated per unit CDA extinguished power suggests an additional mechanism of 

plasmonic absorption-induced heat dissipation not accounted for in the CDA. 

Diffraction-enhanced optical extinction could account for enhanced heat dissipated per unit 

CDA-predicted extinguished power as rw-s approaches LSPR in AuNP-PDMS. The 1.5-fold 

improvement in heat dissipated per unit Mie extinguished power suggests that some portion of 

internally reflected light is transduced into heat in diffractive AuNP-PDMS films. This likely 

occurs since internally reflected has a high probability of being subsequently absorbed by AuNPs. 

If this were not the case, then the ratio of heat dissipated to Mie extinguished power would be 
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constant since neither value is affected by this diffractive-enhanced extinction. However, FEA-

derived heat dissipated powers lagging measured optical extinguished power, as shown in Figure 

8, indicate that a significant portion of this diffraction-enhanced optically extinguished power is 

not dissipated thermally.  

 

 

Figure 9:  Ratio of FEA-fitted thermal dissipated to CDA optical extinguished power, inset 

shows raw images and agreement between measured and simulated temperature profiles. 

  

Accurate characterization of heat dissipation relative to optically extinguished power at rw-s < 

LSPR was obscured by several effects. Samples in which incident irradiation was closer to the edge 

could have been subject to geometric optical reflection and refraction not accounted for in the FEA 

approach. These edge effects on geometric optics near film edges may have contributed to less 

power absorbed than accounted for in measured extinction. The heat transfer coefficients 

employed under predicted heat transfer from the film’s narrow vertical surfaces as discussed in 
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section 3.1, resulting in divergence between modeled and measured temperature values near film 

edges. Furthermore, decreased heat dissipated per unit CDA extinguished power at the highest 

AuNP concentration, 3.52 x1012 NPs/cm3, may have resulted from aggregation. The fabrication 

protocol discussed in Section 2.4.1 optimized choice of polar AuNP capping agent and solvent to 

ease mixing into non-polar PDMS at AuNP concentrations higher than ever.30 However, it is 

possible aggregation had begun to affect power dissipation at this upper limit. AuNP aggregation 

would dampen absorption and broaden spectral extinction from increased scattering. This would 

be expected to decrease absorbed power and thermal dissipation relative to Mie-predicted values, 

but could increase overall extinction magnitude from multiple scattering.30 

Derived estimates of FEA-fitted heat dissipated power, shown in Figure 8 and 9, were also 

sensitive to selection of ambient temperature. Ambient temperatures used for derived FEA-fitted 

dissipated powers were calculated from a ten point average of edge film temperature recorded 

during the final 10 seconds of the three minute cooling period following laser shutoff. These values 

are believed to best represent the ambient environment during steady-state heating based on both 

prior experience and agreement between measured and simulated edge temperatures. Figure 9 inset 

shows a raw thermal image, a processed image, and a comparison between measured and simulated 

thermal profile for the 1.17 x1012 NPs/cm3 film. Error bars in Figure 8 and 9 result from values 

derived using upper and lower limit ambient temperature values. These alternative ambient 

temperatures were acquired at 98% of the final steady-state ambient temperature during cooling 

and a 10 point average of edge film temperature preceding the heating period, respectively. Heat 

dissipated per unit of extinguished power decreases as ambient temperature rises since less heat 

source power in the FEA model is required to obtain equivalent thermal profiles. Variance based 

on ambient temperature is considerably larger at lower concentrations due to the much lower 
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change in overall temperature. For example, the FEA fitted heat dissipation value dropped by more 

than a factor of 2 for the 0.234 x1012 NPs/cm3 film when the ambient temperature increased from 

296.7 to 298.0 K. Alternatively, the FEA fitted heat dissipation value decreased by less than 10% 

for the highest concentration AuNP-PDMS film, 3.52 x1012 NPs/cm3, when ambient temperature 

increased to 298.1 from 297.4 K. 

Measured thermal profiles were not broadened relative to FEA estimates for AuNP-PDMS 

films for which rw-s < LSPR. In other words, the Gaussian distribution of incident power used fit 

measured profiles well regardless of AuNP concentration. The Gaussian distribution used was 

broader than the experimentally determined profile used for results on first-generation AuNP-

PDMS. Therefore, it is possible the Gaussian profile accounted for apparent broadening observed 

in Section 3.1.1.  Any thermal profile broadening would have been expected only for AuNP-PDMS 

for which rw-s < LSPR. New data for both sample sets using a consistent experimental setup with a 

centered laser beam and rigorous beam profiling of the incident laser power distribution could 

address these uncertainties, but is beyond the scope of this work. 

Varying the FEA heat source radial profile used to approximate plasmonic absorption had 

negligible effect on fitted heat source powers, but resulted in thermal profiles inconsistent with 

measured results. Heat dissipated powers within 10% of results from the appropriate Gaussian 

profile were obtained when using uniform, radial distributions of 0.5 and 1.5 mm. For these results, 

heat dissipated powers were estimated by obtaining an average temperature within the laser spot 

size in the FEA model that matched measured results within 0.1°C. This average was necessary 

since the narrow 0.5 mm radius source resulted in over-predicted maximum temperatures at the 

spot center and under predicted minimum temperature at the periphery. Alternatively, uniform 

distribution of power over the full 1.5 mm radius heat sources gave broadened temperature profile 
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with minimum and maximum above and below the measured temperatures, respectively. These 

results provide insight into the sensitivity of dissipated power to radial incident power 

distributions; however, they were not used in error analysis since they represent conceptual 

bounds, rather than actual experimental conditions.  

Subsequent work studied geometry- and composition-dependent thermal dynamics of 

resonantly irradiated second-generation AuNP-PDMS films. Measured dynamics were compared 

with estimates from the analytic heuristic described in Section 3.1. Measured time-dependent 

temperature profiles were parsed to calculate local values of the total thermal dissipation pixel-by-

pixel using the method introduced previously.110 Generated temperature maps from both measured 

and FEA results revealed spatially-dependent thermal dynamics during both heating and cooling.  

Estimated and measured thermal dissipation rates were within 34% across a broad range of AuNP 

concentrations, sample thicknesses from 0.7 to 1.5 mm, and surface areas from 28 to 35 mm2. 

Dynamic thermal responses were up to 2.5- and 21-fold greater than first-generation AuNP-PDMS 

and AuNP-silica composites, respectively.  

3.1.3 Asymmetric membrane thermal dissipation 

Novel asymmetric AuNP-PDMS films developed that contain high concentration of reduced 

(r)AuNPs at a single interface exhibited a higher temperature change per incident watt (°C/W) than 

all other nanocomposite media tested previously within the group.22 Thermal response in the 

asymmetric, diffusion-reduced 0.05 mass-percent AuNP-PDMS film, 3000 °C/W, was 3-fold 

higher than prior samples where AuNPs were distributed uniformly, 11-fold higher than AuNPs 

thermally annealed on glass, and 230-fold higher than aqueous AuNP dispersions. Figure 10 shows 

measured average temperature within the laser spot increased in linear proportion to optical 
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attenuation both with and without an adjacent stainless steel support mesh used in the plasmonic 

pervaporation system. Optical attenuation is equivalent to one minus the sum of measured external 

reflection and transmission. Figure 10 inset shows film surface, film cross-section, and 

transmission electron microscopy (TEM) image of in situ rAuNPs in the 0.5 mass-percent 

asymmetric rAuNP-PDMS film, allowing rare visualization of reduced AuNP morphology and the 

asymmetric Au-containing layer. 

 
Figure 10:  Temperature change versus optical attenuation for asymmetric AuNP-PDMS with 

and without a stainless steel back-reflector, inset microscopy film images. 

 

The 0.5 mass-percent rAuNP-PDMS film reached 54.5°C above ambient (23 °C), while the 

0.05 mass-percent, 0.005 mass-percent, and rAu-free PDMS films achieved 29.9 °C, 8.2 °C, and 

0.7 °C above ambient conditions, respectively. Parallel increases in attenuation and temperature 
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increase suggest photon-to-heat conversion remained constant in asymmetric rAuNP-PDMS films 

as Au content increased. Enhanced thermal response relative to prior aqueous, silica, and PDMS 

samples likely results from increased NP density, insulation of the heated layer by adjacent PDMS, 

and reduced radiative heat transfer relative to planar samples. Preliminary results from the finite 

element model suggest thickness reduction and adjacent insulating Au-free PDMS contribute to 

performance enhancements over uniform dispersions.77  

Addition of a stainless steel support mesh, used in the novel lab-scale pervaporation system, 

reduced overall temperature increase in asymmetric rAuNP-PDMS by about half. Figure 10 shows 

each film at increasing Au content reached values of 28.9°C, 14.9°C and 5.0 °C above ambient, 

on average, within the laser spot. Irradiation of the support mesh alone and coupled with Au-free 

PDMS resulted in temperature increases of 2.1 and 1.9 °C, respectively. It appears that the support 

mesh acts as a heat sink, conducting heat from the AuNP-PDMS and transferring it to the 

surrounding environment. Subsequent designs for the improved plasmonic pervaporation utilized 

transparent ethylene tetrafluoroethylene (ETFE, Ted Pella, Inc., Redding, CA, USA) mesh to 

minimize this effect. 

3.2 AuNP-PVP thermal dissipation 

Thermal dissipation of plasmonic absorption in ultra-thin AuNP-PVP films was studied by 

comparing measured thermal response with measured and theoretical estimates of optical 

extinction using the developed FEA model. Measured temperature increase per NP decreased with 

concentration, matching trends in measured, Maxwell Garnett, and CDA-derived optical 

extinction per NP results as shown in Figure 11a. Temperature change per NP was calculated as 

ΔT/NmCp where ΔT is the change in temperature within the laser spot diameter (~1 mm) for each 
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AuNP-PVP film subtracted by Au-free PVP ΔT, N is the number of NPs irradiated NPs and mCp 

is the thermal mass of each sample. The number of irradiated NPs was determined by multiplying 

the cylindrical volume of the 70 nm thick PVP film irradiated by the 1 mm diameter beam by NP 

concentration in NPs/cm3. Change in temperature per NP was divided by thermal mass, mCp, to 

correct for mass variations between samples. Resulting temperature per NP values decreased from 

4.29 x 10-7 °C per NP at 1.01 x 1015 NP/cm3 to 3.37 x 10-7 °C per NP at 3.37 x 1015 NP/cm3. This 

influences design of photothermal devices: a sublinear increase in heat relative AuNP 

concentration provides a decreasing return. 

Temperature increase per incident resonant power corrected for sample mass in grams 

(°Cg/W), including the glass substrate, from resonant absorption in sub-wavelength AuNP-PVP 

was comparable to prior work. The maximum °Cg/W observed in this work, 3.2 for the 5.06 x 1015 

NP/cm3 AuNP-PVP film, was comparable to values of ca. 3 for both AuNPs annealed on glass and 

fluid-filled capillaries.101,108,109 This °Cg/W was greater than an AuNP colloid solution,50,101 but 

less than AuNP-PDMS films described in Section 3.1 that exhibited a °Cg/W of up to 19.114 It 

should be noted that this comparison does not take into account respective thermal masses or 

thermal dynamics of these samples.  Layer-by-layer fabrication with control of spatial dimension 

and concentration could be implemented to enhance overall thermal response of PVP thin films 

containing Au nanostructures.99,116  

Despite sub-wavelength optical confinement and high concentration dispersed AuNPs, overall 

measured thermal characteristics conformed to linear microscopic description. Magnitude of 

temperature increase in AuNP-PVP films irradiated at 532 nm laser scaled with AuNP 

concentration in general. Dynamic thermal response followed typical heating and cooling curves. 

Temperature increased logarithmically during laser excitation, approaching steady-state at the end 
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of the 90 second heating period. The subsequent cooling curve when irradiation ceases exhibited 

an expected exponential decay. These curves were used to estimate heating time constants, an 

important metric for characterizing dynamic thermal response as well as photon-to-heat 

conversion.50 Absolute change in temperature dropped in two samples relative to films with lower 

AuNP content, attributable to laser-induced damage. Visible in SEM images, shown in Figure 11, 

are ca. 100 nm craters within the laser-irradiated area of the 3.37 x 1015 NP/cm3 film that are absent 

outside the laser-irradiated area; these films were thus excluded from subsequent analysis. 

Figure 11: a) Temperature change and optical extinction per NP, b) optical extinguished power, 

FEA-fitted heat dissipated power, and inset SEM images for sub-wavelength AuNP-PVP films. 

 

Macroscopic measures of overall heat transfer and temperature profiles in concentrated, sub-

wavelength PVP films trended with microscopic description of heat transfer quantified using FEA 
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characterization. Measured power, heat flux, temperature distribution and dynamics in sub-

wavelength AuNP-PVP films demonstrated broad agreement with numeric FEA results using 

rigorous expressions for convection, conduction, and radiation. This method allowed estimation 

of both (i) expected thermal profiles in AuNP-PVP films based on measured optically extinguished 

power and (ii) actual absorbed power needed to match measured thermal profiles. As shown in 

Figure 11b, FEA-derived heat dissipated powers (blue) were ca. 3-fold less than measured 

extinguished power values (green) for each AuNP-PVP film, suggesting a significant portion of 

optical attenuation is not readily transduced into heat. 

Fitting of the FEA description to heuristically represent experimental temperature profiles was 

performed by matching the average temperature of the 1.2 mm region of interest (ROI) centered 

on the laser spot within 0.1 °C of the measured value. Resulting fitted incident heat sources, 

representing plasmonic absorbed power, ranged from 0.0062 to 0.028 W. Alternatively, use of the 

experimentally measured optically extinguished powers resulted in over-predicted thermal 

responses, with estimated average ΔT reaching nearly 45 °C at 5.06 x1015 NP/cm3 in the FEA 

model. To test the sensitivity of this fitting procedure, FEA-fitted powers were estimated by 

matching the entire film temperature within 0.1 °C of the measured value and by fitting power 

emitted, via radiation and convection, from the AuNP-PVP film face to values derived from the 

measured thermal profile. Heat source power values derived from the latter two methods varied 

by ~5%, within the size of symbol in Figure 11b, from fits based on average ROI temperature. 

While power dissipated increased with AuNP concentration and optical extinguished power, 

the precision of simulated FEA-fitted heat dissipation was confounded by multiple effects. Most 

notably, measured thermal profiles are broadened relative to theoretical results. This suggested 

total heat dissipated in measured results is higher than predicted. The first possible culprit of this 



  

55 

 

disparity was use of the Au-free PVP thermal conductivity, k.  However, a sensitivity analysis 

performed using k values varying from 0.27 W/mK, i.e. PVP, to 3.2 W/mK, a mass-average 

between Au and PVP at 5.06 x1015 NP/cm3 showed negligible change in thermal profile.  It appears 

that overall thermal dissipation within the model was dominated by the much thicker glass support 

layer, not the 70 nm thick Au-PVP layer containing the volumetric heat source approximating 

plasmonic absorption. In addition, suppressed heat dissipation compared to optically extinguished 

power could be attributable to saturation, edge effects, and laser-induced damage. Incident laser 

powers used in this work, ca. 800 mW, have been shown previously to exhibit saturable absorption 

effects.50 Furthermore, the heat transfer coefficients used herein likely under predicted heat 

transfer from the film’s narrow vertical surfaces as discussed in Section 3.1. As a result, measured 

and modeled temperature values diverged near film edges. Finally, evidence of laser induced 

damage, visible in the SEM images in Figure 11 may have suppressed magnitude of measured 

thermal response. While precise characterization of heat dissipation per unit optically extinguished 

power is confounded by the aforementioned effects, these results provide an important first 

approximation in sub-wavelength AuNP-PVP films. 

3.3 Experimental & theoretical approaches 

3.3.1 Measured thermal characterization 

Each AuNP-PDMS and AuNP-PVP nanocomposite film was resonantly irradiated with a fiber-

coupled 532 nm diode laser (MXL-FN-532, CNI, Changchung, CN) and its temperature profile 

was recorded with an infrared thermal camera (ICI 7320, P-Series, Beaumont, TX, USA).  Infrared 

imaging captured thermal profiles of ca 5 mm x 5 mm AuNP-PDMS films suspended vertically 
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within the laser spot (ca. 1.0-2.5 mm diameter). Films were held in place at a single edge during 

experiments by tweezers. For AuNP-PDMS, the infrared camera was focused on the film face 

opposite incident laser irradiation to collect thermal data. Laser power was adjusted using a neutral 

density filter. During data collection, the experimental apparatus was covered to minimize forced 

convective effects.   

Thermal images were recorded at 0.1-1 Hz during a 2-3 minute heating period under laser 

excitation and subsequent 2-3 minute cooling periods following laser shutoff for AuNP-PDMS.  

Power of the laser was recorded before and after each trial to ensure power did not fluctuate beyond 

a 5% threshold during data capture. Data was saved as TIFF images where temperature values at 

each image pixel (320 x 240 pixels per image) are recorded. The images were analyzed using 

MATLAB (Mathworks, Natick, MA, USA) to produce time-dependent temperature maps of both 

the entire film and the laser spot using rectangular and circular ROIs, respectively.  Because 

conduction by the tweezers distorted the temperature distribution for first-generation AuNP-

PDMS, only half of each film’s thermal profile was used for calculations.  

The thermal data capture setup was improved for AuNP-PVP films.  Laser intensity was 100 

W/cm2, as measured from ca. 800 mW focused to a ca. 1 mm spot size. Light from the fiber-

coupled laser was focused by a lens, passed through a 10˚ ground glass diffuser to give a uniform 

Gaussian output profile, and then focused finally onto the samples by a series lenses.  Each sample 

was mounted with the PVP film facing the thermal camera. Thermal images were captured at 10 

Hz over a 180 seconds with 90 seconds of heating (including 3 seconds of ambient) with the laser 

on and 90 seconds of cooling with the laser off. Thermal images were analyzed via MATLAB 

program using the circular ROI encompassing only the laser spot for each sample. Temperature 
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values at each pixel, with a resolution of 240 µm, within the ROI were averaged together to give 

average temperature values used for analysis.  

3.3.2 Prediction of thermal response using Finite Element Analysis 

The Heat Transfer in Solids module in COMSOL Multiphysics (COMSOL, Stockholm, 

Sweden) was used to calculate thermal profiles in AuNP-polymer films using an applied heat 

source, simulating thermalization following optical absorption of resonant irradiation. Radiative 

and convective cooling boundary conditions determine the rate of heat transfer to the ambient 

environment (air), while incident spatial power distribution and thermal diffusivity of the host 

polymer govern developed temperature gradients. AuNP-PDMS and AUNP-PVP films were given 

physical dimensions corresponding to measured length, width, and thicknesses. Density and 

specific heat capacity of AuNP-polymer films were estimated based on Au mass fraction and 

resulting weighted averages of Au and bulk polymer values. Au-free thermal conductivity was 

assigned to AuNP-PDMS and AuNP-PVP, since nanoscale dispersions not in physical contact 

typically have little effect on nanocomposite thermal conductivity.111 Values of density, heat 

capacity, and thermal conductivity values for PDMS used were 970 kg/m3, 1460 J/kgK, and 0.16 

W/mK, respectively.117 Values used for PVP were 1300 kg/m3, 1380 J/kgK, and 0.27 W/mK and 

values for bulk Au were 19,300 kg/m3, 128 J/kgK, and 318 W/mK, respectively.118 

For first-generation AuNP-PDMS films, plasmonic heating from laser irradiation was 

approximated by using a volumetric heat source within the AuNP-PDMS films. The laser power 

distribution was approximated by evenly distributing the power between a center cylinder with a 

radius of 0.25 mm and seven concentric rings radiating outward with thicknesses of 0.25 mm each. 

This distribution was consistent with independent characterization using an adjustable aperture 
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and power meter and manufacturer information. For these films, FEA model heat source power 

was represented as measured spectral extinguished power, corrected for internal reflection, 

multiplied by incident laser power of 100 mW.  

 Results for second-generation AuNP-PDMS films used a Gaussian volumetric heat source 

centered at the measured laser spot center to represent laser irradiation. This Gaussian heat source 

produced better agreement between measured and simulated temperature profiles. A Gaussian 

pulse with a standard deviation of r/2, where r is the laser spot radius 1.5 mm, appeared to 

accurately represent the laser power distribution. Based on raw incident laser intensity (25 mW) 

and this Gaussian function, the actual irradiated laser power (I) was estimated, resulting in slightly 

suppressed powers ranging from 19-24 mW. Spectral extinguished powers (E) were attained from 

E = I(1-10-A) where A is spectral extinction in absorbance units. Values of heat dissipated from the 

FEA model were determined via trial and error by adjusting heat source power until steady-state 

minimum and maximum temperatures within the laser spot were within 0.1°C of measured values. 

Measured two-dimensional thermal profiles from second-generation AuNP-PDMS at the first 

instant of cooling were projected into three-dimensional geometries compatible with COMSOL, 

enabling direct comparison. 

Key concepts and approximations used in the FEA modeling approach are outlined below. In 

problems where thermal effects dominate mechanical considerations, the following approximation 

for the conservation of energy is appropriate at steady-state119 

ρCpu ∙∇ + ∇∙q = Q (3.1) 
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where ρ is density, Cp is heat capacity, u is the velocity vector, ∇ is the Del operator, T is absolute 

temperature, q is heat flux, and Q is the sum of external heat sources (or sinks). Heat flux in a solid 

is evaluated using Fourier’s law, q = -k∇T, where k is thermal conductivity.  

FEA is capable of solving this equation with a coupled heat transfer in non-isothermal laminar 

flow description of natural convection. However, in order to reduce computational expenditure, 

convective heat transfer coefficients were used to estimate boundary conditions for determination 

of AuNP-PDMS heat dissipation. Steady-state film temperatures using heat transfer coefficients 

were within ca. 2% of those determined from the 2D coupled model including non-isothermal 

laminar flow across a range of input heat source powers that resulted in film temperatures from 27 

to 185 °C. Computational expense was reduced approximately 105 upon utilization of the heat 

transfer coefficients and made extension into a fully 3D description more practical. Validation and 

agreement between 2D models using either the coupled approach or convective heat transfer 

coefficients are discussed in more detail in Section 3.3.3. 

In the latter approach used herein, heat flux at the solid-fluid interface is assumed to be 

proportional to a temperature difference across an imaginary thermal boundary layer. This is 

written mathematically as119 

-n ∙q
c
 = h(Tinf - T) (3.2) 

where n is normal vector to the film surface, q
c
 is convective heat flux, h is a heat transfer 

coefficient, and Tinf is the external temperature of the fluid far from the solid-fluid boundary. 

Textbook, empirically-derived heat transfer coefficients for natural convection from both 

horizontal and vertical plates were used in this work.  Relations for a vertical (a) and horizontal 

(b) plate, respectively, are:119 
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Where L is plate height and Pr is the Prandtl number, given as Pr = v/α, where ν is kinematic 

viscosity and α is thermal diffusivity. The Rayleigh number, RaL, is a dimensionless ratio of 

buoyancy driven to conductive heat flux, given as: 

RaL  = 
gβ(T - Tinf )L

3

vα
 (3.4) 

 

 

Where g is the acceleration due to gravity and β is the coefficient of thermal expansion. For 

horizontal plates, L is typically given as plate area divided by perimeter. 

In addition to natural convective flux, surface-to-ambient radiative flux was considered as an 

additional boundary condition. Mathematically, this is given as: 

-n ∙q
r
 = εσ(Tinf 

4 - T4) (3.5) 

Where q
r
 is radiative heat flux, ε is emissivity, estimated as 0.85 for transparent PDMS and PVP, 

and σ is the Stefan-Boltzmann constant.  

3.3.3 Validation of Finite Element approach 

An initial FEA modeling approach used a 2D conjugate model to solve for the temperature 

profiles in a solid film while considering buoyancy-driven convection velocity profiles of the 

surrounding air. The results of this approach were validated with a pre-built model available from 

COMSOL previously shown to have excellent agreement with measured results.120 The results of 
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the validated 2D coupled model were then compared to a subsequent model using heat transfer 

coefficients at the solid-fluid boundaries. This approach provided excellent agreement with 

significantly reduced computational expense necessary for development of the fully 3D model. 

For the coupled model, the solid film is heated above the temperature of the surrounding air. 

The heated plate therefore warms the air near its surface, resulting in buoyancy-driven flow. Fluid 

flow of the air adjacent to the film may be described by the Navier-Stokes equations for non-

isothermal flow. At the bottom and left system boundaries, the model assumes the temperature is 

equal to ambient conditions, i.e., T = Tinf. This is valid as long as the model boundaries are 

sufficiently large. Air rises upward and flows out through the top domain boundary. The no-slip 

boundary condition is applied the plate wall. All remaining boundaries are open, meaning that no 

forces act on the fluid; this is essentially the equivalent to extending the computation domains to 

infinity. 

The available COMSOL model120 calculates the temperature and velocity fields resulting from 

natural convection from this heated vertical plate. Surface temperature was varied in increments 

of 10 °C between 10 and 100 °C above ambient conditions (20 °C). The results of the simulation 

were validated by comparison with experimental results. Study of AuNP-PDMS films requires 

description of heat conduction within the solid film in addition to convective heat transfer rates.  

As is, the original model was not sufficient for this purpose since the surface was heated only at 

the domain boundary. An almost identical FEA model was created where the AuNP-PDMS solid 

film was given a height (5 mm) and thickness of 0.34 mm (half the film thickness; axial symmetry). 

The resulting temperature and fluid velocity profiles at 50 °C (ΔT = 30°C) were within 1% and 

4%, respectively, of the model excluding the solid film from the domain. 
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The final step was introduction of a volumetric heat sources (W/m3) needed for the subsequent 

3D model employed in Section 3.1 and 3.2. The entire heated solid was placed in a 2D domain 

sufficiently large for proper implementation of the outlined boundary conditions. Results with the 

abridged model showed excellent agreement with results considering non-isothermal fluid flow; a 

maximum percent difference of 2.3% in steady-state film temperature was obtained across three 

orders-of-magnitude in applied heat source power. Resulting steady-state film temperatures were 

within 0.5 °C across the range of heat source powers used in actual AuNP-polymer simulations. 

Accurate description of heat transfer in 3D AuNP-PDMS films with the compact FEA approach 

developed herein is an important advancement in characterization of plasmonic heat dissipation in 

hybrid nanomaterials. 
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4.  GOLD NANOPARTICLE-DECORATION OF TUNGSTEN DISULFIDE  

Layered materials represent a diverse, emerging source of two-dimensional (2D) 

nanostructures with exotic optoelectronic properties and high surface area-to-volume ratios. While 

graphene is the most ubiquitous of these materials, emerging direct bandgap semiconducting 2D 

transition metal dichalcogenides (TMDs) have broad application in optoelectronics,121,122 

sensing,123,124 photodetection,125 and solar fuel production.126 These materials consist of a 

transition metal, such as molybdenum or tungsten, sandwiched between chalcogenide atoms, e.g. 

sulfur or selenide. Strong covalent bonds bind this molecular structure; however, adjacent sheets 

are held together with relatively weak van der Waals forces to form bulk three-dimensional 

crystals. TMDs have been studied for decades, but interest in their layer-dependent properties and 

role as atomically thin semiconducting materials is recent. For example, TMDs such as tungsten 

disulfide (WS2) and molybdenum disulfide (MoS2) have a transformation from an in-direct to 

direct bandgap due to quantum confinement altered band structures.121 Direct bandgap optical 

excitation enhances optical extinction and permits efficient photoluminescence (PL) from single 

layer MoS2 and WS2.  

Lack of scalable, reproducible fabrication techniques limits implementation of these emerging 

2D TMDs. 2D TMDs have traditionally been produced by mechanical exfoliation,127 bottom-up 

chemical vapor deposition (CVD),128 or chemical exfoliation.129 Monolayer TMD fabrication has 

been limited either by difficulty, scalability, or cost.130 Both CVD and mechanical exfoliation can 

provide high quality, large area monolayers, but cost for the former and scalability for the latter 

limit their utility. Liquid phase exfoliation (LPE), which uses sonication or shearing of bulk 

crystals, represents a potentially scalable method of producing few layer TMD nanosheets.131–133  
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LPE has been exploited to produce a wide range of 2D materials such as graphene, boron nitride, 

TMDs, oxides, and black phosphorus.131,133–137 However, broad lateral size and thickness 

distributions of exfoliated nanosheets remain problematic. Metal decoration of scalable LPE WS2 

nanosheets could permit facile reduction of TMD size distribution by facilitating removal of 

undesirable multi-layer flakes, while also exerting a measure of control over optoelectronic 

properties. 

Utility of TMDs has also been limited in part by difficulty tuning the intrinsic optoelectronic 

excitation and damping mechanisms.130 For example, monolayer tungsten disulfide (WS2) absorbs 

less than 2% of broadband UV-vis radiation, cannot interact with light above ~620 nm in 

wavelength, and exhibits a characteristic photoluminescence (PL) response depending only on 

number of layers.121,138 Addition of AuNPs could address each of these issues by enhancing 

intrinsic WS2 absorption, modulating PL response, and serving as an independent source of charge 

carriers. Plasmon-induced local electric fields increased WS2 PL 11-fold upon maximization of 

plasmon-exciton coupling,139 while PL quenching attributed to p-doping of molybdenum disulfide 

(MoS2) from adjacent AuNPs has been reported.140 Damping of plasmon energy into hot electrons 

in AuNPs may be transfered to adjacent 2D semiconducting TMDs.141–145 Improvement in 

photocatalytic hydrogen production,146,147 organic photovoltaics,148 and photodectors18,149,150 have 

been attributed to this hot electron transfer (HET). This plasmon damping mechanism is distinct 

from conventional radiative and nonradiative mechanisms and is unique to interfacing non-

insultive media, like TMDs, with NPs.151 

The work herein demonstrated enhancement of WS2 monolayer content and optical absorption 

and emission by utilizing in situ AuNP reduction to facilitate removal of undesirable multi-layer 

nanosheets. AuCl3 preferentially reduced on multi-layer WS2, resulting in large Au aggregates 
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easily separated from the colloidal dispersion. State-of-the-art PL/Raman ratios, an important 

metric for quality of semiconducting TMDs, were enhanced from 4 up to 16, while mean layer 

number was reduced from 2 to 1.1.138,152,153 Optoelectronic characteristics of mostly monolayer 

Au-WS2 were improved both from enrichment in WS2 monolayers and the LSPR. Enhanced 

broadband optical extinction from plasmon-exciton interactions was observable in both measured 

and discrete dipole approximation (DDA) results. Plasmonic HET across a physiochemical metal-

TMD bond was  measured and simulated for the first time using electron energy loss spectroscopy 

(EELS) and DDA. Taken together, these improvements in fabrication techniques and 

optoelectronic tunability represent an important advance in the study of TMD materials for use in 

optoelectronic and photocatalytic applications. 

4.1 Spontaneous AuNP edge decoration of WS2 nanosheets 

Metal decoration of 2D TMDs modifies the optoelectronic properties, allowing their properties 

to be tuned for use in surface-enhanced Raman spectroscopy (SERS),154 rechargeable batteries,155 

biosensing,156–158 and optoelectronic devices.18,148–150 Decoration of metal NPs, particularly Au, 

have been performed on both chemically-exfoliated and CVD grown MoS2.
159,160 Reduction of 

metal salt occurs spontaneously without the need for reducing agents. No evidence of covalent 

bonding has been reported in these previous studies; it is suggested that excess electrons on CE 

nanosheets act as the AuCl3 reducing agent, resulting in AuNPs physisorbed to TMD nanosheets. 

Reduced NPs are located primarily at exposed sulfur (S) atoms, which occur primarily at edge and 

defect sites. Size and morphology of reduced NPs can be controlled by reaction conditions and 

metal salt concentration.159,161 However, use of in situ reduction, resulting in covalent Au-S 

bonding, to allow facile removal of undesirable multi-layer nanosheets has not been reported. 
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4.1.1 Developed protocol for fabrication of Au-WS2 nanosheets 

Initial experiments reducing AuNPs onto WS2 showed key changes in both physical and 

optoelectronic properties. This section outlines procedure and spectral metrics used for fabrication 

of Au-WS2 nanostructures. Stock dispersion of WS2 used were dispersed at a concentration of 0.5 

mg/ml in 3 mg/ml aqueous sodium cholate (SC). Optical extinction at 235 nm (I235) may be used 

to determine nanosheet concentration from an empirically-derived Beer-Lambert extinction 

coefficient.138,153 Size-dependent edge contributions affect nanosheet spectral profile; however, 

previous work found edge and basal contributions to optical response cancel at 235 nm in WS2. In 

addition to edge effects, excitonic transition spectral location shifts with nanosheet thickness from 

confinement and dielectric screening effects. With these considerations, mean flake layer number, 

N, may be calculated from the A exciton wavelength, λA,138,153 via 𝑁= 6.35×10
-32

e
λA

8.51
⁄

.138,153 

Mean sheet length, L,  was calculated from the ratio in absorbance at two particular wavelengths 

capturing size-dependent scattering behavior60,133 arising from edge confinement via138,153 

 

L = 

2.3 - 
I235

I290

0.02
I235

I290
 - 0.0185

  (4.1) 

where I290 is spectral extinction at 290 nm.138,153  N and L error estimated with these metrics was 

found to be less than 10%.138 Nanosheet dimensions vary between batches, but generally large 

nanosheets (l-WS2) are on the order of 90-160 nm in length and 3-8 layers thick, while medium 

flakes (m-WS2) are about 40-75 nm with 2-5 layers on average.  

These stock 0.5 mg/ml (2 mM) WS2 dispersions were mixed 1:1 by volume with aqueous 

AuCl3 at concentrations double the desired final Au concentrations of 0.5, 1, 2, 5, 7.5, and 10 mM.  

Stoichiometric ratio of Au to WS2, 0.25 to 5 in this initial sample set, was used to compare sample 
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results across different samples batches. Following mixing of AuCl3 and WS2, samples sat 

undisturbed for 4-16 hours covered in foil, mitigating any light-induced effects. Successive 

purification steps were then performed to remove unreacted AuCl3 and any large Au aggregates 

formed. After the reaction period, the aqueous Au-WS2 solution was centrifuged at 15000 rpm 

(22000g) for 90 minutes. Normally stable colloidal dispersions crashed after ca. 30 min for AuCl3 

concentration above 2 mM in the mixture, attributable to decreased pH following addition of 

AuCl3.  

The supernatant, including very small WS2, surfactant, and unreduced AuCl3, was collected 

for further analysis. No AuCl3 was detected in the supernatant at Au:WS2 stoichiometric ratio = 1. 

However, unreacted AuCl3 was found in samples with the higher initial ratio AuCl3:WS2 = 5. A 

precise quantification of the AuCl3 concentration was not possible due to changes in the spectral 

shape likely attributable to differences in pH and ionic strength versus the AuCl3 reference. The 

sediment containing the Au-decorated WS2 was re-dispersed in 3 mg/ml aqueous SC at the same 

volume as the initial WS2 dispersion. This dispersion was then centrifuged at 500 rpm (30g) to 

remove large aggregates visibly formed at higher Au concentrations. Figure 12f schematically 

describes this Au-decoration procedure. Subsequent purification steps ranging from 1000 rpm 

(110g) to 2000 rpm (420g) could then be implemented to help separate nanosheets by size and 

AuNP content.  

A second set of Au-decorated WS2 samples were fabricated to facilitate transmission electron 

microscopy (TEM) imaging and characterization of NP size and density as a function of Au-WS2 

molar ratio. WS2 nanosheets with an average length of 60 nm and 2 mean average layer number, 

based on the UV-vis metrics,138 were used in this analysis. These nanosheets are ideal since they 

have a much higher monolayer content than larger nanosheets, but are dispersed at much higher 
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concentration than smaller nanosheets trapped at higher centrifugation speeds. Stock WS2 

concentration was lowered to 0.1 mg/ml (0.4 mM) to reduce WS2 aggregation that may occur 

during the reaction and subsequent workup. Upon mixing AuCl3 1:1 by volume with the stock 

WS2, resulting Au:WS2 ratios were 0.2, 0.4, 0.8, and 1.7. Ratios used were lower in this sample 

set as the large number of Au aggregates formed at molar ratios above 2 made optical and 

microscopy characterization more difficult. Figure 12a-f shows TEM (Titan 80-300; FEI, 

Hillsboro, OR USA) images of several representative Au-decorated nanosheets at an Au:WS2 

stoichiometric ratio of 0.8. Figure 12a-c show an example of predominately edge decorated 

nanosheets found throughout the sample at increasing magnification. High-resolution TEM 

(Figure 12c) show individual atoms, boundaries between Au and WS2, and crystal grain boundaries 

within single AuNPs. Merging of distinct AuNP nucleations, evident by their substantial degree 

of polycrystallinity, and heavier basal plane decoration of multi-layer nanosheets are evident in 

Figure 12d-f. 

Figure 12:  a-f) Au-decorated WS2 TEM images and g) Au-decoration fabrication protocol. 
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TEM-based estimation of NP size and coverage on a sample of 5-8 nanosheets for Au-WS2 

ratios of 0.4, 0.8, and 1.7 was performed using a MATLAB script previously developed within the 

group.162 Total number of NPs per square micron (NPs/µm2) of WS2 was 11000, 7500, and 8500 

for the 0.4, 0.8, and 1.7 Au-WS2 ratios samples, respectively. Using a NP diameter cut-off 

excluding AuNPs below 5 nm, NPs/µm2 was 2000, 4000, and 3000 for the 0.4, 0.8, and 1.7 Au-

WS2 ratios samples, respectively. The cut-off was used to exclude the small Au nucleation sites 

that occur regularly around the WS2 edges. Concomitantly, average NP diameter using the 5 nm 

cut-off increased slightly from 7 to 8 nm with increasing Au-WS2 ratio, but showed no clear trend 

when including all AuNPs counted. This analysis provides the first step towards microscopically 

characterizing these samples, but more finely tuned fabrication and purification steps were needed 

to give a broader range of AuNP sizes and decoration density. 

Subsequent collaborative efforts refined fabrication and separation cascades to better control 

resulting NP size and coverage.152 SC concentration (CSC) was varied between 0.1 mg/ml and 40 

mg/ml to test impact on resulting Au reduction. Mean nanosheet length and monolayer volume 

fraction increased with increasing CSC, suggesting SC participates in the reaction. Au content 

relative to WS2 was estimated using a 560/410 nm optical extinction ratio. Au content derived 

from extinction spectra was significantly reduced after centrifugation at CSC = 1 mg/ml across the 

AuCl3:WS2 stoichiometric ratio range tested; differences before and after centrifugation were less 

pronounced for CSC =10 mg/ml. A concentration of CSC = 0.5 mg/ml was therefore used for the 

final fabricated samples to maximize monolayer enrichment.  

Cascade centrifugation153 was utilized to purify the Au-WS2 stock dispersion by decreasing 

mean layer number and removing larger Au nanostructures. The final protocols created a broad 

range of Au-WS2 dispersions with controllable AuNP decoration and improved final monolayer 
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content; each centrifugation sub-protocol varied based on initial nanosheet dimensions and 

AuCl3:WS2 stoichiometry.152 A combination of conventional UV-vis and PL spectroscopies 

suggested enrichment in monolayers following the optimized purification steps. No changes in PL 

peak shape or position were discerned from the resulting liquid dispersions, suggesting AuNPs 

had minimal effect on the TMD optical properties. PL was widely retained in deposited Au-WS2 

films, suggesting WS2 restacking was mitigated by the presence of AuNPs. Finally, AFM 

measurements corroborated monolayer enrichment and indicated monolayer enriched nanosheets 

are significantly larger than in previously reported procedures.153 

4.1.2 Evidence and proposed mechanism of in situ AuNP reduction on WS2 

X-ray photoelectron spectroscopy (XPS), a technique to probe elemental composition and 

electrochemical states, performed by collaborators confirmed Au-S bonding in fabricated samples. 

XPS was measured on thin films deposited from aqueous WS2 dispersions before and after reaction 

with AuCl3. In contrast to the WS2 reference, a clear Au0 signature was detected in the Au-WS2 

sample. Two additional peaks shifted by ~1 eV to lower binding energies suggested presence of 

partially-reduced S species and covalent Au-S bonding. WS2 core level spectra remained virtually 

unchanged, suggesting no damage to the WS2 nanosheets resulted from the reaction.  

Variation in initial CSC suggested that SC participates in the Au reduction. High CSC (>10 

mg/ml) facilitated growth of large Au-WS2 nanostructures, and monolayer enrichment occurred 

even at low AuCl3:WS2 stoichiometry ratio. The amount of stably dispersed AuNPs decreased, as 

these large nanostructures readily precipitate. However, no covalent Au-S bonds would form if SC 

was the only reducing agent. Furthermore, no change in the AuCl3 spectrum was observed in SC 
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dispersions absent WS2. Taken together this suggested that while SC does impact growth of larger 

Au structures, WS2 is crucial for initial Au nucleation. 

The proposed reaction mechanism for Au-decoration of WS2 is as follows. AuCl3 first reacts 

with easily accessible edge and defect S in WS2. These locations serve as nucleation sites for initial 

growth of small AuNPs as evident by covalent Au-S bonding. Reduction of unreacted AuCl3 by 

SC adsorbed on the WS2 surface supplies additional Au0 for nanostructure growth. These 

nanostructures grow together and eventually precipitate from the dispersion. This preferentially 

occurs at edge terraces of incompletely exfoliated, few-layer nanosheets, where AuNP seeds are 

already covalently bound to WS2. This occurs because of a higher relative SC concentration on the 

basal plane in comparison to edges. This preferential growth of larger Au structures on these few-

layer nanosheets leads to an enrichment in WS2 monolayers following their removal. SC may be 

oxidized during this reaction, but could be replaced by an adsorption/desorption process when 

excess SC is present in solution; this results in the more efficient monolayer enrichment at higher 

surfactant concentrations. 

4.2 Optical characterization of AuNP-decorated WS2 

Both measured spectroscopic and theoretical description are important for analyzing physical, 

optical, and electronic properties of Au-decorated TMDs. Conventional far-field UV-vis 

transmission spectroscopy yields wavelength-specific optical extinction; relative extinction peak 

heights facilitate accurate estimate of nanosheet size and thicknesses without the need for extensive 

microscopic characterization.153 Photoluminescence (PL) emission spectroscopy can similarly be 

used to estimate both relative monolayer content138 of exfoliated nanosheets and elucidate 

signatures of plasmon-exciton coupling in Au-decorated TMDs.149 Numerical methods like DDA 
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can characterize excitation and dissipation pathways of plasmon-excitonic modes in both the near- 

and far-field,163 providing key insight and validation of experimental measures.  

4.2.1 Measured optical spectroscopic characterization of Au-WS2 

Au-decoration modified far-field spectral extinction of WS2 nanosheets. Figure 13 shows 

spectral intensity of the initial mWS2 batch mixed with AuCl3 content at molar Au-WS2 ratios 

ranging from 0.25 to 5. Au-free WS2 spectra indicates characteristic peaks associated with 

excitonic transitions visible at ca. 400, 515, and 620 nm refered to as the A-, B-, and C-exciton, 

respectively. Negible optical extinction past 650 nm is attributable to the semiconducting behavior 

of monolayer WS2; light at longer wavelengths has insufficient energy to excite valence electrons 

into the conduction band of WS2. As Au:WS2 stoichiometric ratio increases, optical extinction 

generally increases from 500-650 nm.  At Au:WS2 ratios of 2.5 to 5, the separate spectral features 

at ca. 520 nm, from the B-exciton and LSPR,  and 620 nm, the A-exciton, overlap to form a large 

extinction peak at ~545 nm. 

Time lapse optical spectra of a Au:WS2  = 1 sample indicates the Au-reduction has largely 

concluded within 15 minutes. As shown in Figure 13b, a clear transient behavior in measured 

optical extinction is observed at time intervals up to 15 minutes. Following this transient period, 

measured optical extinction remains relatively constant before dropping at 180 minutes. This drop 

is attributable to either a shifting baseline inherent in the experimental setup over extended 

intervals or from precipitation of Au aggregates formed during the reaction. While these results 

indicate the rate of the initial reduction step, resolution was not sufficient to elucidate any 

secondary reactions involving the re-orientation or distribution of reduced Au atoms. 
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Figure 13:  a) Measured optical extinction for Au-decorated WS2, b) time lapse optical 

extinction during reaction at Au:WS2 ratio = 1. 

 

More finely tuned purification via centrifugation allowed separation of Au-WS2 by degree of 

Au-decoration. Figure 14a illustrates change in supernatant optical extinction spectra following 

sequential centrifugation steps from 500 to 2000 rpm for an Au:WS2 = 1 sample. Spectra were 

normalized at 295 nm to account for loss of sample at each step. As centrifugation force increases, 

highly Au-decorated nanosheets and free AuNPs are removed. For the 500 rpm supernatant, the 

spectral features at ca. 510 and 620 nm are broadened into a single peak due to the large amount 

of AuNPs present. However, as centrifugation force increases, the distinct spectral features 

consistent with Au-decorated WS2 at the lower stoichometric ratios, as shown in Figure 14a, 

become visible. This purification of the colloidally dispersed Au-WS2 fraction by additional 

centrifugation steps was an important component of a subsequent collaborative study.152 
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Figure 14: a) Spectral extinction for supernatant following each purification step, b) scattering 

spectra for Au-free and Au-decorated WS2, c) spectral-subtracted AuNP spectra. 

 

Transmission and reflection data measured using an integrating sphere setup helped distinguish 

optical extinction contributions from scattering and absorption. In this setup, both transmitted light 

and scattered light exiting the cuvette obliquely are collected by an integrating sphere  (discussed 

in more detail section 4.4.3). WS2 nanosheets absent AuNPs scatter little light, as illustrate in 

Figure 14b. However, broadband scattering relative to Au-free WS2 was increased approximately 

5-fold in the Au:WS2 = 5 sample. The scattering peak at approximately 570 nm is characteristic of 

the presence of larger AuNPs in the 40-60 nm diameter range. The overall magnitude of scattering 
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is still rather low, since the predominance of small AuNPs less than 20 nm would not be expected 

to exhibit a large scattering signal, as discussed in Chapter 2. 

Characterization of reduced AuNP (rAuNP) optical extinction can provide additional insight 

into AuNP size and concentration. Overlap between the B-exciton and AuNP plasmon resonance 

required spectral substraction to accurately characterize spectral contribution of rAuNPs. Taking 

the second derivative of the composite spectra helped resolve the A-exciton peak. The height of 

the A-exciton peak relative to the reference WS2 spectra quantified the amount of WS2 remaining 

in the dispersed fraction. This Beer-Lambert law approximation assumes the nanosheet dimensions 

are not appreciably different for the Au-decorated WS2 and Au-free WS2 reference spectra. The 

reference spectra at reduced magnitude, i.e. the estimated amount of WS2 remaining, was then 

substracted from the composite spectra to yield AuNP spectra; these spectra, shown in Figure 14c, 

are analogous to aqueous AuNP dispersions. LSPR peaks evolved from 540 to 550 nm as Au:WS2 

ratio increased. While the effective dielectric environment of these AuNPs is likely increased from 

adjacent WS2, this 10 nm LSPR red-shift would represent an increase in AuNP diameter from ca. 

60 to 75 nm in a purely aqueous environment (n = 1.33). 

Analysis of A-exciton energy and location showed no clear impact from Au-decoration. This 

suggested nanosheet optical response is not dramatically altered by the presence of edge-decorated 

AuNPs. WS2 nanosheet size and thickness were estimated from these subtracted spectra using 

emperical metrics that input peak locations and relative extinction magnitudes across the UV-vis 

spectrum, as discussed in Section 4.1.1.153 Figure 15 plots spectral-derived WS2 concentration and 

mean number of layers for both medium (m-WS2) and large (l-WS2) nanosheets following 

purification steps to remove free AuNPs and aggregates. The metrics suggest a significant amount 

of WS2 was lost during the purification steps as evidence by a ca. 50- and 200-fold drop in WS2 
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concentration for m-WS2 and l-WS2 nanosheets at increasing stoichiometric ratio, as shown in 

Figure 15a. Significantly, much of the lost WS2 appears to be undesired multi-layer flakes, as 

evidence by the up to 5-fold reduction in mean number of layers in Figure 15b. These results 

suggest AuCl3 preferentially reduced on multi-layer nanosheets, resulting in large Au aggregates 

at increasing AuCl3 concentrations. Since these aggregates were easily removed during 

centrifugation purification steps, only moderately-decorated, monolayer WS2 flakes remained.  

Figure 15:  Spectral metric-derived estimate of a) remaining WS2 concentration and b) mean 

number of TMD layers following Au-decoration. 

 

PL spectroscopy provided another metric for evaluating resulting TMD monolayer content, as 

well as possible plasmon-exciton coupling effects on light emission. For PL measurements, light 

excitation supplied by a 532 nm laser was incident on small droplets of aqueously dispersed Au-

WS2. The experimental apparatus is described in more detail in section 4.4.3. Light emission 

intensity was normalized using the intrinsic Raman peak at ca. 400 cm-1 associated with lattice 

vibrations in WS2, whose intensity depends only on total WS2 content. This peak is used to 

normalize PL signal since actual concentration of interrogated WS2 during the measurement is not 

precisely known. The characteristic PL peak associated with the A-exciton/band gap emission is 
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visible at ca. 2500 cm-1, as shown in Figure 16a.  Normalized PL emission is enhanced more than 

an order of magnitude as Au:WS2 ratio increases to 5. Enhanced PL from TMDs is of immense 

interest for emerging optoelectronic devices.149,164 The characteristic Raman peak for water, visible 

at ca. 3400 cm-1, increases in the normalized spectra with increasing Au:WS2 ratio since the 

effective WS2  concentration is decreasing. 

Figure 16:  a) PL from Au-WS2 samples normalized to WS2 Raman signal, b) WS2 monolayer 

fraction estimated from both PL and UV-vis spectra. 

 

Based on the results in Figure 16 and that of the subsequent collaborative study,152 AuNP 

reduction on WS2 appears to have minimal impact on PL emission beyond monolayer enrichment. 

PL from undoped TMDs depends almost exclusively on number of layers.165 Figure 16b shows 
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excellent agreement between PL and UV-vis spectroscopic estimates of WS2 monolayer content 

based on location and bandwidth analysis of the A-exciton;153 each predict a nearly two-order of 

magnitude enhancement in final monolayer content. This could be due in part because PL emission 

is typically most intense on the basal plane of WS2 nanosheets,166 whereas the majority of reduced 

AuNPs appear on edge sites. Maintaining PL emission was a promising result, since PL quenching 

was reported prior when AuNPs were in physical contact with adjacent MoS2.
140   

4.2.2 Discrete dipole approximation of Au-WS2 optical response 

Nano architectures with plasmonic NPs supporting localized electromagnetic fields can affect 

optical excitation and carrier dynamics in adjacent 2D TMD semiconductors. Theoretical 

description of these systems guides intuition and validates measured results. Accurate description 

of inhomogeneous NP-2D TMD heterostructures are important for understanding samples 

produced within current fabrication capabilities. The discrete dipole approximation (DDA) to 

Maxwell’s equations used herein allowed characterization of optoelectronic excitation and 

dissipation pathways in Au-WS2 structures. Far-field UV-vis transmission spectra showing LSPR 

and excitonic transition features of Au-WS2 heterostructures were modeled using DDA package 

DDSCAT v7.3.37,73,91 Simulated far-field transmission spectra may be compared directly with 

measured results, while local electric near-field maps offer important insight into local plasmon 

field enhancements into adjacent TMDs. DDA is ideally suited to study a wide range of arbitrary 

nanoparticle-dielectric systems due to its relatively low computational expenditure and volumetric 

treatment of target geometries. Recently, DDA was used to model plasmon excitation and damping 

of AuNPs and Ag nanoprisms dropcast onto MoS2.
163  
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DDA results indicated that edge decoration of AuNPs on WS2 provides higher optical 

extinction efficiency than basal plane decoration. Figure 17 shows simulated response in a media 

RI = 1.33, i.e. water, for an Au-free WS2 monolayer measuring 75 x 50 nm, a 20 nm AuNP, WS2 

with the AuNP centered on the basal plane, and WS2 with the AuNP centered on the 75 nm 

nanosheet edge. Polarization was averaged in the x- and y-directions and the plane wave k-vector 

was normal to the target (z-direction). Generally, AuNP-decoration enhanced broadband 

extinction across the wavelength range examined. Enhanced extinction, particularly at the A-

exciton (~620 nm), is noteworthy since the AuNP is off-resonance at this energy; this suggests 

even larger enhancements could be observed when tuning the LSPR wavelength to specific 

excitonic transitions.163 For example, overlap between the comparatively weak B-excitonic feature 

and the LSPR at ca. 520 nm resulted in a more than 2-fold increase in optical extinction. 

Plasmonic energy dissipation from the AuNP to the WS2 were probed near the LSPR/B-exciton 

peak (520 nm) and the A-exciton peak (620 nm) for side-decorated Au-WS2 as shown on the right 

side in Figure 17. Near-field plots for y-polarization at both 520 and 620 nm indicate the intense 

local field-enhancements at the AuNP-TMD interface. Plasmon excitation results in a dipolar 

LSPR on the AuNP and lateral energy transfer into the WS2 monolayer at the axial contact point. 

Differences are observed for each plot. At 520 nm, the AuNP LSPR field enhancement near the 

particle is stronger than off-resonance (620 nm). The local field enhancement at the edge of the 

nanosheet, reaching up to ca. 4, is stronger at the A-exciton (620 nm) due to stronger optical 

absorption relative to the B-exciton (520 nm). Radiative recombination, e.g. PL, could result from 

enhanced field intensity at WS2 edges, but DDA cannot attribute far-field scattering to a specific 

point of origin.  DDA likewise cannot represent particular edge states or changing spatial electron 

density as in density functional theory (DFT). 
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Figure 17:  DDA optical extinction of Au-free WS2, 20 nm AuNP, and 20 nm AuNP on 

nanosheet edge and basal plane with simulated near-field plots (right) at 520 and 620 nm. 

 

Conversion of a TEM image of an actual Au-decorated WS2 nanosheet to a DDA target allowed 

optical characterization of a much less idealized geometry for comparison with both measured and 

simulated results. Figure 18 plots DDA extinction efficiency of this generated target for 

polarization averaged in the x- and y-direction. Extinction enhancements over the entire visible 

spectrum were comparable to the rectangular WS2 nanosheet with side-decorated 20 nm AuNP 

shown in Figure 17. Optical extinction was enhanced up to 1.8-fold at ca. 520 nm where the B-

exciton overlaps the coupled AuNP LSPR. Extinction efficiency may be converted to optical 
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extinction in AU by the method described in Chapter 2 for CDA, but is beyond the scope of this 

work. The inset shows the local field enhancements of ca. 5 at 520 nm along the Au-decorated 

WS2 nanosheet edge. Deconvolution of the simulated spectra and local near-field enhancements 

in Figures 17 and 18 are the subject of ongoing work. However, these results appear to validate 

DDA as a useful tool to guide design of plasmon-exciton interactions in NP-decorated TMDs  such 

as WS2 that have published dielectric data.167 

 
Figure 18:  DDA extinction of custom Au-WS2 target replicated from actual TEM image, inset 

simulated near-field plot at 520 nm. 

 

4.3 Plasmonic hot electron transfer in Au-WS2 

Hot electron damping of plasmon energy transfered to adjacent 2D semiconducting TMDs has 

been implicated in enhancement of various emerging applications.141–145 Hot electron transfer 

(HET) may occur on a femtosecond scale after plasmons decay into an electron-hole pair.16 If the 
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energy of the “hot” electron is greater than the Schottky barrier (~0.6 eV for Au/WS2) the electron 

may be injected into the conduction band of the adjacent semiconductor.168 Characterizing and 

controlling HET in NP-2D TMD heterostructures is important for understanding fundamental 

interactions and optimizing application-specific plasmonic enhancements. HET dampens the 

plasmon resonance, but may be utilized to generate charge carriers at sub-bandgap energies in 

semiconductor optoelectronic devices.141 In particular, HET may provide an additional source of 

energetic carriers to facilitate catalytic reactions.17 In contrast, systems hoping to leverage local 

field enhancements, such as nonlinear harmonic generation, should seek to minimize this energetic 

damping mechanism. 

HET from AuNPs into TMDs has been examined  using both femtosecond scale pump-probe 

transient absorption spectroscopy169 and electron energy loss spectroscopy (EELS).170 EELS 

performed in a scanning TEM (STEM) was used herein to help characterize energy losses and 

plasmon decay pathways in hybrid NP-TMD systems.171 Energy loss of incident electrons to a 

nanostructure provides insight into plasmon modes on metal NPs and TMD semiconductor 

excitonic transitions. Bandwidth of plasmon modes in EELS may be used to quantitate non-

radiative plasmon decay pathways such as carrier-phonon and carrier-carrier scattering.172 

Advantages of EELS include avoidance of diffraction-limited excitation of multiple AuNPs and 

direct carrier excitation in the TMD.  

Prior to this work, HET studies for AuNP-TMD interfaces has been limited to samples with 

physical contact, not those chemically bonded.170,173 Measured EELS bandwidth decomposition 

from 80 nm Au nanospheres dropcast on exfoliated MoS2 yielded a 6% quantum efficiency (ƞ) for 

hot electron transfer, where ƞ is the ratio of plasmonic hot electrons transferred to total hot 

electrons generated.170 The remaining 94% decayed through scattering or thermalization. The same 
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approach estimated hot electron transfer from Au nanoellipses to graphene at ƞ = 20%.174 

However, these studies and related work utilizing pump-probe spectroscopic methods18,175 

examined only NPs deposited onto the 2D material basal plane. Physiochemical contact with WS2 

at edge locations presents a new scenario where energy damping occurs at or near catalytically 

active edge sites.176  

Measured EELS was supplemented with eDDA v1.2,177 an electron excitation DDA package, 

to model various metal NP structures on 2D TMDs.171 Both light and electron excitation 

implementations of the discrete dipole approximation (DDA) were used to differentiate radiative 

and non-radiative damping contributions to the LSPR. For eDDA simulations, a single 20 nm 

AuNP was placed adjacent to a 2D 45 x 90 nm WS2 sheet generated with the method outlined in 

Section 4.4.2. These simplified dimensions were based on averages obtained from TEM images 

during EELS measurements on in situ reduced Au-WS2 samples. Approximating reduced AuNPs 

as perfect 20 nm diameter spheres is not anticipated to appreciably affect results since this size 

AuNP is well within the quasistatic regime.  

HET ƞ from both measured EELS and simulated eDDA spectra were estimated at 14% over 6 

fs based on a 0.23 eV LSPR bandwidth expansion.171 Excellent agreement with eDDA was 

obtained under the assumption that accrued LSPR bandwidth increases resulted only from energy 

transfer between Au and WS2. HET for chemically reduced AuNPs exceeded that for those 

deposited onto the TMD basal plane.170 HET enhancement is likely attributable to direct 

physicochemical contact of AuNP on WS2, edge AuNP locations, and lower NP-TMD Schottky 

barrier. More efficient HET from in situ reduced AuNPs on WS2, promising for photocatalysis, is 

reasonable based on other related works. Enhanced HET could be anticipated from resonant AuNP 

excitation near WS2 edge sites due to their intrinsically enhanced optical activity.138 Inserting 
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dielectric layers between the NP and TMD was found to lower ƞ of carrier injection by increasing 

ohmic resistance.170  

4.4 Experimental & theoretical approaches 

4.4.1 Liquid-phase exfoliation of 2D TMDs 

Liquid-phase exfoliation (LPE) provides a low-cost, potentially scalable method of producing 

few layer TMDs.131,133 Several distinct liquid exfoliation techniques are available, with the 

simplest being liquid-phase exfoliation (LPE), the method used herein. In a typical LPE process, 

layered crystals are sonicated in a stabilizing solution. Sonication breaks weak van der Waals 

bonds between layers, while interactions with surrounding liquid stabilize nanosheets against 

aggregation. Liquids used include solvents178 and aqueous surfactant solutions,179 with non-toxic 

surfactant-stabilized dispersions being particularly helpful to minimize aggregation in solution and 

following film deposition. Following sonication, a series of centrifugation protocols are utilized to 

separate nanosheets by size and thicknesses.153 The resulting dispersions can be easily processed 

into films or inkjet printed onto substrates.131 Continued development of lower cost, scalable 

techniques that engineer thinner or heterogeneous interfaces are important for implementation. 

Liquid-exfoliated WS2 was prepared as illustrated in Figure 19. Bulk WS2 (Sigma Aldrich, St. 

Louis, MO, USA) powder was dispersed at a concentration of 25 mg/ml in aqueous sodium cholate 

surfactant solution (6 mg/ml). The mixture was sonicated in an ice-water bath at 360 W (60% 

amplitude) in a stainless steel beaker using a probe sonicator with a flat-head tip. Sonication was 

performed for 80 minutes with a 6 second on, 2 second off cycle.  Following this initial sonication, 

the dispersion was centrifuged (Hettich Mikro 220R centrifuge, Tuttlingen, GER) for 1.5 hours at 
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4000 rpm (1700 g). The supernatant was removed, then discarded. The sediment was re-dispersed 

in 75 ml of fresh aqueous surfactant solution at a concentration of 3 mg/ml. This step is important 

to clean the bulk TMD powders, removing contaminants. 

 

Figure 19:  Schematic illustrating liquid-phase exfoliation of TMDs via sonication and 

subsequent size-selection of TMDs.  

 

 

After the initial cleaning step, the TMD dispersions were sonicated for 8-12 hours at 360 W 

(60% amplitude) in a metal beaker using the same flat-head tip probe sonicator with a 6 second 

on/2 second off cycle. This long-term sonication breaks van der Waals forces in bulk crystals, 

producing significant quantities of mono and few layer TMDs. Longer sonication times yield more 

exfoliated nanosheets, but care must be taken to insure aggregation-inducing heat is mitigated with 

the ice-water bath. Following sonication, nanosheets are separated by size via centrifugation. This 

size separation was performed as reported previously via centrifugation at 15 °C with sequentially 
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increasing rotor speeds.138,153 For speeds ≤ 6000 rpm (3500 g) a fixed angle rotor 1016 was used 

(ca. 10 mL volume, 28 mL vials).  As an example of a centrifugation cascade, unexfoliated TMDs 

are removed at 1500 rpm (240 g) as sediment. Next, the 1500 rpm supernatant is centrifuged at 

3000 rpm (960 g) and the sediment was discarded.  Next, the procedure is followed at 4000 rpm.  

This time, the sediment is re-dispersed at reduced volume (ca. 5 ml) in fresh surfactant solution, 

as sample trapped at these speeds are largely comprised of relatively large, few layer l-WS2 

nanosheets. This procedure is repeated with increasing centrifuge speed until 10000 rpm (9700 g), 

where the supernatant is discarded. Nanosheets comprising this supernatant are mostly monolayer, 

but typically have such small lateral dimensions that they lose their characteristic optoelectronic 

properties. In general, flakes trapped at higher speeds are thinner and have smaller lateral 

dimensions.138 The more intermediate cascade steps, the finer the subsequent size distributions. 

Production of highly monolayer enriched dispersions using a more stringent liquid cascade, 

yielding finer control over final nanosheet dimensions, was recently published.153  

4.4.2 Discrete Dipole Approximation  

This section outlines a key resource, the discrete dipole approximation (DDA), for studying 

the underlying electrodynamic interactions in NP-2D TMD nanostructures. Each nanostructure is 

treated as a collection of dipoles in DDA. The physical target dimensions are discretized with 

dipoles placed in a cubic lattice encompassing the nanostructure shape. Polarizability, αi for each 

dipole comprising the target is calculated by the Lattice Dispersion Relation.180 Polarization 

magnitude for each target sub-volume, Pi, in response to the local electric field, Eo,i, is given as 
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Pi = αi (Eo,i -∑AijPj

N

j≠i

) (4.2) 

where ∑ AijPj
N
j≠i  sums interaction between dipoles and Aij is a more rigorous dipole-dipole 

interaction matrix analogous to the S matrix in CDA. Extinction cross-sections are then computed 

from total calculated Pi across all dipoles by 

 σext =
4πk

|Eo|
2

 ∑ Im(Eo, j∙Pj)

N

j=1

 (4.3) 

where k is the orthogonal incident wavevector and Im represents the imaginary component of the 

quantity. This DDA approach was implemented to calculate electromagnetic interactions for 

complex targets where an analytical αi does not exist, such as Au-decorated WS2 nanosheets. 

Greater accuracy is achieved with more dipoles (i.e., finer discretization), but computational 

requirements increase substantially. A combination of DDA and the coupled dipole approximation 

(CDA), which treats each NP as a single polarizable point dipole, is capable of reducing 

computational time 40,000-fold over full volume DDA models.5,6 For example, interaction 

between dielectric substrates and transparent conductive oxides were studied recently using an 

extension of this multi-scale approach.92  

DDSCAT, an open-source DDA software developed was used in this work.37,73,91,181 Both near- 

and far-field optical response of arbitrary targets of a given shape and material are uniquely 

described with DDA. Local field enhancement factors are calculated using the Clausius-Mossotti 

relation.91 Electron excitation induces resonances not observable with light excitation.182  Recent 

extension of the DDA algorithm allowing electron excitation, eDDA, was developed.177 These 

“dark” modes along with conventional bright modes are probed by selecting simulated electron 
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beam impact points analogous to those measured in EELS, which were at the edge of a 20 nm 

AuNP. DDA simulations from 420 nm to 820 nm wavelengths with 1 nm resolution were 

performed on a 16-core supercomputer node with 32 GB memory. WS2 nanosheets and AuNPs 

were discretized in Cartesian coordinates. AuNP dielectric functions were Johnson and Christy,183 

while monolayer WS2 was given from dielectric data obtained from CVD-grown WS2.
167 A 

medium refractive index (n = 1.33) was used for comparison with those measured from aqueous 

dispersions. 

Custom DDA target generation permitted creation of both idealized Au-WS2 targets and more 

complex target geometries based on TEM images of fabricated samples. The desired 

heterostructure geometrical shapes were made in Blender (Blender Foundation, Amsterdam, 

NLD), a 3D graphics software. This target was then uploaded into the NanoHub tool DDSCAT 

Convert v. 2.0,184 which takes various user inputs to develop a dipole discretized version of the 

desired shape. Idealized shape geometries, i.e. a thin rectangular WS2 nanosheet and single 

spherical AuNP, were easily created and manipulated in Blender. A similar approach within the 

group probed the effect of substrate choice and NP shape on plasmonic and coupled resonant 

modes.92 However, this approach did not allow for placement of AuNPs on WS2 edge sites, which 

appears to be the location of a majority of the in situ reduced AuNPs. Beyond implementation of 

the dielectric function for monolayer WS2 in the simulation,167 the dipole-discretization treatment 

in DDA did not explicitly provide for a finite thickness for WS2.   

An extension of this approach allowed a realistic DDA target to be created based on real TEM 

images. Figure 20 shows the progression from a TEM image (Figure 20a) of an Au-decorated WS2 

nanosheet, to a discretized dipole target (Figure 20c). First, the image contrast is adjusted to 

maximize difference between WS2 and the AuNPs. The outline of the visible WS2 sheet is first 
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extracted. Then, a 2D projection of the AuNPs was placed over this nanosheet. At each AuNP 

location, a sphere matching the dimensions of that 2D projection are placed manually at each 

location (Figure 20b). The template is removed, leaving only the 2D sheet and 3D spheres 

representing AuNPs. This OBJECT (.obj) file is then converted into a DDA target, as shown in 

the right-hand image of Figure 20 using DDSCAT Convert v. 2.0.184 This generalized approach to 

creating DDA targets could have important implications for more exotic shapes reduced on TMD, 

e.g. silver nanoprisms.185 

 
Figure 20:  Progression from (a) TEM image to (b) AuNPs projected into 3D spheres to (c) 

dipole discretized DDA target containing WS2 (red) and AuNPs (green). 

 

 

4.4.3 Spectroscopic characterization techniques 

UV-vis optical spectroscopy of aqueous dispersions of Au-WS2 was performed with several 

different experimental setups. Spectrometers with UV capabilities, a Cary 5000 (Varian, Palo Alto, 

CA, USA) or a UV-1800 (Shimadzu, Kyoto, JPN) were needed for UV-vis size metrics evaluated 

at 235 nm.153 Transmission and reflection spectra measured in an integrating sphere apparatus 

helped distinguish contributions from scattering and absorption to extinction. Aqueous dispersion 

of Au-WS2 were placed in a home-built cuvette holder that centered the sample inside the 
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integrating sphere in a Lambda 650 (PerkinElmer, Waltham, MA, USA) spectrometer to estimate 

light absorption. Both transmitted light and scattered light exiting the cuvette obliquely are 

collected by the integrating sphere detector. Subsequently, conventional transmission spectra, 

giving total extinction, was performed outside the sphere apparatus. The difference between the 

extinction and absorption spectrum is the scattering spectrum. Time lapse extinction spectra as a 

function of time were performed using a home-built fiber coupled spectroscopic apparatus utilizing 

an AvaLight-DH-S-BAL white light source (Avantes Inc., CO, USA) and AvaSpec-2048 

spectrometer (Avantes Inc., CO, USA). 

PL and Raman spectroscopy were performed on Au-WS2 aqueous dispersions with a LabRAM 

HR800 confocal microscope (Horiba, Kyoto, JPN) using 532 nm excitation laser (ca. 2 mW) in 

ambient conditions. The advantage of PL measurement in a Raman spectrometer is two-fold; it is 

convenient for study of both fluid and dried samples and the PL/Raman ratio gives insight into 

sample quality. PL/Raman emission was collected by a 100x objective lens (NA = 0.8). Sample 

focusing during acquisition is crucial to avoid error in extracted PL/Raman ratio used to normalize 

PL enhancements across samples. Evidence of out-of-plane measurements include a tilted 

emission baseline and apparent laser spot change in recorded optical images. For measurements, 

~40 μL of dispersions were dropped on glass slides.  A 10x objective was broadly focused on the 

drop, then the 100x objective was used to on the drop surface Focusing inside the drop can result 

in reabsorption of WS2 PL, thereby lowering detected intensity. An average of 3-5 measurements 

per sample are plotted in section 4.2.1. 
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5. PROSPECTIVE APPLICATIONS 

The two material platforms developed in this work, featuring highly absorptive plasmonic gold 

nanoparticles (AuNPs), could facilitate photon conversion into thermal or electronic energy for the 

benefit of multiple applications. Efficient, highly localized plasmonic thermal damping could offer 

new paradigms for adaptive control of thermoplasmonics for use in biotherapeutics, drug delivery, 

tumor ablation, and nanofluids for heat rejection.186,187 Hot electron transfer (HET) from metal 

nanoparticles to adjacent 2D semiconductors16 shows promise as a source of carriers in 

photocatalytic devices17 and field-effect transistors.18 Specifically, these emerging plasmon-

mediated hybrid nanomaterials could permit exchange of optical, thermal, and electronic energy 

precisely where they are needed, e.g. at a chemical vaporization interface or catalytic active site. 

Development of new materials herein that exhibit emerging energetic decay pathways and 

compact, multi-scale descriptions of interrelated optical, electronic, and thermal effects could aid 

future system design and implementation. 

5.1 AuNP-PDMS membranes in plasmonic pervaporation 

Plasmonic NPs dispersed in three-dimensional films polymers have broad application in 

photovoltaics,19,188 sensing,44,189 optoelectronics,20,21 and catalysis.190 Polydimethylsiloxane 

(PDMS) containing AuNPs (AuNP-PDMS) in particular have garnered interest in mechanical 

strain sensing,189 biosensing,23 transistors,191 microfluidics,45 and chemical separations.22 

Description of interrelated optical and thermal effects in AuNP-polymer dispersions has 

progressed beyond conventional continuum heat transfer, Mie theory,47 Beer-Lambert law,50 or 

effective medium approximations.81,82 Enhanced light trapping by internal reflection could benefit 
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waveguides in thin film photovoltaics,57 fluorescence in quantum dot nanocomposites,58 and high 

refractive-index polymers.59 However, the primary focus herein was utilization of plasmonic 

heating in AuNP-PDMS membranes as the thermodynamic driving force for solvent flux in a lab-

scale pervaporation system. 

Conservative estimates suggest distillation, the most prolific method of component separations 

in the chemical industry, accounts for about 5% of energy consumption in the United States.192 

Beyond energy consumption required to boil components, azeotropes formed in distillation can 

limit separation ability. Membrane separation processes, such as pervaporation, have seen 

widespread use as a lower energy, thermodynamically favorable alternative for water treatment 

and biofuel production.193 However, membrane processes often still require heating to increase 

mass transfer across the membrane.194 In pervaporation, the thermodynamic driving force is the 

component partial pressure difference between liquid feed and vapor permeate at vacuum 

pressure.195 Development of next-generation membrane materials with lower operating costs could 

offer a new paradigm for efficient chemical separations. 

Nanotechnology is becoming increasingly important in the development of membrane 

technology for chemical purification.2 In particular, the scalability and localized heating 

capabilities of AuNP-PDMS films show significant potential in the plasmonic pervaporation 

system.14  Highly localized plasmonic heating within AuNP-PDMS membrane has the potential to 

dramatically enhance flux across the membrane, while lowering energy requirements.196 Efficient 

radiative-enhanced light trapping and enhanced thermal dissipation in AuNP-PDMS films, as 

discussed in Chapters 2 and 3, could improve energy efficiency of pervaporation by providing 

energy at the vaporization interface, without the need to heat the entire feed solution.22 
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Previous work within the group pioneered investigation of in situ reduction of AuNPs in PDMS 

for use in the lab-scale pervaporation system.14 Novel AuNP-PDMS membranes containing 

uniform dispersion of in situ reduced AuNPs were fabricated and tested at various laser powers. 

Thermalization following resonant excitation resulted in butanol fluxes up to 2-fold above Au-free 

analogues. A coupled solution-diffusion and energy balance helped identify potential energy and 

utility cost savings possible with plasmonic pervaporation. It was determined that the process 

required more energy and capital due to inefficient plasmonic absorption, but could offer up to a 

7-fold reduction in energy requirements with membrane optimization and reduction of energy 

losses into the feed.  

This work improved membrane fabrication and understanding of underlying plasmon-induced 

heating capabilities to support long-term goals of reducing pervaporation energy requirements. 

Furthermore, several system upgrades improving laser uniformity, thermal imaging capabilities, 

gasket seals, and support mesh materials were implemented to improve the lab-scale setup. 

Asymmetric reduced (r)AuNP-PDMS membranes, discussed in Section 3.3, provide superior 

optothermal and physical characteristics, but at the expense of readily definable NP distributions. 

Second-generation PDMS films containing definable AuNP distributions showed enhanced 

solvent flux upon addition of AuNPs in PDMS, but anomalous heating effects in the presence of 

water at elevated excitation powers precluded precise characterization of achievable flux 

enhancements. Taken together, these studies are important step towards realization of plasmon-

active membrane separators. 
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5.1.1 Advantages of asymmetric AuNP-PDMS membranes in pervaporation 

Promising thermal and physical properties of asymmetric rAuNP-PDMS films show 

significant potential for use as pervaporation membranes.22 Efficient optoplasmonic conversion to 

heat is arguably the most important aspect of these thin films as separation membranes. Since the 

thermodynamic driving force in pervaporation is the difference in partial pressure between the feed 

and permeate sides of the membrane, increasing the membrane temperature should increase this 

driving force. The asymmetry of the thin films is desired since the effect of the AuNPs on the mass 

transport properties of PDMS remains largely uncharacterized. Placing the Au-free PDMS layer 

in contact with the pervaporation feed side and making the AuNP-containing layer as thin as 

possible should result in transport characteristics and performance analogous to Au-free PDMS, a 

commonly-used dense membrane.  

Morphological, optical, and thermal characteristics of asymmetric rAuNP-PDMS thin films 

distinguished in this work suggest that the AuNP-containing layer thickness can be reduced by 

factors of ten or more relative to prior work.22 Since pervaporation flux is inversely proportional 

to membrane thickness, scalability and control of the diffusive Au layer is an important step.  

Diffusive reduction of Au into partially cured PDMS appeared superior to either reduction into 

fully cured PDMS or laminar formation of asymmetric Au-PDMS thin films. A thinner Au layer 

was produced quickly with a wide range of attainable optical and physical properties. The diffusive 

method produced AuNP-containing layers 3-7 times thinner than the laminar method. 

Furthermore, significant improvements to Au layer thickness and optothermal conversion are not 

anticipated for the laminar method. The practical limit to spin-coating PDMS is about 15 μm, and 

this was possible only when using high toluene dilutions, which further complicates 

characterization of the thin films and could affect structural integrity.197  
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Heating capability of the asymmetric, diffusion-reduced 0.05 mass-percent AuNP-PDMS film, 

3000 W/°C, was 3-fold greater than PDMS with uniform AuNP distribution, 11-fold higher than 

thermally annealed AuNPs on glass, and 230-fold higher than liquid AuNP dispersions.22 The 0.5 

mass-percent asymmetric AuNP-PDMS film reached 54.5°C above ambient temperature, while 

the 0.05 mass-percent, 0.005 mass-percent, and Au-free PDMS films reached 29.9 °C, 8.2 °C, and 

0.7 °C above ambient conditions, respectively, at 18 mW irradiation. Enhanced photothermal 

response relative to previous aqueous, silica, and PDMS samples likely resulted from increased 

NP density, dispersion in insulating PDMS, and reduced radiative emission relative to two-

dimensional samples.22 In contrast, significant improvements in heating ability via the laminar 

method is not anticipated since the 1.2 mass-percent TCA used in the AuNP-containing layer was 

at the allowable limit for proper PDMS crosslinking.  

The key limitations in study of potential pervaporation enhancements using asymmetric 

rAuNP-PDMS films were difficulties in both controlling and characterizing AuNP concentration, 

size, and morphologies of rAuNPs in PDMS. Controlling the reductive process inside the curing 

PDMS remains problematic. Microscopic evidence of small AuNPs, irregular networks, Au 

aggregates, and cratering on the film surface were individually observed at different Au solution 

concentration using the diffusive-reduction method.22 Furthermore, electron microscopy of 

rAuNPs within insulative polymers is nearly impossible, prohibiting accurate characterization of 

resulting AuNP size, shape, and concentration. Due to these limitations, the asymmetric rAuNP-

PDMS thin films were not evaluated directly as membranes in the lab scale pervaporation system.  
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5.1.2 Water pervaporation with second-generation AuNP-PDMS membranes 

Second-generation AuNP-PDMS films containing readily definable dispersions of 16 nm 

solution-synthesized AuNPs were the focus of subsequent testing within the lab-scale 

pervaporation system. Second-generation AuNP-PDMS films were fabricated using the same 

approach as discussed in Section 2.4.1, except the uncured AuNP-PDMS mixture was spincoated 

at 500 rpm for 1 min. This formed membranes approximately 60 µm thick, ideal for maximizing 

solvent flux and giving adequate mechanical support. An up to 1.5-fold improvement in optical 

extinction per AuNP and improved thermal dissipation in these AuNP-PDMS films at ca. 20-fold 

greater thicknesses were highlighted in Section 2.2 and 3.2, respectively.  

Measured steady-state average water flux through the 1.76 x 1012 NPs/cm3 AuNP-PDMS thin 

film membrane increased up to 1.2-fold relative to Au-free PDMS at 750 mW. This fell well short 

of the 2-fold enhancements observed prior using rAuNP-PDMS membranes.14 While flux through 

AuNP-PDMS did increase from 0.037 to 0.043 kg/m2hr relative to Au-free PDMS at 750 mW, 

flux values at 250 and 500 mW for each membrane were nearly identical. Flux enhancements 

appeared limited by apparent anomalous thermal effects in the presence of water. Average 

membrane temperature increase (ΔT) at each AuNP concentration converged as incident laser 

power increased to 750 mW; ΔT was 45% higher for 1.76 x1012 NPs/cm3 film relative to Au-free 

PDMS at 250 mW, but was only about 5 and 2% higher at 500 and 750 mW, respectively. 

Optical and thermal characteristics of the stainless steel mesh support contributed in part to the 

unexpected convergence of membrane temperature at higher laser powers. The stainless steel mesh 

is highly conductive, so it effectively acted as a heat sink for thermal dissipation away from the 

thin AuNP-PDMS membrane. Furthermore, the stainless steel mesh attenuated almost 40% of 

incident light. This characteristic attenuation, while likely comprising mostly of reflection, not 
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absorption, could nonetheless dominate macroscale optical response compared to the AuNP-

PDMS membranes. These potential mitigating factors were alleviated by selection of an insulative, 

highly transparent ethylene tetrafluoroethylene (ETFE) support mesh. While this ETFE support 

mesh represents an important system improvement, the convergence of membrane ΔT regardless 

of AuNP concentration at high laser powers was not fully resolved. 

 
Figure 21:  Average AuNP-PDMS membrane temperature increase a) without and b) with 

pervaporation cell feed water. 

 

Decreasing ΔT between membranes was not anticipated from either optical attenuation or 

independent thermal characterization of ca. 60 µm AuNP-PDMS membranes absent adjacent feed 

water. For example, optical attenuation, measured using the integrating sphere apparatus described 

in Section 2.4.4, showed a linear increase in resonant attenuation per NP. Attenuation percentage 

above Au-free PDMS rose from ca. 1% at 0.469 x1012 NPs/cm3 to 3.5% at 1.76 x1012 NPs/cm3.  

Average membrane temperature increases with the adjacent ETFE mesh absent feed water 
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matched expected trends based on optical attenuation; measured ΔT in Figure 21a shows 

dependence on both AuNP concentration and incident laser power. However, ΔT increases only 

slightly with increasing laser power upon addition of feed water and exhibits no apparent 

dependence on AuNP concentration across the range of powers and concentrations examined.  

The residual hydrophilic PVP (polyvinylpyrrolidone) coating on the AuNPs dispersed in 

PDMS is another possible culprit to limited heating enhancements observed within the system. 

While the PVP coating is necessary to minimize AuNP aggregation and solvent compatibility in 

uncured PDMS,30 interaction with water molecules within the PDMS may disrupt 

thermoplasmonic dissipation. Water likely preferentially migrates towards the residual hydrophilic 

PVP left over from the isopropanol AuNP dispersion mixed into PDMS. Pockets of liquid water, 

or even vapor near irradiated AuNPs could create efficient scattering centers and inhibit plasmonic 

absorption. Preliminary optical transmission experiments in the presence of water did not yield 

increased transmission that would be anticipated if plasmonic absorption was dampened in the 

absence of other attenuating effects. Therefore, it appears possible anomalous scattering may 

contribute to suppressed plasmonic absorption and resulting thermal response. After consideration 

of these results and concurrent advancements within the group, it was determined the most prudent 

future step was focused development of PDMS membranes featuring ordered AuNP arrays, as 

discussed in Chapter 6. 

5.1.3 Experimental setup 

A schematic of the upgraded pervaporation system is given in Figure 22.14 The membrane 

separator apparatus consists of feed and permeate tubes, membrane assembly, and two graduated 

pipettes used to measure component flux. The membrane assembly features the fused AuNP-
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PDMS membrane and gasket along with the fused support ETFE (Ted Pella, Inc., Redding, CA, 

USA) mesh and gasket. Localized plasmonic excitation was supplied by a 532 nm diode laser 

(MXL-H-532, CNI, Changchun, China) whose power can be varied from 0-1 W using neutral 

density filtration. A diffuser and converging lens (Thorlabs, Newton, NJ, USA) were added to the 

laser to help ensure a uniform laser beam and subsequent heated membrane temperature. Laser 

power was measured with a power meter (PM310D, Thorlabs, Newton, NJ, USA) before and after 

each run to ensure the laser power did not vary significant over large periods of time. The feed 

temperature was recorded continuously with two thermocouples at various locations along the feed 

tube to characterize thermal losses into the feed.  

 
Figure 22:  Schematic of lab-scale plasmonic pervaporation system.14 
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The temperature of the membrane surface was measured with an infrared (IR) camera (ICI 

7320 P-Series, Infrared Cameras Inc., Beaumont, TX, USA). A germanium window transparent in 

the IR regime capped the permeate tube to allow accurate thermal measurements. Typical of 

pervaporation setups, a vacuum pump (DV-4E, JB Industries Inc., Aurora, IL, USA) and cold trap, 

consisting of IPA and dry ice, condensed and captured permeate. The vacuum pressure was kept 

constant throughout the experiment; measurements were recorded continuously with an absolute 

capacitance manometer (722B-100, MKS Instruments, Andover, MA, USA), a data acquisition 

card, and LabVIEW Signal Express (National Instruments, Austin, TX, USA).14 The cell was 

enclosed in a plexiglass container in order to minimize forced convection. 

The procedure for running a single pervaporation trial are as follows.14 First, feed and flux 

level indicators were filled with distilled water. The flux level indicators were filled near the 

highest visible graduation to ensure complete flux measurement over long trials. Automated data 

recording systems for pressure, ambient and feed temperatures, membrane temperature, and flux 

were implemented. Feed volume changes were captured every 20 minutes with a webcam. To 

begin data collection, the vacuum pump was started and flux tubes were covered with parafilm to 

minimize evaporative losses. The system, absent laser excitation, was given two hours to reach 

steady-state operation. Before beginning the dynamic heating, membrane temperature data from 

the infrared camera was saved, the capture rate increased from 0.02 to 1 Hz, and then restarted. 

This was done to study the dynamic portion immediately following resonant laser excitation of 

AuNPs in PDMS in finer detail. This dynamic period with faster thermal capture rates lasted for 

20 minutes, sufficient time for the membrane to reach thermal equilibrium. Following the dynamic 

portion, the thermal capture rate was lowered back to 0.02 Hz and the system ran uninterrupted for 



  

101 

 

14-24 hours. The fused membrane and mesh gasket supports allowed continuous operation for 24+ 

hours without loss in vacuum pressure, an improvement over the initial setup.  

Flux calculations were performed using a MATLAB script that counts the number of pixels 

the water level dropped since the previous snapshot.14 Small Styrofoam beads were used to 

improve water level visibility in recorded images. A conversion factor (a) of 480 pixels/mL was 

determined based on pixel resolution and physical dimensions, giving volume flux for each time 

interval. Mass flux was calculated as J = aρΔp/AΔt, where J is the pure water flux in kg, a is the 

pixel to volume conversion factor, ρ is density of water, A is the active membrane area (1.8 x 10-4 

m2), and Δt is the 10 minute time period between each measurement. Volume of recovered 

permeate was recorded for comparison with flux indicator values. A separate MATLAB script 

allowed facile analysis of membrane temperature distributions across all captured images. 

Membrane ΔT was given as the average ΔT for each trial across the entire steady-state laser 

excitation period. 

5.2 Plasmon-enhanced Au-WS2 nanosheets 

Semiconducting 2D-TMDs provide a novel platform to explore plasmonic excitation and 

dissipation pathways with broad application in optoelectronics,121,122 sensing,123,124 

photodetection,125 and solar fuel production.126 Au-decoration of WS2, discussed in Section 4.1, 

exerted a measure of control over physical and optoelectronic properties. AuCl3 preferentially 

reduces on multi-layer nanosheets; aggregates formed at higher Au content are easily removed via 

centrifugation, thereby leaving mostly monolayer Au-WS2 nanosheets behind. These Au-WS2 

heterostructures exhibited enhanced broadband carrier generation and exciton damping, i.e., 

optical extinction and photolumsinescence (PL), relative to Au-free WS2 analogues.  
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HET in developed Au-WS2 heterostructures, with an estimated quantum efficiency of 14% 

based on measured and theoretical results, could drive photocatalytic reactions or generate 

photocurrent even at sub-bandgap, infrared energies. Energetic electron injection into physisorbed 

species and facilitation of high-energy reactions with hot carriers is promising. These high energy 

electrons from plasmonic NPs can dissociate hydrogen on metal NPs,17 while improved 

photocatalytic hydrogen evolution reaction (HER) has been demonstrated with Au-decorated 2D 

TMDs.198 HET from plasmonic NPs can even induce a 2H to 1T crystal phase transition in 

TMDs,199 which increases conductivity and suppresses PL.200 Concurrently, intense plasmon near-

fields from adjacent NPs could improve intrinsic light absorption and carrier separation in adjacent 

semiconducting TMDs. These localized fields could also facilitate energy exchange between 

different frequencies for infrared energy harvesting201 by increasing harmonic photon 

upconversion in monolayer WS2, which exhibits an already strong intrinsic SHG response.202 

Overall, improvements in monolayer production and optoelectronic tunability resulting from in 

situ Au-decoration represents an important advance in the future study of NP-TMD 

heterostructures for use across a diverse range of applications. 
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6. CONCLUSIONS 

6.1 Summary 

This work advanced several key elements of photon dissipation into thermal or electronic 

energy in systems containing small, highly absorptive plasmonic AuNPs. Diffraction-induced 

optical extinction enhancements in random AuNP dispersions in 3D polymer films at interparticle 

separations near the resonant wavelength was reported for the first time. Complementary 

approaches developed in Chapter 2 distinguished contributions to optical extinction from isolated 

particles, interparticle interactions, and dielectric heterogeneity. Thermal dissipation following 

plasmonic absorption in these 3D polymer dispersions was extensively characterized in Chapter 3. 

Excellent agreement was obtained between measured and theoretical results that extended beyond 

conventional optical and one-dimensional heat transfer descriptions. These findings support robust 

design of resonant thermoplasmonics in emerging flexible photonic systems. In particular, Chapter 

5 discusses how these AuNP-polymer films could reduce thermodynamic requirements in 

pervaporation for efficient chemical separations. 

Concurrently, in situ reduction of plasmonic AuNPs on 2D WS2 addressed two current material 

limitations of these emerging nanoscale semiconductors. Addition of plasmonic AuNPs yielded 

higher obtainable monolayer content and modified optoelectronic response following liquid 

exfoliation of bulk WS2. Improved monolayer content, broadband optical extinction, and energetic 

electron injection were probed in Chapter 4 using a combination of advanced spectroscopic 

techniques and continuum electromagnetic description. Several optoelectronic and light harvesting 

applications were considered in Chapter 5 for the small Au-decorated WS2 nanosheets developed 

herein, with use their possible use as photocatalysts considered particularly promising.203 
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6.2 Future Work 

The idea of incorporating plasmon-active nanostructures into membrane separations is 

proliferating rapidly.196 The natural progression of work described in Section 5.1 involves the 

incorporation of an ordered AuNP array into a thin polyethylene oxide (PEO)-PDMS film. 

Addition of PEO co-polymer improves hydrophilicity204 and is therefore expected to enhance 

water pervaporation flux. In contrast to randomly dispersed NPs, emerging ordered arrays of 

plasmonic nanostructures allow for highly tunable, localized optical responses.5,205 These 

diffractive coupled lattice resonances could permit order-of-magnitude improvement in 

pervaporation performance. Work is underway to develop fabrication methods to create these next-

generation AuNP-PDMS membranes. Future study of these more advanced ordered AuNP systems 

are supported by the optothermal characterization and theoretical expertise developed herein. 

To-date, little is known about the redox potentials of TMDs or the mechanism for sponteneous 

Au-decoration. Understanding redox conditions could faciliate more rapid progress towards 

decoration of more exotic nanostructure materials and shapes featuring tunable plasmon 

resonances.185 A continous flow system previously developed within the group allows precise 

control over mass transfer-mediated reaction kinetics for electroless Au plating.206 This system has 

been adapted for decoration of TMDs deposited onto planar substrates to provide more control 

over Au-reduction compared to batch reaction. It is anticipated Au-decoration of TMDs deposited 

on planar substrates would interface well with catalytic hydrogen evolution reaction (HER) testing.  

Enhanced catalytic HER activity from Au-decorated, liquid-exfoliated nanosheets is viewed 

as a particularly promising application.147 Small WS2 nanosheets produced via liquid exfoliation 

are ideal since catalytic sites are believed to be dangling sulfur (S) bonds located primarily at edge 

or defect sites.207 Electrochemical studies performed by collaborators suggest Au-decoration 
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enhances HER up to 5-fold in the absence of light-driven plasmonic effects.152 Improved charge 

transport, a major limiting factor in utilization of liquid-exfoliated nanosheets208 and modified edge 

chemistry are potential reasons for observed enhancement. It is proposed that as Au is 

preferentially reduced at edge S sites, abundant edge thiols are preferentially reduced to more 

catalytically active disulfides.152  

These promising electrochemical results for Au-decorated WS2 warrant further study of their 

potential as photocatalysts. Current materials used are plagued by incomplete absorption of 

broadband solar radiation and difficulty controlling generated carriers. Accurate description herein 

of local field enhancements and HET in these hybrid nanomaterials under light excitation is an 

important first step towards characterizing their full potential as photocatalysts. Intense plasmon 

local near-fields could enhance light absorption and carrier separation in adjacent 2D TMDs. 

Concomitantly, carrier injection from AuNPs on WS2 could catalyze chemical reactions at sub-

bandgap, infrared energies and facilitate high energy reactions with physisorbed species. 

Refinement of Au-WS2 electrode deposition and photoelectrochemical measurement techniques 

are the subject of ongoing work in collaboration with researchers at both the University of 

Arkansas and Heidelberg University. 
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NOMENCLATURE 

AFM   Atomic Force Microscopy 

AuNP   Gold Nanoparticle 

AuNP-PDMS  Gold Nanoparticle-Polydimethylsiloxane 

AuNP-PVP   Gold Nanoparticle-Polyvinylpyrrolidone 

Au-WS2  Gold Decorated Tungsten Disulfide 

CDA   Coupled Dipole Approximation 

CVD   Chemical Vapor Deposition 

DDA   Discrete Dipole Approximation 

EELS   Electron Energy Loss Spectroscopy 

EMT   Effective Medium Theory 

FEA   Finite Element Analysis 

HER   Hydrogen Evolution Reaction 

HET   Hot Electron Transfer 

IPA   Isopropanol 

LPE   Liquid-phase Exfoliation 

LSPR   Localized Surface Plasmon Resonance 

MoS2   Molybdenum Disulfide 

PDMS   Polydimethylsiloxane 

PL   Photoluminescence  

PVP    Polyvinylpyrrolidone 

rAuNP   Reduced Gold Nanoparticle 
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ROI   Region of Interest 

RI   Refractive Index 

rw-s   Wigner-Seitz Radius 

SEM   Scanning Electron Microscopy 

SHG   Second Harmonic Generation 

STEM   Scanning Transmission Electron Microscopy 

TCA   Gold (III) Chloride 

TEM   Transmission Electron Microscopy 

TMD   Transition Metal Dichalcogenide 

UV-vis   Ultraviolet-visible 

WS2   Tungsten Disulfide 

XPS   X-Ray Photoelectron Spectroscopy 

1D   One-dimensional 

2D   Two-dimensional 

3D   Three-dimensional 
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